WO2013102289A1 - 特异结合和靶定dna-rna 杂合双链的方法 - Google Patents

特异结合和靶定dna-rna 杂合双链的方法 Download PDF

Info

Publication number
WO2013102289A1
WO2013102289A1 PCT/CN2012/001717 CN2012001717W WO2013102289A1 WO 2013102289 A1 WO2013102289 A1 WO 2013102289A1 CN 2012001717 W CN2012001717 W CN 2012001717W WO 2013102289 A1 WO2013102289 A1 WO 2013102289A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
rna
tale
protein
dhax3
Prior art date
Application number
PCT/CN2012/001717
Other languages
English (en)
French (fr)
Inventor
施一公
颜宁
邓东
闫创业
潘孝敬
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to CN201280060126.7A priority Critical patent/CN104093855B/zh
Publication of WO2013102289A1 publication Critical patent/WO2013102289A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/164Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to the field of biotechnology, and more particularly to a method of specifically binding and targeting a heterozygous double strand of DNA-RNA. Background technique
  • TALE Transcription Activator Like Effectors
  • TALE Transcription Activator Like Effectors
  • TALE family proteins generally consist of three major functional domains, the N-terminal domain and
  • TALE is involved in secretion transport; the C-terminus has a transcriptional activation domain and a nuclear signal peptide fragment; the region located in the middle of TALE is a DNA-binding domain, but its DNA-binding domain is different from other known DNA-binding domains, It consists of a series of repeating units, in most cases each repeat unit consists of 34 amino acids, and individual repeat units consist of 33 or
  • RVD repeat variable diresidue, repeated variable double residues.
  • J. Boch et al. and MJ Moscou et al. see J. Boch, H. Scholze, S. Schornack, A. Landgraf, S. Hahn, S. Kay, T. Lahaye, A. Nickstadt, U. Bonas, Breaking the code Of DNA
  • RVD amino acids
  • TALE double-stranded DNA helix
  • the present invention provides a method for specifically binding a DNA-RNA hybrid strand comprising the use of TALE and a derivative thereof to specifically recognize and bind to a specific DNA-RNA hybrid duplex.
  • the present invention provides a method for inhibiting the production of DNA using RNA as a template, including
  • the invention provides a method of inhibiting retroviral genome replication, the method comprising specifically binding to and binding to a DNA-RNA hybrid duplex using TALE and a derivative thereof.
  • the present invention provides a method for inhibiting the production of DNA using RNA as a primer and DNA as a template, which comprises specifically identifying and binding a DNA-RNA hybrid double strand with TALE and a derivative thereof.
  • the invention provides a method of inhibiting cell proliferation, comprising using TALE and a derivative thereof to specifically recognize and bind to a DNA-RNA hybrid duplex to inhibit cellular genome replication.
  • the present invention provides a method of inhibiting tumor cell proliferation, comprises TALE its derivatives to specifically identify other proteins 1 j DNA-RNA hybrid duplexes bind and thereby inhibit tumor cell Genomic replication.
  • the present invention provides a method for inhibiting RNA production by using RNA as a primer and DNA as a template, comprising specifically identifying and binding a DNA-RNA hybrid double strand with TALE and a derivative thereof, provided that the generated RNA can Forms a temporarily stable duplex with DNA.
  • the present invention provides a method for protecting RNA molecules in a DNA-RNA hybrid strand from degradation by RNA hydrolase RNase H, comprising specifically identifying and binding a DNA-RNA hybrid duplex with TALE and a derivative thereof.
  • the TALE protein can be a natural TALE protein and a TALE-derived protein which retains or enhances the DNA-RNA hybrid chain binding ability obtained by mutation, modification and assembly of the gene method.
  • the TALE-derived protein further comprises a recombinant protein having a TALE protein DNA binding domain.
  • the DNA may also comprise modified DNA derivatives such as thiolated bases, hydroxymethylated bases and the like.
  • the RNA may also comprise modified RNA derivatives, such as thiolated bases, hydroxylated bases, and the like.
  • the retrovirus comprises a virus belonging to the family Retroviridae, including but not limited to: Human Immunodeficiency Virus (HIV), Rous Sarcoma Virus (Rous Sarcoma Virus, RSV), Murine Leukemia Virus (MLV), Human T-cell Leukemia Virus (HTLV), and the like.
  • the retroviral virus also includes other RNA viruses that form RNA-DNA heteroduplexes during replication or that are similar to known retroviral genome replication, including those that have not yet been discovered.
  • the method is for inhibiting tumor cell proliferation in a mammal.
  • the present invention provides the use of a TALE protein for the preparation of a reagent that specifically recognizes a DNA-RNA hybrid duplex.
  • the present invention provides the use of a TALE protein for the preparation of a medicament for treating or preventing a disease caused by a retrovirus infection, for example, a human, animal or plant disease caused by a retrovirus, including but not limited to a human Immunodeficiency syndrome (AIDS), human T cell leukemia, human hairy cell leukemia, murine leukemia, avian leukemia, and the like.
  • AIDS Human Immunodeficiency syndrome
  • human T cell leukemia human hairy cell leukemia
  • murine leukemia murine leukemia
  • avian leukemia avian leukemia
  • the present invention provides the use of a TALE protein for the preparation of a medicament for the treatment or prevention of a tumor.
  • the present invention provides a method of treating or preventing a disease caused by a retrovirus infection, which Inhibition of retroviral replication by TALE and its derived proteins interfere with DNA replication using RN A as a template.
  • the present invention provides a method of treating or preventing a tumor in which tumor cell proliferation is inhibited by interfering with RNA-primed DNA replication by TALE and its derived protein.
  • the present invention provides a TALE protein for specifically recognizing a DNA-RNA hybrid double strand.
  • the present invention provides a TALE protein for use in the treatment or prevention of a disease caused by a retroviral infection or for the treatment or prevention of a tumor.
  • Figure 1 is a schematic representation of the high-resolution crystal structure (1.85 angstrom) of dHax3 DNA binding domain (dHax3 truncated, labeled dHax3-A) and double-stranded DNA.
  • 1-10 in the left panel shows each repeat unit of the DNA binding domain of dHax3, which recognizes the corresponding DNA sequence on the right side.
  • Each repeat unit consists of two alpha helices, two helices and 1).
  • the structure has been uploaded to the PDB database with the code: 3V6T.
  • dHax3 (designed Hax3 ) refers to the modified TALE protein Hax3.
  • FIG. 2 is a schematic diagram showing that the interaction of dHax3 with DNA is mainly concentrated in the coding strand of DNA.
  • the surface charge potential of A, dHax3 shows a positive charge distribution on the surface of dHax3.
  • the blue distribution just interacts with the phosphate group of the DNA molecule (the DNA molecule is in the middle of the protein and the golden group is the phosphate group).
  • B this interaction exists only between dHax3 and the DNA strand with its recognition sequence.
  • C amino acid residues K and Q at positions 16 and 17 in each repeat unit interact with the DNA phosphate group via hydrogen bonding.
  • D, the main chain in each repeat unit also forms a hydrogen bond interaction with the DNA phosphate group.
  • Figure 3 is an electropherogram showing that the dHax3-NI variant (i.e., RVD in the seventh repeat unit of the DNA binding domain of dHax3 - NS) becomes NI by point mutation technique. It has the same DNA recognition as dHax3.
  • RVD dHax3-NI variant
  • Figure 4 shows the crystal structure of the DNA-binding domain of dHax3-NI (i.e., the truncated dHax3-NI, labeled dHax3-NI-A) and the DNA-RNA hybrid double-stranded complex.
  • dHax3-NI-A is represented by a ribbon model, and the "DNA coding strand” and "complementary RNA strand” are respectively indicated.
  • the structure has been uploaded to the PDB database with the code: 4GG4.
  • Figure 5 is an electropherogram showing the purification results of the dHax3 full-length protein.
  • the lane markings indicate: 1. Whole bacterial crushing solution; 2. Whole bacterial crushing and centrifugation; 3. Whole bacterial crushing centrifugal supernatant; 4. Nickel column culture waste; 5. Nickel column cleaning solution; 6. Nickel column elution Recovery liquid; 7. Nickel column material; 8. Molecular weight marker.
  • Figure 6 is an electropherogram showing the purification results of the dHax3 truncated body protein (dHax3-A).
  • Lane marking instructions A. Whole bacterial crushing solution; P. Whole bacterial crushing centrifugal sedimentation; S. Whole bacterial crushing centrifugal supernatant; F. Nickel column penetrating solution; W1. Nickel column cleaning solution 1; W1. Nickel column cleaning Liquid 2; E. Nickel column elution recovery solution; R. Nickel column column; M. Molecular weight marker.
  • Figure 7 is a schematic diagram showing the principle of eukaryotic DNA replication.
  • Figure 8 is an electropherogram showing that dHax3-NI protects DNA-RNA and prevents RNase H from digesting RNA in a DNA-RNA hybrid duplex.
  • Lanes 1 and 2 are the control group with or without dHax3-NI in the absence of RNase H, 3 in the absence of dHax3-NI in the case of RNase H, and 4 to 10 in the case of RNase H.
  • the final protein concentration gradients were 0.004, 0.015, 0.05, 0.025, 0.1, 0.4, and 1.6 ⁇ .
  • the prepared RNA ladders (T1 and A) of 13 and 14 were used to detect the cleavage position of RNase H in the DNA-RNA hybrid duplex.
  • Figure 9 is an electropherogram showing that the dHax3-TALE 24 repeat unit chimeric protein protects DNA-RNA, preventing RNase H from digesting RNA in a DNA-RNA hybrid double strand, and 0 and 1 1 are prepared RNA, respectively.
  • the ladder bands (T1 and A) were used to detect the cleavage position of RNase H in the DNA-RNA hybrid duplex. 1 and 2 respectively in the absence of RNase H circumstances, with or without dHax3-TALE control 24 repeat units; 3 is added to the RNase H, the control 24 repeating units free dHax3-TALE; 4 ⁇ 10 Road as In the case of RNase H, a gradient concentration of dHax3-TALE 24 repeat unit was added. The final concentrations of the protein were: 0.004, 0.015, 0.05, 0.025, 0.1, 0.4, and 1.6 ⁇ .
  • Figure 10 is an electropherogram showing that the dHax3-TALE HIV repeat unit chimeric protein protects DNA-RNA and prevents RNase H from digesting RNA in a DNA-RNA hybrid duplex.
  • Lanes 1 and 2 respectively, in the absence of RNase H, with or without dHax3-TALE HIV repeats
  • RNase H there is no dHax3-TALE HIV repeat unit control
  • 4 ⁇ 10 channels are added, gradient concentration of dHax3-TALE HIV repeat unit, final concentration of protein They were: 0.004, 0.015, 0.05, 0.025, 0.1, 0.4, and 1.6 ⁇ ;
  • 1 1 and 12 were controls with or without RNase H in the case of dHax3-TALE HIV repeat units; 13 and 14 were In the case of BSA, there is or is no RNase H control.
  • the inventors successfully analyzed the complex crystal structure of the DNA binding domain of the engineered TALE protein Hax3 (referred to as: o dHax3 (designed Hax3 )) and dsDNA.
  • o dHax3 designed Hax3
  • dsDNA dsDNA
  • TALE protein can specifically recognize DNA-:s RNA heteroduplex and successfully resolve the crystal structure of DNA binding domain of dHax3 protein and DNA-RNA hybrid double-stranded complex.
  • TALE protein can specifically recognize DNA-RNA hybrid double strands. This finding broadens the application prospect of TALE protein.
  • RNA as its genetic material, such as human immunodeficiency virus, human T-cell leukemia virus, etc., which cause serious diseases to humans.
  • RNA as its genetic material
  • human immunodeficiency virus human T-cell leukemia virus, etc.
  • they must replicate the viral genome by reverse transcription in the host cell. Reversal of the virus in the process of replicating itself by infecting the host, a key step is to synthesize a DNA strand complementary to the RNA using the viral RNA genome as a template in the host.
  • RNA hydrolase domain RNase H on the reverse transcriptase degrades the RNA strand in the DNA-RNA hybrid double strand, releasing the single-stranded DNA
  • the viral reverse transcriptase copies it into double-stranded DNA, and finally inserts the double-stranded DNA into the genome of the host.
  • TALE can bind to the phenomenon of DNA-RNA hybridization chain provides a novel way to inhibit retroviral genome replication, such as treatment of retrovirus-induced human immunodeficiency syndrome, human T cells.
  • Leukemia provides a new way of thinking and methods.
  • the method can also be used to treat diseases caused by viruses that form RNA-DNA hybrid double-strands during replication, including other RNA viruses and viruses not found that are similar to the known retroviral genome replication.
  • double-stranded DNA exists in a linear form. Since the direction of DNA replication is from 5, 3, wherein the leader strand can be continuously replicated from 5, 3 to 3, the lag chain is synthesized with RNA as a primer, and the segment is synthesized from the 5' end to the 3' end. Okazaki fragment.
  • TALE can effectively bind to DNA-RNA hybrid chains, which may compete with DNA polymerase for DNA-RNA hybrid chains, thereby inhibiting DNA replication.
  • the consequence of this is that it may inhibit cell division and thus provide a new idea and a new method for inhibiting tumor cell proliferation.
  • TALE protein refers to Transcription Activator Like Effectors, a transcriptional activator-like effector.
  • the TALE protein can be a natural TALE protein and a TALE ⁇ " protein that retains or enhances the DNA, or DNA-RNA hybrid chain binding ability obtained by genetic modification, modification, and assembly.
  • Hax3 refers to one of the members of the TALE protein family. Hax The full name is "Homolog of avrBs3 in J3 ⁇ 4w omo"iw, and Hax3 is one of the three homologous proteins raised from the wild species, Armor aciae (Xanthomonas campestris pv. Armoraciae). As a member of the TALE protein family, its function is similar to that of other known TALE proteins such as AvrBs3 (see S. Kay, J. Boch, U.
  • dHax3 refers to an artificially engineered Hax3 (designed Hax3), : o the nucleotide sequence of the gene is SEQ ID NO: l, and the amino acid sequence can be found in SEQ ID NO: 2 (in which the 6XHis tag is inserted) .
  • M. Mahfouz et al. designed dHax3 to have the ability to specifically recognize the following DNA sequences: TCCCTTTATCTCK MM Mahfouz, L. Li, M. Shamimuzzaman, A. Wibowo, X.
  • dHax3 truncated body protein (“dHax3-A”) as used herein refers to a dHax3 truncated protein from which the N-terminal domain and the C-terminal domain have been removed, which is the dHax3 protein sequence. 0 230-72 1 , with 11.5 repeating units.
  • dHax3-NI refers to a variant of dHax3 in which NS in the seventh repeat unit of the DNA binding domain is transformed into NI by point mutation techniques to obtain more specific binding to the corresponding DNA strand. Both dHax3-NI and dHax3 have the ability to specifically recognize the following DNA sequences: TCCCTTTATCTCT.
  • dHax3-NI-A refers to the protein sequence of the dHax3-NI variant.
  • Truncated body of 230-72 1.
  • TALE 24 repeat unit refers to a repeating unit of a synthetic DNA binding domain having 24 repeating units.
  • TALE 24 repeat unit refers to a repeating unit of a synthetic DNA binding domain having 24 repeating units.
  • TALE HIV repeat unit refers to a synthetic DNA-binding domain repeat unit that specifically recognizes a specific fragment of the HIV genome, specifically designed and For preparation see P. Yin, D. Deng, C. Yan, X. Pan, JJ Xi, N. Yan, Y. Shi, Specific DNA-RNA Hybrid Recognition by TAL Effectors, Cell reports, 2 (2012) 707-713 0
  • dHax3-TALE 24 repeat unit refers to a chimeric protein formed by replacing the repeat unit of the DNA binding domain of dHax3 with TALE 24 repeat unit 5.
  • dHax3-TALE HIV repeat unit refers to a chimeric protein formed by replacing a repeat unit of the DNA binding domain of dHax3 with a TALE HIV repeat unit.
  • the TALE protein of RVD in Table 1 is not used, for example, the TALE protein of RVD having ND, N, NH, HG, N* (* represents any amino acid), etc., all recognize DNA with the same molecular mechanism as dHax3, and also It has the ability to recognize DNA-RNA hybrid double strands and is therefore within the scope of this patent.
  • composition of the 50 ⁇ standard PCR reaction system is shown in the following table, and the system can be scaled up if necessary;
  • the amplified target gene fragment was directly recovered using a common DNA recovery kit. Note that if the amplified gene fragment is a point mutation, the DNA template is first removed by agarose gel electrophoresis, and then the target gene is recovered using an agarose gel DNA recovery kit.
  • the amplified fragment and vector were treated with the same restriction endonuclease to generate the same DNA cohesive ends.
  • the composition of the 50 ⁇ double digestion reaction system is shown in the following table:
  • the digested target gene fragment was ligated into the vector using T4 DNA ligase, and the reaction was carried out at 16 ° C or room temperature for 5 to 120 min.
  • the connection system is shown in the following table:
  • the ligation product was transferred into DH5a competent cells according to the following method, and the screening was positive. ?0 clone: 50 ⁇ 100 ⁇ 1 ⁇ 5 ⁇ competent cells were added to the ligation product, and placed on water for 30 min;
  • the plasmid was extracted using a common plasmid mini-kit, and sequencing was performed by Genewiz Biotech Co., Ltd.
  • s is Escherichia coli ( co / ), yeast, insect cells, etc. Different proteins may be suitable for expression in different systems.
  • the target protein is a protein in Gram-negative bacteria, so Escherichia coli was selected as an expression system for protein expression purification.
  • a histidine tag composed of six histidines may be bonded to a column having a metal atom such as nickel in the form of a coordinate bond. Proteins with a purity of about 95% or more can be obtained by nickel column affinity chromatography and heparin affinity chromatography.
  • the specific purification steps are as follows: 50 ml of LB medium containing ampicillin or ampicillin/chloramphenicol double antibody was added and incubated overnight at 37 ° C on a shaker.
  • the induced E. coli was centrifuged at 4400 rpm for 4 min at 10 ° C, and the supernatant was discarded.
  • the wet bacteria collected by centrifugation per liter of culture solution were resuspended in 20 ml of lysate (25 mM Tris-HCl pH 8.0, 500 mM NaCl).
  • the target protein is eluted from the heparin column.
  • the protein purified by the above two-step affinity chromatography was concentrated to 0 to 10 mg/ml using an ultrafiltration concentrating tube. Finally, the protein was further purified using a molecular sieve (Superdax 200) and the protein was used.
  • the buffer used for the molecular sieve was 25 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 mM DTT.
  • the dHax3 (designed Hax3) gene is obtained by whole gene synthesis, and the sequence is as follows (SEQ ID NO:
  • the synthetic gene was directly ligated into the pET300 (invitrogen) plasmid.
  • the expressed full-length protein has six histidine tags at the N-terminus for affinity purification by nickel column for protein purification.
  • both the N-terminus and the C-terminus of the protein have a large segment without a secondary structure region. These regions are not suitable for protein crystallization, and the inventors have designed a truncated body protein (dHax3 truncation, labeled dHax3-A) containing the protein sequence 230-721) to obtain a more stable protein.
  • the dHax3 truncation was cloned into the pET21 (Novagen) expression vector.
  • the expressed dHax3 truncated protein sequence is as follows, wherein the C-terminus contains a His 6 tag for affinity purification by nickel column for protein purification (SEQ ID
  • the purification map of the dHax3 truncated body protein is shown in Figure 6 (purified by nickel column affinity chromatography using a Histidine 6 tag, and subjected to Coomassie blue development by SDS-PAGE electrophoresis).
  • the inventors also constructed and expressed the dHax3-NI-A protein for co-crystallization experiments with DNA-RNA.
  • the NS in the seventh repeat unit of the DNA binding domain was changed to NI by point mutation technique, and dHax3- was constructed and expressed.
  • NI for EMSA experiments and RNase H digestion protection
  • amino acid sequence of -NI-A is as follows (SEQ ID NO: 4):
  • TALE HIV repeat unit and TALE 24 repeat unit Two repeating units of the DNA domain of TALE (TALE HIV repeat unit and TALE 24 repeat unit) were also designed.
  • the repeating unit of the corresponding DNA binding domain is obtained by synthesis. Restriction sites for Spel and Sail are present at the ends of the repeat unit of the synthetic DNA binding domain, respectively.
  • the DNA sequence and protein sequence of the TALE 24 repeat unit and the TALE HIV repeat unit are shown in Table 2 below:
  • V ⁇ VOOOVDCOOVV ⁇ OLOL LLOVCOV ⁇ : XLLDDO VV )) ⁇ EO V ⁇ 1 ⁇ ' , ⁇ ) ⁇ 3D0V VVV:>0D ⁇ OOOVaLV JLO ⁇ L VOVVOV ⁇ 3X1V Thai 31V1
  • Table 3 shows the correspondence between the RVD of the TALE repeat unit involved in the experiment and the DNA it recognizes: Table 3: Correspondence between RVD and DNA base sequences involved in the experiment
  • the synthetic TALE 24 repeat unit or dHax3-TALE HIV repeat unit was inserted between Nhel and Sail of the dHax3 gene, thereby replacing the dHax3 repeat unit to form two chimeric proteins dHax3-TALE 24 repeat unit and dHax3-TALE mv repeat unit.
  • Example 2 Obtaining the crystal structure of the complex of dHax3-A and double-stranded DNA and the crystal structure of the dHax3-NI-A and DNA-RNA duplex complex
  • the synthesized single-stranded DNA was dissolved to 1 mM, the two single-stranded DNAs were mixed in an equimolar ratio, and the bath was heated at 85 ° C for more than 3 min, and slowly cooled to 22 ° C, which was not less than 3 hours.
  • lyophilization and cryopreservation can be performed.
  • RNA 3' AC AGGGAAAUAGAGA GA 5' (SEQ ID NO: ll)
  • the synthesized single-stranded DNA or RNA was dissolved to 1 mM, the two single chains were mixed in an equimolar ratio, and the bath was incubated at 85 °C for 3 min or more, and slowly cooled to At 22 ° C, this process must be no less than 3 hours.
  • lyophilization and cryopreservation can be carried out.
  • the purified dHax3-A (231-720 in the full-length sequence) was adjusted to a protein concentration of 6 to 7 mg/ml, and the double-stranded DNA after annealing at a molar ratio of 1.5:1 was added and incubated at 4 ° C for 30 min. Screening for crystallization conditions is based primarily on the commercial Screen Kit, including: Hampton's SaltRX, Natrix, PEG/Ion, Crystal Screen, Index; Emerald The company's Wizard I, II, III; Molecular dimension of ProPlex.
  • the conditions for protein crystallization were screened from the above Kit, and the crystallization conditions were optimized by adjusting the concentration of the precipitant, the type; the concentration and type of the salt ion; and the concentration and type of the buffer.
  • the crystal was optimized using the Addtive Screen and the Detergent Screen Kit. At the same time, the crystal is dehydrated, annealed, etc., to improve the diffraction quality of the crystal.
  • the crystallization conditions were as follows: the following crystallization mother liquid and the incubated protein nucleic acid complex were mixed by a volume ratio of 1:1, and cultured at 18 ° C for two days by a hanging drop vapor diffusion method to obtain a crystal. .
  • Crystallization mother liquor 8-10% PEG3350 (w/v), 12% ethanol, 0.1 M MES pH 6.0. Climbing data collection and processing
  • dHax3-A and double-stranded DNA dsDNA
  • This structure clearly demonstrates that dHax3 exhibits a right-handed helical structure that wraps dsDNA in the middle of the entire complex. Protein entangled outside the DNA, embedded in the large groove of DNA (see picture 1 ) .
  • Structural analysis revealed that the interaction of dHax3 with DNA was mainly concentrated on the DNA strand with the recognition sequence, while the complementary strand was not involved in the protein-DNA interaction (see Figure 2). Even if the complementary strand becomes RNA, dHax3 should be able to bind as well. Structural analysis further shows that: 5 The non-coding strand is not directly in contact with dHax3, so it can tolerate a considerable degree of modification to the base and backbone, that is, the non-coding strand can be DNA, RNA, or their derived, modified molecules.
  • Figure 4 shows the crystal structure of the heterozygous double-stranded complex of dHax3-NI-A and DNA-RNA.
  • Example 3 Gel retardation verification ⁇ ⁇ verification dHax3-NI can be mixed with DNA - RNA
  • the gel retardation assay is a special gel electrophoresis technique that studies the interaction of DNA/RNA with proteins in vitro.
  • the basic principle is: In gel electrophoresis, due to the action of the electric field,
  • a nucleic acid fragment of a small molecule moves faster toward the anode than a nucleic acid fragment to which the protein is bound.
  • a short nucleic acid fragment can be labeled, mixed with a protein, and the mixture can be subjected to gel electrophoresis. If the target DNA binds to a specific protein, the speed of movement is blocked, and autoradiography of the gel can be found. Nucleic acid binding protein. At the same time, by statistically combining the amount of DNA of the protein and the amount of DNA of the unbound protein, a more accurate fit can be calculated to calculate the binding affinity of the protein to the nucleic acid.
  • T4 polynucleotide kinase (lOU/ ⁇ ) 1 ⁇ After setting up the reaction system according to the above table, gently mix and incubate at 37 °C for 30 min; use G25 pre-installed desalting column to remove excess [ ⁇ ] - 32 ⁇ ]- ⁇ , adding an excess of unlabeled complementary strands, annealing to generate double-stranded DNA or DNA-RNA hybrid double strands.
  • reaction components are added to the reaction system in the above proportion, and the mixture is incubated at 4 ° C for 20 min after mixing; the responsive sample is run 6% non-denaturing gel;
  • the glue After running the glue, the glue is dried and placed on the phosphor screen for exposure overnight;
  • Image data was read using a Typhoon 9400 varible scanner.
  • Example 4 RNase H cutting protection experiment verification
  • the sequence of the DNA-RNA strand used for the RNase H restriction protection assay is as follows: dHax3 DNA 5' CCACATATGTCATACGTGTCCCTTTATCTCT (SEQ ID NO; 15)
  • TALE24 DNA 5' CCACATATGTCATACGTGTCCCTTTATCTCTCTCCAGCTCGAG (SEQ ID NO: 17)
  • RNA5' AG AUC UGAGCCUGGG AGC UCUCUGGCUAACUAGGG A (SEQ ID NO: 2Q)
  • the DNA-RNA hybrid double strand was obtained in the same manner as the EMSA experiment, but the hybridization of the DNA-RNA for RNase H digestion protection was performed. Radioactive labeling.
  • RNA-loading buffer 95% guanidinamide, 18 mM EDTA, 0.025% xylene blue, 0.025% bromophenol blue. Samples were identified using a 12% 7 M urea polyacrylamide gel. After running the glue, dry the glue and place it on the phosphor screen for overnight exposure; use the Typhoon 9400 to read the image data.
  • the RNA ladder was prepared by RNase T1 or RNase A digestion with ssRNA.
  • dHax3-NI protects DNA-RNA and prevents RNase H from digesting RNA in the DNA-RNA hybrid duplex.
  • Lanes 1 and 2 showed no significant degradation bands in the control group with or without dHax3 in the absence of RNase H; in the third lane, in the case of RNase H, a control experiment without dHax3 found: Most of the RNA was degraded into small fragments; in the 4th to 10th channels, when adding RNase H, a gradient of dHax3-NI (0.004, 0.015, 0.05, 0.025, 0.1, 0.4, 1.6 ⁇ ) was added. Partially degraded RNA bands as indicated by the arrows.
  • RNA bands directly indicate that dHax3-Ni binds to the DNA-RNA duplex and directly protects the RNase H from the RNA strand in the DNA-RNA duplex.
  • Degradation Lanes 13 and 14 were prepared RNA ladders (T1 and A) for detecting the cleavage position of RNase H in the DNA-RNA hybrid duplex.
  • TALE protein has universality for DNA-RNA double-strand protection, that is, whether this protective effect exists only in dHax3-TALE protein
  • the inventor designed another A repeating unit of varying length - a TALE24 repeat unit with 24 repeating units that recognizes longer DNA-RNA hybrid duplexes (see P. Yin, D. Deng, C. Yan, X. Pan) JJ Xi, N. Yan, Y. Shi, Specific DNA-RNA Hybrid Recognition by TAL Effectors, Cell reports, 2 (2012) 707-713).
  • the inventors were surprised to find that the dHax3-TALE 24 repeat unit chimeric protein also protects DNA-RNA, preventing RNase H from digesting RNA in DNA-RNA hybrid duplexes. . Therefore, the TALE24 repeat unit can also prevent RNase H from degrading the RNA strand in the DNA-RNA duplex.
  • TALE HIV repeats that specifically recognize specific fragments of the HIV genome (see P. Yin, D. Deng, C. Yan, X. Pan, JJ Xi, N. Yan, Y. Shi, Specific DNA-RNA Hybrid Recognition by TAL Effectors, Cell reports, 2 (2012) 707-713), and constructed dHax3-TALE HIV repeat unit chimeric protein for RNase H degradation experiments. The inventors were surprised to find that the TALE HIV repeat unit prevents RNase H from degrading RNA strands in the DNA-RNA duplex.
  • RNA degradation of RNA was gradually attenuated under the protection of gradient concentrations of dHax3-TALE HIV repeat units (0.004, 0.015, 0.05, 0.025, 0.1, 0.4, 1.6 ⁇ ).
  • the reason for the absence of partial degradation here is because the DNA-RNA duplexes exposed to the TALE HIV repeat unit protection are shorter. This suggests that the TALE protein with the TALE HIV repeat unit prevents the degradation of the RNA strand during replication of the HIV genome.
  • HIV reverse transcribes RNA to produce DNA, and further reverses the RNase H domain on the reverse transcriptase to degrade RNA.
  • the released single-stranded DNA will use DNA polymerase to replicate the complementary DNA strand.
  • DNA double-strand so degradation of RNA in DNA-RNA duplexes is an essential part of HIV replication.
  • TALE to identify specific fragments of the HIV genome can prevent the degradation of RNA strands in the HIV genome during replication. Thereby achieving the function of inhibiting or slowing down the HIV replication process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种特异结合和靶定DNA-RNA杂合双链的方法。该方法包括用TALE及其衍生蛋白来特异性识别特定的DNA-RNA杂合双链并与之结合。

Description

特异结合和耙定 DNA-RNA杂合双链的方法 技术领域
本发明涉及生物技术领域, 更具体地说, 涉及特异结合和靶定 5 DNA-RNA杂合双链的方法。 背景技术
TALE ( Transcription Activator Like Effectors, 转录激活子样效应因 子) 是植物致病菌黄单胞菌属 Xanthomo謹、 的细胞内的一种蛋白质。 ! 0 当病原菌侵染植株时,病菌会通过其自身的 III型分泌系统将包括 TALE 在内的一系列效应分子注入到植物细包内。 这些效应分子通过影响宿主 细胞的信号传递, 基因表达等方式来协助病菌进一步扩增。 TALE 则是 这些效应分子中最大的一类, 它像植物自身的转录激活子一样行使功
■6 β匕
: TALE家族蛋白一般由 3个主要的功能结构域组成, N端结构域与
TALE的分泌转运有关; C端具有转录激活结构域和入核信号肽片段;位 于 TALE中部的区域是 DNA结合结构域, 但它的 DNA 结合结构域不 同于其他已知的 DNA结合结构域, 它是由一段串联的重复单元组成, 大多数情况下每个重复单元由 34个氨基酸组成, 个别重复单元由 33或
?.0 35个氨基酸残基组成。 这 34个氨基酸中除了第 12和 13位的氨基酸变 化较大之外, 其他氨基酸高度保守。 这两个不保守的氨基酸被命名为 RVD ( repeat variable diresidue , 重复可变双残基 )。 J. Boch等人和 M.J. Moscou等 (参见 J. Boch, H. Scholze, S. Schornack, A. Landgraf, S. Hahn, S. Kay, T. Lahaye, A. Nickstadt, U. Bonas, Breaking the code of DNA
?. binding specificity of TAL-type III effectors, Science, 326 (2009) 1 509- 1 5 12和 .J. Moscou, A.J. Bogdanove, A simple cipher governs DNA recognition by TAL effectors, Science, 326 (2009) 1501 )已于 2009年分别 通过实验和生物信息学研究发现每个重复单元中第 12和 13位的氨基酸 ( RVD ) 与识别的核苷酸种类有特殊的对应关系, 例如: 表 1 部分 RVD与 DNA碱基序列的对应关系
RVD氨基酸序列 DNA碱基序列
HD C
NG T
NI A
N G/A
NS A/G/C/T
TALE蛋白的特异 DNA序列识别以及灵活的可组装性为它们在分 子生物学中的应用提供了巨大的前景, 科学家们可以设计组装任意的 TALE单元去识别任意的 DNA双螺旋序列。 这一特性已经被用来构造 切割特异双链 DNA序列的 DNA酶 TALEN (TALE nuclease, TALE核 酸酶), 用于在细胞基因组中引入定点突变、 定点敲除等操作 (A.J. Bogdanove, D.F. Voytas, TAL effectors: customizable proteins for D A targeting, Science, 333 (201 1) 1843-1846. ) 。 在目前所有已知的报道中, TALE识别的都是双链的 DNA螺旋 ( dsDNA ) 。 发明内容
本发明提供了一种特异结合 DNA-RNA 杂合链的方法, 包括用 TALE及其衍生蛋白来特异性识别特定的 DNA-RNA杂合双链并与之结 合。
本发明提供了一种抑制以 RNA为模板来生成 DNA的方法,包括用
TALE及其衍生蛋白来特异性识别 DNA-RNA杂合双链并与之结合。 在 一个优选实施方式中, 本发明提供了一种抑制逆转录病毒基因组复制的 方法,所述方法包括用 TALE及其衍生蛋白来特异结合 DNA-RNA杂合 双链并与之结合。
本发明提供了一种抑制以 RNA为引物、 DNA为模板来生成 DNA 的方法, 包括用 TALE及其衍生蛋白来特异性识别 DNA-RNA杂合双链 并与之结合。在一个优选实施方式中,本发明提供了一种抑制细胞增殖, 包括用 TALE及其衍生蛋白来特异性识别 DNA-RNA杂合双链并与之结 合从而抑制细胞基因组复制。 在一个更优选实施方式中, 本发明提供了 一种抑制肿瘤细胞增殖的方法, 包括用 TALE及其衍生蛋白来特异性识 另1 j DNA-RNA杂合双链并与之结合从而抑制肿瘤细胞基因组复制。 本发明提供了一种抑制以 RNA为引物、 DNA为模板来生成 RNA 的方法, 包括用 TALE及其衍生蛋白来特异性识别 DNA-RNA杂合双链 并与之结合, 条件是生成的 RNA能与 DNA形成暂时稳定的双链体。
本发明提供了一种保护 DNA-RNA杂合链中 RNA分子不被 RNA水 解酶 RNase H 降解的方法, 包括用 TALE及其衍生蛋白来特异性识别 DNA-RNA杂合双链并与之结合。
TALE蛋白可以为自然界已有的 TALE蛋白以及在此基础上通过基 因方法突变、 修饰、 组装获得的保持或增强 DNA-RNA杂合链结合能力 的 TALE衍生蛋白。 所述 TALE衍生蛋白还包含具有 TALE蛋白 DNA 结合结构域的重组蛋白。
所述 DNA还可以包含修饰的 DNA衍生物, 例如曱基化碱基、羟甲 基化碱基等。
所述 RNA还可以包含修饰的 RNA衍生物, 例如曱基化碱基、 羟曱 基化碱基等。
在一个优选实施方式中, 所述逆转录病毒包括逆转录病毒科 ( Retroviridae )中所属病毒, 包括但不限于:人类免疫缺陷病毒( Human Immunodeficiency Virus, HIV ) 、 劳斯肉瘤病毒 (Rous Sarcoma Virus, RSV)、 鼠白血病病毒(Murine Leukemia Virus, MLV ) 、 人类 T细胞白 血病病毒(Human T-cell Leukemia Virus, HTLV ) 等等。 所述逆转录病 毒还包括在复制过程中形成 RNA-DNA 杂合双链的或以与已知逆转录 病毒基因组复制方式类似的其他 RNA病毒, 包括尚未发现的病毒种类。
在一个优选实施方式中, 所述方法用于抑制哺乳动物中的肿瘤细胞 增殖。
本发明提供了 TALE蛋白在制备特异性识别 DNA-RNA杂合双链的 试剂中的用途。
本发明提供了 TALE蛋白在制备药物中的用途, 所述药物用于治疗 或预防由逆转录病毒感染引起的疾病, 例如, 由逆转录病毒引起的人、 畜、 植物疾病, 包括但不限于人免疫缺陷综合症 (AIDS ) 、 人 T 细胞 白血病、 人毛细胞白血病、 鼠白血病、 禽白血病等等。
本发明提供了 TALE蛋白在制备药物中的用途, 所述药物用于治疗 或预防肿瘤。
本发明提供了治疗或预防由逆转录病毒感染引起的疾病的方法, 其 通过 TALE及其衍生蛋白来干扰以 RN A为模板的 DNA复制来抑制逆转 录病毒的复制。
本发明提供了治疗或预防肿瘤的方法, 其中通过 TALE及其衍生蛋 白来干扰以 RNA为引物的 DNA复制来抑制肿瘤细胞增殖。
本发明提供了用于特异性识别 DNA-RNA杂合双链的 TALE蛋白。 本发明提供了用于治疗或预防由逆转录病毒感染引起的疾病或用 于治疗或预防肿瘤的 TALE蛋白。 附图说明
图 1是 dHax3的 DNA结合域( dHax3截短体, 标记为 dHax3-A ) 与双链 DNA的高分辨率晶体结构( 1.85埃)示意图。 左图中的 1-10 表 示 dHax3的 DNA结合域的每个重复单元, 其识别右侧对应的 DNA序 列。 每个重复单元由两个 α螺旋组成, 两个螺旋分别为 和1)。 该结构 已上传到 PDB数据库中, 代码为: 3V6T。 其中 dHax3 ( designed Hax3 ) 指经过改造的 TALE蛋白 Hax3。
图 2是示意图, 表明 dHax3与 DNA的相互作用主要集中于 DNA 的编码链。 A, dHax3的表面电荷势,显示 dHax3表面有一条正电荷分布。 蓝色分布刚好与 DNA分子的磷酸基团相互作用(DNA 分子位于蛋白的 中间, 金黄色基团表示磷酸基团) 。 B, 这种相互作用只存在于 dHax3 与具有其识别序列的 DNA链之间。 C, 每个重复单元中的第 16和 17 位的氨基酸残基 K和 Q会通过氢键与 DNA磷酸基团相互作用。 D, 每 个重复单元中主链也会与 DNA磷酸基团形成氢键相互作用。
图 3是电泳图, 显示了 dHax3-NI变体 (即 dHax3的 DNA结合域 的第七个重复单元中的 RVD—— NS——通过点突变技术变成 NI。 它具 有与 dHax3相同的 DNA识别序列, 同时具有更高的识别特异性) 与双 链 DNA(图 A泳道 1 -5, dsDNA )、单链 DNA(图 A泳道 6-10, ssDNA )、 DNA-RNA 杂合双链 ( 图 B, 泳道 1-5: fDNA+rRNA , 泳道 6- 10:fRNA+rDNA ) 、 双链 RNA (图 C泳道 1-5, dsRNA ) 和单链 DNA (图 C泳道 6-10, ssRNA )的凝胶阻滞实验。泳道 1-5和 6-10中, dHax3-NI 蛋白浓度分别为 0、 0.15 μΜ、 0.44 μΜ、 1.33 μΜ和 4μΜ, 同时每个泳 道中含有大约 4 ηΜ 的带有 32Ρ 放射性标记的核酸探针。 结果显示 dHax3-Nl可以特异性识别 DNA双链和一种 DNA-RNA杂合双链。 "Γ: 正向链。 "r": 反向链。
图 4显示了 dHax3-NI的 DNA结合域 (即 dHax3-NI的截短体,标记 为 dHax3-NI-A)与 DNA-RNA杂合双链复合物的晶体结构。 dHax3-NI-A 以缎带模型表示, "DNA编码链 "和"互补 RNA链"分别标出。 该结构已 上传到 PDB数据库中, 代码为: 4GG4。
图 5是电泳图,显示了 dHax3全长蛋白的纯化结果。泳道标注说明: 1. 全菌破碎液; 2. 全菌破碎离心沉淀; 3. 全菌破碎离心上清液; 4. 镍 柱培养弃液; 5. 镍柱清洗液; 6. 镍柱洗脱回收液; 7. 镍柱柱材; 8. 分 子量标志物。
图 6是电泳图, 显示了 dHax3截短体蛋白(dHax3-A )的纯化结果。 泳道标注说明: A. 全菌破碎液; P. 全菌破碎离心沉淀; S. 全菌破碎离 心上清液; F. 镍柱穿透液; W1. 镍柱清洗液 1 ; W1. 镍柱清洗液 2; E. 镍柱洗脱回收液; R. 镍柱柱材; M. 分子量标志物。
图 7是示意图, 显示了真核生物 DNA复制原理。
图 8是电泳图, 显示了 dHax3-NI保护 DNA-RNA, 阻止 RNase H 对 DNA-RNA杂合双链中的 RNA的酶切。 1和 2道分别为在没有 RNase H情况下, 有或者无 dHax3-NI的对照组; 3为加入 RNase H情况下, 无 dHax3-NI的对照; 4~10为加入 RNase H情况下, 加入梯度浓度的 dHax3-NI, 蛋白终浓度梯度为 0.004、 0.015、 0.05、 0.025、 0.1、 0.4和 1.6 μΜ。 13和 14道分别为制备的 RNA梯带(T1和 A )用于检测 RNase H的在 DNA-RNA杂合双链中的剪切位置。
图 9 是电泳图, 显示了 dHax3-TALE24 重复单元嵌合蛋白保护 DNA-RNA, 阻止 RNase H对 DNA-RNA杂合双链中的 RNA的酶切, 0 和 1 1 道分别为制备的 RNA 梯带 (T1 和 A ) 用于检测 RNase H 在 DNA-RNA杂合双链中的剪切位置。 1和 2道分别为在没有 RNase H情 况下,有或者无 dHax3-TALE24重复单元的对照组; 3道为加入 RNase H 情况下, 无 dHax3-TALE24重复单元的对照; 4~10道为加入 RNase H情 况下, 加入梯度浓度的 dHax3-TALE24重复单元。 蛋白的终浓度依次为: 0.004、 0.015、 0.05、 0.025、 0.1、 0.4和 1.6 μΜ。
图 10 是电泳图, 显示了 dHax3-TALEHIV重复单元嵌合蛋白保护 DNA-RNA, 阻止 RNase H对 DNA-RNA杂合双链中的 RNA的酶切。 1 和 2道分别为在没有 RNase H情况下,有或者无 dHax3-TALEHIV重复单 元的对照组; 3道为加入 RNase H情况下, 无 dHax3-TALEHIV重复单元 的对照; 4〜10 道为加入 RNase H 情况下, 加入梯度浓度的 dHax3- TALEHIV重复单元, 蛋白的终浓度分别为: 0.004、 0.015、 0.05、 0.025、 0.1、 0.4和 1.6 μΜ; 1 1和 12道分别为在加入 dHax3-TALEHIV重 复单元情况下, 有或者无 RNase H的对照; 13和 14 道分别为在加入 BSA情况下, 有或者无 RNase H的对照。 具体实施方式
发明人成功解析了经过改造的 TALE 蛋白 Hax3 (在本文中称为 : o dHax3 ( designed Hax3 ) ) 的 DNA结合结构域与 dsDNA的复合物晶 体结构。 该结构除了揭示出 TALE蛋白特异识别每一个 DNA碱基的分 子基础, 还显示双链 DNA里只有一条链(即具有 TALE识别序列的链) 与 TALE相互作用。
发明人通过生物化学实验发现 TALE 蛋白可以特异识别 DNA - : s RNA杂合双链, 并成功解析了 dHax3蛋白的 DNA结合结构域与 DNA - RNA杂合双链复合体的晶体结构。
发明人通过结构观察与生物化学手段首次发现 TALE蛋白可以特异 识别 DNA - RNA杂合双链, 这一发现拓宽了 TALE蛋白的应用前景。
(1 ) 对逆转录病毒的治疗。
?.0 逆转录病毒, 以 RNA作为其遗传物质, 比如对人类造成严重疾病 的人类免疫缺陷病毒、 人类 T细胞白血病病毒等等。 它们要实现扩增, 都必须通过在宿主细胞内逆转录的方式来完成病毒基因组的复制。 逆转 录病毒在通过侵染宿主复制自身的过程中, 关键一步是在宿主内以病毒 RNA基因组作为模板, 合成与 RNA互补的 DNA链。 当基因组信息被 ?. 传递到单链的 DNA上后, 病毒逆转录酶 (Reverse Transcriptase ) 上的 RNA水解酶结构域 RNase H, 会将 DNA - RNA杂合双链中的 RNA链 降解掉, 释放出来的单链 DNA再作为模板, 病毒逆转录酶将其复制成 双链 DNA, 最后将双链 DNA插入到宿主的基因组中。
在病毒复制过程中,如果逆转录酶上的 RNase H结构域在逆转录之 30 后不能降解 RNA, 病毒就不能完成基因组复制。 根据这个原理, 以及 发明人新发现的 TALE蛋白可以特异结合 DNA-RNA结合的特性,可以 推测, 当 TALE特异的结合 DNA-RNA杂合双链时, 会占据逆转录酶和 RNase H的结合位点, 使得 RNase H不能降解 RNA, 从而达到抑制病 毒复制的目的。
发明人首次发现的 TALE可以结合 DNA-RNA杂合链的现象为抑制 逆转录病毒基因組复制过程提供了一种新型方式, 从而为治疗由逆转录 病毒引发的诸如人免疫缺陷综合症、人 T细胞白血病提供了一种新型的 思路和方法。该方法还可用于治疗由在复制过程中形成 RNA-DNA杂合 双链的病毒引发的疾病, 所述病毒包括以与已知逆转录病毒基因组复制 方式类似的其他 RNA病毒和尚未发现的病毒。
(2) 影响真核生物的 DNA 复制, 从而为抑制肿瘤细胞增殖提供新 方法。
如图 7所示, 真核生物基因组中, 双链 DNA以线性形式存在。 由 于 DNA的复制方向从 5, 3,, 其中前导链可以从 5,端向 3,端连续复制 下去; 而滞后链则要以 RNA为引物, 从 5'端向 3'端合成一段一段的冈 崎片段 ( Okazaki fragment ) 。
现在发明人发现 TALE可以有效结合 DNA-RNA杂合链,那就可能 与 DNA聚合酶竟争对于 DNA-RNA杂合链的结合, 从而抑制 DNA复 制。 这样的后果是可能抑制细胞分裂, 从而对抑制肿瘤细胞增殖提供了 一个新思路和新方法。
基于这种特异识别 DNA-RNA杂合双链的新方法, 为千扰细胞内所 有通过形成 DNA-RNA杂合双链的过程, 比如逆转录病毒在宿主细胞内 的复制、 细胞基因组 DNA的复制等重要过程, 提供了新方法。
除非本文另有定义, 本发明使用的相关科学和技术术语具有本领域 普通技术人员通常理解的含义。 而且, 除非上下文有其它规定, 单数形 式的术语应当包括复数, 而复数形式的术语应当包括单数。 通常, 与本 文所述的分子生物学、 生物化学、 结构生物学及相关使用的命名以及技 术, 是本领域众所周知且普遍使用的那些。 除非另有说明, 下面的术语 应当理解为具有下述含义:
本文所用的术语 "TALE 蛋白" 是指 Transcription Activator Like Effectors, 即转录激活子样效应因子。 TALE 蛋白可以为自然界已有的 TALE蛋白以及在此基础上通过基因方法突变、 修饰、 组装获得的保持 或增强 DNA、 或 DNA-RNA杂合链结合能力的 TALE ^"生蛋白。
本文所用的术语 "Hax3" 是指 TALE蛋白家族的成员之一。 Hax的 全称为 "Homolog of avrBs3 in J¾w omo"iw,, ,而 Hax3是从野油菜黄单 刀包菌更种 Armor aciae ( Xanthomonas campestris pv. Armoraciae ) 養定出 的 3个同源蛋白之一。 作为 TALE蛋白家族的成员之一, 它的功能与其 他已知的 TALE蛋白如 AvrBs3的功能类似 (参见 S. Kay, J. Boch, U. 5 Bonas, Characterization of AvrBs3-like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture, Molecular plant-microbe interactions: MPMI, 1 8 (2005) 838-848. ) 。
本文所用的术语 "dHax3"是指人工改造的 Hax3 ( designed Hax3 ) , : o 其基因的核苷酸序列为 SEQ ID NO: l , 氨基酸序列可参见 SEQ ID NO:2 (其中插入了 6XHis标签) 。 M. Mahfouz等人设计了 dHax3以使其 具有特异识别如下 DNA序列的能力: TCCCTTTATCTCK M.M. Mahfouz, L. Li, M. Shamimuzzaman, A. Wibowo, X. Fang, J.K. Zhu, De novo-engineered transcription activator-like effector (TALE) hybrid i nuclease with novel DNA binding specificity creates double-strand breaks, Proceedings of the National Academy of Sciences of the United States of America, 108 (201 1 ) 2623-2628. ) 。
本文所用的术语" dHax3 截短体蛋白" ("dHax3-A")是指去除了 N端 结构域和 C 端结构域的 dHax3 截短体蛋白, 其为 dHax3 蛋白序列 ?.0 230-72 1 , 具有 1 1 .5个重复单元。
本文所用的术语" dHax3-NI,,是指 dHax3 的一种变体, 其中在 DNA 结合域第七个重复单元中的 NS通过点突变技术变成 NI以获得与相应 DNA链更特异性的结合能力。 dHax3-NI与 dHax3 都具有特异识别如下 DNA序列的能力: TCCCTTTATCTCT。
?. - 本文所用的术语 "dHax3-NI-A"是指 dHax3-NI 变体的蛋白序列
230-72 1的截短体。
本文所用的术语" TALE24重复单元"是指一种人工合成的 DNA结合 域的重复单元, 其具有 24个重复单元, 具体设计和制备参见 P. Yin, D. Deng, C. Yan, X. Pan, J.J. Xi, N. Yan, Y. Shi, Specific DNA-RNA Hybrid 0 Recognition by TAL Effectors, Cell reports, 2 (2012) 707-713。
本文所用的术语" TALEHIV重复单元"是指一种人工合成的的 DNA 结合域的重复单元, 其特异性识别 HIV基因组中特定片段, 具体设计和 制备参见 P. Yin, D. Deng, C. Yan, X. Pan, J.J. Xi, N. Yan, Y. Shi, Specific DNA-RNA Hybrid Recognition by TAL Effectors, Cell reports, 2 (2012) 707-7130
本文所用的术语 "dHax3-TALE24重复单元"是指用 TALE24重复单元 5 来置换 dHax3的 DNA结合域中的重复单元从而形成的嵌合蛋白。
本文所用的术语 "dHax3-TALEHIV重复单元"是指用 TALEHIV重复单 元来置换 dHax3的 DNA结合域中的重复单元从而形成的嵌合蛋白。
由于所有 TALE蛋白中的 RVD识别 DNA碱基的分子机制相同, 虽 然不同的 TALE 蛋白存在一定序列差异性, 但是涉及实施例中 dHax3 1 0 特异性识别 DNA-RNA 杂合双链的能力也同样适用于其他不同于实施 例 dHax3序列的其他 TALE蛋白。 同时, 未使用表 1 中 RVD的 TALE 蛋白, 例如具有 ND, N , NH, HG , N* ( *代表任意氨基酸)等等 RVD 的 TALE蛋白, 都与 dHax3使用相同的分子机制识别 DNA, 也同样具 有识别 DNA-RNA杂合双链的能力, 所以也在本专利的保护范围之内。
: 实施例中所采用的各种试剂, 包括緩冲液、 酶、 载体、 试剂盒等, 均可通过商业途径购得或者按照 《分子克隆实验指南》 第三版 (黄培堂, 科学出版社, 2002)所推荐的方法配制。 实施例
?.0 实施例 1 : 几种 TALE蛋白的构建以及纯化
I 分子克隆及表达载体构建的实验方法如下:
» PCR扩增目的基因片段
50 μΐ标准 PCR反应体系组成如下表所示, 如有需要可按照比例扩 增体系;
25 50 μΐ PCR反应标准体系
成分 体积 (μΐ)
Ex Taq 0.25
Ι ΟχΕχ Tag 緩冲液 5
dNTP 4
DNA模板 2.5 ng
5' 引物 1
3 ' 引物 1 ddH20 补齐至 50 μΐ 成功扩增目的片段后, 直接使用普通 DNA回收试剂盒回收扩增的 目的基因片段。 注意, 如果是点突变的扩增基因片段需要先使用琼脂糖 凝胶电泳去除 DNA模板,然后使用琼脂糖凝胶 DNA回收试剂盒回收目 的基因。
•限制性内切酶处理扩增片段和载体
使用相同的限制性内切酶处理扩增片段和载体, 从而产生相同的 DNA粘性末端。 50 μΐ双酶切反应体系成分如下表所示:
50 μΐ标准双酶切反应体系
组分 体积 (μΐ)
PCR扩增片段或质粒 42 10χ酹切緩冲液 (NEB 緩冲液 4) 5
Ndel 1.2 Xhol 1.8
: ϋ
37 °C温浴 30〜180 min, 估计反应完全后, 进行凝胶电泳, 使用琼 脂糖凝胶 DNA回收试剂盒切胶回收 DNA片段。
• DNA连接
使用 T4 DNA连接酶将酶切后的目的基因片段连入载体, 16°C或室 :5 温反应 30〜120 min。 连接体系如下表所示:
10 μΐ标准连接体系
组分 体积 (μΐ)
酶切后目的基因片段 7
酶切后载体 1
10χΤ4连接酶緩沖液 1
Τ4 DNA连接酶 1 肇转化
将连接产物按照下述方法转入 DH5a感受态细胞中 , 准备筛选阳性 ?.0 克隆:在连接产物中加入 50~100μ1 ΟΗ5α感受态细胞,水上放置 30min;
42 °C热击 90s; 水上放置 2min; 将所有产物加到氨节抗性琼脂平板上, 用涂布棒涂匀, 37 倒置培养 14- 16小时。
攀使用菌落 PCR法筛选阳性克隆
在前一步得到的平板上标记 4〜8个菌落,使用如下体系检验阳性克 隆: 菌落 PCR体系
成 体积 (μΐ)
Taq 0.2
Ι ΟχΕχ Tag 緩沖液 3
dNTP 2
DNA 模板 囷洛
5' 引物 0.3
3' 引物 0.3
ddH20 补齐至 30 μΐ 使用凝胶电泳确认结果, 挑取阳性克隆, 在氨苄抗性 LB培养基中 37 °C、 220 rpm培养过夜。
: 0 馨质粒提取
使用普通质粒小提试剂盒提取质粒, 测序由金唯智 (genewiz ) 生 物科技有限公司完成。
馨重组蛋白的诱导表达
为了获得大量纯化的蛋白, 需要进行过量表达。 现有的过量表达体
: s 系有大肠杆菌 ( co/ )、 酵母、 昆虫细胞等。 不同的蛋白可能适合在不同 的体系中表达。 目的蛋白是革兰氏阴性菌中的一种蛋白, 所以选择大肠 杆菌作为表达体系进行蛋白表达纯化。
纯化出性质好, 纯度高的蛋白质是进行生化实验及结晶实验的前提 条件。 从大肠杆菌中纯化重组表达蛋白技术已经相当成熟。 为了方便的
?.0 使用亲和层析进行纯化, 构建了带有各种标签的重组蛋白。 经过比较, 采用带有组氨酸标签的重組蛋白进行后续实验。 6个组氨酸组成的组氨 酸标签可以以配位键的形式结合到带有镍等金属原子的柱材上。 经过镍 柱亲和层析和肝素亲和层析纯化就可以得到纯度大约 95%以上的蛋白。
具体纯化步骤如下: 接入 50ml 含有氨苄青霉素或者氨苄青霉素 /氯霉素双抗的 LB培养基, 并置于 37°C摇床培养过夜。
b. 将 5-10ml 的小瓶培养液转接到 1L含有抗生素的 LB培养基于 5 37°C摇床培养约 3小时。 当 0D600=0.8~1.0时, 加入 0.2mM 终浓度的 IPTG22°C诱导表达 14〜16小时。
c 完成诱导的大肠杆菌于 4°C4400rpm离心 lOmin, 弃上清。 每升 培养液离心收集的湿菌用 20 ml 裂菌液 (25 mM Tris-HCl pH 8.0, 500 mM NaCl ) 重悬。
: o d. 超声破菌后, MOOOrpm离心 50min, 取上清进行后续纯化。
e. 将上清緩缓加入事先用裂菌液(25 1«]^丁1^-1"^1 1^ 8.0, 500 mM NaCl ) 平衡好的镍柱中。 将穿过液重复上述操作 1〜2次。
f. 加入清洗緩冲液 I ( 25 mM Tris-HCl pH 8.0, 1000 mM NaCl ) 10ml, 除去部分杂质。 重复上述操作 3次。
: s g. 加入清洗緩沖液 II ( 25 mM Tris-HCl pH 8.0; 100 mM NaCl; l OmM Imidazole ) 10ml , 进一步除去杂蛋白。
h. 加入洗脱緩冲液( 25 mM Tris-HCl pH 8.0, 50 mM NaCl, 300mM
Imidazole ) 10ml, 将目的蛋白从镍柱上洗脱。 用考马斯亮蓝 G-250检测 是否洗脱干净, 如洗脱不完全, 重复上述操作。
0 I. 将洗脱下来的蛋白緩緩加入事先已用緩冲液 (25 mM Tris-HCl pH
8.0, 50 mM NaCl)平衡好的肝素柱( heparin sepharose 6 Fast Flow ) 。 将穿过液重复上述操作 1〜2次。
j. 加入清洗緩沖液 I ( 25 mM Tris-HCl pH 8.0, 100 mM NaCl )
10 ml, 除去杂质。 重复上述操作 3次。
5 k. 加入洗脱緩冲液( 25 mM Tris-HCl pH 8.0, 1000 mM NaCl, 10 mM
DTT ) 〗 0ml, 将目的蛋白从肝素柱上洗脱。 用考马斯亮蓝 G-250检测是 否洗脱干净。 如洗脱不完全, 重复上述操作。 使用 SDS-PAGE鉴定蛋白 纯度。
1. 经过上述两步亲和层析纯化得到的蛋白, 使用超滤浓缩管浓缩到 0 〜10mg/ml。 最后使用分子筛(Superdax 200) 进一步纯化蛋白并检测蛋白 性质, 分子筛所使用的緩冲液为 25 mM Tris-HCl pH8.0, 150 mM NaCl, 10 mM DTT。 使用脱盐柱 ( Hiprep 26/10 ) 将 dHax3(23卜 720)蛋白所在 緩冲液置换为 25 mM MES pH 6.0, 50 mM NaCl, 5 mM MgCl2, lOmM
DTT。
2. dHax3及 dHax3-A的构建与表达
dHax3( designed Hax3)基因通过全基因合成得到, 序列如下( SEQ
1DNO:! ) :
Figure imgf000016_0001
-14-
合成的基因直接被连入 pET300 ( invitrogen )质粒。 表达出来的全 长蛋白, N端有 6个组氨酸标签,用于蛋白纯化时通过镍柱的亲和纯化。
Figure imgf000017_0001
LPQ
dHax3全长蛋白的纯化图如图 5所示 (利用 6 χ组氨酸标签经由镍 柱亲和层析纯化, SDS-PAGE电泳后经考马斯亮蓝显色) 。
通过蛋白质二级结构预测, 发明人发现蛋白质的 N端和 C端都有 -大段没有二级结构区域。 这些区域不适合蛋白质结晶, 发明人于是设 计了截短体蛋白 (dHax3 截短体, 标记为 dHax3-A ) , 包含蛋白序列 230-721 ) 来获得性质更加稳定的蛋白质。 dHax3 截短体被克隆到 pET21(Novagen)表达载体中。 表达出来的 dHax3截短体蛋白序列如下, 其中 C端含有 His6标签,用于蛋白纯化时通过镍柱的亲和纯化(SEQ ID
Figure imgf000018_0001
DPALAALTNDHLVALACLGGRPALDAVKKLEHHHHHH
dHax3截短体蛋白的纯化图如图 6所示 (利用 Histidine6标签经由 镍柱亲和层析纯化, SDS-PAGE电泳后经考马斯亮蓝显色) 。
3. dHax3 -NI及 dHax3 -ΝΙ-Δ的构建与表达
发明人还构建并表达了 dHax3-NI-A蛋白用于与 DNA-RNA共结晶 实验,在 DNA结合域第七个重复单元中的 NS通过点突变技术变成 NI , 并且构建并表达了 dHax3-NI用于 EMSA实验以及 RNase H 酶切保护实
-NI-A的氨基酸序列如下 ( SEQ ID NO:4 ) :
Figure imgf000018_0002
Figure imgf000019_0001
PALAALTNDHLVALACLGGRPALDAVKKLEHHHHHH
4. TALE24重复单元及丁八!^^^重复单元的构建
另外设计了两种 TALE的 DNA结构域的重复单元 (TALEHIV重复 单元和 TALE24重复单元)。相应 DNA结合域的重复单元通过合成得到。 在合成的 DNA结合域的重复单元两端分別存在 Spel 和 Sail的限制性 酶切位点。 TALE24重复单元以及 TALEHIV 重复单元的 DNA序列和蛋 白序列如下表 2:
-81-
Figure imgf000020_0001
.1.100/Z10ZN3/X3d -61- LLOOiVOVOJLL VDOOV VVV OO丄 ΟΟ丄丄 V丄 VV丄 OV丄:) OJLLVO O
V丄 O丄丄 OVV3丄 VO丄:) ZLOVV丄:) VOO VC DOVV)丄 O丄:)丄 ) JLLOV
丄 3:)丄:) VO VVDVIOO VVVO:)丄 3丄:) OOV3VVV:>£)0丄 00丄 VV VV丄
£)V丄:) OIJLVO OV丄 0丄丄 OVV ODOO V:)丄:) iOO V DOVV:)丄
0L3丄 LLOV : 丄:) O丄:) 丄 OCOVVVOIX 丄:) OOV JVVV
OO丄 丄 V 丄 OV丄:) OljyEOOVJLaLlOVVDCOOEODCOV:)丄:):)
OO V C OVV 丄 0丄:)丄 LLOV C O丄:) VO VVDO丄 C VVVO丄
丄:)丄 3OOV VVV OO丄 OOOOO丄 VV10V丄: iOiJLVO OV丄 0丄丄 ovv:>o
OOV C OVVI VOO V OVV:)丄 0丄:)丄:) JLLDVDDV丄:)11:):)0:)¥
V3:D丄 033VOVOJLL:)丄:) OOViDVVV OO丄 OO Vi LV 丄 0V丄:) OllVO
OV丄 OliOVVO丄 V0丄:):)丄:) VV丄:) VOOIDV OVV IOL:)丄:) nov
丄:):)丄:) VO VV V!DO VVVi):)丄:)丄:) OOVJVVVDOO丄 00丄 VV V
V丄 0V13011V{)30V丄 OLLOVV 丄 VOV V:)丄:) 丄:) OVV
31011ΐ:)1 0ν:):)1 : 丄:) O OVDiiOO VOVO X V OOVi
V OOLOOLLV丄 VV丄 0V丄:) OLLVO OV丄 OLLOVVDC OVCm VV丄 3
VOO V J OVV 丄 0丄:)丄:) XIOV V丄:) l DO VV lOi VOVO
UO丄:) OOV3VVV OO丄 OO VO丄 丄 ov丄:) 0 VO OV丄 0丄丄 OVV
O OO DD V:)丄:) >00:)V:):):)OVV:)丄 0丄:)丄:) JLLOV :) )丄:) 0丄:) VD3
VV30丄 OODVVViXLLO丄 OOV:)VVV:)£)O丄 OODVOIYC)丄 0V丄:) 911V
0:>OVJ )丄 lOVV O ElDOD V:)丄 OO VO ODVV )丄 £)丄: >丄:) JLL
丄 30丄:) VO VV OlO VVVOll 丄:) OOVDVVV OO丄 oooo
01VV10V13911V930V10110VV30DOV0333VV13VD03V333
OVVD丄 0丄:)丄:) liiDV ViaLL DDDVVOlO V Oli:)丄:)
3VVV300100DV01V310V130HV039V10119VV303003333
V3丄:) OO iV iOOVV)丄 0丄:)丄:) 110V33:)丄:) O丄:) VO VVDO丄 0:) )
VVVOLL 丄:) DOV VVV OO丄 OOOOO丄 VV丄 9V丄:) 01XV0:)0V丄 OJ_L
0VV303E)V:):):):)VV丄:) VOO V i OVV:)丄 0丄:)丄) JLLOV JV丄:) 11
OOVV C)丄 OOVOVOii:)丄) OOV VW OO丄 OCOVOIVD丄 OV丄:)
£)jjyo:)ovio丄丄 O O OO i OV:)丄:) OO V O JOVV:)丄 0丄:)丄
aULOVCO:)丄:) 0丄 ) V03VV30丄 E DVVVOli:)丄:) OOVOVVVJOO丄 0
90001VV10V1D0JLLV030V1011DVV303D0D33DV31DD003V
OVV 丄 0丄:)丄:)丄丄 OV :) )丄:) 0丄:) VO JVV OIO VVVOJLL 丄:)
09V3VVV39OlOO3V91V31OV130 iVO39V10ii0VV393OO3
)V:)丄:) DOO V DVV:)丄 0丄:)丄 3JLLOV:):):)丄:) 0丄:) V03VVOO丄
O V Oli 丄:) OOV3VVV OO丄 00000丄 VV丄 OVl OilVO OV丄
0丄丄 0VV3丄 VOV :>:) )V:)丄:) VOO V 丄:) OVV 丄 DULL:)丄丄 0V33丄丄:)
:)丄:) [iO OV LLOEOVOVOlJL V OOV VVV iOO丄 OOUVIYV丄 DV
丄 30丄丄 VO DV丄 0丄丄 丄 VOV Vl VOO V C OVV:)
£)丄:)丄:) IJ VD VI V丄:) VOOOV LLOL VOVOLL V OOV VVV
3001009001VV10V1391J.V03DV1D11DVV31V0V333DV113V
OO JVDC OVV O丄:)丄:) JLLOV V丄 ) V丄:) VO OV JLLO丄:) VOVO丄
丄:) V OOV VVViOO丄 OOOOO丄 VV丄 0V丄:) OJLLVO OV丄 0丄丄 OVV O
OOCOC iV L OC V OVV:)丄 0丄:)丄:) llOVJ i O丄 3VO0V
V O丄 9 3VVV0 1:)丄 OOV VVVOOi)丄 OOOOO丄 VV10V丄:) £JJLV£)
0 :3丄:) o丄:) vo>vv)o丄 Ε νννοιι 丄:) oov:>vvv:)i oo:)vo
Figure imgf000021_0001
OV :)V丄:) IX O VV 丄 OV VOVOli DOOV ( O VVV3O91OO0VO1V319V13OJJLVO3OV19U.OVV393OVD333V
V丄:) vo£) v:):):)ovv:)丄 0丄:)丄:) XIOV V丄: JL OJVV IO V αι 0HS ) · OVOU 丄:) OOV VVV3OO丄 OO VO丄 V3丄 £) 1 V:)VOVVOV丄:) JJY H^¾nv丄
0 fi ^ νκα 古 罩 3iv丄
Z.l.l00/3l03M3/X d - -
°^¾"fp :)voaLO) Il^S 4(丄 DV丄 3V) ds
VlH39VVVlVlDD130D¥03iQ0D003VDJ.V3 39V1D0JL1V0D9V10IJL9VVD030V33D3VVI5V003V3V30VV3
£)丄 )丄:) IIOV DV丄:) UL OO VV O丄 OV VOVOJJL OOOOV VVV
D091903VOXVD 0V1DOJJ.VODOV 0119VV3030V3333VV13
V£)0)V:)V:)OVV:):)0丄 )丄 DilOV V丄 [Dil O VV ):)丄 OV3VOVC)
EOOO C VO丄:) OO VD DVVO丄 OLD丄:) X DV3: :)丄:) O丄:) VD3
丄 D VVVOli 丄 3OOV VVV:) )O丄 £)DOOO丄 VVIOV丄:) D1 V
COOV丄 O丄丄 OVV DZ^V VV丄:) VOCOV OVV:)丄 OL )丄:) 110
V3 V丄 LLDDO VV :)丄 ODDVOVOii:)丄:) OOV VVV OOLOO VO
丄 丄 OV丄 OilVOOOV丄 0丄丄 {WV3丄 vo丄:):)丄:) vv丄:) νοο ν ον
V 丄 0丄:)丄:) uov aL :)丄:) vcovv v丄 ocovvvo 丄:)丄:) οον ν
VV 9O丄 OOL VV丄 ον丄 oiivo ov丄 OXIO IYOV:):):):)V:)丄
:) 丄:) OVV )丄 DULL LLOV3)ii:):)丄:) DE OV llDDZiVDV
£)JLL3V OOV:)VVV:)OO丄 OO! OYV丄 0V丄:) DUYO OV丄 0丄丄
丄 V0丄 33丄: 丄:) VOO V OVV 丄 9丄:)丄:) ULOV 丄 丄 ) VO V
V3V丄 OD VVVO:)丄:)丄:) OOVOVVV OO丄 0£)丄 VV VV丄 0V丄:) 01 V0
30V丄 OllOVV 丄 VOV OV 丄:) VOO V 丄:) OVV 丄 OLLLZ)丄丄 0V
::)!!:):)丄:) O DV iiOO VOVOllOV OOVWVV OOlOOllV丄
VV丄 £)V丄:) OllVO OVIO丄丄 OVV:)丄 VOL 丄: VV丄 DVOO V Z^OVV
:)丄 0丄:)丄: )!!£>¥:):):)丄:):)丄:) VO >VV:)V丄 D3 VVVD:)丄:)丄:) 0£)V:)VV
V300丄 90丄 VV VV丄 OV丄:) OllVC DV丄 DllOVV 丄 VOV V 丄:)
V£)03V:)丄:) OVV IOLLL UOV:):)!!:):)丄 COO OV 丄丄 90 V9VO
ll VDOOViVVV OO丄 OOJJY丄 VV丄 0V丄 OllVODOVIO丄丄 DVV O
丄:) OO V OVV 丄 0丄:)丄:)!!£)¥:>:):)丄:) 0丄:) V03V
V 9丄 OO VVVOli)丄:) OOVOVVV OOLOO VO丄 V 丄 0V丄: )Oi VO
OV丄 OJLLOVV:>0:)OV:):):)yVV丄:) VOO V i OVV:)丄 0丄: 3丄3丄丄 0V
Vi)丄丄 ί θ νν 丄 OCOVDVOUL 丄:) 0£VZ)VVV )00100:)V0丄
丄 0V丄:) OUYCOOVIO丄丄 OVV 丄 V0丄:):)丄:) VV丄:) VOO ViZOOVV
3丄 0丄 丄:) l OV 丄 :)丄 ) VO VV V丄 OD VVVfD:)丄:)丄:) 00V3VV
V300丄 00丄 VV VV丄 0V丄:) OliVC OV丄 OLLOVV:)丄 VOVD V )丄:)
V£)£)3V)丄:) OVV3丄 01 13110¥:):)11:):)丄OC OV:)丄丄 90 VOVO
HDyDOOVDVVVDDDlOOllVlVyiOVlJOllVODDVlOllOVyDO
iDOO V 丄:) OO V OVVZ)丄 0丄:)丄 31X0V:):):)丄:) 0丄:) V03V
V OLO VVVOi 丄:) OOV VVV OO丄 OOOOO丄 VV丄 OVI OilVO
0OV丄 OJLLOVV ODOO i V)丄:) OO V OVV 丄 0丄:)丄:)丄丄 3V
3:)丄:) 0丄:) V0:DVV)0丄 O VVVOl 丄:) OOV VVV Oi OOOOO丄
VV丄 0V丄:) 01XVO OV丄 0丄丄 0VV31V0丄:):)丄:) VV丄:) VDO r ZJOVV
丄 0丄:)丄:) XXOVD D丄:) 3丄:) VO3VV V丄 O VVVO 丄:)丄:) OOV VV
丄 00丄 VV VV丄 0V丄:) OUYCOOVIOIIOVV )丄 VOV3:O:)V:)丄:)
V093VO丄:) 丄 Oil DllOV ):)!!):)丄: OO OV JLLOCOVOVO
JJ^V OOV VVVOOO丄 0011V丄 VV丄 0V丄:) OULVO OV丄 0丄丄 ovvoo
003 :):)¥:)丄:) OO V OVV 丄 0丄:)丄 ilOV :):)丄:) 0丄 3V03V
V30丄 OOVVVOii:)丄:) OOV VVVDOO丄 OOOOO丄 VV丄 0V丄:)
ov丄 aLLOvv o oo ^v L oc v iovv LaLaL LLOv
3:):)丄:) 0丄:) vo vv o丄 OD VVVOU 丄:) οον:>ννν:)θθ丄 ocovo
丄 v i v丄 3θΐινο:)ον丄 oLLovv jc ovcm vv丄:) voo vzmo .
VV 丄 0丄:)丄:)丄丄 OV DVl lliJO VVi LO i VOVOil lDOOV:) ( 80N
VVVD091003V91VD10V1391XV0D0V19JLL0VV3030VDD33V Q\ ^HS Y^~k
V丄:) VOOOVDCOOVV 丄 OLOL LLOVCOV丄: XLLDDO VV ))丄 EO V Λ1Η ' , θνθϋΖ)丄 3D0V VVV:>0D丄 OOOVaLV JLO^L VOVVOV丄 3X1V 泰 31V1
"^― VJXiDOVVV
丄 v丄:) aL Di ajDo oo丄 vv:> 30v丄:) auYO Dv丄 u,ovv:>丄
VOViD VC^ci SiD V:)丄:) OVV 丄 OJJLL JJ )V:):)113:)丄:)
68^0l/£lOZ OAV 表 3显示了实验中涉及的 TALE重复单元的 RVD与其识别的 DNA对应关系: 表 3: 实验中涉及的 RVD与 DNA碱基序列的对应关系
0 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 1 5 16 17 18 19 20 21 22 23 24 dHax3-NI τ C C C T T T A T C T C T
HD HD HD NG NG NG NI NG HD NG HD NG
24 τ C C C T T T A T C T C T C T C C A G C T C G A G
HD HD HD NG NG NG NI NG HD NG HD NG HD NG HD HD NI NN HD NG HD 爾 NI NN
HIV τ C C C T A G T T A G C C A G A G A G C T C C C
HD HD HD NG NI 爾 NG NG NI NN HD HD NI 爾 NI NN NI NN HD NG HD HD HD
5. dHax3-TALE24重复单元嵌合蛋白与 dHax3-TALEfflV重复单元嵌 合蛋白的构建
将合成的 TALE24重复单元或 dHax3-TALEHIV重复单元插入 dHax3 基因的 Nhel和 Sail之间, 从而取代 dHax3重复单元形成两种嵌合蛋白 dHax3-TALE24重复单元与 dHax3-TALEmv重复单元。 实施例 2 : 获得 dHax3-A 与双链 DNA 的复合物晶体结构以及 dHax3-NI-A与 DNA-RNA双链体复合物的晶体结构
•单双链 DNA的获得
为了检验 dHax3 与单双链 DNA 的结合能力, 以及获得蛋白质与 dsDNA 复合物的晶体, 发明人通过化学合成的方法得到单链 DNA ( 17nt ) : ( Invitrogen & Takara )
5' TG TCCCTTTATCTCT CT 3, (SEQ ID N0.9 )
3' AC AGGGAAATAGAGA GA 5' (SEQ ID NO: 10)
将合成得到的单链 DNA溶解至 1 mM, 等摩尔比将两条单链 DNA 混合, 85 °C 温浴 3 min以上, 緩慢降温到 22°C, 此过程不得少于 3个 小时。 为了长期保存退火的双链 DNA可以进行冻干超低温保存。
• DNA-RNA杂合链的获得
为了检验 dHax3与 DNA-RNA杂合链的结合能力,以及获得蛋白质 与 DNA-RNA复合物的晶体,发明人通过化学合成的方法得到单链 DNA ( 17nt ) 和 RNA: (核酸的合成由 Invitrogen & Takara公司完成)
DNA 5' TG TCCCTTTATCTCT CT 3' (SEQ ID NO:9)
RNA 3' AC AGGGAAAUAGAGA GA 5' (SEQ ID NO: l l) 将合成得到的单链 DNA或 RNA溶解至 1 mM, 等摩尔比将两条单 链混合, 85 °C 温浴 3 min以上, 緩慢降温到 22°C, 此过程不得少于 3 个小时。 为了长期保存退火的 DNA-RNA杂合链可以进行冻干超低温保 存。
*复合物结晶的获得
将纯化好的 dHax3-A (全长序列中的 231-720)调整蛋白浓度在 6〜7 mg/ml , 加入摩尔比 1.5 : 1的退火后的双链 DNA, 4 °C孵育 30 min. 前期的结晶条件筛选主要是基于商业化的 Screen Kit , 包括: Hampton公司的 SaltRX, Natrix, PEG/Ion, Crystal Screen, Index; Emerald 公司的 Wizard I, II , III ; Molecular dimension的 ProPlex。
从上述 Kit中筛选出蛋白结晶的条件, 通过调节沉淀剂浓度, 种类; 盐离子的浓度和种类;緩冲液的浓度和种类优化结晶条件。使用 Addtive Screen和 Detergent Screen Kit对晶体进行优化。 同时对晶体进行脱水, 退火等尝试, 以提高晶体的衍射质量。
使用蛋白质结晶没有规律可循, 所以到目前为止仍然还是一门艺 术。 起始阶段常用 Sparse matrix screen, 即购买各公司配置的结晶条件 进行筛选。 大多数情况下, 初筛得到的结晶条件中并不能长出衍射质量 高的晶体, 在接下来的实验中, 发明人又进一步对初始结晶条件的基础 上进一步细化, 包括调整沉淀剂、 pH 緩冲液、 盐、 添加还原剂、 去垢 剂或醇; 调整结晶实验的温度, 时间等。 最后采用的结晶条件为将如下 结晶母液与孵育好的蛋白核酸复合物通过 1 : 1的体积比混合, 通过悬滴 法 ( hanging drop vapor diffusion method ) 在 18 °C培养两天, 即可获得 晶体。
结晶母液: 8-10% PEG3350 (w/v), 12% ethanol, 0.1 M MES pH 6.0。 攀数据收集及处理
使用上海同步辐射中心( SSRF ) BL17U线束站或者日本 SPRING-8 BL41XU线束站进行数据收集。 所有收集的衍射数据用 HKL2000软件 进行积分计算, 进一步的数据处理通过 CCP4 软件实现。 使用不结合 DNA的 dHax3作为置换的模式, 通过分子置换的方法, 解析 dHax3与 DNA复合物的结构。 最后使用 Phenix 和 COOT 两个软件完成对结构 的修正处理。 数据处理和结构解析、 修正完成之后, dHax3蛋白的结构 分辨率达到 2.4A, dHax3-A 蛋白与 dsDNA 复合物结构均达到 1.85A; dHax3-NI-A蛋白结合 DNA-RNA双链体的晶体结构达到 2.5 A。 数据收 集和结构修正的统计数据, 见表 4-表 5: 数据收集和结构修正的统计数据
表 4. dHax3晶体结构以及 DNA-结合的 dHax3-A复合物晶体结构的数据 收集和结构修正的统计数据
数据 dHax3 (270-703) DNA-结合的 dHax3-A
Integration Package HKL2000 HKL2000
Space Group C222, P2,
Unit Cell (A) 74.76, 95.51, 153.21 81.719, 87.679, 88.494
Unit Cell (°) 90, 90, 90 90.00, 103.04, 90.00
Wavelength (A) 0.97915 1.00000
Resolution (A) 40-2.4 (2.49-2.4) 40-1.85 (1.92-1.85)
R-merge (%) 4.9 (35.0) 6. 1 (60.8)
1/sigma 24.1 (4.4) 22.5 (2.6)
Completeness (%) 95.6 (98.2) 99.7 (99.9)
Number of measured 84,417 391 ,380
reflections
Number of unique 20,832 】03,239
reflections
Redundancy 4.1 (4.1) 3.8 (3.7)
Wilson B factor (A2) 60.9 24.6
R 1 iree (%) 21.1 1/ 26.36 19.07 1 21.99
No. atoms
Overall 2760 9579
Protein 271 1 7066
DNA 0 1383
Water 49 1 130
Other entities 0 0
Average B value (A2)
Overall 63.86 33.26
Protein 63.89 31.94
DNA 0.0 33.98
Water 62.47 40.58
Other entities 0.0 0.0 R.m.s deviations
Bonds (A) 0.009 0.008 Angle (。) 1.301 1.184
Ramachandran plot
statistics (%)
Most favourable 92.7 93.5 Additionally allowed 7.3 6.5 Generously allowed 0.0 0.0 Disallowed 0.0 0.0
表 5.dHax3-NI-A-DNA/RNA 双链体复合物晶体结构的数据收集和结构 修正的统计„
dHax3 -ΝΙ-Δ-DNA/RNA双链体
Data collection
Space Group P6,
Cell dimensions
a, b, c (A) 99.74, 99.74, 134.49
a, β, γ, (。 ) 90, 90,】20
Resolution (A) 40-2.50 (2.59-2.50)
merge (%) 9.9 (68.8)
1 / σΐ 16.5 (2.4)
Completeness (%) 98.4 (99.2)
Redundancy 4.0 (4.0)
Refinement
Resolution (A) 40-2.50
No. reflections 25,803
R-work I R-t'ree (%) 19.29/ 24.26
No. atoms
Protein 3522
DNA/RNA 687
Water 56
B - factors
Protein 5 1 .30
DNA/RNA 46.00
Water 39.77
R. m. s. deviations
Bond lengths (A) 0.008
Bond angles ( ° ) 1 .3 10
Ramachandran plot statistics
(%)
Most favoured 94. 1
Additional allowed 5.9
Generously allowed 0.0
Disallowed 0.0
发明人解析了 dHax3-A与双链 DNA ( dsDNA ) 的高分辨率晶体结 构( 1.85埃)。该结构清晰地展示了 dHax3展现右手螺旋结构,将 dsDNA 包裹于整个复合体的中间。蛋白质缠绕在 DNA外面,嵌入 DNA的大沟 (见图 1 ) 。
结构分析显示 dHax3与 DNA的相互作用主要集中于具有识别序列 的 DNA链, 而其互补链则不参与蛋白 -DNA的相互作用 (见图 2 )。 即 使互补链变成 RNA, dHax3也应同样能结合。 结构分析还进一步显示: 5 非编码链不直接与 dHax3接触,因此可以容忍相当程度针对碱基及骨架的 修饰, 即非编码链可以是 DNA、 RNA, 或者它们的衍生、 修饰后分子。
图 4 ^示了 dHax3-NI-A与 DNA-RNA杂合双链复合物的晶体结构。 实施例 3:凝胶阻滞实^ ^验证 dHax3-NI可以与 DNA - RNA 杂合双
! 0 链相互作用
• EMSA ( electrophoretic mobility shift assay, 电泳迁移率变动分析, 又称 凝胶阻滞实验)
凝胶阻滞实验是一种体外研究 DNA/RNA 与蛋白质相互作用的特 殊的凝胶电泳技术。 其基本原理为: 在凝胶电泳中, 由于电场的作用,
1 5 小分子的核酸片段比其结合了蛋白质的核酸片段向阳极移动的速度快。
因此 , 可标记短的核酸片段, 将其与蛋白质混合, 对混合物进行凝胶 电泳, 若目的 DNA与特异性蛋白质结合, 其移动的速度受到阻滞, 对 凝胶进行放射自显影, 就可以找到核酸结合蛋白。 同时通过统计结合蛋 白的 DNA 和 未结合蛋白的 DNA 的量, 可以比较准确的拟合计算出, ?.0 蛋白质对核酸的结合能力 ( binding affinity ) 。
• DNA/DNA oligo和 DNA/RNA oligo
用于凝胶阻滞实验的 DNA/DNA oligo的片段, 如下表所示:
49 -正义 5 ' ccacatatgtcatacg TGTCCCTTTATCTCTCT ccag etc gag gaa ttc
(SEQ ID NO : 12)
49-反义 5 ' gaattcct gagctgg AGAGAGATAAAGGGACA cgta tga cat atg tgg
(SEQ ID NO: 13)
25 用于凝胶阻滞实验的 DNA/RNA oligo的片段, 如下表所示:
4 -DNA 5 ' ccacatatgtcatacg TGTCCCTTTATCTCTCT ccag etc gag gaa ttc
(SEQ ID NO: 12) 49-RNA 5、 gaauuccucgagc gg AGAGAGAUAAAGGGACA cgua uga cau aug ugg
(SEQ ID N0: 14)
• DNA/RNA ^端 i己
待磷酸化 DNA 1 ~ 20 pmol(5'末端)
反应緩冲液 A(10X) 2 μΐ
[γ- 2Ρ]-ΑΤΡ (3,000Ci/mmol) 20 pmol
补充无核酸酶的去离子水 至 19 μ1
T4多聚核苷酸激酶 (lOU/μΙ) 1 μΐ 按照上表设置好反应体系后, 轻轻混匀, 置于 37 °C孵育 30 min; 使用 G25 预装脱盐层析柱出去多余的 [γ-32Ρ]-ΑΤΡ, 加入过量的未标记 的互补链, 退火生成双链 DNA或者 DNA-RNA 杂合双链。
• DNA/RNA和蛋白相互作用体系
Figure imgf000030_0001
将反应成分按上述比例加入反应体系中, 混匀后 4 °C孵育 20 min; 将反应好的样品跑 6 % 非变性胶;
跑完胶用千胶仪将胶干透, 放在磷屏上曝光过夜;
用 Typhoon 9400 varible 扫描仪读取图像数据。
发明人通过凝胶阻滞实验证明了 dHax3-Nl蛋白可以与 DNA - RNA 杂合双链相互作用, 并保持了很强的结合能力, 详见图 3。 实施例 4: RNase H晦切保护实验验证 用于 RNase H酶切保护实验的 DNA-RNA链的序列如下: dHax3 DNA 5' CCACATATGTCATACGTGTCCCTTTATCTCT (SEQ ID NO;15)
(SEQ ID NO:16)
TALE24 DNA 5' CCACATATGTCATACGTGTCCCTTTATCTCTCTCCAGCTCGAG (SEQ ID NO:17)
(SEQ ID NO: 18)
TALEHIV DNA5' GTGGGTTCCCTAGCCAGAGAGCTCCC (SEQ ID NO:19)
RNA5' AG AUC UGAGCCUGGG AGC UCUCUGGCUAACUAGGG A (SEQ ID NO:2Q) 获得 DNA-RNA杂合双链的与 EMSA实验相同,但是用于 RNase H 酶切保护实^ ^的 DNA-RNA的杂合双链进行了放射性标记。
5 将带有 P32标记的 DNA-RNA双链核酸分别与上述三种 TALE蛋白 质( dHax3-NI、 TALE24和 TALEHIV repeats )混合或者与作为对照的 BSA 混合后置于冰上孵育 20分钟。 孵育的缓冲体系为: 20 mM Tris-HCl (pH 8.0), 50 mM NaCl, 5 mM MgCl2, 10 mM DTT。 孵育结束后加入 0.1 U/μΙ RNase H (Takara)于室温反应 5分钟, 使用酚氯仿终止反应, 使用乙醇
: o 沉淀纯化反应后生成的核酸片段。 经过醇沉处理的样品重悬于 RNA-上 样緩冲液 (95%曱酰胺、 18 mM EDTA, 0.025% 二甲苯蓝,0.025% 溴酚 蓝)。 样品使用 12% 7 M尿素聚丙烯酰胺凝胶进行鉴定。 跑完胶用干胶 仪将胶干透, 放在磷屏上曝光过夜; 使用 Typhoon 9400 读取图像数据。 RNA梯带使用 RNase T1或者 RNase A酶切 ssRNA制备。
! 5 如图 8所示, dHax3-NI 保护 DNA-RNA,阻止 RNase H对 DNA-RNA 杂合双链中的 RNA的酶切。第 1和 2道分别为在没有 RNase H情况下, 有或者无 dHax3 的对照组中, RNA没有明显的降解条带出现; 在第 3 道中, 加入 RNase H情况下, 无 dHax3的对照实验发现: RNA绝大部 分都被降解成小片段; 在第 4~10道中在加入 RNase H情况下同时加入 0 梯度浓度的 dHax3-NI ( 0.004, 0.015, 0.05 , 0.025, 0.1 , 0.4, 1.6 μΜ ) , 出现如箭头所示的部分降解 RNA 条带, 这些 RNA 条带直接说明了 dHax3-Ni结合到 DNA-RNA双链上, 直接起到了保护的作用, 阻止了 RNase H对 DNA-RNA双链中 RNA链的降解。 13和 14道分别为制备的 RNA梯带 ( T1和 A ) 用于检测 RNase H的在 DNA-RNA杂合双链中的 剪切位置。
为了研究 TALE蛋白对 DNA-RNA双链保护作用是否具有普遍性, 即这种保护作用是否只存在于 dHax3—种 TALE蛋白 ,发明人设计了另 一种具有不同长度的重复单元—— TALE24重复单元,其具有 24个重复 单元,能识别更长的 DNA-RNA杂合双链(参见 P. Yin, D. Deng, C. Yan, X. Pan, J.J. Xi, N. Yan, Y. Shi, Specific DNA-RNA Hybrid Recognition by TAL Effectors, Cell reports, 2 (2012) 707-713 )。如图 9所示, 通过 RNase H保护实验, 发明人惊讶地发现 dHax3-TALE24重复单元嵌合蛋白也可 以保护 DNA-RNA, 阻止 RNase H对 DNA-RNA杂合双链中的 RNA的 酶切。 因此, TALE24重复单元同样可以阻止 RNase H对 DNA-RNA双 链中 RNA链的降解。
为了研究 TALE在 HIV治疗中的潜在作用,发明人设计了可以特异 性识别 HIV基因组中特定片段的 TALEHIV重复单元 (参见 P. Yin, D. Deng, C. Yan, X. Pan, J.J. Xi, N. Yan, Y. Shi, Specific DNA-RNA Hybrid Recognition by TAL Effectors, Cell reports, 2 (2012) 707-713 ) , 并构建了 dHax3-TALEHIV重复单元嵌合蛋白进行 RNase H降解实验。 发明人惊讶 地发现, TALEHIV重复单元阻止 RNase H对 DNA-RNA双链中 RNA链 的降解。 如图 10所示, 在梯度浓度的 dHax3-TALEHIV重复单元(0.004, 0.015, 0.05 , 0.025 , 0.1 , 0.4, 1.6 μΜ ) 蛋白保护下 RNA 的降解逐渐 减弱。这里没有出现部分降解的原因是因为暴露在 TALEHIV重复单元保 护外面的 DNA-RNA双链较短。 这表明具有 TALEHIV重复单元的 TALE 蛋白能够在 HIV基因组的复制过程中, 阻止 RNA链的降解。
HIV在核酸复制过程中, 通过逆转录酶将 RNA逆转录生成 DNA, 进一步逆转录酶上的 RNase H 结构域将 RNA 降解, 得到释放的单链 DNA会利用 DNA聚合酶复制出互补 DNA链, 形成 DNA双链, 因此 DNA-RNA双链中 RNA的降解是 HIV复制过程中一个必须环节。 利用 识别 HIV基因组中特定片段的 TALE能够阻止 HIV基因组在复制过程 中, RNA链的降解。 从而达到抑制或者减緩 HIV复制过程的功能。
尽管在本文中参考示例性的实施方案详细描述了本发明, 但是应当 理解的是, 本发明不限于所述实施方案。 具有本领域普通技能且可获取 本文教导的人员会认识到在本发明范围内的其它变化、 修改和实施方 案。 因此, 本发明应与后面所述的权利要求一致地被广义地解释。

Claims

权 利 要 求
1. 一种特异结合 DNA-RNA杂合链的方法, 包括用 TALE及其衍 生蛋白来特异性识别特定的 DNA-RNA杂合双链并与之结合。
2. 一种抑制以 RNA为模板来生成 DNA的方法, 包括用 TALE及 其衍生蛋白来特异性识别 DNA-RNA杂合双链并与之结合。
3. 一种抑制以 RNA为引物、 DNA为模板来生成 DNA的方法, 包 括用 TALE及其衍生蛋白来特异性识别 DNA-RNA 杂合双链并与之结 合。
4. 一种抑制以 RNA为引物、 DNA为模板来生成 RNA的方法, 包 括用 TALE及其衍生蛋白来特异性识别 DNA-RNA 杂合双链并与之结 合, 条件是生成的 RNA能与 DNA形成暂时稳定的双链体。
5. 一种保护 DNA-RNA杂合链中 RNA分子不被 RNA水解酶 RNase H 降解的方法, 包括用 TALE及其衍生蛋白来特异性识别 DNA-RNA杂合 双链并与之结合。
6. 权利要求 1 -5中任一项的方法,其中所述 TALE蛋白为自然界已 有的 TALE蛋白以及在此基础上通过基因方法突变、 修饰、 组装获得的 保持或增强 DNA、 或 DNA-RNA杂合链结合能力的 TALE衍生蛋白。
7. 权利要求 1 -5 中任一项的方法, 其中所述 DNA 还包含修饰的 DNA衍生物, 包括但不限于曱基化碱基、 羟曱基化碱基。
8. 权利要求 1 -5 中任一项的方法, 其中所述 RNA 还包含修饰的 RNA衍生物, 包括但不限于曱基化碱基、 羟曱基化碱基。
9. 权利要求 1或 2的方法,其中所迷方法用于抑制逆转录病毒的复 制。
10. 权利要求 9的方法, 其中所述逆转录病毒包括人类免疫缺陷病 毒、 人类 T细包白血病病毒、 鼠白血病病毒、 劳斯肉瘤病毒。
1 1. 权利要求 1或 3的方法, 其中所述方法用于抑制哺乳动物中的 肿瘤细胞增殖。
12. TALE蛋白及其衍生蛋白在制备特异性识别 DNA-RNA杂合双 链的试剂中的用途。
13. TALE蛋白及其衍生蛋白在制备药物中的用途,所述药物用于治 疗或预防由逆转录病毒感染引起的疾病。
14. 权利要求 13的用途, 其中所述疾病为由逆转录病毒引起的人、 畜、 禽、 植物疾病, 例如人免疫缺陷综合症、 人 T细胞白血病、 人毛细 胞白血病、 鼠白血病、 禽白血病等等。
15. TALE蛋白及其衍生蛋白在制备药物中的用途,所述药物用于治 5 疗或预防肿瘤。
16. 一种治疗或预防由逆转录病毒感染引起的疾病的方法, 其通过 TALE及其衍生蛋白来干扰以 RNA为模板的 DNA复制来抑制逆转录病 毒的复制。
17. 一种治疗或预防肿瘤的方法, 其中通过 TALE及其衍生蛋白来 ! 0 干扰以 RNA为引物的 DNA复制来抑制肿瘤细胞增殖。
18. TALE蛋白及其衍生蛋白, 其用于特异性识别 DNA-RNA杂合 双链
19. TALE蛋白及其衍生蛋白,其用于治疗或预防由逆转录病毒感染 引起的疾病或用于治疗或预防肿瘤。
! 5
PCT/CN2012/001717 2012-01-04 2012-12-21 特异结合和靶定dna-rna 杂合双链的方法 WO2013102289A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280060126.7A CN104093855B (zh) 2012-01-04 2012-12-21 特异结合和靶定dna‑rna杂合双链的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210021004 2012-01-04
CN201210021004.9 2012-01-04

Publications (1)

Publication Number Publication Date
WO2013102289A1 true WO2013102289A1 (zh) 2013-07-11

Family

ID=48744960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001717 WO2013102289A1 (zh) 2012-01-04 2012-12-21 特异结合和靶定dna-rna 杂合双链的方法

Country Status (2)

Country Link
CN (1) CN104093855B (zh)
WO (1) WO2013102289A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052335A1 (en) * 2013-10-11 2015-04-16 Cellectis Methods and kits for detecting nucleic acid sequences of interest using dna-binding protein domain
CN105802992A (zh) * 2016-03-29 2016-07-27 中国科学院植物研究所 一种抑制植物基因转录的方法
CN108314736A (zh) * 2017-01-18 2018-07-24 李燕强 一种促进rna降解的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110265198A1 (en) * 2010-04-26 2011-10-27 Sangamo Biosciences, Inc. Genome editing of a Rosa locus using nucleases
WO2011146121A1 (en) * 2010-05-17 2011-11-24 Sangamo Biosciences, Inc. Novel dna-binding proteins and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110265198A1 (en) * 2010-04-26 2011-10-27 Sangamo Biosciences, Inc. Genome editing of a Rosa locus using nucleases
WO2011146121A1 (en) * 2010-05-17 2011-11-24 Sangamo Biosciences, Inc. Novel dna-binding proteins and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAGDY M.MAHFOUZ ET AL.: "De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks", PNAS, vol. 108, no. 6, 8 February 2011 (2011-02-08), pages 2623 - 2628, XP055007615 *
PING YIN ET AL.: "Specific DNA-RNA Hybrid Recognition by TAL Effectors", CELL REPORTS, vol. 2, 25 October 2012 (2012-10-25), pages 707 - 713, XP055075524 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015052335A1 (en) * 2013-10-11 2015-04-16 Cellectis Methods and kits for detecting nucleic acid sequences of interest using dna-binding protein domain
CN105802992A (zh) * 2016-03-29 2016-07-27 中国科学院植物研究所 一种抑制植物基因转录的方法
CN105802992B (zh) * 2016-03-29 2019-08-20 中国科学院植物研究所 一种抑制植物基因转录的方法
CN108314736A (zh) * 2017-01-18 2018-07-24 李燕强 一种促进rna降解的方法
CN108314736B (zh) * 2017-01-18 2021-08-31 李燕强 一种促进rna降解的方法

Also Published As

Publication number Publication date
CN104093855B (zh) 2018-04-13
CN104093855A (zh) 2014-10-08

Similar Documents

Publication Publication Date Title
US11046941B2 (en) Methods of generating nucleic acid fragments
JP6153180B2 (ja) 脱塩基反応により標的化したdna配列に特異的に変異を導入する、ゲノム配列の改変方法、並びにそれに用いる分子複合体
Martínez-Macías et al. A DNA 3′ phosphatase functions in active DNA demethylation in Arabidopsis
KR20190059966A (ko) S. 피오게네스 cas9 돌연변이 유전자 및 이에 의해 암호화되는 폴리펩티드
ES2375764T3 (es) Endonucleasas fen-1, mezclas y procedimientos de escisión.
EP2391731B1 (en) Production of closed linear dna
Klein et al. Nucleic acid and protein elimination during the sugar manufacturing process of conventional and transgenic sugar beets
JPH06500926A (ja) Dnaに標的を定める方法
WO2013102290A1 (zh) 特异识别含有5-甲基化胞嘧啶的dna的方法
JP2021072868A (ja) 感染性疾患の診断および処置
WO2023114090A2 (en) Signal boost cascade assay
WO2013102289A1 (zh) 特异结合和靶定dna-rna 杂合双链的方法
CA3154479A1 (en) Novel class 2 type ii and type v crispr-cas rna-guided endonucleases
WO2023138082A1 (zh) 一种真核生物来源的Argonaute蛋白及其应用
JP2002507128A (ja) サイクリングプローブ反応における使用のための添加物
CN106893698A (zh) 一种重组Taq DNA聚合酶及其编码基因和表达方法
Liu et al. Structural insights into the specific recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL effectors
CN106834252B (zh) 一种高稳定型MazF突变体及其应用
Oshima et al. Crystal structures of the archaeal RNase P protein Rpp38 in complex with RNA fragments containing a K-turn motif
ES2955921T3 (es) ADN polimerasas independientes de cebador y su uso para la síntesis de ADN
JP2008271967A (ja) エルシニア・ペスティス及びシュードモナス・エルギノーサのdna複製をブロックする薬剤の開発のためのシステム
JP7022699B2 (ja) トランスポザーゼ競合物制御系
Zheng et al. In vitro selection of oligonucleotide acid aptamers against pathogenic Vibrio alginolyticus by SELEX
CN109055332B (zh) 突变的核酸外切酶及其编码基因与应用
CN111433373A (zh) Dna聚合酶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864474

Country of ref document: EP

Kind code of ref document: A1