WO2013100021A1 - 複合材およびコーティング組成物 - Google Patents

複合材およびコーティング組成物 Download PDF

Info

Publication number
WO2013100021A1
WO2013100021A1 PCT/JP2012/083809 JP2012083809W WO2013100021A1 WO 2013100021 A1 WO2013100021 A1 WO 2013100021A1 JP 2012083809 W JP2012083809 W JP 2012083809W WO 2013100021 A1 WO2013100021 A1 WO 2013100021A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
oxide
iii
compound
coating composition
Prior art date
Application number
PCT/JP2012/083809
Other languages
English (en)
French (fr)
Inventor
万理 田村
浩輔 高見
聡 北崎
寛之 藤井
信 早川
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011290427A external-priority patent/JP5849698B2/ja
Priority claimed from JP2011290428A external-priority patent/JP2013139357A/ja
Priority claimed from JP2011290422A external-priority patent/JP2013138993A/ja
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to CN201280064345.2A priority Critical patent/CN104053545B/zh
Publication of WO2013100021A1 publication Critical patent/WO2013100021A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel

Definitions

  • the present invention relates to a composite material having improved self-cleaning performance and a coating composition for producing the same.
  • the hydrophilic surface has the property of being familiar with water. Therefore, even if dirt such as dust adheres to the surface, when water is applied, water enters between the dirt and the surface, and the dirt is washed away with the water to clean the surface. Such a property is known as self-cleaning.
  • Various building materials such as an outer wall material and an inner wall material having a self-cleaning property on the surface have been proposed.
  • WO03 / 028996 points out similar appearance defects and aims to solve them.
  • WO 03/028996 discloses a hydrophilic film made of a photocatalyst, organic zirconium, and a silicone resin material. The addition amount of zirconia contained in the disclosed coating is 10 parts by mass or less, and is supposed to enhance the effect of maintaining the contact angle with water. According to this publication, the surface of a member on which a film is formed has antifouling properties, and when the amount of water is small, it can be prevented that dirt appears in a linear shape along the flow of rainwater.
  • a film containing a photocatalyst and zirconia is disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-213954 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2009-270040 (Patent Document 3).
  • Patent Document 2 JP 2009-213954 discloses a thin film made of zirconium oxide or hafnium oxide and titanium oxide, and the amount of zirconia contained in the film is Zr: Ti of 100: 1. Two examples of 1: 1 are described in the examples. According to this publication, since this thin film is water-repellent, water droplets are formed when water adheres. Further, according to this publication, it is described that this thin film has a property that water droplets can be easily slid down and removed.
  • Patent Document 3 discloses that zirconia is used as a binder in a photocatalyst coating liquid to improve adhesion to a substrate.
  • the largest example of TiO 2 : ZrO 2 is 50:50, and various performances as a coating liquid and photocatalytic degradation performance of a film obtained by applying the coating liquid are evaluated. Just do it.
  • Patent Document 4 discloses a hydrophilic film having antifogging properties and antifouling properties comprising silica, alumina, and zirconia.
  • Patent Document 1 Since the surface described in Patent Document 1 has a contact angle with water of 5 to 30 ° and is highly hydrophilic, self-cleaning properties can be obtained, but the effect of preventing water droplets from flowing down is weak and practical. Insufficient to prevent linear traces. Moreover, since the surface described in patent document 2 is water-repellent, self-cleaning property cannot be expected. Furthermore, since water droplets are likely to slide down, linear traces are also generated as the water droplets flow down.
  • the coating described in Patent Document 3 is similar in structure to the coating described in Patent Document 2, and is considered to have the same problem.
  • the coating described in Patent Document 4 has a highly hydrophilic surface. That is, there is still a demand for a member that does not cause such a trace on a line with respect to a member having a self-cleaning property.
  • the inventors of the present invention exhibit sufficient self-cleaning performance when they come into contact with a large amount of water (rain water). On the other hand, even when the amount of water (rain water) is small, the present inventors consist of dust or the like deposited on the surface. It has been found that a member that does not cause linear contamination can be realized by providing a surface layer having a specific component on a substrate.
  • the present inventors have sufficiently spread water on the surface of the member when it comes into contact with a large amount of water (rain water), and at the same time wash away dirt, while when the amount of water (rain water) is small, It was found that a member that does not cause linear stains that would be caused by dragging sand dust or the like accumulated on the surface when water droplets slide down can be realized by retaining the surface of the member without sliding down.
  • the present invention is based on such knowledge. Therefore, the present invention exhibits a sufficient self-cleaning performance when it comes into contact with a large amount of water (rain water), and on the other hand, even when the amount of water (rain water) is small, it is a linear shape composed of dust or the like deposited on the surface.
  • the purpose is to provide a composite material that does not cause the contamination of the material.
  • the composite material by this invention is a composite material provided with a base material and the surface layer formed in the surface of the said base material,
  • the surface layer is A compound (A) containing at least one metal selected from the group consisting of Si, Al, Ti, Sn and W, and oxygen; From the group consisting of oxides, inorganic salts, and organic salts containing at least one metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Y, In, and Hf Comprising at least one compound (B) selected,
  • the compound (B) is blended in an amount of 30% by mass or more and less than 99% by mass in terms of oxide with respect to the mass sum of the mass of the compound (A) and the mass in terms of oxide of the compound (B). It is characterized by this.
  • the composite material according to the present invention basically comprises a base material and a surface layer formed on the surface of the base material.
  • This composite material exhibits a sufficient self-cleaning performance when it comes into contact with a large amount of water (rain water), and on the other hand, even when the amount of water (rain water) is small, linear contamination does not occur.
  • a large amount of water rain water
  • the linear dirt is dragged by the water droplets accumulated on the surface, and then water (rain water) is supplied to wash away the dust remaining on the surface sufficiently. It is thought that it is caused by not being done.
  • the surface of the surface layer having the composition described later does not spread immediately on the surface when water adheres, but remains on the surface in the form of water droplets and does not slide against the external force such as gravity. (Hereinafter, this may be referred to as “water droplet holding performance” in this specification).
  • water droplet holding performance in this specification.
  • the shape of the water droplets breaks down, the water wets and spreads on the surface of the surface layer, and flows downward by an external force such as gravity. At that time, the water washes away the dirt from the surface, and the surface becomes clean (hereinafter, this may be referred to as “water film forming performance”).
  • the composite material by this invention is the said surface layer provided in the base material, A compound (A) containing at least one metal selected from the group consisting of Si, Al, Ti, Sn and W, and oxygen; From the group consisting of oxides, inorganic salts, and organic salts containing at least one metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Y, In, and Hf Comprising at least one compound (B) selected,
  • the compound (B) is blended in an amount of 30% by mass or more and less than 99% by mass in terms of oxide with respect to the mass sum of the mass of the compound (A) and the mass in terms of oxide of the compound (B). It is characterized by this.
  • the surface layer of the composite material includes the material (I-1) as the compound (A) and the material (I-2) as the compound (B). It becomes.
  • the material (I-1) is at least one compound selected from the group consisting of silica, alkali silicate, alumina, and amorphous titanium oxide.
  • sodium silicate, potassium silicate, or lithium silicate can be used alone or in combination as the alkali silicate.
  • the material (I-1) is a hydrophilic compound.
  • the material (I-2) described later is a metal compound that is less hydrophilic than the material (I-1).
  • the reason why linear stains are prevented by the present invention is not clear, but is considered as follows.
  • a hydrophilic region is formed in the portion where the material (I-1) is present.
  • a region having a weaker affinity for water than the material (I-1) is formed in the portion where the material (I-2) is present.
  • the hydrophilicity of the material (I-1) realized by the abundance ratio of the material (I-1) and the material (I-2) defined in the first aspect of the present invention, and the material (I-2 Both of the properties of weak hydrophilicity with water due to the above) cause water droplet retention performance and water film formation performance to be exhibited so that linear stains can be effectively prevented.
  • the force to attract water by the hydrophilic part to form a water film balances the force to form and stop the polka dots by the part having a weak affinity with water,
  • a small amount of water, such as raindrops is attached, the movement of the triplet of the waterdrop (the gas / liquid / solid interface, that is, the contour of the portion in contact with the surface of the waterdrop) is suppressed, and the external force such as gravity is used as the waterdrop. Keep on the surface against. As a result, linear contamination is prevented.
  • the material (I-1) is preferably a particle.
  • a suitable particle diameter is a number average particle diameter of 10 nm or more and 100 nm or less, which is calculated by measuring the length of any 100 particles entering a 200,000-fold field of view with a scanning electron microscope.
  • the shape of the particles is best spherical, but may be an irregular shape such as an ellipse.
  • the length of the particle is approximately calculated as a value obtained by dividing the sum of the longest diameter and the shortest diameter of the particle shape observed with a scanning electron microscope by 2.
  • the material (I-1) By making the material (I-1) into a particle shape and forming a surface layer with the material (I-2), the material (I-1) and the material (I-2) are dispersed on the surface of the surface layer. it can. Thereby, desired water-wetting characteristics (water droplet retention performance and water film formation performance) can be expressed more effectively. It is also advantageous in that a transparent surface layer can be obtained.
  • the material (I-1) is added in an amount relatively determined with respect to the material (I-2) described later.
  • the material (I-2) is at least one metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Y, In, and Hf. At least one compound selected from the group consisting of oxides, inorganic salts, and organic salts, preferably from the group consisting of oxides, inorganic salts, and organic salts containing Zr or Hf At least one compound selected.
  • Material (I-2) is a metal compound that has a weaker affinity for water than the material (I-1). As described above, the surface layer of the composite material according to the present invention is obtained by blending material (I-2) together with material (I-1), thereby effectively preventing linear stains and exhibiting self-cleaning performance. Water wettability (water droplet retention performance and water film formation performance).
  • the metal-containing oxide is, for example, Cr 2 O 3 , MnO 2 , Fe 2 O 3 , CoO, NiO, CuO, Ga 2 O 3 , ZrO 2 , Y 2.
  • O 3 , In 2 O 3 , HfO 2 and the like can be mentioned.
  • inorganic salts include oxychloride, hydroxychloride, nitrate, sulfate, acetate, oxynitrate, carbonate, ammonium carbonate, sodium carbonate, potassium carbonate, phosphoric acid of the above metals. A sodium salt etc. are mentioned.
  • organic salts include oxalates, propionates, metal alkoxides, hydrolysates of metal alkoxides, chelate compounds, and the like of the above metals.
  • metal alkoxides include compounds in which an alkoxyl group having about 1 to 8 carbon atoms is bonded to a metal atom.
  • the metal atom is Zr, zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium Examples thereof include tetraisopropoxide, zirconium tetra n-butoxide, zirconium tetra t-butoxide and the like.
  • the chelate compound that can be used include ⁇ -ketone ester complexes, ⁇ -diketone complexes, ethanolamine complexes, dialkylene glycol complexes, and the like.
  • the material (I-2) is an amorphous oxide, oxide particles having an average crystallite diameter of less than 10 nm, or an inorganic salt.
  • the surface layer obtained by applying these compounds is excellent in water droplet retention performance and water film formation.
  • the average crystallite diameter is calculated by the Scherrer formula from the integral width of the strongest peak of XRD.
  • the material (I-2) when the material (I-2) is a particle, it is calculated by measuring the length of any 100 particles that fall within a field of view of 200,000 times with a scanning electron microscope. Preferably, the particles have a number average particle diameter of 5 nm to 100 nm.
  • the material (I-2) By making the material (I-2) into a particle shape and forming a surface layer together with the material (I-1), the material (I-1) and the material (I-2) are dispersed on the surface of the surface layer. it can. Thereby, desired water-wetting characteristics (water droplet retention performance and water film formation performance) can be expressed more effectively. It is also advantageous in that a transparent surface layer can be obtained. Further, the material (I-2) can be expected to act as a binder for fixing the material (I-1).
  • the material (I-2) is based on its oxide equivalent relative to the mass sum of the mass of the material (I-1) and the oxide equivalent of the material (I-2). 30% by mass or more and 70% by mass or less, preferably 30% by mass or more and 50% by mass or less.
  • the material (I-2) is 30% by mass or more and 70% by mass or less, preferably 30% by mass or more and 50% by mass or less, in terms of its oxide, in the surface layer. It is preferable to mix.
  • the mass of the surface layer is a value that is substantially equal to the amount (mass) of a film forming component described later.
  • the surface layer of the composite according to the first aspect of the present invention can contain optional components other than the components of the material (I-1) and the material (I-2) as necessary.
  • optional components include pigments, fillers, light stabilizers, dyes, etc., which are selected and combined according to their purpose to hinder desired water wetting characteristics (water droplet retention performance and water film formation performance). It can be blended to the extent that it is not.
  • the photocatalyst material is not substantially present in the surface layer of the composite material according to the first aspect of the present invention.
  • the substantial absence means that the hydrophilicity in the surface layer of the composite material according to the present invention is not brought about by the action of the photocatalyst, and therefore, an amount of the photocatalyst is included so as to develop the hydrophilicity. It means no.
  • the water droplet retention performance and water film formation performance of the composite material according to the first aspect of the present invention exhibit self-cleaning performance while preventing linear contamination. There are the following two methods for concrete evaluation.
  • the following method is mentioned as a method for evaluating the water droplet holding performance.
  • the surface layer of the composite material is tilted by 80 °, and the water droplet moving distance is measured when 15 ⁇ L of water droplets are attached to each of five locations on the surface. Is granted. 0 points: Drops of water drops below 2 cm 1 points: Drops of water drops of 2 cm or more 2 points: Drops of 4 cm or more Drops of 3 points: Drops of 6 cm or more Drops of 4 points: Drops of 8 cm or more 5 points: Drops of 10 cm or more
  • the composite material according to the present invention in which water droplets have slid down preferably has a total of 20 points or less, more preferably 5 points or less, and more preferably 0 points.
  • the following method is mentioned as an evaluation method of the water film formation performance.
  • the surface layer of the composite material is held in a vertical state, and 15 g of ion exchange water is sprayed on a surface of 100 mm ⁇ 200 mm from a position 10 cm away from the surface.
  • a water film is formed on the entire surface, but a state in which a water film is formed on another surface while part of the surface repels water is also permitted in the present invention.
  • the surface layer of the composite material according to the first aspect of the present invention preferably has the following surface characteristics.
  • the composite material according to the present invention preferably has an advancing contact angle of 30 ° or more, more preferably 35 ° or more, and further preferably 40 ° or more.
  • the receding contact angle is preferably 20 ° or less, more preferably 16 ° or less, still more preferably 13 ° or less, and most preferably 10 ° or less.
  • the difference between the advancing contact angle and the receding contact angle, that is, the hysteresis is preferably 20 ° or more and 80 ° or less, the more preferable lower limit value is 35 °, the still more preferable lower limit value is 40 °, and the more preferable upper limit value is 75 °, more preferably 70 °.
  • the surface layer of the composite according to the present invention simultaneously satisfies the advancing contact angle, receding contact angle, and hysteresis within the above-mentioned ranges. If it is this range, the water droplet retention property when a water droplet is formed and the water film formation property when a large amount of water droplets are applied will be more excellent.
  • the above-mentioned surface characteristics that is, the dynamic contact angle (advanced contact angle and receding contact angle), and the falling angle are measured by a commonly used or established measurement method, but are preferably measured by the following method. That is, the dynamic contact angle (advance contact angle and receding contact angle) with respect to water is measured using an automatic contact angle measuring device (for example, OCA20 manufactured by Eiko Seiki Co.). More specifically, after dropping 50 ⁇ L of water droplets on the surface layer, the surface layer is made 1.6 deg.
  • the surface layer of the composite material according to the first aspect of the present invention preferably has a falling angle of 30 ⁇ L of water of 40 ° or more. It can be said that the larger the falling angle, the higher the water droplet retention.
  • the above-mentioned sliding angle is measured by a commonly used or established measurement method, but is preferably measured by the following method. That is, the falling angle is measured by the sliding method. More specifically, after dropping 30 ⁇ L of water droplets on the surface layer, the surface layer is made 1.6 deg. Observe water droplets from the camera while tilting at a speed of / s, and measure the tilt angle: tumbling angle at the moment when the water droplets slide down.
  • the surface layer of the composite material according to the first aspect of the present invention preferably has a static contact angle with water of 20 ° or more as an average value of 5 or more arbitrary measurement points.
  • the lower limit is preferably less than 90 °, the more preferable lower limit is 30 °, the still more preferable lower limit is 35 °, the more preferable upper limit is 80 °, and the most preferable upper limit is 75 °. If it is this range, the water droplet retention property at the time of forming a water droplet will become more excellent.
  • the static contact angle with water is 5 seconds after 5 ⁇ L of water drops are dropped at room temperature using a contact angle measuring device (for example, Kyowa Interface Science Co., Ltd., product name: CA-X150 type). Is measured by the ⁇ / 2 method.
  • the surface layer of the composite material according to the first aspect of the present invention preferably has a film thickness of 300 nm or less. More preferably, the lower limit is 10 nm, and a more preferable lower limit is 15 nm.
  • the upper limit value is more preferably 200 nm, still more preferably 150 nm.
  • the surface layer of the composite material according to the present invention is an arbitrary measurement using the laser microscope having a wavelength of 405 nm and the arithmetic average roughness Ra measured in JIS B 0601-1982 with a 20-fold field of view.
  • the average value of 3 or more points is preferably more than 5 nm and 50 nm or less.
  • a preferred lower limit is 5 nm, and a more preferred lower limit is 10 nm.
  • a preferable upper limit is 50 nm, and a more preferable upper limit is 30 nm.
  • the surface roughness is within the above range, water is caught in fine irregularities and the movement of the water is hindered, the water in contact with the surface does not wet and spread, and the water does not shrink. The action is strengthened.
  • the substrate forming the composite according to the first aspect of the present invention is a material that is required to have a self-cleaning performance and to prevent linear contamination.
  • the substrate can be a material having a flat surface or a curved surface, and the material is, for example, metal, ceramic, glass, plastic, rubber, stone, cement, concrete, fiber, fabric, wood, paper, combinations thereof, or the like
  • These laminates may have a surface coated.
  • building materials such as building exterior materials or interior materials are preferred examples.
  • a building material used for an elevation is preferable as a target.
  • the composite material according to the present invention is used as an exterior material, it is used in an environment where it is exposed to rain.
  • linear stains are prevented, it can be preferably used in areas where rain is difficult to hit, such as under a fence or under an eaves.
  • As an interior material it can be applied to a site where condensed water condenses on the surface.
  • the building material used for the elevation surface to which the present invention is applied includes wall materials and window materials, and specifically, wall materials such as outer walls and sound insulation walls, and window materials such as window glass are preferable.
  • the transparent sound-insulating wall and the window glass are transparent substrates, and dust dirt such as linear dirt is conspicuous.
  • the surface of the substrate preferably has an arithmetic average roughness Ra of 100 nm or less. This is because such a relatively smooth surface makes it easy to make the surface roughness of the surface layer within the aforementioned range.
  • Coating Composition for producing the composite according to the first aspect of the present invention described above.
  • This coating composition according to the first aspect of the present invention basically comprises the above-mentioned materials (I-1) and (I-2), and a solvent.
  • the material (I-1) and the material (I-2) included in the coating composition according to the first aspect of the present invention are the same as the material (I-1) and the material (I-2) already described. It's okay.
  • the material (I-1) is at least one compound selected from the group consisting of silica, alkali silicate, alumina, and amorphous titanium oxide.
  • sodium silicate, potassium silicate, or lithium silicate can be used alone or in combination as an alkali silicate.
  • the material (I-1) is preferably a particle.
  • a suitable particle diameter is a number average particle diameter of 10 nm or more and 100 nm or less, which is calculated by measuring the length of any 100 particles entering a 200,000-fold field of view with a scanning electron microscope.
  • the shape of the particles is best spherical, but may be an irregular shape such as an ellipse.
  • the length of the particle is approximately calculated as a value obtained by dividing the sum of the longest diameter and the shortest diameter of the particle shape observed with a scanning electron microscope by 2.
  • the material (I-2) is an oxide containing at least one metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Y, In, and Hf, At least one compound selected from the group consisting of inorganic salts and organic salts, and preferably at least one compound selected from the group consisting of oxides, inorganic salts, and organic salts, containing Zr or Hf It is.
  • the metal-containing oxide is, for example, Cr 2 O 3 , MnO 2 , Fe 2 O 3 , CoO, NiO, CuO, Ga 2 O 3 , ZrO 2 , Y 2.
  • O 3 , In 2 O 3 , HfO 2 and the like can be mentioned.
  • inorganic salts include oxychloride, hydroxychloride, nitrate, sulfate, acetate, oxynitrate, carbonate, ammonium carbonate, sodium carbonate, potassium carbonate, phosphoric acid of the above metals. A sodium salt etc. are mentioned.
  • organic salts include oxalates, propionates, metal alkoxides, hydrolysates of metal alkoxides, chelate compounds, and the like of the above metals.
  • metal alkoxides include compounds in which an alkoxyl group having about 1 to 8 carbon atoms is bonded to a metal atom.
  • the metal atom is Zr, zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium Examples thereof include tetraisopropoxide, zirconium tetra n-butoxide, zirconium tetra t-butoxide and the like.
  • the chelate compound that can be used include ⁇ -ketone ester complexes, ⁇ -diketone complexes, ethanolamine complexes, dialkylene glycol complexes, and the like.
  • the material (I-2) is an amorphous oxide, oxide particles having an average crystallite diameter of less than 10 nm, or an inorganic salt.
  • the material (I-2) when the material (I-2) is a particle, it is calculated by measuring the length of any 100 particles that fall within a field of view of 200,000 times with a scanning electron microscope. Preferably, the particles have a number average particle diameter of 5 nm to 100 nm.
  • the material (I-2) By making the material (I-2) into a particle shape and forming a surface layer together with the material (I-1), the material (I-1) and the material (I-2) are dispersed on the surface of the surface layer. it can. Thereby, desired water-wetting characteristics (water droplet retention performance and water film formation performance) can be expressed more effectively. It is also advantageous in that a transparent surface layer can be obtained. Further, the material (I-2) can be expected to act as a binder for fixing the material (I-1).
  • the blending amounts of the material (I-1) and the material (I-2) in the coating composition according to the first aspect of the present invention must be capable of realizing the composition of the surface layer of the composite material according to the present invention described above. is there. Therefore, even in the coating composition according to the first aspect of the present invention, the material (I-2) is the sum of the mass of the material (I-1) and the oxide equivalent amount of the material (I-2). On the other hand, in terms of its oxide, it is blended in an amount of 30 to 70% by mass, preferably 30 to 50% by mass.
  • the material (I-2) is blended in an amount of 30% to 70% by mass, preferably 30% to 50% by mass, in terms of oxide, with respect to the film-forming component.
  • the film-forming component is a component obtained by excluding a volatile component such as a solvent and a water-soluble additive such as a surfactant from the coating composition, and the amount of the film-forming component is an evaporation residue of the coating composition. This value is substantially equal to the value obtained by subtracting the amount of the water-soluble additive from the amount.
  • the material (I-1) may be added with a precursor that changes to the material (I-1) in the production process. Therefore, the material (I-1) that can be contained in the coating composition according to the present invention and the precursors that can be changed include silica, alkyl silicate, alkali silicate, alumina, amorphous titanium oxide, titanium peroxide, aluminum hydroxide. And at least one selected from the group consisting of boehmite.
  • alkyl silicate is a precursor of silica
  • titanium peroxide is a precursor of amorphous titanium oxide
  • aluminum hydroxide and boehmite are precursors of alumina. These precursors change to silica, alkali silicate, alumina, or amorphous titanium oxide after film formation.
  • Examples of the alkyl silicate that can be blended in the coating composition according to the first aspect of the present invention include Si alkoxides, hydrolysates of Si alkoxides, Si chelate compounds, and the like.
  • Si alkoxides include compounds in which an alkoxyl group having about 1 to 4 carbon atoms is bonded to an Si atom, for example, Si tetramethoxide, Si tetraethoxide, Si tetra n-propoxide, Si tetraiso Examples thereof include propoxide, Si tetra n-butoxide, Si tetra t-butoxide and the like.
  • Examples of chelate compounds include ⁇ -ketone ester complexes, ⁇ -diketone complexes, ethanolamine complexes, dialkylene glycol complexes, and the like.
  • the solvent contained in the coating composition according to the first aspect of the present invention is a substance that can disperse or dissolve the material (I-1) and the material (I-2) and is liquid at room temperature.
  • examples thereof include water, ethylene glycol, butyl cellosolve, alcohols such as isopropanol, n-butanol, ethanol and methanol, aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane, cyclohexane and heptane, Esters such as ethyl acetate and n-butyl acetate, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethers such as tetrahydrofuran and dioxane, amides such as dimethylacetamide and dimethylformamide, chloroform, methylene chloride and carbon tetrachloride And halogen compounds such as di
  • the coating composition according to the first aspect of the present invention preferably contains a leveling agent.
  • a leveling agent examples thereof include diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, 4-hydroxy-4-methyl- 2-pentanone, dipropylene glycol, tripropylene glycol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, propylene glycol monomethyl ether, 1-propoxy-2-propanol, dipropylene glycol monomethyl ether, dipropylene glycol Examples include collyl monoethyl ether, tripropylene glycol monoethyl ether, and acetylene alcohol.
  • the coating composition according to the first aspect of the present invention optionally contains, in addition to the material (I-1) and the material (I-2), a pigment, a curing catalyst, a crosslinking agent, a filler, a dispersant, a light stabilizer, a wetting agent.
  • Additives, thickeners, rheology control agents, antifoaming agents, film-forming aids, leveling agents, rust inhibitors, dyes, preservatives, etc. can be selected and combined according to their purpose. it can.
  • various surfactants can be blended as additives in order to improve the wettability of the coating composition.
  • the coating composition according to the first aspect of the present invention can be obtained by dissolving or dispersing the material (I-1), the material (I-2), and other optional components in a solvent.
  • Each material can be made into a coating composition by combining and blending various materials such as powders, solutions, dispersions such as sols, and the like.
  • the solid content concentration in the coating composition is preferably about 0.05% by mass to 20% by mass, and more preferably 0.05% by mass to 10% by mass.
  • the solid content concentration is substantially equal to the concentration of the above-mentioned film-forming component.
  • the coating composition is dried at 105 ° C. to 110 ° C., and the remaining evaporation amount and the amount of the water-soluble additive are obtained. Can be obtained by dividing the difference by the amount of the coating composition.
  • the composite material according to the first aspect of the present invention can be preferably manufactured using the above-described coating composition. Specifically, after the coating composition according to the first aspect described above is applied to the substrate surface, (a) the substrate surface is heated at 300 ° C. or lower, (b) dried at room temperature, or (c). It is preferably formed by any method of heating the surface of the substrate at a temperature exceeding 300 and less than 1000 ° C. for 2 to 60 seconds. Regardless of the manufacturing method, desired water wetting characteristics (water droplet retention performance and water film formation performance) can be fully expressed by heating at relatively low temperatures or heating conditions in a short time. A surface layer can be obtained.
  • Application to the substrate can be performed by brush, roller or spray coating, flow coating, dip coating, screen printing, gravure printing, and the like.
  • the surface layer of the composite material comprises material (II-1), material (II-2), and material (II-3).
  • the material (II-1) is composed of anatase type titanium oxide, rutile type titanium oxide, brookite type titanium oxide, zinc oxide, tin oxide, crystalline tungsten oxide, and amorphous tungsten oxide.
  • anatase-type titanium oxide, rutile-type titanium oxide, and brookite-type titanium oxide can be suitably used. These titanium oxides are non-toxic and have excellent chemical stability.
  • the photocatalyst that is the material (II-1) is highly hydrophilic per se by light irradiation and develops a property of decomposing organic substances.
  • the material (II-3) described later is also a hydrophilic compound.
  • the material (II-2) described later is a metal compound that is less hydrophilic than the photocatalytic material that is the material (II-1) and that is difficult to be decomposed by its decomposition action. The reason why linear stains are prevented by the present invention is not clear, but is considered as follows.
  • a highly hydrophilic region is formed by photoexcitation in a portion where the material (II-1) is present, and a hydrophilic region is also formed in a portion where the material (II-3) is present.
  • a clean surface is formed by photocatalysis, and the material (II-1) maintains a performance with a weaker affinity with water than the material (II-1).
  • a region having a weak affinity for water is formed in the portion where -2) exists.
  • Both the hydrophilicity due to II-3) and the weak affinity with water due to the material (II-2) manifest water droplet retention performance and water film formation performance so that linear stains can be effectively prevented.
  • the force to attract water by the hydrophilic part to form a water film balances the force to form and stop the polka dots by the part having a weak affinity with water,
  • a small amount of water, such as raindrops is attached, the movement of the triplet of the waterdrop (the gas / liquid / solid interface, that is, the contour of the portion in contact with the surface of the waterdrop) is suppressed, and the external force such as gravity is used as the waterdrop. Keep on the surface against. As a result, linear contamination is prevented.
  • the material (II-1) is preferably a particle.
  • a suitable particle diameter is a number average particle diameter of 10 nm or more and 100 nm or less, which is calculated by measuring the length of any 100 particles entering a 200,000-fold field of view with a scanning electron microscope.
  • the shape of the particles is best spherical, but may be an irregular shape such as an ellipse.
  • the length of the particle is approximately calculated as a value obtained by dividing the sum of the longest diameter and the shortest diameter of the particle shape observed with a scanning electron microscope by 2.
  • the material (II-1) and the material (II-2) are dispersed on the surface of the surface layer. It can. Thereby, desired water-wetting characteristics (water droplet retention performance and water film formation performance) can be expressed more effectively. It is also advantageous in that a transparent surface layer can be obtained.
  • a metal such as Pt, Pd, Rh, Ru, Nb, Ag, Cu, Sn, Ni, Fe and / or an oxide thereof is added to the photocatalyst material as these photocatalyst particles.
  • a photocatalyst coated with immobilized particles or porous calcium phosphate can also be used.
  • the blending amount of the material (II-1) includes the mass of the material (II-1), the oxide equivalent amount of the material (II-2), and the oxide of the material (II-3). It is more than 0% by mass and less than 20% by mass with respect to the mass sum of the converted amount and the optional component alumina described later, a preferable lower limit is 0.1% by mass or more, and a preferable upper limit is less than 20% by mass. More preferably, it is less than 10% by mass.
  • the material (II-1) is more than 0% by mass and less than 20% by mass with respect to the surface layer, and a preferred lower limit is 0.1% by mass or more.
  • the upper limit is preferably less than 20% by mass, more preferably less than 10% by mass.
  • the mass of the surface layer is a value that is substantially equal to the amount (mass) of a film forming component described later.
  • the material (II-2) is at least one metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Y, In, and Hf. At least one compound selected from the group consisting of oxides, inorganic salts, and organic salts, preferably from the group consisting of oxides, inorganic salts, and organic salts containing Zr or Hf At least one compound selected.
  • Material (II-2) is a metal compound that has a weaker affinity with water than material (II-1) and is not decomposed by material (II-1).
  • the surface layer of the composite material according to the present invention is formed by blending the material (II-2) together with the material (II-1), thereby effectively preventing linear stains and exhibiting self-cleaning performance.
  • Water wettability water droplet retention performance and water film formation performance).
  • the metal-containing oxide is, for example, Cr 2 O 3 , MnO 2 , Fe 2 O 3 , CoO, NiO, CuO, Ga 2 O 3 , ZrO 2 , Y 2.
  • O 3 , In 2 O 3 , HfO 2 and the like can be mentioned.
  • inorganic salts include oxychloride, hydroxychloride, nitrate, sulfate, acetate, oxynitrate, carbonate, ammonium carbonate, sodium carbonate, potassium carbonate, phosphoric acid of the above metals. A sodium salt etc. are mentioned.
  • organic salts include oxalates, propionates, metal alkoxides, hydrolysates of metal alkoxides, chelate compounds, and the like of the above metals.
  • metal alkoxides include compounds in which an alkoxyl group having about 1 to 8 carbon atoms is bonded to a metal atom.
  • the metal atom is Zr, zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium Examples thereof include tetraisopropoxide, zirconium tetra n-butoxide, zirconium tetra t-butoxide and the like.
  • the chelate compound that can be used include ⁇ -ketone ester complexes, ⁇ -diketone complexes, ethanolamine complexes, dialkylene glycol complexes, and the like.
  • the material (II-2) is an amorphous oxide, oxide particles having an average crystallite diameter of less than 10 nm, or an inorganic salt.
  • the surface layer obtained by applying these compounds is excellent in water droplet retention performance and water film formation.
  • the average crystallite diameter is calculated by the Scherrer formula from the integral width of the strongest peak of XRD.
  • the material (II-2) when the material (II-2) is a particle, it is calculated by measuring the length of any 100 particles that fall within a field of view of 200,000 times with a scanning electron microscope. Preferably, the particles have a number average particle diameter of 5 nm to 100 nm.
  • the material (II-2) By making the material (II-2) into a particle shape and forming a surface layer together with the material (II-1), the material (II-1) and the material (II-2) are dispersed on the surface of the surface layer. it can. Thereby, desired water-wetting characteristics (water droplet retention performance and water film formation performance) can be expressed more effectively. It is also advantageous in that a transparent surface layer can be obtained.
  • the material (II-2) can also be expected to act as a binder for fixing the photocatalyst.
  • the blending amount of the material (II-2) includes the mass of the material (II-1), the oxide equivalent amount of the material (II-2), and the oxide of the material (II-3). It is more than 35% by mass and less than 60% by mass in terms of its oxide equivalent, and the preferred lower limit is more than 35% by mass, and the preferred upper limit is 50% by mass with respect to the converted amount and the mass sum of the optional component alumina described later. % Or less.
  • the material (II-2) is more than 35% by weight and less than 60% by weight, preferably 35% by weight or more and 50% by weight in terms of its oxide, with respect to the surface layer. It is preferable to be blended by mass% or less.
  • the mass of the surface layer is a value that is substantially equal to the amount (mass) of a film forming component described later.
  • the surface layer of the composite material according to the second aspect of the present invention can contain the material (II-3) in addition to the material (II-1) and the material (II-2).
  • the material (II-3) is at least one selected from the group consisting of silica, alkali silicate, and amorphous titanium oxide.
  • This material (II-3) is a hydrophilic material. Therefore, when the light for exciting the photocatalyst that is the material (II-1) is low (for example, when it is cloudy, when the sunshine time of the application site is short, or when it is applied as an interior material), hydrophilicity is assisted It has a function.
  • these materials are less hydrophilic than the photocatalyst material which is the material (II-1) and more hydrophilic than the material (II-2), the blending amount of the material (II-2) is low. Can be suppressed. Furthermore, these materials (II-3) also have a function of fixing the photocatalytic material, which is the material (II-1), to the surface of the substrate. These materials (II-3) do not interfere with the desired water wetting characteristics (water droplet retention performance and water film formation performance), and improve the adhesion, strength, durability, and weather resistance of the surface layer to the substrate. Contributes to improved characteristics.
  • alkali silicate sodium silicate, potassium silicate, or lithium silicate can be used alone or in combination.
  • the material (II-3) is blended in an amount that is relatively determined with respect to the first and material (II-2), that is, the remaining amount. Therefore, the blending amount of the material (II-3) includes the mass of the material (II-1), the oxide equivalent of the material (II-2), the oxide equivalent of the material (II-3), and any of the following More than 10 mass% and less than 65 mass% is compounded with respect to the mass sum of the component alumina.
  • the material (II-3) is preferably blended in an amount of more than 10% by mass and less than 65% by mass with respect to the surface layer.
  • the mass of the surface layer is a value that is substantially equal to the amount (mass) of a film forming component described later.
  • the surface layer of the composite material according to the second aspect of the present invention is a material as a kind of the compound (A) and can contain alumina as an optional component.
  • Alumina is preferably not included, and even if it is included, the blending amount thereof is the mass of material (II-1), the equivalent amount of oxide of material (II-2), and the equivalent amount of oxide of material (II-3). And 0 mass% or more and 10 mass% or less with respect to the mass sum of alumina itself. According to one aspect of the present invention, it is preferred that the alumina is blended less than the third component.
  • alumina is blended in an amount of 0% by mass to 10% by mass with respect to the surface layer in terms of its oxide.
  • the mass of the surface layer is a value that is substantially equal to the amount (mass) of a film forming component described later.
  • the surface layer of the composite material according to the second aspect of the present invention may optionally contain any component other than the components of the material (II-1), the material (II-2) and the material (II-3). Ingredients can be included. Examples of optional components include pigments, fillers, light stabilizers, dyes, etc., which are selected and combined according to their purpose to hinder desired water wetting characteristics (water droplet retention performance and water film formation performance). It can be blended to the extent that it is not.
  • the water droplet retention performance and water film formation performance of the composite material according to the second aspect of the present invention may be evaluated by the same method as in the first aspect of the present invention.
  • the surface layer of the composite according to the second aspect of the present invention preferably has the following surface characteristics.
  • the composite material according to the second aspect of the present invention preferably has an advancing contact angle of 30 ° or more, more preferably 35 ° or more, and further preferably 40 ° or more.
  • the receding contact angle is preferably 20 ° or less, more preferably 16 ° or less, still more preferably 13 ° or less, and most preferably 10 ° or less.
  • the difference between the advancing contact angle and the receding contact angle, that is, the hysteresis is preferably 20 ° or more and 80 ° or less, the more preferable lower limit value is 35 °, the still more preferable lower limit value is 40 °, and the more preferable upper limit value is 75 °, more preferably 70 °.
  • the surface layer of the composite material according to the second aspect of the present invention simultaneously satisfies the advancing contact angle, receding contact angle, and hysteresis within the above ranges. If it is this range, the water droplet retention property when a water droplet is formed and the water film formation property when a large amount of water droplets are applied will be more excellent.
  • the above-mentioned surface characteristics that is, the dynamic contact angle (advanced contact angle and receding contact angle), and the falling angle are measured by a commonly used or established measurement method, but are preferably measured by the following method. That is, the dynamic contact angle (advance contact angle and receding contact angle) with respect to water is measured using an automatic contact angle measuring device (for example, OCA20 manufactured by Eiko Seiki Co., Ltd.). More specifically, after dropping 50 ⁇ L of water droplets on the surface layer, the surface layer is made 1.6 deg.
  • the surface layer of the composite material according to the second aspect of the present invention preferably has a falling angle of 30 ⁇ L of water of 40 ° or more. It can be said that the larger the falling angle, the higher the water droplet retention.
  • the above-mentioned sliding angle is measured by a commonly used or established measurement method, but is preferably measured by the following method. That is, the falling angle is measured by the sliding method. More specifically, after dropping 30 ⁇ L of water droplets on the surface layer, the surface layer is made 1.6 deg. Observe water droplets from the camera while tilting at a speed of / s, and measure the tilt angle: tumbling angle at the moment when the water droplets slide down.
  • the surface layer of the composite material according to the present invention preferably has a static contact angle with water of 20 ° or more and less than 90 ° in an average value of 5 or more arbitrary measurement points. More preferably, the lower limit is 30 °, the lower limit is more preferably 35 °, the upper limit is more preferably 80 °, and the most preferable upper limit is 75 °. If it is this range, the water droplet retention property at the time of forming a water droplet will become more excellent.
  • the static contact angle with water is 5 seconds after 5 ⁇ L of water drops are dropped at room temperature using a contact angle measuring device (for example, Kyowa Interface Science Co., Ltd., product name: CA-X150 type). Is measured by the ⁇ / 2 method.
  • the surface layer of the composite material according to the second aspect of the present invention preferably has a film thickness of 300 nm or less. More preferably, the lower limit is 10 nm, and a more preferable lower limit is 15 nm.
  • the upper limit value is more preferably 200 nm, still more preferably 150 nm.
  • the surface layer of the composite material according to the present invention is an arbitrary measurement using the laser microscope having a wavelength of 405 nm and the arithmetic average roughness Ra measured in JIS B 0601-1982 with a 20-fold field of view.
  • the average value of 3 or more points is preferably more than 5 nm and 50 nm or less.
  • a preferred lower limit is 5 nm, and a more preferred lower limit is 10 nm.
  • a preferable upper limit is 50 nm, and a more preferable upper limit is 30 nm.
  • the substrate for forming a composite material according to the second aspect of the substrate present invention may be similar to the base material in the first embodiment.
  • Coating Composition for producing the composite material according to the second aspect of the present invention described above.
  • the coating composition according to the second aspect of the present invention basically includes the above-mentioned material (II-1), material (II-2), material (II-3), and optional components such as alumina, And a solvent.
  • the material (II-1) and the material (II-2) included in the coating composition according to the second aspect of the present invention are the same as the material (II-1) and the material (II-2) already described. It's okay.
  • the material (II-1) is at least selected from the group consisting of anatase-type titanium oxide, rutile-type titanium oxide, brookite-type titanium oxide, zinc oxide, tin oxide, crystalline tungsten oxide, and amorphous tungsten oxide. It is a kind of photocatalytic material. These photocatalytic materials are made of a photocatalyst that is excited by light having a wavelength of 350 to 500 nm. According to a preferred embodiment of the present invention, among these photocatalysts, anatase-type titanium oxide, rutile-type titanium oxide, and brookite-type titanium oxide can be suitably used.
  • the material (II-1) is preferably a particle.
  • a suitable particle diameter is a number average particle diameter of 10 nm or more and 100 nm or less, which is calculated by measuring the length of any 100 particles entering a 200,000-fold field of view with a scanning electron microscope.
  • the shape of the particles is best spherical, but may be an irregular shape such as an ellipse.
  • the length of the particle is approximately calculated as a value obtained by dividing the sum of the longest diameter and the shortest diameter of the particle shape observed with a scanning electron microscope by 2.
  • the material (II-1) and the material (II-2) are dispersed on the surface of the surface layer. It can. Thereby, desired water-wetting characteristics (water droplet retention performance and water film formation performance) can be expressed more effectively. It is also advantageous in that a transparent surface layer can be obtained.
  • a metal such as Pt, Pd, Rh, Ru, Nb, Ag, Cu, Sn, Ni, Fe and / or an oxide thereof is added to the photocatalyst material as these photocatalyst particles.
  • a photocatalyst coated with immobilized particles or porous calcium phosphate can also be used.
  • the material (II-2) is an oxide containing at least one metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Y, In, and Hf, At least one compound selected from the group consisting of inorganic salts and organic salts, and preferably at least one compound selected from the group consisting of oxides, inorganic salts, and organic salts, containing Zr or Hf It is.
  • the metal-containing oxide is, for example, Cr 2 O 3 , MnO 2 , Fe 2 O 3 , CoO, NiO, CuO, Ga 2 O 3 , ZrO 2 , Y 2.
  • O 3 , In 2 O 3 , HfO 2 and the like can be mentioned.
  • inorganic salts include oxychloride, hydroxychloride, nitrate, sulfate, acetate, oxynitrate, carbonate, ammonium carbonate, sodium carbonate, potassium carbonate, phosphoric acid of the above metals. A sodium salt etc. are mentioned.
  • organic salts include oxalates, propionates, metal alkoxides, hydrolysates of metal alkoxides, chelate compounds, and the like of the above metals.
  • metal alkoxides include compounds in which an alkoxyl group having about 1 to 8 carbon atoms is bonded to a metal atom.
  • the metal atom is Zr, zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium Examples thereof include tetraisopropoxide, zirconium tetra n-butoxide, zirconium tetra t-butoxide and the like.
  • the chelate compound that can be used include ⁇ -ketone ester complexes, ⁇ -diketone complexes, ethanolamine complexes, dialkylene glycol complexes, and the like.
  • the material (II-2) is an amorphous oxide, oxide particles having an average crystallite diameter of less than 10 nm, or an inorganic salt.
  • the material (II-2) when the material (II-2) is a particle, it is calculated by measuring the length of any 100 particles that fall within a field of view of 200,000 times with a scanning electron microscope. Preferably, the particles have a number average particle diameter of 5 nm to 100 nm.
  • the material (II-2) By making the material (II-2) into a particle shape and forming a surface layer together with the material (II-1), the material (II-1) and the material (II-2) are dispersed on the surface of the surface layer. it can. Thereby, desired water-wetting characteristics (water droplet retention performance and water film formation performance) can be expressed more effectively. It is also advantageous in that a transparent surface layer can be obtained.
  • the material (II-2) can also be expected to act as a binder for fixing the photocatalyst.
  • the compounding amounts of the material (II-1) and the material (II-2) and the optional material (II-3) in the coating composition according to the second aspect of the present invention are as described above. It is necessary that the composition of the surface layer of the composite material according to the embodiment can be realized.
  • the material (II-2) is more than 35% by mass and less than 60% by mass, preferably more than 35% by mass and 50% by mass with respect to the film-forming component.
  • the film-forming component is a component obtained by excluding a volatile component such as a solvent and a water-soluble additive such as a surfactant from the coating composition, and the amount of the film-forming component is an evaporation residue of the coating composition. This value is substantially equal to the value obtained by subtracting the amount of the water-soluble additive from the amount.
  • the coating composition according to the second aspect of the present invention contains the material (II-3), but a precursor that changes to the material (II-3) may be added in the production process.
  • the material (II-3) that can be included in the coating composition according to the second aspect of the present invention and the precursors to be changed include silica, alkyl silicate, alkali silicate amorphous titanium oxide, and titanium peroxide. At least one selected from the group consisting of: Of these, alkyl silicate is a precursor of silica, and titanium peroxide is a precursor of amorphous titanium oxide. These precursors change to silica, alkali silicate, or amorphous titanium oxide after film formation.
  • Examples of the alkyl silicate that can be blended in the coating composition according to the second aspect of the present invention include Si alkoxides, hydrolysates of Si alkoxides, Si chelate compounds, and the like.
  • Si alkoxides include compounds in which an alkoxyl group having about 1 to 4 carbon atoms is bonded to an Si atom, for example, Si tetramethoxide, Si tetraethoxide, Si tetra n-propoxide, Si tetraiso Examples thereof include propoxide, Si tetra n-butoxide, Si tetra t-butoxide and the like.
  • Examples of chelate compounds include ⁇ -ketone ester complexes, ⁇ -diketone complexes, ethanolamine complexes, dialkylene glycol complexes, and the like.
  • the alumina or precursor thereof may be added to the coating composition according to the second aspect of the present invention.
  • the precursor include aluminum hydroxide and boehmite.
  • the solvent contained in the coating composition according to the second aspect of the present invention can disperse or dissolve the material (II-1), the material (II-2) and the material (II-3), and is a substance which is liquid at room temperature. It is. Examples thereof include water, ethylene glycol, butyl cellosolve, alcohols such as isopropanol, n-butanol, ethanol and methanol, aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane, cyclohexane and heptane, Esters such as ethyl acetate and n-butyl acetate, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethers such as tetrahydrofuran and dioxane, amides such as dimethylacetamide and dimethylformamide, chloroform, methylene chloride and carbon tetrach
  • the coating composition according to the second aspect of the present invention preferably contains a leveling agent.
  • a leveling agent examples thereof include diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, 4-hydroxy-4-methyl- 2-pentanone, dipropylene glycol, tripropylene glycol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, propylene glycol monomethyl ether, 1-propoxy-2-propanol, dipropylene glycol monomethyl ether, dipropylene glycol Examples include collyl monoethyl ether, tripropylene glycol monoethyl ether, and acetylene alcohol.
  • the coating composition according to the second aspect of the present invention optionally contains a pigment, a curing catalyst, a crosslinking agent, a filler, a dispersion in addition to the material (II-1), the material (II-2) and the material (II-3).
  • Additives, light stabilizers, wetting agents, thickeners, rheology control agents, antifoaming agents, film-forming aids, leveling agents, rust inhibitors, dyes, preservatives, etc. Can be combined.
  • various surfactants can be blended as additives in order to improve the wettability of the coating composition.
  • the coating composition according to the second aspect of the present invention is obtained by dissolving or dispersing the material (II-1), the material (II-2), the material (II-3) and other optional components of alumina in a solvent. Can do.
  • Each material can be made into a coating composition by combining and blending various materials such as powders, solutions, dispersions such as sols, and the like.
  • the solid content concentration in the coating composition is preferably about 0.05% by mass to 20% by mass, and more preferably 0.05% by mass to 10% by mass.
  • the solid content concentration is substantially equal to the concentration of the above-mentioned film-forming component.
  • the coating composition is dried at 105 ° C. to 110 ° C., and the remaining evaporation amount and the amount of the water-soluble additive are obtained. Can be obtained by dividing the difference by the amount of the coating composition.
  • the composite material according to the second aspect of the present invention can be preferably manufactured using the above-described coating composition. Specifically, after applying the coating composition according to the second aspect described above to the substrate surface, (a) heating the substrate surface at 300 ° C. or lower, (b) drying at room temperature, or (c) It is preferably formed by any method of heating the surface of the substrate at a temperature exceeding 300 and less than 1000 ° C. for 2 to 60 seconds. Regardless of the manufacturing method, desired water wetting characteristics (water droplet retention performance and water film formation performance) can be fully expressed by heating at relatively low temperatures or heating conditions in a short time. A surface layer can be obtained.
  • Application to the substrate can be performed by brush, roller or spray coating, flow coating, dip coating, screen printing, gravure printing, and the like.
  • the surface layer of the composite material comprises the material (III-1) as the compound (A) and the material (III-2) as the compound (B), optionally further It comprises material (III-3) as a kind of compound (A).
  • the material (III-1) is composed of anatase type titanium oxide, rutile type titanium oxide, brookite type titanium oxide, zinc oxide, tin oxide, crystalline tungsten oxide, and amorphous tungsten oxide.
  • anatase-type titanium oxide, rutile-type titanium oxide, and brookite-type titanium oxide can be suitably used. These titanium oxides are non-toxic and have excellent chemical stability.
  • the photocatalyst that is the material (III-1) is highly hydrophilic per se by light irradiation and develops a property of decomposing organic substances.
  • the material (III-2) described later is a metal compound that is less hydrophilic than the photocatalyst material that is the material (III-1) and is difficult to be decomposed by its decomposition action. The reason why linear stains are prevented by the present invention is not clear, but is considered as follows.
  • a highly hydrophilic region is formed by photoexcitation in the portion where the material (III-1) is present.
  • the force to attract water by the hydrophilic part to form a water film balances the force to form and stop the polka dots by the part having a weak affinity with water,
  • a small amount of water, such as raindrops is attached, the movement of the triplet of the waterdrop (the gas / liquid / solid interface, that is, the contour of the portion in contact with the surface of the waterdrop) is suppressed, and the external force such as gravity is used as the waterdrop Resist against the surface.
  • the external force such as gravity is used as the waterdrop Resist against the surface.
  • the material (III-1) is preferably a particle.
  • a suitable particle diameter is a number average particle diameter of 10 nm or more and 100 nm or less, which is calculated by measuring the length of any 100 particles entering a 200,000-fold field of view with a scanning electron microscope.
  • the shape of the particles is best spherical, but may be an irregular shape such as an ellipse.
  • the length of the particle is approximately calculated as a value obtained by dividing the sum of the longest diameter and the shortest diameter of the particle shape observed with a scanning electron microscope by 2.
  • the material (III-1) By making the material (III-1) into a particle shape and forming a surface layer together with the material (III-2), the material (III-1) and the material (III-2) are dispersed on the surface of the surface layer. it can. Thereby, desired water-wetting characteristics (water droplet retention performance and water film formation performance) can be expressed more effectively. It is also advantageous in that a transparent surface layer can be obtained.
  • a metal such as Pt, Pd, Rh, Ru, Nb, Ag, Cu, Sn, Ni, Fe and / or an oxide thereof is added to the photocatalyst material as these photocatalyst particles.
  • a photocatalyst coated with immobilized particles or porous calcium phosphate can also be used.
  • the material (III-1) is added in an amount that is relatively determined with respect to the material (III-2) to be described later, and further, the material (III-3) that is optionally added.
  • the material (III-2) is at least one metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Y, In, and Hf. At least one compound selected from the group consisting of oxides and inorganic salts, preferably at least one selected from the group consisting of oxides and inorganic salts containing Zr or Hf A compound.
  • Material (III-2) is a metal compound that shows a weaker affinity with water than material (III-1) and is not decomposed by material (III-1).
  • the surface layer of the composite material according to the present invention is formed by blending material (III-2) together with material (III-1), thereby effectively preventing linear stains and exhibiting self-cleaning performance.
  • Water wettability water droplet retention performance and water film formation performance).
  • the metal-containing oxide is, for example, Cr 2 O 3 , MnO 2 , Fe 2 O 3 , CoO, NiO, CuO, Ga 2 O 3 , ZrO 2 , Y 2.
  • O 3 , In 2 O 3 , HfO 2 and the like can be mentioned.
  • inorganic salts include oxychloride, hydroxychloride, nitrate, sulfate, acetate, oxynitrate, carbonate, ammonium carbonate, sodium carbonate, potassium carbonate, phosphoric acid of the above metals. A sodium salt etc. are mentioned.
  • the material (III-2) is an amorphous oxide, oxide particles having an average crystallite diameter of less than 10 nm, or an inorganic salt.
  • the surface layer obtained by applying these compounds is excellent in water droplet retention performance and water film formation.
  • the average crystallite diameter is calculated by the Scherrer formula from the integral width of the strongest peak of XRD.
  • the material (III-2) when the material (III-2) is a particle, it is calculated by measuring the length of any 100 particles that fall within a field of view of 200,000 times with a scanning electron microscope. Preferably, the particles have a number average particle diameter of 5 nm to 100 nm.
  • the material (III-2) By making the material (III-2) into a particle shape and forming a surface layer together with the material (III-1), the material (III-1) and the material (III-2) are dispersed on the surface of the surface layer. it can. Thereby, desired water-wetting characteristics (water droplet retention performance and water film formation performance) can be expressed more effectively. It is also advantageous in that a transparent surface layer can be obtained.
  • the material (III-2) can also be expected to act as a binder for fixing the photocatalyst.
  • the material (III-2) is in terms of its oxide in terms of the sum of the mass of the material (III-1) and the mass of the material (III-2) in terms of oxide. , More than 50 mass% and less than 99 mass%, preferably 56 mass% or more and 90 mass% or less.
  • the material (III-2) includes the mass of the material (III-1) and the oxide equivalent amount of the material (III-2).
  • the sum of the mass of the material (III-3) and the material (III-3) in terms of oxide, more than 50% by mass and less than 99% by mass.
  • the preferred lower limit is 56% by mass or more and the preferred upper limit is 90% by mass. % Or less, more preferably 80% by mass or less, and a more preferable range is 56% by mass or more and 90% by mass or less.
  • the material (III-2) is more than 50% by mass and less than 99% by mass, preferably 56% by mass or more and 90% by mass in terms of its oxide in the surface layer. It is preferable to mix
  • the material (III-2) includes the mass of the material (III-1) and the oxide equivalent amount of the material (III-2). With respect to the sum of the mass of the material (III-3) and the material (III-3), in terms of oxide, more than 50% by mass and less than 99% by mass.
  • the preferred lower limit is 56% by mass or more and the preferred upper limit is 90% by mass.
  • the mass of the surface layer is a value that is substantially equal to the amount (mass) of a film forming component described later.
  • the surface layer of the composite material according to the present invention may contain material (III-3) in addition to material (III-1) and material (III-2).
  • the material (III-3) is at least one selected from the group consisting of silica, alkali silicate, alumina, and amorphous titanium oxide.
  • This material (III-3) is a hydrophilic material and has little light to excite the photocatalyst (for example, when it is cloudy, when the sunshine time of the application site is short, or when it is applied as an interior material) Has a function of assisting hydrophilicity.
  • the material (III-3) is less hydrophilic than the material (III-1) and stronger than the material (III-2), the amount of the material (III-2) can be kept low. . Furthermore, the material (III-3) also has a function of fixing the photocatalytic material, which is the material (III-1), to the surface of the base material. This material (III-3) does not interfere with the desired water wetting characteristics (water droplet retention performance and water film formation performance), and improves adhesion, strength, durability, and weather resistance of the surface layer to the substrate. Contributes to improved characteristics.
  • sodium silicate, potassium silicate, or lithium silicate can be used alone or in combination as the alkali silicate.
  • the material (III-3) is added in an amount that is relatively determined with respect to the first and material (III-2). Therefore, the material (III-3) is 0% by mass or more with respect to the mass of the material (III-1), the oxide equivalent amount of the material (III-2), and the mass sum of the material (III-3). 49 mass% or less is mix
  • the surface layer of the composite material according to the third aspect of the present invention may optionally contain any component other than the components of the material (III-1), the material (III-2) and the material (III-3). Ingredients can be included. Examples of optional components include pigments, fillers, light stabilizers, dyes, etc., which are selected and combined according to their purpose to hinder desired water wetting characteristics (water droplet retention performance and water film formation performance). It can be blended to the extent that it is not.
  • the water droplet retention performance and water film formation performance of the composite according to the third aspect of the present invention may be evaluated by the same method as in the first aspect of the present invention.
  • the surface layer of the composite material according to the third aspect of the present invention preferably has the following surface characteristics.
  • the composite material according to the third aspect of the present invention preferably has an advancing contact angle of 30 ° or more, more preferably 35 ° or more, and further preferably 40 ° or more.
  • the receding contact angle is preferably 20 ° or less, more preferably 16 ° or less, still more preferably 13 ° or less, and most preferably 10 ° or less.
  • the difference between the advancing contact angle and the receding contact angle, that is, the hysteresis is preferably 20 ° or more and 80 ° or less, the more preferable lower limit value is 35 °, the still more preferable lower limit value is 40 °, and the more preferable upper limit value is 75 °, more preferably 70 °.
  • the surface layer of the composite material according to the third aspect of the present invention simultaneously satisfies the advancing contact angle, receding contact angle and hysteresis in the above-mentioned ranges. If it is this range, the water droplet retention property when a water droplet is formed and the water film formation property when a large amount of water droplets are applied will be more excellent.
  • the above-mentioned surface characteristics that is, the dynamic contact angle (advanced contact angle and receding contact angle), and the falling angle are measured by a commonly used or established measurement method, but are preferably measured by the following method. That is, the dynamic contact angle (advance contact angle and receding contact angle) with respect to water is measured using an automatic contact angle measuring device (for example, OCA20 manufactured by Eiko Seiki Co., Ltd.). More specifically, after dropping 50 ⁇ L of water droplets on the surface layer, the surface layer is made 1.6 deg.
  • the surface layer of the composite material according to the third aspect of the present invention preferably has a falling angle of 30 ⁇ L of water of 40 ° or more. It can be said that the larger the falling angle, the higher the water droplet retention.
  • the above-mentioned sliding angle is measured by a commonly used or established measurement method, but is preferably measured by the following method. That is, the falling angle is measured by the sliding method. More specifically, after dropping 30 ⁇ L of water droplets on the surface layer, the surface layer is made 1.6 deg. Observe water droplets from the camera while tilting at a speed of / s, and measure the tilt angle: tumbling angle at the moment when the water droplets slide down.
  • the surface layer of the composite material according to the present invention preferably has a static contact angle with water of 20 ° or more and less than 90 ° in an average value of 5 or more arbitrary measurement points. More preferably, the lower limit is 30 °, the lower limit is more preferably 35 °, the upper limit is more preferably 80 °, and the most preferable upper limit is 75 °. If it is this range, the water droplet retention property at the time of forming a water droplet will become more excellent.
  • the static contact angle with water is 5 seconds after 5 ⁇ L of water drops are dropped at room temperature using a contact angle measuring device (for example, Kyowa Interface Science Co., Ltd., product name: CA-X150 type). Is measured by the ⁇ / 2 method.
  • the surface layer of the composite material according to the third aspect of the present invention preferably has a film thickness of 300 nm or less. More preferably, the lower limit is 10 nm, and a more preferable lower limit is 15 nm.
  • the upper limit value is more preferably 200 nm, still more preferably 150 nm.
  • the surface layer of the composite material according to the present invention is an arbitrary measurement using the laser microscope having a wavelength of 405 nm and the arithmetic average roughness Ra measured in JIS B 0601-1982 with a 20-fold field of view.
  • the average value of 3 or more points is preferably more than 5 nm and 50 nm or less.
  • a preferred lower limit is 5 nm, and a more preferred lower limit is 10 nm.
  • a preferable upper limit is 50 nm, and a more preferable upper limit is 30 nm.
  • the substrate for forming a composite material according to the third aspect of the substrate present invention may be similar to the base material in the first embodiment.
  • Coating Composition for producing the composite material according to the third aspect of the present invention described above.
  • This coating composition according to the third aspect of the present invention basically comprises the above-mentioned materials (III-1) and (III-2), an optional material (III-3), and a solvent. Comprising.
  • the material (III-1) and the material (III-2) included in the coating composition according to the third aspect of the present invention are the same as the material (III-1) and the material (III-2) already described. It's okay.
  • the material (III-1) is at least selected from the group consisting of anatase-type titanium oxide, rutile-type titanium oxide, brookite-type titanium oxide, zinc oxide, tin oxide, crystalline tungsten oxide, and amorphous tungsten oxide. It is a kind of photocatalytic material. These photocatalytic materials are made of a photocatalyst that is excited by light having a wavelength of 350 to 500 nm. According to a preferred embodiment of the present invention, among these photocatalysts, anatase-type titanium oxide, rutile-type titanium oxide, and brookite-type titanium oxide can be suitably used.
  • the material (III-1) is preferably a particle.
  • a suitable particle diameter is a number average particle diameter of 10 nm or more and 100 nm or less, which is calculated by measuring the length of any 100 particles entering a 200,000-fold field of view with a scanning electron microscope.
  • the shape of the particles is best spherical, but may be an irregular shape such as an ellipse.
  • the length of the particle is approximately calculated as a value obtained by dividing the sum of the longest diameter and the shortest diameter of the particle shape observed with a scanning electron microscope by 2.
  • a metal such as Pt, Pd, Rh, Ru, Nb, Ag, Cu, Sn, Ni, Fe and / or an oxide thereof is added to the photocatalyst material as these photocatalyst particles.
  • a photocatalyst coated with immobilized particles or porous calcium phosphate can also be used.
  • the material (III-2) is an oxide containing at least one metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Y, In, and Hf, And at least one compound selected from the group consisting of inorganic salts, preferably at least one compound selected from the group consisting of oxides and inorganic salts containing Zr or Hf.
  • the metal-containing oxide is, for example, Cr 2 O 3 , MnO 2 , Fe 2 O 3 , CoO, NiO, CuO, Ga 2 O 3 , ZrO 2 , Y 2.
  • O 3 , In 2 O 3 , HfO 2 and the like can be mentioned.
  • inorganic salts include oxychloride, hydroxychloride, nitrate, sulfate, acetate, oxynitrate, carbonate, ammonium carbonate, sodium carbonate, potassium carbonate, phosphoric acid of the above metals. A sodium salt etc. are mentioned.
  • the material (III-2) is an amorphous oxide, oxide particles having an average crystallite diameter of less than 10 nm, or an inorganic salt.
  • the material (III-2) when the material (III-2) is a particle, it is calculated by measuring the length of any 100 particles that fall within a field of view of 200,000 times with a scanning electron microscope. Preferably, the particles have a number average particle diameter of 5 nm to 100 nm.
  • the material (III-2) By making the material (III-2) into a particle shape and forming a surface layer together with the material (III-1), the material (III-1) and the material (III-2) are dispersed on the surface of the surface layer. it can. Thereby, desired water-wetting characteristics (water droplet retention performance and water film formation performance) can be expressed more effectively. It is also advantageous in that a transparent surface layer can be obtained.
  • the material (III-2) can also be expected to act as a binder for fixing the photocatalyst.
  • the blending amounts of the material (III-1) and the material (III-2), and the optional material (III-3) in the coating composition according to the third aspect of the present invention are as described above. It is necessary to be able to realize the composition of the surface layer of the composite material according to the embodiment. Therefore, even in the coating composition according to the third aspect of the present invention, the material (III-2) is the sum of the mass of the material (III-1) and the equivalent amount of oxide of the material (III-2). With respect to the oxide, it is more than 50 mass% and less than 99 mass%, preferably 56 mass% or more and 90 mass% or less.
  • the material (III-2) includes the mass of the material (III-1), the oxide equivalent amount of the material (III-2), and the material (III -3) in terms of oxide, it is more than 50% by mass and less than 99% by mass.
  • a preferred lower limit is 56% by mass or more, and a preferred upper limit is 90% by mass or less. Is 80 mass% or less, and a more preferable range is 56 mass% or more and 90 mass% or less.
  • the material (III-2) is more than 50% by mass and less than 99% by mass, preferably 56% by mass or more and 90% by mass or less, in terms of oxide, with respect to the film-forming component. Blended.
  • the material (III-2) includes the mass of the material (III-1) and the oxide equivalent amount of the material (III-2). With respect to the sum of the mass of the material (III-3) and the material (III-3), in terms of oxide, more than 50% by mass and less than 99% by mass.
  • the preferred lower limit is 56% by mass or more and the preferred upper limit is 90% by mass.
  • the film-forming component is a component obtained by excluding a volatile component such as a solvent and a water-soluble additive such as a surfactant from the coating composition, and the amount of the film-forming component is an evaporation residue of the coating composition. This value is substantially equal to the value obtained by subtracting the amount of the water-soluble additive from the amount.
  • the coating composition according to the third aspect of the present invention contains the material (III-3) as an optional component, but a precursor that changes to the material (III-3) may be added in the production process.
  • the material (III-3) that can be included in the coating composition according to the third aspect of the present invention and the precursor that changes to it include silica, alkyl silicate, alkali silicate, alumina, amorphous titanium oxide, peroxide Examples thereof include at least one selected from the group consisting of titanium, aluminum hydroxide, and boehmite.
  • alkyl silicate is a precursor of silica
  • titanium peroxide is a precursor of amorphous titanium oxide
  • aluminum hydroxide and boehmite are precursors of alumina.
  • Examples of the alkyl silicate that can be blended in the coating composition according to the third aspect of the present invention include Si alkoxides, hydrolysates of Si alkoxides, Si chelate compounds, and the like.
  • Si alkoxides include compounds in which an alkoxyl group having about 1 to 4 carbon atoms is bonded to an Si atom, for example, Si tetramethoxide, Si tetraethoxide, Si tetra n-propoxide, Si tetraiso Examples thereof include propoxide, Si tetra n-butoxide, Si tetra t-butoxide and the like.
  • Examples of chelate compounds include ⁇ -ketone ester complexes, ⁇ -diketone complexes, ethanolamine complexes, dialkylene glycol complexes, and the like.
  • the solvent contained in the coating composition according to the third aspect of the present invention can disperse or dissolve the material (III-1), the material (III-1), and the material (III-3), and is a substance that is liquid at room temperature. It is. Examples thereof include water, ethylene glycol, butyl cellosolve, alcohols such as isopropanol, n-butanol, ethanol and methanol, aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane, cyclohexane and heptane, Esters such as ethyl acetate and n-butyl acetate, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethers such as tetrahydrofuran and dioxane, amides such as dimethylacetamide and dimethylformamide, chloroform, methylene chloride and carbon tetrachloride And
  • the coating composition according to the third aspect of the present invention preferably contains a leveling agent.
  • a leveling agent examples thereof include diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, 4-hydroxy-4-methyl- 2-pentanone, dipropylene glycol, tripropylene glycol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, propylene glycol monomethyl ether, 1-propoxy-2-propanol, dipropylene glycol monomethyl ether, dipropylene glycol Examples include collyl monoethyl ether, tripropylene glycol monoethyl ether, and acetylene alcohol.
  • the coating composition according to the third aspect of the present invention optionally contains a pigment, a curing catalyst, a crosslinking agent, a filler, a dispersion, in addition to the material (III-1), the material (III-2) and the material (III-3).
  • Additives, light stabilizers, wetting agents, thickeners, rheology control agents, antifoaming agents, film-forming aids, leveling agents, rust inhibitors, dyes, preservatives, etc. Can be combined.
  • various surfactants can be blended as additives in order to improve the wettability of the coating composition.
  • the coating composition according to the third aspect of the present invention comprises a material (III-1) and a material (III-2), and an optional material (III-3) and other optional components dissolved or dispersed in a solvent. Can be obtained.
  • Each material can be made into a coating composition by combining and blending various materials such as powders, solutions, dispersions such as sols, and the like.
  • the solid content concentration in the coating composition is preferably about 0.05% by mass to 20% by mass, and more preferably 0.05% by mass to 10% by mass.
  • the solid content concentration is substantially equal to the concentration of the above-mentioned film-forming component.
  • the coating composition is dried at 105 ° C. to 110 ° C., and the remaining evaporation amount and the amount of the water-soluble additive are obtained. Can be obtained by dividing the difference by the amount of the coating composition.
  • the composite material according to the third aspect of the present invention can be preferably manufactured using the above-described coating composition. Specifically, after applying the coating composition according to the third aspect to the substrate surface, (a) heating the substrate surface at 300 ° C. or lower, (b) drying at room temperature, or (c) It is preferably formed by any method of heating the surface of the substrate at a temperature exceeding 300 and less than 1000 ° C. for 2 to 60 seconds. Regardless of the manufacturing method, desired water wetting characteristics (water droplet retention performance and water film formation performance) can be fully expressed by heating at relatively low temperatures or heating conditions in a short time. A surface layer can be obtained.
  • Application to the substrate can be performed by brush, roller or spray coating, flow coating, dip coating, screen printing, gravure printing, and the like.
  • First aspect of the present invention It was prepared as follows as a raw material for the preparation ⁇ br/> coating composition of the coating composition.
  • Material (I-1) Silica (aqueous colloidal silica): average particle size 10 nm, solid content 30%
  • the solid content concentration indicates the concentration of the total solid content of the material (I-1) and the material (I-2) contained in the coating composition.
  • Example I1 An aqueous amorphous zirconia, an aqueous colloidal silica sol, and a silicon-based surfactant were mixed in water as a solvent to prepare a coating composition by adjusting the solid content concentration to 0.3% by mass.
  • the mass ratio of ZrO 2 and SiO 2 was 40:60.
  • Comparative Example I1 An aqueous amorphous zirconia, an aqueous colloidal silica sol, and a silicon-based surfactant were mixed in water as a solvent to prepare a coating composition by adjusting the solid content concentration to 0.3% by mass.
  • the mass ratio of ZrO 2 and SiO 2 was 80:20.
  • Comparative Example I2 An aqueous amorphous zirconia, an aqueous colloidal silica sol, and a silicon-based surfactant were mixed in water as a solvent to prepare a coating composition by adjusting the solid content concentration to 0.3% by mass.
  • the mass ratio of ZrO 2 and SiO 2 was 20:80.
  • a 100 mm ⁇ 200 mm float glass substrate was polished using an abrasive for glass substrate, and the abrasive was completely washed away with ion exchange water. Thereafter, the substrate was dried with a dryer at 40 ° C. for 30 minutes.
  • the coating compositions of Example 1 and Comparative Examples 1 and 2 above were roller coated onto a washed float glass substrate, and the temperature was 25 ° C. and the humidity was 50% R.D. H. Dried for 1 day. Then, the base material was immersed in ion-exchanged water for 2 hours to elute the surfactant, and dried with a dryer at 40 ° C. for 30 minutes to obtain a composite material.
  • the composite material was prepared such that the coating composition was applied to the substrate at 8-10 g / m 2 and the coating film thickness was 20-40 nm.
  • Evaluation I1 Water Film Formability Test The irradiation intensity was set to 1 mW / m 2 for the composite material in which the surface layer was formed with the coating compositions of Example I1 and Comparative Examples I1 and I2 obtained as described above. Light was irradiated for 3 days with a BLB lamp (manufactured by Sankyo Electric Co., Ltd., product name FL20SBL, peak wavelength 352 nm).
  • the member surface was tilted perpendicularly to the ground, and 15 g of ion-exchanged water was sprayed on the entire substrate of 100 mm ⁇ 200 mm with a pressure-accumulating spray (manufactured by Maruhachi Sangyo Co., Ltd.) 10 cm away from the member surface.
  • the evaluation index was as follows. The results were as shown in Table 1 below.
  • C A surface of the member repels water
  • Evaluation I2 Water Drop Sliding Test BLB in which the irradiation intensity was set to 1 mW / m 2 on the composite material in which the surface layer was formed with the coating compositions of Example I1 and Comparative Examples I1 and I2 obtained as described above Light was irradiated for 3 days with a lamp (manufactured by Sankyo Electric Co., Ltd., product name FL20SBL, peak wavelength 352 nm). As shown in FIG. 1, the member is tilted by 80 ° from the ground, and 15 ⁇ L of water droplets are attached to the surface of each member using a microsyringe at each of five locations. .
  • the evaluation index was as follows, and the total score was obtained. The results were as shown in Table 1 below.
  • Second aspect of the present invention It was prepared as follows as a raw material for the preparation ⁇ br/> coating composition of the coating composition.
  • Material (II-1) Photocatalytic titanium oxide (aqueous anatase type titanium oxide sol): average particle size 22 nm, solid content 0.3%
  • Material (II-2) ⁇ Zirconium oxide (aqueous amorphous zirconia sol): solid content 7.2%
  • the solid content concentration indicates the concentration of the total solid content of the material (II-1) and the material (II-2) and the material (II-3) contained in the coating composition. .
  • Example II1 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia, an aqueous colloidal silica sol, and a silicon-based surfactant are mixed with water as a solvent to obtain a coating composition by preparing a solid concentration of 0.3% by mass. It was. Wherein the weight ratio of TiO 2 and ZrO 2 and SiO 2 is from 0.5: 49: and 50.5.
  • Example II2 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia, an aqueous colloidal silica sol, and a silicon-based surfactant are mixed with water as a solvent to obtain a coating composition by preparing a solid concentration of 0.3% by mass. It was. Wherein the weight ratio of TiO 2 and ZrO 2 and SiO 2 is from 1: 49: was 50.
  • Example II3 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia, an aqueous colloidal silica sol, and a silicon-based surfactant are mixed with water as a solvent to obtain a coating composition by preparing a solid concentration of 0.3% by mass. It was. Wherein the weight ratio of TiO 2 and ZrO 2 and SiO 2 is from 5: 49: was 46.
  • Example II4 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia, an aqueous colloidal silica sol, and a silicon-based surfactant are mixed with water as a solvent to obtain a coating composition by preparing a solid concentration of 0.3% by mass. It was. Wherein the weight ratio of TiO 2 and ZrO 2 and SiO 2 is from 5: 60: was 35.
  • Example II5 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia, an aqueous colloidal silica sol, and a silicon-based surfactant are mixed with water as a solvent to obtain a coating composition by preparing a solid concentration of 0.3% by mass. It was. Wherein the weight ratio of TiO 2 and ZrO 2 and SiO 2 is from 10: 60: I was 30.
  • Example II6 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia, an aqueous colloidal silica sol, and a silicon-based surfactant are mixed with water as a solvent to obtain a coating composition by preparing a solid concentration of 0.3% by mass. It was. Wherein the weight ratio of TiO 2 and ZrO 2 and SiO 2 is 15: 60: was 25.
  • Comparative Example II1 An aqueous amorphous zirconia, an aqueous colloidal silica sol, and a silicon-based surfactant were mixed in water as a solvent to prepare a coating composition by adjusting the solid content concentration to 0.3% by mass.
  • the mass ratio of ZrO 2 and SiO 2 was 80:20.
  • a 100 mm ⁇ 200 mm float glass substrate was polished using an abrasive for glass substrate, and the abrasive was completely washed away with ion exchange water. Thereafter, the substrate was dried with a dryer at 40 ° C. for 30 minutes.
  • the coating compositions of Examples II1 to II14 and Comparative Examples II1 to II5 described above were roller coated onto a washed float glass substrate, and the temperature was 25 ° C. and the humidity was 50% R.D. H. Dried for 1 day. Then, the base material was immersed in ion-exchanged water for 2 hours to elute the surfactant, and dried with a dryer at 40 ° C. for 30 minutes to obtain a composite material.
  • the composite material was prepared such that the coating composition was applied to the substrate at 8-10 g / m 2 and the coating film thickness was 20-40 nm.
  • Evaluation II1 Water Film Formability Test The irradiation intensity was set to 1 mW / m 2 for the composite material in which the surface layer was formed with the coating compositions of Examples II1 to II6 and Comparative Example II1 obtained as described above. Light was irradiated for 3 days with a BLB lamp (manufactured by Sankyo Electric Co., Ltd., product name FL20SBL, peak wavelength 352 nm).
  • the member surface was tilted perpendicularly to the ground, and 15 g of ion-exchanged water was sprayed on the entire substrate of 100 mm ⁇ 200 mm with a pressure-accumulating spray (manufactured by Maruhachi Sangyo Co., Ltd.) 10 cm away from the member surface.
  • the evaluation index was as follows. The results were as shown in Table 2 below.
  • C A surface of the member repels water
  • Evaluation II2 Water Drop Sliding Test BLB in which irradiation intensity was set to 1 mW / m 2 on the composite material in which the surface layer was formed with the coating compositions of Examples II1 to II6 and Comparative Example II1 obtained as described above Light was irradiated for 3 days with a lamp (manufactured by Sankyo Electric Co., Ltd., product name FL20SBL, peak wavelength 352 nm). As shown in FIG. 1, the member is tilted by 80 ° from the ground, and 15 ⁇ L of water droplets are attached to the surface of each member using a microsyringe at each of five locations. .
  • the evaluation index was as follows, and the total score was obtained. The results were as shown in Table 2 below.
  • Evaluation II3 Measurement of static contact angle with respect to water
  • the composite material in which the surface layer was formed with the coating compositions of Examples II1 to II6 and Comparative Example II1 obtained as described above had an irradiation intensity of 1 mW / m 2.
  • a BLB lamp manufactured by Sankyo Electric Co., Ltd., product name FL20SBL, peak wavelength 352 nm.
  • a static contact angle with respect to water was measured using a contact angle measuring device (product name: CA-X150 type, manufactured by Kyowa Interface Science Co., Ltd.) at room temperature with 5 ⁇ L of water droplets. After dropping, the static contact angle after 5 seconds was measured by the ⁇ / 2 method.
  • the results were as shown in Table 2 below.
  • the solid content concentration means the total solid content of the material (III-1) and the material (III-2), and when the material (III-3) is further included, the material (III- 1) The concentration in the coating composition of the total solids of material (III-2) and material (III-3) is shown.
  • Example III1 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia sol, and a silicon-based surfactant were mixed with water as a solvent to prepare a coating composition by preparing a solid concentration of 0.3% by mass.
  • the mass ratio of TiO 2 and ZrO 2 is 44: 56 and the.
  • Example III2 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia sol, and a silicon-based surfactant were mixed with water as a solvent to prepare a coating composition by preparing a solid concentration of 0.3% by mass.
  • the mass ratio of TiO 2 and ZrO 2 was 40:60.
  • Example III3 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia sol, and a silicon-based surfactant were mixed with water as a solvent to prepare a coating composition by preparing a solid concentration of 0.3% by mass.
  • the mass ratio of TiO 2 and ZrO 2 is 30: was 70.
  • Example III4 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia sol, and a silicon-based surfactant were mixed with water as a solvent to prepare a coating composition by preparing a solid concentration of 0.3% by mass.
  • the mass ratio of TiO 2 and ZrO 2 was 10:90.
  • Example III5 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia, an aqueous colloidal silica sol, and a silicon-based surfactant are mixed with water as a solvent to obtain a coating composition by preparing a solid concentration of 0.3% by mass. It was. Here, the mass ratio of TiO 2 and ZrO 2 Noto SiO 2 is from 5: 60: was 35.
  • Example III6 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia, an aqueous colloidal silica sol, and a silicon-based surfactant are mixed with water as a solvent to obtain a coating composition by preparing a solid concentration of 0.3% by mass. It was. Here, the mass ratio of TiO 2 and ZrO 2 Noto SiO 2 15: 60: was 25.
  • Example III7 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia, an aqueous colloidal silica sol, and a silicon-based surfactant are mixed with water as a solvent to obtain a coating composition by preparing a solid concentration of 0.3% by mass. It was. Here, the mass ratio of TiO 2 and ZrO 2 Noto SiO 2 is 30: 60: was 10.
  • Example III8 An aqueous anatase-type titanium oxide sol, an aqueous tetragonal zirconia sol, an aqueous colloidal silica sol, and a silicon-based surfactant are mixed with water as a solvent to prepare a coating composition with a solid content concentration of 0.3% by mass. I got a thing. Here, the mass ratio of TiO 2 and ZrO 2 Noto SiO 2 is 20: 60: was 20.
  • Example III9 An aqueous anatase-type titanium oxide sol, an aqueous zirconium carbonate carbonate solution, an aqueous colloidal silica sol, and a silicon-based surfactant are mixed with water as a solvent to prepare a coating composition with a solid content concentration of 0.3% by mass. Obtained.
  • the mass ratio of TiO 2 , ammonium zirconium carbonate (ZrO 2 conversion value) and SiO 2 was 20:60:20.
  • Example III10 Aqueous anatase-type titanium oxide sol, aqueous amorphous zirconia sol, neutral / highly dispersed alumina sol, and silicon-based surfactant are mixed with water as a solvent to prepare a solid content concentration of 0.3% by mass for coating A composition was obtained.
  • the mass ratio of TiO 2 and ZrO 2 and Al 2 O 3 is 20: 60: was 20.
  • Example III11 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia sol, an aqueous colloidal silica sol, a peroxooxotitanic acid solution, and a silicon-based surfactant are mixed in water as a solvent so that the solid content concentration becomes 0.3% by mass.
  • a coating composition was obtained by preparation.
  • the mass ratio of anatase type TiO 2 , ZrO 2 , SiO 2 and peroxooxotitanic acid was 20: 60: 10: 10.
  • Example III12 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia sol, an aqueous colloidal silica sol, a peroxooxotitanic acid solution, and a silicon-based surfactant are mixed in water as a solvent so that the solid content concentration becomes 0.3% by mass.
  • a coating composition was obtained by preparation.
  • the mass ratio of anatase TiO 2 , ZrO 2 , SiO 2 and peroxotitanic acid (TiO 2 equivalent value) was 20: 60: 5: 15.
  • Example III13 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia sol, an aqueous colloidal silica sol, peroxotitanic acid (amorphous titanic acid solution), and a silicon-based surfactant are mixed with water as a solvent to obtain a solid content concentration of 0.3.
  • a coating composition was obtained by adjusting to a mass%.
  • the mass ratio of anatase TiO 2 , ZrO 2 , SiO 2 and peroxotitanic acid was 20: 60: 15: 5.
  • Example III14 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia sol, peroxooxotitanic acid (amorphous titanic acid solution), and a silicon-based surfactant are mixed with water as a solvent to obtain a solid content concentration of 0.3% by mass. Thus, a coating composition was obtained.
  • the mass ratio of anatase type TiO 2 , ZrO 2 and peroxotitanic acid was 20:60:20.
  • Comparative Example III1 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia sol, and a silicon-based surfactant were mixed with water as a solvent to prepare a coating composition by preparing a solid concentration of 0.3% by mass.
  • the mass ratio of TiO 2 and ZrO 2 was 50:50.
  • Comparative Example III2 An aqueous anatase-type titanium oxide sol, an aqueous amorphous zirconia sol, and a silicon-based surfactant were mixed with water as a solvent to prepare a coating composition by preparing a solid concentration of 0.3% by mass.
  • the mass ratio of TiO 2 and ZrO 2 was 1:99.
  • Comparative Example III3 An aqueous amorphous zirconia sol and a silicon-based surfactant were mixed with water as a solvent to prepare a coating composition by preparing a solid concentration of 0.3% by mass.
  • Comparative Example III4 An aqueous amorphous zirconia, an aqueous colloidal silica sol, and a silicon-based surfactant were mixed in water as a solvent to prepare a coating composition by adjusting the solid content concentration to 0.3% by mass.
  • the mass ratio of ZrO 2 and SiO 2 was 60:40.
  • Comparative Example III5 Aqueous anatase-type titanium oxide sol, hydrophobic carbon black aqueous dispersion, aqueous colloidal silica sol, and silicon-based surfactant are mixed with water as a solvent to prepare a solid content concentration of 0.3% by mass for coating A composition was obtained.
  • the mass ratio of TiO 2 , carbon black, and SiO 2 was 20:60:20.
  • a 100 mm ⁇ 200 mm float glass substrate was polished using an abrasive for glass substrate, and the abrasive was completely washed away with ion exchange water. Thereafter, the substrate was dried with a dryer at 40 ° C. for 30 minutes.
  • the coating compositions of Examples III1-III14 and Comparative Examples III1-III5 above were roller coated onto a cleaned float glass substrate, temperature 25 ° C., humidity 50% R.D. H. Dried for 1 day. Then, the base material was immersed in ion-exchanged water for 2 hours to elute the surfactant, and dried with a dryer at 40 ° C. for 30 minutes to obtain a composite material.
  • the composite material was prepared such that the coating composition was applied to the substrate at 8-10 g / m 2 and the coating film thickness was 20-40 nm.
  • Evaluation III1 Water Film Forming Test A composite material having a surface layer formed of the coating compositions of Examples III1 to III14 and Comparative Examples III1 to III5 obtained as described above has an irradiation intensity of 1 mW / m 2 . Light was irradiated for 3 days with the set BLB lamp (manufactured by Sankyo Electric Co., Ltd., product name FL20SBL, peak wavelength 352 nm).
  • the member surface was tilted perpendicularly to the ground, and 15 g of ion-exchanged water was sprayed on the entire substrate of 100 mm ⁇ 200 mm with a pressure-accumulating spray (manufactured by Maruhachi Sangyo Co., Ltd.) 10 cm away from the member surface.
  • the evaluation index was as follows. The results were as shown in Table 3 below.
  • C A surface of the member repels water
  • Evaluation III2 Water Drop Sliding Test The irradiation intensity was set to 1 mW / m 2 for the composite material in which the surface layer was formed with the coating compositions of Examples III1 to III14 and Comparative Examples III1 to III5 obtained as described above.
  • the member is tilted by 80 ° from the ground, and 15 ⁇ L of water droplets are attached to the surface of each member using a microsyringe at each of five locations. .
  • the evaluation index was as follows, and the total score was obtained. The results were as shown in Table 3 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Catalysts (AREA)

Abstract

 多量の水(雨水)と接触した場合には十分なセルフクリーニング性能を発揮し、一方、水(雨水)が少量の場合にも、表面に堆積した砂塵などからなる線状の汚れが生じない複合材が開示されている。本発明の複合材は、基材と、前記基材の表面に形成された表面層とを備えてなる複合材であって、前記表面層が、Si、Al、Ti、SnおよびWからなる群から選択される少なくとも一種の金属と、酸素とを含有する化合物(A)と、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物(B)とを含んでなり、前記化合物(B)が、前記化合物(A)の質量と前記化合物(B)の酸化物換算質量との質量和に対して、その酸化物換算で30質量%以上99質量%未満配合されてなることを特徴とする。

Description

複合材およびコーティング組成物
 本発明は、改善されたセルフクリーニング性能を有する複合材およびそれを製造するためのコーティング組成物に関する。
 親水性の表面は水に馴染みやすい性質を有する。そのため、表面に砂塵等の汚れが付着していても、水がかかった時に汚れと表面との間に水が入り込み、汚れが水とともに洗い流されて、表面が清浄化される。このような性質はセルフクリーニングとして知られている。そして、セルフクリーニングの性質を表面に付与した外壁材や内壁材等の建材が種々提案されている。
 このようなセルフクリーニングの性質を有する部材の汚れに関して、次のような指摘がなされていた。すなわち、多量の水(雨水)が部材の表面にもたらされるときには、その表面の汚れがセルフクリーニング作用によって十分に除去されるが、水(雨水)が少量であると、表面に堆積した砂塵などの汚れが十分に洗い流されず、水滴が流下した後に乾燥する結果、線状の跡が残り、それが外観不良となることが指摘されていた。
 WO03/028996(特許文献1)は、これに類する外観不良を指摘し、またその解決を目的としている。そして、WO03/028996公報(特許文献1)には、光触媒と有機ジルコニウムとシリコーン樹脂材料からなる親水性の被膜が開示されている。開示されている被膜に含まれるジルコニアの添加量は10質量部以下であり、水との接触角の維持効果を高めるとされている。この公報によれば、被膜形成された部材表面は防汚性を有し、さらに水量が少ない場合には、雨水の流れに沿って汚れが線状に現れることを防止できるとされている。
 ところで、光触媒とジルコニアとを含有する被膜が、例えば、特開2009-213954号公報(特許文献2)や特開2009-270040号公報(特許文献3)に開示されている。
 特開2009-213954号公報(特許文献2)には、酸化ジルコニウムまたは酸化ハフニウムと酸化チタンからなる薄膜が開示されており、膜中に含まれるジルコニア量は、Zr:Tiが100:1と、1:1の二例を実施例に記載されている。この公報によれば、この薄膜は撥水性のため、水が付着した時には水滴が形成される。さらにこの公報によれば、この薄膜は水滴が容易に滑落して除去される性質を備えていることが記載されている。
 特開2009-270040号公報(特許文献3)には、光触媒体コーティング液に、基材との密着性を向上させるためにバインダーとしてジルコニアを用いることが開示されている。この公報に記載の実施例において、TiO:ZrOが最大の例は、50:50であり、コーティング液としての諸性能と、コーティング液を塗布して得られた膜の光触媒分解性能を評価するのみである。
 また、WO2000/53689公報(特許文献4)には、シリカ、アルミナ、およびジルコニアを含んでなる、防曇性および防汚性を有する親水性被膜が開示されている。この公報に記載の実施例において、シリカおよびアルミナに対するジルコニア量の最大値は実施例A2に記載の[SiO]:[Al]:[ZrO]=0.75(43wt%):0.5(29wt%):0.5(29wt%)である。
 特許文献1に記載された表面は水との接触角が5~30°であって、親水性が高いため、セルフクリーニング性は得られるものの、水滴が流下するのを防ぐ効果は弱く、実用上、線状の跡を防止するには不十分である。また、特許文献2に記載された表面は撥水性のため、セルフクリーニング性は期待できない。さらに、水滴の滑落が起こりやすいため、やはり、水滴が流下して生じる線状の跡が発生してしまう。特許文献3に記載された被膜は特許文献2に記載された被膜と構成が類似しており、同様の問題を抱えているものと考えられる。特許文献4に記載された被膜は表面が高度の親水性を呈する。すなわち、セルフクリーニングの性質を有する部材について、このような線上の跡を生じさせない部材が依然として求められている。
WO03/028996 特開2009-213954号公報 特開2009-270040号公報 WO2000/53689
 本発明者らは、今般、多量の水(雨水)と接触した場合には十分なセルフクリーニング性能を発揮し、一方、水(雨水)が少量の場合にも、表面に堆積した砂塵などからなる線状の汚れを生じさせない部材を、特定成分を有する表面層を基材上に設けることによって実現できることを見出した。詳細には、本発明者らは、多量の水(雨水)と接触した場合には水が部材表面に十分に広がり、同時に汚れを洗い流し、一方、水(雨水)が少量の場合には、水滴を滑落させることなく部材表面に留めることで、水滴が滑落する際に表面に堆積した砂塵などを引きずることにより生じると思われる線状の汚れを生じさせない部材が実現できるとの知見を得た。本発明はかかる知見に基づくものである。
 従って、本発明は、多量の水(雨水)と接触した場合には十分なセルフクリーニング性能を発揮し、一方、水(雨水)が少量の場合にも、表面に堆積した砂塵などからなる線状の汚れを生じさせない複合材の提供をその目的としている。
 そして、本発明による複合材は、基材と、前記基材の表面に形成された表面層とを備えてなる複合材であって、
 前記表面層が、
 Si、Al、Ti、SnおよびWからなる群から選択される少なくとも一種の金属と、酸素とを含有する化合物(A)と、
 Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物(B)と
を含んでなり、
 前記化合物(B)が、前記化合物(A)の質量と前記化合物(B)の酸化物換算質量との質量和に対して、その酸化物換算で30質量%以上99質量%未満配合されてなることを特徴とするものである。
本発明による複合材の水滴保持性能を試験するための部材の設置条件を示した図である。
定義
 本明細書において、部材にかかる水(雨水)が少量であるときに、表面に堆積した砂塵などの汚れが十分に洗い流されず、線状の跡が残り、外観不良の原因となる汚れを、「線状の汚れ」と称することがある。
複合材
 本発明による複合材は、基本的に、基材と、この基材の表面に形成された表面層とを備えてなる。そしてこの複合材は、多量の水(雨水)と接触した場合には十分なセルフクリーニング性能を発揮し、一方、水(雨水)が少量の場合にも、線状の汚れが生じない。線状の汚れは、部材の表面に付着した水滴が滑落する際に、表面に堆積した砂塵などをその水滴が引きずり、その後に表面に残った砂塵を十分に洗い流すほどの水(雨水)が供給されないことにより生じるものと考えられる。そして、本発明にあって、後記する組成の表面層の表面では、水が付着すると直ちに表面において広がらずに、水滴の形態で、かつ重力等の外力に抗して滑落せずに表面に留まる(以下、本明細書においてこれを「水滴保持性能」ということがある)。しかし、水がさらに供給されて複数の水滴が会合したときには、水滴の形態はくずれ、表面層の表面に水は濡れ広がり、かつ重力等の外力により下方に流れ落ちる。その際に、水が汚れを表面から洗い流し、表面が清浄となる(以下、本明細書においてこれを「水膜形成性能」ということがある)。
 そして、本発明による複合材は、基材に設けらた前記表面層が、
 Si、Al、Ti、SnおよびWからなる群から選択される少なくとも一種の金属と、酸素とを含有する化合物(A)と、
 Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物(B)とを含んでなり、
 前記化合物(B)が、前記化合物(A)の質量と前記化合物(B)の酸化物換算質量との質量和に対して、その酸化物換算で30質量%以上99質量%未満配合されてなることを特徴とするものである。
 本発明によれば、以下に説明する三つの好ましい態様の複合材が提供される。
本発明の第一の態様
表面層
 本発明の第一の態様において、複合材の表面層は、前記の化合物(A)としての材料(I-1)と、前記の化合物(B)としての材料(I-2)を含んでなる。
材料(I-1)
 本発明の第一の態様において、材料(I-1)は、シリカ、アルカリシリケート、アルミナ、および無定形酸化チタンからなる群から選択される少なくとも一種の化合物である。本発明の第一の態様において、アルカリシリケートとして、珪酸ナトリウム、珪酸カリウム、珪酸リチウムを単独か、または複数組み合わせて使用することができる。
 本発明の第一の態様において、材料(I-1)は親水性の化合物である。本発明の第一の態様において、後記する材料(I-2)は、この材料(I-1)よりも親水性が弱い金属化合物である。本発明により、線状の汚れが防止される理由は定かではないが、以下のように考えられる。本発明による部材の表面において、材料(I-1)が存在する部分には親水領域が形成される。本発明による部材の表面において、材料(I-2)が存在する部分には、材料(I-1)よりも水との親和性の弱い領域が形成される。本発明の第一の態様において規定される材料(I-1)と、材料(I-2)との存在比から実現される、材料(I-1)による親水性と、材料(I-2)による水との弱い親水性の両性質が、水滴保持性能と水膜形成性能とを、線状の汚れが有効に防止できるように発現させる。すなわち、当該表面において、親水性の部分による水を引き寄せて水膜を形成しようとする力と、水との親和性の弱い部分による水玉を形成し止まらせようとする力とがバランスして、雨滴程度の少量の水が付着したとき、水滴の三重線(気・液・固の界面、すなわち水滴の表面に接触している部分の輪郭)の移動が抑えられ、水滴として、重力等の外力に抗して表面に留める。その結果、線状の汚れが防止される。その後、多量の水が供給されると、水滴同士が会合して、水は表面に広がり水膜を形成し、いわゆるセルフクリーニング性能が発揮され、表面が清浄になると考えられる。しかし、以上の説明はあくまで仮説であって、本発明はこの説に限定されるものではない。
 本発明の第一の態様において、材料(I-1)は粒子であることが好ましい。好適な粒子径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、10nm以上100nm以下の個数平均粒径である。粒子の形状は球状が最も良いが、楕円形等の異形状であっても良い。その場合の粒子の長さは、走査型電子顕微鏡で観察される粒子形状の最長径と最短径の和を2で除した値として略算出される。材料(I-1)を粒子形状として、材料(I-2)ともに表面層を形成することで、材料(I-1)と材料(I-2)とが表面層の表面に分散して存在できる。これにより、所望の水濡れ特性(水滴保持性能と水膜形成性能)をより効果的に発現することができる。また、透明な表面層を得ることができる点でも有利である。
 本発明の第一の態様において、材料(I-1)は、後記する材料(I-2)と相対的に定まる量添加される。
材料(I-2)
 本発明の第一の態様において、材料(I-2)は、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物であり、好ましくは、ZrまたはHfを含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物である。
 材料(I-2)は、材料(I-1)よりも水との弱い親和性を示す金属化合物である。上述のとおり、本発明による複合材の表面層は材料(I-2)が材料(I-1)とともに配合されてなることにより、線状の汚れを有効に防止し、かつセルフクリーニング性能を発揮する水濡れ特性(水滴保持性能と水膜形成性能)を与える。
 本発明の第一の態様において、上記の金属を含有する酸化物とは、例えばCr、MnO、Fe、CoO、NiO、CuO、Ga、ZrO、Y、In、HfOなどが挙げられる。また、無機塩の例としては、上記の金属の、オキシ塩化物、ヒドロキシ塩化物、硝酸塩、硫酸塩、酢酸塩、オキシ硝酸塩、炭酸塩、炭酸アンモニウム塩、炭酸ナトリウム塩、炭酸カリウム塩、リン酸ナトリウム塩などが挙げられる。また、有機塩の例としては、上記金属の、シュウ酸塩、プロピオン酸塩、金属アルコキシド類、金属アルコキシド類の加水分解物、キレート化合物などが挙げられる。金属アルコキシド類としては、炭素数1~8程度のアルコキシル基が金属原子に結合した化合物、例えば、金属原子がZrの場合、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラn-プロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラn-ブトキシド、ジルコニウムテトラt-ブトキシド等が挙げられる。また、キレート化合物としては、例えば、β-ケトンエステル錯体、β-ジケトン錯体、エタノールアミン類錯体、ジアルキレングリコール錯体等を用いることができる。
 本発明の好ましい態様によれば、材料(I-2)は、非晶質の酸化物若しくは平均結晶子径10nm未満の酸化物粒子、または無機塩とされる。これらの化合物を適用して得られた表面層は水滴保持性能および水膜形成性に優れる。ここで、平均結晶子径はXRDの最強線ピークの積分幅からシェラー式で算出される。
 本発明の第一の態様において、材料(I-2)が粒子である場合は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、5nm以上100nm以下の個数平均粒径を有する粒子であることが好ましい。材料(I-2)を粒子形状とし、材料(I-1)ともに表面層を形成することで、材料(I-1)と材料(I-2)とが表面層の表面に分散して存在できる。これにより、所望の水濡れ特性(水滴保持性能と水膜形成性能)をより効果的に発現することができる。また、透明な表面層を得ることができる点でも有利である。また、材料(I-2)は、材料(I-1)を固定するバインダーとしての作用も期待できる。
 本発明の第一の態様において、材料(I-2)は、材料(I-1)の質量と材料(I-2)の酸化物換算量との質量和に対して、その酸化物換算で、30質量%以上70質量%以下、好ましくは30質量%以上50質量%以下、配合される。
 また、本発明の別の好ましい態様によれば、材料(I-2)は、表面層において、その酸化物換算で、30質量%以上70質量%以下、好ましくは30質量%以上50質量%以下配合されることが好ましい。なお、表面層の質量は、後述する被膜形成成分量(質量)と実質的に等しい値である。
その他の任意成分
 本発明の第一の態様による複合材の表面層は、必要に応じて、上記材料(I-1)および材料(I-2)の成分以外の任意成分を含むことができる。任意成分の例としては、顔料、充填剤、光安定剤、染料等が挙げられ、それぞれの目的に応じて選択、組み合わせて、所望の水濡れ特性(水滴保持性能と水膜形成性能)を妨げない程度に配合することができる。
 なお、本発明の第一の態様による複合材の表面層には、光触媒材料を実質的に存在させないことが好ましい。実質的に存在させないとは、本発明による複合材の表面層における親水性が光触媒の作用によってもたらされたものではないことを意味し、従って、親水性が発現する程度の量の光触媒を配合しない意味である。
表面層の物性
 本発明の第一の態様による複合材が有する水滴保持性能と水膜形成性能とは、線状の汚れを防止しながら、セルフクリーニング性能を発揮するものであるが、これら性能を具体的に評価する方法として、以下の二つの方法がある。
 まず、水滴保持性能の評価方法として、以下の方法が挙げられる。その方法は、複合材の表面層を80°傾斜させ、その表面の5箇所にそれぞれ15μLの水滴を付着させたときの、水滴の移動距離を測定し、以下の基準により移動距離に応じた点数を付与する。
0点:水滴の滑落が2cm未満
1点:2cm以上水滴が滑落した
2点:4cm以上水滴が滑落した
3点:6cm以上水滴が滑落した
4点:8cm以上水滴が滑落した
5点:10cm以上水滴が滑落した
本発明による複合材は、好ましくは、5箇所におけるポイントの合計点が20点以下を示し、より好ましくは5点以下であり、より好ましくは0点である。
 また、その水膜形成性能の評価方法として、以下の方法が挙げられる。その方法は、複合材の表面層を垂直の状態に保持し、表面から10cm離れた所から、100mm×200mmの表面に15gのイオン交換水を噴霧する。本発明による複合材は、全面に水膜が形成されるが、表面の一部が水をはじきながらも、他の表面に水膜が形成される状態も本発明においては許容される。
 本発明の一つの態様によれば、本発明の第一の態様による複合材の表面層は、次のような表面特性を備えることが好ましい。
 本発明による複合材は、前進接触角が30°以上であることが好ましく、より好ましくは35°以上、さらに好ましくは40°以上である。
 また、後退接触角が、20°以下であることが好ましく、より好ましくは16°以下、さらに好ましくは13°以下、最も好ましくは10°以下である。
 さらに、前進接触角と後退接触角の差分、すなわちヒステリシスは20°以上80°以下であることが好ましく、より好ましい下限値は35°、さらに好ましい下限値は40°であり、より好ましい上限値は75°、さらに好ましい上限値は70°である。
 本発明による複合材の表面層は、上述の範囲の前進接触角、後退接触角、およびヒステリシスを同時に満たすことが最も好ましい。この範囲であれば、水滴が形成された際の水滴保持性と、水滴が多量にかかった際の水膜形成性とがより優れたものになる。
 上記の表面特性、すなわち動的接触角(前進接触角および後退接触角)、転落角は、慣用されている、または確立した測定方法により測定されるが、好ましくは以下の方法により測定される。すなわち、自動接触角測定装置(例:英弘精機社製、OCA20)を用い、水に対する動的接触角(前進接触角および後退接触角)を測定する。より具体的には、表面層上に50μLの水滴を滴下した後、前記表面層を1.6 deg./sの速度で傾けながら、前記接触角測定装置に付属しているカメラから水滴を観察し、水滴が滑落する瞬間における、水滴の滑落する側の接触角(前進接触角)、水滴の滑落する側とは反対側の接触角(後退接触角)を、それぞれ測定する。
 また、本発明の第一の態様による複合材の表面層は、30μLの水の転落角が40°以上であるのが好ましい。転落角が大きいほど、水滴保持性が高いといえる。
 上記の転落角は、慣用されている、または確立した測定方法により測定されるが、好ましくは以下の方法により測定される。すなわち、転落角は滑落法により測定する。より具体的には、表面層上に30μLの水滴を滴下した後、前記表面層を1.6 deg./sの速度で傾けながら、カメラから水滴を観察し、水滴が滑落する瞬間における、傾斜角:転落角を測定する。
 本発明の好ましい態様によれば、本発明の第一の態様による複合材の表面層は、好ましくは、水との静的接触角が、任意の測定点5点以上の平均値で20°以上90°未満であることが好ましく、より好ましい下限値は30°さらに好ましい下限値は35°であり、より好ましい上限値は80°であり、最も好ましい上限値は75°である。この範囲であれば、水滴が形成された際の水滴保持性がより優れたものになる。水との静的接触角は、接触角測定装置(例えば、協和界面科学社製、製品名 CA-X150型)を用いて、室温で5μLの水滴を滴下後、5秒後の静的接触角をθ/2法により測定する。
 本発明の第一の態様による複合材の表面層は、膜厚が300nm以下であることが好ましい。より好ましくは、下限値が10nmであり、さらに好ましい下限値は15nmである。上限値は、より好ましくは200nmであり、さらに好ましくは150nmである。当該範囲とすることで、第一の成分と第二の成分が、より均質に表面層に存在するようになるため、所望の水濡れ特性(水滴保持性能と水膜形成性能)を確実に得る事が可能となる。また、当該範囲とすることで透明な表面層が得られ易い点でも有利である。
 本発明の好ましい態様によれば、本発明による複合材の表面層は、波長405nmのレーザー顕微鏡を用い、JIS B 0601-1982により20倍視野で測定された算術平均粗さRaが、任意の測定点3点以上の平均値で5nmを超え50nm以下であることが好ましい。好ましい下限値は5nm、より好ましい下限値は10nmである。また、好ましい上限値は50nm、より好ましい上限値は30nmである。本発明の第一の態様において、表面粗さが当該範囲であれば、微細な凹凸に水が引っかかり水の移動が妨げられ、表面に接した水が濡れ広がらず、かつ、水が収縮しないという作用が強まる。
基材
 本発明の第一の態様による複合材を形成する基材は、セルフクリーニングの性能が求められ、また線状の汚れの防止が望まれる材料である。基材は平面または曲面を有する材料であることができ、その材質は、例えば、金属、セラミック、ガラス、プラスチック、ゴム、石、セメント、コンクリート、繊維、布帛、木、紙、それらの組合せ、それらの積層体、それらの表面に塗装を施したものであってよい。具体的には、建物の外装材または内装材といった建材が好ましい例として挙げられる。特に、立面に利用する建材が対象として好ましい。本発明による複合材を外装材として用いた場合、雨が当たる環境下で使用される。本発明によれば、線状の汚れが防止されるので、庇の下や軒の下など、雨が十分に当たり難い部位に好ましく利用できる。内装材としては、結露水が表面で凝縮するような部位に適用できる。
 本発明が適用される、立面に利用する建材としては、壁材および窓材が挙げられ、具体的には、外壁、遮音壁等の壁材、窓ガラス等の窓材が好ましい。特に、透明遮音壁、窓ガラスは、基材が透明であり、線状の汚れ等の砂塵汚れが目立つため、本発明を好ましく適用できる基材である。
 本発明の好ましい態様によれば、基材の表面は、算術平均粗さRaが100nm以下であることが好ましい。このような比較的平滑な表面であれば、表面層の表面粗さを前述の範囲とすることが容易になるからである。
コーティング組成物
 本発明によれば、上述の本発明の第一の態様による複合材を製造するためのコーティング組成物が提供される。この本発明の第一の態様によるコーティング組成物は、基本的に、上述の材料(I-1)および材料(I-2)と、そして溶媒とを含んでなる。
 本発明の第一の態様によるコーティング組成物が含む材料(I-1)と、材料(I-2)とは、既に説明した材料(I-1)および材料(I-2)と同一であってよい。
 従って、材料(I-1)は、シリカ、アルカリシリケート、アルミナ、および無定形酸化チタンからなる群から選択される少なくとも一種の化合物である。本発明において、アルカリシリケートとして、珪酸ナトリウム、珪酸カリウム、珪酸リチウムを単独か、または複数組み合わせて使用することができる。
 また、材料(I-1)は粒子であることが好ましい。好適な粒子径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、10nm以上100nm以下の個数平均粒径である。粒子の形状は球状が最も良いが、楕円形等の異形状であっても良い。その場合の粒子の長さは、走査型電子顕微鏡で観察される粒子形状の最長径と最短径の和を2で除した値として略算出される。材料(I-1)を粒子形状として、材料(I-2)ともに表面層を形成することで、材料(I-1)と材料(I-2)とが表面層の表面に分散して存在できる。これにより、所望の水濡れ特性(水滴保持性能と水膜形成性能)をより効果的に発現することができる。また、透明な表面層を得ることができる点でも有利である。
 また、材料(I-2)は、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物であり、好ましくは、ZrまたはHfを含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物である。
 本発明の第一の態様において、上記の金属を含有する酸化物とは、例えばCr、MnO、Fe、CoO、NiO、CuO、Ga、ZrO、Y、In、HfOなどが挙げられる。また、無機塩の例としては、上記の金属の、オキシ塩化物、ヒドロキシ塩化物、硝酸塩、硫酸塩、酢酸塩、オキシ硝酸塩、炭酸塩、炭酸アンモニウム塩、炭酸ナトリウム塩、炭酸カリウム塩、リン酸ナトリウム塩などが挙げられる。また、有機塩の例としては、上記金属の、シュウ酸塩、プロピオン酸塩、金属アルコキシド類、金属アルコキシド類の加水分解物、キレート化合物などが挙げられる。金属アルコキシド類としては、炭素数1~8程度のアルコキシル基が金属原子に結合した化合物、例えば、金属原子がZrの場合、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラn-プロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラn-ブトキシド、ジルコニウムテトラt-ブトキシド等が挙げられる。また、キレート化合物としては、例えば、β-ケトンエステル錯体、β-ジケトン錯体、エタノールアミン類錯体、ジアルキレングリコール錯体等を用いることができる。
 本発明の好ましい態様によれば、材料(I-2)は、非晶質の酸化物若しくは平均結晶子径10nm未満の酸化物粒子、または無機塩とされる。
 本発明の第一の態様において、材料(I-2)が粒子である場合は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、5nm以上100nm以下の個数平均粒径を有する粒子であることが好ましい。材料(I-2)を粒子形状とし、材料(I-1)ともに表面層を形成することで、材料(I-1)と材料(I-2)とが表面層の表面に分散して存在できる。これにより、所望の水濡れ特性(水滴保持性能と水膜形成性能)をより効果的に発現することができる。また、透明な表面層を得ることができる点でも有利である。また、材料(I-2)は、材料(I-1)を固定するバインダーとしての作用も期待できる。
 本発明の第一の態様によるコーティング組成物における材料(I-1)および材料(I-2)の配合量は、上述の本発明による複合材の表面層の組成を実現できるものである必要がある。従って、本発明の第一の態様によるコーティング組成物にあっても、材料(I-2)は、材料(I-1)の質量と材料(I-2)の酸化物換算量との質量和に対して、その酸化物換算で、30質量%以上70質量%以下、好ましくは30質量%以上50質量%以下、配合される。
 また、本発明の好ましい態様によれば、材料(I-2)は、被膜形成成分に対して、酸化物換算で30質量%以上70質量%以下、好ましくは30質量%以上50質量%以下配合される。ここで、被膜形成成分とは、コーティング組成物から溶媒等の揮発性成分と界面活性剤等の水溶性の添加剤を除外した成分であって、被膜形成成分量は、コーティング組成物の蒸発残量から水溶性の添加剤の量を除いた値と実質的に等しい値である。
 本発明の好ましい態様によれば、材料(I-1)は、その製造工程において材料(I-1)に変化する前駆体が添加されてもよい。従って、本発明によるコーティング組成物が含むことができる材料(I-1)およびそれに変化する前駆体としては、シリカ、アルキルシリケート、アルカリシリケート、アルミナ、無定形酸化チタン、過酸化チタン、水酸化アルミニウム、およびベーマイトからなる群から選択される少なくとも一種が挙げられる。これらのうち、アルキルシリケートはシリカの前駆体、過酸化チタンは無定形酸化チタンの前駆体、水酸化アルミニウムおよびベーマイトはアルミナの前駆体である。これら前駆体は、被膜形成後に、シリカ、アルカリシリケート、アルミナ、または無定形酸化チタンに変化する。
 本発明の第一の態様によるコーティング組成物に配合できるアルキルシリケートとしては、Siアルコキシド類、Siアルコキシド類の加水分解物、Siキレート化合物などが挙げられる。これらの内で、Siアルコキシド類としては、炭素数1~4程度のアルコキシル基がSi原子に結合した化合物、例えば、Siテトラメトキシド、Siテトラエトキシド、Siテトラn-プロポキシド、Siテトライソプロポキシド、Siテトラn-ブトキシド、Siテトラt-ブトキシド等が挙げられる。また、キレート化合物としては、例えば、β-ケトンエステル錯体、β-ジケトン錯体、エタノールアミン類錯体、ジアルキレングリコール錯体等が挙げられる。
 本発明の第一の態様によるコーティング組成物が含む溶媒は、材料(I-1)および材料(I-2)を分散または溶解することができ、常温で液体の物質である。その例としては、水、エチレングリコール、ブチルセロソルブ、イソプロパノール、n-ブタノール、エタノール、メタノール等のアルコール類、トルエンやキシレン等の芳香族炭化水素類、ヘキサン、シクロヘキサン、ヘプタン等の脂肪族炭化水素類、酢酸エチル、酢酸n-ブチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、ジメチルアセトアミド、ジメチルホルムアミド等のアミド類、クロロホルム、塩化メチレン、四塩化炭素等のハロゲン化合物類、ジメチルスルホキシド、ニトロベンゼン等が挙げられる。これらの溶媒は、単独で又は組み合わせて用いられる。
 また、本発明の第一の態様によるコーティング組成物は、レベリング剤を含むことが好ましく、その例としては、ジアセトンアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジプロピレングリコール、トリプロピレングリコール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、プロピレングリコールモノメチルエーテル、1-プロポキシ-2-プロパノール、ジプロピレングリコールモノメチルエーテル、ジプロピレングコリールモノエチルエーテル、トリプロピレングリコールモノエチルエーテル、アセチレンアルコール等が挙げられる。
 本発明の第一の態様によるコーティング組成物は、場合により材料(I-1)および材料(I-2)に加え、顔料、硬化触媒、架橋剤、充填剤、分散剤、光安定剤、湿潤剤、増粘剤、レオロジーコントロール剤、消泡剤、成膜助剤、レベリング剤、防錆剤、染料、防腐剤等の添加剤を、それぞれの目的に応じて選択、組み合わせて配合することができる。特に、溶媒に水を用いた場合は、コーティング組成物の濡れ性を向上させるために、各種界面活性剤を添加剤として配合することができる。
 本発明の第一の態様によるコーティング組成物は、材料(I-1)および材料(I-2)、並びに他の任意成分を溶媒中に溶解または分散させて得ることができる。各材料は、粉体、溶液、ゾルなどの分散体等、種々の形態のものを組み合わせ、配合して、コーティング組成物とすることができる。
 コーティング組成物における固形分濃度は、0.05質量%~20質量%程度が好ましく、より好ましくは0.05質量%~10質量%である。固形分濃度は上述した被膜形成成分の濃度と実質的に等しく、具体的には、105℃~110℃でコーティング組成物を乾燥し、得られた蒸発残量と水溶性の添加剤の量との差を、コーティング組成物量で除して得ることができる。
複合材の製造方法
 本発明の第一の態様による複合材は、上述のコーティング組成物を用いて好ましく製造することが出来る。具体的には、上述の第一の態様によるコーティング組成物を基材表面に塗布した後、(a)基材表面を300℃以下で加熱する、(b)常温で乾燥させる、または(c)基材表面を300超過1000℃未満で2~60秒間加熱することのいずれかの方法で好ましくは形成される。いずれの製造方法においても、加熱しないか、比較的低温の加熱条件が、あるいは短時間での加熱条件とすることで、所望の水ぬれ特性(水滴保持性能と水膜形成性能)を十分に発現する表面層を得ることができる。
 基材への塗布は、刷毛、ローラー、またはスプレーによるコート、フローコート、ディップコート、スクリーン印刷、グラビア印刷、等の方法が利用できる。
本発明の第二の態様
表面層
 本発明の第二の態様において、複合材の表面層は、材料(II-1)、材料(II-2)、および材料(II-3)を含んでなる。
材料(II-1)
 本発明の第二の態様において、材料(II-1)は、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、酸化亜鉛、酸化錫、結晶性酸化タングステン、および非晶質酸化タングステンからなる群から選択される少なくとも一種の光触媒材料である。これら光触媒材料は、波長350~500nmの光で励起される光触媒からなる。本発明の好ましい態様によれば、これらの光触媒材料のうち、アナターゼ型酸化チタン、ルチル型酸化チタン、およびブルッカイト型酸化チタンが好適に使用できる。これらの酸化チタンは無毒であり、化学的安定性にも優れる。
 本発明の第二の態様において、材料(II-1)である光触媒は、光照射によりそれ自体が高度に親水化され、また有機物を分解する性質を発現する。また、後記する材料(II-3)も親水性の化合物である。本発明の第二の態様において、後記する材料(II-2)は、この材料(II-1)である光触媒材料よりも親水性が弱く、またその分解作用により分解され難い金属化合物である。本発明により、線状の汚れが防止される理由は定かではないが、以下のように考えられる。本発明による部材の表面において、材料(II-1)が存在する部分には光励起によって高度の親水領域が形成され、また材料(II-3)が存在する部分にも親水領域が形成される。材料(II-1)に接した材料(II-2)は、光触媒作用により清浄な表面が形成され、材料(II-1)よりも水との親和性の弱い性能を維持し、材料(II-2)が存在する部分には、水との親和性の弱い領域が形成される。本発明の第二の態様において規定される材料(II-1)と、材料(II-2)と、材料(II-3)の存在比から実現される、材料(II-1)および材料(II-3)による親水性と、材料(II-2)による水との弱い親和性の両性質が、水滴保持性能と水膜形成性能とを、線状の汚れが有効に防止できるように発現させる。すなわち、当該表面において、親水性の部分による水を引き寄せて水膜を形成しようとする力と、水との親和性の弱い部分による水玉を形成し止まらせようとする力とがバランスして、雨滴程度の少量の水が付着したとき、水滴の三重線(気・液・固の界面、すなわち水滴の表面に接触している部分の輪郭)の移動が抑えられ、水滴として、重力等の外力に抗して表面に留める。その結果、線状の汚れが防止される。その後、多量の水が供給されると、水滴同士が会合して、水は表面に広がり水膜を形成し、いわゆるセルフクリーニング性能が発揮され、表面が清浄になると考えられる。しかし、以上の説明はあくまで仮説であって、本発明はこの説に限定されるものではない。
 本発明の第二の態様において、材料(II-1)は粒子であることが好ましい。好適な粒子径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、10nm以上100nm以下の個数平均粒径である。粒子の形状は球状が最も良いが、楕円形等の異形状であっても良い。その場合の粒子の長さは、走査型電子顕微鏡で観察される粒子形状の最長径と最短径の和を2で除した値として略算出される。材料(II-1)を粒子形状として、材料(II-2)ともに表面層を形成することで、材料(II-1)と材料(II-2)とが表面層の表面に分散して存在できる。これにより、所望の水濡れ特性(水滴保持性能と水膜形成性能)をより効果的に発現することができる。また、透明な表面層を得ることができる点でも有利である。
 本発明の好ましい態様によれば、これらの光触媒粒子として、上記光触媒材料にPt、Pd、Rh、Ru、Nb、Ag、Cu、Sn、Ni、Feなどの金属及び/又はこれらの酸化物を添加あるいは固定化した粒子、または多孔質リン酸カルシウムで被覆した光触媒を使用することもできる。
 本発明の第二の態様において、材料(II-1)の配合量は、材料(II-1)の質量と材料(II-2)の酸化物換算量と材料(II-3)の酸化物換算量と、後記する任意成分のアルミナとの質量和に対して、0質量%を超え20質量%未満であり、好ましい下限は0.1質量%以上であり、また好ましい上限は20質量%未満であり、より好ましくは10質量%未満である。
 また、本発明の別の好ましい態様によれば、材料(II-1)は、表面層に対して、0質量%を超え20質量%未満であり、好ましい下限は0.1質量%以上であることが好ましく、また好ましい上限は20質量%未満であり、より好ましくは10質量%未満であることが好ましい。なお、表面層の質量は、後述する被膜形成成分量(質量)と実質的に等しい値である。
材料(II-2)
 本発明の第二の態様において、材料(II-2)は、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物であり、好ましくは、ZrまたはHfを含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物である。
 材料(II-2)は、材料(II-1)よりも水との弱い親和性を示し、材料(II-1)によって分解されない金属化合物である。上述のとおり、本発明による複合材の表面層は材料(II-2)が材料(II-1)とともに配合されてなることにより、線状の汚れを有効に防止し、かつセルフクリーニング性能を発揮する水濡れ特性(水滴保持性能と水膜形成性能)を与える。
 本発明の第二の態様において、上記の金属を含有する酸化物とは、例えばCr、MnO、Fe、CoO、NiO、CuO、Ga、ZrO、Y、In、HfOなどが挙げられる。また、無機塩の例としては、上記の金属の、オキシ塩化物、ヒドロキシ塩化物、硝酸塩、硫酸塩、酢酸塩、オキシ硝酸塩、炭酸塩、炭酸アンモニウム塩、炭酸ナトリウム塩、炭酸カリウム塩、リン酸ナトリウム塩などが挙げられる。また、有機塩の例としては、上記金属の、シュウ酸塩、プロピオン酸塩、金属アルコキシド類、金属アルコキシド類の加水分解物、キレート化合物などが挙げられる。金属アルコキシド類としては、炭素数1~8程度のアルコキシル基が金属原子に結合した化合物、例えば、金属原子がZrの場合、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラn-プロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラn-ブトキシド、ジルコニウムテトラt-ブトキシド等が挙げられる。また、キレート化合物としては、例えば、β-ケトンエステル錯体、β-ジケトン錯体、エタノールアミン類錯体、ジアルキレングリコール錯体等を用いることができる。
 本発明の好ましい態様によれば、材料(II-2)は、非晶質の酸化物若しくは平均結晶子径10nm未満の酸化物粒子、または無機塩とされる。これらの化合物を適用して得られた表面層は水滴保持性能および水膜形成性に優れる。ここで、平均結晶子径はXRDの最強線ピークの積分幅からシェラー式で算出される。
 本発明の第二の態様において、材料(II-2)が粒子である場合は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、5nm以上100nm以下の個数平均粒径を有する粒子であることが好ましい。材料(II-2)を粒子形状とし、材料(II-1)ともに表面層を形成することで、材料(II-1)と材料(II-2)とが表面層の表面に分散して存在できる。これにより、所望の水濡れ特性(水滴保持性能と水膜形成性能)をより効果的に発現することができる。また、透明な表面層を得ることができる点でも有利である。また、材料(II-2)は、光触媒を固定するバインダーとしての作用も期待できる。
 本発明の第二の態様において、材料(II-2)の配合量は、材料(II-1)の質量と材料(II-2)の酸化物換算量と材料(II-3)の酸化物換算量と、後記する任意成分のアルミナの質量和に対して、その酸化物換算濃度で35質量%超過60質量%以下であり、好ましい下限は35質量%超過であり、また好ましい上限は50質量%以下である。
 また、本発明の別の好ましい態様によれば、材料(II-2)は、表面層に対して、その酸化物換算で、35質量%を超え60質量%未満、好ましくは35質量%以上50質量%以下配合されることが好ましい。なお、表面層の質量は、後述する被膜形成成分量(質量)と実質的に等しい値である。
材料(II-3)
 本発明の第二の態様による複合材の表面層は、材料(II-1)および材料(II-2)に加えて、材料(II-3)を含むことができる。ここで、材料(II-3)とは、シリカ、アルカリシリケート、および無定形酸化チタンからなる群から選択される少なくとも一種である。この材料(II-3)は、親水性材料である。したがって、材料(II-1)である光触媒を励起するための光が少ない時(例えば曇天の場合や適用部位の日照時間が短い場合や、内装材として適用した場合など)に親水性を補助する機能を有する。また、これらの材料は材料(II-1)である光触媒材料よりも親水性が弱く、かつ、材料(II-2)よりも親水性が強いため、材料(II-2)の配合量を低く抑えることができる。さらに、これらの材料(II-3)は、材料(II-1)である光触媒材料を基材の表面に固定する機能も有する。これら材料(II-3)は、所望の水濡れ特性(水滴保持性能と水膜形成性能)を妨げることなく、表面層の基材との密着性や強度、耐久性、耐候性の向上といった諸特性の向上に寄与する。
 本発明の第二の態様において、アルカリシリケートとして、珪酸ナトリウム、珪酸カリウム、珪酸リチウムを単独か、または複数組み合わせて使用することができる。
 本発明の第二の態様において、材料(II-3)は、上述の第一及び材料(II-2)と相対的に定まる量、すなわち残部の量、配合される。従って、材料(II-3)の配合量は、材料(II-1)の質量と材料(II-2)の酸化物換算量と材料(II-3)の酸化物換算量と、後記する任意成分のアルミナの質量和に対して、その酸化物換算濃度で10質量%超過65質量%未満配合される。
 また、本発明の好ましい態様によれば、材料(II-3)は、表面層に対して、その酸化物換算で、10質量%超過65質量%未満配合されることが好ましい。なお、表面層の質量は、後述する被膜形成成分量(質量)と実質的に等しい値である。
アルミナ
 本発明の第二の態様による複合材の表面層は、化合物(A)の一種としての材料でありかつ任意成分としてアルミナを含むことが出来る。アルミナは含まないことが好ましく、含んだとしても、その配合量は、材料(II-1)の質量と材料(II-2)の酸化物換算量と材料(II-3)の酸化物換算量とアルミナ自身との質量和に対して、0質量%以上10質量%以下である。本発明の一つの態様によれば、アルミナは第三の成分よりも少なく配合することが好ましい。
 また、本発明の好ましい態様によれば、アルミナは、表面層に対して、その酸化物換算で、0質量%以上10質量%以下配合されることが好ましい。なお、表面層の質量は、後述する被膜形成成分量(質量)と実質的に等しい値である。
その他の任意成分
 本発明の第二の態様による複合材の表面層は、必要に応じて、上記材料(II-1)、材料(II-2)および材料(II-3)の成分以外の任意成分を含むことができる。任意成分の例としては、顔料、充填剤、光安定剤、染料等が挙げられ、それぞれの目的に応じて選択、組み合わせて、所望の水濡れ特性(水滴保持性能と水膜形成性能)を妨げない程度に配合することができる。
表面層の物性
 本発明の第二の態様による複合材の水滴保持性能と水膜形成性能は、前記の本発明の第一の態様と同様の方法により評価されてよい。
 本発明の一つの態様によれば、本発明の第二の態様による複合材の表面層は、次のような表面特性を備えることが好ましい。
 本発明の第二の態様による複合材は、前進接触角が30°以上であることが好ましく、より好ましくは35°以上、さらに好ましくは40°以上である。
 また、後退接触角が、20°以下であることが好ましく、より好ましくは16°以下、さらに好ましくは13°以下、最も好ましくは10°以下である。
 さらに、前進接触角と後退接触角の差分、すなわちヒステリシスは20°以上80°以下であることが好ましく、より好ましい下限値は35°、さらに好ましい下限値は40°であり、より好ましい上限値は75°、さらに好ましい上限値は70°である。
 本発明の第二の態様による複合材の表面層は、上述の範囲の前進接触角、後退接触角、およびヒステリシスを同時に満たすことが最も好ましい。この範囲であれば、水滴が形成された際の水滴保持性と、水滴が多量にかかった際の水膜形成性とがより優れたものになる。
 上記の表面特性、すなわち動的接触角(前進接触角および後退接触角)、転落角は、慣用されている、または確立した測定方法により測定されるが、好ましくは以下の方法により測定される。すなわち、自動接触角測定装置(例:英弘精機社製、OCA20)を用い、水に対する動的接触角(前進接触角および後退接触角)を、測定する。より具体的には、表面層上に50μLの水滴を滴下した後、前記表面層を1.6 deg./sの速度で傾けながら、前記接触角測定装置に付属しているカメラから水滴を観察し、水滴が滑落する瞬間における、水滴の滑落する側の接触角(前進接触角)、水滴の滑落する側とは反対側の接触角(後退接触角)を、それぞれ測定する。
 また、本発明の第二の態様による複合材の表面層は、30μLの水の転落角が40°以上であるのが好ましい。転落角が大きいほど、水滴保持性が高いといえる。
 上記の転落角は、慣用されている、または確立した測定方法により測定されるが、好ましくは以下の方法により測定される。すなわち、転落角は滑落法により測定する。より具体的には、表面層上に30μLの水滴を滴下した後、前記表面層を1.6 deg./sの速度で傾けながら、カメラから水滴を観察し、水滴が滑落する瞬間における、傾斜角:転落角を測定する。
 本発明の好ましい態様によれば、本発明による複合材の表面層は、好ましくは、水との静的接触角が、任意の測定点5点以上の平均値で20°以上90°未満であることが好ましく、より好ましい下限値は30°さらに好ましい下限値は35°であり、より好ましい上限値は80°であり、最も好ましい上限値は75°である。この範囲であれば、水滴が形成された際の水滴保持性がより優れたものになる。水との静的接触角は、接触角測定装置(例えば、協和界面科学社製、製品名 CA-X150型)を用いて、室温で5μLの水滴を滴下後、5秒後の静的接触角をθ/2法により測定する。
 本発明の第二の態様による複合材の表面層は、膜厚が300nm以下であることが好ましい。より好ましくは、下限値が10nmであり、さらに好ましい下限値は15nmである。上限値は、より好ましくは200nmであり、さらに好ましくは150nmである。当該範囲とすることで、第一の成分と第二の成分が、より均質に表面層に存在するようになるため、所望の水濡れ特性(水滴保持性能と水膜形成性能)を確実に得る事が可能となる。また、当該範囲とすることで透明な表面層が得られ易い点でも有利である。
 本発明の好ましい態様によれば、本発明による複合材の表面層は、波長405nmのレーザー顕微鏡を用い、JIS B 0601-1982により20倍視野で測定された算術平均粗さRaが、任意の測定点3点以上の平均値で5nmを超え50nm以下であることが好ましい。好ましい下限値は5nm、より好ましい下限値は10nmである。また、好ましい上限値は50nm、より好ましい上限値は30nmである。本発明の第二の態様において、表面粗さが当該範囲であれば、微細な凹凸に水が引っかかり水の移動が妨げられ、表面に接した水が濡れ広がらず、かつ、水が収縮しないという作用が強まる。
基材
 本発明の第二の態様による複合材を形成する基材は、前記の第一の態様における基材と同様であってよい。
コーティング組成物
 本発明によれば、上述の本発明の第二の態様による複合材を製造するためのコーティング組成物が提供される。この本発明の第二の態様によるコーティング組成物は、基本的に、上述の材料(II-1)、材料(II-2)と、材料(II-3)と、アルミナ等の任意成分と、そして溶媒とを含んでなる。
 本発明の第二の態様によるコーティング組成物が含む材料(II-1)と、材料(II-2)とは、既に説明した材料(II-1)および材料(II-2)と同一であってよい。
 従って、材料(II-1)は、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、酸化亜鉛、酸化錫、結晶性酸化タングステン、および非晶質酸化タングステンからなる群から選択される少なくとも一種の光触媒材料である。これら光触媒材料は、波長350~500nmの光で励起される光触媒からなる。本発明の好ましい態様によれば、これらの光触媒のうち、アナターゼ型酸化チタン、ルチル型酸化チタン、およびブルッカイト型酸化チタンが好適に使用できる。
 また、材料(II-1)は粒子であることが好ましい。好適な粒子径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、10nm以上100nm以下の個数平均粒径である。粒子の形状は球状が最も良いが、楕円形等の異形状であっても良い。その場合の粒子の長さは、走査型電子顕微鏡で観察される粒子形状の最長径と最短径の和を2で除した値として略算出される。材料(II-1)を粒子形状として、材料(II-2)ともに表面層を形成することで、材料(II-1)と材料(II-2)とが表面層の表面に分散して存在できる。これにより、所望の水濡れ特性(水滴保持性能と水膜形成性能)をより効果的に発現することができる。また、透明な表面層を得ることができる点でも有利である。
 本発明の好ましい態様によれば、これらの光触媒粒子として、上記光触媒材料にPt、Pd、Rh、Ru、Nb、Ag、Cu、Sn、Ni、Feなどの金属及び/又はこれらの酸化物を添加あるいは固定化した粒子、または多孔質リン酸カルシウムで被覆した光触媒を使用することもできる。
 また、材料(II-2)は、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物であり、好ましくは、ZrまたはHfを含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物である。
 本発明の第二の態様において、上記の金属を含有する酸化物とは、例えばCr、MnO、Fe、CoO、NiO、CuO、Ga、ZrO、Y、In、HfOなどが挙げられる。また、無機塩の例としては、上記の金属の、オキシ塩化物、ヒドロキシ塩化物、硝酸塩、硫酸塩、酢酸塩、オキシ硝酸塩、炭酸塩、炭酸アンモニウム塩、炭酸ナトリウム塩、炭酸カリウム塩、リン酸ナトリウム塩などが挙げられる。また、有機塩の例としては、上記金属の、シュウ酸塩、プロピオン酸塩、金属アルコキシド類、金属アルコキシド類の加水分解物、キレート化合物などが挙げられる。金属アルコキシド類としては、炭素数1~8程度のアルコキシル基が金属原子に結合した化合物、例えば、金属原子がZrの場合、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラn-プロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラn-ブトキシド、ジルコニウムテトラt-ブトキシド等が挙げられる。また、キレート化合物としては、例えば、β-ケトンエステル錯体、β-ジケトン錯体、エタノールアミン類錯体、ジアルキレングリコール錯体等を用いることができる。
 本発明の好ましい態様によれば、材料(II-2)は、非晶質の酸化物若しくは平均結晶子径10nm未満の酸化物粒子、または無機塩とされる。
 本発明の第二の態様において、材料(II-2)が粒子である場合は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、5nm以上100nm以下の個数平均粒径を有する粒子であることが好ましい。材料(II-2)を粒子形状とし、材料(II-1)ともに表面層を形成することで、材料(II-1)と材料(II-2)とが表面層の表面に分散して存在できる。これにより、所望の水濡れ特性(水滴保持性能と水膜形成性能)をより効果的に発現することができる。また、透明な表面層を得ることができる点でも有利である。また、材料(II-2)は、光触媒を固定するバインダーとしての作用も期待できる。
 本発明の第二の態様によるコーティング組成物における材料(II-1)および材料(II-2)、そして任意成分である材料(II-3)の配合量は、上述の本発明の第二の態様による複合材の表面層の組成を実現できるものである必要がある。
 また、本発明の好ましい態様によれば、材料(II-2)は、被膜形成成分に対して、酸化物換算で35質量%を超え60質量%未満、好ましくは35質量%を超え50質量%以下配合される。ここで、被膜形成成分とは、コーティング組成物から溶媒等の揮発性成分と界面活性剤等の水溶性の添加剤を除外した成分であって、被膜形成成分量は、コーティング組成物の蒸発残量から水溶性の添加剤の量を除いた値と実質的に等しい値である。
 本発明の第二の態様によるコーティング組成物は材料(II-3)を含むが、その製造工程において材料(II-3)に変化する前駆体が添加されてもよい。従って、本発明の第二の態様によるコーティング組成物が含むことができる材料(II-3)およびそれに変化する前駆体としては、シリカ、アルキルシリケート、アルカリシリケート無定形酸化チタン、および過酸化チタンからなる群から選択される少なくとも一種が挙げられる。これらのうち、アルキルシリケートはシリカの前駆体、過酸化チタンは無定形酸化チタンの前駆体である。これら前駆体は、被膜形成後に、シリカ、アルカリシリケート、または無定形酸化チタンに変化する。
 本発明の第二の態様によるコーティング組成物に配合できるアルキルシリケートとしては、Siアルコキシド類、Siアルコキシド類の加水分解物、Siキレート化合物などが挙げられる。これらの内で、Siアルコキシド類としては、炭素数1~4程度のアルコキシル基がSi原子に結合した化合物、例えば、Siテトラメトキシド、Siテトラエトキシド、Siテトラn-プロポキシド、Siテトライソプロポキシド、Siテトラn-ブトキシド、Siテトラt-ブトキシド等が挙げられる。また、キレート化合物としては、例えば、β-ケトンエステル錯体、β-ジケトン錯体、エタノールアミン類錯体、ジアルキレングリコール錯体等が挙げられる。
 本発明の第二の態様によるコーティング組成物には、アルミナまたはその前駆体が添加されてよい。その前駆体としては、水酸化アルミニウムおよびベーマイトが挙げられる。
 本発明の第二の態様によるコーティング組成物が含む溶媒は、材料(II-1)、材料(II-2)および材料(II-3)を分散または溶解することができ、常温で液体の物質である。その例としては、水、エチレングリコール、ブチルセロソルブ、イソプロパノール、n-ブタノール、エタノール、メタノール等のアルコール類、トルエンやキシレン等の芳香族炭化水素類、ヘキサン、シクロヘキサン、ヘプタン等の脂肪族炭化水素類、酢酸エチル、酢酸n-ブチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、ジメチルアセトアミド、ジメチルホルムアミド等のアミド類、クロロホルム、塩化メチレン、四塩化炭素等のハロゲン化合物類、ジメチルスルホキシド、ニトロベンゼン等が挙げられる。これらの溶媒は、単独で又は組み合わせて用いられる。
 また、本発明の第二の態様によるコーティング組成物は、レベリング剤を含むことが好ましく、その例としては、ジアセトンアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジプロピレングリコール、トリプロピレングリコール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、プロピレングリコールモノメチルエーテル、1-プロポキシ-2-プロパノール、ジプロピレングリコールモノメチルエーテル、ジプロピレングコリールモノエチルエーテル、トリプロピレングリコールモノエチルエーテル、アセチレンアルコール等が挙げられる。
 本発明の第二の態様によるコーティング組成物は、場合により材料(II-1)、材料(II-2)および材料(II-3)に加え、顔料、硬化触媒、架橋剤、充填剤、分散剤、光安定剤、湿潤剤、増粘剤、レオロジーコントロール剤、消泡剤、成膜助剤、レベリング剤、防錆剤、染料、防腐剤等の添加剤を、それぞれの目的に応じて選択、組み合わせて配合することができる。特に、溶媒に水を用いた場合は、コーティング組成物の濡れ性を向上させるために、各種界面活性剤を添加剤として配合することができる。
 本発明の第二の態様によるコーティング組成物は、材料(II-1)、材料(II-2)、材料(II-3)およびアルミナ他の任意成分を溶媒中に溶解または分散させて得ることができる。各材料は、粉体、溶液、ゾルなどの分散体等、種々の形態のものを組み合わせ、配合して、コーティング組成物とすることができる。
 コーティング組成物における固形分濃度は、0.05質量%~20質量%程度が好ましく、より好ましくは0.05質量%~10質量%である。固形分濃度は上述した被膜形成成分の濃度と実質的に等しく、具体的には、105℃~110℃でコーティング組成物を乾燥し、得られた蒸発残量と水溶性の添加剤の量との差を、コーティング組成物量で除して得ることができる。
複合材の製造方法
 本発明の第二の態様による複合材は、上述のコーティング組成物を用いて好ましく製造することが出来る。具体的には、上述の第二の態様によるコーティング組成物を基材表面に塗布した後、(a)基材表面を300℃以下で加熱する、(b)常温で乾燥させる、または(c)基材表面を300超過1000℃未満で2~60秒間加熱することのいずれかの方法で好ましくは形成される。いずれの製造方法においても、加熱しないか、比較的低温の加熱条件が、あるいは短時間での加熱条件とすることで、所望の水ぬれ特性(水滴保持性能と水膜形成性能)を十分に発現する表面層を得ることができる。
 基材への塗布は、刷毛、ローラー、またはスプレーによるコート、フローコート、ディップコート、スクリーン印刷、グラビア印刷、等の方法が利用できる。
本発明の第三の態様
表面層
 本発明の第三の態様において、複合材の表面層は、前記化合物(A)としての材料(III-1)および前記化合物(B)としての材料(III-2)、場合によりさらに前記化合物(A)の一種としての材料(III-3)を含んでなる。
材料(III-1)
 本発明の第三の態様において、材料(III-1)は、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、酸化亜鉛、酸化錫、結晶性酸化タングステン、および非晶質酸化タングステンからなる群から選択される少なくとも一種の光触媒材料である。これら光触媒材料は、波長350~500nmの光で励起される光触媒からなる。本発明の好ましい態様によれば、これらの光触媒材料のうち、アナターゼ型酸化チタン、ルチル型酸化チタン、およびブルッカイト型酸化チタンが好適に使用できる。これらの酸化チタンは無毒であり、化学的安定性にも優れる。
 本発明の第三の態様において、材料(III-1)である光触媒は、光照射によりそれ自体が高度に親水化され、また有機物を分解する性質を発現する。本発明の第三の態様において、後記する材料(III-2)は、この材料(III-1)である光触媒材料よりも親水性が弱く、またその分解作用により分解され難い金属化合物である。本発明により、線状の汚れが防止される理由は定かではないが、以下のように考えられる。本発明による部材の表面において、材料(III-1)が存在する部分には光励起によって高度の親水領域が形成される。材料(III-1)に接した材料(III-2)は、光触媒作用により清浄な表面が形成され、材料(III-1)よりも水との親和性の弱い性能を維持し、材料(III-2)が存在する部分には、水との親和性の弱い領域が形成される。本発明の第三の態様において規定される材料(III-1)と、材料(III-2)との存在比から実現される、材料(III-1)による強い親水性と、材料(III-2)による水との弱い親和性の両性質が、水滴保持性能と水膜形成性能とを、線状の汚れが有効に防止できるように発現させる。すなわち、当該表面において、親水性の部分による水を引き寄せて水膜を形成しようとする力と、水との親和性の弱い部分による水玉を形成し止まらせようとする力とがバランスして、雨滴程度の少量の水が付着したとき、水滴の三重線(気・液・固の界面、すなわち水滴の表面に接触している部分の輪郭)の移動が抑えられ、水滴として、重力等の外力に抗して表面に留める。その結果、線状の汚れが防止される。その後、多量の水が供給されると、水滴同士が会合して、水は表面に広がり水膜を形成し、いわゆるセルフクリーニング性能が発揮され、表面が清浄になると考えられる。しかし、以上の説明はあくまで仮説であって、本発明はこの説に限定されるものではない。
 本発明の第三の態様において、材料(III-1)は粒子であることが好ましい。好適な粒子径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、10nm以上100nm以下の個数平均粒径である。粒子の形状は球状が最も良いが、楕円形等の異形状であっても良い。その場合の粒子の長さは、走査型電子顕微鏡で観察される粒子形状の最長径と最短径の和を2で除した値として略算出される。材料(III-1)を粒子形状として、材料(III-2)ともに表面層を形成することで、材料(III-1)と材料(III-2)とが表面層の表面に分散して存在できる。これにより、所望の水濡れ特性(水滴保持性能と水膜形成性能)をより効果的に発現することができる。また、透明な表面層を得ることができる点でも有利である。
 本発明の好ましい態様によれば、これらの光触媒粒子として、上記光触媒材料にPt、Pd、Rh、Ru、Nb、Ag、Cu、Sn、Ni、Feなどの金属及び/又はこれらの酸化物を添加あるいは固定化した粒子、または多孔質リン酸カルシウムで被覆した光触媒を使用することもできる。
 本発明の第三の態様において、材料(III-1)は、後記する材料(III-2)、さらには場合により添加される材料(III-3)と相対的に定まる量添加される。
材料(III-2)
 本発明の第三の態様において、材料(III-2)は、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、および無機塩からなる群から選択される少なくとも一種の化合物であり、好ましくは、ZrまたはHfを含有する、酸化物、および無機塩からなる群から選択される少なくとも一種の化合物である。
 材料(III-2)は、材料(III-1)よりも水との弱い親和性を示し、材料(III-1)によって分解されない金属化合物である。上述のとおり、本発明による複合材の表面層は材料(III-2)が材料(III-1)とともに配合されてなることにより、線状の汚れを有効に防止し、かつセルフクリーニング性能を発揮する水濡れ特性(水滴保持性能と水膜形成性能)を与える。
 本発明の第三の態様において、上記の金属を含有する酸化物とは、例えばCr、MnO、Fe、CoO、NiO、CuO、Ga、ZrO、Y、In、HfOなどが挙げられる。また、無機塩の例としては、上記の金属の、オキシ塩化物、ヒドロキシ塩化物、硝酸塩、硫酸塩、酢酸塩、オキシ硝酸塩、炭酸塩、炭酸アンモニウム塩、炭酸ナトリウム塩、炭酸カリウム塩、リン酸ナトリウム塩などが挙げられる。
 本発明の好ましい態様によれば、材料(III-2)は、非晶質の酸化物若しくは平均結晶子径10nm未満の酸化物粒子、または無機塩とされる。これらの化合物を適用して得られた表面層は水滴保持性能および水膜形成性に優れる。ここで、平均結晶子径はXRDの最強線ピークの積分幅からシェラー式で算出される。
 本発明の第三の態様において、材料(III-2)が粒子である場合は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、5nm以上100nm以下の個数平均粒径を有する粒子であることが好ましい。材料(III-2)を粒子形状とし、材料(III-1)ともに表面層を形成することで、材料(III-1)と材料(III-2)とが表面層の表面に分散して存在できる。これにより、所望の水濡れ特性(水滴保持性能と水膜形成性能)をより効果的に発現することができる。また、透明な表面層を得ることができる点でも有利である。また、材料(III-2)は、光触媒を固定するバインダーとしての作用も期待できる。
 本発明の第三の態様において、材料(III-2)は、材料(III-1)の質量と材料(III-2)の酸化物換算量との質量和に対して、その酸化物換算で、50質量%を超え99質量%未満、好ましくは56質量%以上90質量%以下、配合される。後記するように、表面層が材料(III-3)を含有する場合は、材料(III-2)は、前記材料(III-1)の質量と前記材料(III-2)の酸化物換算量と前記材料(III-3)との質量和に対して、酸化物換算で、50質量%を超え99質量%未満配合され、好ましい下限値は56質量%以上であり、好ましい上限値は90質量%以下、より好ましくは80質量%以下であり、より好ましい範囲は56質量%以上90質量%以下である。
 また、本発明の別の好ましい態様によれば、材料(III-2)は、表面層において、その酸化物換算で、50質量%を超え99質量%未満、好ましくは56質量%以上90質量%以下配合されることが好ましい。後記するように、表面層が材料(III-3)を含有する場合は、材料(III-2)は、前記材料(III-1)の質量と前記材料(III-2)の酸化物換算量と前記材料(III-3)との質量和に対して、酸化物換算で、50質量%を超え99質量%未満配合され、好ましい下限値は56質量%以上であり、好ましい上限値は90質量%以下、より好ましくは80質量%以下であり、より好ましい範囲は56質量%以上90質量%以下である。なお、表面層の質量は、後述する被膜形成成分量(質量)と実質的に等しい値である。このような範囲に材料(III-1)と材料(III-2)と、場合によっては材料(III-3)とを配合することによって、水滴保持性能と水膜形成性能とをより効果的に両立して発現させることができる。
材料(III-3)
 本発明による複合材の表面層は、材料(III-1)および材料(III-2)に加えて、材料(III-3)を含むことができる。ここで、材料(III-3)とは、シリカ、アルカリシリケート、アルミナ、および無定形酸化チタンからなる群から選択される少なくとも一種である。この材料(III-3)は、親水性材料であって、光触媒を励起するための光が少ない場合(例えば曇天の場合や適用部位の日照時間が短い場合や、内装材として適用した場合など)に親水性を補助する機能を有する。また、材料(III-3)は材料(III-1)よりも親水性が弱く材料(III-2)よりも親水性が強いため、材料(III-2)の配合量を低く抑えることができる。さらに、材料(III-3)は、材料(III-1)である光触媒材料を基材の表面に固定する機能をも有する。この材料(III-3)は、所望の水濡れ特性(水滴保持性能と水膜形成性能)を妨げることなく、表面層の基材との密着性や強度、耐久性、耐候性の向上といった諸特性の向上に寄与する。
 本発明の第三の態様において、アルカリシリケートとして、珪酸ナトリウム、珪酸カリウム、珪酸リチウムを単独か、または複数組み合わせて使用することができる。
 本発明の第三の態様において、材料(III-3)は、上述の第一及び材料(III-2)と相対的に定まる量添加される。従って、材料(III-3)は、前記材料(III-1)の質量と前記材料(III-2)の酸化物換算量と材料(III-3)の質量和に対して、0質量%以上49質量%以下配合され、好ましい下限値は1質量%、より好ましくは3質量%である。好ましい上限値は45質量%以下、より好ましくは40質量%以下である。
その他の任意成分
 本発明の第三の態様による複合材の表面層は、必要に応じて、上記材料(III-1)、材料(III-2)および材料(III-3)の成分以外の任意成分を含むことができる。任意成分の例としては、顔料、充填剤、光安定剤、染料等が挙げられ、それぞれの目的に応じて選択、組み合わせて、所望の水濡れ特性(水滴保持性能と水膜形成性能)を妨げない程度に配合することができる。
表面層の物性
 本発明の第三の態様による複合材の水滴保持性能と水膜形成性能は、前記の本発明の第一の態様と同様の方法により評価されてよい。
 本発明の一つの態様によれば、本発明の第三の態様による複合材の表面層は、次のような表面特性を備えることが好ましい。
 本発明の第三の態様による複合材は、前進接触角が30°以上であることが好ましく、より好ましくは35°以上、さらに好ましくは40°以上である。
 また、後退接触角が、20°以下であることが好ましく、より好ましくは16°以下、さらに好ましくは13°以下、最も好ましくは10°以下である。
 さらに、前進接触角と後退接触角の差分、すなわちヒステリシスは20°以上80°以下であることが好ましく、より好ましい下限値は35°、さらに好ましい下限値は40°であり、より好ましい上限値は75°、さらに好ましい上限値は70°である。
 本発明の第三の態様による複合材の表面層は、上述の範囲の前進接触角、後退接触角、およびヒステリシスを同時に満たすことが最も好ましい。この範囲であれば、水滴が形成された際の水滴保持性と、水滴が多量にかかった際の水膜形成性とがより優れたものになる。
 上記の表面特性、すなわち動的接触角(前進接触角および後退接触角)、転落角は、慣用されている、または確立した測定方法により測定されるが、好ましくは以下の方法により測定される。すなわち、自動接触角測定装置(例:英弘精機社製、OCA20)を用い、水に対する動的接触角(前進接触角および後退接触角)を測定する。より具体的には、表面層上に50μLの水滴を滴下した後、前記表面層を1.6 deg./sの速度で傾けながら、前記接触角測定装置に付属しているカメラから水滴を観察し、水滴が滑落する瞬間における、水滴の滑落する側の接触角(前進接触角)、水滴の滑落する側とは反対側の接触角(後退接触角)を、それぞれ測定する。
 また、本発明の第三の態様による複合材の表面層は、30μLの水の転落角が40°以上であるのが好ましい。転落角が大きいほど、水滴保持性が高いといえる。
 上記の転落角は、慣用されている、または確立した測定方法により測定されるが、好ましくは以下の方法により測定される。すなわち、転落角は滑落法により測定する。より具体的には、表面層上に30μLの水滴を滴下した後、前記表面層を1.6 deg./sの速度で傾けながら、カメラから水滴を観察し、水滴が滑落する瞬間における、傾斜角:転落角を測定する。
 本発明の好ましい態様によれば、本発明による複合材の表面層は、好ましくは、水との静的接触角が、任意の測定点5点以上の平均値で20°以上90°未満であることが好ましく、より好ましい下限値は30°さらに好ましい下限値は35°であり、より好ましい上限値は80°であり、最も好ましい上限値は75°である。この範囲であれば、水滴が形成された際の水滴保持性がより優れたものになる。水との静的接触角は、接触角測定装置(例えば、協和界面科学社製、製品名 CA-X150型)を用いて、室温で5μLの水滴を滴下後、5秒後の静的接触角をθ/2法により測定する。
 本発明の第三の態様による複合材の表面層は、膜厚が300nm以下であることが好ましい。より好ましくは、下限値が10nmであり、さらに好ましい下限値は15nmである。上限値は、より好ましくは200nmであり、さらに好ましくは150nmである。当該範囲とすることで、第一の成分と第二の成分が、より均質に表面層に存在するようになるため、所望の水濡れ特性(水滴保持性能と水膜形成性能)を確実に得る事が可能となる。また、当該範囲とすることで透明な表面層が得られ易い点でも有利である。
 本発明の好ましい態様によれば、本発明による複合材の表面層は、波長405nmのレーザー顕微鏡を用い、JIS B 0601-1982により20倍視野で測定された算術平均粗さRaが、任意の測定点3点以上の平均値で5nmを超え50nm以下であることが好ましい。好ましい下限値は5nm、より好ましい下限値は10nmである。また、好ましい上限値は50nm、より好ましい上限値は30nmである。本発明において、表面粗さが当該範囲であれば、微細な凹凸に水が引っかかり水の移動が妨げられ、表面に接した水が濡れ広がらず、かつ、水が収縮しないという作用が強まる。
基材
 本発明の第三の態様による複合材を形成する基材は、前記の第一の態様における基材と同様であってよい。
コーティング組成物
 本発明によれば、上述の本発明の第三の態様による複合材を製造するためのコーティング組成物が提供される。この本発明の第三の態様によるコーティング組成物は、基本的に、上述の材料(III-1)および材料(III-2)と、任意成分の材料(III-3)と、そして溶媒とを含んでなる。
 本発明の第三の態様によるコーティング組成物が含む材料(III-1)と、材料(III-2)とは、既に説明した材料(III-1)および材料(III-2)と同一であってよい。
 従って、材料(III-1)は、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、酸化亜鉛、酸化錫、結晶性酸化タングステン、および非晶質酸化タングステンからなる群から選択される少なくとも一種の光触媒材料である。これら光触媒材料は、波長350~500nmの光で励起される光触媒からなる。本発明の好ましい態様によれば、これらの光触媒のうち、アナターゼ型酸化チタン、ルチル型酸化チタン、およびブルッカイト型酸化チタンが好適に使用できる。
 また、材料(III-1)は粒子であることが好ましい。好適な粒子径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、10nm以上100nm以下の個数平均粒径である。粒子の形状は球状が最も良いが、楕円形等の異形状であっても良い。その場合の粒子の長さは、走査型電子顕微鏡で観察される粒子形状の最長径と最短径の和を2で除した値として略算出される。材料(III-1)を粒子形状として、材料(III-2)ともに表面層を形成することで、材料(III-1)と材料(III-2)とが表面層の表面に分散して存在できる。これにより、所望の水濡れ特性(水滴保持性能と水膜形成性能)をより効果的に発現することができる。また、透明な表面層を得ることができる点でも有利である。
 本発明の好ましい態様によれば、これらの光触媒粒子として、上記光触媒材料にPt、Pd、Rh、Ru、Nb、Ag、Cu、Sn、Ni、Feなどの金属及び/又はこれらの酸化物を添加あるいは固定化した粒子、または多孔質リン酸カルシウムで被覆した光触媒を使用することもできる。
 また、材料(III-2)は、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、および無機塩からなる群から選択される少なくとも一種の化合物であり、好ましくは、ZrまたはHfを含有する、酸化物、および無機塩からなる群から選択される少なくとも一種の化合物である。
 本発明の第三の態様において、上記の金属を含有する酸化物とは、例えばCr、MnO、Fe、CoO、NiO、CuO、Ga、ZrO、Y、In、HfOなどが挙げられる。また、無機塩の例としては、上記の金属の、オキシ塩化物、ヒドロキシ塩化物、硝酸塩、硫酸塩、酢酸塩、オキシ硝酸塩、炭酸塩、炭酸アンモニウム塩、炭酸ナトリウム塩、炭酸カリウム塩、リン酸ナトリウム塩などが挙げられる。
 本発明の好ましい態様によれば、材料(III-2)は、非晶質の酸化物若しくは平均結晶子径10nm未満の酸化物粒子、または無機塩とされる。
 本発明の第三の態様において、材料(III-2)が粒子である場合は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、5nm以上100nm以下の個数平均粒径を有する粒子であることが好ましい。材料(III-2)を粒子形状とし、材料(III-1)ともに表面層を形成することで、材料(III-1)と材料(III-2)とが表面層の表面に分散して存在できる。これにより、所望の水濡れ特性(水滴保持性能と水膜形成性能)をより効果的に発現することができる。また、透明な表面層を得ることができる点でも有利である。また、材料(III-2)は、光触媒を固定するバインダーとしての作用も期待できる。
 本発明の第三の態様によるコーティング組成物における材料(III-1)および材料(III-2)、そして任意成分である材料(III-3)の配合量は、上述の本発明の第三の態様による複合材の表面層の組成を実現できるものである必要がある。従って、本発明の第三の態様によるコーティング組成物にあっても、材料(III-2)は、材料(III-1)の質量と材料(III-2)の酸化物換算量との質量和に対して、その酸化物換算で、50質量%を超え99質量%未満、好ましくは56質量%以上90質量%以下、配合される。表面層が材料(III-3)を含有する場合は、材料(III-2)は、前記材料(III-1)の質量と前記材料(III-2)の酸化物換算量と前記材料(III-3)との質量和に対して、酸化物換算で、50質量%を超え99質量%未満配合され、好ましい下限値は56質量%以上であり、好ましい上限値は90質量%以下、より好ましくは80質量%以下であり、より好ましい範囲は56質量%以上90質量%以下である。
 また、本発明の好ましい態様によれば、材料(III-2)は、被膜形成成分に対して、酸化物換算で50質量%を超え99質量%未満、好ましくは56質量%以上90質量%以下配合される。後記するように、表面層が材料(III-3)を含有する場合は、材料(III-2)は、前記材料(III-1)の質量と前記材料(III-2)の酸化物換算量と前記材料(III-3)との質量和に対して、酸化物換算で、50質量%を超え99質量%未満配合され、好ましい下限値は56質量%以上であり、好ましい上限値は90質量%以下、より好ましくは80質量%以下であり、より好ましい範囲は56質量%以上90質量%以下である。ここで、被膜形成成分とは、コーティング組成物から溶媒等の揮発性成分と界面活性剤等の水溶性の添加剤を除外した成分であって、被膜形成成分量は、コーティング組成物の蒸発残量から水溶性の添加剤の量を除いた値と実質的に等しい値である。
 本発明の第三の態様によるコーティング組成物は材料(III-3)を任意成分として含むが、その製造工程において材料(III-3)に変化する前駆体が添加されてもよい。従って、本発明の第三の態様によるコーティング組成物が含むことができる材料(III-3)およびそれに変化する前駆体としては、シリカ、アルキルシリケート、アルカリシリケート、アルミナ、無定形酸化チタン、過酸化チタン、水酸化アルミニウム、およびベーマイトからなる群から選択される少なくとも一種が挙げられる。これらのうち、アルキルシリケートはシリカの前駆体、過酸化チタンは無定形酸化チタンの前駆体、水酸化アルミニウムおよびベーマイトはアルミナの前駆体である。これら前駆体は、被膜形成後に、シリカ、アルカリシリケート、アルミナ、または無定形酸化チタンに変化する。
 本発明の第三の態様によるコーティング組成物に配合できるアルキルシリケートとしては、Siアルコキシド類、Siアルコキシド類の加水分解物、Siキレート化合物などが挙げられる。これらの内で、Siアルコキシド類としては、炭素数1~4程度のアルコキシル基がSi原子に結合した化合物、例えば、Siテトラメトキシド、Siテトラエトキシド、Siテトラn-プロポキシド、Siテトライソプロポキシド、Siテトラn-ブトキシド、Siテトラt-ブトキシド等が挙げられる。また、キレート化合物としては、例えば、β-ケトンエステル錯体、β-ジケトン錯体、エタノールアミン類錯体、ジアルキレングリコール錯体等が挙げられる。
 本発明の第三の態様によるコーティング組成物が含む溶媒は、材料(III-1)、材料(III-1)および材料(III-3)を分散または溶解することができ、常温で液体の物質である。その例としては、水、エチレングリコール、ブチルセロソルブ、イソプロパノール、n-ブタノール、エタノール、メタノール等のアルコール類、トルエンやキシレン等の芳香族炭化水素類、ヘキサン、シクロヘキサン、ヘプタン等の脂肪族炭化水素類、酢酸エチル、酢酸n-ブチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、ジメチルアセトアミド、ジメチルホルムアミド等のアミド類、クロロホルム、塩化メチレン、四塩化炭素等のハロゲン化合物類、ジメチルスルホキシド、ニトロベンゼン等が挙げられる。これらの溶媒は、単独で又は組み合わせて用いられる。
 また、本発明の第三の態様によるコーティング組成物は、レベリング剤を含むことが好ましく、その例としては、ジアセトンアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジプロピレングリコール、トリプロピレングリコール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、プロピレングリコールモノメチルエーテル、1-プロポキシ-2-プロパノール、ジプロピレングリコールモノメチルエーテル、ジプロピレングコリールモノエチルエーテル、トリプロピレングリコールモノエチルエーテル、アセチレンアルコール等が挙げられる。
 本発明の第三の態様によるコーティング組成物は、場合により材料(III-1)、材料(III-2)および材料(III-3)に加え、顔料、硬化触媒、架橋剤、充填剤、分散剤、光安定剤、湿潤剤、増粘剤、レオロジーコントロール剤、消泡剤、成膜助剤、レベリング剤、防錆剤、染料、防腐剤等の添加剤を、それぞれの目的に応じて選択、組み合わせて配合することができる。特に、溶媒に水を用いた場合は、コーティング組成物の濡れ性を向上させるために、各種界面活性剤を添加剤として配合することができる。
 本発明の第三の態様によるコーティング組成物は、材料(III-1)および材料(III-2)、さらに任意成分としての材料(III-3)および他の任意成分を溶媒中に溶解または分散させて得ることができる。各材料は、粉体、溶液、ゾルなどの分散体等、種々の形態のものを組み合わせ、配合して、コーティング組成物とすることができる。
 コーティング組成物における固形分濃度は、0.05質量%~20質量%程度が好ましく、より好ましくは0.05質量%~10質量%である。固形分濃度は上述した被膜形成成分の濃度と実質的に等しく、具体的には、105℃~110℃でコーティング組成物を乾燥し、得られた蒸発残量と水溶性の添加剤の量との差を、コーティング組成物量で除して得ることができる。
複合材の製造方法
 本発明の第三の態様による複合材は、上述のコーティング組成物を用いて好ましく製造することが出来る。具体的には、上述の第三の態様によるコーティング組成物を基材表面に塗布した後、(a)基材表面を300℃以下で加熱する、(b)常温で乾燥させる、または(c)基材表面を300超過1000℃未満で2~60秒間加熱することのいずれかの方法で好ましくは形成される。いずれの製造方法においても、加熱しないか、比較的低温の加熱条件が、あるいは短時間での加熱条件とすることで、所望の水ぬれ特性(水滴保持性能と水膜形成性能)を十分に発現する表面層を得ることができる。
 基材への塗布は、刷毛、ローラー、またはスプレーによるコート、フローコート、ディップコート、スクリーン印刷、グラビア印刷、等の方法が利用できる。
本発明の第一の態様
コーティング組成物の調製
コーティング組成物の原料として以下のものを用意した。
材料(I-1)
・シリカ(水性コロイダルシリカ):平均粒径10nm 固形分含有率30%
材料(I-2)
・酸化ジルコニウム(水性アモルファスジルコニアゾル): 固形分含有率7.2%
界面活性剤
・シリコン系界面活性剤
 以下の実施例および比較例において固形分濃度とは、コーティング組成物中に含まれる、材料(I-1)および材料(I-2)の総固形分の濃度を示す。
実施例I1
 水性アモルファスジルコニア、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここでZrOとSiOの質量比は、40:60とした。
比較例I1
 水性アモルファスジルコニア、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここでZrOとSiOの質量比は、80:20とした。
比較例I2
 水性アモルファスジルコニア、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここでZrOとSiOの質量比は、20:80とした。
複合材の作製
 100mm×200mmのフロートガラス基材を、ガラス基材用研磨剤を用いて研磨し、イオン交換水にて研磨剤を完全に洗い流した。その後、基材を40℃の乾燥機にて30分乾燥させた。上記の実施例1および比較例1~2のコーティング組成物を、洗浄したフロートガラス基材にローラーコートし、温度25℃、湿度50%R.H.にて1日乾燥した。その後、基材をイオン交換水に2時間浸漬して界面活性剤を溶出させ、40℃の乾燥機にて30分乾燥させて複合材を得た。基材に対するコーティング組成物の塗布量は8-10g/m、塗膜の膜厚は20-40nmとなるように複合材の作製を行った。
評価I1:水膜形成性試験
 以上のようにして得られた実施例I1および比較例I1~I2のコーティング組成物にて表面層を形成した複合材に、照射強度を1mW/mに設定したBLBランプ(三共電気社製、製品名 FL20SBL、ピーク波長352nm)にて3日間光照射した。部材表面を地面に対して垂直に傾け、部材表面から10cm離れた所より、蓄圧式スプレー(マルハチ産業社製)にて100mm×200mmの基材全体にイオン交換水を15g噴霧した。評価指標は以下の通りとした。その結果は下記の表1に示されるとおりであった。
 A:部材表面の全面に水膜が形成したもの
 B:部材表面の一部が水をはじいたもの
 C:部材表面の全面が水をはじいたもの
評価I2:水滴滑落性試験
 以上のようにして得られた実施例I1および比較例I1~I2のコーティング組成物にて表面層を形成した複合材に、照射強度を1mW/mに設定したBLBランプ(三共電気社製、製品名 FL20SBL、ピーク波長352nm)にて3日間光照射した。部材を、図1に示すように地面より80°傾斜させて立て、部材表面に5箇所にそれぞれマイクロシリンジを用いて15μLの水滴を付着させ、各5箇所の合計得点より水滴滑落性を評価した。評価指標は以下の通りとし、合計得点を求めた。その結果は下記の表1に示されるとおりであった。
 0点:水滴の滑落が2cm未満であった。
 1点:2cm以上水滴が滑落した。
 2点:4cm以上水滴が滑落した。
 3点:6cm以上水滴が滑落した。
 4点:8cm以上水滴が滑落した。
 5点:10cm水滴が滑落した。
Figure JPOXMLDOC01-appb-T000001
本発明の第二の態様
コーティング組成物の調製
コーティング組成物の原料として以下のものを用意した。
材料(II-1)
・光触媒性酸化チタン(水性アナターゼ型酸化チタンゾル):平均粒径22nm 固形分含有率0.3%
材料(II-2)
・酸化ジルコニウム(水性アモルファスジルコニアゾル):固形分含有率7.2%
材料(II-3)
・シリカ(水性コロイダルシリカ):平均粒径10nm 固形分含有率30%
界面活性剤
・シリコン系界面活性剤
 以下の実施例および比較例において固形分濃度とは、コーティング組成物中に含まれる、材料(II-1)および材料(II-2)および材料(II-3)の総固形分の濃度を示す。
実施例II1
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニア、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここでTiOとZrOとSiOの質量比は、0.5:49:50.5とした。
実施例II2
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニア、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここでTiOとZrOとSiOの質量比は、1:49:50とした。
実施例II3
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニア、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここでTiOとZrOとSiOの質量比は、5:49:46とした。
実施例II4
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニア、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここでTiOとZrOとSiOの質量比は、5:60:35とした。
実施例II5
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニア、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここでTiOとZrOとSiOの質量比は、10:60:30とした。
実施例II6
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニア、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここでTiOとZrOとSiOの質量比は、15:60:25とした。
比較例II1
 水性アモルファスジルコニア、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここでZrOとSiOの質量比は、80:20とした。
複合材の作製
 100mm×200mmのフロートガラス基材を、ガラス基材用研磨剤を用いて研磨し、イオン交換水にて研磨剤を完全に洗い流した。その後、基材を40℃の乾燥機にて30分乾燥させた。上記の実施例II1~II14、比較例II1~II5のコーティング組成物を、洗浄したフロートガラス基材にローラーコートし、温度25℃、湿度50%R.H.にて1日乾燥した。その後、基材をイオン交換水に2時間浸漬して界面活性剤を溶出させ、40℃の乾燥機にて30分乾燥させて複合材を得た。基材に対するコーティング組成物の塗布量は8-10g/m、塗膜の膜厚は20-40nmとなるように複合材の作製を行った。
評価II1:水膜形成性試験
 以上のようにして得られた実施例II1~II6および比較例II1のコーティング組成物にて表面層を形成した複合材に、照射強度を1mW/mに設定したBLBランプ(三共電気社製、製品名 FL20SBL、ピーク波長352nm)にて3日間光照射した。部材表面を地面に対して垂直に傾け、部材表面から10cm離れた所より、蓄圧式スプレー(マルハチ産業社製)にて100mm×200mmの基材全体にイオン交換水を15g噴霧した。評価指標は以下の通りとした。その結果は下記の表2に示されるとおりであった。
 A:部材表面の全面に水膜が形成したもの
 B:部材表面の一部が水をはじいたもの
 C:部材表面の全面が水をはじいたもの
評価II2:水滴滑落性試験
 以上のようにして得られた実施例II1~II6および比較例II1のコーティング組成物にて表面層を形成した複合材に、照射強度を1mW/mに設定したBLBランプ(三共電気社製、製品名 FL20SBL、ピーク波長352nm)にて3日間光照射した。部材を、図1に示すように地面より80°傾斜させて立て、部材表面に5箇所にそれぞれマイクロシリンジを用いて15μLの水滴を付着させ、各5箇所の合計得点より水滴滑落性を評価した。評価指標は以下の通りとし、合計得点を求めた。その結果は下記の表2に示されるとおりであった。
 0点:水滴の滑落が2cm未満であった。
 1点:2cm以上水滴が滑落した。
 2点:4cm以上水滴が滑落した。
 3点:6cm以上水滴が滑落した。
 4点:8cm以上水滴が滑落した。
 5点:10cm水滴が滑落した。
評価II3:水に対する静的接触角の測定
 以上のようにして得られた実施例II1~II6および比較例II1のコーティング組成物にて表面層を形成した複合材に、照射強度を1mW/mに設定したBLBランプ(三共電気社製、製品名 FL20SBL、ピーク波長352nm)にて3日間光照射した。実施例1~6および比較例1の部材表面について、水に対する静的接触角を、接触角測定装置(協和界面科学社製、製品名 CA-X150型)を用いて、室温で5μLの水滴を滴下後、5秒後の静的接触角をθ/2法により測定した。その結果は下記の表2に示されるとおりであった。
Figure JPOXMLDOC01-appb-T000002
本発明の第三の態様
光触媒コーティング組成物の調製
コーティング組成物の原料として以下のものを用意した。
材料(III-1)
・光触媒性酸化チタン(水性アナターゼ型酸化チタンゾル):平均粒径22nm 固形分含有率0.3%
材料(III-2)
・酸化ジルコニウム(水性アモルファスジルコニアゾル):固形分含有率7.2%
・酸化ジルコニウム(水性正方晶型ジルコニアゾル):平均粒径
63nm 固形分含有率30%
・炭酸ジルコニウムアンモニウム(炭酸ジルコニウムアンモニウム水溶液):固形分(ZrO換算)含有率13%
・カーボンブラック(疎水性カーボンブラック水分散液):固形分含有率1%
材料(III-3)
・シリカ(水性コロイダルシリカ):平均粒径10nm 固形分含有率30%
・アルミナ(中性・高分散アルミナゾル):平均粒径7nm 固形分含有率7%
・過酸化チタン(ペルキオキソチタン酸溶液):pH6~8 固形分(TiO換算)含有率0.85%
界面活性剤
・シリコン系界面活性剤
 以下の実施例および比較例において固形分濃度とは、材料(III-1)および材料(III-2)の総固形分、また材料(III-3)がさらに含まれる場合は、材料(III-1)、材料(III-2)および材料(III-3)の総固形分の、コーティング組成物中の濃度を示す。
実施例III1
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニアゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、TiOとZrOの質量比は、44:56とした。
実施例III2
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニアゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、TiOとZrOの質量比は、40:60とした。
実施例III3
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニアゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、TiOとZrOの質量比は、30:70とした。
実施例III4
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニアゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、TiOとZrOの質量比は、10:90とした。
実施例III5
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニア、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、TiOとZrOのとSiOの質量比は、5:60:35とした。
実施例III6
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニア、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、TiOとZrOのとSiOの質量比は、15:60:25とした。
実施例III7
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニア、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、TiOとZrOのとSiOの質量比は、30:60:10とした。
実施例III8
 水性アナターゼ型酸化チタンゾル、水性正方晶型ジルコニアゾル、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、TiOとZrOのとSiOの質量比は、20:60:20とした。
実施例III9
 水性アナターゼ型酸化チタンゾル、炭酸ジルコニウムアンモニウム水溶液、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、TiOと炭酸ジルコニウムアンモニウム(ZrO換算値)とSiOの質量比は、20:60:20とした。
実施例III10
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニアゾル、中性・高分散アルミナゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、TiOとZrOとAlの質量比は、20:60:20とした。
実施例III11
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニアゾル、水性コロイダルシリカゾル、ペルキオキソチタン酸溶液、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、アナターゼ型TiOとZrOとSiOとペルキオキソチタン酸(TiO換算値)の質量比は、20:60:10:10とした。
実施例III12
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニアゾル、水性コロイダルシリカゾル、ペルキオキソチタン酸溶液、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、アナターゼ型TiOとZrOとSiOとペルオキソチタン酸(TiO換算値)の質量比は、20:60:5:15とした。
実施例III13
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニアゾル、水性コロイダルシリカゾル、ペルキオキソチタン酸(アモルファスチタン酸溶液)、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、アナターゼ型TiOとZrOとSiOとペルオキソチタン酸の(TiO換算値)の質量比は、20:60:15:5とした。
実施例III14
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニアゾル、ペルキオキソチタン酸(アモルファスチタン酸溶液)、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、アナターゼ型TiOとZrOとペルオキソチタン酸(TiO換算値)の質量比は、20:60:20とした。
比較例III1
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニアゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、TiOとZrOの質量比は、50:50とした。
比較例III2
 水性アナターゼ型酸化チタンゾル、水性アモルファスジルコニアゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、TiOとZrOの質量比は、1:99とした。
比較例III3
 水性アモルファスジルコニアゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。
比較例III4
 水性アモルファスジルコニア、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、ZrOとSiOの質量比は、60:40とした。
比較例III5
 水性アナターゼ型酸化チタンゾル、疎水性カーボンブラック水分散液、水性コロイダルシリカゾル、およびシリコン系界面活性剤を、溶媒としての水に混合して、固形分濃度0.3質量%となるよう調製してコーティング組成物を得た。ここで、TiOとカーボンブラックとSiOの質量比は、20:60:20とした。
複合材の作製
 100mm×200mmのフロートガラス基材を、ガラス基材用研磨剤を用いて研磨し、イオン交換水にて研磨剤を完全に洗い流した。その後、基材を40℃の乾燥機にて30分乾燥させた。上記の実施例III1~III14および比較例III1~III5のコーティング組成物を、洗浄したフロートガラス基材にローラーコートし、温度25℃、湿度50%R.H.にて1日乾燥した。その後、基材をイオン交換水に2時間浸漬して界面活性剤を溶出させ、40℃の乾燥機にて30分乾燥させて複合材を得た。基材に対するコーティング組成物の塗布量は8-10g/m、塗膜の膜厚は20-40nmとなるように複合材の作製を行った。
評価III1:水膜形成性試験
 以上のようにして得られた実施例III1~III14および比較例III1~III5のコーティング組成物にて表面層を形成した複合材に、照射強度を1mW/mに設定したBLBランプ(三共電気社製、製品名 FL20SBL、ピーク波長352nm)にて3日間光照射した。部材表面を地面に対して垂直に傾け、部材表面から10cm離れた所より、蓄圧式スプレー(マルハチ産業社製)にて100mm×200mmの基材全体にイオン交換水を15g噴霧した。評価指標は以下の通りとした。その結果は下記の表3に示されるとおりであった。
 A:部材表面の全面に水膜が形成したもの
 B:部材表面の一部が水をはじいたもの
 C:部材表面の全面が水をはじいたもの
評価III2:水滴滑落性試験
 以上のようにして得られた実施例III1~III14および比較例III1~III5のコーティング組成物にて表面層を形成した複合材に、照射強度を1mW/mに設定したBLBランプ(三共電気社製、製品名 FL20SBL、ピーク波長352nm)にて3日間光照射した。部材を、図1に示すように地面より80°傾斜させて立て、部材表面に5箇所にそれぞれマイクロシリンジを用いて15μLの水滴を付着させ、各5箇所の合計得点より水滴滑落性を評価した。評価指標は以下の通りとし、合計得点を求めた。その結果は下記の表3に示されるとおりであった。
 0点:水滴の滑落が2cm未満であった。
 1点:2cm以上水滴が滑落した。
 2点:4cm以上水滴が滑落した。
 3点:6cm以上水滴が滑落した。
 4点:8cm以上水滴が滑落した。
 5点:10cm水滴が滑落した。
Figure JPOXMLDOC01-appb-T000003

Claims (47)

  1.  基材と、前記基材の表面に形成された表面層とを備えてなる複合材であって、
     前記表面層が、
     Si、Al、Ti、SnおよびWからなる群から選択される少なくとも一種の金属と、酸素とを含有する化合物(A)と、
     Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物(B)と
    を含んでなり、
     前記化合物(B)が、前記化合物(A)の質量と前記化合物(B)の酸化物換算質量との質量和に対して、その酸化物換算で30質量%以上99質量%未満配合されてなることを特徴とする、複合材。
  2.  前記表面層が、前記化合物(A)としての材料(I-1)と、前記化合物(B)としての材料(I-2)とを含んでなり、
     前記材料(I-1)が、シリカ、アルカリシリケート、アルミナ、および無定形チタニアからなる群から選択される少なくとも一種の化合物であり、
     前記材料(I-2)が、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物であり、
     前記材料(I-2)が、前記材料(I-1)の質量と前記材料(I-2)の酸化物換算質量との質量和に対して、その酸化物換算で30質量%以上70質量%以下配合されてなる、請求項1に記載の複合材。
  3.  前記材料(I-2)が、前記材料(I-1)の質量と前記材料(I-2)の酸化物換算質量との和に対して、その酸化物換算で30質量%以上50質量%以下配合されてなる、請求項2に記載の複合材。
  4.  前記材料(I-2)が、前記表面層において、その酸化物換算で30質量%以上70質量%以下配合されてなる、請求項3に記載の複合材。
  5.  前記材料(I-2)が、前記表面層において、その酸化物換算で30質量%以上50質量%未満配合されてなる、請求項4に記載の複合材。
  6.  前記材料(I-1)が、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、10nm以上100nm以下の個数平均粒径を有する粒子である、請求項2~5のいずれか一項に記載の複合材。
  7.  前記表面層が光触媒材料を含有していない、請求項1~6のいずれか一項に記載の複合材。
  8.  前記表面層が、前記化合物(A)の一種としての材料(II-1)と、前記化合物(B)としての材料(II-2)と、前記化合物(A)の一種としての材料(II-3)とを含んでなり、
     前記材料(II-1)が光触媒材料であり、
     前記材料(II-2)が、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物であり、
     前記材料(II-3)が、シリカ、アルカリシリケート、および無定形チタニアからなる群から選択される少なくとも一種の化合物であり、
     さらに、前記化合物(A)の一種としての材料でありかつ任意成分としてのアルミナを含んでなり、
     前記材料(II-1)の質量と前記材料(II-2)の酸化物換算量と前記材料(II-3)の酸化物換算量と前記アルミナの質量和に対して、
     前記材料(II-1)が0質量%超過20質量%未満、
     前記材料(II-2)が、その酸化物換算量で35質量%超過60質量%以下、
     前記材料(II-3)が、その酸化物換算量で10質量%超過65質量%未満配合されてなり、そして
     アルミナが0質量%以上10質量%以下配合されてなる、請求項1に記載の複合材。
  9.  前記光触媒材料が、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、酸化亜鉛、酸化錫、結晶性酸化タングステン、および非晶質酸化タングステンからなる群から選択される少なくとも一種の光触媒材料である、請求項8に記載の複合材。
  10.  前記材料(II-1)が、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、10nm以上100nm以下の個数平均粒径を有する粒子である、請求項8または9に記載の複合材。
  11.  前記表面層が、前記化合物(A)としての材料(III-1)と、前記化合物(B)としての材料(III-2)とを含んでなり、
     前記材料(III-1)が光触媒材料であり、
     前記材料(III-2)が、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、および無機塩からなる群から選択される少なくとも一種の化合物であり、
     前記材料(III-2)が、前記材料(III-1)の質量と前記材料(III-2)の酸化物換算質量との質量和に対して、その酸化物換算で50質量%を超え99質量%未満配合されてなる、請求項1に記載の複合材。
  12.  前記光触媒材料が、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、酸化亜鉛、酸化錫、結晶性酸化タングステン、および非晶質酸化タングステンからなる群から選択される少なくとも一種の光触媒材料である、請求項11に記載の複合材。
  13.  前記表面層が前記化合物(A)の一種としての材料(III-3)をさらに含んでなり、当該材料(III-3)が、シリカ、アルカリシリケート、アルミナ、および無定形チタニアからなる群から選択される少なくとも一種である、請求項11または12に記載の複合材。
  14.  前記材料(III-2)が、前記材料(III-1)の質量と前記材料(III-2)の酸化物換算質量と前記材料(III-3)の質量との和に対して、その酸化物換算で50質量%を超え99質量%未満配合されてなる、請求項13に記載の複合材。
  15.  前記材料(III-2)が、前記材料(III-1)の質量と前記材料(III-2)の酸化物換算質量との和に対して、その酸化物換算で56質量%以上90質量%以下配合されてなる、請求項11または12に記載の複合材。
  16.  前記材料(III-2)が、前記材料(III-1)の質量と前記材料(III-2)の酸化物換算量と前記材料(III-3)の質量との質量和に対して、その酸化物換算で56質量%以上90質量%以下配合されてなる、請求項13に記載の複合材。
  17.  前記材料(III-2)が、前記表面層において、その酸化物換算で50質量%を超え99質量%未満配合されてなる、請求項11~14のいずれか一項に記載の複合材。
  18.  前記材料(III-2)が、前記表面層において、その酸化物換算で56質量%以上90質量%以下配合されてなる、請求項11~16のいずれか一項に記載の複合材。
  19.  前記材料(III-1)が、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、10nm以上100nm以下の個数平均粒径を有する粒子である、請求項11~18のいずれか一項に記載の複合材。
  20.  前記化合物(B)が、ZrまたはHfを含有する、酸化物、および無機塩からなる群から選択される少なくとも一種の化合物である、請求項1~19のいずれか一項に記載の複合材。
  21.  前記化合物(B)が、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、非晶質の酸化物若しくは平均結晶子径10nm未満の酸化物粒子、または無機塩である、請求項1~19のいずれか一項に記載の複合材。
  22.  前記化合物(B)が、ZrまたはHfを含有する、非晶質の酸化物若しくは平均結晶子径10nm未満の酸化物粒子、または無機塩である、請求項21に記載の複合材。
  23.  前記基材が、壁材または窓材である、請求項1~22のいずれか一項に記載の複合材。
  24.  Si、Al、Ti、SnおよびWからなる群から選択される少なくとも一種の金属と、酸素とを含有する化合物(A)と、
     Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物(B)と
     溶媒と
    を含んでなるコーティング組成物であって、
     前記化合物(B)が、前記化合物(A)の質量と前記化合物(B)の酸化物換算質量との質量和に対して、その酸化物換算で30質量%以上99質量%未満配合されてなることを特徴とする、コーティング組成物。
  25.  前記化合物(A)としての材料(I-1)と、前記化合物(B)としての材料(I-2)と、溶媒とを含んでなり、
     前記材料(I-1)が、シリカ、アルカリシリケート、アルミナ、および無定形チタニアからなる群から選択される少なくとも一種の化合物及び/又はそれらの前駆体であり、
     前記材料(I-2)が、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物であり、
     前記材料(I-2)が、前記材料(I-1)の質量と前記材料(I-2)の酸化物換算質量との質量和に対して、その酸化物換算で30質量%以上70質量%以下配合されてなる、請求項24に記載のコーティング組成物。
  26.  前記材料(I-2)が、前記材料(I-1)の質量と前記材料(I-2)の酸化物換算量との質量和に対して、その酸化物換算で30質量%以上50質量%以下配合されてなる、請求項25に記載のコーティング組成物。
  27.  前記材料(I-2)が、被膜形成成分に対して、その酸化物換算で30質量%を超え70質量%以下配合されてなる、請求項25に記載のコーティング組成物。
  28.  前記材料(I-2)が、被膜形成成分に対して、その酸化物換算で30質量%を超え50質量%未満配合されてなる、請求項27に記載のコーティング組成物。
  29.  前記材料(I-1)が、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、10nm以上100nm以下の個数平均粒径を有する粒子である、請求項25~28のいずれか一項に記載のコーティング組成物。
  30.  光触媒材料を含有しない、請求項25~29のいずれか一項に記載のコーティング組成物。
  31.  前記化合物(A)の一種としての材料(II-1)と、前記化合物(B)としての材料(II-2)と、前記化合物(A)の一種としての材料(II-3)と、溶媒とを含んでなり、
     前記材料(II-1)が光触媒材料であり、
     前記材料(II-2)が、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、無機塩、および有機塩からなる群から選択される少なくとも一種の化合物であり、
     前記材料(II-3)が、シリカ、アルカリシリケート、および無定形チタニアからなる群から選択される少なくとも一種の化合物であり、
     さらに、前記化合物(A)の一種としての材料でありかつ任意成分としてのアルミナを含んでなり、
     前記材料(II-1)の質量と前記材料(II-2)の酸化物換算量と前記材料(II-3)の酸化物換算量と前記アルミナの質量和に対して、
     前記材料(II-1)が0質量%超過20質量%未満、
     前記材料(II-2)が、その酸化物換算量で35質量%超過60質量%以下、
     前記材料(II-3)が、その酸化物換算量で10質量%超過65質量%未満配合されてなり、そして
     アルミナが0質量%以上10質量%以下配合されてなる、請求項24に記載のコーティング組成物。
  32.  前記光触媒材料が、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、酸化亜鉛、酸化錫、結晶性酸化タングステン、および非晶質酸化タングステンからなる群から選択される少なくとも一種の光触媒材料である、請求項31に記載のコーティング組成物。
  33.  前記材料(II-1)が、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、10nm以上100nm以下の個数平均粒径を有する粒子である、請求項31または32に記載のコーティング組成物。
  34.  前記化合物(A)としての材料(III-1)と、前記化合物(B)としての材料(III-2)と、溶媒とを含んでなるコーティング組成物であって、
     前記材料(III-1)が光触媒材料であり、
     前記材料(III-2)が、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfからなる群から選択される少なくとも一種の金属を含有する、酸化物、および無機塩からなる群から選択される少なくとも一種の化合物であり、
     前記材料(III-2)が前記材料(III-1)の質量と前記材料(III-2)の酸化物換算質量との質量和に対して、その酸化物換算で50質量%を超え99質量%未満配合されてなる、請求項24に記載のコーティング組成物。
  35.  前記光触媒材料が、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、酸化亜鉛、酸化錫、結晶性酸化タングステン、および非晶質酸化タングステンからなる群から選択される少なくとも一種の光触媒材料である、請求項34に記載のコーティング組成物。
  36.  シリカ、アルキルシリケート、アルカリシリケート、アルミナ、無定形酸化チタン、過酸化チタン、水酸化アルミニウム、およびベーマイトからなる群から選択される少なくとも一種である材料(III-3)をさらに含んでなる、請求項34または35に記載のコーティング組成物。
  37.  前記材料(III-2)が、前記材料(III-1)の質量と前記材料(III-2)の酸化物換算量と前記材料(III-3)の酸化物換算量との質量和に対して、その酸化物換算で50質量%を超え99質量%未満配合されてなる、請求項36に記載のコーティング組成物。
  38.  前記材料(III-2)が、前記材料(III-1)の質量と前記材料(III-2)の酸化物換算量との質量和に対して、その酸化物換算で56質量%以上90質量%以下配合されてなる、請求項37に記載のコーティング組成物。
  39.  前記材料(III-2)が、前記材料(III-1)の質量と前記材料(III-2)の酸化物換算量と前記材料(III-3)の酸化物換算量との質量和に対して、その酸化物換算で56質量%以上90質量%以下配合されてなる、請求項36に記載のコーティング組成物。
  40.  前記材料(III-2)が、被膜形成成分に対して、その酸化物換算で50質量%を超え99質量%未満配合されてなる、請求項34~37のいずれか一項に記載のコーティング組成物。
  41.  前記材料(III-2)が、被膜形成成分に対して、酸化物換算で56質量%を超え90質量%以下配合されてなる、請求項34~39のいずれか一項に記載の複合材。
  42.  前記材料(III-1)が、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、10nm以上100nm以下の個数平均粒径を有する粒子である、請求項34~41のいずれか一項に記載のコーティング組成物。
  43.  前記化合物(B)が、ZrまたはHfを含有する、酸化物、および無機塩の群から選択される少なくとも一種の化合物である、請求項24~42のいずれか一項に記載のコーティング組成物。
  44. 前記化合物(B)が、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、およびHfの群から選択される少なくとも1種の金属を含有する、非晶質の酸化物若しくは平均結晶子径10nm未満の酸化物粒子、または無機塩である、請求項24~42のいずれか一項に記載のコーティング組成物。
  45. 前記化合物(B)が、ZrまたはHfを含有する、非晶質の酸化物若しくは平均結晶子径10nm未満の酸化物粒子、または無機塩である、請求項44に記載のコーティング組成物。
  46.  請求項24~45のいずれか一項に記載のコーティング組成物を基材表面に塗布した後、(a)前記基材表面を300℃以下で加熱する、(b)常温で乾燥させる、または(c)前記基材表面を300超過1000℃未満で2~60秒間加熱することにより表面層を形成することを特徴とする、複合材の製造方法。
  47.  請求項46に記載の製造方法によって得られた複合材。
     
PCT/JP2012/083809 2011-12-29 2012-12-27 複合材およびコーティング組成物 WO2013100021A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280064345.2A CN104053545B (zh) 2011-12-29 2012-12-27 复合材料及涂装组合物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-290428 2011-12-29
JP2011290427A JP5849698B2 (ja) 2011-12-29 2011-12-29 複合材およびコーティング組成物
JP2011-290427 2011-12-29
JP2011-290422 2011-12-29
JP2011290428A JP2013139357A (ja) 2011-12-29 2011-12-29 複合材およびコーティング組成物
JP2011290422A JP2013138993A (ja) 2011-12-29 2011-12-29 複合材およびコーティング組成物

Publications (1)

Publication Number Publication Date
WO2013100021A1 true WO2013100021A1 (ja) 2013-07-04

Family

ID=48697500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083809 WO2013100021A1 (ja) 2011-12-29 2012-12-27 複合材およびコーティング組成物

Country Status (3)

Country Link
CN (1) CN104053545B (ja)
TW (1) TW201332654A (ja)
WO (1) WO2013100021A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111921516A (zh) * 2020-09-18 2020-11-13 哈尔滨师范大学 一种具有超强降解效果的光催化剂的制备方法
WO2022190901A1 (ja) * 2021-03-10 2022-09-15 日東電工株式会社 光触媒材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176836A (ja) * 1997-07-10 1999-03-23 Nok Corp 複合酸化物薄膜およびその製造法
WO2000053689A1 (fr) * 1999-03-09 2000-09-14 Toto Ltd. Element hydrophile, son procede de preparation, agent de revetement et appareil de preparation
JP2009213954A (ja) * 2008-03-07 2009-09-24 Univ Of Tokyo 薄膜及びその製造方法、並びにガラス
JP2009270040A (ja) * 2008-05-09 2009-11-19 Sumitomo Chemical Co Ltd 非晶質のZr−O系粒子を分散質とするゾル、その製造方法、このゾルをバインダーとする光触媒体コーティング液、およびその光触媒体コーティング液を塗布した光触媒機能製品の製造方法
JP2011062602A (ja) * 2009-09-15 2011-03-31 Toto Ltd 外構、および外構用コーティング液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176836A (ja) * 1997-07-10 1999-03-23 Nok Corp 複合酸化物薄膜およびその製造法
WO2000053689A1 (fr) * 1999-03-09 2000-09-14 Toto Ltd. Element hydrophile, son procede de preparation, agent de revetement et appareil de preparation
JP2009213954A (ja) * 2008-03-07 2009-09-24 Univ Of Tokyo 薄膜及びその製造方法、並びにガラス
JP2009270040A (ja) * 2008-05-09 2009-11-19 Sumitomo Chemical Co Ltd 非晶質のZr−O系粒子を分散質とするゾル、その製造方法、このゾルをバインダーとする光触媒体コーティング液、およびその光触媒体コーティング液を塗布した光触媒機能製品の製造方法
JP2011062602A (ja) * 2009-09-15 2011-03-31 Toto Ltd 外構、および外構用コーティング液

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111921516A (zh) * 2020-09-18 2020-11-13 哈尔滨师范大学 一种具有超强降解效果的光催化剂的制备方法
CN111921516B (zh) * 2020-09-18 2023-03-14 哈尔滨师范大学 一种具有超强降解效果的光催化剂的制备方法
WO2022190901A1 (ja) * 2021-03-10 2022-09-15 日東電工株式会社 光触媒材料

Also Published As

Publication number Publication date
CN104053545A (zh) 2014-09-17
TW201332654A (zh) 2013-08-16
CN104053545B (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5196710B2 (ja) コーティング材とその用途
US7833340B2 (en) Coating material and use thereof
EP1512728B1 (en) Photocatalytic coating material, photocatalytic composite material and process for producing the same, self-cleaning water-based coating compositions, and self-cleaning member
TWI440505B (zh) Photocatalyst coating
JP6720615B2 (ja) 光触媒コーティング組成物
JP2008500433A (ja) 親水性組成物、その生成のための方法、およびそのような組成物でコーティングされた基材
AU2014237704B2 (en) Superhydrophilic coating composition
US20130224096A1 (en) Photocatalyst coated body and photocatalyst coating liquid
JP2006299210A (ja) コーティング材、光触媒膜及びその用途
WO2013100021A1 (ja) 複合材およびコーティング組成物
US20200070124A1 (en) Photocatalytic coating, process for producing photocatalytic coating, and process for producing photocatalytic body
JP5849698B2 (ja) 複合材およびコーティング組成物
JP2013138993A (ja) 複合材およびコーティング組成物
JP2010275544A (ja) 親水性膜形成用カゴ型シルセスキオキサン−ペルオキソチタン複合体光触媒塗工液及び塗膜
JP5305231B2 (ja) 光触媒塗装体
JP6695417B2 (ja) 光触媒構造体及びその製造方法
JP2013139357A (ja) 複合材およびコーティング組成物
Raimondo et al. Photocatalytic Ceramic Tiles: Key Factors in Industrial Scale-Up (and the Open Question of Performance)
JP6770264B2 (ja) エマルション塗料の製造方法及び無機ケイ酸塩高分子粒子
KR101150073B1 (ko) 오염방지 코팅제 및 그 제조방법
WO2020084169A1 (en) Photocatalytic composition comprising titanium dioxide and a carrier
JP2010029806A (ja) 光触媒塗装体およびそのための光触媒コーティング液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861367

Country of ref document: EP

Kind code of ref document: A1