WO2013100004A1 - ねじ付き管の端部形状測定方法 - Google Patents

ねじ付き管の端部形状測定方法 Download PDF

Info

Publication number
WO2013100004A1
WO2013100004A1 PCT/JP2012/083771 JP2012083771W WO2013100004A1 WO 2013100004 A1 WO2013100004 A1 WO 2013100004A1 JP 2012083771 W JP2012083771 W JP 2012083771W WO 2013100004 A1 WO2013100004 A1 WO 2013100004A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
light source
shape
laser beam
threaded tube
Prior art date
Application number
PCT/JP2012/083771
Other languages
English (en)
French (fr)
Inventor
研太 坂井
本田 達朗
誠司 平岡
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201280064412.0A priority Critical patent/CN104024790B/zh
Priority to BR112014010436-0A priority patent/BR112014010436B1/pt
Priority to EP12863313.8A priority patent/EP2799809B1/en
Priority to US14/368,539 priority patent/US9557165B2/en
Publication of WO2013100004A1 publication Critical patent/WO2013100004A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2425Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures of screw-threads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object

Definitions

  • the present invention relates to a method for accurately and quickly measuring the shape of a threaded portion or a seal portion formed at an end of a threaded tube such as an oil well tube.
  • a threaded portion (male threaded portion) is formed on the outer peripheral surface of the end portion of the tube to form a threaded tube, and each threaded portion of a pair of threaded tubes (
  • a method is used in which the ends of the pipes are connected to each other by fastening the male thread part) to a joint (box joint) in which a thread part (female thread part) is formed on the inner peripheral surface.
  • the fastening state with the joint may be loosened, the connection between the tubes may be released, and the fluid flowing inside the tube may leak to the outside .
  • the demands on the dimensional accuracy and quality assurance level of the threaded portion are becoming stricter year by year as the oil well environment becomes severer in recent years.
  • FIG. 1 is a cross-sectional view schematically showing an example of an end shape of an oil well pipe.
  • 1A is a cross-sectional view of the entire end portion
  • FIG. 1B is an enlarged view of a circular region indicated by a symbol X in FIG.
  • the end portion of the oil well pipe P is provided on the pipe end surface E side of the screw portion P3 adjacent to the screw portion P3 and the screw portion P3 provided with the screw thread P1 and the screw groove P2.
  • the parallel portion P5 and the seal portion P4 provided adjacent to the parallel portion P4 and closer to the tube end surface E than the parallel portion P4 are configured.
  • the oil well pipe P includes a pair of flank surfaces P6 (a top portion P11 of the screw thread P1 and a bottom portion P21 of the screw groove P2) that define each screw thread P1 of the screw portion P3.
  • a flank surface P6 on the side opposite to the tube end surface E side
  • the flank surface P6 is a flank surface (hereinafter referred to as a hook-like flank surface) that is inclined so as to approach the tube end surface E side from the top portion P11 of the thread P1 toward the bottom portion P21 of the screw groove P2.
  • a screw portion P3 formed as P6h is formed.
  • the transparent film shows the allowable range of the cross-sectional shape according to the allowable range of the angle of the flank surface P6 and the allowable range of curvature of the screw bottom R portion P7, and the shadow edge is within the allowable range of the cross-sectional shape. It is determined whether or not the angle of the flank surface P6 and the curvature of the screw bottom R portion P7 are acceptable by visually confirming whether or not there is. Further, the curvature of the tip R portion of the seal portion P4 (the portion where the shoulder surface P41 and the seal surface P42 of the seal portion P4 intersect) P43 may be inspected in the same manner as in the case of the screw portion P described above.
  • the inspection as described above requires a great deal of labor, such as mold making of the screw portion P3 and the seal portion P4, and cutting the die into a cross-sectional shape. For this reason, it must be a sampling inspection such as inspecting the first and last oil well pipes P of the same production lot, and the total inspection is difficult. Moreover, since the pass / fail determination is merely made by comparison with the allowable range, it is difficult to quantitatively evaluate the shapes of the screw part P3 and the seal part P4.
  • Patent Documents 1 and 2 irradiate light parallel to the screw groove P2 and detect light passing through the screw part P3, thereby detecting the outer shape of the screw part P3 (the screw part P3).
  • a method (light projection method) for measuring an uneven shape on the surface and called a screw profile has been proposed. If the screw profile of the screw portion P3 can be measured with high accuracy by this light projection method, the angle of the flank surface P6 and the curvature of the screw bottom R portion P7 can be calculated with high accuracy from the screw profile.
  • the flank surface P6 may be hidden by the shadow of the ridge line of the screw thread P1, and the flank surface P6 may not be detected accurately.
  • the flank surface P6 is the hook-shaped flank surface P6h, an error caused by the hook-shaped flank surface P6h being hidden by the shadow of the ridge line of the thread P1 cannot be ignored.
  • the applicants have proposed a method of measuring the shape of the threaded portion P3 related to the flank surface P6 using a contact probe, as described in Patent Document 3.
  • the measurement is performed by sequentially moving the contact probe and bringing the spherical contact attached to the tip into contact with the flank surface P6, the measurement time is inevitably increased. The number of measurement points is not sufficient. For this reason, the angle of the flank surface P6 may not be accurately measured.
  • the contact has a predetermined dimension, it is difficult to accurately measure the curvature of the screw bottom R portion P7.
  • Patent Document 3 and Patent Document 4 described above a method for detecting a screw shaft is proposed.
  • the present invention has been made to solve the above-described problems of the prior art, and the shape of the threaded portion and the seal portion formed at the end of a threaded tube such as an oil well tube can be accurately and quickly formed. It is an object to provide a measurable method.
  • the present inventors have conducted intensive studies. As a result, in order to measure the shape of the screw part and the seal part, if a light cutting method using a slit-like laser beam is applied, the measurement can be performed quickly. We focused on being. Then, if the laser beam is positioned so that the optical axis of the light source that emits the slit-shaped laser beam passes through the point on the screw axis and the slit-shaped laser beam spreads in the plane including the screw axis, the shape of the thread portion As a result, the present invention has been completed.
  • the present invention is a method for measuring the end shape of a threaded tube, and includes the following steps (1) to (4).
  • Thread axis detection step Detects the thread axis of a threaded tube.
  • Laser beam positioning step a light source that emits a slit-shaped laser beam and an imaging unit having a visual axis in a direction different from the optical axis of the light source, and the laser beam emitted from the light source is threaded
  • the screw part or the seal part which is a measurement target part of the tube, is integrally moved to a position where it can be irradiated and positioned.
  • Laser beam imaging step The measurement target region is irradiated with laser light from the light source, and the irradiated laser light is imaged by the imaging means.
  • Shape calculation step The shape of the measurement target portion is calculated by performing image processing on the captured image obtained in the laser beam imaging step.
  • the optical axis of the light source is positioned so as to pass through the measurement point on the screw shaft located at the measurement target site in a plane including the screw shaft, and The light source and the imaging means are integrally moved so that the laser light spreads in a slit shape within the plane.
  • the screw shaft of the threaded tube is detected in the screw shaft detection step.
  • the screw shaft can be detected using a known method as described in Patent Document 3 and Patent Document 4 described above.
  • the direction of the tube end surface E, and hence the inclinations ⁇ 1 and ⁇ 2 of the screw shaft A perpendicular to the tube end surface E are detected by an end surface copying mechanism including three or more contact sensors. It is possible (see FIG. 2).
  • the intersection C (X0, Y0, Z0) between the pipe end face E and the screw shaft A can be detected by measuring the position of the pipe end face E by the end face copying mechanism and measuring the seal diameter by the dimension measuring mechanism. (See FIG. 2). If the intersection C (X0, Y0, Z0) and the inclinations ⁇ 1, ⁇ 2 are detected in this way, the screw axis A is uniquely determined.
  • the light source 1 that emits the slit-shaped laser light L and the imaging unit 2 that has the visual axis VA in a direction different from the optical axis LA of the light source 1 are:
  • the laser beam L emitted from the light source 1 is integrally moved to a position where the screw portion P3 or the seal portion P4, which is a measurement target portion of the threaded tube P, can be irradiated (see FIG. 2).
  • the laser beam imaging step the laser beam L is irradiated from the light source 1 to the measurement target site, and the irradiated laser beam L is imaged by the imaging unit 2 (see FIG. 2).
  • the shape of the measurement target part is calculated by performing image processing on the captured image obtained in the laser beam imaging step (for example, image processing is performed by the image processing means 3 shown in FIG. 2).
  • image processing is performed by the image processing means 3 shown in FIG. 2.
  • a measurement value related to at least one of the angle ⁇ of the flank P6, the curvature of the screw bottom R portion P7, and the curvature of the tip R portion P43 is calculated. That is, the shape of the measurement target part is calculated by an optical cutting method using the slit-shaped laser light L.
  • the measurement point D (X1, Y1, Z1) on the screw shaft A located at the measurement target site (the screw portion P3 or the seal portion P4) within the surface NP including the screw shaft A.
  • the optical axis LA of the light source 1 is positioned so as to pass through and the laser light L spreads in a slit shape within the surface NP (including rotation).
  • the laser beam L emitted from the light source 1 is irradiated along the outer edge of the cross section obtained when the threaded tube P is cut by the surface NP including the screw axis A.
  • the light cutting line is irradiated along the outer edge of the cross section of the threaded tube P including the screw axis A.
  • the flank surface P6 is changed to the hook-shaped flank surface P6h by appropriately adjusting the visual axis VA of the imaging means 2. Even in this case, the irradiated laser beam L can be imaged without the hook-shaped flank surface P6h hidden behind the ridgeline of the thread P1.
  • the shape calculation step it can be expected that the shape of the screw portion P3 and the seal portion P4 (cross-sectional shape when cut by the surface NP including the screw shaft A) can be measured with high accuracy.
  • the shape of the measurement target portion can be measured quickly without requiring a long time for measurement compared to the case of measuring using a contact probe.
  • the light source 1 and the light source 1 so that the optical axis LA of the light source 1 passes through the measurement point D (X1, Y1, Z1) in the plane NP including the screw axis A and the laser light L spreads in a slit shape in the plane NP.
  • the imaging unit 2 In order to move the imaging unit 2 integrally, for example, the light source 1 and the imaging unit 2 can be displaced in the X direction, the Y direction, and the Z direction, respectively, via a known drive stage that can rotate around each direction. Then, it may be attached to the dimension measuring mechanism described in Patent Document 4.
  • FIG. 1 is a cross-sectional view schematically showing an example of an end shape of an oil well pipe.
  • FIG. 2 is an explanatory view illustrating a method for measuring the end shape of a threaded tube according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of the result of measuring the shape of the thread bottom R portion of the threaded tube.
  • FIG. 4 is a diagram showing an example of the result of measuring the shape of the flank surface of the threaded tube.
  • FIG. 5 is a diagram showing an example of the result of measuring the shape of the tip R portion of the threaded tube.
  • FIG. 2 is an explanatory diagram for explaining a method for measuring an end shape of a threaded tube (oil well tube) according to an embodiment of the present invention.
  • FIG. 2A is a diagram schematically showing an apparatus configuration for measuring the end shape of a threaded tube.
  • 2 (b) to 2 (d) are explanatory views schematically explaining the procedure for measuring the end shape of the threaded tube, and FIG. 2 (b) is viewed from the Y direction shown in FIG. 2 (a).
  • FIG. 2 (c) is a view seen from the X direction shown in FIG.
  • FIG. 2 (d) is a view seen from the Z direction shown in FIG. 2 (a).
  • the Z direction shown in FIG. 2 is a vertical direction, and the X direction and the Y direction are orthogonal to the Z direction and orthogonal to each other.
  • the X direction is substantially equal to the radial direction of the threaded tube P
  • the Y direction is approximately equal to the longitudinal direction of the threaded tube P (direction of the screw axis A).
  • the radial direction of the threaded tube P is deviated from the X direction
  • the direction of the screw axis A of the threaded tube P is deviated from the Y direction.
  • a circle indicated by a dotted line in FIG. 2B indicates the position of the pipe end surface E when there is no deviation.
  • the threaded pipe P shown in FIGS. 2 (b) to 2 (d) is represented by a complete rectangle for convenience of explanation, but actually, the diameter of the end portion becomes smaller as it approaches the pipe end face. .
  • the end shape measuring method includes (1) a screw shaft detecting step, (2) a laser beam positioning step, (3) a laser beam imaging step, and (4) a shape calculating step.
  • a screw shaft detecting step (2) a laser beam positioning step, (3) a laser beam imaging step, and (4) a shape calculating step.
  • Screw shaft detection process In this step, the screw axis A of the threaded tube P is detected.
  • various known methods can be applied. For example, the method described in Patent Document 4 described above can be used.
  • the direction of the tube end surface E can be detected by an end surface copying mechanism (not shown) including three or more contact sensors. Therefore, it is possible to detect the inclinations ⁇ 1 and ⁇ 2 of the screw shaft A orthogonal to the pipe end surface E.
  • ⁇ 1 is an angle formed by the Y direction and the direction of the screw shaft A when viewed from the Z direction (FIG. 2D).
  • ⁇ 2 is an angle formed by the Y direction and the direction of the screw shaft A when viewed from the X direction (FIG. 2C). Further, the position of the pipe end face E is measured by the end face copying mechanism, and the seal diameter (outer diameter of the parallel portion P5) is measured by the dimension measuring mechanism (not shown), whereby the intersection of the pipe end face E and the screw shaft A is obtained. C (X0, Y0, Z0) can be detected. That is, by measuring the position of the pipe end face E, the equation of the pipe end face E in the XYZ coordinates is calculated, and further, by measuring the seal diameter, the center coordinates of the pipe end face E can be calculated.
  • the calculated center coordinates (X0, Y0, Z0) of the tube end surface E may be considered as the coordinates of the intersection C between the tube end surface E and the screw axis A. If the intersection C (X0, Y0, Z0) and the inclinations ⁇ 1, ⁇ 2 are detected in this way, the screw axis A (the equation of the screw axis A in the XYZ coordinates) is uniquely determined.
  • Laser beam positioning process> the laser light L emitted from the light source 1 is screwed into the light source 1 that emits the slit-shaped laser light L and the imaging unit 2 that has the visual axis VA in a direction different from the optical axis LA of the light source 1.
  • the threaded portion P3 or the seal portion P4 which is a measurement target portion of the attached tube P, is integrally moved (including rotation) to a position where it can be irradiated.
  • the light source 1 and the image pickup means 2 are dimensional measurement mechanisms described in Patent Document 4 (not shown) through a known drive stage that can be displaced in the X direction, the Y direction, and the Z direction, respectively, and can be rotated around each direction. By driving this drive stage, the light source 1 and the imaging means 2 can be moved integrally to the measurement target part.
  • the measurement target region in the surface including the screw axis A (in this embodiment, the surface including the screw axis A and a vertical line (straight line extending in the Z direction) intersecting the screw axis) NP.
  • the optical axis LA of the light source 1 is positioned so as to pass through the measurement point D (X1, Y1, Z1) on the screw axis A located at (the screw part P3 or the seal part P4), and the laser light L is incident on the surface NP.
  • the light source 1 and the imaging means 2 are moved integrally so as to expand in a slit shape.
  • the direction of the optical axis LA of the light source 1 is set to the vertical direction (Z direction), and the slit-shaped laser light L is set to extend in the Y direction.
  • a point D on the screw axis A that is separated from the intersection C (X0, Y0, Z0) on the pipe end face E by a distance L1 in the Y direction is designated as a measurement point.
  • the screw axis A equation in the XYZ coordinates is uniquely determined by the screw axis detection step, the measurement on the screw axis A that is separated from the intersection C (X0, Y0, Z0) by the distance L1 in the Y direction.
  • the coordinates (X1, Y1, Z1) of the point D are also uniquely determined.
  • the drive stage is driven to move the light source 1 and the imaging unit 2 integrally in the X direction and the Y direction so that the optical axis LA of the light source 1 passes through the measurement point D (X1, Y1, Z1).
  • the drive stage is driven so that the laser light L spreads in a slit shape within the surface NP (so as to extend along the screw axis A when viewed from the Z direction shown in FIG. 2D).
  • the image pickup means 2 is integrally rotated around the Z direction by an angle ⁇ 1.
  • the drive stage is driven, and the light source 1 and the imaging unit 2 are integrally rotated around the X direction so that the optical axis LA of the light source 1 forms an angle ⁇ 3 with respect to the screw axis A.
  • the angle ⁇ 3 is 90 °
  • the light source 1 and the imaging unit 2 are integrally rotated around the X direction by the angle ⁇ 2.
  • An optimum angle for imaging the irradiated laser beam L may be determined in advance through experiments or the like, and this determined angle may be used as the angle ⁇ 3.
  • Laser beam imaging process In this step, the laser beam L is irradiated from the light source 1 to the measurement target site, and the irradiated laser beam L is imaged by the imaging unit 2.
  • the image processing unit 3 performs known image processing such as geometric correction, binarization processing, calculation of approximate circles and approximate straight lines on the captured image captured by the image capturing unit 2, and thereby the measurement target region. (For example, a measurement value related to at least one of the angle ⁇ of the flank P6, the curvature of the screw bottom R portion P7, and the curvature of the tip R portion P43 is calculated).
  • the laser light L emitted from the light source 1 is obtained when the threaded tube P is cut by the surface NP including the screw shaft A. It will be irradiated along the outer edge of the cross section. That is, the light cutting line is irradiated along the outer edge of the cross section of the threaded tube P including the screw axis A. Further, since the laser light L is irradiated along the outer edge of the cross section of the threaded tube P including the screw shaft A, the flank surface P6 is changed to the hook-shaped flank surface P6h by appropriately adjusting the visual axis VA of the imaging means 2.
  • the irradiated laser beam L can be imaged without the hook-shaped flank surface P6h hidden behind the ridgeline of the thread P1.
  • the shape of the screw portion P3 and the seal portion P4 cross-sectional shape when cut by the surface NP including the screw shaft A
  • the shape of the measurement target portion can be measured quickly without requiring a long time for measurement compared to the case where measurement is performed using a contact probe.
  • FIG. 3 is a diagram illustrating an example of the result of measuring the shape of the thread bottom R portion of the threaded tube.
  • FIG. 3A is a diagram illustrating an example of an optical section line obtained by binarizing the image captured by the image processing unit 3 by geometrically correcting the captured image of the laser light L irradiated to the screw portion P3 and captured by the imaging unit 2. is there. Specifically, the optical cutting line shown in FIG.
  • FIG. 3A is based on the positional relationship between the optical axis LA of the light source 1 and the visual axis VA of the imaging unit 2, and the captured image captured by the imaging unit 2 is displayed on the plane NP. On the other hand, it is obtained by performing geometric correction on a captured image viewed from a direction perpendicular to the image and binarizing it.
  • FIG. 3B is a diagram showing an enlarged display of data in the vicinity of the screw bottom R portion P7 shown in FIG. 3A (pixel data constituting the optical cutting line) and an approximate circle obtained from the data. .
  • FIG. 3C shows an error with respect to the design value when the curvature radius of the screw bottom R portion P7 is repeatedly measured for the same screw portion P3.
  • the first direction is a direction parallel to the surface NP
  • the second direction is a direction parallel to the surface NP and orthogonal to the first direction.
  • the data near the screw bottom R portion P7 is extracted and An approximate circle was calculated, and the radius of this approximate circle was evaluated as the radius of curvature of the screw bottom R portion P7.
  • the error with respect to the design value was small even when repeated measurement was performed. That is, according to the end shape measuring method according to the present embodiment, it has been found that the curvature (curvature radius) of the screw bottom R portion P7 can be accurately measured.
  • FIG. 4 is a diagram showing an example of the result of measuring the shape of the flank surface of the threaded tube.
  • FIG. 4A shows an enlarged view of the data (pixel data constituting the optical cutting line) extracted from the hook-shaped flank surface P6h and the vicinity of the bottom P21 from the optical cutting line as shown in FIG. It is a figure which shows the approximate line obtained from the data.
  • FIG. 4B shows an error with respect to the design value when the angle ⁇ formed by the hook-shaped flank surface P6h and the bottom portion P21 is repeatedly measured for the same screw portion P3.
  • the meanings of the first direction and the second direction shown in FIG. 4A are the same as those in FIG. As shown in FIG.
  • the data near the hook-like flank surface P6h and the bottom portion P21 are extracted from the data constituting the optical cutting line passing through the hook-like flank surface P6h, the screw bottom R portion P7, and the bottom portion P21.
  • a pair of approximate lines is calculated by multiplication or the like, and an angle ⁇ formed by the pair of approximate lines is set as an evaluation target. As shown in FIG. 4B, the error relative to the design value was small even when the measurement of the angle ⁇ was repeated.
  • FIG. 5 is a diagram showing an example of the result of measuring the shape of the tip R portion of the threaded tube.
  • FIG. 5A is a diagram illustrating an example of an optical section line obtained by binarizing the image captured by the image processing unit 3 by geometrically correcting the captured image of the laser light L irradiated to the seal portion P4 and captured by the imaging unit 2. is there.
  • the optical cutting line shown in FIG. 5A is based on the positional relationship between the optical axis LA of the light source 1 and the visual axis VA of the imaging unit 2, and the captured image captured by the imaging unit 2 is displayed on the plane NP.
  • FIG. 5B is a diagram showing an enlarged display of data in the vicinity of the tip R portion P43 shown in FIG. 5A (pixel data constituting the optical section line) and an approximate circle obtained from the data.
  • the third direction shown in FIGS. 5A and 5B is a direction parallel to the surface NP
  • the fourth direction is a direction parallel to the surface NP and orthogonal to the third direction.

Abstract

 本発明は、ねじ付き管Pの端部形状測定方法であって、ねじ軸検出工程、レーザ光位置決め工程、レーザ光撮像工程及び形状算出工程を含む。レーザ光位置決め工程では、ねじ軸Aを含む面NP内において測定対象部位にあるねじ軸上の測定点D(X1,Y1,Z1)を通るように光源1の光軸LAが位置し、なお且つ、レーザ光Lが面NP内でスリット状に拡がるように、光源及び撮像手段2を一体的に移動させる。

Description

ねじ付き管の端部形状測定方法
 本発明は、油井管等のねじ付き管の端部に形成されたねじ部やシール部の形状を精度良く且つ迅速に測定する方法に関する。
 従来より、油井管等の管の端部同士を連結する方法として、管の端部外周面にねじ部(雄ねじ部)を形成してねじ付き管とし、一対のねじ付き管の各ねじ部(雄ねじ部)を、内周面にねじ部(雌ねじ部)が形成された継手(ボックス継手)にそれぞれ締結することで、管の端部同士を連結する方法が用いられている。
 管の端部に形成されたねじ部の寸法精度が低いと、継手との締結状態が緩み、管同士の連結が解除されて脱落したり、管内部に流れる流体が外部に漏洩するおそれがある。特に油井管については、近年の油井環境の過酷化に伴い、ねじ部の寸法精度や品質保証レベルに対する要求が年々厳格化している。
 図1は、油井管の端部形状の一例を模式的に示す断面図である。図1(a)は端部全体の断面図を、図1(b)は図1(a)に符号Xで示す円形領域の拡大図を示す。
 図1に示すように、油井管Pの端部は、ねじ山P1及びねじ溝P2が設けられたねじ部P3と、ねじ部P3に隣接してねじ部P3よりも管端面E側に設けられた平行部P5と、平行部P4に隣接して平行部P4よりも管端面E側に設けられたシール部P4とから構成されている。
 そして、近年の油井環境の過酷化に伴い、油井管Pとしては、ねじ部P3の各ねじ山P1を区画する一対のフランク面P6(ねじ山P1の頂部P11とねじ溝P2の底部P21とを繋ぐ面)のうち、管端面E側と反対側に位置するフランク面P6(管端部同士を連結する際に、ねじ軸(ねじ部P3の中心軸)A方向の引張り力に対して負荷が掛かる側のフランク面P6)であって、ねじ山P1の頂部P11からねじ溝P2の底部P21に向かうに従って管端面E側に近づくように傾斜しているフランク面(以下、これをフック状フランク面P6hと称する)とされているねじ部P3が形成されたものが多く用いられている。
 従来、フランク面P6の角度(ねじ軸Aの垂線Nと成す角度)αや、ねじ底R部(フランク面P6とねじ溝P2の底部P21とが交差する部分)P7の曲率を評価する際には、シリコンゴム等を用いてねじ部P3の型取りを行う。その後、その型をフランク面P6の角度やねじ底R部P7の曲率を評価できるような断面形状に切断し、投影機を用いてその断面の陰影を透明なフィルムに拡大投影する。透明なフィルムには、フランク面P6の角度の許容範囲やねじ底R部P7の曲率の許容範囲に応じた断面形状の許容範囲が図示されており、陰影の縁がその断面形状の許容範囲内にあるか否かを目視で確認することで、フランク面P6の角度やねじ底R部P7の曲率の合否を判定している。
 また、シール部P4の先端R部(シール部P4のショルダー面P41とシール面P42とが交差する部分)P43の曲率も、上記したねじ部Pの場合と同様の検査を行う場合がある。
 上記のような検査は、ねじ部P3やシール部P4の型取りや、その型の断面形状への切断など、多大な手間を要する。このため、同一製造ロットの最初と最後の油井管Pについて検査するなどの抜き取り検査とならざるを得ず、全数検査は困難である。
 また、許容範囲との比較によって合否判定しているに過ぎないため、ねじ部P3やシール部P4の形状の定量的な評価が困難である。
 このような問題を解決するため、特許文献1や2には、ねじ溝P2に平行な光を照射し、ねじ部P3を通過する光を検出することで、ねじ部P3の外形(ねじ部P3表面の凹凸形状であり、ねじプロファイルと称する)を測定する方法(光投影法)が提案されている。この光投影法によりねじ部P3のねじプロファイルを精度良く測定できれば、そのねじプロファイルからフランク面P6の角度やねじ底R部P7の曲率も精度良く算出できると考えられる。
 しかしながら、ねじプロファイルは曲線を描いているため、平行光を検出する上記の光投影法では、フランク面P6がねじ山P1の稜線の影に隠れ、フランク面P6を正確に検出できない場合がある。特に、フランク面P6がフック状フランク面P6hの場合には、フック状フランク面P6hがねじ山P1の稜線の影に隠れることにより生じる誤差は無視できないものとなる。
 そこで、本出願人らは、特許文献3に記載のように、接触プローブを用いてねじ部P3のフランク面P6に関わる形状を測定する方法を提案している。
 しかしながら、特許文献3に記載の方法では、接触プローブを順次移動させ、先端に取り付けられた球状の接触子をフランク面P6に接触させて測定を行うため、必然的に測定時間が長くなる上、測定点数が十分に得られない。このため、フランク面P6の角度を精度良く測定できない場合がある。
 また、接触子が所定の寸法を有するため、ねじ底R部P7の曲率を精度良く測定することも困難である。
 なお、上記の特許文献3や特許文献4には、ねじ軸を検出する方法が提案されている。
日本国特許第3552440号公報 日本国特開昭63-212808号公報 日本国特許第4486700号公報 日本国特許第4457370号公報
 本発明は、上記のような従来技術の問題点を解決するためになされたものであり、油井管等のねじ付き管の端部に形成されたねじ部やシール部の形状を精度良く且つ迅速に測定可能な方法を提供することを課題とする。
 前記課題を解決するため、本発明者らは鋭意検討した結果、ねじ部やシール部の形状を測定するために、スリット状のレーザ光を用いた光切断法を適用すれば、迅速に測定可能であることに着眼した。そして、スリット状のレーザ光を出射する光源の光軸がねじ軸上の点を通り、スリット状のレーザ光がねじ軸を含む面内で拡がるようにレーザ光を位置決めすれば、ねじ部の形状を精度良く測定できることに想到し、本発明を完成した。
 すなわち、本発明は、ねじ付き管の端部形状測定方法であって、以下の(1)~(4)の各工程を含むものである。
 (1)ねじ軸検出工程:ねじ付き管のねじ軸を検出する。
 (2)レーザ光位置決め工程:スリット状のレーザ光を出射する光源と、該光源の光軸とは異なる方向の視軸を有する撮像手段とを、前記光源から出射されたレーザ光が前記ねじ付き管の測定対象部位であるねじ部又はシール部に照射され得る位置に一体的に移動させて位置決めする。
 (3)レーザ光撮像工程:前記光源から前記測定対象部位にレーザ光を照射し、該照射されたレーザ光を前記撮像手段で撮像する。
 (4)形状算出工程:前記レーザ光撮像工程で得られた撮像画像に画像処理を施すことによって、前記測定対象部位の形状を算出する。
 そして、前記(2)のレーザ光位置決め工程では、前記ねじ軸を含む面内において前記測定対象部位に位置する前記ねじ軸上の測定点を通るように前記光源の光軸が位置し、なお且つ、前記レーザ光が前記面内でスリット状に拡がるように、前記光源及び前記撮像手段を一体的に移動させることを特徴としている。
 本発明によれば、ねじ軸検出工程において、ねじ付き管のねじ軸を検出する。ねじ軸は、前述した特許文献3や特許文献4に記載されているような公知の方法を用いて検出することができる。例えば、特許文献4に記載の方法を用いる場合、3つ以上の接触センサを具備する端面倣い機構によって、管端面Eの方向、ひいては管端面Eに直交するねじ軸Aの傾きθ1、θ2を検出可能である(図2参照)。また、端面倣い機構によって管端面Eの位置を測定し、寸法測定機構によってシール径を測定することにより、管端面Eとねじ軸Aとの交点C(X0,Y0,Z0)を検出可能である(図2参照)。このようにして交点C(X0,Y0,Z0)と傾きθ1、θ2が検出されれば、ねじ軸Aは一意に決まる。
 次に、本発明によれば、レーザ光位置決め工程において、スリット状のレーザ光Lを出射する光源1と、光源1の光軸LAとは異なる方向の視軸VAを有する撮像手段2とを、光源1から出射されたレーザ光Lがねじ付き管Pの測定対象部位であるねじ部P3又はシール部P4に照射され得る位置に一体的に移動させて位置決めする(図2参照)。
 そして、レーザ光撮像工程において、光源1から測定対象部位にレーザ光Lを照射し、照射されたレーザ光Lを撮像手段2で撮像する(図2参照)。さらに、形状算出工程において、前記レーザ光撮像工程で得られた撮像画像に画像処理を施す(例えば、図2に示す画像処理手段3によって画像処理を施す)ことによって、測定対象部位の形状を算出する(例えば、フランク面P6の角度α、ねじ底R部P7の曲率及び先端R部P43の曲率のうち、少なくとも一つに関連する測定値を算出する)。
 すなわち、スリット状のレーザ光Lを用いた光切断法によって、測定対象部位の形状が算出される。
 前記レーザ光位置決め工程において、具体的には、ねじ軸Aを含む面NP内において測定対象部位(ねじ部P3又はシール部P4)に位置するねじ軸A上の測定点D(X1,Y1,Z1)を通るように光源1の光軸LAが位置し、なお且つ、レーザ光Lが面NP内でスリット状に拡がるように、光源1及び撮像手段2を一体的に移動(回動を含む)させる(図2参照)。
 これにより、光源1から出射したレーザ光Lは、ねじ軸Aを含む面NPでねじ付き管Pを切断した場合に得られる断面の外縁に沿って照射されることになる。すなわち、光切断線がねじ軸Aを含むねじ付き管Pの断面の外縁に沿って照射されることになる。また、レーザ光Lがねじ軸Aを含むねじ付き管Pの断面の外縁に沿って照射されるため、撮像手段2の視軸VAを適宜調整することにより、フランク面P6がフック状フランク面P6hの場合であっても、フック状フランク面P6hがねじ山P1の稜線の影に隠れることなく、照射されたレーザ光Lを撮像可能である。このため、形状算出工程において、ねじ部P3やシール部P4の形状(ねじ軸Aを含む面NPで切断した場合の断面形状)を精度良く測定可能であることが期待できる。また、光切断法を用いるため、接触プローブを用いて測定する場合に比べて測定に長時間を要することなく、迅速に測定対象部位の形状を測定可能である。
 なお、光源1の光軸LAがねじ軸Aを含む面NP内において測定点D(X1,Y1、Z1)を通ると共に、レーザ光Lが面NP内でスリット状に拡がるように、光源1及び撮像手段2を一体的に移動させるには、例えば、光源1及び撮像手段2を、X方向、Y方向及びZ方向にそれぞれ変位可能及び各方向周りに回動可能とする公知の駆動ステージを介して、特許文献4に記載の寸法測定機構に取り付ければ良い。
 本発明によれば、油井管等のねじ付き管の端部に形成されたねじ部やシール部の形状を精度良く且つ迅速に測定することが可能である。
図1は、油井管の端部形状の一例を模式的に示す断面図である。 図2は、本発明の一実施形態に係るねじ付き管の端部形状測定方法を説明する説明図である。 図3は、ねじ付き管のねじ底R部の形状を測定した結果の一例を示す図である。 図4は、ねじ付き管のフランク面の形状を測定した結果の一例を示す図である。 図5は、ねじ付き管の先端R部の形状を測定した結果の一例を示す図である。
 以下、添付図面を適宜参照しつつ、本発明の一実施形態に係るねじ付き管(油井管)の端部形状測定方法について説明する。
 図2は、本発明の一実施形態に係るねじ付き管(油井管)の端部形状測定方法を説明する説明図である。図2(a)はねじ付き管の端部形状を測定するための装置構成を概略的に示す図である。図2(b)~(d)はねじ付き管の端部形状を測定する手順を模式的に説明する説明図であり、図2(b)は図2(a)に示すY方向から見た図を、図2(c)は図2(a)に示すX方向から見た図を、図2(d)は図2(a)に示すZ方向から見た図を示す。なお、図2に示すZ方向は鉛直方向であり、X方向及びY方向はそれぞれZ方向に直交すると共に互いに直交する方向である。X方向はねじ付き管Pの径方向にほぼ等しく、Y方向はねじ付き管Pの長手方向(ねじ軸Aの方向)にほぼ等しい。ただし、ねじ付き管Pの曲がり等の影響により、ねじ付き管Pの径方向はX方向からずれ、ねじ付き管Pのねじ軸Aの方向はY方向からずれることになる。図2(b)に点線で示す円は、ずれが無い場合の管端面Eの位置を示している。また、図2(b)~(d)に示すねじ付き管Pは、説明の便宜上、完全な矩形で表わしているが、実際には、管端面に近づくにつれて端部の径が小さくなっている。
 本実施形態に係る端部形状測定方法は、(1)ねじ軸検出工程、(2)レーザ光位置決め工程、(3)レーザ光撮像工程、及び(4)形状算出工程を含んでいる。以下、各工程について順次説明する。
 <1.ねじ軸検出工程>
 本工程では、ねじ付き管Pのねじ軸Aを検出する。ねじ軸Aの検出方法としては、種々の公知の方法を適用可能であるが、例えば、前述した特許文献4に記載の方法を用いることが可能である。特許文献4に記載の方法を用いる場合、3つ以上の接触センサを具備する端面倣い機構(図示せず)によって、管端面Eの方向を検出可能である。従って、管端面Eに直交するねじ軸Aの傾きθ1、θ2を検出可能である。θ1は、Z方向から見た場合(図2(d))に、Y方向とねじ軸Aの方向とが成す角度である。θ2は、X方向から見た場合(図2(c))に、Y方向とねじ軸Aの方向とが成す角度である。
 また、端面倣い機構によって管端面Eの位置を測定し、寸法測定機構(図示せず)によってシール径(平行部P5の外径)を測定することにより、管端面Eとねじ軸Aとの交点C(X0,Y0,Z0)を検出可能である。すなわち、管端面Eの位置を測定することで、XYZ座標での管端面Eの方程式が算出され、さらにシール径を測定することで、管端面Eの中心座標を算出することが可能である。この算出した管端面Eの中心座標(X0,Y0,Z0)が管端面Eとねじ軸Aとの交点Cの座標であると考えればよい。
 このようにして交点C(X0,Y0,Z0)と傾きθ1、θ2が検出されれば、ねじ軸A(XYZ座標でのねじ軸Aの方程式)は一意に決まる。
 <2.レーザ光位置決め工程>
 本工程では、スリット状のレーザ光Lを出射する光源1と、光源1の光軸LAとは異なる方向の視軸VAを有する撮像手段2とを、光源1から出射されたレーザ光Lがねじ付き管Pの測定対象部位であるねじ部P3又はシール部P4に照射され得る位置に一体的に移動(回動を含む)させて位置決めする。光源1及び撮像手段2は、X方向、Y方向及びZ方向にそれぞれ変位可能及び各方向周りに回動可能とする公知の駆動ステージを介して、特許文献4に記載の寸法測定機構(図示せず)に取り付けられており、この駆動ステージを駆動することにより、光源1及び撮像手段2は、測定対象部位に一体的に移動可能である。
 具体的には、本工程では、ねじ軸Aを含む面(本実施形態では、ねじ軸Aとねじ軸に交差する鉛直線(Z方向に延びる直線)とを含む面)NP内において測定対象部位(ねじ部P3又はシール部P4)に位置するねじ軸A上の測定点D(X1,Y1,Z1)を通るように光源1の光軸LAが位置し、なお且つ、レーザ光Lが面NP内でスリット状に拡がるように、光源1及び撮像手段2を一体的に移動させる。
 より具体的には、以下の通りである。 
 まず最初に、光源1の光軸LAの方向を鉛直方向(Z方向)とし、スリット状のレーザ光LがY方向に延びるように設定する。そして、管端面E上の交点C(X0,Y0,Z0)からY方向に距離L1だけ離れたねじ軸A上の点Dを測定点として指定する。前述のように、ねじ軸検出工程により、XYZ座標でのねじ軸Aの方程式は一意に決まるため、交点C(X0,Y0,Z0)からY方向に距離L1だけ離れたねじ軸A上の測定点Dの座標(X1,Y1,Z1)も一意に決まる。
 そして、駆動ステージを駆動して、光源1の光軸LAが測定点D(X1,Y1,Z1)を通るように、光源1及び撮像手段2を一体的にX方向及びY方向に移動させる。次いで、駆動ステージを駆動して、レーザ光Lが面NP内でスリット状に拡がるように(図2(d)に示すZ方向から見て、ねじ軸Aに沿って延びるように)、光源1及び撮像手段2を一体的にZ方向周りに角度θ1だけ回動させる。
 最後に、駆動ステージを駆動して、光源1の光軸LAがねじ軸Aに対して角度θ3を成すように、光源1及び撮像手段2を一体的にX方向周りに回動させる。例えば、角度θ3が90°である場合には、光源1及び撮像手段2を一体的にX方向周りに角度θ2だけ回動させることになる。照射されたレーザ光Lを撮像する上で最適な角度を予め実験等で決定し、この決定した角度を角度θ3として用いればよい。
 <3.レーザ光撮像工程>
 本工程では、光源1から測定対象部位にレーザ光Lを照射し、照射されたレーザ光Lを撮像手段2で撮像する。
 <4.レーザ光撮像工程>
 本工程では、画像処理手段3によって、撮像手段2で撮像した撮像画像に対し、幾何補正、2値化処理、近似円や近似直線の算出等の公知の画像処理を施すことにより、測定対象部位の形状を算出する(例えば、フランク面P6の角度α、ねじ底R部P7の曲率及び先端R部P43の曲率のうち、少なくとも一つに関連する測定値を算出する)。
 以上に説明した各工程を含む本実施形態に係る端部形状測定方法によれば、光源1から出射したレーザ光Lは、ねじ軸Aを含む面NPでねじ付き管Pを切断した場合に得られる断面の外縁に沿って照射されることになる。すなわち、光切断線がねじ軸Aを含むねじ付き管Pの断面の外縁に沿って照射されることになる。また、レーザ光Lがねじ軸Aを含むねじ付き管Pの断面の外縁に沿って照射されるため、撮像手段2の視軸VAを適宜調整することにより、フランク面P6がフック状フランク面P6hの場合であっても、フック状フランク面P6hがねじ山P1の稜線の影に隠れることなく、照射されたレーザ光Lを撮像可能である。このため、形状算出工程において、ねじ部P3やシール部P4の形状(ねじ軸Aを含む面NPで切断した場合の断面形状)を精度良く測定可能であることが期待できる。また、光切断法を用いるため、接触プローブを用いて測定する場合に比べて測定に長時間を要することなく、迅速に測定対象部位の形状を測定可能である。
 以下、本実施形態に係る端部形状測定方法によって、フック状フランク面を有するねじ付き管Pの端部形状を測定した結果について説明する。
 図3は、ねじ付き管のねじ底R部の形状を測定した結果の一例を示す図である。図3(a)は、ねじ部P3に照射され撮像手段2で撮像したレーザ光Lの撮像画像を画像処理手段3によって幾何補正し、2値化して得られる光切断線の例を示す図である。具体的には、図3(a)に示す光切断線は、光源1の光軸LAと撮像手段2の視軸VAとの位置関係に基づき、撮像手段2で撮像した撮像画像を面NPに対して垂直な方向から見た撮像画像に幾何補正し、2値化して得られたものである。図3(b)は、図3(a)に示すねじ底R部P7近傍のデータ(光切断線を構成する画素データ)を拡大表示したもの及びそのデータから得られる近似円を示す図である。図3(c)は、同じねじ部P3についてねじ底R部P7の曲率半径を繰り返し測定したときの設計値に対する誤差を示す。なお、図3(a)、(b)に示す第1方向は面NPに平行な方向を、第2方向は面NPに平行であって第1方向に直交する方向を意味する。
 図3に示すように、フック状フランク面P6h、ねじ底R部P7及び底部P21を通る光切断線を構成するデータのうち、ねじ底R部P7近傍のデータを抜き取って、最小自乗法等によって近似円を算出し、この近似円の半径をねじ底R部P7の曲率半径として評価した。図3(c)に示すように、繰り返し測定を行っても設計値に対する誤差は小さかった。すなわち、本実施形態に係る端部形状測定方法によれば、ねじ底R部P7の曲率(曲率半径)を精度良く測定可能であることがわかった。
 図4は、ねじ付き管のフランク面の形状を測定した結果の一例を示す図である。図4(a)は、図3(a)に示すような光切断線から、フック状フランク面P6h及び底部P21近傍のデータ(光切断線を構成する画素データ)を抜き取って拡大表示したもの及びそのデータから得られる近似直線を示す図である。図4(b)は、同じねじ部P3についてフック状フランク面P6hと底部P21との成す角度βを繰り返し測定したときの設計値に対する誤差を示す。なお、図4(a)に示す第1方向及び第2方向の意味は、図3の場合と同じである。
 図4に示すように、フック状フランク面P6h、ねじ底R部P7及び底部P21を通る光切断線を構成するデータのうち、フック状フランク面P6h及び底部P21近傍のデータを抜き取って、最小自乗法等によって一対の近似直線を算出し、この一対の近似直線の成す角度βを評価対象とした。図4(b)に示すように、角度βの測定を繰り返し行っても設計値に対する誤差は小さかった。この結果は、フック状フランク面P6hの角度(ねじ軸Aの垂線と成す角度)αを直接評価した結果ではないものの、本実施形態に係る端部形状測定方法によれば、フック状フランク面P6hの角度を精度良く測定可能であることが期待できる。
 図5は、ねじ付き管の先端R部の形状を測定した結果の一例を示す図である。図5(a)は、シール部P4に照射され撮像手段2で撮像したレーザ光Lの撮像画像を画像処理手段3によって幾何補正し、2値化して得られる光切断線の例を示す図である。具体的には、図5(a)に示す光切断線は、光源1の光軸LAと撮像手段2の視軸VAとの位置関係に基づき、撮像手段2で撮像した撮像画像を面NPに対して垂直な方向から見た撮像画像に幾何補正し、2値化して得られたものである。図5(b)は、図5(a)に示す先端R部P43近傍のデータ(光切断線を構成する画素データ)を拡大表示したもの及びそのデータから得られる近似円を示す図である。なお、図5(a)、(b)に示す第3方向は面NPに平行な方向を、第4方向は面NPに平行であって第3方向に直交する方向を意味する。
 図5に示すように、ショルダー面P41、先端R部P43及びシール面P42を通る光切断線を構成するデータのうち、先端R部P43近傍のデータを抜き取って、最小自乗法等によって近似円を算出し、この近似円の半径を先端R部P43の曲率半径として評価した。図5(b)に示すように、設計値に対する誤差は小さかった。すなわち、本実施形態に係る端部形状測定方法によれば、先端R部P43の曲率(曲率半径)を精度良く測定可能であることがわかった。
1・・・光源
2・・・撮像手段
3・・・画像処理手段
A・・・ねじ軸
LA・・・光源の光軸
NP・・・ねじ軸を含む面
P・・・ねじ付き管(油井管)
P3・・・ねじ部
P4・・・シール部
VA・・・撮像手段の視軸

Claims (2)

  1.  ねじ付き管のねじ軸を検出するねじ軸検出工程と、
     スリット状のレーザ光を出射する光源と、該光源の光軸とは異なる方向の視軸を有する撮像手段とを、前記光源から出射されたレーザ光が前記ねじ付き管の測定対象部位であるねじ部又はシール部に照射され得る位置に一体的に移動させて位置決めするレーザ光位置決め工程と、
     前記光源から前記測定対象部位にレーザ光を照射し、該照射されたレーザ光を前記撮像手段で撮像するレーザ光撮像工程と、
     前記レーザ光撮像工程で得られた撮像画像に画像処理を施すことによって、前記測定対象部位の形状を算出する形状算出工程とを含み、
     前記レーザ光位置決め工程では、前記ねじ軸を含む面内において前記測定対象部位に位置する前記ねじ軸上の測定点を通るように前記光源の光軸が位置し、なお且つ、前記レーザ光が前記面内でスリット状に拡がるように、前記光源及び前記撮像手段を一体的に移動させることを特徴とするねじ付き管の端部形状測定方法。
  2.  前記形状算出工程では、前記ねじ部のフランク面の角度及びねじ底R部の曲率、並びに、前記シール部の先端R部の曲率のうち、少なくとも一つに関連する測定値を算出することを特徴とする請求項1に記載のねじ付き管の端部形状測定方法。
PCT/JP2012/083771 2011-12-27 2012-12-27 ねじ付き管の端部形状測定方法 WO2013100004A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280064412.0A CN104024790B (zh) 2011-12-27 2012-12-27 带螺纹的管的端部形状测量方法
BR112014010436-0A BR112014010436B1 (pt) 2011-12-27 2012-12-27 método para medição de formato de porção de extremidade de tubulação ou tubo com rosca
EP12863313.8A EP2799809B1 (en) 2011-12-27 2012-12-27 Method for measuring shape of threaded tube end portion
US14/368,539 US9557165B2 (en) 2011-12-27 2012-12-27 Method for measuring end portion shape of threaded pipe or tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011286462A JP5288297B2 (ja) 2011-12-27 2011-12-27 ねじ付き管の端部形状測定方法
JP2011-286462 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013100004A1 true WO2013100004A1 (ja) 2013-07-04

Family

ID=48697483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083771 WO2013100004A1 (ja) 2011-12-27 2012-12-27 ねじ付き管の端部形状測定方法

Country Status (6)

Country Link
US (1) US9557165B2 (ja)
EP (1) EP2799809B1 (ja)
JP (1) JP5288297B2 (ja)
CN (1) CN104024790B (ja)
BR (1) BR112014010436B1 (ja)
WO (1) WO2013100004A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019517671A (ja) * 2016-06-03 2019-06-24 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ねじ山測定装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6560970B2 (ja) * 2015-02-03 2019-08-14 株式会社豊田中央研究所 シート面検査用光学系、シート面検査装置およびシート面検査方法
DE102015202470B4 (de) * 2015-02-12 2018-11-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur hochgenauen optischen Messung an Objekten mit anhaftenden fluidischen Schichten
JP6604258B2 (ja) * 2016-04-12 2019-11-13 日本製鉄株式会社 ねじ付き管のねじ形状測定装置
JP6968568B2 (ja) * 2017-04-20 2021-11-17 株式会社日立製作所 形状計測システム、及び、形状計測方法
JP6849149B2 (ja) * 2018-05-02 2021-03-24 日本製鉄株式会社 ねじ形状の測定装置および測定方法
GB201816526D0 (en) * 2018-10-10 2018-11-28 Univ Nottingham Surface topography sensing
CN110500953B (zh) * 2019-07-10 2021-10-26 广东嘉铭智能科技有限公司 螺纹r值测量方法、装置、计算机设备及存储介质
DE102021202213A1 (de) 2021-03-08 2022-09-08 Sms Group Gmbh Verfahren und Vorrichtung zur optischen Vermessung eines Gewindes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114264A (en) * 1978-02-27 1979-09-06 Nippon Steel Corp Screw inspection method
JPS5845506A (ja) * 1981-09-11 1983-03-16 Sumitomo Metal Ind Ltd ネジ要素測定方法及び装置
JPS6175204A (ja) * 1984-09-20 1986-04-17 Nippon Kokan Kk <Nkk> 雄ねじのねじ山の検査方法
JPS63212808A (ja) 1987-02-27 1988-09-05 Sumitomo Metal Ind Ltd ネジ形状測定装置
JP3552440B2 (ja) 1996-01-25 2004-08-11 Jfeスチール株式会社 ねじ要素の測定方法および装置
JP4457370B2 (ja) 2008-07-30 2010-04-28 住友金属工業株式会社 長尺材の寸法測定装置
JP4486700B2 (ja) 2008-03-27 2010-06-23 住友金属工業株式会社 管端部のねじ要素測定装置、ねじ要素測定システムおよびねじ要素測定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146842A (ja) * 1982-02-25 1983-09-01 Sumitomo Metal Ind Ltd ネジの表面欠陥検査装置
JPS59141008A (ja) * 1983-01-31 1984-08-13 Nippon Kokan Kk <Nkk> ねじ部検査装置
US5521707A (en) 1991-08-21 1996-05-28 Apeiron, Inc. Laser scanning method and apparatus for rapid precision measurement of thread form
US6137570A (en) * 1998-06-30 2000-10-24 Kla-Tencor Corporation System and method for analyzing topological features on a surface
JP2001188008A (ja) * 1999-12-28 2001-07-10 Yasunaga Corp 高さ測定装置
DE102007017747B4 (de) * 2007-04-12 2009-05-07 V & M Deutschland Gmbh Verfahren und Vorrichtung zur optischen Vermessung von Außengewinden
CN101995218B (zh) 2010-10-29 2012-07-04 苏州天准精密技术有限公司 一种影像式螺纹样板自动检定仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114264A (en) * 1978-02-27 1979-09-06 Nippon Steel Corp Screw inspection method
JPS5845506A (ja) * 1981-09-11 1983-03-16 Sumitomo Metal Ind Ltd ネジ要素測定方法及び装置
JPS6175204A (ja) * 1984-09-20 1986-04-17 Nippon Kokan Kk <Nkk> 雄ねじのねじ山の検査方法
JPS63212808A (ja) 1987-02-27 1988-09-05 Sumitomo Metal Ind Ltd ネジ形状測定装置
JP3552440B2 (ja) 1996-01-25 2004-08-11 Jfeスチール株式会社 ねじ要素の測定方法および装置
JP4486700B2 (ja) 2008-03-27 2010-06-23 住友金属工業株式会社 管端部のねじ要素測定装置、ねじ要素測定システムおよびねじ要素測定方法
JP4457370B2 (ja) 2008-07-30 2010-04-28 住友金属工業株式会社 長尺材の寸法測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019517671A (ja) * 2016-06-03 2019-06-24 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ねじ山測定装置

Also Published As

Publication number Publication date
EP2799809A4 (en) 2015-08-26
BR112014010436B1 (pt) 2021-05-04
CN104024790A (zh) 2014-09-03
US9557165B2 (en) 2017-01-31
BR112014010436A2 (ja) 2017-06-13
US20140355004A1 (en) 2014-12-04
JP2013134218A (ja) 2013-07-08
EP2799809B1 (en) 2020-03-25
CN104024790B (zh) 2016-12-21
EP2799809A1 (en) 2014-11-05
JP5288297B2 (ja) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5288297B2 (ja) ねじ付き管の端部形状測定方法
US8345094B2 (en) System and method for inspecting the interior surface of a pipeline
US8452072B2 (en) Method and apparatus for inspecting tire shape
KR100685206B1 (ko) 전봉용접관의 비드 절삭형상의 계측방법 및 장치
JP4705479B2 (ja) ビード形状検出方法及び装置
US9175952B2 (en) Shape measurement method and shape measurement apparatus for tires
CN104697467A (zh) 基于线激光扫描的焊缝外观形状及表面缺陷检测方法
US10156548B2 (en) System and method of non-destructive inspection with a visual scanning guide
WO2011070750A1 (ja) タイヤ形状検査方法、及びタイヤ形状検査装置
TWI438050B (zh) 雷射加工誤差校正方法及處理器
TWI713763B (zh) 焊接鋼管的對接部的形狀檢測方法及使用其之焊接鋼管的品質管理方法以及裝置
JP6248887B2 (ja) フック状フランク部を有するねじ付き部材のねじ形状測定装置及び方法
JP2019082461A (ja) 鋼管の管端直角度測定方法及び鋼管の製造方法
Jackson et al. Error analysis and calibration for a novel pipe profiling tool
JP5923054B2 (ja) 形状検査装置
JP4762851B2 (ja) 断面形状検出方法及び装置
JP6604258B2 (ja) ねじ付き管のねじ形状測定装置
JP5367292B2 (ja) 表面検査装置および表面検査方法
KR101284852B1 (ko) 용접 토우 그라인딩부 검사 장치 및 방법
JP2004181471A (ja) 電縫溶接管のビード形状検出方法および装置
US8570537B1 (en) Method for bore chamfer measurement
JP6507067B2 (ja) 計測方法、計測装置及びこれを用いた製造方法
JP2008216105A (ja) 表面検査方法及び装置
JP2018179887A (ja) ねじ先端部位置検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012863313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14368539

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014010436

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014010436

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140430

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112014010436

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTE CERTIDAO DE DEPOSITO DA PRIORIDADE NO PAIS DE ORIGEM OU DECLARACAO ASSINADA, AMBAS CONTENDO TODOS OS DADOS IDENTIFICADORES DA PRIORIDADE, CONFORME ART. 16, 2O, DA LPI.

ENP Entry into the national phase

Ref document number: 112014010436

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140430