WO2013099858A1 - 1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法 - Google Patents

1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法 Download PDF

Info

Publication number
WO2013099858A1
WO2013099858A1 PCT/JP2012/083455 JP2012083455W WO2013099858A1 WO 2013099858 A1 WO2013099858 A1 WO 2013099858A1 JP 2012083455 W JP2012083455 W JP 2012083455W WO 2013099858 A1 WO2013099858 A1 WO 2013099858A1
Authority
WO
WIPO (PCT)
Prior art keywords
butanol
butylcyclohexyloxy
catalyst
palladium
palladium catalyst
Prior art date
Application number
PCT/JP2012/083455
Other languages
English (en)
French (fr)
Inventor
翼 荒井
小刀 慎司
由晴 安宅
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to US14/368,381 priority Critical patent/US9181160B2/en
Priority to ES12862276.8T priority patent/ES2630005T3/es
Priority to EP12862276.8A priority patent/EP2799416B1/en
Priority to CN201280064797.0A priority patent/CN104024199B/zh
Publication of WO2013099858A1 publication Critical patent/WO2013099858A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/20Preparation of ethers by reactions not forming ether-oxygen bonds by hydrogenation of carbon-to-carbon double or triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/0026Essential oils; Perfumes compounds containing an alicyclic ring not condensed with another ring
    • C11B9/0034Essential oils; Perfumes compounds containing an alicyclic ring not condensed with another ring the ring containing six carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a production method capable of obtaining 1- (2-t-butylcyclohexyloxy) -2-butanol having excellent fragrance in high yield.
  • ⁇ - (2-Alkylcyclohexyloxy) - ⁇ -alkanol especially 1- (2-tert-butylcyclohexyloxy) -2-butanol has a woody and amber-like fragrance, and has excellent residual fragrance properties. It is a useful fragrance material that can be manufactured at low cost. For this reason, the efficient manufacturing method is examined.
  • Patent Document 1 (1) a method in which 2-alkylcyclohexanol is converted into an alcoholate using a strong base and then reacted with an epoxide, and (2) a 2-alkylphenol is reacted with an epoxide in the presence of a base catalyst, A method is disclosed in which ⁇ - (2-alkylphenyloxy) - ⁇ -alkanol is made and then hydrogenated in the presence of a metal catalyst.
  • Patent Document 2 describes (a) palladium for the purpose of obtaining ⁇ - (2-alkylcyclohexyloxy) - ⁇ -alkanol having an excellent aroma and a high trans isomer content in a short time and in a high yield.
  • Patent Document 3 discloses ether alcohols that hydrocrack a cyclic ketal in the presence of a catalyst containing 50% by weight or more of palladium and one or more selected from ruthenium, rhodium, platinum and nickel in an amount of less than 50% by weight.
  • a manufacturing method is disclosed.
  • the present invention relates to the following [1] and [2].
  • [1] Conditions of hydrogen pressure of 1 to 5 MPa in the presence of a palladium catalyst (A) supported on activated carbon derived from peat and a metal catalyst (B) containing one or more selected from ruthenium, rhodium, platinum and nickel
  • a fragrance composition containing 1- (2-t-butylcyclohexyloxy) -2-butanol obtained by the method of [1].
  • this reaction intermediate is difficult to remove by distillation or the like because its boiling point is close to the target 1- (2-t-butylcyclohexyloxy) -2-butanol.
  • the produced 1- (2-t-butylcyclohexyloxy) -2-butanol is hydrogenolyzed to produce 1,2-butanediol or 2-t-butylcyclohexanol as a by-product. Therefore, there was a problem that the yield was low. Therefore, development of a method for producing 1- (2-t-butylcyclohexyloxy) -2-butanol that can reduce the remaining of the reaction intermediate and obtain the target compound in high yield is desired.
  • the present invention has a high purity due to a small amount of the remaining reaction intermediate, has a woody or amber-like fragrance as a fragrance material, and is excellent in fragrance 1- (2-tert-butylcyclohexyloxy) -2-
  • the present invention relates to a production method capable of obtaining butanol in high yield.
  • the present inventors As a production method capable of obtaining 1- (2-tert-butylcyclohexyloxy) -2-butanol having a small amount of residual reaction intermediate and high purity, the present inventors have developed activated carbon derived from peat. It has been found that the above-mentioned problems can be achieved by hydrogenation under a low hydrogen pressure in the presence of a palladium catalyst supported on the catalyst and a specific metal catalyst. That is, the present invention relates to the following [1] and [2].
  • 1- (2-t-butylcyclohexyloxy)- which has high purity due to a small amount of the remaining reaction intermediate, has a woody or amber-like fragrance as a fragrance material, and has an excellent fragrance tone.
  • a production method capable of obtaining 2-butanol in high yield can be provided.
  • the method for producing 1- (2-t-butylcyclohexyloxy) -2-butanol of the present invention comprises a palladium catalyst (A) supported on peat-derived activated carbon, and one selected from ruthenium, rhodium, platinum and nickel.
  • a palladium catalyst (A) supported on activated carbon derived from peat is used in the hydrogenation step.
  • the palladium catalyst (A) refers to the whole including palladium and activated carbon derived from peat as a carrier.
  • Activated carbon includes activated carbon derived from peat, activated carbon derived from bituminous coal, derived from anthracite, derived from lignite, derived from timber, derived from coconut shell, etc., but activated carbon derived from peat used in the present invention exhibits the activity of a palladium catalyst. Especially excellent from the viewpoint of.
  • the hydrogenation step is performed using the palladium catalyst (A) supported on the activated carbon derived from peat and under a low hydrogen pressure of 1 to 5 MPa, the residual amount of the reaction intermediate is small, and thus the purity is low. It is possible to obtain 1- (2-tert-butylcyclohexyloxy) -2-butanol with high yield, woody and amber-like fragrance, and excellent fragrance tone. The reason for this is not clear, but is thought to be as follows.
  • the reaction intermediate in the hydrogenation reaction the cyclic ketal and enol ether alcohol are considered, and it is considered that an equilibrium reaction by rearrangement occurs.
  • the hydrogenation reactivity is high with enol ether alcohol, and it is considered that the desired compound can be obtained by the hydrogenation. Therefore, in this hydrogenation reaction, it is considered that the hydrogenation reaction of the enol ether alcohol proceeds preferentially rather than the rearrangement reaction of the enol ether alcohol from the cyclic ketal, and the cyclic ketal remains.
  • activated carbon derived from peat having a low carbon content and containing a large amount of components such as sulfur and heavy metals is used as a palladium catalyst carrier, and the reaction is carried out under low hydrogen pressure conditions, so that the amount of hydrogen adsorbed on the catalyst is reduced.
  • the hydrogenation reaction is reduced and the catalytically active sites to which hydrogen is not adsorbed catalyze the rearrangement reaction from the cyclic ketal to the enol ether alcohol. Since the remaining amount is small and the purity of 1- (2-t-butylcyclohexyloxy) -2-butanol obtained is high, it has a woody and amber-like odor and is considered to be excellent in fragrance.
  • Peat-derived activated carbon for example, carbonizes peat-derived carbon material produced by a conventional method, activated by a known method, then immersed in dilute hydrochloric acid to remove alkali components contained in activated carbon, washed with water, dried Can be obtained.
  • Activated carbon is activated by an oxidizing gas (water vapor, carbon dioxide, air, combustion gas, etc.) at 700-900 ° C, and chemicals such as zinc chloride, calcium chloride, magnesium chloride, phosphoric acid are added.
  • an oxidizing gas water vapor, carbon dioxide, air, combustion gas, etc.
  • chemicals such as zinc chloride, calcium chloride, magnesium chloride, phosphoric acid are added.
  • activated carbon derived from peat activated by a gas activation method is preferable from the viewpoint of expressing the activity of the palladium catalyst.
  • the carbon content in the activated carbon derived from peat is preferably 95 to 99.95% by mass and more preferably 97 to 99.9% by mass from the viewpoint of catalytic activity.
  • the shape of the activated carbon is not particularly limited, and may be a powder shape, a granular shape, a fiber shape, a pellet shape, a honeycomb shape, or the like.
  • the average pore diameter of the activated carbon is preferably 8 to 100 mm, more preferably 8 to 60 mm, and even more preferably 30 to 60 mm from the viewpoint of improving the catalytic activity.
  • the pore volume of the activated carbon (pore volume of pores having a pore diameter of less than 1000 mm) is preferably 0.1 to 2.5 ml / g, more preferably 0.1 to 2.0 ml / g from the viewpoint of catalytic activity.
  • the mesopore pore volume (pore volume of pores having a pore diameter of 2 to 50 nm) of activated carbon derived from peat used in the present invention is 0.21 ml / min from the viewpoint of catalytic activity and the yield.
  • the specific surface area of the activated carbon from the viewpoint of improving the catalytic activity, preferably 100 ⁇ 3000m 2 / g, more preferably 100 ⁇ 2000m 2 / g, more preferably 150 ⁇ 1500m 2 / g.
  • the average pore diameter, pore volume, mesopore pore volume and specific surface area of the activated carbon are measured by a mercury intrusion method using a dried catalyst powder.
  • Preparation of palladium catalyst (A) supported on activated carbon derived from peat Examples of the method of supporting palladium on activated carbon derived from peat include an impregnation method, an ion exchange method, and a CVD method. The impregnation method and the ion exchange method are preferable, and the impregnation method is more preferable.
  • a palladium salt In order to support palladium on activated carbon derived from peat, it is preferable to use a palladium salt.
  • the palladium salt used to support palladium is selected from Pd (OH) 2 , PdCl 2 , Pd (OAc) 2 , Pd (NH 4 ) Cl 2 , and [Pd (NH 3 ) 4 ] Cl 2.
  • One or more types may be mentioned, but one or more types selected from palladium hydroxide: Pd (OH) 2 , palladium chloride: PdCl 2 , and palladium acetate: Pd (OAc) 2 are preferable, and selected from palladium hydroxide and palladium chloride. One or more selected from the above are more preferable.
  • Examples of the impregnation method using a palladium salt include a method in which a palladium salt is dissolved in an appropriate solvent, and activated carbon derived from peat is dispersed and contacted.
  • the amount of palladium supported on the peat-derived activated carbon is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, and preferably 1 to 5% by mass in the palladium catalyst (A). If the supported amount of palladium is less than 0.1% by mass, the catalyst activity tends to be insufficient, and if it exceeds 15% by mass, there is a high possibility of adverse effects such as sintering during the loading.
  • a reducing agent such as formaldehyde, hydrazine, sodium borohydride, or the like is added in a hydrogen stream or heated, and heated as necessary to about 20 to 300 ° C., preferably 80
  • reduction treatment at a temperature of ⁇ 280 ° C., solid-liquid separation is performed, and the obtained solid is washed with water and dried to obtain a palladium catalyst (A) supported on peat-derived activated carbon.
  • the pH of the palladium catalyst (A) is preferably 7.0 to 12.0.
  • the yield is improved and the resulting 1- (2-t-butylcyclohexyloxy) -2-alkanol has a good fragrance.
  • 7.0 to 10.0 is preferable, 7.0 to 9.0 is more preferable, 7.5 to 9.0 is more preferable, 7.8 to 8.9 is more preferable, 7.9 ⁇ 8.8 is more preferable.
  • pH of a palladium catalyst (A) means pH of the mixture which mixed the palladium catalyst (A) with 10 mass times pure water.
  • the palladium catalyst (A) contains metal, nitrogen, and sulfur from the viewpoint of promoting the isomerization reaction and reducing the reaction intermediate, and promoting the isomerization and improving the trans isomer content.
  • the metal include one or more selected from iron, magnesium, manganese, calcium, and titanium.
  • the total content of the metal is preferably 0.10% or more, more preferably 0.15% or more, further preferably 0.20% or more, and further preferably 0.24% or more.
  • 1.0% or less is preferable, 0.80% or less is more preferable, 0.50% or less is further more preferable, and 0.40% or less is still more preferable.
  • the metal content was determined by performing high frequency inductively coupled plasma (ICP) emission analysis on iron, magnesium, manganese, calcium, and titanium on a sample obtained by wet decomposition of dried catalyst powder using sulfuric acid, nitric acid, and hydrogen peroxide. It is measured by doing.
  • ICP inductively coupled plasma
  • the content of nitrogen in the palladium catalyst (A) is preferably 0.07% or more, more preferably 0.08% or more, further preferably 0.09% or more, further preferably 0.10% or more, 1.0% or less, more preferably 0.50% or less, still more preferably 0.20% or less, and even more preferably 0.15% or less.
  • the nitrogen content is measured by a chemiluminescence method using a dried catalyst powder.
  • the sulfur content in the palladium catalyst (A) is preferably 0.08% or more, more preferably 0.09% or more, still more preferably 0.10% or more, still more preferably 0.11% or more, 1.0% or less, more preferably 0.50% or less, still more preferably 0.20% or less, and even more preferably 0.15% or less.
  • the sulfur content is measured by a combustion ion chromatography method using a dried catalyst powder.
  • a metal catalyst (B) containing one or more selected from ruthenium, rhodium, platinum and nickel is used.
  • the metal components used as the metal catalyst (B) ruthenium, rhodium and platinum are preferable from the viewpoint of improving the yield and the content of the trans isomer, and from the viewpoint of reducing the residual amount of the reaction intermediate. Rhodium is more preferable, and ruthenium is more preferable.
  • the metal catalyst (B) is preferably a supported catalyst supported on a carrier.
  • the carrier is preferably an inorganic carrier.
  • the inorganic carrier examples include one or more carriers selected from activated carbon, alumina, silica, silica magnesia, and zeolite. Among these, activated carbon is more preferable from the viewpoint of catalytic activity.
  • the supported amount of the metal component is preferably 0.05 to 20% by weight, more preferably 0.1 to 15% by weight of the total metal catalyst (B) from the viewpoint of preventing sintering while enhancing the catalyst activity. More preferably, the content is 5 to 10% by weight.
  • the metal catalyst (B) is a supported catalyst
  • the metal catalyst (B) refers to the whole including the metal and the support.
  • the metal catalyst (B) can be prepared by a known method. For example, in the case of using ruthenium as a metal component, first, the inorganic carrier is added and suspended in a medium such as ion-exchanged water, and then the ruthenium compound (ruthenium chloride) is added to the suspension. Nitrate, formate, ammonium salt, etc.) in an aqueous solvent such as ion-exchanged water is added and heated as necessary with stirring to adjust the temperature to about 20 to 95 ° C.
  • a medium such as ion-exchanged water
  • alkali ammonia water, sodium carbonate, alkali metal carbonate such as sodium, potassium, hydroxide, etc.
  • alkali ammonia water, sodium carbonate, alkali metal carbonate such as sodium, potassium, hydroxide, etc.
  • the pH is adjusted to about 4 to 12, hydrolyzed, and aged.
  • a ruthenium component is supported on an inorganic carrier.
  • a reducing agent such as formaldehyde, hydrazine, or sodium borohydride is added, heated as necessary, subjected to reduction treatment in a hydrogen stream at a temperature of about 20 to 95 ° C., and then separated into solid and liquid.
  • the metal catalyst (B) can be obtained by washing the obtained solid with water and drying.
  • the pH of the metal catalyst (B) is preferably 6.0 to 12.0 from the viewpoint of improving the yield of 1- (2-t-butylcyclohexyloxy) -2-butanol, and 7.0 to 9.0 is more preferable, and 7.2 to 8.0 is still more preferable.
  • pH of a metal catalyst (B) means pH of the mixture which mixed the metal catalyst (B) with the 10 times mass pure water.
  • the mass ratio [(A) / (B)] of the palladium catalyst (A) and the metal catalyst (B) is preferably 1000/1 to 1/1, and preferably 100/1 to 5/1, from the viewpoint of catalytic activity. More preferred.
  • the mass ratio of palladium in the palladium catalyst (A) and metal in the metal catalyst (B) [palladium in the catalyst (A) / metal in the catalyst (B)] is the yield and trans isomer content. 80/20 to 99/1 is preferable, 85/15 to 95/5 is more preferable, and 90/10 to 95/5 is still more preferable.
  • Examples include (i) a method in which the catalysts (A) and (B) are added separately during the reaction, and (ii) a method in which a mixed catalyst such as a coprecipitation catalyst is prepared before the reaction. From the viewpoint of adjusting the mass ratio of the catalyst and the metal catalyst (B), (i) a method of adding them separately during the reaction is preferable.
  • the total amount of the palladium catalyst (A) and the metal catalyst (B) used is the starting material 1- (2-tert-butylphenyloxy) -2-butanol from the viewpoint of improving the yield and reducing the reaction intermediate.
  • the content is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass.
  • ⁇ Hydrogenation process> for example, in a pressure-resistant reaction vessel such as an autoclave, 1- (2-tert-butylphenyloxy) -2-butanol, palladium catalyst (A), ruthenium, rhodium, platinum and nickel are used.
  • the metal catalyst (B) containing at least one selected from the above is preferably mixed within the range of the amount used, and an optional organic solvent is added thereto as necessary, so that the hydrogen pressure becomes 1 to 5 MPa.
  • the hydrogenation reaction is performed by introducing hydrogen into the reaction vessel.
  • the organic solvent used in the hydrogenation reaction include one or more selected from alcohols and hydrocarbons.
  • the alcohols include methanol, ethanol, isopropanol and the like, and examples of the hydrocarbons include hexane and cyclohexane. Among these, alcohols are preferable, and isopropanol is more preferable.
  • the organic solvent is preferably 50% by mass or less with respect to 1- (2-t-butylphenyloxy) -2-butanol, has a high trans isomer content, and is wood-like or amber-like. From the viewpoint of obtaining 1- (2-t-butylcyclohexyloxy) -2-butanol having a strong aroma and excellent fragrance in a high yield, it is more preferably 10% by mass or less, and 5% by mass or less.
  • the hydrogenation reaction proceeds moderately by setting the hydrogen pressure to a relatively low value of 1 to 5 MPa, particularly when a palladium catalyst (A) supported on activated carbon derived from peat is used.
  • a palladium catalyst (A) supported on activated carbon derived from peat As described above, it is considered that the rearrangement reaction from the cyclic ketal of the reaction intermediate to the enol ether alcohol proceeds efficiently.
  • the hydrogen pressure is preferably 1 to 4 MPa from the viewpoint of obtaining a high yield of 1- (2-tert-butylcyclohexyloxy) -2-butanol having a low residual amount of reaction intermediate and high purity.
  • hydrogen pressure refers to the partial pressure of hydrogen in the pressure-resistant reaction vessel during the hydrogenation reaction.
  • the hydrogenation reaction temperature is preferably 50 to 300 ° C., and preferably 100 to 250 ° C. from the viewpoint of causing the reaction to proceed gently to reduce the residual amount of the reaction intermediate and increasing the trans isomer content in the product. More preferred is 130 to 200 ° C.
  • the reaction time is preferably 1 to 30 hours, more preferably 2 to 20 hours, still more preferably 3 to 10 hours.
  • the product obtained in the hydrogenation step can be purified by filtration, distillation, column chromatography or the like, if necessary.
  • the perfume composition of the present invention contains 1- (2-tert-butylcyclohexyloxy) -2-butanol obtained by the production method of the present invention.
  • the content of 1- (2-tert-butylcyclohexyloxy) -2-butanol in the fragrance composition of the present invention is preferably 0.01 to 99% by mass from the viewpoint of aroma and fragrance, 15% by mass is more preferable, 0.5 to 10% by mass is further preferable, and 1 to 10% by mass is further preferable.
  • flavor composition of this invention can contain the other fragrance
  • Other perfume ingredients that can be used include alcohols other than 1- (2-t-butylcyclohexyloxy) -2-butanol, hydrocarbons, phenols, esters, carbonates, aldehydes, ketones, Examples include acetals, ethers, carboxylic acids, lactones, nitriles, Schiff bases, natural essential oils and natural extracts. Among these, alcohols, esters, and lactones are preferable, and alcohols and esters are more preferable.
  • flavor components can be used individually by 1 type or in combination of 2 or more types.
  • the present invention discloses the following 1- (2-t-butylcyclohexyloxy) -2-butanol production method and perfume composition with respect to the above-described embodiment.
  • ⁇ 1> In the presence of a palladium catalyst (A) supported on activated carbon derived from peat and a metal catalyst (B) containing one or more selected from ruthenium, rhodium, platinum and nickel, a hydrogen pressure of 1 MPa or more and 5 MPa or less And 1- (2-t-butylphenyloxy) -2-butanol is hydrogenated, wherein 1- (2-t-butylcyclohexyloxy) -2-butanol is produced.
  • the amount of palladium supported in the palladium catalyst (A) supported on peat-derived activated carbon is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, more preferably 1% by mass or more, and preferably Is 15% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less.
  • the amount of the organic solvent in the hydrogenation step is preferably 50% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less based on 1- (2-t-butylphenyloxy) -2-butanol.
  • 1- (2-t-) according to any one of ⁇ 1> to ⁇ 3>, more preferably 1% by mass or less, still more preferably substantially 0% by mass, and still more preferably 0% by mass. (Butylcyclohexyloxy) -2-butanol production method.
  • the amount of the organic solvent in the hydrogenation step is preferably 0% by mass relative to 1- (2-t-butylphenyloxy) -2-butanol, and more preferably contains an organic solvent in the reaction vessel in the hydrogenation step.
  • the carbon content in the activated carbon derived from peat used for the palladium catalyst (A) is preferably 95% by mass or more, more preferably 97% by mass or more, and preferably 99.95% by mass or less, more preferably The method for producing 1- (2-t-butylcyclohexyloxy) -2-butanol according to any one of ⁇ 1> to ⁇ 5>, wherein the content is 99.9% by mass or less.
  • the average pore diameter of the activated carbon derived from peat used for the palladium catalyst (A) is preferably 8 mm or more, more preferably 30 mm or more, and preferably 100 mm or less, more preferably 60 mm or less.
  • the pore volume of the peat-derived activated carbon used for the palladium catalyst (A) is preferably 0.1 ml / g or more, more preferably 0.2 ml / g or more, Preferably it is 0.3 ml / g or more, preferably 2.5 ml / g or less, more preferably 2.0 ml / g or less, still more preferably 1.5 ml / g or less, still more preferably 1.0 ml / g.
  • the method for producing 1- (2-t-butylcyclohexyloxy) -2-butanol according to any one of ⁇ 1> to ⁇ 7>, which is as follows.
  • the pore volume of the mesopores of the activated carbon derived from peat used for the palladium catalyst (A) (pore volume of pores having a pore diameter of 2 to 50 nm) is preferably 0.21 ml / g or more, more preferably 0.24 ml / g or more, more preferably 0.27 ml / g or more, further preferably 0.30 ml / g or more, preferably 1.0 ml / g or less, more preferably 0.75 ml / g or less, still more preferably 0.
  • the method for producing 1- (2-t-butylcyclohexyloxy) -2-butanol according to any one of ⁇ 1> to ⁇ 8>, which is 4 ml / g or less.
  • the specific surface area of the activated carbon derived from peat used for the palladium catalyst (A) is preferably 100 m 2 / g or more, more preferably 150 m 2 / g or more, and preferably 3000 m 2 / g or less, more preferably 2000 m.
  • the palladium salt used for the palladium catalyst (A) is preferably selected from Pd (OH) 2 , PdCl 2 , Pd (OAc) 2 , Pd (NH 4 ) Cl 2 , and [Pd (NH 3 ) 4 ] Cl 2.
  • Pd (OH) 2 , PdCl 2 , and Pd (OAc) 2 more preferably one or more selected from Pd (OH) 2 and PdCl 2.
  • the palladium catalyst (A) supports palladium on activated carbon derived from peat, it is preferably subjected to reduction treatment at a temperature of 200 ° C. or higher and 300 ° C. or lower, more preferably 80 ° C. or higher and 280 ° C. or lower.
  • the pH of the mixture obtained by mixing the palladium catalyst (A) with 10 parts by mass of pure water is preferably 7.0 or more and 12.0 or less, more preferably 7.0 or more, still more preferably 7.5 or more, More preferably, it is 7.8 or more, More preferably, it is 7.9 or more, More preferably, it is 10.0 or less, More preferably, it is 9.5 or less, More preferably, it is 9.0 or less, More preferably, it is 8. 9.
  • the metal component of the metal catalyst (B) is preferably one or more selected from ruthenium, rhodium and platinum, more preferably one or more selected from ruthenium and rhodium, and still more preferably ruthenium.
  • the carrier of the metal catalyst (B) is preferably an inorganic carrier, more preferably one or more carriers selected from activated carbon, alumina, silica, silica magnesia and zeolite, and more preferably activated carbon.
  • the supported amount of the metal component of the metal catalyst (B) is preferably 0.05% by mass or more and 20% by mass or less, more preferably 0.1% by mass or more, and still more preferably 0% of the entire metal catalyst (B).
  • the pH of the metal catalyst (B) is preferably 6.0 or more and 12.0 or less, more preferably 7.0 or more, still more preferably 7.2 or more, more preferably 9.0 or less, and further The process for producing 1- (2-tert-butylcyclohexyloxy) -2-butanol according to any one of ⁇ 1> to ⁇ 18>, which is preferably 8.0 or less.
  • the total amount of palladium catalyst (A) and metal catalyst (B) used is preferably 0.01% by mass or more and 10% by mass with respect to 1- (2-t-butylphenyloxy) -2-butanol as a raw material.
  • 1- (2-tert-butylcyclohexyloxy) -2-2 according to any one of ⁇ 1> to ⁇ 19>, more preferably 0.05% by mass or more and 5% by mass or less.
  • the total content of metals in which the palladium catalyst (A) is at least one selected from iron, magnesium, manganese, calcium, and titanium is preferably 0.10% or more in the palladium catalyst (A), more preferably 0.15% or more, more preferably 0.20% or more, further preferably 0.24% or more, preferably 1.0% or less, more preferably 0.80% or less, and further preferably 0.50%.
  • the palladium catalyst (A) is preferably 0.07% or more, more preferably 0.08% or more, still more preferably 0.09% or more, and further preferably 0.10%.
  • the above ⁇ 1> to ⁇ 21> preferably 1.0% or less, more preferably 0.50% or less, still more preferably 0.20% or less, and still more preferably 0.15% or less.
  • the palladium catalyst (A) is preferably 0.08% or more, more preferably 0.09% or more, still more preferably 0.10% or more, still more preferably 0.11% in the palladium catalyst (A). Or more, preferably 1.0% or less, more preferably 0.50% or less, still more preferably 0.20% or less, and still more preferably 0.15% or less, in the above ⁇ 1> to ⁇ 22> A process for producing 1- (2-t-butylcyclohexyloxy) -2-butanol according to any one of the above.
  • the organic solvent used for the hydrogenation reaction is preferably one or more selected from alcohols and hydrocarbons, more preferably alcohols, still more preferably one or more selected from methanol, ethanol, and isopropanol, still more preferably isopropanol.
  • the hydrogen pressure is preferably 1.5 MPa or more, more preferably 2.0 MPa or more, further preferably 2.5 MPa or more, further preferably 3.0 MPa or more, and preferably 4 MPa or less.
  • the hydrogenation reaction temperature is preferably 50 ° C. or higher, more preferably 100 ° C. or higher, still more preferably 130 ° C. or higher, preferably 300 ° C. or lower, more preferably 250 ° C. or lower, still more preferably 200 ° C.
  • the content of 1- (2-tert-butylcyclohexyloxy) -2-butanol in the fragrance composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.5%.
  • the fragrance composition is preferably an alcohol other than 1- (2-tert-butylcyclohexyloxy) -2-butanol, hydrocarbons, phenols, esters, carbonates, aldehydes, ketones, acetals, ethers
  • the fragrance composition according to the above ⁇ 26> or ⁇ 28> which contains at least one selected from carboxylic acids, lactones, nitriles, Schiff bases, natural essential oils, and natural extracts.
  • % is “% by mass” unless otherwise specified. Further, the mass of the catalyst is a mass in a dry state.
  • Example 1 In a 500 ml autoclave, 250 g of 1- (2-tert-butylphenyloxy) -2-butanol and a palladium catalyst supported on activated carbon derived from peat (produced by N.E.
  • Chemcat Co., Ltd. trade name: U type, 50% water-containing product, palladium 2% supported, use of gas activated activated carbon, pH 7.9, pore volume (pore volume of pores with a pore diameter of less than 1000 mm, the same in the following examples and comparative examples) 0.36 ml / g, specific surface area 180 m 2 / g, pore volume of mesopores (pore volume of pores having a pore diameter of 2 to 50 nm, the same in the following examples and comparative examples) 0.28 ml / g, metal content 0.25%, nitrogen content 0.
  • Example 2 The reaction was carried out in the same manner as in Example 1 except that the hydrogen pressure was changed from 2.0 MPa to 4.0 MPa to obtain 1- (2-t-butylcyclohexyloxy) -2-butanol. The results are shown in Table 1.
  • Comparative Example 1 The reaction was conducted in the same manner as in Example 1 except that the hydrogen pressure was changed from 2.0 MPa to 0.5 MPa to obtain 1- (2-t-butylcyclohexyloxy) -2-butanol. The results are shown in Table 1.
  • Example 2 Comparative Example 2 In Example 1, the reaction was performed in the same manner as in Example 1 except that the hydrogen pressure was changed from 2.0 MPa to 7.0 MPa to obtain 1- (2-t-butylcyclohexyloxy) -2-butanol. The results are shown in Table 1.
  • Example 3 In Example 1, the activated carbon-supported palladium catalyst derived from peat was changed from U type to S type (manufactured by N Chemcat Co., Ltd., 50% water-containing product, palladium supported amount 2%, gas activated activated carbon used, pH 7.9, pore volume. 0.37 ml / g, specific surface area 175 m 2 / g, mesopore volume 0.32 ml / g, metal content 0.29%, nitrogen content 0.13%, sulfur content 0.12%) The reaction was conducted in the same manner as in Example 1 except for changing to obtain 1- (2-t-butylcyclohexyloxy) -2-butanol. The results are shown in Table 1.
  • Example 3 an activated carbon-supported palladium catalyst derived from peat was used as an activated carbon-supported palladium catalyst derived from charcoal (manufactured by N.E. Chemcat Corporation, trade name: D type, 50% water-containing product, palladium supported amount 2%, pH 8.2, Pore volume 0.25 ml / g, specific surface area 146 m 2 / g, mesopore pore volume 0.20 ml / g, metal content 0.07%, nitrogen content 0.06%, sulfur content 0.07 %) was carried out in the same manner as in Example 1 to obtain 1- (2-t-butylcyclohexyloxy) -2-butanol. The results are shown in Table 1.
  • Example 4 In Example 1, a hydrogen pressure of 2.0 MPa was set to 5.0 MPa, 1- (2-tert-butylphenyloxy) -2-butanol was added to 50 g, an activated carbon-supported palladium catalyst was added to 0.95 g, and an activated carbon-supported ruthenium catalyst was added. The reaction was performed in the same manner as in Example 1 except that 150 g of isopropanol was added, and 1- (2-t-butylcyclohexyloxy) -2-butanol was obtained. The results are shown in Table 1.
  • Example 5 In Example 1, peat-derived activated carbon-supported palladium catalyst (manufactured by N.E. Catcat Co., Ltd., trade name: U type, 50% water-containing product, palladium supported amount 2%, use of gas activated activated carbon, pH 7.9, pore volume 0.36 ml / g, specific surface area 180 m 2 / g, mesopore pore volume 0.28 ml / g, metal content 0.25%, nitrogen content 0.10%, sulfur content 0.13%) 0.98 g, 0.02 g of activated carbon-supported ruthenium catalyst (manufactured by N.E.
  • Example 4 peat-derived activated carbon-supported palladium catalyst (manufactured by N.E. Catcat Co., Ltd., trade name: U type, 50% water-containing product, palladium supported amount 2%, use of gas activated activated carbon, pH 7.9, pore volume 0.36 ml / g, specific surface area 180 m 2 / g, mesopore pore volume 0.28 ml / g, metal content 0.25%, nitrogen content 0.10%, sulfur content 0.13%) 0.92 g, 0.02 g of activated carbon-supported ruthenium catalyst (manufactured by N Chemcat Co., Ltd., 50% water-containing product, 5% of ruthenium support, use of gas activated activated carbon, pH 7.2), and hydrogen pressure of 2.0 MPa.
  • U type 50% water-containing product, palladium supported amount 2%
  • gas activated activated carbon pH 7.9
  • pore volume 0.36 ml / g specific surface area 180 m 2 / g,
  • Example 1 the activated carbon-supported palladium catalyst derived from peat was used as a charcoal-derived activated carbon-supported palladium catalyst (manufactured by N.E. Chemcat Co., Ltd., trade name: C type, 50% water-containing product, palladium supported amount 2%, pH 8.0, Pore volume 0.23 ml / g, specific surface area 137 m 2 / g, mesopore pore volume 0.14 ml / g, metal content 0.09%, nitrogen content 0.05%, sulfur content 0.06 %) 0.98 g, activated charcoal-supported ruthenium catalyst (manufactured by N.E.
  • Example 6 peat-derived activated carbon-supported palladium catalyst (manufactured by N.E. Catcat Co., Ltd., trade name: U type, 50% water-containing product, palladium supported amount 2%, use of gas activated activated carbon, pH 7.9, pore volume 0.36 ml / g, specific surface area 180 m 2 / g, mesopore pore volume 0.28 ml / g, metal content 0.25%, nitrogen content 0.10%, sulfur content 0.13%) 0.98 g, activated charcoal-supported ruthenium catalyst (manufactured by N.E.
  • Example 6 The reaction was conducted in the same manner as in Example 5 except that 150 g of isopropanol was changed to 2.5 g in Example 5, to obtain 1- (2-t-butylcyclohexyloxy) -2-butanol. The results are shown in Table 1.
  • 1- (2-t-butylcyclohexyl) has high purity due to a small amount of residual reaction intermediate, has a woody or amber-like fragrance as a fragrance material, and has an excellent fragrance.
  • Oxy) -2-butanol can be obtained in high yield.
  • the produced 1- (2-t-butylcyclohexyloxy) -2-butanol is used as a perfume material, for example, soap, shampoo, rinse, detergent, cosmetic, spray product, fragrance, perfume, bathing agent, etc. Can be used as an ingredient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

 本発明は、[1]泥炭由来の活性炭に担持されたパラジウム触媒(A)、及びルテニウム、ロジウム、白金及びニッケルから選ばれる1種以上を含有する金属触媒(B)の存在下、水素圧1~5MPaの条件下で、1-(2-t-ブチルフェニルオキシ)-2-ブタノールを水素化する工程を有する、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法、及び[2]その方法で得られた1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを含有する香料組成物に関する。 本発明によれば、反応中間体の残存量が少ないために純度が高く、香料素材として木様、アンバー様の香気があり、香調に優れた1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを高収率で得ることができる。

Description

1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法
 本発明は、香調に優れた1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを高収率で得ることができる製造方法に関する。
 α-(2-アルキルシクロヘキシルオキシ)-β-アルカノール、なかでも1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールは、木様、アンバー様の香気を有し、残香性に優れ、かつ安価に製造できる有用な香料素材である。このため、その効率的な製造方法について検討がなされている。
 例えば、特許文献1には、(1)2-アルキルシクロヘキサノールを強塩基を用いてアルコラートとし、次いでエポキシドと反応させる方法、及び(2)2-アルキルフェノールを塩基触媒存在下、エポキシドと反応させ、α-(2-アルキルフェニルオキシ)-β-アルカノールとした後に金属触媒の存在下で水素化する方法が開示されている。
 特許文献2には、優れた香気を有しトランス体含有率が高いα-(2-アルキルシクロヘキシルオキシ)-β-アルカノールを、短時間で高収率で得ることを目的として、(a)パラジウム触媒と(b)ルテニウム、ロジウム、白金及びニッケルから選ばれる1種類以上の金属触媒との存在下、α-(2-アルキルフェニルオキシ)-β-アルカノールを水素化する製造法が開示されている。
 また、特許文献3には、パラジウムを50重量%以上並びにルテニウム、ロジウム、白金及びニッケルから選ばれる一種以上を50重量%未満含有する触媒の存在下、環状ケタールを水素化分解するエーテルアルコール類の製造方法が開示されている。
特開平4-217937号公報 特開平4-327553号公報 特開平6-263677号公報
 本発明は、下記の[1]及び[2]に関する。
[1]泥炭由来の活性炭に担持されたパラジウム触媒(A)、及びルテニウム、ロジウム、白金及びニッケルから選ばれる1種以上を含有する金属触媒(B)の存在下、水素圧1~5MPaの条件下で、1-(2-t-ブチルフェニルオキシ)-2-ブタノールを水素化する工程を有する、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
[2]前記[1]の方法で得られた1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを含有する香料組成物。
 特許文献1及び2に記載されているようにα-(2-アルキルシクロヘキシルオキシ)-β-アルカノール、なかでも1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールは木様・アンバー様の優れた香気を有するが、特許文献1及び2に開示された方法では、得られる該化合物には、シクロヘキサン環に環状のケタールを有する反応中間体が残存する。この反応中間体は、分解しやすく、低沸点の異臭成分を生じるため、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの香気に悪影響を及ぼす。一方、この反応中間体は、沸点が目的とする1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールに近いために蒸留等によって除去することが困難である。
 また、本水素化工程においては、生成した1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールが水素化分解して1,2-ブタンジオールや2-t-ブチルシクロヘキサノールが副生するため、収率が低いという問題もあった。
 そのため、反応中間体の残存を低減することができ、目的の化合物を高収率で得られる1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法の開発が望まれている。
 本発明は、反応中間体の残存量が少ないために純度が高く、香料素材として木様、アンバー様の香気があり、香調に優れた1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを高収率で得ることができる製造方法に関する。
 本発明者らは、反応中間体の残存量が少なく、純度が高い1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを高収率で得ることができる製造方法として、泥炭由来の活性炭に担持されたパラジウム触媒と特定の金属触媒との存在下、低水素圧下で水素化することにより、前記課題を達成しうることを見出した。
 すなわち、本発明は、下記の[1]及び[2]に関する。
[1]泥炭由来の活性炭に担持されたパラジウム触媒(A)、及びルテニウム、ロジウム、白金及びニッケルから選ばれる1種以上を含有する金属触媒(B)の存在下、水素圧1~5MPaの条件下で、1-(2-t-ブチルフェニルオキシ)-2-ブタノールを水素化する工程を有する、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
[2]前記[1]の方法で得られた1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを含有する香料組成物。
 本発明によれば、反応中間体の残存量が少ないために純度が高く、香料素材として木様、アンバー様の香気があり、香調に優れた1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを高収率で得ることができる製造方法を提供することができる。
[1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法]
 本発明の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法は、泥炭由来の活性炭に担持されたパラジウム触媒(A)、及びルテニウム、ロジウム、白金及びニッケルから選ばれる1種以上を含有する金属触媒(B)の存在下、水素圧1~5MPaの条件下で、1-(2-t-ブチルフェニルオキシ)-2-ブタノールを水素化する工程を有する。
<パラジウム触媒(A)>
 本発明においては、水素化工程において泥炭由来の活性炭に担持されたパラジウム触媒(A)を用いる。
 本発明において、パラジウム触媒(A)とは、パラジウムと担体である泥炭由来の活性炭を含む全体を指す。
 活性炭としては、泥炭由来の活性炭の他、歴青炭由来、無煙炭由来、亜炭由来、木材由来、ヤシ殻由来等の活性炭があるが、本発明で用いられる泥炭由来の活性炭がパラジウム触媒の活性発現の観点から特に優れている。
 本発明においては、この泥炭由来の活性炭に担持されたパラジウム触媒(A)を用いて、かつ1~5MPaという低い水素圧下で水素化工程を行うため、反応中間体の残存量が少ないために純度が高く、木様、アンバー様の香気があり、香調に優れる1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを高収率で得ることができる。この理由は明らかではないが、次のように考えられる。
 本水素化反応における反応中間体としては、前記環状ケタールと、エノールエーテルアルコールが考えられ、転位による平衡反応が生じているものと考えられる。これらの反応中間体のうち、水素化の反応性はエノールエーテルアルコールが高く、その水素化によって目的とする化合物が得られるものと考えられる。そのため、本水素化反応においては、環状ケタールからエノールエーテルアルコールの転位反応が起こるよりも優先的にエノールエーテルアルコールの水素化反応が進行し、環状ケタールが残存してしまうものと考えられる。
 本発明においては、炭素含有率が低く硫黄や重金属等の成分を多く含む泥炭由来の活性炭をパラジウム触媒の担体とし、かつ低水素圧条件下で反応を行うことにより、触媒への水素吸着量が低減し、水素化反応が抑制されるとともに、水素が吸着していない触媒活性点が環状ケタールからエノールエーテルアルコールへの転位反応を触媒して反応を進行させるため、反応中間体である環状ケタールの残存量が少なくなり、得られる1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの純度が高くなるために、木様、アンバー様の香気があり、香調に優れるものと考えられる。
 また、低水素圧条件下で反応を行うため、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの水素化分解が起こりにくく、1,2-ブタンジオールや2-t-ブチルシクロヘキサノールが副生せず、目的の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを高収率で得ることができるものと考えられる。
(泥炭由来の活性炭の製造)
 泥炭由来の活性炭は、例えば、常法により製造された泥炭由来の炭素材料を炭化し、公知の方法で賦活した後、希塩酸に浸漬して活性炭に含まれるアルカリ成分を除去し、水洗、乾燥して得ることができる。
 活性炭の賦活方法としては、700~900℃の酸化性ガス(水蒸気、二酸化炭素、空気、燃焼ガス等)で賦活するガス賦活法、塩化亜鉛、塩化カルシウム、塩化マグネシウム、リン酸等の薬品を添加又は浸透させた後、空気を遮断して500~700℃で賦活する薬品賦活法が挙げられる。
 これらの中では、パラジウム触媒の活性発現の観点から、ガス賦活法により賦活処理した泥炭由来の活性炭が好ましい。
 泥炭由来の活性炭中の炭素含有率は、触媒活性の観点から、95~99.95質量%が好ましく、97~99.9質量%がより好ましい。
(活性炭の形態)
 活性炭の形状は特に限定されず、粉末状、粒状、繊維状、ペレット状、ハニカム状等の形状であってもよい。
 活性炭の平均細孔径は、触媒活性を向上させる観点から、8~100Åが好ましく、8~60Åがより好ましく、30~60Åが更に好ましい。
 活性炭の細孔容積(細孔径1000Å未満のポアの細孔容積)は、0.1~2.5ml/gが好ましく、触媒活性の観点から、0.1~2.0ml/gがより好ましく、0.2~1.5ml/gが更に好ましく、0.2~1.0ml/gがより更に好ましく、0.3~1.0ml/gがより更に好ましい。
 また、本発明に用いられる泥炭由来の活性炭のメソ孔の細孔容積(細孔径2~50nmのポアの細孔容積)は、触媒活性の観点及び収率を向上させる観点から、0.21ml/g以上が好ましく、0.24ml/g以上がより好ましく、0.27ml/g以上が更に好ましく、0.30ml/g以上が更に好ましく、また、1.0ml/g以下が好ましく、0.75ml/g以下がより好ましく、0.4ml/g以下が更に好ましい。
 活性炭の比表面積は、触媒活性を向上させる観点から、100~3000m2/gが好ましく、100~2000m2/gがより好ましく、150~1500m2/gが更に好ましい。
 前記の活性炭の平均細孔径、細孔容積、メソ孔の細孔容積及び比表面積は、乾燥した触媒粉末を用いた水銀圧入法により測定される。
(泥炭由来の活性炭に担持されたパラジウム触媒(A)の調製)
 パラジウムを泥炭由来の活性炭に担持する方法としては、含浸法、イオン交換法、CVD法等が挙げられるが、含浸法、イオン交換法が好ましく、含浸法がより好ましい。
 パラジウムを泥炭由来の活性炭に担持するためにはパラジウム塩を使用することが好ましい。
 パラジウムを担持するために使用するパラジウム塩としては、Pd(OH)2、PdCl2、Pd(OAc)2、Pd(NH4)Cl2、及び[Pd(NH34]Cl2から選ばれる1種以上が挙げられるが、水酸化パラジウム:Pd(OH)2、塩化パラジウム:PdCl2、及び酢酸パラジウム:Pd(OAc)2から選ばれる1種以上が好ましく、水酸化パラジウム及び塩化パラジウムから選ばれる1種以上がより好ましい。パラジウム塩を用いた含浸法としては、例えば、パラジウム塩を適当な溶媒に溶解させ、泥炭由来の活性炭を分散、接触させる等の方法が挙げられる。
 泥炭由来の活性炭へのパラジウムの担持量としては、パラジウム触媒(A)中の0.1~15質量%が好ましく、0.5~10質量%がより好ましく、1~5質量%が好ましい。パラジウムの担持量が0.1質量%未満だと触媒活性が不十分となり易く、15質量%を超えると担持の際にシンタリング等の悪影響を及ぼす可能性が高くなる。
 泥炭由来の活性炭にパラジウムを担持させた後は、例えば水素気流下、又はホルムアルデヒド、ヒドラジン、水素化ホウ素ナトリウム等の還元剤を加え、必要に応じて加熱し、20~300℃程度、好ましくは80~280℃の温度で還元処理した後、固液分離し、得られた固形物を水で洗浄し、乾燥することにより、泥炭由来の活性炭に担持されたパラジウム触媒(A)を得ることができる。
 パラジウム触媒(A)のpHは7.0~12.0であることが好ましく、収率を向上させ、得られる1-(2-t-ブチルシクロヘキシルオキシ)-2-アルカノールの香調を良好にする観点から、7.0~10.0が好ましく、7.0~9.0がより好ましく、7.5~9.0がより好ましく、7.8~8.9がより好ましく、7.9~8.8がより好ましい。
 なお、パラジウム触媒(A)のpHとは、パラジウム触媒(A)を10質量倍の純水と混合した混合物のpHをいう。
 また、パラジウム触媒(A)は、異性化反応を促進して反応中間体を低減し、また、異性化を促進してトランス体の含有率を向上させる観点から金属、窒素、硫黄を含有することが好ましい。
 金属としては鉄、マグネシウム、マンガン、カルシウム、及びチタンから選ばれる1種以上が挙げられる。前記金属の合計含有量は、パラジウム触媒(A)中、0.10%以上が好ましく、0.15%以上がより好ましく、0.20%以上が更に好ましく、0.24%以上がより更に好ましく、また、1.0%以下が好ましく、0.80%以下がより好ましく、0.50%以下が更に好ましく、0.40%以下がより更に好ましい。
 前記金属の含有量は、乾燥した触媒粉末を硫酸、硝酸及び過酸化水素を用いて湿式分解した試料に対して、鉄、マグネシウム、マンガン、カルシウム、チタンについて高周波誘導結合プラズマ(ICP)発光分析を行うことにより測定したものである。
 窒素の含有量は、パラジウム触媒(A)中、0.07%以上が好ましく、0.08%以上がより好ましく、0.09%以上が更に好ましく、0.10%以上がより更に好ましく、また、1.0%以下が好ましく、0.50%以下がより好ましく、0.20%以下が更に好ましく、0.15%以下がより更に好ましい。
 窒素の含有量は、乾燥した触媒粉末を用いた化学発光法により測定される。
 硫黄の含有量は、パラジウム触媒(A)中、0.08%以上が好ましく、0.09%以上がより好ましく、0.10%以上が更に好ましく、0.11%以上がより更に好ましく、また、1.0%以下が好ましく、0.50%以下がより好ましく、0.20%以下が更に好ましく、0.15%以下がより更に好ましい。
 硫黄の含有量は、乾燥した触媒粉末を用いた燃焼イオンクロマト法により測定される。
<金属触媒(B)>
 本発明においては、前記パラジウム触媒(A)に加えて、ルテニウム、ロジウム、白金及びニッケルから選ばれる1種以上を含有する金属触媒(B)を用いる。
 金属触媒(B)として用いられる前記金属成分の中では、収率及びトランス体の含有率を向上させる観点、反応中間体の残存量を低減する観点から、ルテニウム、ロジウム及び白金が好ましく、ルテニウム及びロジウムがより好ましく、ルテニウムが更に好ましい。
 金属触媒(B)は、担体に担持させた担持触媒であることが好ましい。担体は無機担体が好ましい。無機担体としては、例えば、活性炭、アルミナ、シリカ、シリカマグネシア及びゼオライトから選ばれる1類以上の担体が挙げられる。これらの中では、触媒活性の観点から、活性炭がより好ましい。
 金属成分の担持量は、触媒活性を高めつつ、シンタリングを防止する観点から、金属触媒(B)全体の0.05~20重量%が好ましく、0.1~15重量%がより好ましく、0.5~10重量%が更に好ましい。
 金属触媒(B)が、担持触媒である場合、金属触媒(B)とは、金属と担体を含む全体を指す。
(金属触媒(B)の調製)
 金属触媒(B)の調製は、公知の方法で行うことができる。例えば、金属成分としてルテニウムを使用する場合を例にすれば、まずイオン交換水等の媒体に、前記無機担体を加えて懸濁させた後、この懸濁液に、ルテニウム化合物(ルテニウムの塩化物、硝酸塩、蟻酸塩、アンモニウム塩等)をイオン交換水等の水性溶媒に溶解させた溶液を加え、攪拌しながら必要に応じて加熱し、20~95℃程度の温度に調節する。次いで、この懸濁液にアルカリ(アンモニア水、ナトリウム、カリウム等のアルカリ金属の炭酸塩、水酸化物等)を加えてpHを4~12程度に調整して加水分解させ、熟成することによって、ルテニウム成分を無機担体に担持させる。
 次に、例えば、ホルムアルデヒド、ヒドラジン、水素化ホウ素ナトリウム等の還元剤を加え、必要に応じて加熱し、20~95℃程度の温度で水素気流下で還元処理した後、固液分離し、得られた固形物を水で洗浄し、乾燥することにより金属触媒(B)を得ることができる。
 金属触媒(B)のpHは、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの収率を向上させる観点から、6.0~12.0であることが好ましく、7.0~9.0がより好ましく、7.2~8.0が更に好ましい。なお、金属触媒(B)のpHとは、金属触媒(B)を10質量倍の純水と混合した混合物のpHをいう。
(パラジウム触媒(A)と金属触媒(B))
 パラジウム触媒(A)と金属触媒(B)との質量比〔(A)/(B)〕は、触媒活性の観点から、1000/1~1/1が好ましく、100/1~5/1がより好ましい。
 また、パラジウム触媒(A)中のパラジウムと、金属触媒(B)中の金属との質量比〔触媒(A)中のパラジウム/触媒(B)中の金属〕は、収率及びトランス体含有率を向上させる観点から、80/20~99/1が好ましく、85/15~95/5がより好ましく、90/10~95/5が更に好ましい。
 パラジウム触媒(A)と、金属触媒(B)との混合方法については、特に制限はない。(i)反応時に触媒(A)及び(B)を別々に加える方法、及び(ii)反応前に共沈触媒等の混合触媒を調製する方法等を挙げることができるが、パラジウム触媒(A)と金属触媒(B)との質量比を調整する観点から、(i)反応時に別々に加える方法が好ましい。
 パラジウム触媒(A)と金属触媒(B)との合計使用量は、収率を向上させ、反応中間体を低減させる観点から、原料の1-(2-t-ブチルフェニルオキシ)-2-ブタノールに対して、0.01~10質量%が好ましく、0.05~5質量%がより好ましい。
<水素化工程>
 本発明における水素化工程においては、例えば、オートクレーブ等の耐圧反応容器に、1-(2-t-ブチルフェニルオキシ)-2-ブタノール、パラジウム触媒(A)、及びルテニウム、ロジウム、白金及びニッケルから選ばれる1種以上を含有する金属触媒(B)を、好ましくは前記使用量の範囲内で混合し、これに必要に応じて任意の有機溶媒を加え、更に水素圧が1~5MPaとなるように反応容器内に水素を導入して水素化反応を行う。
 水素化反応に使用する有機溶媒としては、例えば、アルコール類及び炭化水素類から選ばれる1種以上が挙げられる。アルコール類としては、メタノール、エタノール、イソプロパノール等が挙げられ、炭化水素類としては、ヘキサン、シクロヘキサン等が挙げられる。これらの中ではアルコール類が好ましく、イソプロパノールがより好ましい。
 有機溶媒は、生産性の観点から、1-(2-t-ブチルフェニルオキシ)-2-ブタノールに対して50質量%以下であることが好ましく、トランス体含有率が高く、木様、アンバー様の香気が強く、香調に優れる1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを高収率で得る観点から、10質量%以下であることがより好ましく、5質量%以下であることが更に好ましく、1質量%以下であることが更に好ましく、実質的に0質量%であることが更に好ましく、0質量%であることがより更に好ましく、含有しないことがより更に好ましい。すなわち、無溶媒で水素化反応を行えば、水素化反応が緩やかに進行する一方で、基質と触媒の接触が促進され、中間体の異性化反応が急速に進行し、反応中間体の残存量が低減し、熱力学的に安定なトランス体が多く得られるため、好ましい。
 本発明の水素化工程においては、水素圧を1~5MPaと比較的低くすることにより水素化反応が穏やかに進行し、特に泥炭由来の活性炭に担持されたパラジウム触媒(A)を用いる場合には、前記のとおり、反応中間体の環状ケタールからエノールエーテルアルコールへの転位反応が効率的に進行するものと考えられる。前記水素圧は、反応中間体の残存量が少なく、純度が高い1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを高収率で得る観点から、1~4MPaが好ましく、1.5~4.0MPaがより好ましく、2.0~4.0MPaが更に好ましく、2.5~4.0MPaが更に好ましく、3.0~4.0MPaが更に好ましい。また、トランス体の含有量を増加させる観点から、0.2~5MPaが好ましく、0.3~3MPaがより好ましく、0.3~1.5MPaが更に好ましい。
 なお、本明細書において「水素圧」とは、水素化反応時の耐圧反応容器内の水素の分圧をいう。
 水素化反応温度は、反応を穏やかに進行させて反応中間体の残存量が低減し、生成物に占めるトランス体の含有量を増加させる観点から、50~300℃が好ましく、100~250℃がより好ましく、130~200℃が更に好ましい。反応時間は1~30時間が好ましく、2~20時間がより好ましく、3~10時間が更に好ましい。
 水素化工程で得られた生成物は、必要に応じて、濾過、蒸留、カラムクロマトグラフィー等で精製することができる。
[香料組成物]
 本発明の香料組成物は、前記本発明の製造方法により得られる1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを含有するものである。
 本発明の香料組成物中の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの含有量は、香気、香調の観点から、0.01~99質量%が好ましく、0.1~15質量%がより好ましく、0.5~10質量%が更に好ましく、1~10質量%が更に好ましい。
 また、本発明の香料組成物は、通常用いられる他の香料成分や所望組成の調合香料を含有することができる。
 用いることができる他の香料成分としては、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノール以外のアルコール類、炭化水素類、フェノール類、エステル類、カーボネート類、アルデヒド類、ケトン類、アセタール類、エーテル類、カルボン酸、ラクトン類、ニトリル類、シッフ塩基類、天然精油や天然抽出物等が挙げられる。これらの中でも、アルコール類、エステル類、ラクトン類が好ましく、アルコール類、エステル類がより好ましい。これらの香料成分は、1種単独で又は2種以上を組み合わせて使用することができる。
 上述した実施形態に関し、本発明は以下の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法及び香料組成物を開示する。
<1>
 泥炭由来の活性炭に担持されたパラジウム触媒(A)、及びルテニウム、ロジウム、白金及びニッケルから選ばれる1種以上を含有する金属触媒(B)の存在下、水素圧1MPa以上、5MPa以下の条件下で、1-(2-t-ブチルフェニルオキシ)-2-ブタノールを水素化する工程を有する、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<2>
 泥炭由来の活性炭に担持されたパラジウム触媒(A)中パラジウム担持量が好ましくは0.1質量%以上、より好ましくは0.5質量%以上、より好ましくは1質量%以上であり、また、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である、前記<1>に記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<3>
 パラジウム触媒(A)中のパラジウムと金属触媒(B)中のルテニウム、ロジウム、白金及びニッケルから選ばれる1種以上の金属の質量比〔触媒(A)中のパラジウム/触媒(B)中の金属〕が好ましくは80/20~99/1、より好ましくは85/15~95/5、更に好ましくは90/10~95/5である、前記<1>又は<2>に記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<4>
 水素化工程における有機溶媒量が、1-(2-t-ブチルフェニルオキシ)-2-ブタノールに対して好ましくは50質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下、更に好ましくは1質量%以下、より更に好ましくは実質的に0質量%、より更に好ましくは0質量%である、前記<1>~<3>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<5>
 水素化工程における有機溶媒量が、1-(2-t-ブチルフェニルオキシ)-2-ブタノールに対して好ましくは0質量%であり、より好ましくは水素化工程において反応容器内に有機溶媒を含有しない、前記<4>に記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<6>
 パラジウム触媒(A)に用いられる泥炭由来の活性炭中の炭素含有率が、好ましくは95質量%以上、より好ましくは97質量%以上であり、また、好ましくは99.95質量%以下、より好ましくは99.9質量%以下である、前記<1>~<5>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<7>
 パラジウム触媒(A)に用いられる泥炭由来の活性炭の平均細孔径が、好ましくは8Å以上、より好ましくは30Å以上であり、また、好ましくは100Å以下、より好ましくは60Å以下である、前記<1>~<6>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<8>
 パラジウム触媒(A)に用いられる泥炭由来の活性炭の細孔容積(細孔径1000Å未満のポアの細孔容積)が、好ましくは0.1ml/g以上、より好ましくは0.2ml/g以上、更に好ましくは0.3ml/g以上であり、また、好ましくは2.5ml/g以下、より好ましくは2.0ml/g以下、更に好ましくは1.5ml/g以下、更に好ましくは1.0ml/g以下である、前記<1>~<7>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<9>
 パラジウム触媒(A)に用いられる泥炭由来の活性炭のメソ孔の細孔容積(細孔径2~50nmのポアの細孔容積)が、好ましくは0.21ml/g以上、より好ましくは0.24ml/g以上、更に好ましくは0.27ml/g以上、更に好ましくは0.30ml/g以上であり、また、好ましくは1.0ml/g以下、より好ましくは0.75ml/g以下、更に好ましくは0.4ml/g以下である、前記<1>~<8>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<10>
 パラジウム触媒(A)に用いられる泥炭由来の活性炭の比表面積が、好ましくは100m2/g以上、より好ましくは150m2/g以上であり、また、好ましくは3000m2/g以下、より好ましくは2000m2/g以下、更に好ましくは1500m2/g以下である、前記<1>~<9>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<11>
 パラジウム触媒(A)に用いられる泥炭由来の活性炭に担持されたパラジウム触媒(A)が、好ましくはパラジウム塩を用いた含浸法によって得られるものである、前記<1>~<10>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<12>
 パラジウム触媒(A)に用いられるパラジウム塩が、好ましくはPd(OH)2、PdCl2、Pd(OAc)2、Pd(NH4)Cl2、及び[Pd(NH34]Cl2から選ばれる1種以上、より好ましくはPd(OH)2、PdCl2、及びPd(OAc)2から選ばれる1種以上、更に好ましくはPd(OH)2、及びPdCl2から選ばれる1種以上である、前記<1>~<11>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<13>
 パラジウム触媒(A)が、泥炭由来の活性炭にパラジウムを担持させた後に、好ましくは200℃以上、300℃以下、より好ましくは80℃以上、280℃以下の温度で還元処理した後、固液分離し、得られた固形物を水洗、乾燥することにより得られるものである、前記<1>~<12>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<14>
 パラジウム触媒(A)を10質量倍の純水と混合した混合物のpHが、好ましくは7.0以上12.0以下であり、より好ましくは7.0以上で、更に好ましくは7.5以上、更に好ましくは7.8以上、更に好ましくは7.9以上であり、より好ましくは10.0以下であり、更に好ましくは9.5以下、更に好ましくは9.0以下、より更に好ましくは8.9、より更に好ましくは8.8である、前記<1>~<13>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<15>
 金属触媒(B)が、好ましくは担体に担持させた担持触媒である、前記<1>~<14>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<16>
 金属触媒(B)の金属成分が、好ましくはルテニウム、ロジウム及び白金から選ばれる1種以上、より好ましくはルテニウム及びロジウムから選ばれる1種以上、更に好ましくはルテニウムである、前記<1>~<15>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<17>
 金属触媒(B)の担体が、好ましくは無機担体、より好ましくは活性炭、アルミナ、シリカ、シリカマグネシア及びゼオライトから選ばれる1類以上の担体、更に好ましくは活性炭である、前記<1>~<16>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<18>
 金属触媒(B)の金属成分の担持量は、金属触媒(B)全体の好ましくは0.05質量%以上、20質量%以下であり、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上であり、より好ましくは15質量%以下、更に好ましくは10質量%以下である、前記<1>~<17>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<19>
 金属触媒(B)のpHが、好ましくは6.0以上、12.0以下であり、より好ましくは7.0以上、更に好ましくは7.2以上であり、より好ましくは9.0以下、更に好ましくは8.0以下である、前記<1>~<18>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<20>
 パラジウム触媒(A)と金属触媒(B)との合計使用量が、原料の1-(2-t-ブチルフェニルオキシ)-2-ブタノールに対して、好ましくは0.01質量%以上、10質量%以下であり、より好ましくは0.05質量%以上、5質量%以下である、前記<1>~<19>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<21>
 パラジウム触媒(A)が、鉄、マグネシウム、マンガン、カルシウム、及びチタンから選ばれる1種以上である金属の合計含有量が、パラジウム触媒(A)中、好ましくは0.10%以上、より好ましくは0.15%以上、更に好ましくは0.20%以上、更に好ましくは0.24%以上、また、好ましくは1.0%以下、より好ましくは0.80%以下、更に好ましくは0.50%以下、更に好ましくは0.40%以下である、前記<1>~<20>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<22>
 パラジウム触媒(A)が、窒素を、パラジウム触媒(A)中、好ましくは0.07%以上、より好ましくは0.08%以上、更に好ましくは0.09%以上、更に好ましくは0.10%以上、また、好ましくは1.0%以下、より好ましくは0.50%以下、更に好ましくは0.20%以下、より更に好ましくは0.15%以下含有する、前記<1>~<21>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<23>
 パラジウム触媒(A)が、硫黄を、パラジウム触媒(A)中、好ましくは0.08%以上、より好ましくは0.09%以上、更に好ましくは0.10%以上、更に好ましくは0.11%以上、また、好ましくは1.0%以下、より好ましくは0.50%以下、更に好ましくは0.20%以下、更に好ましくは0.15%以下含有する、前記<1>~<22>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<24>
 水素化反応に使用する有機溶媒が、好ましくはアルコール類及び炭化水素類から選ばれる1種以上、より好ましくはアルコール類、更に好ましくはメタノール、エタノール、イソプロパノールから選ばれる1種以上、更に好ましくはイソプロパノールである、前記<1>~<23>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<25>
 水素圧が、好ましくは1.5MPa以上、より好ましくは2.0MPa以上、更に好ましくは2.5MPa以上、更に好ましくは3.0MPa以上、であり、また、好ましくは4MPa以下、である、前記<1>~<24>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<26>
 水素化反応温度が、好ましくは50℃以上、より好ましくは100℃以上、更に好ましくは130℃以上であり、また、好ましくは300℃以下、より好ましくは250℃以下、更に好ましくは200℃である、前記<1>~<25>のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
<27>
 前記<1>~<26>のいずれかに記載の方法で得られた1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを含有する香料組成物。
<28>
 香料組成物中の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの含有量が、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上、更に好ましくは1質量%以上であり、また、好ましくは99質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下である、前記<27>に記載の香料組成物。
<29>
 香料組成物が、好ましくは1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノール以外のアルコール類、炭化水素類、フェノール類、エステル類、カーボネート類、アルデヒド類、ケトン類、アセタール類、エーテル類、カルボン酸、ラクトン類、ニトリル類、シッフ塩基類、天然精油、天然抽出物から選ばれる1つ以上を含有する、前記<26>又は<28>に記載の香料組成物。
<30>
前記<1>~<26>のいずれかに記載の製造方法で得られた1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの香料としての使用。
 以下の実施例、比較例において、「%」は特記しない限り「質量%」である。また、触媒の質量は乾燥状態での質量である。
[1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造]
実施例1
 500mlオートクレーブに、1-(2-t-ブチルフェニルオキシ)-2-ブタノール250g、及び泥炭由来の活性炭担持パラジウム触媒(エヌ・イー ケムキャット株式会社製、商品名:Uタイプ、50%含水品、パラジウム担持量2%、ガス賦活活性炭使用、pH7.9、細孔容積(細孔径1000Å未満のポアの細孔容積、以下の実施例、比較例において同じ)0.36ml/g、比表面積180m2/g、メソ孔の細孔容量(細孔径2~50nmのポアの細孔容積、以下の実施例、比較例において同じ)0.28ml/g、金属含有率0.25%、窒素含有率0.10%、硫黄含有率0.13%)4.75g、活性炭担持ルテニウム触媒(エヌ・イー ケムキャット株式会社製、50%含水品、ルテニウム担持量5%、ガス賦活活性炭使用、pH7.2)0.25gを加え、水素圧2.0MPa、190℃で6時間反応を行った。
 反応終了後、触媒を濾過して蒸留を行うことにより、収率73%で1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを得た。生成物をガスクロマトグラフィーで分析した結果、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールに対する環状ケタールの量(反応中間体の残存量)は0%であり、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールのシス体:トランス体(質量比)=55:45であった。以下の実施例及び比較例においても同様に分析した。その結果を表1に示す。
実施例2
 実施例1において、水素圧2.0MPaを4.0MPaに変更した以外は実施例1と同様に反応を行い、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを得た。結果を表1に示す。
比較例1
 実施例1において、水素圧2.0MPaを0.5MPaに変更した以外は実施例1と同様に反応を行い、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを得た。結果を表1に示す。
比較例2
 実施例1において、水素圧2.0MPaを7.0MPaに変更した以外は実施例1と同様に反応を行い、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを得た。結果を表1に示す。
実施例3
 実施例1において、泥炭由来の活性炭担持パラジウム触媒をUタイプからSタイプ(エヌ・イー ケムキャット株式会社製、50%含水品、パラジウム担持量2%、ガス賦活活性炭使用、pH7.9、細孔容積0.37ml/g、比表面積175m2/g、メソ孔の細孔容量0.32ml/g、金属含有率0.29%、窒素含有率0.13%、硫黄含有率0.12%)に変更したこと以外は実施例1と同様に反応を行い、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを得た。結果を表1に示す。
比較例3
 実施例1において、泥炭由来の活性炭担持パラジウム触媒を木炭由来の活性炭担持パラジウム触媒(エヌ・イー ケムキャット株式会社製、商品名:Dタイプ、50%含水品、パラジウム担持量2%、pH8.2、細孔容積0.25ml/g、比表面積146m2/g、メソ孔の細孔容量0.20ml/g、金属含有率0.07%、窒素含有率0.06%、硫黄含有率0.07%)に変更したこと以外は実施例1と同様に反応を行い、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを得た。結果を表1に示す。
実施例4
 実施例1において、水素圧2.0MPaを5.0MPaに、1-(2-t-ブチルフェニルオキシ)-2-ブタノールを50gに、活性炭担持パラジウム触媒を0.95gに、活性炭担持ルテニウム触媒を0.05gに変更し、更にイソプロパノールを150g加えた以外は実施例1と同様に反応を行い、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを得た。結果を表1に示す。
実施例5
 実施例1において、泥炭由来の活性炭担持パラジウム触媒(エヌ・イー ケムキャット株式会社製、商品名:Uタイプ、50%含水品、パラジウム担持量2%、ガス賦活活性炭使用、pH7.9、細孔容積0.36ml/g、比表面積180m2/g、メソ孔の細孔容量0.28ml/g、金属含有率0.25%、窒素含有率0.10%、硫黄含有率0.13%)を0.98g、活性炭担持ルテニウム触媒(エヌ・イー ケムキャット株式会社製、50%含水品、ルテニウム担持量5%、ガス賦活活性炭使用、pH7.2)を0.02g、水素圧2.0MPaを5.0MPaに、1-(2-t-ブチルフェニルオキシ)-2-ブタノールを50gに変更し、更にイソプロパノールを150g加えた以外は実施例1と同様に反応を行い、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを得た。結果を表1に示す。
比較例4
 実施例1において、泥炭由来の活性炭担持パラジウム触媒(エヌ・イー ケムキャット株式会社製、商品名:Uタイプ、50%含水品、パラジウム担持量2%、ガス賦活活性炭使用、pH7.9、細孔容積0.36ml/g、比表面積180m2/g、メソ孔の細孔容量0.28ml/g、金属含有率0.25%、窒素含有率0.10%、硫黄含有率0.13%)を0.98g、活性炭担持ルテニウム触媒(エヌ・イー ケムキャット株式会社製、50%含水品、ルテニウム担持量5%、ガス賦活活性炭使用、pH7.2)を0.02g、水素圧2.0MPaを7.0MPaに、1-(2-t-ブチルフェニルオキシ)-2-ブタノールを50gに変更し、更にイソプロパノールを150g加えた以外は実施例1と同様に反応を行い、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを得た。結果を表1に示す。
比較例5
 実施例1において、泥炭由来の活性炭担持パラジウム触媒を木炭由来の活性炭担持パラジウム触媒(エヌ・イー ケムキャット株式会社製、商品名:Cタイプ、50%含水品、パラジウム担持量2%、pH8.0、細孔容積0.23ml/g、比表面積137m2/g、メソ孔の細孔容量0.14ml/g、金属含有率0.09%、窒素含有率0.05%、硫黄含有率0.06%)0.98gに、活性炭担持ルテニウム触媒(エヌ・イー ケムキャット株式会社製、50%含水品、ルテニウム担持量5%、ガス賦活活性炭使用、pH7.2)を0.02gに変更したこと、水素圧2.0MPaを7.0MPaに、1-(2-t-ブチルフェニルオキシ)-2-ブタノールを50gに変更したこと、及びイソプロパノールを150g加えたこと以外は実施例1と同様に反応を行い、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを得た。結果を表1に示す。
比較例6
 実施例1において、泥炭由来の活性炭担持パラジウム触媒(エヌ・イー ケムキャット株式会社製、商品名:Uタイプ、50%含水品、パラジウム担持量2%、ガス賦活活性炭使用、pH7.9、細孔容積0.36ml/g、比表面積180m2/g、メソ孔の細孔容量0.28ml/g、金属含有率0.25%、窒素含有率0.10%、硫黄含有率0.13%)を0.98g、活性炭担持ルテニウム触媒(エヌ・イー ケムキャット株式会社製、50%含水品、ルテニウム担持量5%、ガス賦活活性炭使用、pH7.2)を0.02gに変更したこと、水素圧2.0MPaを7.0MPaに、1-(2-t-ブチルフェニルオキシ)-2-ブタノールを50gに変更し、更にイソプロパノールを2.5g加えたこと以外は実施例1と同様に反応を行い、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを得た。結果を表1に示す。
実施例6
 実施例5において、イソプロパノール150gを2.5gに変更したこと以外は実施例5と同様に反応を行い、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを得た。結果を表1に示す。
試験例
 実施例1~6及び比較例1~6で得られた1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールについて、下記方法により香調を評価した。結果を表1に示す。
<香調の評価法>
 複数の専門パネラーにより、香調を評価した。香気は、より強く感じられるものから順に列挙し、香調に特徴のあるものについては、判定についても付記した。総合評価として、下記基準でランク付けした。
  A:極めて興味深く香料素材としての価値が高い
  B:香料素材として十分な価値を有する
  C:香料素材としてほぼ十分な価値を有する
  D:香料素材としての価値かやや低い
Figure JPOXMLDOC01-appb-T000001
調合例
 下記組成のフローラルオリエンタル調の調合香料920質量部に、実施例1で得られた本発明の香料組成物を80質量部加えたところ、パウダリーな甘さが強まった。
<フローラルオリエンタル調調合香料組成>
  ベルガモット油             80質量部
  ジヒドロミルセノール          25質量部
  アリル-2-ペンチロキシグリコレート   5質量部
  メチルフェニルカルビニルアセテート   10質量部
  イランベース              50質量部
  ローズベース              50質量部
  ジャスミンベース           100質量部
  メチルジヒドロジャスモネート     130質量部
  メチルイオノンガンマ         150質量部
  サンダルマイソールコア *1      50質量部
  トナライド  *2          100質量部
  ベンジルサリシレート          50質量部
  クマリン                50質量部
  バニリン                20質量部
  アンバーベース             50質量部
                     920質量部

注)
*1:花王株式会社製2-メチル-4-(2,3,3-トリメチル-3-シクロペンチン-1-イル)-2-ブテン-1-オール
*2:PFWアロマケミカルズ社製7-アセチル-1,1,3,4,4,6-ヘキサメチルテトラヒドロナフタレン
 本発明の製造方法によれば、反応中間体の残存量が少ないために純度が高く、香料素材として木様、アンバー様の香気があり、香調に優れた1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを高収率で得ることができる。製造された1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールは、香料素材として、例えば、石鹸、シャンプー、リンス、洗剤、化粧品、スプレー製品、芳香剤、香水、入浴剤等の賦香成分として使用することができる。

Claims (15)

  1.  泥炭由来の活性炭に担持されたパラジウム触媒(A)、及びルテニウム、ロジウム、白金及びニッケルから選ばれる1種以上を含有する金属触媒(B)の存在下、水素圧1~5MPaの条件下で、1-(2-t-ブチルフェニルオキシ)-2-ブタノールを水素化する工程を有する、1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
  2.  泥炭由来の活性炭に担持されたパラジウム触媒(A)中のパラジウム担持量が0.1~15質量%である、請求項1に記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
  3.  パラジウム触媒(A)中のパラジウムと金属触媒(B)中のルテニウム、ロジウム、白金及びニッケルから選ばれる1種以上の金属の質量比〔触媒(A)中のパラジウム/触媒(B)中の金属〕が80/20~99/1である、請求項1又は2に記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
  4.  水素化工程における有機溶媒量が、1-(2-t-ブチルフェニルオキシ)-2-ブタノールに対して10質量%以下である、請求項1~3のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
  5.  水素化工程における有機溶媒量が、1-(2-t-ブチルフェニルオキシ)-2-ブタノールに対して0質量%である、請求項4に記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
  6.  パラジウム触媒(A)に用いられる泥炭由来の活性炭に担持されたパラジウム触媒(A)が、パラジウム塩を用いた含浸法によって得られるものである、請求項1~5のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
  7.  パラジウム触媒(A)に用いられるパラジウム塩が、Pd(OH)2、PdCl2、Pd(OAc)2、Pd(NH4)Cl2、及び[Pd(NH34]Cl2から選ばれる1種以上である、請求項1~6のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
  8.  パラジウム触媒(A)を10質量倍の純水と混合した混合物のpHが、7.0~12.0である、請求項1~7のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
  9.  パラジウム触媒(A)と金属触媒(B)との合計使用量が、原料の1-(2-t-ブチルフェニルオキシ)-2-ブタノールに対して、0.01~10質量%である、請求項1~8のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
  10.  パラジウム触媒(A)が、鉄、マグネシウム、マンガン、カルシウム、チタンである金属を、パラジウム触媒(A)中、0.10%以上1.0%以下含有する、請求項1~9のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
  11.  パラジウム触媒(A)が、窒素を、パラジウム触媒(A)中、0.07%以上1.0%以下含有する、請求項1~10のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
  12.  パラジウム触媒(A)が、硫黄を、パラジウム触媒(A)中、0.08%以上1.0%以下含有する、請求項1~11のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
  13.  水素化反応に使用する有機溶媒が、アルコール類及び炭化水素類から選ばれる1種以上である、請求項1~12のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
  14.  水素化反応温度が、50~300℃である、請求項1~13のいずれかに記載の1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法。
  15.  請求項1~14のいずれかに記載の方法で得られた1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールを含有する香料組成物。
PCT/JP2012/083455 2011-12-26 2012-12-25 1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法 WO2013099858A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/368,381 US9181160B2 (en) 2011-12-26 2012-12-25 Method of producing 1-(2-t-butylcyclohexyloxy)-2-butanol
ES12862276.8T ES2630005T3 (es) 2011-12-26 2012-12-25 Método para producir 1-(2-t-butil ciclohexiloxi)-2-butanol
EP12862276.8A EP2799416B1 (en) 2011-12-26 2012-12-25 METHOD OF PRODUCING 1-(2-t-BUTYL CYCLOHEXYLOXY)-2-BUTANOL
CN201280064797.0A CN104024199B (zh) 2011-12-26 2012-12-25 1-(2-叔丁基环己氧基)-2-丁醇的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011284422 2011-12-26
JP2011-284415 2011-12-26
JP2011-284422 2011-12-26
JP2011284415 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013099858A1 true WO2013099858A1 (ja) 2013-07-04

Family

ID=48697343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083455 WO2013099858A1 (ja) 2011-12-26 2012-12-25 1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法

Country Status (5)

Country Link
US (1) US9181160B2 (ja)
EP (1) EP2799416B1 (ja)
CN (1) CN104024199B (ja)
ES (1) ES2630005T3 (ja)
WO (1) WO2013099858A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124003A1 (ja) * 2020-12-07 2022-06-16 花王株式会社 香料組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099859A1 (ja) * 2011-12-26 2013-07-04 花王株式会社 1-(2-t-ブチルシクロヘキシルオキシ)-2-アルカノールの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217937A (ja) 1990-07-18 1992-08-07 Kao Corp α−(アルキルシクロヘキシルオキシ)−β−アルカノール類及びこれを含有する香料組成物
JPH04327553A (ja) 1991-04-30 1992-11-17 Kao Corp α−(アルキルシクロヘキシルオキシ)−β−アルカノールの製造法
JPH06263677A (ja) 1993-03-15 1994-09-20 Kao Corp エーテルアルコール類の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2632474B2 (ja) 1992-06-05 1997-07-23 花王株式会社 2−(2−t−ブチルシクロヘキシルオキシ)−1−ブタノール及びこれを含有する香料組成物
WO2013099859A1 (ja) 2011-12-26 2013-07-04 花王株式会社 1-(2-t-ブチルシクロヘキシルオキシ)-2-アルカノールの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217937A (ja) 1990-07-18 1992-08-07 Kao Corp α−(アルキルシクロヘキシルオキシ)−β−アルカノール類及びこれを含有する香料組成物
JPH04327553A (ja) 1991-04-30 1992-11-17 Kao Corp α−(アルキルシクロヘキシルオキシ)−β−アルカノールの製造法
JPH06263677A (ja) 1993-03-15 1994-09-20 Kao Corp エーテルアルコール類の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARGOT, CHRISTIAN ET AL.: "Amber-woody scent: Alcohols with divergent structure present common olfactory characteristics and sharp enantiomer differentiation", HELVETICA CHIMICA ACTA, vol. 87, no. 10, October 2004 (2004-10-01), pages 2662 - 2684, XP055073512 *
See also references of EP2799416A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124003A1 (ja) * 2020-12-07 2022-06-16 花王株式会社 香料組成物

Also Published As

Publication number Publication date
CN104024199B (zh) 2016-08-24
EP2799416A4 (en) 2015-09-23
CN104024199A (zh) 2014-09-03
US20140378713A1 (en) 2014-12-25
EP2799416B1 (en) 2016-10-12
EP2799416A1 (en) 2014-11-05
ES2630005T3 (es) 2017-08-17
US9181160B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
Trasarti et al. Design of catalyst systems for the one-pot synthesis of menthols from citral
Plößer et al. Highly selective menthol synthesis by one-pot transformation of citronellal using Ru/H-BEA catalysts
JP6122091B2 (ja) 4−シクロヘキシル−2−メチル−2−ブタノールの調製方法
US9717664B2 (en) Composition that includes cyclohexyl-substituted tertiary alkanols
Mertens et al. Pt/H-beta zeolites as productive bifunctional catalysts for the one-step citronellal-to-menthol conversion
JP5282165B2 (ja) 1−(2−t−ブチルシクロヘキシルオキシ)−2−ブタノールの製造方法
US20110237684A1 (en) Process for preparing 4-cyclohexyl-2-methyl-2-butanol
JP5689964B2 (ja) 異性化反応触媒
Nie et al. Zr–Zeolite Beta: A New Heterogeneous Catalyst System for the Highly Selective Cascade Transformation of Citral to (±)‐Menthol
WO2013099858A1 (ja) 1-(2-t-ブチルシクロヘキシルオキシ)-2-ブタノールの製造方法
JP2013536216A (ja) 3,7−ジメチル−1−オクテン−3−オールの製造方法
JP5988861B2 (ja) 1−(2−t−ブチルシクロヘキシルオキシ)−2−ブタノールの製造方法
JP5282166B2 (ja) 1−(2−t−ブチルシクロヘキシルオキシ)−2−アルカノールの製造方法
JP4552031B2 (ja) シトラール水素化物の製造方法
CN113499771B (zh) 钌炭催化剂及其制备方法和应用
JP2001322960A (ja) d,l−メントールの製造法
Kumar et al. Regulating the catalytic activities of Ni and Pd through doping on Fe2O3HT for selective hydrogenation of conjugated aldehyde (citral) in lemongrass essential oil to organoleptically superior monoterpene alcohols (geraniol/nerol)
JP2008001667A (ja) アルコール系化合物
Tungler et al. Role of catalyst preparation and pretreatment in the stereoselective hydrogenation of thymol
KR20190049131A (ko) 2,2,4,4-테트라메틸-1,3-사이클로부탄다이올의 제조방법
Coman et al. Low metal loading Ru-MCM-41 stereocontrolled hydrogenation of prostaglandin intermediates
RU2283301C2 (ru) Способ получения фторированного бензонитрила
KR Selective hydrogenation of cinnamaldehyde using palladium based bimetallic catalysts Pd-M/TiO2 (M= Cu, Ag and Au)
JP4296275B2 (ja) 超臨界二酸化炭素中での水素化反応によるシトラールからの不飽和アルコールの合成方法
Nishiyama et al. Remarkable support effects of gallium compounds on the activity and selectivity of Ru metal catalyst for liquid-phase citral hydrogenation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14368381

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012862276

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012862276

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE