WO2013099653A1 - 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム - Google Patents

放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム Download PDF

Info

Publication number
WO2013099653A1
WO2013099653A1 PCT/JP2012/082464 JP2012082464W WO2013099653A1 WO 2013099653 A1 WO2013099653 A1 WO 2013099653A1 JP 2012082464 W JP2012082464 W JP 2012082464W WO 2013099653 A1 WO2013099653 A1 WO 2013099653A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
substrate
dividing
radiation
holding plate
Prior art date
Application number
PCT/JP2012/082464
Other languages
English (en)
French (fr)
Inventor
金子 泰久
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013099653A1 publication Critical patent/WO2013099653A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators

Definitions

  • the present invention relates to a grid used for radiographic imaging, a method for manufacturing the grid, and a radiographic imaging system using the grid.
  • phase contrast image a high-contrast image
  • An X-ray imaging system for imaging a phase contrast image includes an X-ray source that emits X-rays, first and second grids, and a radiation image detector. A subject is placed between the X-ray source and the first grid, and a plurality of fringe images that are intensity-modulated by superposition of the self-image of the first grid and the second grid are photographed while the first grid is moved intermittently. Then, a phase contrast image is acquired based on the change caused by the subject superimposed on these fringe images.
  • This X-ray image capturing method is called a fringe scanning method.
  • the X-ray source emits X-rays spreading like a cone beam
  • vignetting of X-rays occurs at the periphery of the grid when a flat grid is used.
  • the grid is formed using, for example, a silicon wafer.
  • Japanese Patent Application Laid-Open No. 2007-203061 (corresponding to US Pat. No. 7,522,698), a plurality of flat small grids are arranged on the concave surface to locally form a flat plate. It is disclosed to use a grid having a curved shape as a whole.
  • Japanese Patent Laid-Open No. 2010-063646 (corresponding US Pat. No. 8,139,711) describes that after forming a grid on a flexible plate, the flexible plate is bent into a cylindrical surface. Has been.
  • Japanese Patent Application Laid-Open No. 2007-203061 when a small grid is arranged on a non-planar surface in accordance with the spread of X-rays, it is necessary to align the arrangement and inclination of each small grid with high accuracy. .
  • Japanese Patent Laid-Open No. 2007-203061 does not disclose a specific method for aligning each small grid with high accuracy when the small grids are arranged on a non-planar surface. For this reason, it is difficult to arrange the small grid in a cylindrical surface or a spherical surface with high accuracy to the extent that it can be used for actual photographing.
  • the flexible plate has a large coefficient of thermal expansion and is easily deformable, as described in JP 2010-063646 A, when a grid is formed on the flexible plate, the grid expands due to the thermal expansion of the flexible plate. There is a problem that the accuracy of itself deteriorates.
  • the flexible plate is curved by attaching a small grid on the flexible plate.
  • an alignment mark is provided as a guideline for placing a small grid on the flexible plate, and the small grid is placed in accordance with the alignment mark.
  • the interval between the alignment marks is easily changed, it is difficult to form the alignment marks with high accuracy. Therefore, when a small grid is arranged on a flexible plate, it is necessary to use an alignment mark with poor accuracy as a reference, and thus there remains a problem that it is difficult to place with high accuracy.
  • An object of the present invention is to provide a highly accurate curved grid, a manufacturing method thereof, and a radiographic imaging system.
  • the grid for radiographic imaging of the present invention includes a grid substrate, a dividing portion, a grid portion, and a holding plate.
  • the grid substrate has radiation transparency.
  • the dividing portion is formed on the grid substrate so as to be divided into a plurality of small grids when the grid substrate is bent.
  • a grid part is provided in each small grid, and forms a fringe image.
  • the holding plate is bonded to a grid substrate and can be bent to divide the grid substrate into small grids.
  • the holding plate is curved so that each small grid faces the radiation source. Moreover, it is preferable that a parting part has a groove
  • a plurality of convex parts and concave parts are alternately formed with the same width. And it is preferable that all the convex parts including the convex part of the end adjacent to a parting part are the same width
  • the recess may be filled with a radiation absorbing material that absorbs radiation.
  • the holding plate is preferably provided with a low-rigidity portion for designating the dividing position of the grid substrate at a position corresponding to the dividing portion.
  • the dividing part is preferably filled with a filler that maintains the curved shape of the holding plate after the grid substrate is divided.
  • the holding plate is preferably made of a shape memory material.
  • the method for manufacturing a grid for radiographic imaging of the present invention includes a resist pattern forming step, an etching step, a bonding step, and a holding plate bending step.
  • the resist pattern forming step is a step of forming a resist pattern on a radiation transmissive grid substrate, and a plurality of resist patterns are formed at predetermined intervals longer than the gaps in the resist pattern.
  • the grid substrate is dry-etched using the resist pattern as a mask to form a grid portion having a groove having a width corresponding to the resist pattern on the surface of the grid substrate, and the groove of the grid portion corresponding to a predetermined interval. A dividing portion that is wider and deeper than that is formed.
  • a bonding process bonds the grid board
  • the holding plate bending step divides the grid substrate at the dividing portion by bending the holding plate to a predetermined curvature.
  • the grid substrate has conductivity.
  • the insulating film forming step an insulating film is formed on the grid portion and the dividing portion formed on the surface of the grid substrate in the etching step.
  • the insulating film removing process is performed by uniformly etching the insulating film formed thin at the grid part and thick at the dividing part in the insulating film forming process, leaving a part of the insulating film at the dividing part, and the bottom part of the grid part.
  • the grid substrate is exposed by removing the insulating film.
  • the grid substrate is immersed in a plating solution to conduct, thereby depositing a radiation absorbing material that absorbs radiation in the grooves of the grid portion.
  • the radiation image capturing system of the present invention includes a first grid, a second grid, and a radiation image detector.
  • the first grid transmits a radiation emitted from the radiation source to generate a fringe image.
  • the second grid applies intensity modulation to the fringe image.
  • the radiation image detector detects a fringe image whose intensity is modulated by the second grid. Then, a phase contrast image is generated from the fringe image detected by the radiation image detector.
  • at least one of a 1st grid or a 2nd grid is provided with the above-mentioned grid board
  • the radiation source grid includes a grid substrate, the above-described dividing portion, the grid portion, and a holding plate.
  • the grid for radiographic imaging of the present invention is divided into each small grid by sticking a plurality of integrally formed small grids to a holding plate and curving the holding plate, and is held on a curved surface. . Thereby, a curved grid can be formed with high accuracy.
  • FIG. 3 is a cross-sectional view of a second grid taken along line III-III in FIG. 2. It is sectional drawing which shows the structure of a small grid. It is sectional drawing which shows a resist pattern formation process. It is sectional drawing which shows an etching process. It is sectional drawing which shows a bonding process. It is sectional drawing which shows a holding plate bending process. It is sectional drawing at the time of forming a grid part and a parting part by dry etching. It is sectional drawing at the time of forming a parting part by dicing. It is sectional drawing which shows a resist pattern formation process.
  • the X-ray imaging system 10 includes an X-ray source 11, a source grid 12, a first grid 13, a second grid 14, and an X-ray along the Z direction that is an X-ray irradiation direction.
  • An image detector 15 is provided.
  • the X-ray source 11 has a rotating anode type X-ray tube (not shown) and a collimator (not shown) for limiting the X-ray irradiation field, and emits X-rays to the subject H.
  • the radiation source grid 12 is an absorption grid that absorbs X-rays, and the X-rays irradiated from the X-ray source 11 are selectively shielded to form a large number of line-shaped X-rays.
  • the first grid 13 is a phase-type grid that modulates the phase of X-rays, and each line-shaped X-ray incident from the source grid 12 is phase-modulated and transmitted.
  • the X-rays transmitted through the first grid 13 form a fringe image (hereinafter referred to as a self-image) having the same pattern as the first grid 13 itself at a position away from the first grid 13 by the Talbot distance due to the Talbot interference effect. .
  • the source grid 12 and the first grid 13 are arranged at positions that satisfy the so-called Talbot-low condition, and the self-image formed by each line-shaped X-ray formed by the source grid 12 is the first They overlap at a position away from the grid 13 by the Talbot distance.
  • the second grid 14 is an absorptive grid and is disposed at a position where the self-image of the first grid 13 is formed (for example, the position of the minimum Talbot distance).
  • the second grid 14 shields the self-image of the first grid 13 in a region-selective manner, thereby generating a fringe image in which the self-image of the first grid 13 is intensity-modulated and projects it onto the X-ray image detector 15. .
  • the radiation source grid 12, the first grid 13, and the second grid 14 are all disposed so that the lattice lines are along the X direction, and are opposed to the X-ray source 11 in the Z direction. Further, the source grid 12, the first grid 13, and the second grid 14 are cylinders that are curved in the Y direction in accordance with the X-ray irradiated from the X-ray source 11 being diffused and irradiated in a cone beam shape. It is in the shape.
  • the subject H is disposed between the source grid 12 and the first grid 13. For this reason, modulation according to the transmission phase information of the subject H occurs on the self-image formed by the first grid 13 and the fringe image formed on the X-ray image detector 15 by the second grid 14.
  • the X-ray image detector 15 is a flat panel detector using a semiconductor circuit, and is disposed behind the second grid 14.
  • the X-ray image detector 15 detects a fringe image generated by the second grid 14.
  • X-rays radiated from the X-ray source 11 are partially shielded by the X-ray absorption part of the source grid 12, thereby reducing the effective focal size in the Y direction, and arranging many in the Y direction.
  • a line-shaped X-ray is formed.
  • the phase of each line-shaped X-ray changes when passing through the subject H.
  • a self-image reflecting the transmission phase information of the subject H determined from the refractive index of the subject H and the transmission optical path length is formed.
  • the self-image generated by each line-shaped X-ray is projected onto the second grid 14 and overlaps the second grid 14.
  • the self-image of the first grid 13 that overlaps at the position of the second grid 14 is partially shielded by the second grid 14 to be intensity-modulated, and a fringe image is generated.
  • a fringe scanning method is used, and the second grid 14 is intermittently moved with respect to the first grid 13, and the subject H is irradiated with X-rays from the X-ray source 11 during the stop.
  • a striped image is taken by the X-ray image detector 15. This intermittent movement in the Y direction is performed at a constant scanning pitch in which the lattice pitch is equally divided (for example, divided into five).
  • phase differential image By calculating the phase shift amount (phase shift amount with and without the subject H) from the intensity modulation signal representing the intensity change of each pixel of the X-ray image detector 15, a phase differential image is obtained. Is obtained.
  • the phase differential image corresponds to the distribution of the X-ray refraction angle in the subject H. By integrating this phase differential image along the X direction, a phase contrast image is obtained.
  • the first grid 13 includes five small grids 17 to 21. These small grids 17 to 21 are all formed in the same manner, and the outer shape is an elongated rectangular shape extending in the X direction, and the lattice lines are also provided along the X direction.
  • the small grids 17 to 21 are attached on the flexible plate 26.
  • the small grids 17 to 21 are integrally formed so as to be parallel to each other at a predetermined interval, and are attached to the flexible plate 26 when the flexible plate 26 has a parallel plate shape.
  • the flexible plate 26 is curved into a cylindrical surface so as to be convex toward the X-ray image detector 15, thereby being divided into small grids 17 to 21.
  • the small grids 17 to 21 are equidistant from each other along the surface of the flexible plate 26 and parallel to the X direction.
  • the small grids 17 to 21 are arranged at different angles in the Y direction in accordance with the curvature of the flexible plate 26.
  • the small grid 19 disposed in the center of the flexible plate 26 is substantially in front of the X-ray source 11 along the X direction. Be placed. Further, the small grids 18 and 20 are arranged to be inclined at a predetermined angle in the Y direction with respect to the central small grid 19. The small grids 17 and 21 are further inclined at a predetermined angle in the Y direction with respect to the small grids 18 and 20. Therefore, each surface of the small grids 17 to 21 faces the X-ray focal point 11a of the X-ray source 11 and is substantially perpendicular to the incident direction of the X-rays.
  • the first grid 13 approximates a so-called convergence structure, and if each grid portion (protrusion 31a and recess 31b described later) is extended, the grid formed by all the small grids 17-21.
  • the extension line of the structure almost converges to the X-ray focal point 11a.
  • the flexible plate 26 is a substrate having a low X-ray absorption rate (having X-ray transparency) to such an extent that the X-ray image detected by the X-ray image detector 15 is not substantially affected.
  • the flexible plate 26 is made of, for example, polyimide, polyethylene terephthalate (PET), polycarbonate (PC), dry film, parylene, acrylic resin, or the like.
  • small grids 17 to 21 are formed on a grid plate 41 having X-ray transparency such as silicon, and each has a grid portion 31.
  • a divided portion (partition scheduled portion) 32 is formed in the substitute for the adjacent small grids 17 to 21, and the divided portions 32 are divided into small grids 17 to 21.
  • Each grid portion 31 of each of the small grids 17 to 21 includes a convex portion 31a and a concave portion 31b.
  • the convex portions 31a and the concave portions 31b are each formed linearly in the X direction and are alternately arranged in the Y direction. Since each of the small grids 17 to 21 is irradiated with X-rays substantially perpendicular to the surface, the distance at which the X-rays pass through the silicon differs between the convex portion 31a and the concave portion 31b.
  • a phase difference of ⁇ or ⁇ / 2 is generated between the X-ray transmitted through the convex portion 31a and the X-ray transmitted through the concave portion 31b, and a Talbot interference effect is generated.
  • the width W1 and the pitch P1 of the convex portion 31a are determined by the distance between the radiation source grid 12 and the first grid 13 or the like.
  • the thickness of the convex portion 31a (the depth of the concave portion 31b) T1 is determined so that a phase difference of ⁇ or ⁇ / 2 is generated in the X-ray.
  • the dividing portion 32 Since the dividing portion 32 is cut so as to be thinner than the grid portion 31, it is a portion having low rigidity. As will be described later, the dividing portion 32 has a grid on the grid substrate 41 (X-ray transmissive substrate). It is formed at the same time in the step of forming the portion 31. In addition, the thickness of the grid part 31 means the thickness of the location where the grid board
  • the small grids 17 to 21 are formed by dividing the grid substrate 41 by the dividing portion 32 when the flexible plate 26 is bent.
  • the grid substrate 41 is bonded to the flexible plate 26 using an adhesive.
  • the adhesive used here only needs to have X-ray permeability and adhesiveness, and resist, parylene, polyimide, or the like may be used.
  • the thickness of the adhesive is approximately 10 ⁇ m.
  • the flexible plate 26 is attached to the grid plate 41 on which the grid portion 31 and the dividing portion 31 are formed in a parallel plate state, and is bent in the manufacturing process of the first grid 13.
  • the substrate 41 is divided by the dividing part 32.
  • the grid substrate 41 is held on the curved surface of the flexible plate 26 by an adhesive even after being divided into small grids 17 to 21.
  • the source grid 12 and the second grid 14 are formed by bonding a plurality of small grids to a flexible plate and bending the flexible plate in the same manner as the first grid 13.
  • the convex portion 31a is an X-ray transmitting portion
  • the concave portion 31b is made of an X-ray absorber (eg, gold).
  • the X-ray absorption part is filled.
  • the width and pitch of the X transmission part and the X-ray absorption part of the small grid forming the source grid 12 and the second grid 14 are the same as the arrangement of the source grid 12 and the second grid 14 and the first grid 13. It depends on the positional relationship and the like, and is different from the width and pitch of the convex portions 31a (concave portions 31b) of the first grid 13.
  • a resist pattern 42 is formed on the surface of a grid substrate 41 made of silicon or the like by photolithography.
  • the resist pattern 42 is a pattern in which a resist is left with a predetermined width and a predetermined pitch in the Y direction. Further, the resist pattern 42 extends linearly in the X direction.
  • the width and pitch of the resist pattern 42 correspond to the width W1 and the pitch P1 of the convex portions 31a of the grid portion 31.
  • five resist patterns 42 are provided at a predetermined interval ⁇ 1 in the Y direction corresponding to each grid portion 31 of the small grids 17 to 21.
  • the interval ⁇ 1 between the resist patterns 42 corresponds to the dividing portion 32 and is larger than the width W1 of the resist pattern (W1 ⁇ 1).
  • the grid substrate 41 is etched using the resist pattern 42 as a mask.
  • the etching performed here is deep etching such as a Bosch process or a cryo process, and the grid substrate 41 is cut isotropically. Further, according to dry etching, the portion where the interval between the resist patterns 42 is wider is cut deeper. Therefore, as shown in FIG. 6, by performing dry etching on the grid substrate 41 using the resist pattern 42 as a mask, a shallow groove is formed on the surface of the grid substrate 41 at a position corresponding to the resist pattern 42 (depth). T1), a groove is deeply formed at a position between the resist patterns 42 (depth D1). As a result, grid portions 31 are formed at locations corresponding to the resist patterns 42, and divided portions 32 are formed between the resist patterns 42.
  • the resist pattern 42 remains on the convex portion 31a after the above-described etching for forming the grid portion 31 and the dividing portion 32, it is removed by ashing or the like.
  • the grid substrate 41 on which the grid portion 31 and the dividing portion 32 are formed is affixed on the parallel plate-like flexible plate 26 using an adhesive. Then, as shown in FIG. 8, the flexible plate 26 is curved in a cylindrical surface shape in the Y direction according to the position of the first grid 13 with respect to the X-ray source 11, the extent of X-ray irradiation, and the like. Since the grid substrate 41 on which the grid part 31 and the dividing part 32 are formed is the thinnest at the bottom part of the dividing part 32, the stress due to the bending of the flexible plate 26 is concentrated on the bottom part of the dividing part 32.
  • the grid substrate 41 is divided by the crack 42 generated at the bottom of the dividing portion 32, and the small grids 17 to 21 are formed.
  • each of the small grids 17 to 21 is integrated with the flexible plate 26 by an adhesive.
  • the grid substrate 41 on which the grid portion 31 and the dividing portion 32 are formed is attached to the parallel plate-like flexible plate 26, and the flexible plate 26 is curved into a cylindrical surface, whereby the dividing substrate 32 uses the grid substrate 41.
  • the small grids 17 to 21 are positioned with high accuracy with respect to each other along the flexible plate 26 curved in a cylindrical surface shape.
  • the small grids 17 to 21 are arranged on the surface curved in a cylindrical shape in advance, the position and orientation of each small grid must be adjusted.
  • the small grids 17 to If 21 is formed integrally and divided by the dividing portion 32, alignment between the small grids 17 to 21 is unnecessary. Therefore, according to the above-described embodiment, the first grid 13 in which the small grids 17 to 21 are arranged on the cylindrical surface with relatively high accuracy can be easily manufactured.
  • the width W1 and the pitch P1 of the convex portions 31a and the concave portions 31b are likely to change due to the expansion and contraction of the flexible plate 26.
  • the accuracy of the width W1 and the pitch P1 of the convex portion 31a and the concave portion 31b is almost unaffected by the expansion / contraction of the flexible plate 26 and is constant. For this reason, the grid formed like the above-mentioned embodiment can exhibit the stable performance.
  • the convex portion 31a is the most extreme convex portion 31a adjacent to the dividing portion 32 as shown in FIG.
  • the convex portions 31a having the same width W1 are formed.
  • the part between the grid parts 31 is cut by dicing, and the parting part 32 is formed.
  • the dividing portion 32 is formed by this procedure, the extreme end convex portion 31a of the grid portion 31 adjacent to the dividing portion 32 is damaged and falls due to the pressure of water used during dicing.
  • the dividing portion 32 is formed by dicing, a convex portion 31c that does not function as a grid is formed, and a region where an image cannot be obtained is widened.
  • the grid portion 31 and the dividing portion 32 are simultaneously formed by dry etching as in the above-described embodiment, the grid portion 31 is all the same up to the most convex portion 31a adjacent to the dividing portion 32 as described above. Since the convex portion 31a having the width W1 is formed, a region functioning as a grid can be obtained efficiently, and the performance of the small grids 17 to 21 can be improved.
  • the manufacturing method of the 2nd grid 14 which is an absorption type grid is demonstrated.
  • substrate 51 is used.
  • the conductive substrate 51 is a substrate having conductivity as well as X-ray transparency, and is made of, for example, conductive silicon.
  • a resist pattern 52 is provided on the surface of the conductive substrate 51.
  • the method of forming the resist pattern 52 is the same as that of the resist pattern 42 described above, but the width and pitch of the resist pattern 52 are width W2, pitch P2 so as to correspond to the grid portion of the small grid constituting the second grid 14. It has become.
  • the resist patterns 52 are provided by the number of small grids used for the second grid 14, and each resist pattern 52 is provided with a predetermined interval ⁇ 2.
  • the predetermined interval ⁇ 2 is at least larger than the width W2 of the resist pattern 52 (W2 ⁇ 2).
  • the conductive substrate 51 is dry-etched using the resist pattern 52 as a mask, so that the grid portion 53 and the dividing portion of the small grid used for the second grid 14 are formed on the surface of the conductive substrate 51. 54 is formed. At this time, it is the same as the above-described method for manufacturing a phase-type grid that the wider divided portion 54 is cut deeper than the concave portion of the grid portion 53.
  • an insulating film 55 is formed on the surface of the conductive substrate 51 on which the grid portion 53 and the dividing portion 54 are formed.
  • the insulating film 55 is formed by, for example, plasma CVD (PECVD) or thermal oxidation in an oxygen or hydrogen (or air) atmosphere.
  • PECVD plasma CVD
  • thermal oxidation in an oxygen or hydrogen (or air) atmosphere it is assumed that the insulating film 55 is a surface oxide film of the conductive substrate 51.
  • the thickness of the insulating film 55 varies depending on the location. For example, when the film thickness Ta of the insulating film 55 formed on the bottom part of the grid part 53 (the bottom of the recess) is compared with the film thickness Tb of the insulating film 55 formed on the bottom part of the dividing part 54, The film thickness Tb at the bottom of the dividing portion 54 is thicker than the film thickness Ta (Ta ⁇ Tb). This is due to the difference in the ease of inflow of gas used during plasma CVD and thermal oxidation used when forming the insulating film 55, and the amount of inflow of gas necessary for forming the insulating film 55 is small in the narrow grid portion 53. Therefore, the insulating film 55 is thin.
  • the insulating film 55 is formed thick.
  • the concave side surface of the grid portion 53 and the side surface of the dividing portion 54 have a large amount of contact with the gas for forming the insulating film 55, so that the insulating film 55 is formed thick.
  • the insulating film 55 at the bottom of the grid portion 53 is removed by dry etching, as shown in FIG.
  • dry etching the surface of the conductive substrate 51 is uniformly cut regardless of the width and depth of the grooves of the grid portion 53 and the dividing portion 54. Therefore, as described above, when the surface of the conductive substrate 51 is exposed at the bottom 53a of the grid portion 53 where the insulating film 55 is thin, the insulating film 55 is formed at the bottom 54a of the dividing portion 54 where the insulating film 55 is thick. Remaining. Also, the insulating film 55 remains on the surface portion of the grid portion 53, the side surface of the concave portion, and the side surface of the dividing portion 54. For this reason, only the insulating film 55 at the bottom 53a of the grid portion 53 can be removed by utilizing the difference in thickness of the insulating film 55 described above.
  • the insulating film 55 on the bottom 53a is removed on the assumption that the insulating film 55 is also formed on the bottom 53a.
  • the insulating film 55 is not formed on the bottom 53a in advance.
  • the film formation time of the insulating film 55 may be adjusted to be short.
  • an insulating film 55 is formed on the bottom 54a of the dividing portion 54 where gas easily flows, and insulation is performed in a short time such that the insulating film 55 is not formed on the bottom 53a of the grid portion 53 where gas does not easily flow.
  • a film 55 is formed. In this way, it is possible to make a difference in the presence or absence of the insulating film 55 on the bottom portions 53a and 54a of the grid portion 53 and the dividing portion 54 without performing dry etching as described above.
  • the conductive substrate 51 from which only the insulating film 55 at the bottom of the grid portion 53 has been removed is connected to the current terminal and immersed in the plating solution. Then, another electrode (anode) is prepared at a position facing the conductive substrate 51, and a current flows between the current terminal and the anode. At this time, only the bottom 53 a of the grid portion 53 has conductivity on the surface of the conductive substrate 51. For this reason, as shown in FIG. 15, gold ions in the plating solution are deposited on the bottom of the grid portion 53, and gold 56 is embedded in the recesses of the grid portion 53. On the other hand, since the insulating film 55 is left at the bottom of the dividing portion 54 and it does not have conductivity, gold is not embedded in the dividing portion 54.
  • the conductive substrate 51 in which gold is embedded in the recesses of the grid portion 53 is attached to the parallel plate-like flexible plate 26. Then, by bending the flexible plate 26, as shown in FIG. 16, a crack 43 is generated in the divided portion 54, and the small grid is formed to become the second grid 14.
  • the grid portion 53 is formed of the conductive substrate 51, an X-ray transmission portion 58 that transmits X-rays, and an X-ray that absorbs X-rays by being embedded with gold. It is an absorption grid in which the absorption portions 59 are alternately arranged.
  • the radiation source grid 12 which is also an absorption type grid can be manufactured similarly.
  • a groove 61 for designating is provided.
  • the groove 61 is provided by forming a grid portion 31 and a dividing portion 32 on the grid substrate 41 and then etching by laser irradiation or photolithography.
  • the grid substrate 41 becomes the thinnest at the position of the groove 61. Therefore, as shown in FIG. 18, when the grid substrate 41 is attached to the flexible plate 26 and the flexible plate 26 is bent, the stress due to the bending is concentrated in the groove 61, and the grid substrate 41 is divided by the groove 61.
  • a low rigidity portion 62 may be provided on the flexible plate 26 so as to correspond to the position of the dividing portion 32.
  • the low-rigidity portion 62 is a portion processed so as to have low rigidity in the flexible plate 26, and designates a dividing position of the grid substrate 41.
  • the low-rigidity portion 62 is formed, for example, by forming a groove by etching or performing a local heat treatment such as laser irradiation.
  • the stress of the curve is concentrated along the depth direction L of the low-rigidity part 62 where the thickness of the normal flexible plate 26 is the thinnest. Therefore, the crack 43 can be generated on the extension of the low-rigidity portion 62 in the depth direction L.
  • the low-rigidity portion 62 preferably has a cross-sectional shape having a top portion immediately below the center of the divided portion 32. In this way, a crack 43 is generated in the grid substrate 41 at the center of the dividing portion 32 corresponding to the top portion of the low-rigidity portion 62.
  • the edge shape in the cross section of the low-rigidity portion 62 may not be a curve as shown in FIGS. 19 and 20.
  • the cross-sectional shape of the low-rigidity portion 62 may be a triangular shape.
  • the width of the low-rigidity portion 62 is narrower than that of the dividing portion 32, and the low-rigidity portion 62 is directly below the center of the dividing portion 32. What is necessary is just to provide so that it may be located. Also in this case, the crack 43 can be generated almost certainly in the center of the divided portion 32 that is an extension of the low-rigidity portion 62.
  • the low-rigidity portion 62 is provided on the back surface of the flexible plate 26.
  • the low-rigidity portion 62 may be provided on the surface to which the grid substrate 41 is attached.
  • the low-rigidity portion 62 may be provided in the entire thickness of the flexible plate 26 as long as the flexible plate 26 is not divided, such as reduction in rigidity by heat treatment.
  • the low-rigidity portion 62 may be provided in advance on the flexible plate 26, and the grid substrate 41 and the flexible plate 26 may be bonded so that the low-rigidity portion 62 and the dividing portion 32 coincide with each other.
  • the low-rigidity portion 62 may be formed after the plate 26 is bonded.
  • the low-rigidity portion 62 is provided on the flexible plate 26 in advance, it is necessary to align the low-rigidity portion 62 and the dividing portion 32.
  • the flexible plate 26 is accurately aligned by expansion / contraction. It can be difficult.
  • the low-rigidity part 62 is preferably formed after the flexible plate 26 and the grid substrate 41 are bonded together.
  • the low-rigidity part 62 may be provided in a straight line along the dividing part 32 or may be provided in a perforated form.
  • Providing the low-rigidity portion 62 in a perforated manner means providing a location where the low-rigidity portion 62 is partially formed and a location where the low-rigidity portion 62 is not formed on a straight line along the dividing portion 32.
  • the groove 61 was provided in the parting part 32, and the low rigidity part was provided in the flexible board 26. 62 may be provided.
  • the grid substrate 41 is more reliably divided along the groove 61 and the low-rigidity portion 62. .
  • the source grid 12, the first grid 13, and the second grid 14 curved in a cylindrical surface shape in the Y direction have been described as examples.
  • these grids 12 to 14 are curved in a spherical shape. It may be a thing.
  • each of the small grids 17 to 21 extending in the X direction and arranged in the Y direction in the above-described embodiment is further provided.
  • Dividing in the X direction the grids 12 to 14 may be curved in the X direction. In this case, the division parts 32 and 54 should just be provided along the Y direction similarly to the above-mentioned embodiment.
  • the example in which the grid is manufactured by bending the flexible plate 26 is described.
  • the flexible plate 26 is easily maintained in a curved shape.
  • the first grid 13 formed by bending the flexible plate 26 is fixed to the same curved shape base 71 with an adhesive or the like. If it carries out like this, it will be easy to maintain the curved shape of the flexible board 26 more reliably. Further, when the flexible plate 26 is bent, the first grid 13 may be attached to the pedestal 71 and the curved shape may be reliably fixed by bending the flexible plate 26 along the pedestal 71.
  • the material of the base 71 is arbitrary as long as it is X-ray transparent.
  • a filler 72 may be put into a gap formed between the small grids 17 to 21 and solidified.
  • the filler 72 may be made of an arbitrary material such as an epoxy adhesive, a silver paste, or a gold paste.
  • a shape memory substrate 73 may be used instead of the flexible plate 26.
  • the shape to be stored is a curved shape, and a parallel plate shape is used when the first grid 13 is manufactured.
  • the process for example, heat processing
  • the shape memory substrate 73 is bent.
  • the shape memory substrate 73 can be formed of a shape memory polymer or a shape memory alloy.
  • the shape memory polymer is, for example, polynorbornene, trans polyisoprene, polyurethane or the like.
  • the shape memory alloy is, for example, NiTi, NiTiCo, NiTiCu or the like.
  • a composite substrate 76 in which a shape memory layer 74 formed of a fiber-shaped shape memory polymer or shape memory alloy is knitted into a flexible resin (polyimide or the like) 75 is used as a flexible board 26. It may be used instead of.
  • the composite substrate 76 also exhibits substantially the same function and effect as the shape memory substrate 73.
  • the number of small grids to be used is not limited to five. At least two small grids are required to arrange the small grid in a cylindrical surface (or spherical shape), but in order to be closer to the cylindrical surface (spherical shape), the number of small grids is as large as possible. Better.
  • the first grid 13 is a phase type grid
  • the first grid 13 may be an absorption type grid, like the source grid 12 and the second grid 14.
  • the 1st grid 13 can be manufactured with the manufacturing method of the above-mentioned absorption type grid.
  • the radiation source grid 12, the first grid 13, and the second grid 14 are all curved in a cylindrical surface shape, but at least the first grid 13 or the second grid 14 is described.
  • One of them may be curved in a cylindrical surface (or spherical shape).
  • the subject H is arranged between the X-ray source and the first grid, the subject H may be arranged between the first grid and the second grid. In this case as well, a phase contrast image is similarly generated.
  • the radiation source grid is provided, but the radiation source grid may be omitted.
  • the striped one-dimensional grid has X-ray absorbing portions and X-ray transmitting portions that are stretched in one direction and alternately arranged along the arrangement direction orthogonal to the stretching direction.
  • the present invention can also be applied to a two-dimensional grid in which an X-ray absorption part and an X-ray transmission part are arranged in two orthogonal directions.
  • the phase contrast image may be generated by a fringe scanning method in which a plurality of shootings are performed, or the phase contrast image may be generated by a single shooting.
  • a checkered phase type grid is used for the first grid and a mesh pattern amplitude type is used for the second grid, as described in WO2010 / 050484.
  • This single photographed image is subjected to Fourier transform, and the primary spectra in the vertical and horizontal directions are respectively extracted. By performing inverse Fourier transform on these primary spectra, a phase differential image in two directions is obtained.
  • the degree of curvature of the grid may slightly change when an environmental temperature change occurs.
  • the relative arrangement accuracy of the small grids 17 to 21 is poor, the contrast of the fringe image may deteriorate depending on the relative arrangement variation between the small grids 17 to 21.
  • the adhesive may be heated to harden the adhesive, and the flexible plate 26 may be thermally deformed by the heat. According to the present invention, the above-described heat deformation is performed. Even if there is, the small grids 17 to 21 can be arranged with relatively high accuracy.
  • the above embodiments may be combined with each other within a consistent range.
  • the present invention is applicable not only to a radiographic imaging system for medical diagnosis but also to other radiographic systems for industrial use and nondestructive inspection.
  • the grid of the present invention can also be applied to a scattered radiation removal grid that removes scattered radiation in X-ray imaging.
  • the present invention can also be applied to a radiographic imaging system that uses gamma rays or the like in addition to X-rays.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 放射線画像撮影システムは、X線源(11)、第1及び第2グリッド(13,14)、X線画像検出器(15)を備える。第1グリッド(13)は、放射線透過性を有するグリッド基板(41)と、グリッド基板(41)を保持するための可撓性の保持板(26)とを有する。保持板(26)とともに、グリッド基板(41)が曲げられたときに、分断部(32)によって、グリッド基板(41)は、複数の小グリッド(17~21)に分断される。各小グリッド(17~21)には、縞画像を形成するためのグリッド部が形成されている。保持板(26)は、各小グリッド(17~21)がX線源(11)に向くように湾曲される。

Description

放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
 本発明は、放射線画像の撮影に用いられるグリッド及びその製造方法と、このグリッドを用いた放射線画像撮影システムとに関する。
 放射線(例えばX線)は、物体との相互作用により強度と位相とが変化し、位相変化が強度の変化よりも高い相互作用を示すことが知られている。近年、X線の位相変化に基づいて、X線吸収能が低い被検体から高コントラストの画像(以下、位相コントラスト画像と称する)を得るX線画像撮影システムが着目されている。
 位相コントラスト画像を撮影するためのX線画像撮影システムは、X線を放射するX線源と、第1及び第2のグリッドと、放射線画像検出器とを有する。X線源と第1グリッドとの間に被検体を配置し、第1グリッドを間欠移動しながら、第1グリッドの自己像と第2グリッドとの重ね合わせにより強度変調された縞画像を複数撮影し、これらの縞画像中に重畳される被検体による変化に基づいて位相コントラスト画像を取得する。このX線画像撮影方法は、縞走査法と呼ばれている。
 また、X線源はコーンビーム状に広がるX線を放射するので、平板状のグリッドを用いると、グリッドの周縁部においてX線にケラレが生じるという問題がある。ケラレを低減するためには、グリッドをX線の広がりに合わせて円筒面状(あるいは球面状)に湾曲させたものにすることが好ましいが、グリッドは例えばシリコンウェハを用いて形成されるため、平板状に作製したグリッドを湾曲させるとグリッドが破損してしまう場合がある。
 こうしたことから、例えば特開2007-203061号公報(対応米国特許第7,522,698号)には、複数の平板状の小グリッドを凹面上に配置することにより、局所的には平板状であるが全体としては湾曲した形状をしているグリッドを用いることが開示されている。また、特開2010-063646号公報(対応米国特許第8,139,711号)には、フレキシブル板上にグリッドを形成した後、フレキシブル板を湾曲させることで円筒面状に湾曲させることが記載されている。
 しかしながら、特開2007-203061号公報に記載のように、X線の広がりに合わせて小グリッドを非平面上に配置する場合、各小グリッドの配置や傾きを高精度に位置合わせする必要がある。しかし、特開2007-203061号公報は、小グリッドを非平面上に配列するときに、各小グリッドを高精度に位置合わせする具体的な方法までは開示をしていない。このため、実際の撮影に用いることが可能な程度に高精度に、小グリッドを円筒面状や球面状に配置することは困難である。
 また、フレキシブル板は、熱膨張率が大きく、変形容易であるため、特開2010-063646号公報に記載されているように、フレキシブル板上にグリッドを形成すると、フレキシブル板の熱膨張により、グリッド自体の精度が悪化するという問題がある。
 さらに、特開2007-203061号公報と特開2010-063646号公報を組み合わせるとすれば、小グリッドをフレキシブル板上に貼り付けて、フレキシブル板を湾曲させることが考えられる。この場合、フレキシブル板上に小グリッドを配置する目安となるアライメントマークを設けておき、このアライメントマークに合わせて小グリッドを配置することになるが、フレキシブル板の熱膨張率や変形容易性のために、アライメントマークの間隔等が変化しやすいので、アライメントマークを高精度に形成することが難しい。したがって、フレキシブル板上に小グリッドを配置する場合、精度の悪いアライメントマークを基準にしなければならないので、高精度な配置が難しいという問題が残る。
 本発明は、高精度な湾曲グリッド及びその製造方法、並びに放射線画像撮影システムを提供することを目的とする。
 本発明の放射線画像撮影用グリッドは、グリッド基板と、分断部と、グリッド部と、保持板とを備える。グリッド基板は、放射線透過性を有する。分断部は、グリッド基板が曲げられたときに、複数の小グリッドに分断するためにグリッド基板上に形成される。グリッド部は、各小グリッドに設けられ、縞画像を形成する。保持板は、グリッド基板が貼り合わせられており、グリッド基板を小グリッドに分断するために湾曲可能である。
 保持板は、各小グリッドが放射線源に向くように湾曲される。また、分断部は、厚みを薄くして、分断位置を指定するための溝を有することが好ましい。
 グリッド部には、複数の凸部と凹部とが同じ幅で交互に形成される。そして、複数の凸部のうち、分断部に隣接する最も端の凸部を含む全ての凸部が同じ幅であることが好ましい。
 凹部には、放射線を吸収する放射線吸収材を充填しても良い。
 保持板には、グリッド基板の分断位置を指定するための低剛性部が分断部に対応する位置に設けられていることが好ましい。
 分断部には、グリッド基板の分断後に、保持板の湾曲形状を維持する充填剤が充填されていることが好ましい。
 保持板は、形状記憶材料で作られていることが好ましい。
 本発明の放射線画像撮影用グリッド製造方法は、レジストパターン形成工程と、エッチング工程と、貼合工程と、保持板湾曲工程と、を備える。レジストパターン形成工程は、放射線透過性のグリッド基板上にレジストパターンを形成する工程であり、レジストパターン内の隙間よりも長い所定間隔をあけて複数のレジストパターンを形成する。エッチング工程は、レジストパターンをマスクとしてグリッド基板をドライエッチングすることにより、グリッド基板の表面にレジストパターンに対応する幅の溝を有するグリッド部を形成するとともに、所定間隔に対応してグリッド部の溝よりも幅が広く深い分断部を形成する。貼合工程は、グリッド部及び分断部が形成されたグリッド基板を、グリッド部及び分断部が形成されていない表面で、平行平板状の保持板に貼り合わせる。保持板湾曲工程は、保持板を所定曲率に湾曲させることによりグリッド基板を分断部で分断する。
 グリッド基板は、導電性を有することが好ましい。この場合、さらに、絶縁膜形成工程と、絶縁膜除去工程と、メッキ工程と、を備え、メッキ工程後に貼合工程及び保持板湾曲工程を行うことが好ましい。絶縁膜形成工程は、エッチング工程においてグリッド基板の表面に形成されたグリッド部及び分断部に絶縁膜を形成する。絶縁膜除去工程は、絶縁膜形成工程によりグリッド部で薄く、かつ、分断部で厚く形成された絶縁膜を均等にエッチングすることにより、分断部では絶縁膜の一部を残し、グリッド部の底部の絶縁膜を除去してグリッド基板を露呈させる。メッキ工程は、グリッド基板をメッキ液に浸漬して導通することにより、グリッド部の溝に放射線を吸収する放射線吸収材を析出させる。
 分断部の底部に、グリッド基板の分断位置を指定するための溝を形成する溝形成工程を含むことが好ましい。また、保持板に低剛性部を形成する低剛性部形成工程を備えることが好ましい。また、保持板湾曲工程の後に、保持板の湾曲形状を維持する充填剤を分断部に充填する形状維持処理工程を備えることが好ましい。
 本発明の放射線画像撮影用システムは、第1グリッドと、第2グリッドと、放射線画像検出器を有する。第1グリッドは、放射線源から放射された放射線を透過させて縞画像を生成する。第2グリッドは、縞画像に強度変調を与える。放射線画像検出器は、第2グリッドにより強度変調された縞画像を検出する。そして、放射線画像検出器により検出された縞画像から位相コントラスト画像を生成する。そして、第1グリッドまたは第2グリッドの少なくとも一方は、前述のグリッド基板と、分断部と、グリッド部と、保持板とを備えるものである。
 放射線源と第1グリッドとの間に配置され、放射線源から照射された放射線を領域選択的に遮蔽して多数のライン上の放射線を形成する線源グリッドをさらに備えることが好ましい。この場合、線源グリッドは、グリッド基板と、前述の分断部と、グリッド部と、保持板とを備えるものであることが好ましい。
 本発明の放射線画像撮影用グリッドは、一体に形成された複数の小グリッドを保持板に貼り合わせ、保持板を湾曲させることにより、各小グリッドに分断し、湾曲した曲面上に保持している。これにより、湾曲グリッドを高精度に形成することができる。
X線画像撮影システムの構成を示す説明図である。 第2グリッドの平面図である。 図2のIII-III線に沿った第2グリッドの断面図である。 小グリッドの構成を示す断面図である。 レジストパターン形成工程を示す断面図である。 エッチング工程を示す断面図である。 貼合工程を示す断面図である。 保持板湾曲工程を示す断面図である。 ドライエッチングでグリッド部及び分断部を形成した場合の断面図である。 ダイシングにより分断部を形成した場合の断面図である。 レジストパターン形成工程を示す断面図である。 エッチング工程を示す断面図である。 絶縁膜形成工程を示す断面図である。 絶縁膜除去工程を示す断面図である。 X線吸収部を形成した導電性基板の断面図である。 吸収型グリッドの断面図である。 分断部にさらに溝を設ける例を示す断面図である。 分断部の底部に溝を設けて湾曲させた場合の断面図である。 フレキシブル板に低剛性部を設ける例を示す断面図である。 低剛性部を設けて湾曲させた場合の断面図である。 グリッドを球面状に湾曲して形成する例を示す説明図である。 湾曲したグリッドを台座に固定する例を示す断面図である。 小グリッドの隙間に充填剤を入れた例を示す断面図である。 フレキシブル板の代わりに形状記憶基板を用いる例を示す断面図である。 フレキシブル板の代わりに複合基板を用いる例を示す断面図である。
 図1に示すように、X線画像撮影システム10は、X線照射方向であるZ方向に沿って、X線源11、線源グリッド12、第1グリッド13、第2グリッド14、及びX線画像検出器15を備える。
 X線源11は、回転陽極型のX線管(図示せず)と、X線の照射野を制限するコリメータ(図示せず)とを有し、被検体HにX線を放射する。
 線源グリッド12は、X線を吸収する吸収型グリッドであり、X線源11から照射されたX線を領域選択的に遮蔽して多数のライン状のX線を形成する。第1グリッド13は、X線の位相を変調する位相型グリッドであり、線源グリッド12から入射する各ライン状のX線を位相変調して透過させる。第1グリッド13を透過したX線は、タルボ干渉効果により、第1グリッド13からタルボ距離だけ離れた位置に第1グリッド13自身と同じパターンを有する縞画像(以下、自己像という)を形成する。線源グリッド12と第1グリッド13とは、いわゆるタルボ・ロー条件を満たす位置に配置されており、線源グリッド12により形成された各ライン状のX線により形成される自己像は、第1グリッド13からタルボ距離だけ離れた位置で重なり合う。
 第2グリッド14は、吸収型グリッドであり、第1グリッド13の自己像が形成される位置(例えば、最小のタルボ距離の位置)に配置される。第2グリッド14は、第1グリッド13の自己像を領域選択的に遮蔽することにより、第1グリッド13の自己像が強度変調された縞画像を生成し、X線画像検出器15に投影する。
 線源グリッド12、第1グリッド13及び第2グリッド14は、いずれも格子線がX方向に沿うように配置されているとともに、Z方向においてX線源11に対向配置されている。さらに、線源グリッド12、第1グリッド13及び第2グリッド14は、X線源11から照射されるX線がコーンビーム状に拡散して照射されることに合わせて、Y方向に湾曲した円筒状になっている。
 被写体Hは、線源グリッド12と第1グリッド13の間に配置される。このため、第1グリッド13が形成する自己像や第2グリッド14によってX線画像検出器15上に形成される縞画像上には、被検体Hの透過位相情報に応じた変調が生じる。
 X線画像検出器15は、半導体回路を用いたフラットパネル検出器であり、第2グリッド14の背後に配置されている。X線画像検出器15は、第2グリッド14によって生成される縞画像を検出する。
 次に、X線画像撮影システムの作用について説明する。X線源11から放射されたX線は、線源グリッド12のX線吸収部によって部分的に遮蔽されることにより、Y方向に関する実効的な焦点サイズが縮小され、Y方向に配列された多数のライン状のX線が形成される。各ライン状のX線は、被検体Hを通過する際に位相が変化する。この各X線が第1グリッド13を通過することにより、被検体Hの屈折率と透過光路長とから決定される被検体Hの透過位相情報を反映した自己像が形成される。各ライン状のX線により生成された自己像は、第2グリッド14上に投影され、第2グリッド14と重なり合う。
 第2グリッド14の位置で重なり合った第1グリッド13の自己像は、第2グリッド14により部分的に遮蔽されることにより強度変調され、縞画像が生成される。本実施形態では、縞走査法が用いられ、第1グリッド13に対して第2グリッド14を、間欠移動させるとともに、その停止中に、X線源11から被検体HにX線を照射してX線画像検出器15により縞画像の撮影を行う。このY方向での間欠移動は、格子ピッチを等分割(例えば、5分割)した一定の走査ピッチで行われる。
 X線画像検出器15の各画素の強度変化を表す強度変調信号から、その位相ズレ量(被検体Hがある場合とない場合とでの位相のズレ量)を算出することにより、位相微分画像が得られる。位相微分画像は、被検体HでのX線の屈折角度の分布に対応する。この位相微分画像をX方向に沿って積分することにより、位相コントラスト画像が得られる。
 以下、第1グリッド13について、位相型グリッドの構造を説明する。図2に示すように、第1グリッド13は、5枚の小グリッド17~21を備える。これらの小グリッド17~21は、いずれも同様に形成されており、外形はX方向に伸びた細長い矩形状であり、格子線もX方向に沿って設けられている。
 図3に示すように、小グリッド17~21は、フレキシブル板26上に貼りつけられている。この小グリッド17~21は、各々所定間隔で平行になるように一体形成されており、フレキシブル板26が平行平板状の時にフレキシブル板26上に貼り付けられる。そして、フレキシブル板26がX線画像検出器15側に凸になるように円筒面状に湾曲されることによって、各小グリッド17~21に分断される。このため、小グリッド17~21は、フレキシブル板26の表面に沿って互いに等間隔で、かつ、X方向に平行である。しかし、小グリッド17~21は、フレキシブル板26の湾曲に合わせて、Y方向には各々異なる角度をなすように配置されている。
 具体的には、第1グリッド13をX線源11側(Z方向)からみると、フレキシブル板26の中央に配置された小グリッド19は、X線源11のほぼ正面にX方向に沿って配置される。また、小グリッド18,20は中央の小グリッド19に対して、Y方向に所定角度傾斜して配置される。小グリッド17,21は小グリッド18,20に対してY方向にさらに所定角度傾斜して配置される。したがって、小グリッド17~21は、その各表面が、X線源11のX線焦点11aを向き、X線の入射方向に対してほぼ垂直である。すなわち、第1グリッド13はいわゆる収束構造に近似し、小グリッド17~21の各グリッド部(後述する凸部31a及び凹部31b)を延長すれば、全ての小グリッド17~21で形成されるグリッド構造の延長線がX線焦点11aにほぼ収束するようになっている。
 フレキシブル板26は、X線画像検出器15で検出するX線画像にほぼ影響がない程度にX線の吸収率が低い(X線透過性があるという)基板である。フレキシブル板26は、例えば、ポリイミドやポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ドライフィルム、パリレン、アクリル系樹脂等で形成される。
 図4に示すように、シリコン等のX線透過性を有するグリッド板41上に小グリッド17~21が形成され、それぞれグリッド部31を有する。また、隣接する各小グリッド17~21の代打には、分断部(分断予定部)32が形成されており、この分断部32から小グリッド17~21に分断される。
 各小グリッド17~21の各グリッド部31は、凸部31a及び凹部31bを備える。凸部31aと凹部31bは、各々X方向に直線状に形成され、Y方向には交互に配列されている。各小グリッド17~21には、表面に対してほぼ垂直にX線が照射されるため、凸部31aと凹部31bとでは、X線がシリコンを透過する距離が異なる。凸部31aを透過するX線と、凹部31bを透過するX線には、πまたはπ/2の位相差が生じ、タルボ干渉効果が生じる。
 凸部31aの幅W1及びピッチP1は、線源グリッド12と第1グリッド13との距離等によって決定される。凸部31aの厚み(凹部31bの深さ)T1は、X線にπまたはπ/2の位相差が生じるように決定される。
 分断部32は、グリッド部31のよりも薄くなるように切削されているために、低剛性になっている箇所であり、後述するように、グリッド基板41(X線透過性基板)上にグリッド部31を形成する工程で同時に形成される。なお、グリッド部31の厚さとは、グリッド基板41が最も薄い箇所の厚さを言う。また、小グリッド17~21は、フレキシブル板26の湾曲時に、グリッド基板41が分断部32で分断されることによって形成される。
 グリッド基板41は、接着剤を用いてフレキシブル板26に接着されている。ここで用いる接着剤は、X線透過性と接着性を有するものであれば良く、レジストやパリレン、ポリイミド等を用いても良い。接着剤の厚さは概ね10μm程度である。また、フレキシブル板26は、平行平板の状態でグリッド部31及び分断部31が形成されたグリッド基板41が貼り付けられ、第1グリッド13の製造工程において湾曲されることにより、貼り付けられたグリッド基板41を分断部32で分断する。グリッド基板41は、小グリッド17~21に分断された後も、接着剤によってフレキシブル板26の湾曲した表面上に保持される。
 線源グリッド12及び第2グリッド14は、第1グリッド13と同様に複数の小グリッドをフレキシブル板に貼り合わせ、フレキシブル板を湾曲させることにより形成されている。
 線源グリッド12及び第2グリッド14は、上述の第1グリッド13の各小グリッド17~21において、凸部31aをX線透過部とし、凹部31bにはX線吸収材(例えば、金)を充填してX線吸収部としたものである。
 但し、線源グリッド12や第2グリッド14を形成する小グリッドのX透過部やX線吸収部の幅やピッチは、線源グリッド12や第2グリッド14の配置や、第1グリッド13との位置関係等によって決まり、第1グリッド13の凸部31a(凹部31b)の幅やピッチとは異なる。
 以下、グリッドの製造方法について、いくつか例を挙げて説明する。
[位相型グリッドの製造方法]
 まず、第1グリッド13(位相型グリッド)の製造方法について説明する。図5に示すように、シリコン等により形成されたグリッド基板41の表面に、レジストパターン42をフォトリソグラフィにより形成する。レジストパターン42は、Y方向に所定幅及び所定ピッチでレジストが残されたパターンである。また、レジストパターン42はX方向に直線状に延伸している。レジストパターン42の幅及びピッチは、グリッド部31の凸部31aの幅W1及びピッチP1に対応している。また、レジストパターン42は、小グリッド17~21の各グリッド部31に対応して、Y方向に所定間隔Δ1を開けて5つ設けられる。各レジストパターン42の間隔Δ1は、分断部32に対応するものであり、レジストパターンの幅W1よりも大きい(W1<Δ1)。
 次に、レジストパターン42をマスクにして、グリッド基板41をエッチングする。ここで行うエッチングはボッシュプロセス、クライオプロセス等の深堀用のドライエッチングであり、グリッド基板41は等方的に切削される。また、ドライエッチングによれば、レジストパターン42の間隔が広い箇所程、深く切削される。このため、図6に示すように、グリッド基板41を、レジストパターン42をマスクとしてドライエッチングすることにより、グリッド基板41の表面には、レジストパターン42に対応する箇所では浅く溝が形成され(深さT1)、レジストパターン42間の箇所では深く溝が形成される(深さD1)。これにより、各レジストパターン42に対応する箇所にはグリッド部31が形成され、各レジストパターン42間には分断部32が形成される。
 なお、図示を省略するが、グリッド部31及び分断部32を形成する上述のエッチングの後、凸部31a上にレジストパターン42が残っている場合には、これをアッシング等により除去する。
 図7に示すように、グリッド部31及び分断部32が形成されたグリッド基板41は、平行平板状のフレキシブル板26上に、接着剤を用いて貼り付けられる。そして、図8に示すように、第1グリッド13のX線源11に対する位置や照射されるX線の広がり具合等に応じて、フレキシブル板26をY方向に円筒面状に湾曲させる。グリッド部31と分断部32が形成されたグリッド基板41は、分断部32の底部で最も薄くなっているので、フレキシブル板26の湾曲による応力は分断部32の底部に集中する。このため、フレキシブル板26の湾曲により、グリッド基板41は分断部32の底部に亀裂42が生じて分断され、小グリッド17~21が形成される。但し、各小グリッド17~21は、接着剤によってフレキシブル板26と一体になっている。
 上述のように、グリッド部31と分断部32を形成したグリッド基板41を平行平板状のフレキシブル板26に貼り付け、フレキシブル板26を円筒面状に湾曲させることにより、分断部32でグリッド基板41を小グリッド17~21に分断すると、各小グリッド17~21は円筒面状に湾曲したフレキシブル板26に沿って、相互に高精度に位置決めされる。例えば、予め円筒面状に湾曲した面上に小グリッド17~21を配置しようとすると、各小グリッドの位置や向きを調節しなければならないが、上述の実施形態のように、小グリッド17~21を一体に形成しておき、分断部32で分断すると、小グリッド17~21間の位置合わせは不要である。このため、上述の実施形態によれば、円筒面状に小グリッド17~21が相対的に高精度に配置された第1グリッド13を容易に製造することができる。
 また、円筒状のフレキシブル板26上に大サイズのグリッド部を直接形成する場合、フレキシブル板26の拡縮により、凸部31aや凹部31bの幅W1やピッチP1が変化しやすいが、上述の実施形態のように、小グリッド17~21単位でグリッドを形成しておくことにより、凸部31aや凹部31bの幅W1やピッチP1の精度はフレキシブル板26の拡縮に殆ど影響されず、一定である。このため、上述の実施形態のようにして形成されたグリッドは安定した性能を発揮することができる。
 さらに、上述の実施形態のように、ドライエッチングによってグリッド基板41を切削するときに、レジストパターン42の間隔(幅W1,ピッチP1)と、レジストパターン42間の間隔(幅Δ1)の相違によって切削される深さが異なることを利用してグリッド部31及び分断部32を形成すると、図9に示すように、グリッド部31では凸部31aは、分断部32に隣接する最も端の凸部31aまで全て同じ幅W1の凸部31aが形成される。
 一方、分断部32に対応する箇所をグリッド部31と同時に形成せずに、グリッド基板41上にグリッド部31を形成した後、グリッド部31間をダイシングにより切削して分断部32を形成する事も考えられる。しかし、この手順で分断部32を形成すると、分断部32に隣接するグリッド部31の最も端の凸部31aはダイシング時に用いる水の圧力等により、破損して倒れてしまう。さらに、ダイシング位置の精度や切削幅のばらつきも考慮しておく必要がある。こうしたことから、ダイシングにより分断部32を形成するときには、図10に示すように、分断部32に隣接するグリッド部31の最も端の凸部31cを他の凸部31aよりも厚くせざるを得ない。
 このため、ダイシングにより分断部32を形成する場合、グリッドとして機能しない凸部31cができてしまい、画像の得られない領域が広がってしまう。この点、上述の実施形態のように、グリッド部31及び分断部32をドライエッチングにより同時形成すると、前述のように、グリッド部31は分断部32に隣接する最も端の凸部31aまで全て同じ幅W1の凸部31aで形成されるので、グリッドとして機能する領域を効率良く得ることができ、小グリッド17~21の性能を高めることができる。
[吸収型グリッドの製造方法]
 次に、吸収型グリッドである第2グリッド14の製造方法を説明する。図11に示すように、吸収型グリッドを製造する場合には、導電性基板51を用いる。導電性基板51は、X線透過性を有すると同時に、導電性を有する基板であり、例えば、導電性シリコンからなる。導電性基板51の表面には、レジストパターン52が設けられる。レジストパターン52の形成方法は、前述したレジストパターン42と同様であるが、レジストパターン52の幅やピッチは第2グリッド14を構成する小グリッドのグリッド部に対応するように、幅W2,ピッチP2となっている。また、レジストパターン52は、第2グリッド14に用いる小グリッドの個数分設けられ、各々のレジストパターン52は、所定間隔Δ2をあけて設けられる。所定間隔Δ2は、少なくともレジストパターン52の幅W2よりも大きい(W2<Δ2)。
 次に、図12に示すように、レジストパターン52をマスクとして導電性基板51をドライエッチングすることにより、導電性基板51の表面に、第2グリッド14に用いる小グリッドのグリッド部53と分断部54を形成する。このとき、幅が広い分断部54の方が、グリッド部53の凹部よりも深く切削されることは、前述の位相型グリッドの製造方法と同様である。
 その後、図13に示すように、グリッド部53と分断部54が形成された導電性基板51の表面に、絶縁膜55を形成する。絶縁膜55は、例えば、プラズマCVD(PECVD)や、酸素や水素(あるいは空気)雰囲気下での熱酸化等により形成される。ここでは、絶縁膜55は導電性基板51の表面酸化膜であるとする。
 また、絶縁膜55の厚さは場所によって異なる。例えば、グリッド部53の底部(凹部の底)に形成される絶縁膜55の膜厚Taと、分断部54の底部に形成される絶縁膜55の膜厚Tbを比較すると、グリッド部53底部の膜厚Taより分断部54底部の膜厚Tbの方が厚い(Ta<Tb)。これは絶縁膜55の形成時に用いるプラズマCVDや熱酸化時に用いるガスの流入しやすさの相違によるものであり、幅が狭いグリッド部53では絶縁膜55の形成に必要なガスの流入量が少ないので、絶縁膜55は薄い。一方、幅が広い分断部54でガスの流入量が多いので、絶縁膜55は厚く形成される。グリッド部53の凹部側面や分断部54の側面についても同様である。また、グリッド部53でも、表面部分(凸部の頂部)は、絶縁膜55を形成するためのガスとの接触量が多いので、絶縁膜55は厚く形成される。
 こうして絶縁膜55が形成されると、図14に示すように、ドライエッチングによってグリッド部53の底部の絶縁膜55が除去される。ドライエッチングによれば、グリッド部53や分断部54の溝の幅や深さによらず、導電性基板51の表面が一様に切削される。このため、前述のように、絶縁膜55が薄いグリッド部53の底部53aでは、導電性基板51の表面が露呈されたときに、絶縁膜55が厚い分断部54の底部54aでは絶縁膜55が残っている。また、グリッド部53の表面部分や凹部側面、分断部54の側面においても、絶縁膜55が残る。このため、前述の絶縁膜55の厚さの違いを利用することにより、グリッド部53の底部53aの絶縁膜55だけを除去することができる。
 なお、ここでは底部53aにも絶縁膜55が形成されることを前提とし、底部53aの絶縁膜55だけを除去する例を挙げたが、例えば、予め底部53aに絶縁膜55が形成されないように、絶縁膜55の成膜時間を短く調節しても良い。具体的には、ガスが流入しやすい分断部54の底部54aには絶縁膜55が形成され、ガスが流入し難いグリッド部53の底部53aには絶縁膜55が形成されない程度の短時間で絶縁膜55を形成する。こうすると、上述のようにドライエッチングをすることなく、グリッド部53と分断部54の各底部53a,54aに絶縁膜55の有無の違いを作ることができる。
 上述のようにグリッド部53底部の絶縁膜55だけが除去された導電性基板51は、電流端子が接続され、メッキ液中に浸漬される。そして、導電性基板51と対向させた位置には、もう一方の電極(陽極)が用意され、電流端子と陽極との間に電流が流される。このとき、導電性基板51の表面で導電性を有するのは、グリッド部53の底部53aだけである。このため、図15に示すように、メッキ液中の金イオンはグリッド部53の底部に析出し、グリッド部53の凹部内に金56が埋め込まれる。一方、分断部54の底部は絶縁膜55が残されており、導電性を有しないので、分断部54には金は埋め込まれない。
 上述のようにグリッド部53の凹部に金を埋め込んだ導電性基板51は、平行平板状のフレキシブル板26に貼り付けられる。そして、フレキシブル板26を湾曲させることにより、図16に示すように、分断部54に亀裂43が生じて分断され、小グリッドが形成され、第2グリッド14になる。第2グリッド14の各小グリッドにおいて、グリッド部53は、導電性基板51で形成され、X線を透過するX線透過部58と、金が埋め込まれていることによりX線を吸収するX線吸収部59が交互に配列された吸収型グリッドになっている。
 上述のように吸収型グリッドを製造する場合も前述の位相型グリッドと同様、各小グリッドが相互に高精度に配置されたグリッドにすることができる。
 なお、第2グリッド14を製造する例を説明したが、同じく吸収型グリッドである線源グリッド12も同様に製造することができる。
 なお、上述の位相差型グリッド及び吸収型グリッドの各製造方法では、分断部32,54の底部がグリッド部31,53よりも薄く形成することで、フレキシブル板26を湾曲させたときに分断部32,54でグリッド基板41及び導電性基板51を分断して小グリッドを形成しているが、分断部32,54の底部における基板の厚さはほぼ一定なので、フレキシブル板26を湾曲させたときに分断部32に生じる亀裂43の位置は、分断部32,54の幅の分だけ不定である。小グリッド間にある複数の分断部32,54で亀裂43が生じる位置に各々ズレがあると、フレキシブル板26を同じように湾曲させたとしても、フレキシブル板26の折れ曲がり位置がズレてしまい、最終的に各小グリッド間の相対位置及び角度がわずかにずれてしまう場合がある。このため、分断部32,54の亀裂43は、全ての分断部32,54内の同じ位置(例えば、分断部32,54の中央)に生じさせることが好ましい。以下、より確実に、全ての分断部32,54において同じ位置に亀裂43を生じさせる態様を説明する。
 フレキシブル板26を湾曲させたときに、全ての分断部32で同じ位置に亀裂43を生じさせるためには、例えば、図17に示すように、分断部32の底部中央に、亀裂43が生じる位置を指定するための溝61をさらに設ける。溝61は、グリッド基板41上にグリッド部31及び分断部32を形成した後、レーザー照射やフォトリソグラフィによるエッチング等により設ける。
 こうすると、溝61の位置でグリッド基板41が最も薄くなる。このため、図18に示すように、フレキシブル板26にグリッド基板41を貼り付け、フレキシブル板26を湾曲させると、湾曲による応力は溝61に集中し、グリッド基板41は溝61で分断される。
 また、図19に示すように、分断部32の位置に対応するように、フレキシブル板26に低剛性部62を設けても良い。低剛性部62は、フレキシブル板26の中で剛性が低くなるように処理された箇所であり、グリッド基板41の分断位置を指定する。低剛性部62は、例えば、エッチングによって溝を形成したり、レーザーの照射等の局所的な熱処理をしたりすることによって形成される。このように、低剛性部62を設けると、図20に示すように、通常のフレキシブル板26の厚さが最も薄い低剛性部62の深さ方向Lに沿って湾曲の応力が集中する。このため、低剛性部62の深さ方向Lの延長上に、亀裂43を生じさせることができる。
 低剛性部62は、図19及び図20に示すように、分断部32中央の直下に頂部を有する断面形状であることが好ましい。こうすれば、低剛性部62の頂部に対応する分断部32の中央でグリッド基板41に亀裂43が生じる。但し、低剛性部62の断面におけるエッジ形状は、図19及び図20に示すように曲線でなくても良く、例えば、低剛性部62の断面形状は三角形状でも良い。
 また、図示を省略するが、低剛性部62の断面形状が矩形の場合、低剛性部62の幅を分断部32よりも狭くし、かつ、低剛性部62が分断部32の中央の直下に位置するように設ければ良い。この場合も、低剛性部62の延長上である分断部32の中央にほぼ確実に亀裂43を生じさせることができる。
 なお、図19及び図20では、フレキシブル板26の裏面に低剛性部62を設けているが、低剛性部62は、グリッド基板41が貼り付けられる表面に設けても良い。また、熱処理による低剛性化等、フレキシブル板26が分断されない方法であれば、低剛性部62はフレキシブル板26の全厚に設けられていても良い。
 また、低剛性部62をフレキシブル板26に予め設けておき、低剛性部62と分断部32が一致するように、グリッド基板41とフレキシブル板26を貼り合わせても良いし、グリッド基板41とフレキシブル板26を貼り合わせ後に低剛性部62を形成しても良い。但し、低剛性部62を予めフレキシブル板26に設けておく場合、低剛性部62と分断部32の位置合わせが必要になるが、温度環境等によってはフレキシブル板26の拡縮により精度良く位置合せすることが難しいことがある。このため、低剛性部62は、フレキシブル板26とグリッド基板41を貼り合わせ後に形成することが好ましい。
 さらに、低剛性部62は分断部32に沿って、直線状に設けても良いし、ミシン目状に設けても良い。低剛性部62をミシン目状に設けるとは、分断部32に沿って直線上において、部分的に低剛性部62を形成する箇所と、低剛性部62を形成しない箇所を設けることである。
 なお、吸収型の第2グリッド14,線源グリッド12についても同様であるので、これらの説明は省略する。
 なお、分断部32に溝61を設ける例と、フレキシブル板26に低剛性部62を設ける例を各々別個に説明したが、分断部32に溝61を設け、かつ、フレキシブル板26に低剛性部62を設けても良い。このように、分断部32に溝61を設け、かつ、フレキシブル板26に低剛性部62を設ければ、グリッド基板41は、より確実に、溝61及び低剛性部62に沿って分断される。
 なお、上述の実施形態では、Y方向に円筒面状に湾曲した線源グリッド12,第1グリッド13,第2グリッド14を例に説明したが、これらのグリッド12~14は球面状に湾曲したものであっても良い。このように、グリッド12~14を球面状に湾曲させる場合、図21に示すように、上述の実施形態においてX方向に延伸し、Y方向に並べて設けていた各小グリッド17~21を、さらにX方向に分断し、X方向にもグリッド12~14を湾曲させれば良い。この場合、分断部32,54は、上述の実施形態と同様にしてY方向に沿って設けておけば良い。
 なお、上述の実施形態では、フレキシブル板26を湾曲させてグリッドを製造する例を説明したが、以下に説明するように、フレキシブル板26を湾曲した形状で維持しやすくすることが好ましい。
 例えば、図22に示すように、フレキシブル板26を湾曲させて形成した第1グリッド13を、同じ湾曲形状の台座71に接着剤で貼り付けること等により固定する。こうすると、より確実にフレキシブル板26の湾曲形状を維持しやすい。また、フレキシブル板26を湾曲させる時に、台座71に沿って湾曲させるようにすることで、台座71への第1グリッド13の貼り付けと、湾曲形状の確実な固定化を同時に行なっても良い。台座71は、X線透過性であれば材料は任意である。
 また、図23に示すように、フレキシブル板26を湾曲させて第1グリッド13を形成した後、小グリッド17~21間に生じる隙間に、充填剤72を入れ、固化しても良い。充填剤72は、エポキシ接着剤や、銀ペースト、金ペースト等、任意の材料からなるものを用いることができる。但し、銀ペーストや金ペースト等、X線吸収性の材料からなる充填剤を用いることが好ましい。X線吸収性の充填剤を用いると、小グリッド17~21間を透過したX線によるアーチファクト等のノイズ成分を低減することができるからである。
 さらに、図24に示すように、フレキシブル板26の代わりに形状記憶基板73を用いても良い。形状記憶基板73を用いる場合、記憶する形状を湾曲形状とし、第1グリッド13の作製時には平行平板状にしておく。そして、上述の実施形態と同様に、グリッド部や分断部を形成したグリッド基板41や導電性基板51を貼り合わせた後、形状記憶基板73を記憶形状に戻すための処理(例えば熱処理)を施し、形状記憶基板73を湾曲させる。こうして形状記憶基板73を用いると、形状記憶基板73の形状記憶作用により、第1グリッド13の適切な湾曲状態を容易に維持することができる。形状記憶基板73は、形状記憶ポリマーや形状記憶合金から形成されたものを用いることができる。形状記憶ポリマーは、例えば、ポリノルボルネン、トランスポリイソプレン、ポリウレタン等である。形状記憶合金は、例えば、NiTi、NiTiCo、NiTiCu等である。
 同様に、図25に示すように、繊維状にした形状記憶ポリマーや形状記憶合金で形成された形状記憶層74を可撓性樹脂(ポリイミド等)75に編み込んだ複合基板76を、フレキシブル板26の代わりに用いても良い。複合基板76も形状記憶基板73とほぼ同様の作用効果を示す。
 なお、上述の実施形態では、5枚の小グリッドを用いる例を説明しているが、使用する小グリッドの枚数は5枚に限らない。小グリッドを円筒面状(あるいは球面状)に配置するためには少なくとも2枚の小グリッドが必要であるが、円筒面状(球面状)により近くするためには、小グリッドの枚数はできるだけ多いほうが良い。
 なお、上述の実施形態では、第1グリッド13が位相型グリッドである例を説明したが、第1グリッド13は、線源グリッド12や第2グリッド14と同様に、吸収型グリッドでも良い。この場合、前述の吸収型グリッドの製造方法によって第1グリッド13を製造することができる。
 なお、上述の実施形態では、線源グリッド12、第1グリッド13、第2グリッド14が全て円筒面状に湾曲している例を説明しているが、少なくとも第1グリッド13または第2グリッド14の一方が円筒面状(あるいは球面状)に湾曲していれば良い。
 また、被検体HをX線源と第1グリッドとの間に配置しているが、被検体Hを第1グリッドと第2グリッドとの間に配置してもよい。この場合にも同様に位相コントラスト画像が生成される。また、上記実施形態では、線源グリッドを設けているが、線源グリッドを省略してもよい。
 また、上述の実施形態では、一方向に延伸されかつ延伸方向に直交する配列方向に沿って交互に配置されたX線吸収部及びX線透過部を有する縞状の一次元グリッドであるが、本発明は、X線吸収部及びX線透過部が直交する2方向に配列された二次元グリッドにも適用が可能である。この場合、複数回の撮影を行う縞走査法により位相コントラスト画像を生成してもよいし、1回の撮影によって位相コントラスト画像を生成してもよい。1回の撮影で位相コントラスト画像を生成するには、例えば、WO2010/050483号公報に記載のように、第1グリッドに市松模様の位相型グリッドを使用し、第2グリッドに網目模様の振幅型グリッドを使用する。この1枚の撮影画像にフーリエ変換を行い、縦横方向の1次スペクトルをそれぞれ抽出する。これらの1次スペクトルをフーリエ逆変換することで、2方向の位相微分画像が得られる。
 なお、上述の実施形態では、特に温度変化(及び温度変化による熱膨張)を考慮した高品質な位相イメージング用グリッドを提供することができる。例えば、撮影時において、環境温度変化が生じるとグリッドの湾曲度が僅かに変化することがある。このとき、小グリッド17~21の相対的な配置精度が悪いと、小グリッド17~21間の相対的な配置のばらつきに応じて縞画像のコントラストが悪化してしまうことがある。しかし、本発明によれば、小グリッド17~21の相対的配置が正確であるため、環境温度に変化が生じても縞画像のコントラストの悪化を抑えることができる。また、グリッドの製造時には、接着剤を硬化させる等のために加熱することがあり、その熱によってフレキシブル板26等が熱変形することがあるが、本発明によれば、上述のような熱変形があったとしても小グリッド17~21を相対的に高精度に配置可能である。
 上記各実施形態は、矛盾しない範囲で相互に組み合わせてもよい。本発明は、医療診断用の放射線画像撮影システムのほか、工業用や、非破壊検査等のその他の放射線撮影システムに適用可能である。また、本発明のグリッドは、X線撮影において散乱線を除去する散乱線除去用グリッドにも適用可能である。更に、本発明は、放射線として、X線以外にガンマ線等を用いる放射線画像撮影システムにも適用可能である。

Claims (16)

  1.  放射線透過性を有するグリッド基板と、
     前記グリッド基板上に形成され、前記グリッド基板が曲げられたときに、複数の小グリッドに分断するための複数の分断部と、
     前記各小グリッドに設けられ、縞画像を形成するためのグリッド部と、
     前記グリッド基板が貼り合わせられており、前記グリッド基板を前記小グリッドに分断するために湾曲可能な保持板と、
    を備えることを特徴とする放射線画像撮影用グリッド。
  2.  前記保持板は、前記各小グリッドが放射線源に向くように湾曲されることを特徴とする請求の範囲第1項記載の放射線画像撮影用グリッド。
  3.  前記分断部は、厚みを薄くして、分断位置を指定するための溝を有することを特徴とする請求の範囲第1項記載の放射線画像撮影用グリッド。
  4.  前記グリッド部には、複数の凸部と凹部とが同じ幅で交互に形成され、
     前記凸部のうち、前記分断部に隣接する最も端の前記凸部を含む全ての前記凸部が同じ幅であることを特徴とする請求の範囲第1項記載の放射線画像撮影用グリッド。
  5.  前記凹部には、前記放射線を吸収する放射線吸収材が充填されていることを特徴とする請求の範囲第4項記載の放射線画像撮影用グリッド。
  6.  前記保持板には、前記グリッド基板の分断位置を指定するための低剛性部が前記分断部に対応する位置に設けられていることを特徴とする請求の範囲第1項記載の放射線画像撮影用グリッド。
  7.  前記分断部には、前記グリッド基板の分断後に、前記保持板の湾曲形状を維持する充填剤が充填されていることを特徴とする請求の範囲第1項記載の放射線画像撮影用グリッド。
  8.  前記保持板は、形状記憶材料で作られていることを特徴とする請求の範囲第1項記載の放射線画像撮影用グリッド。
  9.  放射線透過性のグリッド基板上にレジストパターンを形成する工程であり、前記レジストパターン内の隙間よりも長い所定間隔をあけて複数の前記レジストパターンを形成するレジストパターン形成工程と、
     前記レジストパターンをマスクとして前記グリッド基板をドライエッチングすることにより、前記グリッド基板の表面に前記レジストパターンに対応する幅の溝を有するグリッド部を形成するとともに、前記所定間隔に対応して前記グリッド部の溝よりも幅が広く深い分断部を形成するエッチング工程と、
     前記グリッド部及び前記分断部が形成された前記グリッド基板を、前記グリッド部及び前記分断部が形成されていない表面で、保持板に貼り合わせる貼合工程と、
     前記保持板を所定曲率に湾曲させることにより前記グリッド基板を前記分断部で分断する保持板湾曲工程と、
     を備えることを特徴とする放射線画像撮影用グリッド製造方法。
  10.  前記グリッド基板は、さらに導電性を有し、
     前記エッチング工程において前記グリッド基板の表面に形成された前記グリッド部及び前記分断部に絶縁膜を形成する絶縁膜形成工程と、
     前記絶縁膜形成工程により前記グリッド部で薄く、かつ、前記分断部で厚く形成された前記絶縁膜を均等にエッチングすることにより、前記分断部では前記絶縁膜の一部を残し、前記グリッド部の底部の前記絶縁膜を除去して前記グリッド基板を露呈させる絶縁膜除去工程と、
     前記グリッド基板をメッキ液に浸漬して導通することにより、前記グリッド部の溝に放射線を吸収する放射線吸収材を析出させるメッキ工程と、
    を備え、前記メッキ工程後に前記貼合工程及び前記保持板湾曲工程を行うことを特徴とする請求の範囲第9項記載の放射線画像撮影用グリッド製造方法。
  11.  前記分断部の底部に、前記グリッド基板の分断位置を指定するための溝を形成する溝形成工程を含むことを特徴とする請求の範囲第9項記載の放射線撮影用グリッド製造方法。
  12.  前記保持板に、前記グリッド基板の分断位置を指定するための低剛性部を形成する低剛性部形成工程を備えることを特徴とする請求の範囲第9項記載の放射線画像撮影用グリッド製造方法。
  13.  前記保持板湾曲工程の後に、前記保持板の湾曲形状を維持する充填剤を前記分断部に充填する形状維持処理工程を備えることを特徴とする請求の範囲第9項記載の放射線画像撮影用グリッド製造方法。
  14.  放射線源から放射された放射線を透過させて縞画像を生成する第1グリッドと、前記縞画像に強度変調を与える第2グリッドと、前記第2グリッドにより強度変調された縞画像を検出する放射線画像検出器とを有し、前記放射線画像検出器により検出された縞画像から位相コントラスト画像を生成する放射線画像撮影システムにおいて、
     前記第1グリッドまたは前記第2グリッドの少なくとも一方は、
     放射線透過性を有するグリッド基板と、
     前記グリッド基板上に形成され、前記グリッド基板が曲げられたときに、複数の小グリッドに分断するための複数の分断部と、
     前記各小グリッドに設けられ、縞画像を形成するためのグリッド部と、
     前記グリッド基板が貼り合わせられており、前記グリッド基板を前記小グリッドに分断するために湾曲可能な保持板と、
     を備えることを特徴とする放射線画像撮影システム。
  15.  前記放射線源と前記第1グリッドとの間に配置され、前記放射線源から照射された放射線を領域選択的に遮蔽して多数のライン上の放射線を形成する線源グリッドをさらに備えることを特徴とする請求項14記載の放射線画像撮影システム。
  16.  前記線源グリッドは、
     放射線透過性を有するグリッド基板と、
     前記グリッド基板上に形成され、前記グリッド基板が曲げられたときに、複数の小グリッドに分断するための複数の分断部と、
     前記各小グリッドに設けられ、縞画像を形成するためのグリッド部と、
     前記グリッド基板が貼り合わせられており、前記グリッド基板を前記小グリッドに分断するために湾曲可能な保持板と、
     を備えることを特徴とする請求の範囲第15項記載の放射線画像撮影システム。
PCT/JP2012/082464 2011-12-27 2012-12-14 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム WO2013099653A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-285900 2011-12-27
JP2011285900A JP2013134197A (ja) 2011-12-27 2011-12-27 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム

Publications (1)

Publication Number Publication Date
WO2013099653A1 true WO2013099653A1 (ja) 2013-07-04

Family

ID=48697145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082464 WO2013099653A1 (ja) 2011-12-27 2012-12-14 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム

Country Status (2)

Country Link
JP (1) JP2013134197A (ja)
WO (1) WO2013099653A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133923A (ja) * 2007-11-28 2009-06-18 Canon Inc 光結合装置および光結合方法
JP2012045099A (ja) * 2010-08-25 2012-03-08 Fujifilm Corp 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133923A (ja) * 2007-11-28 2009-06-18 Canon Inc 光結合装置および光結合方法
JP2012045099A (ja) * 2010-08-25 2012-03-08 Fujifilm Corp 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム

Also Published As

Publication number Publication date
JP2013134197A (ja) 2013-07-08

Similar Documents

Publication Publication Date Title
JP2012013530A (ja) 回折格子及びその製造方法、並びに放射線撮影装置
JP5459659B2 (ja) X線位相コントラスト像の撮像に用いられる位相格子、該位相格子を用いた撮像装置、x線コンピューター断層撮影システム
WO2012026223A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
US20120201349A1 (en) Grid for use in radiation imaging and grid producing method, and radiation imaging system
CN103515404A (zh) 放射线检测装置及其制造方法和成像系统
JPWO2004058070A1 (ja) X線撮像装置および撮像方法
JPWO2016163177A1 (ja) X線撮影装置
JP2012022239A (ja) 回折格子及びその製造方法、放射線撮影装置
JP6217381B2 (ja) 格子湾曲方法
WO2013099652A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
US20120148029A1 (en) Grid for use in radiation imaging, method for producing the same, and radiation imaging system
JP6365299B2 (ja) 回折格子および回折格子の製造方法、格子ユニットならびにx線撮像装置
WO2018066198A1 (ja) 回折格子ユニット、格子ユニットの製造方法およびx線位相イメージ撮影装置
JP5204880B2 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム
JP6515682B2 (ja) X線タルボ撮影装置及び格子保持具
WO2012053342A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
WO2012081376A1 (ja) 放射線画像撮影用グリッド及び放射線画像撮影システム
WO2013099653A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
WO2013129309A1 (ja) 放射線画像撮影用吸収型グリッド及びその製造方法、並びに放射線画像撮影システム
JP2012149982A (ja) 放射線画像撮影用格子ユニット及び放射線画像撮影システム、並びに格子体の製造方法
US11000249B2 (en) X-ray detector for grating-based phase-contrast imaging
JP2012122840A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム
JP2012249847A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2012068225A (ja) 放射線画像撮影用グリッド及びその製造方法
JP2012132793A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861507

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12861507

Country of ref document: EP

Kind code of ref document: A1