WO2013099593A1 - バイオマス専焼バーナー、バイオマス混焼ボイラ、およびバイオマス燃料燃焼方法 - Google Patents

バイオマス専焼バーナー、バイオマス混焼ボイラ、およびバイオマス燃料燃焼方法 Download PDF

Info

Publication number
WO2013099593A1
WO2013099593A1 PCT/JP2012/082101 JP2012082101W WO2013099593A1 WO 2013099593 A1 WO2013099593 A1 WO 2013099593A1 JP 2012082101 W JP2012082101 W JP 2012082101W WO 2013099593 A1 WO2013099593 A1 WO 2013099593A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
fuel
burner
flow
combustion
Prior art date
Application number
PCT/JP2012/082101
Other languages
English (en)
French (fr)
Inventor
孝二 谷口
篤徳 加藤
俊 矢原
裕 田部
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP12862097.8A priority Critical patent/EP2799770B1/en
Priority to US14/368,917 priority patent/US10309647B2/en
Priority to KR1020147013494A priority patent/KR101609962B1/ko
Priority to DK12862097.8T priority patent/DK2799770T3/en
Publication of WO2013099593A1 publication Critical patent/WO2013099593A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/033Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment comminuting or crushing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/01001Co-combustion of biomass with coal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/80Shredding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/20Waste feed arrangements using airblast or pneumatic feeding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/26Biowaste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/26Biowaste
    • F23G2209/261Woodwaste

Definitions

  • the present invention relates to a biomass-fired burner that uses biomass fuel as an auxiliary fuel in a coal-fired boiler, a biomass-fired boiler equipped with a biomass-fired burner, and a method for burning biomass fuel.
  • biomass power generation using woody biomass which is a recyclable resource, as a fuel does not substantially increase the CO2 load in the atmosphere, and holds great expectations as new energy.
  • wood biomass that can be easily collected include wood pellets and wood chips.
  • biomass fuel is used as an auxiliary fuel in a coal-fired boiler, not only fossil fuels are saved and CO2 emissions are reduced, but the biomass fuel has a low nitrogen content, so the combustion exhaust gas is reduced in NOx. be able to.
  • a conventional mixed-fired coal-fired boiler As a conventional mixed-fired coal-fired boiler, a conventional pulverized coal burner or a mixed-burner burner that supplies coal and biomass fuel at the same time is used to burn pulverized fuel mixed with pulverized coal and biomass fuel.
  • a mixed-fired boiler There is a mixed-fired boiler.
  • a typical method is to use a conventional pulverized coal-fired boiler to produce a mixed fuel of pulverized coal and biomass by adding woody biomass raw material to a mill that finely pulverizes coal, such as a roller mill, and place this on the carrier air. And burned with a pulverized coal burner.
  • the coal is usually pulverized coal of 200 ⁇ m or less, preferably about 70 ⁇ m.
  • the biomass fuel is also pulverized extremely finely.
  • FIG. 7 is a comparison of the pulverized particle size distribution when 5% of woody biomass is mixed into the roller mill as compared with the case of treating only coal.
  • the horizontal axis represents the sieve mesh on a logarithmic scale
  • the vertical axis represents the passing weight percentage of the sieve. It can be seen that due to the mixing of woody biomass, the particle size distribution of the product fuel spreads both coarsely and finely.
  • the combustion characteristics differ between woody biomass fuel and pulverized coal.
  • the volatile content is twice that of coal.
  • the calorific value is 2/3 of coal in the case of wood pellets and 1/2 in the case of wood chips.
  • the ash content is 1/10 or less of coal in the case of wood pellets and wood chips. Therefore, there is a limit to the mixing ratio for co-firing biomass fuel with a burner designed as a pulverized coal burner.
  • the industrial performance value of the biomass fuel mixing ratio in the pulverized coal boiler is 3%, and the limit is estimated to be about 5%.
  • woody biomass fuel As woody biomass fuel is finely pulverized, the power required for pulverization increases and the basic unit increases. On the other hand, woody biomass fuel is easier to burn than coal if it has the same particle size, so there is no need to make the pulverized particles smaller. Since the combustion characteristics of woody biomass fuel are different from pulverized coal, it is desirable to use a biomass-burning burner specialized for woody biomass fuel in order to efficiently burn woody biomass fuel.
  • the pulverizer When using a biomass-burning burner, the pulverizer is operated independently of the pulverized coal under conditions suitable for woody biomass fuel, and an appropriate mixed combustion ratio is selected for the coal using the pulverized coal burner. can do.
  • the mixed combustion rate as a boiler is determined according to the number of installed pulverized coal combustion burners and biomass exclusive combustion burners, and combustion efficiency.
  • Patent Document 1 discloses a biomass-burning burner that is applied to a mixed-fired boiler in which pulverized coal and biomass fuel are separately introduced into a furnace and burned.
  • the disclosed biomass fuel firing nozzle of the biomass burning burner is provided with a dispersing device for preventing the drift of biomass fuel at the center of the center of the nozzle, and the fuel flow rate is increased at the upstream portion of the nozzle to increase the fuel flow rate to the dispersing device.
  • the biomass-burning burner is optimized for burning a predetermined amount of biomass fuel, and the number of installed biomass burners can be determined according to the biomass fuel processing amount required in the furnace to which it is applied.
  • Patent Document 1 describes an example with a mixed firing rate of 15%.
  • the biomass-burning burner is preferably installed between the pulverized coal burning burner and the two-stage combustion air outlet.
  • Patent Document 2 is provided with a boiler provided with a mixed combustion burner of pulverized coal and biomass fuel, and a starter or auxiliary burner diverted as a biomass fuel combustion burner that intermittently supplies biomass fuel for combustion.
  • a boiler is disclosed.
  • Patent Document 2 does not describe a specific form of the biomass-burning burner, problems in use, a solution, and the like.
  • Patent Document 3 discloses a pulverized coal-burning burner. The disclosed burner is suitable for pulverized coal, which has a larger calorific value than that of biomass fuel, a large amount of air required for combustion, a large specific gravity, and therefore a small optimum particle size. In order to burn woody biomass fuel with high efficiency, it is necessary to optimize for woody biomass fuel.
  • a biomass burning burner includes a biomass fuel ejection nozzle having a vent portion and a fuel ejection port for ejecting biomass fuel conveyed to primary air, and an opening of the fuel ejection port.
  • a secondary air nozzle having a secondary air jet port surrounding the secondary air nozzle, and a tertiary air nozzle jetting a swirling flow of the tertiary air having a tertiary air jet port surrounding the opening of the secondary air nozzle jet port; , A biomass burning burner.
  • the biomass combustion burner of the present invention converts the biomass fuel flow drifted in the vent portion into a swirl flow swirling around the axis, and the swirl vane for distributing the fuel concentration thinly on the tube axis side and densely on the outer peripheral side, Provided in the inner center of the jet nozzle and a rectifying plate on the inner wall immediately upstream of the fuel jet outlet to suppress the swirling of the fuel flow jetted from the fuel jet outlet, to optimize the fuel concentration distribution, A buffer flow is formed between the fuel flow and the tertiary air flow by adjusting the opening of the secondary air outlet and the opening of the tertiary air jet to suppress the amount of secondary air.
  • the biomass-burning burner of the present invention may include an oil supply pipe that feeds liquid fuel through the pipe axis to the straight pipe portion downstream of the vent portion of the biomass fuel injection nozzle.
  • a woody biomass raw material is formed into 2 mm under particles using a secondary crusher such as an impact crusher (for example, TSX shredder manufactured by Earth Technica Co., Ltd.) independently of pulverized coal.
  • a fuel stream with the biomass fuel on the primary air is supplied and burned in the furnace.
  • biomass fuel in a reducing atmosphere.
  • a flow rate of about 15 to 25 m / s is necessary for transferring biomass fuel, and therefore there is a certain restriction on the primary air amount.
  • the primary air amount is operated such that the A / C value (Nm 3 / kg) with respect to the weight of the biomass fuel is 0.8 or more and 2.5 or less. It is preferable to do.
  • the biomass-burning burner of the present invention can be operated at an A / C value of 2.5 or less at the rated fuel flow rate, and at an A / C value of 1.5 or less in a 60% load state with respect to the rating.
  • the value of A / C is proportionally distributed between A / C 2.5 at the fuel amount of the burner rating and A / C 1.5 at the fuel amount of 60% with respect to the burner rating.
  • the secondary air flow smaller than the tertiary air flow rewinds the biomass fuel released into the furnace in the nozzle axial direction to form a vortex around the jet outlet, thereby improving flame holding properties. And has the effect of increasing the NOx suppression effect by continuing the combustion in the reducing atmosphere for a longer time.
  • the biomass co-fired boiler of the present invention is configured such that the biomass-fired burner of the present invention is installed in a pulverized coal-fired boiler and biomass fuel processed by a pulverizer different from pulverized coal is supplied to the biomass-fired burner.
  • the biomass-burning burner can be provided after the furnace of the pulverized coal fired boiler and at the same position as or higher than the pulverized coal burner installed at a high position. Further, the biomass-burning burner may be provided in front of the furnace of the pulverized coal boiler.
  • the biomass co-fired boiler of the present invention can burn a large amount of biomass fuel to save coal, suppress CO2 emission, and reduce NOx.
  • the wood biomass fuel whose particle distribution is under 2 mm is conveyed to the primary air with respect to the biomass-burning burner of the present invention, and the flow velocity is changed from 15 m / s to 25 m / s.
  • the combustion air is A / C 0.8 or more, and A / C 2.5 at a burner rated fuel amount and A / C 1.5 at a fuel amount 60% of the burner rating.
  • the secondary fuel and the tertiary air are supplied so as to be equal to or less than the value of A / C that is proportionally distributed, and the biomass fuel is burned.
  • the biomass-burning burner of the present invention can burn a large amount of biomass fuel independently of pulverized coal.
  • an appropriate number of biomass-burning burners are installed in newly-installed and existing pulverized coal-fired boilers as biomass-fired boilers, burning biomass fuel, reducing the amount of coal combustion, reducing NOx in exhaust gas, and originating from fossil fuels Greatly reduces CO2 emissions.
  • FIG. 1 is a schematic cross-sectional view of a biomass-burning burner according to one embodiment of the present invention. It is drawing which shows the example of the swirl
  • FIG. 1 is a schematic sectional view of a biomass-burning burner according to one embodiment of the present invention
  • FIG. 2 is a drawing showing an example of swirl blades used in a biomass-burning burner.
  • FIG. 2A is a front view of the swirl vane viewed from the direction of the tube axis
  • FIG. 2B is a side view of the swirl blade viewed from the direction perpendicular to the tube axis.
  • the biomass-burning burner 100 of the present embodiment includes a biomass fuel ejection nozzle 10, a secondary air nozzle 20, and a tertiary air nozzle 25 as shown in FIG.
  • An auxiliary fuel supply pipe 31 may be provided on the pipe axis of the biomass fuel injection nozzle 10.
  • the biomass fuel injection nozzle 10 supplies biomass fuel conveyed to the primary air into the furnace, and primary air is used in an amount of wind speed of about 15 to 25 m / s where the biomass fuel does not stay in the pipe. .
  • the introduction pipe 12 is associated with the biomass fuel supply pipe 11 arranged in the horizontal direction in a substantially vertical direction at the position of the bend portion 14.
  • the biomass fuel injection nozzle 10 causes the fuel flow flowing in from the introduction pipe 12 to collide with the reversing plate 13 provided in the bend portion 14 and bends approximately 90 °.
  • the fuel particles in the flow are unevenly distributed on the outer circumferential side of the curved pipe by centrifugal force, and the circumferential fuel distribution in the pipe is uneven at the curved pipe outlet.
  • the fuel flow collides with the flat reversing plate 13 to disturb the flow, and the fuel distribution in the pipe is made uniform in the circumferential direction.
  • the fuel concentration adjusting unit is located in the center of the biomass fuel injection nozzle 11 downstream of the biomass fuel flow. 15 is provided to adjust the fuel concentration in the biomass fuel stream. As shown in FIG. 2, the fuel concentration adjusting unit 15 is configured by providing a plurality of swirl vanes 16 in the flow path of the biomass fuel injection nozzle 11. The swirl blade 16 is inclined with respect to the tube axis.
  • the swirl vanes 16 make the inflowing biomass fuel flow into a swirl flow swirling around the axis so that the fuel concentration is thinly distributed around the center and concentrated in the outer peripheral portion, and the concentration distribution is adjusted to be substantially the same in the circumferential direction. .
  • a turning degree adjusting plate 17 is provided on the inner wall of the pipe immediately upstream of the fuel outlet 19 for ejecting fuel into the furnace. Thereby, the swirl force of the fuel flow given by the swirl vanes 16 is killed, and the spread of the fuel flow after the ejection is suppressed.
  • the turning degree adjusting plate 17 is composed of a plurality of plates arranged in the circumferential direction and substantially parallel to the tube axis. The size and direction of the turning degree adjusting plate 17 can be appropriately determined according to the turning force of the fuel flow and the enlarged angle after the ejection.
  • a secondary air nozzle 20 is provided so as to surround the biomass fuel ejection nozzle 10, and a tertiary air nozzle 25 is provided so as to surround the secondary air nozzle 20.
  • the secondary air nozzle 20 takes in the secondary air from the wind box via the swirler 21 and supplies the secondary air into the furnace from the secondary air jet 23 formed around the fuel jet 19.
  • the tertiary air nozzle 25 takes in the tertiary air from the wind box via the swirler 26 and supplies the tertiary air into the furnace from the tertiary air outlet 27 formed around the secondary air outlet 23.
  • the secondary air and the tertiary air are mixed with the biomass fuel flow that spreads from the fuel injection port 19 into the furnace as a part of the combustion air to burn the biomass fuel.
  • the secondary air is inside the tertiary air and initially contacts the biomass fuel stream and bends it inward to delay the fuel stream from associating with the tertiary air stream and to maintain a high fuel concentration.
  • action which ensures the stable ignition performance and improves flame-holding property.
  • the combustion time with low oxygen can be secured and NOx can be reduced more effectively.
  • a swirler 21 and a swirler 26 are provided in the vicinity of the intake from the wind box in order to form a swirling flow of combustion air swirling around the fuel jet port 19. ing. These swirlers 21 and 26 may be provided immediately upstream of the secondary air outlet 23 and the tertiary air outlet 27, respectively. In addition, since the effect
  • the auxiliary fuel supply pipe 31 is a fuel supply pipe that supplies liquid fuel or gas fuel for auxiliary use or start-up that is used instead of when the biomass fuel is insufficient. Although effective for stable operation, it is not essential. Further, although not shown, a pilot burner and a flame detector are also installed in the biomass-burning burner 100 of this embodiment.
  • FIG. 3 is a plant system diagram illustrating an example of a biomass fuel supply system in a pulverized coal boiler to which the biomass-burning burner 100 of the present embodiment is applied.
  • a biomass-burning burner 100 On the side wall of the conventional pulverized coal boiler 61, a biomass-burning burner 100 is installed.
  • the biomass-burning burner 100 may be installed by replacing a part of an existing pulverized coal burner or a two-stage combustion air supply nozzle.
  • Biomass fuel is processed into granules having a particle size different from that of pulverized coal using a special pulverizer different from the pulverizer that produces pulverized coal, and is transported to an air stream independent of pulverized coal. Supplied to the dedicated burner 100.
  • the biomass fuel supply system includes a receiving hopper 51 that receives a woody biomass raw material, a belt conveyor 52 that carries out a predetermined amount of raw material from the bottom of the receiving hopper 51, and a pulverizer that receives the raw material from the conveyor 52 and makes particles of a predetermined size. 53, a blower fan 54 that supplies air for conveying biomass fuel from the fine pulverizer 53, a cyclone 55 that removes extremely fine particles from the biomass particles, and fine air is removed from the air discharged from the cyclone 55 to clean it.
  • Bag filter 57 that discharges air to the atmosphere, metering feeder 56 that takes out and supplies a predetermined amount of woody biomass fuel from the bottom of the cyclone 55, and transport that supplies primary air to transport biomass fuel that is supplied at a predetermined flow rate
  • a fan 59 is provided.
  • the woody biomass raw material supplied to the receiving hopper 51 after the primary pulverization is secondarily pulverized by the fine pulverizer 53 until it has a predetermined particle size distribution, and is sent to the cyclone 55 to remove the extremely fine components. It accumulates at the bottom and is supplied to the biomass fuel supply pipe 63 by a predetermined amount by the metering feeder 56.
  • Biomass fuel supplied to the biomass fuel supply pipe 63 from the metering feeder 56 is conveyed by primary air fed from the conveyance fan 59 and is supplied to the biomass-burning burner 100 via the fuel conveyance flow supply pipe 65.
  • the conveyance air supply amount is set to have a flow velocity of about 15 m / s to 25 m / s so as not to cause stagnation of fuel particles or an extremely high speed flow in the fuel conveyance flow supply pipe 65 and the biomass burning burner 100. It is decided.
  • FIG. 4 is a drawing showing an arrangement example when the biomass-burning burner of the present embodiment is installed in an existing pulverized coal burning boiler.
  • four rows are arranged in a row in front of the furnace (upstream side of the combustion gas flow), four rows of 16 pulverized coal burners, and four rows in the upper direction of the furnace (downstream of the combustion gas flow) are arranged in four rows.
  • the existing pulverized coal-fired boiler that was provided with 8 TS ports in total, 4 rows in a row at a position substantially corresponding to the height of the uppermost pulverized coal burner after the furnace on the back side.
  • a biomass burner is attached.
  • the number of biomass-burning burners can be determined according to the capacity of the biomass-burning burner and the amount of biomass fuel to be processed by the boiler.
  • the pulverized coal burner is disposed under the biomass-burning burner. Thereby, it is possible to prevent the fuel particles having a large particle size in the biomass fuel from falling to the furnace bottom in an unburned state. Needless to say, when refurbishing an existing boiler, an appropriate part of the existing pulverized coal burner or TS port may be replaced with a biomass-burning burner.
  • Conventional pulverized coal burners usually require fine pulverization of coal in order to increase combustion efficiency, and are usually used as fine powder of 200 ⁇ m or less, preferably about 70 ⁇ m.
  • pulverized coal fuel treated so that the particle size of the fuel is not more than 74 ⁇ m and occupy 80% is used, and the amount of fuel transported air to A / C (fuel (kg / h) ( By adjusting Nm 3 / h) to the range of 0.8 to 3.0, the pulverized coal can be burned in the range of the load factor with respect to the rated value of 35% to 100%.
  • biomass fuel is burned under different conditions from pulverized coal using a biomass-burning burner 100 different from pulverized coal, and therefore a pulverizer for pulverized coal Independently selected, for example, TSX type shredder manufactured by Earth Technica Co., Ltd. Form into sized particles.
  • a pulverizer for pulverized coal Independently selected, for example, TSX type shredder manufactured by Earth Technica Co., Ltd. Form into sized particles.
  • the primary air for conveyance is provided with an air volume and a wind pressure optimized for the biomass-burning burner 100 using a separate independent conveyance fan 59.
  • FIG. 5 is a graph showing the particle size distribution before and after processing with a pulverizer for various wood biomass materials such as wood pellets and wood chips.
  • the wood pellets pulverized under 2 mm by the fine pulverizer 53 exhibit a particle distribution such that 700 ⁇ m or less occupies 80%, and can be easily reduced and burned by the biomass-burning burner 100 of this embodiment.
  • the biomass fuel showing the particle distribution is released into the furnace from the fuel outlet 19 of the biomass fuel injection nozzle 10
  • all the particles are floated and burnt on the combustion gas ascending current in the furnace, and are unburned. It is confirmed by the woody biomass thermal flow analysis that the components do not settle to the furnace bottom when applied to an actual boiler.
  • FIG. 6 is a burner load / A / C relationship diagram according to the biomass-burning burner 100 of the present embodiment.
  • the horizontal axis represents the fuel amount as a percentage (%) of the rating
  • the vertical axis represents A / C (Nm 3 / h).
  • the hatched area shown in the figure is the recommended driving area.
  • the biomass-burning burner 100 according to the present embodiment is industrially available from A / C 0.8 to 2.5 at a load factor of 100%, from A / C 0.8 to 1.5 at a load factor of 60%. Can be used.
  • FIG. 6 shows the result of confirming the operable range using a biomass-burning burner that burns fuel with a rated value of 300 kg / h.
  • the black circles in the figure indicate cases where the ignitability and flame holding properties are good and the flames are stable, and the crosses indicate cases where flame holding properties etc. are poor and combustion is poor. From the figure, the driving possibility within the recommended driving range can be confirmed.
  • biomass-burning burner of the present embodiment by burning a large amount of woody biomass fuel, the consumption of coal can be reduced and CO2 emission originating from fossil fuel can be suppressed.
  • Biomass-burning burners burn biomass fuel independently of pulverized coal, so the amount of combustion can be adjusted according to the number of installations, and by installing an appropriate number of burners with a predetermined capacity, a large amount of biomass fuel can be stabilized. Can be mixed and fired. Moreover, in a biomass mixed combustion boiler, since there is little nitrogen component in biomass fuel, NOx reduction of combustion exhaust gas can be achieved.
  • biomass-burning burner of the present invention By applying the biomass-burning burner of the present invention to a new or existing pulverized coal fired boiler, a biomass mixed combustion boiler that burns at a high biomass mixed combustion rate can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

 微粉炭焚きボイラに適用してバイオマス燃焼させるバイオマス専焼バーナーと、化石燃料起源のCO2量を削減するバイオマス混焼ボイラと、これらを利用したバイオマス燃料燃焼方法を提供する。一次空気に搬送されたバイオマス燃料を噴出する燃料噴出口(19)を備えたバイオマス燃料噴出ノズル(10)と、燃料噴出口を取り囲む二次空気噴出口(23)を備えた二次空気ノズル(20)と、二次空気ノズル噴出口を取り囲む三次空気噴出口(27)を備えた三次空気ノズル(25)とを設け、バイオマス燃料噴出ノズルにバイオマス燃料流を旋回流に変換して、燃料濃度を外周部側に濃く分布させる燃料濃度調整部(15)と、噴出する燃料流の旋回を抑制する旋回度調整板(17)を備え、二次空気量を抑制して燃料流と三次空気流の間に緩衝流を形成させて、着火性と保炎性を向上させるバイオマス専焼バーナーを備える。

Description

バイオマス専焼バーナー、バイオマス混焼ボイラ、およびバイオマス燃料燃焼方法
 本発明は、バイオマス燃料を補助燃料として石炭焚きボイラに使用するバイオマス専焼バーナーおよびバイオマス専焼バーナーを設備したバイオマス混焼ボイラ、ならびにバイオマス燃料の燃焼方法に関する。
 近年、地球温暖化対策の計画的な推進実行が望まれている。日本において排出される温室効果ガスのうち、最近では、エネルギー起源のCO2が約9割を占める。さらに全発電のうち石炭火力発電が50%のCO2を排出する状況にある。従って、石炭焚き火力発電設備に関して、環境負荷の低い新エネルギーの利用促進が求められる。
 このような状況の下、日本では「電気事業者による新エネルギー等の利用に関する特別措置法」(以下、「RPS法」という。)が制定され、電気事業者に対して、毎年、その販売電力量に応じた一定割合以上の新エネルギー等を利用して得られる電気を利用することを義務付けることにより、新エネルギー等の利用を推進する施策が採用されている。
 RPS法により、電気事業者は、バイオマスを補助燃料として利用した混焼方式でなければ、石炭焚き火力発電設備を新設できない。既設の設備においても、バイオマス混焼方式の導入が求められている。
 有機物は、地球上で自然に分解・吸収・放出を繰り返して循環しているため、バイオマスエネルギーによって排出されるCO2は、同量のCO2吸収源を確保することで、収支を均衡させることができる。したがって、循環資源である木質バイオマスを燃料としたバイオマス発電は、大気中のCO2負荷を実質的に増大させるものにならず、新エネルギーとして大きな期待を担っている。収集が容易な木質バイオマスとして、木質ペレット、木質チップなどがある。
 また、石炭焚きボイラにおいてバイオマス燃料を補助燃料として利用すれば、化石燃料の節約とCO2排出量の削減ばかりでなく、バイオマス燃料は窒素成分の含有量が少ないため、燃焼排ガスの低NOx化を図ることができる。
 従来から用いられている混焼式の石炭焚きボイラとして、従来の微粉炭バーナー、あるいは石炭とバイオマス燃料を同時に供給する混焼バーナーを利用して、微粉炭とバイオマス燃料を混合した粉体燃料を燃焼させる混焼ボイラがある。代表的な方式は、従来の微粉炭焚きボイラを利用して、たとえばローラミルなど石炭を微粉砕するミルに木質バイオマス原料を加えて微粉炭とバイオマスの混合燃料を製造し、これを搬送空気に載せて微粉炭バーナーで燃焼させるものである。
 ローラミルでは、バーナーの燃焼効率を上げるため、石炭を通常200μm以下、好ましくは70μm程度の微粉炭にする。このとき、バイオマス燃料も一緒に極微細に粉砕する。一方、ローラミルに石炭と木質バイオマスを同時に投入して処理すると、製品粒度が悪化して100μm以上の粗い成分が増加する。図7は、ローラミルに対して木質バイオマスを5%混入したときの粉砕粒度分布を、石炭のみを処理したときと比較したものである。グラフは、製品燃料の粒度について、横軸に篩い目を対数目盛で表し、縦軸に篩いの通過重量百分率を表している。木質バイオマスの混入により、製品燃料の粒度分布が、粗い方と細かい方の両方に広がっていることが分かる。
 さらに、木質バイオマス燃料と微粉炭では燃焼特性が異なる。たとえば揮発分は、石炭の2倍である。発熱量は、木質ペレットの場合は石炭の2/3、木質チップの場合は1/2である。また灰分は、木質ペレットや木質チップの場合は、石炭の1/10以下である。したがって、微粉炭バーナーとして設計されたバーナーでバイオマス燃料を混焼することには、混合比の限界が存在する。
 微粉炭ボイラにおけるバイオマス燃料混合比の工業的実績値は3%であり、限界は5%程度と推定される。
 今後の趨勢を勘案すると、微粉炭に木質バイオマス燃料を補助燃料として加えて混焼する混焼ボイラにおいて、混焼率が重量比で30%程度になると、活用可能性が大きく増大することが期待される。微粉炭バーナーを利用する場合は、バイオマス燃料の高い混焼率を得ることができないので、バイオマス専焼バーナーを導入することが考えられる。
 木質バイオマス燃料は、細かく粉砕するほど、粉砕に要する動力が増大し、原単位を増加させる。一方、木質バイオマス燃料は、同じ粒径であれば石炭より燃えやすいため、粉砕粒を小さくする必要がない。木質バイオマス燃料の燃焼特性が微粉炭と異なるため、木質バイオマス燃料を効率的に燃焼させるには木質バイオマス燃料に特化したバイオマス専焼バーナーを使用することが望ましい。
 バイオマス専焼バーナーを使用する場合、微粉炭と独立して、木質バイオマス燃料に適した条件で微粉砕機を運転し、微粉炭バーナーを使う石炭に対して適切な混焼割合を選んで混焼ボイラを運転することができる。
 ボイラとしての混焼率は、微粉炭燃焼バーナーおよびバイオマス専焼バーナーの設置数、並びに燃焼効率にしたがって決められる。
 特許文献1には、微粉炭とバイオマス燃料を別系統でそれぞれ火炉に投入して燃焼させる混焼ボイラに適用するバイオマス専焼バーナーが開示されている。開示されたバイオマス専焼バーナーのバイオマス燃料噴出ノズルは、ノズル内の中心部中央に、バイオマス燃料の偏流を防止する分散装置を設け、ノズル内の上流部に、燃料の流速を上昇させ分散装置にバイオマス燃料粒子を衝突させるためのベンチュリーを備え、ノズルの先端に、バイオマス燃料の流れを急拡大させる階段状拡大構造の保炎器を設け、ノズルの外側に、二次空気の旋回流を供給する燃焼用空気ノズルを設けたものである。
 バイオマス専焼バーナーは、所定量のバイオマス燃料を燃焼させるために最適化したものであり、適用する火炉において求められるバイオマス燃料処理量に応じて設置数を決めることができる。特許文献1には、混焼率15%の実施例が記載されている。
 なお、バイオマス専焼バーナーは、微粉炭専焼バーナーと二段燃焼用空気噴出口の間に設置することが好ましい。
 また、特許文献2には、微粉炭とバイオマス燃料の混焼バーナーが設けられたボイラ、および、バイオマス燃料を間欠供給して燃焼させるバイオマス燃料燃焼用バーナーとして流用される起動用または補助用バーナーが設けられたボイラが開示されている。ただし、特許文献2には、バイオマス専焼バーナーの具体的形態、使用上の問題点、解決方法などが記載されていない。
 特許文献3は、微粉炭専焼バーナーを開示したものである。開示されたバーナーは、バイオマス燃料と比較して発熱量が大きく、燃焼に必要な空気量が大きく、比重が大きく、従って最適な粒度が小さい微粉炭に適合するものである。木質バイオマス燃料を高い効率で燃焼させるためには、木質バイオマス燃料に対応して最適化する必要がある。
特開2005-291534号公報 特開2005-291524号公報 特開平9-26112号公報
 微粉炭焚きボイラでバイオマス燃料を混焼して、大量の木質バイオマス燃焼を可能とするバイオマス専焼バーナー、化石燃料起源のCO2量を削減することができるバイオマス混焼ボイラ、ならびにバイオマス専焼バーナーを利用したバイオマス燃料燃焼方法を提供することである。
 上記課題を解決するため、本発明のバイオマス専焼バーナーは、ベント部を有し、一次空気に搬送されたバイオマス燃料を噴出する燃料噴出口を備えたバイオマス燃料噴出ノズルと、燃料噴出口の開口を取り囲む二次空気噴出口を備え、二次空気を噴出する二次空気ノズルと、二次空気ノズル噴出口の開口を取り囲む三次空気噴出口を備え、三次空気の旋回流を噴出する三次空気ノズルと、を有するバイオマス燃焼バーナーである。
 本発明のバイオマス燃焼バーナーは、ベント部で偏流したバイオマス燃料流を軸周りに旋回する旋回流に変換して、燃料濃度を管軸側に薄く外周部側に濃く分布させる旋回羽根を、バイオマス燃料噴出ノズルの内部中央に設け、かつ、燃料噴出口から噴出する燃料流の旋回を抑制する整流板を、燃料噴出口の直ぐ上流側の内壁に備えることにより、燃料濃度分布を適正化し、また、二次空気噴出口の開口と三次空気噴出口の開口を調整して二次空気量を抑制することにより、燃料流と三次空気流の間に緩衝流を形成させることを特徴とする。
 本発明のバイオマス専焼バーナーは、バイオマス燃料噴出ノズルのベント部下流の直管部に管軸を貫いて液体燃料を供給するオイル供給配管を備えてもよい。
 本発明のバイオマス専焼バーナーには、微粉炭と独立に、衝撃式破砕機(たとえば、株式会社アーステクニカ製TSX型シュレッダ)などの二次粉砕機を使って木質バイオマス原料を2mmアンダーの粒子に形成したバイオマス燃料を一次空気に載せた燃料流が供給され、炉内で燃焼させる。
 バイオマス専焼バーナーを設置した火炉における燃焼ガスのNOxを減少させるため、バイオマス燃料を還元雰囲気中で燃焼させることが好ましい。
 本発明のバイオマス専焼バーナーでは、バイオマス燃料搬送のために15~25m/s程度の流速が必要であるため一次空気量に一定の制約がある。さらに、バイオマス燃料を還元雰囲気中で効率よく燃焼させるために、一次空気量がバイオマス燃料の重量に対するA/C値(Nm/kg)で0.8以上2.5以下になるようにして運転することが好ましい。
 本発明のバイオマス専焼バーナーは、定格燃料流量においてはA/C値が2.5以下、定格に対して60%負荷状態ではA/C値が1.5以下で運転することができる。
 燃料量が60%以上の場合は、バーナー定格の燃料量におけるA/C2.5とバーナー定格に対して60%の燃料量におけるA/C1.5との間を比例配分したA/Cの値以下になるようにして運転することができる。
 本発明のバイオマス専焼バーナーでは、三次空気流より小さな二次空気流が、炉内に放出されたバイオマス燃料をノズル軸方向に巻き返して噴出口周辺に渦を形成することにより、保炎性を向上させると共に、還元雰囲気中の燃焼をより長時間継続させてNOx抑制効果を高める作用を有する。
 また、本発明のバイオマス混焼ボイラは、本発明のバイオマス専焼バーナーを微粉炭焚きボイラに設備し、微粉炭と異なる微粉砕機で処理したバイオマス燃料をバイオマス専焼バーナーに供給するように構成したことを特徴とする。
 なお、バイオマス専焼バーナーは、微粉炭焚きボイラの炉後であって、高い位置に設置された微粉炭バーナーと同じあるいはより高い位置に設けることができる。また、バイオマス専焼バーナーは、微粉炭ボイラの炉前に設けても良い。
 本発明のバイオマス混焼ボイラは、バイオマス燃料を大量に燃焼させて、石炭の節約とCO2の放出抑制とNOx低減を行うことができる。
 さらに、本発明のバイオマス燃料燃焼方法は、本発明のバイオマス専焼バーナーに対して、粒子分布が2mmアンダーになった木質バイオマス燃料を一次空気に搬送させて流速が15m/sから25m/sになるような燃料流を供給し、さらに、燃焼用空気がA/C0.8以上、かつバーナー定格の燃料量におけるA/C2.5とバーナー定格の60%の燃料量におけるA/C1.5との間を比例配分したA/Cの値以下になるように、二次空気と三次空気を供給して、バイオマス燃料を燃焼させることを特徴とする。
 本発明のバイオマス燃料燃焼方法により、本発明のバイオマス専焼バーナーを適切に稼働させて、効果的に大量のバイオマス燃料を燃焼させることができる。
 本発明のバイオマス専焼バーナーは、微粉炭と独立にバイオマス燃料を大量に燃焼させることができる。
 また、新設及び既設の微粉炭焚きボイラに対してバイオマス専焼バーナーを適当数設置してバイオマス混焼ボイラとして、バイオマス燃料を燃焼させ石炭燃焼量を削減し排ガス中のNOxを低減しかつ化石燃料起源のCO2排出量を削減する効果が大きい。
本発明の1実施例に係るバイオマス専焼バーナーの概略断面図である。 本実施例のバイオマス専焼バーナーに用いる旋回羽根の例を示す図面である。 本実施例におけるバイオマス燃焼プロセスを説明するプラント系統図である。 本実施例のバイオマス専焼バーナーのボイラへの設置例を示す概念図である。 本実施例のバイオマス専焼バーナーに供給するバイオマス燃料の粒度分布図である。 本実施例のバイオマス専焼バーナーの運転範囲を示すバーナー負荷・A/C関係図である。 従来の微粉炭バーナーで燃焼させる石炭とバイオマスの混合燃料の粒度分布図である。
 以下、図面を参照して本発明の実施形態について説明する。
 図1は、本発明の1実施例に係るバイオマス専焼バーナーの概略断面図、図2はバイオマス専焼バーナーに使う旋回羽根の例を示す図面である。図2(a)図は旋回羽根を管軸の方向から見た正面図、図2(b)図は管軸に垂直の方向から見た側面図である。
 本実施例のバイオマス専焼バーナー100は、図1に示すように、バイオマス燃料噴出ノズル10と二次空気ノズル20と三次空気ノズル25を備える。バイオマス燃料噴出ノズル10の管軸に、補助燃料供給管31を設けても良い。
 バイオマス燃料噴出ノズル10は、一次空気に搬送されたバイオマス燃料を炉内に供給するものであり、バイオマス燃料が配管中に滞留しない15~25m/s程度の風速になる量の一次空気が用いられる。バイオマス燃料噴出ノズル10においては、水平方向に配置されたバイオマス燃料供給管11に対して導入管12をベンド部14の位置でほぼ垂直の方向に会合させてある。バイオマス燃料噴出ノズル10は、導入管12から流入する燃料流を、ベンド部14に設けた反転板13に衝突させてほぼ90°曲げさせる。ベンド部14で燃料流を曲管によって滑らかに曲げると、遠心力で流れ中の燃料粒子が曲管の外周側に偏在して、曲管出口では配管内の周方向の燃料分布が不均等になる。ここで本発明のノズルでは、平板の反転板13に燃料流を衝突させることにより流れを乱して、配管内の燃料分布を周方向に均等にするようにしている。
 一次空気で搬送されたバイオマス燃料流は、ベンド部14を通過することにより、流れの断面におけるバイオマス燃料の濃度分布が偏るので、その下流であるバイオマス燃料噴出ノズル11の内部中央に燃料濃度調整部15を設けて、バイオマス燃料流における燃料濃度を調整する。
 燃料濃度調整部15は、図2に示すように、バイオマス燃料噴出ノズル11の流路中に旋回羽根16を複数設けることで構成される。旋回羽根16は、羽根が管軸に対して傾いている。旋回羽根16は、流入するバイオマス燃料流を軸周りに旋回する旋回流にすることにより、燃料濃度を中心に薄く外周部に濃く分布させると共に、濃度分布が周方向にほぼ同一になるように整える。
 さらに、炉内に燃料を噴出させる燃料噴出口19の直ぐ上流の管内壁に、旋回度調整板17を備えている。これによって、旋回羽根16で与えられた燃料流の旋回力を殺いで、噴出後の燃料流の広がりを抑えるようにしている。旋回度調整板17は、周方向に複数配置された、管軸にほぼ平行な平板で構成される。旋回度調整板17の大きさや向きは、燃料流の旋回力と噴出後の拡大角に応じて適宜に決めることができる。
 バイオマス燃料噴出ノズル10を囲繞するように二次空気ノズル20が設けられ、さらに二次空気ノズル20を囲繞するように三次空気ノズル25が設けられる。
 二次空気ノズル20は、旋回器21を介して風箱から二次空気を取り込み、燃料噴出口19の周囲に形成した二次空気噴出口23から炉内に二次空気を供給する。また、三次空気ノズル25は、旋回器26を介して風箱から三次空気を取り込み、二次空気噴出口23の周囲に形成した三次空気噴出口27から炉内に三次空気を供給する。
 二次空気と三次空気は、燃焼用空気の一部として、燃料噴出口19から炉内に拡がるバイオマス燃料流に混ざってバイオマス燃料を燃焼させる。
 二次空気は、三次空気の内側にあって、バイオマス燃料流と初めに接触してこれを内側に屈曲させて燃料流が三次空気流と会合するのを遅らせ、燃料濃度が高い状態を持続させることにより、安定した着火性能を確保し保炎性を向上させる、という作用を有する。また、低酸素での燃焼時間を確保して、より効果的にNOxを低減させることができる。
 図1に示すバイオマス専焼バーナー100においては、燃料噴出口19の周囲を旋回する燃焼用空気の旋回流を形成するために、旋回器21と旋回器26が風箱からの取り入れ口近傍に設けられている。これら旋回器21,26を、それぞれ二次空気噴出口23と三次空気噴出口27の直ぐ上流に設けても良い。なお、二次空気は、旋回を強くすると、その作用が弱くなるので、二次空気用の旋回器21を設備しない場合もある。
 補助燃料供給管31は、バイオマス燃料が不足する場合などに代替して使用する補助用あるいは起動用の液体燃料やガス燃料を供給する燃料供給管である。安定した運転には有効であるが、必須ではない。
 また、図示しないが、本実施例のバイオマス専焼バーナー100にも、パイロットバーナーや火炎検知器が設置されている。
 図3は、本実施例のバイオマス専焼バーナー100を適用した微粉炭ボイラにおけるバイオマス燃料供給系統の例を説明するプラント系統図である。
 従来型の微粉炭ボイラ61の側壁に、バイオマス専焼バーナー100が設置されている。バイオマス専焼バーナー100は、既設の微粉炭バーナーあるいは二段燃焼空気供給ノズルの一部を入れ替えて設置しても良い。
 バイオマス燃料は、微粉炭を製造する微粉砕機とは異なる専用の微粉砕機を用いて微粉炭と異なる粒度を持つ粒体に加工されて、微粉炭と独立した空気流に搬送されて、バイオマス専焼バーナー100に供給される。
 バイオマス燃料供給系統は、木質バイオマス原料を受け入れる受入れホッパ51、受入れホッパ51の底から所定量の原料を搬出するベルトコンベア52、コンベア52から原料を受け入れて所定の大きさの粒子にする微粉砕機53、微粉砕機53からバイオマス燃料を搬送するための空気を供給する送風ファン54、バイオマス粒子から極微細な粒子を取り除くサイクロン55、サイクロン55から排出される空気から微粉体を除去して清浄な空気を大気に放出するバグフィルタ57、サイクロン55の底から木質バイオマス燃料を所定量ずつ取り出して供給する計量供給機56、所定流量で供給されるバイオマス燃料を搬送するための一次空気を供給する搬送ファン59を備える。
 一次粉砕後に受入れホッパ51に供給された木質バイオマス原料は、微粉砕機53で所定の粒度分布を持つまで二次粉砕され、サイクロン55に風送され極微細な成分を除去した状態でサイクロン55の底に溜まり、計量供給機56で所定量ずつバイオマス燃料供給管63に供給される。
 計量供給機56からバイオマス燃料供給管63に供給されたバイオマス燃料は、搬送ファン59から圧送される一次空気によって搬送され、燃料搬送流供給管65を介して、バイオマス専焼バーナー100に供給される。
 搬送給気量は、燃料搬送流供給管65とバイオマス専焼バーナー100の中で燃料粒子の停滞や極度な高速流が生じないように、15m/sから25m/s程度の流速を持たせるように決められる。
 図4は、既設の微粉炭焚きボイラに本実施例のバイオマス専焼バーナーを設置したときの配置例を示す図面である。
 図4の配置例は、炉前下方(燃焼ガス流の上流側)に4本ずつ4列合わせて16本の微粉炭バーナー、炉前上方(燃焼ガス流の下流側)に4本ずつ2列合わせて8本のTSポートが設けられていた既設の微粉炭焚きボイラに対して、背面側の炉後における、最上列の微粉炭バーナーの高さにほぼ対応する位置に、1列4本のバイオマス専焼バーナーを付設したものである。バイオマス専焼バーナーの数は、バイオマス専焼バーナーの容量とボイラで処理したいバイオマス燃料の量に応じて決めることができる。
 バイオマス燃料中の粒径が大きく重い燃料粒子を、燃焼ガスの上昇気流により適当時間浮遊させて燃焼させるため、バイオマス専焼バーナーの下に微粉炭バーナーが位置するように配置することが好ましい。これによって、バイオマス燃料中の粒径が大きく重い燃料粒子が未燃焼状態で炉底に落下するのを防ぐことができる。
 なお、既設のボイラを改装するときには、既設の微粉炭バーナーあるいはTSポートの適宜な一部をバイオマス専焼バーナーに交換するようにしても良いことはいうまでもない。
 従来の微粉炭バーナーでは、通常、燃焼効率を上げるため石炭を微粉砕する必要があり、通常200μm以下、好ましくは70μm程度の微粉体として使用されている。本実施例の微粉炭バーナーにおいては、燃料の粒子径が74μm以下で80%を占めるように処理された微粉炭燃料が使われ、A/C(燃料(kg/h)に対する燃料搬送空気量(Nm/h))が0.8~3.0の範囲に調整することにより、定格値に対する負荷率が35%~100%の範囲で微粉炭を燃焼させることができる。
 ところが、木質バイオマス燃料では、原料を粉砕する場合、粒度が小さくなるにつれて粉砕電力が急激に増大し経済性が悪くなる。また、木質バイオマス燃料は、同じ粒径であれば石炭よりも燃えやすいので粉砕粒を大きくすることができる。このため、木質バイオマス燃料は、ほぼ2mmアンダーの粒度分布を有するまで粉砕して使用することが好ましい。
 このように、最適な燃焼条件が異なるため、本実施例においては微粉炭と異なるバイオマス専焼バーナー100を用いて、バイオマス燃料を微粉炭と異なる条件で燃焼させるので、微粉炭用の粉砕機とは独立に選択した、たとえば、株式会社アーステクニカ製TSX型シュレッダなど、適宜な微粉砕機53を使って、一次粉砕された状態で供給される木質バイオマス原料を二次粉砕して専焼に最も適したサイズの粒子に形成する。また、搬送用の一次空気についても、別途独立した搬送ファン59を使ってバイオマス専焼バーナー100に適化した風量や風圧を備えるようにすることが好ましい。
 図5は、木質ペレット、木質チップの各種木質バイオマス原料について、微粉砕機で処理する前と後の粒度分布を示したグラフである。たとえば、微粉砕機53で2mmアンダーに粉砕した木質ペレットは、700μm以下が80%を占めるような粒子分布を示し、本実施例のバイオマス専焼バーナー100により容易に還元燃焼させることができる。
 また、上記粒子分布を示すバイオマス燃料は、バイオマス燃料噴出ノズル10の燃料噴出口19から炉内に放出されたときに全ての粒子が炉内の燃焼ガス上昇気流に乗って浮遊燃焼し、未燃成分が炉底に沈降しないことが、実機ボイラに適用した場合における木質バイオマス熱流動解析により確認されている。
 図6は、本実施例のバイオマス専焼バーナー100に係るバーナー負荷・A/C関係図である。図は、横軸に定格に対する割合(%)で燃料量を表し、縦軸にA/C(Nm/h)を表す。図に示した、ハッチングを入れた領域は、運転推奨領域である。
 本実施例のバイオマス専焼バーナー100は、図6に示すように、負荷率100%でA/C0.8から2.5まで、負荷率60%でA/C0.8から1.5まで、工業的に使用ができる。
 負荷率100%のときに高いA/Cまで使用できるのに、負荷率60%では比較的小さなA/Cで使えなくなるのは、燃料流中の燃料成分が小さくなって着火性や保炎性が低下する上、燃料が減少して燃焼用空気量が減るにもかかわらず、燃料の搬送に必要な一次空気量は余り変わらないため、二次空気と三次空気が不足して、本バーナー機構に特有の保炎作用を減退させるためと考えられる。
 なお、負荷率60%以下では、バイオマス燃料流中の燃料成分の割合が小さくなりすぎて、良好な着火や保炎が難しくなるので、勧められない。
 図6には、定格値300kg/hの燃料を燃焼させるバイオマス専焼バーナーを使って、運転可能な範囲を確認した結果が記入されている。図中の黒丸印は、着火性と保炎性が良好で火炎が安定していたケースを示し、バツ印は、保炎性等が悪く燃焼が不良であったケースを示す。図から、運転推奨領域内における運転可能性が確認できる。
 本実施例のバイオマス専焼バーナーを適用したバイオマス混焼ボイラでは、大量の木質バイオマス燃料を燃焼させることにより、石炭消費量の節減ができ、化石燃料起源のCO2放散を抑制することができる。バイオマス専焼バーナーは、微粉炭と独立にバイオマス燃料を燃焼するので、設置数により燃焼量を調整することができ、所定の容量を有するバーナーを適当数設置することで、大量のバイオマス燃料を安定して混焼させることができる。
 また、バイオマス混焼ボイラでは、バイオマス燃料に窒素成分が少ないため、燃焼排ガスの低NOx化を図ることができる。
 本発明のバイオマス専焼バーナーを新設のあるいは既存の微粉炭焚きボイラに適用することにより、高いバイオマス混焼率で燃焼させるバイオマス混焼ボイラを得ることができる。
10 バイオマス燃料噴出ノズル
11 バイオマス燃料供給管
12 導入管
13 反転板
15 燃料濃度調整部
16 旋回羽根
17 旋回度調整板
19 燃料噴出口
20 二次空気ノズル
21 旋回器
23 二次空気噴出口
25 三次空気ノズル
26 旋回器
27 三次空気噴出口
31 補助燃料供給管
51 受入れホッパ
52 ベルトコンベア
53 微粉砕機
54 送風ファン
55 サイクロン
56 定量供給機
57 バグフィルタ
59 搬送ファン
61 微粉炭ボイラ
63 バイオマス燃料供給管
65 燃料搬送流供給管
100 バイオマス専焼バーナー

Claims (9)

  1.  バイオマス専焼バーナーであって、
     ベント部を有し、一次空気に搬送されたバイオマス燃料を噴出する燃料噴出口を備えたバイオマス燃料噴出ノズルと、
     前記燃料噴出口の開口を取り囲む二次空気噴出口を備え、二次空気を噴出する二次空気ノズルと、
     前記二次空気噴出口を取り囲む三次空気噴出口を備え、三次空気の旋回流を噴出する三次空気ノズルと、を有し、
     前記ベント部で偏流したバイオマス燃料流を軸周りに旋回する旋回流に変換して、燃料濃度を管軸側に薄く外周部側に濃く分布させる旋回羽根を、前記バイオマス燃料噴出ノズルの内部中央に備え、かつ、前記燃料噴出口から噴出する燃料流の旋回を抑制する旋回度調整板を、前記燃料噴出口の直ぐ上流の管内壁に備えることにより、燃料濃度分布を適正化し、
     前記二次空気噴出口の開口と前記三次空気噴出口の開口を調整して二次空気量を抑制することにより、燃料流と三次空気流の間に緩衝流を形成させることを特徴とするバイオマス専焼バーナー。
  2.  前記一次空気は、前記バイオマス燃料噴出ノズルの管内で燃料搬送流の速度を15m/sから25m/sの範囲内に収める量が供給されることを特徴とする請求項1記載のバイオマス専焼バーナー。
  3.  請求項1記載のバイオマス専焼バーナーを微粉炭焚きボイラに設備し、微粉炭を処理する微粉砕機とは異なる微粉砕機で処理したバイオマス燃料を、該バイオマス専焼バーナーに供給するように構成したバイオマス混焼ボイラ。
  4.  前記バイオマス専焼バーナーは、前記微粉炭焚きボイラの炉後であって高い位置に設置された微粉炭バーナーと同じあるいはより高い位置に設けたことを特徴とする請求項3記載のバイオマス混焼ボイラ。
  5.  前記バイオマス専焼バーナーにおいて、前記一次空気は、前記バイオマス燃料噴出ノズルの管内で燃料搬送流の速度を15m/sから25m/sの範囲内に収める量が供給されることを特徴とする請求項3記載のバイオマス混焼ボイラ。
  6.  前記バイオマス専焼バーナーは、前記微粉炭焚きボイラの炉後であって高い位置に設置された微粉炭バーナーと同じあるいはより高い位置に設けたことを特徴とする請求項5記載のバイオマス混焼ボイラ。
  7.  請求項1記載のバイオマス専焼バーナーを用いてバイオマス燃料を燃焼させることを特徴とするバイオマス燃料燃焼方法。
  8.  前記一次空気は、前記バイオマス燃料噴出ノズルの管内で燃料搬送流の速度を15m/sから25m/sの範囲内に収める量が供給されることを特徴とする、請求項7記載のバイオマス燃料燃焼方法。
  9.  前記バイオマス専焼バーナーに、粒子分布が2mmアンダーになった木質バイオマス燃料を一次空気に搬送させて流速が15m/sから25m/sになるような燃料流を供給し、一次空気と二次空気と三次空気を加えた燃焼用空気が、
     A/C0.8以上、かつ、
     バーナー定格の燃料量におけるA/C2.5とバーナー定格の60%の燃料量におけるA/C1.5との間を比例配分したA/Cの値以下
    になるように、二次空気と三次空気を供給して、バイオマス燃料を燃焼させることを特徴とする、請求項7記載のバイオマス燃料燃焼方法。
PCT/JP2012/082101 2011-12-26 2012-12-11 バイオマス専焼バーナー、バイオマス混焼ボイラ、およびバイオマス燃料燃焼方法 WO2013099593A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12862097.8A EP2799770B1 (en) 2011-12-26 2012-12-11 Biomass fuel combustion method
US14/368,917 US10309647B2 (en) 2011-12-26 2012-12-11 Biomass combustion burner, biomass-mixed fired boiler, and biomass fuel combustion method
KR1020147013494A KR101609962B1 (ko) 2011-12-26 2012-12-11 바이오매스 단독 연소 버너, 바이오매스 혼합 연소 보일러, 및 바이오매스 연료 연소방법
DK12862097.8T DK2799770T3 (en) 2011-12-26 2012-12-11 PROCEDURE FOR BIOMASS FUEL COMBUSTION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-282803 2011-12-26
JP2011282803A JP5886031B2 (ja) 2011-12-26 2011-12-26 バイオマス燃料燃焼方法

Publications (1)

Publication Number Publication Date
WO2013099593A1 true WO2013099593A1 (ja) 2013-07-04

Family

ID=48635246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082101 WO2013099593A1 (ja) 2011-12-26 2012-12-11 バイオマス専焼バーナー、バイオマス混焼ボイラ、およびバイオマス燃料燃焼方法

Country Status (7)

Country Link
US (1) US10309647B2 (ja)
EP (1) EP2799770B1 (ja)
JP (1) JP5886031B2 (ja)
KR (1) KR101609962B1 (ja)
CN (2) CN103175200B (ja)
DK (1) DK2799770T3 (ja)
WO (1) WO2013099593A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901094A (zh) * 2011-07-29 2013-01-30 宜兴天地节能技术有限公司 一种多管直喷式高压电脉冲加热燃烧器
WO2017002675A1 (ja) * 2015-06-30 2017-01-05 三菱日立パワーシステムズ株式会社 固体燃料バーナ

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5886031B2 (ja) * 2011-12-26 2016-03-16 川崎重工業株式会社 バイオマス燃料燃焼方法
JP6081341B2 (ja) * 2013-10-25 2017-02-15 三菱日立パワーシステムズ株式会社 ボイラ
WO2015069784A1 (en) * 2013-11-08 2015-05-14 Zheng Shi Adjusting the flame characteristic within a combustor
CN105202537B (zh) * 2015-10-22 2018-03-27 耿烽 一种燃烧系统及燃烧方法
CN108386831B (zh) * 2018-04-26 2023-11-21 中国科学院工程热物理研究所 天然气锅炉燃烧器
CN109058980B (zh) * 2018-06-01 2023-06-02 西安交通大学 一种可用于生物质或煤粉可跨负荷调节的低NOx燃烧器
JP7282540B2 (ja) * 2019-02-13 2023-05-29 三菱重工業株式会社 固体燃料粉砕装置及びこれを備えた発電プラント並びに固体燃料粉砕方法
WO2020178880A1 (ja) 2019-03-01 2020-09-10 三菱日立パワーシステムズ株式会社 固体燃料バーナ
CN113154364A (zh) * 2021-04-07 2021-07-23 煤科院节能技术有限公司 一种高速煤粉燃烧器大比例掺混秸秆燃烧实验方法
KR102606661B1 (ko) * 2022-03-11 2023-11-29 한국전력공사 유동층 보일러의 암모니아 연소 시스템
KR102618022B1 (ko) 2022-12-29 2023-12-27 앤츠이엔씨 주식회사 바이오매스 플랜트 주요설비 모듈화 최적화 설계 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420702A (ja) * 1990-05-14 1992-01-24 Babcock Hitachi Kk 微粉炭バーナ
JPH0926112A (ja) 1995-07-14 1997-01-28 Kawasaki Heavy Ind Ltd 微粉炭バーナ
JP2005140480A (ja) * 2003-11-10 2005-06-02 Hitachi Ltd 固体燃料バーナと固体燃料バーナの燃焼方法
JP2005291524A (ja) 2004-03-31 2005-10-20 Babcock Hitachi Kk バイオマス燃料の燃焼装置及び方法
JP2005291534A (ja) 2004-03-31 2005-10-20 Babcock Hitachi Kk バイオマス燃料の燃焼装置及び方法
JP2007333232A (ja) * 2006-06-12 2007-12-27 Babcock Hitachi Kk 固体燃料バーナ、固体燃料バーナを備えた燃焼装置、及び固体燃料バーナを備えた燃焼装置の燃料供給方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532873A (en) * 1982-05-12 1985-08-06 Weyerhaeuser Company Suspension firing of hog fuel, other biomass or peat
US4850288A (en) * 1984-06-29 1989-07-25 Power Generating, Inc. Pressurized cyclonic combustion method and burner for particulate solid fuels
US4887962A (en) * 1988-02-17 1989-12-19 Shell Oil Company Partial combustion burner with spiral-flow cooled face
US5630368A (en) * 1993-05-24 1997-05-20 The University Of Tennessee Research Corporation Coal feed and injection system for a coal-fired firetube boiler
GB9612479D0 (en) * 1996-06-14 1996-08-14 Mitsui Babcock Energy Limited Fluent fuel fired burner
US6699031B2 (en) 2001-01-11 2004-03-02 Praxair Technology, Inc. NOx reduction in combustion with concentrated coal streams and oxygen injection
KR101285447B1 (ko) * 2006-09-27 2013-07-12 바브콕-히다찌 가부시끼가이샤 버너, 버너를 구비한 연소장치 및 보일러
US20100275825A1 (en) * 2006-10-19 2010-11-04 Bool Iii Lawrence E Modifying transport air to control nox
US9039407B2 (en) 2006-11-17 2015-05-26 James K. McKnight Powdered fuel conversion systems and methods
US8015932B2 (en) 2007-09-24 2011-09-13 General Electric Company Method and apparatus for operating a fuel flexible furnace to reduce pollutants in emissions
US7832341B2 (en) * 2008-04-30 2010-11-16 Walsh Jr William Arthur Merging combustion of biomass and fossil fuels in boilers
JP5051721B2 (ja) * 2008-05-16 2012-10-17 川崎重工業株式会社 バイオマス混焼微粉炭焚きボイラ
CN101315189B (zh) * 2008-07-03 2011-05-04 徐州燃控科技股份有限公司 分级调风低NOx混烧燃烧器
US20100275824A1 (en) 2009-04-29 2010-11-04 Larue Albert D Biomass center air jet burner
JP5886031B2 (ja) * 2011-12-26 2016-03-16 川崎重工業株式会社 バイオマス燃料燃焼方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420702A (ja) * 1990-05-14 1992-01-24 Babcock Hitachi Kk 微粉炭バーナ
JPH0926112A (ja) 1995-07-14 1997-01-28 Kawasaki Heavy Ind Ltd 微粉炭バーナ
JP2005140480A (ja) * 2003-11-10 2005-06-02 Hitachi Ltd 固体燃料バーナと固体燃料バーナの燃焼方法
JP2005291524A (ja) 2004-03-31 2005-10-20 Babcock Hitachi Kk バイオマス燃料の燃焼装置及び方法
JP2005291534A (ja) 2004-03-31 2005-10-20 Babcock Hitachi Kk バイオマス燃料の燃焼装置及び方法
JP2007333232A (ja) * 2006-06-12 2007-12-27 Babcock Hitachi Kk 固体燃料バーナ、固体燃料バーナを備えた燃焼装置、及び固体燃料バーナを備えた燃焼装置の燃料供給方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901094A (zh) * 2011-07-29 2013-01-30 宜兴天地节能技术有限公司 一种多管直喷式高压电脉冲加热燃烧器
CN102901094B (zh) * 2011-07-29 2016-03-16 宜兴天地节能技术有限公司 一种多管直喷式高压电脉冲加热燃烧器
WO2017002675A1 (ja) * 2015-06-30 2017-01-05 三菱日立パワーシステムズ株式会社 固体燃料バーナ
JP2017015305A (ja) * 2015-06-30 2017-01-19 三菱日立パワーシステムズ株式会社 固体燃料バーナ
US10731850B2 (en) 2015-06-30 2020-08-04 Mitsubishi Hitachi Power Systems, Ltd. Solid fuel burner

Also Published As

Publication number Publication date
KR20140101335A (ko) 2014-08-19
EP2799770B1 (en) 2018-09-12
CN103175200B (zh) 2016-08-31
KR101609962B1 (ko) 2016-04-06
JP2013133944A (ja) 2013-07-08
JP5886031B2 (ja) 2016-03-16
CN103175200A (zh) 2013-06-26
CN203116003U (zh) 2013-08-07
US20140352582A1 (en) 2014-12-04
EP2799770A1 (en) 2014-11-05
EP2799770A4 (en) 2015-09-09
DK2799770T3 (en) 2019-01-14
US10309647B2 (en) 2019-06-04

Similar Documents

Publication Publication Date Title
JP5886031B2 (ja) バイオマス燃料燃焼方法
JP5897363B2 (ja) 微粉炭バイオマス混焼バーナ
JP5897364B2 (ja) 微粉炭バイオマス混焼バーナ
JP4150968B2 (ja) 固体燃料バーナと固体燃料バーナの燃焼方法
CN100343576C (zh) 低级燃料的增氧燃烧
JP2010242999A (ja) 木質バイオマス直接粉砕燃焼方法と装置とボイラシステム
JP5014044B2 (ja) 固体燃料粉砕供給装置と方法
JP2007333232A (ja) 固体燃料バーナ、固体燃料バーナを備えた燃焼装置、及び固体燃料バーナを備えた燃焼装置の燃料供給方法
JP4791701B2 (ja) バイオマス燃料の燃焼装置及び方法
JP2010270993A (ja) 燃料バーナ及び旋回燃焼ボイラ
JP4282069B2 (ja) バイオマス燃料の燃焼装置及び方法
JP2013217579A (ja) 石炭とバイオマスの混焼装置及びこれを備えたボイラ
CN110226067B (zh) 燃烧器、具备该燃烧器的锅炉及燃烧方法
CN105276610A (zh) 燃料分级低氮燃烧系统及控制方法
JP2013145067A (ja) バイオマス燃焼バーナ及びバイオマス燃焼装置
JP2001082704A (ja) 固形廃棄物の燃焼装置と燃焼方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147013494

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14368917

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012862097

Country of ref document: EP