WO2013099221A1 - 非接触充電装置 - Google Patents

非接触充電装置 Download PDF

Info

Publication number
WO2013099221A1
WO2013099221A1 PCT/JP2012/008274 JP2012008274W WO2013099221A1 WO 2013099221 A1 WO2013099221 A1 WO 2013099221A1 JP 2012008274 W JP2012008274 W JP 2012008274W WO 2013099221 A1 WO2013099221 A1 WO 2013099221A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
power
power receiving
power feeding
litz wire
Prior art date
Application number
PCT/JP2012/008274
Other languages
English (en)
French (fr)
Inventor
秀樹 定方
藤田 篤志
別荘 大介
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12861857.6A priority Critical patent/EP2800110A4/en
Publication of WO2013099221A1 publication Critical patent/WO2013099221A1/ja
Priority to US14/313,433 priority patent/US20140306655A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/077Deforming the cross section or shape of the winding material while winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a non-contact charging device used for charging electric propulsion vehicles such as electric vehicles and plug-in hybrid vehicles.
  • FIG. 11 is a schematic diagram showing a configuration of a conventional non-contact charging device 106.
  • the non-contact power feeding device (primary side) F connected to the power source 109 of the power board on the ground side is supplied with power to the power receiving device (secondary side) G mounted on the electric propulsion vehicle. It arrange
  • an alternating current is applied to the primary coil 107 (power feeding coil) provided in the power feeding device F to form a magnetic flux, an induced electromotive force is generated in the secondary coil 108 (power receiving coil) provided in the power receiving device G.
  • electric power is transmitted from the primary coil 107 to the secondary coil 108 in a contactless manner.
  • the power receiving device G is connected to, for example, the in-vehicle battery 110, and the in-vehicle battery 110 is charged with the electric power transmitted as described above.
  • the on-vehicle motor 111 is driven by the electric power stored in the battery 110. Note that, during the non-contact power supply process, for example, the wireless communication device 112 exchanges necessary information between the power supply device F and the power reception device G.
  • FIG. 12 is a schematic diagram showing the internal structure of the power feeding device F and the power receiving device G.
  • FIG. 12A is a schematic diagram illustrating an internal structure when the power feeding device F is viewed from above and the power receiving device G is viewed from below.
  • FIG. 12B is a schematic diagram illustrating an internal structure when the power feeding device F and the power receiving device G are viewed from the side.
  • reference numerals of the components of the power receiving device G corresponding to the components of the power feeding device F are shown in parentheses.
  • the power feeding device F includes a primary coil 107, a primary magnetic core 113, a back plate 115, a cover 116, and the like.
  • the power receiving device G has a symmetric structure with the power feeding device F, and includes a secondary coil 108, a secondary magnetic core 114, a back plate 115, a cover 116, and the like.
  • the surface of the primary magnetic core 113 and the surfaces of the secondary coil 108 and the secondary magnetic core 114 are covered and fixed with a mold resin 117 mixed with a foam material 118, respectively.
  • the primary coil 107 of such a conventional power feeding device F and the secondary coil 108 of the power receiving device G will be described with reference to the schematic diagram of FIG.
  • the primary coil 107 and the secondary coil 108 are formed by spirally winding litz wires 121 and 122 in which a plurality of strands are bundled.
  • the primary coil 107 of the ground-side power supply device F is disposed so as to face the secondary coil 108 of the power receiving device G mounted on the vehicle in a state where the vehicle is parked in a predetermined parking space.
  • the primary coil 107 and the secondary coil 108 face each other and are linked over a wide range, whereby non-contact power transmission is performed.
  • an object of the present invention is to solve the above-described problem, and to reduce the influence of positional deviation between the power feeding device and the power receiving device, thereby reducing power feeding efficiency (power transmission efficiency) in non-contact power transmission. It is in providing the non-contact charging device which can be suppressed.
  • the present invention is configured as follows.
  • a non-contact charging device includes a power feeding device having a power feeding coil that generates a magnetic flux by an input alternating current, and a power receiving device having a power receiving coil arranged to face the power feeding coil.
  • a contactless charging device that supplies electric power by electromagnetic induction between the power feeding coil and the power receiving coil, wherein the power feeding coil and the power receiving coil wind a litz wire in which a plurality of strands are bundled In the first direction along the opposing surface of the coil, the width of the litz wire on the power feeding coil side is set smaller than the width of the litz wire on the power receiving coil side, and the power receiving coil is the power feeding coil. It has the above outer diameter.
  • the non-contact charging device is configured such that the width of the litz wire on the power receiving coil side is set larger than the width of the litz coil on the power feeding coil side, and the power receiving coil has an outer diameter larger than that of the power feeding coil.
  • the power feeding efficiency power transmission efficiency
  • the block diagram of the non-contact charging device concerning one embodiment of the present invention.
  • External view of the non-contact charging device of FIG. External view of the non-contact charging device of FIG.
  • Cross-sectional view of power feeding device and power receiving device (no misalignment, misalignment) Cross section of litz wire Plan view of allowable displacement range
  • Sectional view of power feeding device and power receiving device tiltted state
  • Sectional drawing of power feeding device and power receiving device (Modification 1) Sectional drawing of power feeding device and power receiving device (Modification 2) Sectional drawing of power feeding device and power receiving device (Modification 3)
  • Schematic diagram showing the configuration of a conventional non-contact charging device The figure which shows the internal structure of the power receiving apparatus (power feeding apparatus) arrange
  • a non-contact charging device includes a power feeding device having a power feeding coil that generates a magnetic flux by an input alternating current, and a power receiving device having a power receiving coil arranged to face the power feeding coil.
  • a contactless charging device that supplies electric power by electromagnetic induction between the power feeding coil and the power receiving coil, wherein the power feeding coil and the power receiving coil wind a litz wire in which a plurality of strands are bundled In the first direction along the opposing surface of the coil, the width of the litz wire on the power supply coil side is set smaller than the width of the litz wire on the power reception coil side, and the power reception coil is the power supply coil It has the above outer diameter.
  • the cross section of the litz wire of the feeding coil is formed flat in the second direction orthogonal to the opposing surface of the coil.
  • the outer diameter of the power receiving device can be made larger than that of the power feeding device.
  • the cross-sectional area of the litz wire on the power feeding coil side is larger than the cross-sectional area of the litz wire on the power receiving coil side.
  • the cross section of the Litz wire of the power receiving coil is formed flat. Therefore, the outer diameter of the power receiving apparatus can be made larger than that of the power feeding apparatus.
  • the cross-sectional area of the litz wire on the power receiving coil side is smaller than the cross-sectional area of the litz wire on the power feeding coil side.
  • FIG. 1 is a block diagram of a non-contact charging apparatus according to the present invention.
  • 2 and 3 are external views of a vehicle (for example, an electric propulsion vehicle (vehicle body)) installed in a parking space.
  • the non-contact charging device includes, for example, a power feeding device (non-contact power feeding device) 2 installed in a parking space and a power receiving device (non-contact) mounted on an electric propulsion vehicle, for example.
  • Contact power receiving device 4.
  • the power feeding device 2 includes a primary side rectifier circuit 8 connected to a commercial power source 6, an inverter unit 10, a ground side coil unit (primary coil unit or power feeding coil unit) 12, and a control unit (for example, a microcomputer). 16 and the primary side rectifier circuit 8 and the inverter unit 10 constitute a power control device 17.
  • the power receiving device 4 includes a vehicle side coil unit (secondary coil unit or power receiving coil unit) 18, a secondary side rectifier circuit 20, a battery (load) 22, and a control unit (for example, a microcomputer) 24. I have.
  • the commercial power source 6 is a 200 V commercial power source that is a low-frequency AC power source, and is connected to the input end of the primary side rectifier circuit 8.
  • the output end of the primary side rectifier circuit 8 is the input of the inverter unit 10.
  • the output end of the inverter unit 10 is connected to the ground side coil unit 12.
  • the output end of the vehicle side coil unit 18 is connected to the input end of the secondary side rectifier circuit 20, and the output end of the secondary side rectifier circuit 20 is connected to the battery 22.
  • the ground side coil unit 12 is laid on the ground, and the primary side rectifier circuit 8 is erected, for example, at a position separated from the ground side coil unit 12 by a predetermined distance (see FIG. 2).
  • the vehicle side coil unit 18 is attached to, for example, a vehicle body bottom (for example, a chassis).
  • the power feeding device side control unit 16 performs wireless communication with the power receiving device side control unit 24, and the power receiving device side control unit 24 determines a power command value according to the detected remaining voltage of the battery 22, and determines the determined power command value. It transmits to the electric power feeder side control part 16.
  • the power feeding device side control unit 16 compares the power feeding power detected by the ground side coil unit 12 with the received power command value, and drives the inverter unit 10 so as to obtain the power command value.
  • the power receiving device side control unit 24 detects the received power, and changes the power command value to the power feeding device side control unit 16 so that the battery 22 is not overcurrent or overvoltage.
  • the vehicle-side coil unit 18 is disposed so as to face the ground-side coil unit 12 by appropriately moving the vehicle body (vehicle). Then, when the power feeding device side control unit 16 drives and controls the inverter unit 10, a high frequency electromagnetic field is formed between the ground side coil unit 12 and the vehicle side coil unit 18. The power receiving device 4 takes out electric power from a high frequency electromagnetic field and charges the battery 22 with the taken out electric power.
  • FIG. 4 is a cross-sectional view of the ground side coil unit 12 and the vehicle side coil unit 18 of the contactless charging apparatus according to the present embodiment.
  • the ground side coil unit 12 includes a base 31 fixed on the ground side, a power supply coil 32 disposed on the base 31, and a cover 33 that is a casing that covers the power supply coil 32.
  • the vehicle side coil unit 18 includes a base 34 fixed to the vehicle body, a power receiving coil 35 disposed on the base 34, and a cover 36 that is a casing covering the power receiving coil 35.
  • the feeding coil 32 is formed by winding the litz wire 41 a plurality of times in a spiral shape, and similarly, the power receiving coil 35 is formed by winding the litz wire 42 a plurality of times in a spiral shape.
  • FIGS. 5A and 5B show cross-sectional views of the litz wires 41 and 42 forming the respective coils.
  • the litz wires 41 and 42 are formed by bundling a plurality of strands 43.
  • the litz wire 41 (see FIG. 5A) constituting the power supply coil 32 has a substantially circular cross section.
  • the litz wire 42 (see FIG. 5B) constituting the power receiving coil 35 has a flat elliptical cross section.
  • the direction along the facing surface of the power feeding coil 32 and the power receiving coil 35 (that is, the direction along the horizontal plane in the present embodiment) is defined as the first direction D1, and the direction orthogonal to the facing surface is defined as the second direction D2.
  • the litz wire 42 has an elliptical cross section flattened in the first direction D1. That is, the litz wire 42 has a flat cross-sectional shape so that the width in the first direction D1 is larger than the width in the second direction D2.
  • the power feeding coil 32 and the power receiving coil 35 are formed by winding the litz wires 41 and 42 having such a cross-sectional shape, for example, with the same number of turns (number of windings) in the opposing surface of the coil.
  • the outer diameter (outer shape) r2 of the power receiving coil 35 is the power supply coil 32. Is larger than the outer diameter r1.
  • the power supply coil 32 and the power reception coil 35 are formed by winding the litz wires 41 and 42 having such a cross-sectional shape, for example, in the same length and in the opposed surface of the coil.
  • the outer diameter (outer shape) r2 of the power receiving coil 35 is the power supply coil 32. Is larger than the outer diameter r1.
  • the outer diameter r2 of the power receiving coil 35 is larger than the outer diameter r1 of the power feeding coil 32, it is possible to ensure a large positional deviation allowable range R between the coils.
  • a positional deviation a positional deviation in the first direction D1
  • the magnetic flux generated from the power feeding coil 32 and the power receiving coil 35 can be linked over a wide range. Therefore, it is possible to suppress a decrease in power supply efficiency in a state where the positional deviation between the coils has occurred.
  • the number of the strands 43 of the litz wire 42 of the power receiving coil 35 mounted on the vehicle is made smaller than the number of the strands 43 of the litz wire 41 of the feeding coil 32, and the cross section of the litz wire 42 is made flat. By doing so, weight reduction of the receiving coil 35 can be achieved, suppressing the fall of electric power feeding efficiency.
  • the power receiving device of the present invention flattens the power receiving coil 35 in the first direction D1 (the cross sectional area of the power receiving coil) ⁇ (the cross sectional area of the power feeding coil) (the outer diameter r2 of the power receiving coil)>. (Outer diameter r1 of the power feeding coil) can be set.
  • the number of linkages between the magnetic flux generated in the power feeding coil 32 and the power receiving coil 35 can be increased as compared with the case where the litz wire 42 of the power receiving coil 35 has a circular cross-sectional shape, and the power feeding efficiency can be improved. it can. For this reason, it is possible to improve the power feeding efficiency by reducing particularly the influence of the positional deviation.
  • the power receiving device 35 can be reduced in weight by configuring the power receiving coil 35 as described above. For example, it is possible to improve the running fuel consumption of an electric propulsion vehicle and to reduce the cost. it can.
  • the above-described positional deviation allowable range R is a substantially circular region in plan view.
  • the positional deviation allowable range R is not limited to the same range as the outer diameter r2 of the power receiving coil 35, but is an appropriate range based on the required power feeding efficiency, the outer diameter of the power feeding coil 32 and the power receiving coil 35, and the like. Is set.
  • the outer diameter of the power receiving coil 35 is made larger than the outer diameter of the power feeding coil 32 by flattening the cross section of the litz wire 41 of the power feeding coil 32 in the second direction D2. You may make it do.
  • the Litz wire 42 of the power receiving coil 35 is flattened in the first direction D1
  • the Litz wire 41 of the power feeding coil 32 is flattened in the second direction D2.
  • the outer diameter of the coil 35 may be made larger than the outer diameter of the power feeding coil 32.
  • the width of the Litz wire 42 of the power receiving coil 35 along the first direction D1 is flattened while the respective Litz wires 41 and 42 are flattened in the second direction D2.
  • the cross section of either or both of the litz wire 42 of the power receiving coil 35 and the litz wire 41 of the power feeding coil 32 is flattened so that the width of the litz wire 42 along the first direction D1 is larger than that of the litz wire 41.
  • the outer diameter of the power receiving coil 35 can be made larger than the outer diameter of the power feeding coil 32.
  • Such flattening of the litz wires 41 and 42 is, for example, as shown in FIGS. 9A and 9B, between the coil forming instrument 45 constituted by two plate-like members. It implement
  • the width a of the litz wire 42 of the power receiving coil 35 is the width of the litz wire 41 of the power feeding coil 32. It is preferable that it is larger than a.
  • the litz wires 41 and 42 have the same cross-sectional area, it is preferable to set the value of b / a so that the power receiving coil 35 is smaller than the power feeding coil 32.
  • the graph of FIG. 10 shows the relationship between the power feeding efficiency and the ratio (r2 / r1) between the outer diameter r1 of the power feeding coil 32 and the outer diameter r2 of the power receiving coil 35 in the contactless charging apparatus of the present embodiment. .
  • the dotted line in FIG. 10 indicates the power supply efficiency when there is no positional deviation between the power feeding coil 32 and the power receiving coil 35, and the solid line indicates the power feeding efficiency when the positional deviation occurs (when there is a positional deviation).
  • r2 / r1 1 (that is, the outer diameter r2 of the power receiving coil 35 is the same as the outer diameter r1 of the power feeding coil 32)
  • the power supply efficiency is reduced up to (point Pb in FIG. 10).
  • the efficiency ⁇ 0 (point Pa in FIG. 10) can be obtained without misalignment.
  • the power supply efficiency decreases to the efficiency ⁇ 2 (point Pd in FIG. 10) and further misalignment occurs, the power supply efficiency decreases to the efficiency ⁇ 3 (point Pe in FIG. 10).
  • the efficiency can be substantially equal to ⁇ 0 (point Pc in FIG. 10) even when the position is shifted. That is, by forming the outer diameter r2 of the power receiving coil 35 to be larger than the outer diameter r1 of the power feeding coil 32, it is possible to set a wide range in which a decrease in power feeding efficiency when a positional shift occurs can be suppressed.
  • the power receiving coil 35 is set so as to have an outer diameter larger than that of the power feeding coil 32 (that is, r2 ⁇ r1 or r2 / r1 ⁇ 1 is set), thereby causing a positional shift.
  • the power receiving coil 35 is set to have a larger outer diameter than the power feeding coil 32 (that is, r2> r1 or r2 / r1> 1).
  • the outer diameter of the power receiving coil 35 is adjusted to the outside of the power feeding coil 32 by flattening the cross sections of the litz wires 41 and 42 that constitute the power feeding coil 32 and the power receiving coil 35. It can be larger than the diameter. As a result, it is possible to increase the misalignment allowable range R in which the required power feeding efficiency can be obtained when the misalignment occurs between the power feeding coil 32 and the power receiving coil 35.
  • the cross section of the litz wire 42 can be reduced while suppressing a decrease in power supply efficiency.
  • the weight reduction of the receiving coil 35 mounted in a vehicle can be achieved, and driving
  • the power receiving coil mounted on the vehicle is not formed by flattening the cross-sectional shape of the litz wires 41 and 42 instead of simply increasing the outer shape of the power receiving coil.
  • the outer diameter of the power receiving coil 35 can be made larger than the outer diameter of the power feeding coil 32 while suppressing an increase in the weight of the coil 35. Therefore, while suppressing an increase in the weight of the power receiving coil 35 mounted on the vehicle, the influence of the positional deviation between the power feeding coil 32 and the power receiving coil 35 is reduced, and a reduction in power feeding efficiency in non-contact power transmission is suppressed. It becomes possible.
  • the outer shapes of the power feeding coil 32 and the power receiving coil 35 are circular has been described as an example.
  • the outer shape may be a polygonal shape.
  • the power receiving coil 35 may be enlarged also in the inner diameter direction.
  • the power feeding device 2 is disposed on the ground side and the power receiving device 4 is mounted on the vehicle has been described as an example.
  • the power receiving device is disposed on the ground side and the power feeding device is disposed on the vehicle side.
  • the present invention can also be applied to configurations arranged in the above.
  • the present invention it is possible to reduce the influence of the positional deviation between the power feeding device and the power receiving device, and to suppress the reduction in power feeding efficiency (power transmission efficiency) in non-contact power transmission.
  • an electric vehicle or a plug-in hybrid vehicle The present invention can be applied to a power supply device and a power receiving device for non-contact power transmission used for charging such an electric propulsion vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 入力された交流電流により磁束を発生する給電コイルを有する給電装置と、給電コイルに対向して配置される受電コイルを有する受電装置とを備え、給電コイルと受電コイルとの間の電磁誘導によって電力を供給する非接触充電装置において、給電コイルおよび受電コイルは、複数の素線が束ねられたリッツワイヤを巻き回されて形成され、コイルの対向面沿いの第1方向において、給電コイル側のリッツワイヤの幅が、受電コイル側のリッツワイヤの幅よりも小さく設定されて、受電コイルが給電コイル以上の外径を有する。

Description

非接触充電装置
 本発明は、例えば電気自動車やプラグインハイブリッド車のような電気推進車両等の充電に用いられる非接触充電装置に関する。
 図11は、従来の非接触充電装置106の構成を示す模式図である。図11において、地上側の電源盤の電源109に接続された非接触給電装置(1次側)Fが、電気推進車両に搭載された受電装置(2次側)Gに対し、給電時において、物理的接続なしに(すなわち、配線などを用いた接触による接続なしに)空隙空間であるエアギャップを介して対向するよう配置される。このような配置状態で、給電装置Fに備わる1次コイル107(給電コイル)に交流電流が与えられ磁束が形成されると、受電装置Gに備わる2次コイル108(受電コイル)に誘導起電力が生じ、これによって、1次コイル107から2次コイル108へと電力が非接触で伝達される。
 受電装置Gは、例えば車載バッテリー110に接続され、上述したようにして伝達された電力が車載バッテリー110に充電される。このバッテリー110に蓄積された電力により車載のモータ111が駆動される。なお、非接触給電処理の間、給電装置Fと受電装置Gとの間では、例えば無線通信装置112により必要な情報交換が行われる。
 図12は、給電装置Fおよび受電装置Gの内部構造を示す模式図である。特に、図12(a)は、給電装置Fを上方から、また、受電装置Gを下方から見たときの内部構造を示す模式図である。図12(b)は、給電装置Fおよび受電装置Gを側方から見たときの内部構造を示す模式図である。なお、図12では、給電装置Fの各構成に対応する受電装置Gの各構成の参照符号を括弧書きにて示している。
 図12において、給電装置Fは、1次コイル107、1次磁心コア113、背板115、およびカバー116等を備える。受電装置Gは、簡単に述べると、給電装置Fと対称的な構造を有しており、2次コイル108、2次磁心コア114、背板115、カバー116等を備え、1次コイル107と1次磁心コア113の表面、および2次コイル108と2次磁心コア114の表面は、それぞれ、発泡材118が混入されたモールド樹脂117にて被覆固定されている。
 ここで、このような従来の給電装置Fの1次コイル107と、受電装置Gの2次コイル108との関係について、図13の模式図を用いて説明する。図13(a)に示すように、1次コイル107および2次コイル108は、複数の素線が束ねられたリッツワイヤ121、122がスパイラル状に巻き回されて形成されている。地上側の給電装置Fの1次コイル107は、車両が所定の駐車スペースに駐車された状態にて、車両に搭載された受電装置Gの2次コイル108と対向するように配置されている。図13(a)に示すように、1次コイル107と2次コイル108とが対向されて広範囲にわたって鎖交されることにより、非接触での電力電送が行われる。
特開2008-87733号公報
 しかしながら、図13(b)に示すように、駐車スペースに対して車両が位置ずれして駐車された場合には、給電装置Fと受電装置Gとの間に位置ずれが生じ、1次コイル107と2次コイル108との間にて十分な鎖交領域を確保できず、非接触電力電送における給電効率(送電効率)が低下するという課題がある。
 従って、本発明の目的は、上記課題を解決することにあって、給電装置と受電装置との間の位置ずれの影響を低減して、非接触電力電送における給電効率(送電効率)の低減を抑制できる非接触充電装置を提供することにある。
 上記目的を達成するために、本発明は以下のように構成する。
 本発明の一の態様にかかる非接触充電装置は、入力された交流電流により磁束を発生する給電コイルを有する給電装置と、前記給電コイルに対向して配置される受電コイルを有する受電装置とを備え、前記給電コイルと前記受電コイルとの間の電磁誘導によって電力を供給する非接触充電装置であって、前記給電コイルおよび前記受電コイルは、複数の素線が束ねられたリッツワイヤを巻き回されて形成され、コイルの対向面沿いの第1方向において、前記給電コイル側のリッツワイヤの幅が、前記受電コイル側のリッツワイヤの幅よりも小さく設定されて、前記受電コイルが前記給電コイル以上の外径を有する。
 本発明によれば、受電コイル側のリッツワイヤの幅が、給電コイル側のリッツコイルの幅よりも大きく設定されて、受電コイルが給電コイル以上の外径を有するように非接触充電装置が構成されている。このような構成により、給電装置と受電装置との間の位置ずれの影響を低減することができ、非接触電力電送における給電効率(送電効率)の低減を抑制できる。
本発明の一の実施の形態にかかる非接触充電装置のブロック図 図1の非接触充電装置の外観図 図1の非接触充電装置の外観図 給電装置および受電装置の断面図(位置ずれ無し、位置ずれ有り) リッツワイヤの断面図 位置ずれ許容範囲の平面図 給電装置および受電装置の断面図(傾斜状態) 給電装置および受電装置の断面図(変形例1) 給電装置および受電装置の断面図(変形例2) 給電装置および受電装置の断面図(変形例3) コイル成形器具の断面図 給電効率とコイル外径比との関係を示すグラフ 従来の非接触充電装置の構成を示す模式図 図11の給電装置(受電装置)に対向して配置される受電装置(給電装置)の内部構造を示す図 図11の給電装置および受電装置の断面図
 本発明の一の態様にかかる非接触充電装置は、入力された交流電流により磁束を発生する給電コイルを有する給電装置と、前記給電コイルに対向して配置される受電コイルを有する受電装置とを備え、前記給電コイルと前記受電コイルとの間の電磁誘導によって電力を供給する非接触充電装置であって、前記給電コイルおよび前記受電コイルは、複数の素線が束ねられたリッツワイヤを巻き回されて形成され、コイルの対向面沿いの第1方向において、前記給電コイル側のリッツワイヤの幅が、前記受電コイル側のリッツワイヤの幅よりも小さく設定されて、前記受電コイルが前記給電コイル以上の外径を有する。
 このような構成により、給電装置と受電装置との間の位置ずれの影響を低減することができ、非接触電力電送における給電効率(送電効率)の低減を抑制できる。
 また、コイルの対向面に直交する第2方向において、前記給電コイルのリッツワイヤの断面が扁平に形成されている。これにより、受電装置の外径を給電装置よりも大きくすることができる。
 また、前記給電コイル側のリッツワイヤの断面積が、前記受電コイル側のリッツワイヤの断面積よりも大きい。これにより、給電効率の低減を抑制しながら、受電コイルを軽量化することができ、受電装置が車両などに搭載された際に、走行燃費を向上させることができる。
 また、第1方向において、前記受電コイルのリッツワイヤの断面が扁平に形成されている。これにより、受電装置の外径を給電装置よりも大きくすることができる。
 また、前記受電コイル側のリッツワイヤの断面積が、前記給電コイル側のリッツワイヤの断面積よりも小さい。これにより、給電効率の低減を抑制しながら、受電コイルを軽量化することができ、受電装置が車両などに搭載された際に、走行燃費を向上させることができる。
 (実施の形態)
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 図1は、本発明に係る非接触充電装置のブロック図である。また、図2および図3は車両(例えば、電気推進車両(車体))が駐車スペースに設置された状態の外観図である。図1、図2および図3に示されるように、非接触充電装置は、例えば駐車スペースに設置される給電装置(非接触給電装置)2と、例えば電気推進車両に搭載される受電装置(非接触受電装置)4とで構成される。
 給電装置2は、商用電源6に接続される1次側整流回路8と、インバータ部10と、地上側コイルユニット(1次コイルユニットまたは給電コイルユニット)12と、制御部(例えば、マイクロコンピュータ)16とを備え、1次側整流回路8とインバータ部10とで電力制御装置17を構成している。一方、受電装置4は、車両側コイルユニット(2次コイルユニットまたは受電コイルユニット)18と、2次側整流回路20と、バッテリー(負荷)22と、制御部(例えば、マイクロコンピュータ)24とを備えている。
 給電装置2において、商用電源6は、低周波交流電源である200V商用電源であり、1次側整流回路8の入力端に接続され、1次側整流回路8の出力端はインバータ部10の入力端に接続され、インバータ部10の出力端は地上側コイルユニット12に接続されている。一方、受電装置4においては、車両側コイルユニット18の出力端は2次側整流回路20の入力端に接続され、2次側整流回路20の出力端はバッテリー22に接続されている。
 また、地上側コイルユニット12は地上に敷設され、1次側整流回路8は、例えば地上側コイルユニット12から所定距離だけ離隔した位置に立設される(図2参照)。一方、車両側コイルユニット18は、例えば車体底部(例えば、シャーシ)に取り付けられる。
 給電装置側制御部16は受電装置側制御部24と無線通信を行い、受電装置側制御部24は、検知したバッテリー22の残電圧に応じて電力指令値を決定し、決定した電力指令値を給電装置側制御部16に送信する。給電装置側制御部16は、地上側コイルユニット12で検知した給電電力と、受信した電力指令値とを比較し、電力指令値が得られるようにインバータ部10を駆動する。
 給電中、受電装置側制御部24は受電電力を検知し、バッテリー22に過電流や過電圧がかからないように、給電装置側制御部16への電力指令値を変更する。
 図2および図3に示されるように、給電装置2から受電装置4に給電するに際し、車両側コイルユニット18は、車体(車両)を適宜移動させることで地上側コイルユニット12に対向して配置され、給電装置側制御部16がインバータ部10を駆動制御することで、地上側コイルユニット12と車両側コイルユニット18との間に高周波の電磁場が形成される。受電装置4は、高周波の電磁場より電力を取り出し、取り出した電力でバッテリー22を充電する。
 図4は、本実施の形態の非接触充電装置の地上側コイルユニット12と車両側コイルユニット18の断面図である。図4(a)に示すように、地上側コイルユニット12は、地上側に固定されたベース31と、ベース31上に配置された給電コイル32と、給電コイル32を覆う筐体であるカバー33とを備えている。車両側コイルユニット18は、車体に固定されたベース34と、ベース34上に配置された受電コイル35と、受電コイル35を覆う筐体であるカバー36とを備えている。
 給電コイル32は、リッツワイヤ41をスパイラル状に複数回巻き回することにより形成されており、同様に受電コイル35は、リッツワイヤ42をスパイラル状に複数回巻き回することにより形成されている。
 ここで、それぞれのコイルを形成するリッツワイヤ41、42の断面図を図5(a)、(b)に示す。図5(a)、(b)に示すように、リッツワイヤ41、42は、複数の素線43が束ねられて形成されている。給電コイル32を構成するリッツワイヤ41(図5(a)参照)は、概ね円形状断面を有している。一方、受電コイル35を構成するリッツワイヤ42(図5(b)参照)は、扁平した楕円形状断面を有している。ここで、給電コイル32と受電コイル35の対向面沿いの方向(すなわち、本実施の形態では、地平面沿いの方向)を第1方向D1として、対向面に直交する方向を第2方向D2とすると、リッツワイヤ42は、第1方向D1に扁平された楕円状断面を有している。すなわち、リッツワイヤ42は、第1方向D1の幅が第2方向D2の幅よりも大きくなるように扁平した断面形状を有している。
 このような断面形状を有するリッツワイヤ41、42を、例えば同じターン数(巻き回数)にて、コイルの対向面内にて巻き回することで給電コイル32および受電コイル35が形成されている。図4(a)に示すように、受電コイル35のリッツワイヤ42は第1方向D1に扁平された断面形状を有しているため、受電コイル35の外径(外形)r2は、給電コイル32の外径r1よりも大きくなっている。
 またこのような断面形状を有するリッツワイヤ41、42を、例えば同じ長さにて、コイルの対向面内にて巻き回することで給電コイル32および受電コイル35が形成されている。図4(a)に示すように、受電コイル35のリッツワイヤ42は第1方向D1に扁平された断面形状を有しているため、受電コイル35の外径(外形)r2は、給電コイル32の外径r1よりも大きくなっている。
 このように受電コイル35の外径r2を給電コイル32の外径r1より大きくすることで、コイル間の位置ずれ許容範囲Rを大きく確保することができる。例えば、図4(b)に示すように、駐車スペースに対する車両の位置ずれにより、受電コイル35と給電コイル32との間に位置ずれ(第1方向D1への位置ずれ)が生じた場合であっても、給電コイル32から発生する磁束と受電コイル35とが広範囲にわたって鎖交させることが可能となる。したがって、コイル間の位置ずれが生じた状態にて給電効率の低下を抑制することができる。
 また、車両に搭載される受電コイル35のリッツワイヤ42の素線43の本数を、給電コイル32のリッツワイヤ41の素線43の本数よりも少なくして、さらにリッツワイヤ42の断面を扁平とすることにより、給電効率の低下を抑制しながら、受電コイル35の軽量化を図ることができる。
 つまり、(受電コイルの断面積)<(給電コイルの断面積)の場合、受電コイルのリッツワイヤを円形断面形状にすると、(受電コイルの外径r2)<(給電コイルの外径r1)となって、給電コイルで発生した磁束と受電コイルとの鎖交数が減少し、給電効率が低下する。そのため、特に位置ずれの影響を受けて給電効率が低下しやすくなる。
 一方、本発明の受電装置は受電コイル35を第1方向D1に扁平にすることで(受電コイルの断面積)<(給電コイルの断面積)の場合でも、(受電コイルの外径r2)>(給電コイルの外径r1)とすることが可能となる。これにより、給電コイル32で発生した磁束と受電コイル35との鎖交数を、受電コイル35のリッツワイヤ42を円形断面形状にした場合より増加させることが可能となり、給電効率を向上させることができる。そのため、特に位置ずれの影響を低減して給電効率を向上させることが可能となる。
 さらに、受電コイル35を上述のような構成とすることにより受電装置4を軽量化することができ、例えば電気推進車両の走行燃費を向上させることが可能となるとともに、低コスト化を図ることもできる。
 また、図6に示すように、上述した位置ずれ許容範囲Rは、平面視では大略円形状の領域となる。なお、位置ずれ許容範囲Rは、受電コイル35の外経r2と同じ範囲の場合のみに限られず、要求される給電効率、給電コイル32および受電コイル35の外径などに基づいて適切な範囲に設定される。
 また、図7に示すように、受電コイル35と給電コイル32とが相対的に傾斜して配置されるような場合にあっては、給電コイル32に対して投影される受電コイル35の投影面積に基づいて、位置ずれが位置ずれ許容範囲R内にあるかどうかを判断することができる。したがって、要求される給電効率や傾斜角度θなどに基づいて、位置ずれ許容範囲Rを設定することが好ましい。
 なお、本発明は上述の実施の形態に限定されるものではなく、その他種々の態様で実施できる。例えば、図8A(変形例1)に示すように、給電コイル32のリッツワイヤ41の断面を第2方向D2に扁平させることで、受電コイル35の外径を給電コイル32の外径よりも大きくするようにしても良い。
 また、図8B(変形例2)に示すように、受電コイル35のリッツワイヤ42を第1方向D1に扁平させるとともに、給電コイル32のリッツワイヤ41を第2方向D2に扁平させることで、受電コイル35の外径を給電コイル32の外径よりも大きくするようにしても良い。
 また、図8C(変形例2)に示すように、それぞれのリッツワイヤ41、42を第2方向D2に扁平させながら、受電コイル35のリッツワイヤ42の第1方向D1沿いの幅を、給電コイル32のリッツワイヤ41の第1方向D1沿いの幅よりも大きくすることで、受電コイル35の外径を給電コイル32の外径よりも大きくするようにしても良い。
 すなわち、受電コイル35のリッツワイヤ42および給電コイル32のリッツワイヤ41の両方またはいずれか一方の断面を扁平にして、リッツワイヤ42の第1方向D1沿いの幅がリッツワイヤ41よりも大きくすることで、受電コイル35の外径を給電コイル32の外径よりも大きくすることができる。なお、それぞれのコイル32、35において、リッツワイヤのターン数が同じ場合に限られず、異なるターン数が採用されても良い。
 このようなリッツワイヤ41、42の扁平化は、例えば、図9(a)、(b)に示すように、2枚の板状部材により構成されるコイル成形器具45の間にリッツワイヤ41、42を挟んで圧縮しながらスパイラル状に巻き付けることにより実現される。ここで、リッツワイヤ41、42の第1方向D1の幅をa、第2方向D2の幅をbとすると、受電コイル35のリッツワイヤ42の幅aが、給電コイル32のリッツワイヤ41の幅aよりも大きいことが好ましい。また、リッツワイヤ41、42が同じ断面積である場合には、b/aの値を、給電コイル32よりも受電コイル35が小さくなるように設定することが好ましい。
 ここで、本実施の形態の非接触充電装置における給電効率と、給電コイル32の外径r1と受電コイル35の外径r2との比(r2/r1)の関係を、図10のグラフに示す。
 図10の点線は給電コイル32と受電コイル35との間の位置ずれなしの場合、実線は位置ずれが生じた場合(位置ずれありの場合)の給電効率を夫々示す。r2/r1=1(すなわち、受電コイル35の外径r2が給電コイル32の外径r1と同じ)の場合、位置ずれなしで効率η0(図10の点Pa)から位置ずれした場合の効率η1(図10の点Pb)まで給電効率が低下する。
 受電コイル35の軽量化を図るために受電コイル35を給電コイル32よりも小径に形成した場合(すなわち、r2/r1<1の場合)、位置ずれなしで効率η0(図10の点Pa)から効率η2(図10の点Pd)まで給電効率が低下し、さらに位置ずれが生じた場合には、効率η3(図10の点Pe)まで給電効率が低下する。
 これに対して、r2/r1=1の場合、位置ずれなしでの効率η0(図10の点Pa)が、位置ずれが生じた場合に効率η1(図10の点Pb)にまで給電効率が低下するが、r2/r1<1の場合に比して給電効率の低下を抑制することができる。
 さらに、r2/r1>1の場合、位置ずれした場合でも効率がほぼη0と同等(図10の点Pc)とすることができる。すなわち、受電コイル35の外径r2を給電コイル32の外径r1よりも大きく形成することにより、位置ずれが生じた場合の給電効率の低下を抑制できる範囲を広く設定することができる。
 したがって、本実施の形態の非接触充電装置では、受電コイル35が給電コイル32以上の外径を有するように設定する(すなわちr2≧r1またはr2/r1≧1と設定する)ことで、位置ずれが生じた場合の給電効率の低下を抑制することができ、受電コイル35が給電コイル32よりも大きな外径を有するように設定する(すなわちr2>r1またはr2/r1>1とする)ことで、位置ずれが生じた場合の給電効率の低下をより効果的に抑制できる。
 上述の実施の形態の非接触充電装置によれば、給電コイル32および受電コイル35を構成するリッツワイヤ41、42の断面を扁平化することにより、受電コイル35の外径を給電コイル32の外径よりも大きくすることができる。これにより、給電コイル32と受電コイル35との間に位置ずれが生じた場合に要求される給電効率を得ることができる位置ずれ許容範囲Rを大きくすることができる。
 また、受電コイル35のリッツワイヤ42を第1方向D1に扁平させることで、給電効率の低下を抑制しながらリッツワイヤ42の断面を小さくすることができる。これにより、車両に搭載される受電コイル35の軽量化を図ることができ、電気推進車両において走行燃費を向上することができる。
 このように、本実施の形態の非接触充装置によれば、単に受電コイルの外形を大きくするのではなく、リッツワイヤ41、42の断面形状を扁平化することで、車両に搭載される受電コイル35の重量増加を抑制しながら、受電コイル35の外径を給電コイル32の外径よりも大きくすることができる。よって、車両に搭載される受電コイル35の重量増加を抑制しながら、給電コイル32と受電コイル35との間の位置ずれの影響を低減して、非接触電力電送における給電効率の低減を抑制することが可能となる。
 なお、上述の説明では、リッツワイヤ41、42が扁平されて楕円形状断面を有するような場合を例として説明したが、リッツワイヤが扁平されて長方形状断面を有するような場合であっても良い。
 また、給電コイル32および受電コイル35の外形が円形状である場合を例として説明したが、多角形状の外形を有するような場合であっても良い。
 また、大略環状の給電コイル32と受電コイル35において、内径がほぼ同じような場合を例として説明したが、内径方向にも受電コイル35を拡大するようにしても良い。
 なお、上述の説明では、給電装置2が地上側に配置され、受電装置4が車両に搭載されるような場合を例として説明したが、受電装置が地上側に配置され、給電装置が車両側に配置されるような構成に対しても、本発明を適用できる。
 なお、上記様々な実施の形態のうちの任意の実施の形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 2011年12月27日に出願された日本国特許出願No.2011-286506号の明細書、図面、及び特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。
 本発明によれば、給電装置と受電装置との間の位置ずれの影響を低減して、非接触電力電送における給電効率(送電効率)の低減を抑制できるため、例えば電気自動車やプラグインハイブリッド車のような電気推進車両等の充電に用いられる非接触電力伝送の給電装置および受電装置に適用できる。
 2 給電装置
 4 受電装置
 6 商用電源
 8 1次側整流回路
10 インバータ部
12 地上側コイルユニット
16 制御部
17 電力制御装置
18 車両側コイルユニット
20 2次側整流回路
22 バッテリー
24 制御部
31 ベース
32 給電コイル
33 カバー
34 ベース
35 受電コイル
36 カバー
41 リッツワイヤ
42 リッツワイヤ
43 素線
 R 位置ずれ許容範囲

Claims (5)

  1.  入力された交流電流により磁束を発生する給電コイルを有する給電装置と、前記給電コイルに対向して配置される受電コイルを有する受電装置とを備え、前記給電コイルと前記受電コイルとの間の電磁誘導によって電力を供給する非接触充電装置であって、
     前記給電コイルおよび前記受電コイルは、複数の素線が束ねられたリッツワイヤを巻き回されて形成され、
     コイルの対向面沿いの第1方向において、前記給電コイル側のリッツワイヤの幅が、前記受電コイル側のリッツワイヤの幅よりも小さく設定されて、前記受電コイルが前記給電コイル以上の外径を有する、非接触充電装置。
  2.  コイルの対向面に直交する第2方向において、前記給電コイルのリッツワイヤの断面が扁平に形成されている、請求項1に記載の非接触充電装置。
  3.  前記給電コイル側のリッツワイヤの断面積が、前記受電コイル側のリッツワイヤの断面積よりも大きい、請求項1または2に記載の非接触充電装置。
  4.  第1方向において、前記受電コイルのリッツワイヤの断面が扁平に形成されている、請求項1に記載の非接触充電装置。
  5.  前記受電コイル側のリッツワイヤの断面積が、前記給電コイル側のリッツワイヤの断面積よりも小さい、請求項1または4に記載の非接触充電装置。
PCT/JP2012/008274 2011-12-27 2012-12-25 非接触充電装置 WO2013099221A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12861857.6A EP2800110A4 (en) 2011-12-27 2012-12-25 CONTACTLESS LOADING DEVICE
US14/313,433 US20140306655A1 (en) 2011-12-27 2014-06-24 Contactless battery charger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011286506 2011-12-27
JP2011-286506 2011-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/313,433 Continuation US20140306655A1 (en) 2011-12-27 2014-06-24 Contactless battery charger

Publications (1)

Publication Number Publication Date
WO2013099221A1 true WO2013099221A1 (ja) 2013-07-04

Family

ID=48696759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008274 WO2013099221A1 (ja) 2011-12-27 2012-12-25 非接触充電装置

Country Status (4)

Country Link
US (1) US20140306655A1 (ja)
EP (1) EP2800110A4 (ja)
JP (1) JPWO2013099221A1 (ja)
WO (1) WO2013099221A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029387A (ja) * 2013-07-30 2015-02-12 本田技研工業株式会社 非接触給電システム
WO2015040650A1 (ja) * 2013-09-17 2015-03-26 パナソニックIpマネジメント株式会社 非接触電力伝送装置
JP2015080339A (ja) * 2013-10-17 2015-04-23 小島プレス工業株式会社 車両用非接触充電システムの受電側コイルユニット
EP2983266A1 (en) * 2014-08-05 2016-02-10 Panasonic Corporation Power transmission device and wireless power transmission system
WO2017195581A1 (ja) * 2016-05-09 2017-11-16 有限会社アール・シー・エス 非接触給電装置および非接触給電システム
JP2018082556A (ja) * 2016-11-16 2018-05-24 トヨタ自動車株式会社 車両
JP2019004020A (ja) * 2017-06-14 2019-01-10 矢崎総業株式会社 電力伝送コイル及び電力伝送コイルの製造方法
US11309125B2 (en) 2017-06-14 2022-04-19 Yazaki Corporation Power transmission unit and power transmission coil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3065121B1 (fr) * 2017-04-06 2020-10-02 Dcns Systeme de transmission d'energie electrique sans contact notamment pour drone
US10513198B2 (en) * 2018-03-14 2019-12-24 Ford Global Technologies, Llc Electrified vehicle wireless charging system and charging method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218611A (ja) * 1989-11-08 1991-09-26 Toshiba Corp 回転トランス装置および磁気記録再生装置
JP2008087733A (ja) 2006-10-05 2008-04-17 Showa Aircraft Ind Co Ltd 非接触給電装置
JP2009064856A (ja) * 2007-09-05 2009-03-26 Totoku Electric Co Ltd 渦巻きコイル
JP2011100819A (ja) * 2009-11-05 2011-05-19 Fuji Electric Systems Co Ltd 磁気結合器
WO2011125328A1 (ja) * 2010-04-07 2011-10-13 パナソニック株式会社 無線電力伝送システム
JP2011229202A (ja) * 2010-04-15 2011-11-10 Panasonic Corp 無線電力伝送用コイル

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10312284B4 (de) * 2003-03-19 2005-12-22 Sew-Eurodrive Gmbh & Co. Kg Übertragerkopf, System zur berührungslosen Energieübertragung und Verwendung eines Übertragerkopfes
DE102007014712B4 (de) * 2006-05-30 2012-12-06 Sew-Eurodrive Gmbh & Co. Kg Anlage
US8188708B2 (en) * 2007-09-11 2012-05-29 Illinois Tool Works Inc. Battery charger with high frequency transformer
JP4752879B2 (ja) * 2008-07-04 2011-08-17 パナソニック電工株式会社 平面コイル
WO2010006091A1 (en) * 2008-07-09 2010-01-14 Access Business Group International Llc Wireless charging system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218611A (ja) * 1989-11-08 1991-09-26 Toshiba Corp 回転トランス装置および磁気記録再生装置
JP2008087733A (ja) 2006-10-05 2008-04-17 Showa Aircraft Ind Co Ltd 非接触給電装置
JP2009064856A (ja) * 2007-09-05 2009-03-26 Totoku Electric Co Ltd 渦巻きコイル
JP2011100819A (ja) * 2009-11-05 2011-05-19 Fuji Electric Systems Co Ltd 磁気結合器
WO2011125328A1 (ja) * 2010-04-07 2011-10-13 パナソニック株式会社 無線電力伝送システム
JP2011229202A (ja) * 2010-04-15 2011-11-10 Panasonic Corp 無線電力伝送用コイル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2800110A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029387A (ja) * 2013-07-30 2015-02-12 本田技研工業株式会社 非接触給電システム
WO2015040650A1 (ja) * 2013-09-17 2015-03-26 パナソニックIpマネジメント株式会社 非接触電力伝送装置
JP2015080339A (ja) * 2013-10-17 2015-04-23 小島プレス工業株式会社 車両用非接触充電システムの受電側コイルユニット
EP2983266A1 (en) * 2014-08-05 2016-02-10 Panasonic Corporation Power transmission device and wireless power transmission system
US9979235B2 (en) 2014-08-05 2018-05-22 Panasonic Corporation Power transmission device and wireless power transmission system
US11056919B2 (en) 2014-08-05 2021-07-06 Panasonic Corporation Power transmission device and wireless power transmission system
US11962163B2 (en) 2014-08-05 2024-04-16 Panasonic Holdings Corporation Power transmission device and wireless power transmission system
WO2017195581A1 (ja) * 2016-05-09 2017-11-16 有限会社アール・シー・エス 非接触給電装置および非接触給電システム
JP2018082556A (ja) * 2016-11-16 2018-05-24 トヨタ自動車株式会社 車両
JP2019004020A (ja) * 2017-06-14 2019-01-10 矢崎総業株式会社 電力伝送コイル及び電力伝送コイルの製造方法
US11309125B2 (en) 2017-06-14 2022-04-19 Yazaki Corporation Power transmission unit and power transmission coil

Also Published As

Publication number Publication date
EP2800110A1 (en) 2014-11-05
JPWO2013099221A1 (ja) 2015-04-30
US20140306655A1 (en) 2014-10-16
EP2800110A4 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2013099221A1 (ja) 非接触充電装置
JP5924496B2 (ja) 電力伝送システム
JP6300106B2 (ja) 非接触電力伝送装置
US20130313912A1 (en) Contactless power transfer apparatus
JP2013219210A (ja) 非接触電力伝送装置
JP5700137B2 (ja) 送電装置、受電装置、および電力伝送システム
JP2010172084A (ja) 非接触給電装置
JP5988210B2 (ja) 電力伝送システム
WO2015040650A1 (ja) 非接触電力伝送装置
JP6300107B2 (ja) 非接触電力伝送装置
JP5988211B2 (ja) 電力伝送システム
CN102545393A (zh) 非接触供电装置
WO2013099222A1 (ja) 非接触充電装置
JP5991054B2 (ja) 非接触給電装置
JP6249731B2 (ja) コイルユニット及び非接触電力伝送装置
JP2013215073A (ja) 非接触電力伝送システムの給電装置及び受電装置
JP2013255349A (ja) アンテナ
JP5930182B2 (ja) アンテナ
JP2014093797A (ja) 電力伝送システム
JP2014093320A (ja) 電力伝送システム
JP2013254852A (ja) アンテナ
JP2013074683A (ja) アンテナ
WO2014076953A1 (ja) 非接触で電力を伝送する装置のコイルに使用するコア
JP2014093321A (ja) 電力伝送システム
JP2014197586A (ja) アンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551241

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012861857

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012861857

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE