WO2013094614A1 - 合成アミロスフェロイドの製造方法 - Google Patents

合成アミロスフェロイドの製造方法 Download PDF

Info

Publication number
WO2013094614A1
WO2013094614A1 PCT/JP2012/082831 JP2012082831W WO2013094614A1 WO 2013094614 A1 WO2013094614 A1 WO 2013094614A1 JP 2012082831 W JP2012082831 W JP 2012082831W WO 2013094614 A1 WO2013094614 A1 WO 2013094614A1
Authority
WO
WIPO (PCT)
Prior art keywords
aspd
synthetic
plasticizer
amylospheroid
amyloid
Prior art date
Application number
PCT/JP2012/082831
Other languages
English (en)
French (fr)
Inventor
星美奈子
Original Assignee
Taoヘルスライフファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taoヘルスライフファーマ株式会社 filed Critical Taoヘルスライフファーマ株式会社
Priority to JP2013550292A priority Critical patent/JP5831859B2/ja
Priority to EP12859274.8A priority patent/EP2796464B1/en
Priority to CN201280046592.XA priority patent/CN103827140B/zh
Priority to US14/347,049 priority patent/US8946327B2/en
Publication of WO2013094614A1 publication Critical patent/WO2013094614A1/ja
Priority to HK14110906.6A priority patent/HK1197417A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4711Alzheimer's disease; Amyloid plaque core protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/81Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
    • Y10S530/812Peptides or proteins is immobilized on, or in, an organic carrier

Definitions

  • the present disclosure relates to a method for producing a synthetic amylospheroid.
  • Alzheimer's disease is a disease in which mature neurons die through synaptic degeneration. Recent studies have shown that the onset of Alzheimer's disease is gradual. As the first stage, synaptic degeneration occurs mainly. This stage is a reversible stage. As the next stage of the reversible stage, there is a stage where neuronal cell death occurs. This stage is an irreversible stage, and it is considered that Alzheimer's disease develops by reaching this irreversible stage (Non-patent Document 1).
  • Synaptic degeneration is mainly caused by the action of accumulated ⁇ -amyloid (A ⁇ ) dimer and 12-mer on glutamate receptors and the like.
  • a ⁇ dimer nor 12-mer causes neuronal cell death in in vitro and in vivo (Non-patent Document 2). Therefore, in order to analyze the pathophysiology of human Alzheimer's disease, it is necessary to elucidate the cause and molecular mechanism of neuronal cell death that occurs at the irreversible stage after the reversible synaptic degeneration stage.
  • Amyrospheroid is a unique A ⁇ aggregate that does not show toxicity to non-neuronal cells and juvenile neurons, and selectively causes functionally mature neurons to die (Non-patent Document 1).
  • Amyrospheroid was first isolated as a spherical A ⁇ aggregate having a diameter of about 10 nm that causes neuronal cell death in vitro (Non-patent Document 3). Thereafter, a specific antibody against this synthetic amylospheroid was prepared (Patent Documents 1 and 2), and the amylospheroid formed in vivo from the brain of a human patient with Alzheimer's disease using this antibody (ie, native) It was isolated (Non-patent Document 3).
  • native amylospheroids i) native amylospheroids, like synthetic amylospheroids, induced cell death selectively on mature neurons, and ii) Alzheimer's where neuronal loss was observed.
  • the amount of native amylospheroids in the cerebral cortex of patients with Alzheimer's disease is increased in relation to the severity of Alzheimer's disease, and iii) the amount of native amylospheroids in the cerebellum of patients with Alzheimer's disease with little neuronal loss
  • nonpatent literature 3 Thus, amylospheroids are thought to play an important role in the irreversible stage of Alzheimer's disease.
  • native amylospheroids are also detected in the brains of patients with dementia with Lewy bodies (Non-patent Document 1), and amylospheroids are considered to play an important role in the onset of dementia with Lewy bodies.
  • amylospheroids and A ⁇ dimers and 12-mers which are considered to be the main cause of synaptic degeneration, are formed from A ⁇ monomers by different pathways, although both are A ⁇ aggregates. That is, the A ⁇ dimer and the 12-mer pass through the A ⁇ dimer, whereas the amylospheroid is formed from the A ⁇ trimer (Non-patent Document 4).
  • amylospheroids play an important role in Alzheimer's disease and dementia with Lewy bodies.
  • the development of active vaccine therapy using synthetic amylospheroid itself as an antigen and the molecular mechanism of neuronal cell death will facilitate the development of a neuronal cell death inhibitor.
  • preventive drugs that inhibit the formation of amylospheroids using synthetic amylospheroid formation as a model system.
  • the present disclosure provides a method for producing a synthetic amylospheroid with improved efficiency.
  • the present disclosure in one aspect, relates to a method for producing a synthetic amylospheroid (hereinafter, also referred to as “manufacturing method of the present disclosure”) including stirring a liquid containing amyloid ⁇ peptide in the presence of a plasticizer.
  • the production efficiency of the synthetic amylospheroid can be improved.
  • FIG. 1 is a graph showing an example of measurement results of ASPD formation efficiency in Example 1 (DEHP +) and Comparative Example 1 (DEHP ⁇ ).
  • FIG. 2 is a graph showing an example of the results of the cytotoxicity test in Example 1 (DEHP +) and Comparative Example 1 (DEHP ⁇ ).
  • FIG. 3 is an example of an electron microscopic observation photograph in Example 1 (in the presence of DEHP) and Comparative Example 1 (in the absence of DEHP).
  • FIG. 4 is a graph showing an example of the results of ASPD formation efficiency measurement and cytotoxicity test in Examples 3 to 6 and Comparative Example 1.
  • the present disclosure is based on the finding that when a synthetic amylospheroid is formed by stirring a liquid containing amyloid ⁇ peptide, the formation efficiency is significantly improved if a plasticizer is present in the solution.
  • the present disclosure is based on the knowledge that the formation efficiency of synthetic amylospheroids is remarkably improved by performing stirring in the production method of the conventional synthetic ASPD described in Non-Patent Documents 1 and 3 in the presence of a plasticizer. Based.
  • Amyloid ⁇ is usually stable as a monomer (Grant MA et al. PNAS 104,16522-16527, 2007). When amyloid ⁇ forms fibrils, amyloid ⁇ dimers are formed first. When amyloid ⁇ forms amylospheroids, amyloid ⁇ trimers are formed first. Is known (Matsumura et al JBC2011, Non-Patent Document 4). Furthermore, unlike fibril formation, amylospheroid formation is known to be promoted in the presence of a solute with a specific partial structure such as phosphate in a physiological solvent environment. ).
  • synthesis efficiency of synthetic amylospheroid means, for example, the ratio of the amount of amyloid ⁇ peptide contained in the produced synthetic amylospheroid to the amount of amyloid ⁇ peptide used (the amount of A ⁇ that forms synthetic ASPD / raw material A ⁇ amount). The ratio may be a weight ratio or a molar ratio.
  • amylospheroid refers to an A ⁇ aggregate that can selectively induce cell death in functionally mature neurons.
  • ASPD includes “synthetic ASPD” and “native ASPD”.
  • Synthetic ASPD synthetic amylospheroid refers to ASPD that is a spherical body having a diameter of about 10 to 15 nm on observation with an electron microscope, which can be prepared and isolated in vitro using synthetic A ⁇ (Non-patent Document 3).
  • Native ASPD refers to ASPD that can be isolated from the human body (in particular, the brain of a patient with Alzheimer's disease and / or Lewy body dementia) (Non-patent Document 1).
  • ASPD both synthetic and native ASPD induce cell death in mature human neurons.
  • Anti-ASPD antibodies monoclonal antibodies and polyclonal antibodies capable of recognizing a three-dimensional structure specific to ASPD have also been prepared (for example, haASD1, haASD2, and mASD3 disclosed in Patent Documents 1 and 2). From the results of characterization of anti-ASPD monoclonal antibody and NMR analysis of ASPD, it is known that ASPD has a unique three-dimensional structure different from other A ⁇ aggregates reported so far (for example, Non-Patent Document 1). Supplemental Table S1). Therefore, in the present specification, ASPD reacts with an anti-ASPD antibody specific for ASPD disclosed in Patent Documents 1 and 2, and is capable of selectively inducing cell death in functionally mature neurons. It can also be called a body.
  • Amyloid ⁇ peptide refers to a peptide that is cleaved by cleaving amyloid precursor protein (APP) into ⁇ -, ⁇ -, and ⁇ -selectase, and includes “ ⁇ amyloid” and “A ⁇ ”. Alternatively, it is also expressed as “A ⁇ peptide”.
  • a ⁇ may include those called A ⁇ 1-39 , A ⁇ 1-40 , A ⁇ 1-41 , A ⁇ 1-42 , and A ⁇ 1-43 based on the length of the amino acid sequence.
  • a ⁇ may be human (sequence present in humans) or non-human (sequence present in animals other than humans).
  • a ⁇ may include in vivo (native) A ⁇ and synthesized A ⁇ .
  • the synthetic A ⁇ is not particularly limited, but can be synthesized by a known peptide synthesis method (for example, Fmoc method or Boc method), and can be produced by using, for example, a known peptide synthesizer.
  • Human A ⁇ 1-42 (also referred to as “A ⁇ 42”) is a peptide consisting of an amino acid sequence represented by the amino acid sequence (from the N-terminus): DAEFRHDSGYEVHHQKLVFFAEDVGSNNKGAIIGLMVGGVVIA (SEQ ID NO: 1).
  • human forms of A ⁇ 1-41 (A ⁇ 41), A ⁇ 1-40 (A ⁇ 40), and A ⁇ 1-39 (A ⁇ 39) lack A, IA, and VIA from the C-terminus of the amino acid sequence of SEQ ID NO: 1, respectively. It is a peptide consisting of the amino acid sequence.
  • human type A ⁇ 1-43 (A ⁇ 43) is a peptide consisting of an amino acid sequence in which one threonine residue (T / Thr) is added to the C-terminus of the amino acid sequence of SEQ ID NO: 1.
  • the “plasticizer” is not particularly limited and includes known ones.
  • examples of the plasticizer used in the production method of the present disclosure include di-n-octyl phthalate, di-2-ethylhexyl phthalate (DEHP), dibenzyl phthalate, and diisodecyl phthalate from the viewpoint of improving the formation efficiency of synthetic ASPD.
  • Isophthalic acid esters such as phthalic acid ester and dioctyl isophthalate, di-n-butyl adipate, adipic acid ester such as dioctyl adipate, maleic acid ester such as di-n-butyl malate, and citrate such as acetyltri-n-butyl citrate Acid esters, itaconic acid esters such as monobutyl itaconate, oleic acid esters such as butyl oleate, diacetylcaprylic acid monoglyceride, diacetyllauric acid monoglyceride, ricinoleic acid monoglyceride, decaglycerin monoelate Polyhydric alcohol esters, phosphate esters such as tricresyl phosphate, polyethylene glycol (hereinafter PEG), PEG diacetate, polypropylene glycol (hereinafter PPG), PEG-PPG-PEG block polymer, PPG
  • Polyalkylene glycols such as triethylene glycol monomethyl ether lactic acid oligomer ester, and rosin acid esters such as diethylene glycol rosin ester acetate are preferred.
  • phthalic acid esters such as di-n-octyl phthalate, di-2-ethylhexyl phthalate, dibenzyl phthalate, and diisodecyl phthalate are more preferable, and di-2-ethylhexyl phthalate is more preferable.
  • stirrring refers to adding movement to a fluid.
  • the “stirring” is preferably slow and / or gentle stirring so as not to prevent the aggregation of A ⁇ and / or the formation of ASPD. Agitation in the present disclosure may be performed by moving a container holding a liquid containing A ⁇ , for example, by adding rotation, shaking, swinging, and a combination thereof to the container, or A ⁇ It is also possible to place the stirrer in a liquid containing, and rotate the stirrer.
  • the strength of stirring is preferably low speed and / or gentle, and may be the same level as the stirring in the conventional synthetic ASPD manufacturing methods described in Non-Patent Documents 1 and 3.
  • the stirring in the manufacturing method of this indication may be performed continuously within predetermined time, and may be performed intermittently.
  • the manufacturing method of this indication includes stirring the liquid containing A ⁇ in the presence of a plasticizer.
  • Synthetic ASPD is considered to be formed by aggregation or association of A ⁇ during the stirring.
  • the manufacturing method of the present disclosure includes, in one embodiment, a synthetic ASPD forming step, which includes stirring a liquid containing A ⁇ and a plasticizer.
  • the content of A ⁇ in the liquid containing A ⁇ and a plasticizer used in the synthetic ASPD forming step is preferably 0.1 to 500 ⁇ M, more preferably 1 to 350 ⁇ M, and still more preferably 10 from the viewpoint of improving the formation efficiency of synthetic ASPD. It is ⁇ 200 ⁇ M, even more preferably 20-100 ⁇ M, even more preferably 30-75 ⁇ M, and even more preferably 40-60 ⁇ M.
  • a ⁇ contained in the liquid is preferably a monomer, that is, it is preferable that an A ⁇ aggregate has not been formed before the synthetic ASPD formation step.
  • a ⁇ contained in the liquid may be one kind or a mixture of plural kinds. For example, one type of A ⁇ 42 or A ⁇ 40 may be used, or a mixture of A ⁇ 42 and A ⁇ 40 may be used.
  • the content of the plasticizer in the liquid containing A ⁇ and the plasticizer used in the synthetic ASPD forming step is preferably 10 ⁇ M to 10 mM, more preferably 100 to 1000 ⁇ M, and still more preferably 200 to 200 ⁇ M from the viewpoint of improving the formation efficiency of the synthetic ASPD. 900 ⁇ M, even more preferably 400 to 800 ⁇ M, even more preferably 500 to 750 ⁇ M, and even more preferably 600 to 700 ⁇ M.
  • the plasticizer contained in the liquid may be one kind or a mixture of plural kinds.
  • the stirring temperature in the synthetic ASPD forming step is preferably more than 0 ° C and preferably 40 ° C or less, more preferably 37 ° C or less, still more preferably 32 ° C or less, and even more preferably 12 ° C.
  • it is 5 degrees C or less still more preferably.
  • “stirring temperature” refers to the ambient temperature or ambient temperature at which stirring is performed.
  • the stirring time in the synthetic ASPD forming step is, for example, 10 hours to 8 days.
  • the stirring time is preferably 10 to 20 hours, more preferably 11 to 18 hours, and further preferably 12 to 16 from the viewpoint of improving the formation efficiency of synthetic ASPD. Time, even more preferably 13 to 15 hours.
  • the stirring time is preferably 4 to 8 days, more preferably 5 to 7 days, from the viewpoint of improving the formation efficiency of the synthetic ASPD.
  • the A ⁇ is other than these or a mixture, it can be appropriately adjusted within the above range.
  • the production method of the present disclosure or the synthetic ASPD formed in the synthetic ASPD formation step can be confirmed by cytotoxicity and / or antibody reactivity. For example, if cell death (apoptosis) can be induced when added to mature neurons, the presence of ASPD can be confirmed (Non-patent Documents 1 and 3). Alternatively, the presence of ASPD can be confirmed using an antibody specific for ASPD. As the antibody, monoclonal antibodies specific for ASPD such as haASD1, haASD2, and mASD3 disclosed in Patent Documents 1 and 2 and polyclonal antibodies specific for ASPD such as rpASD1 can be used. When these antibodies are used, synthetic ASPD can be quantified according to a conventionally known method.
  • the liquid after stirring is filtered using a filter having a pore diameter of 0.22 ⁇ m, and the filtrate is outside the limit of 50 kDa or 100 kDa cutoff. It can refine
  • the synthetic ASPD can also be purified by immunoprecipitation using an antibody specific for ASPD, for example, the antibody disclosed in Patent Document 1 or 2.
  • the production method of the present disclosure may include a step of purifying the formed synthetic ASPD.
  • the purification method of synthetic ASPD is not limited to this method.
  • the liquid containing A ⁇ and a plasticizer to be used for stirring is obtained by dissolving A ⁇ in an organic solvent containing a plasticizer from the viewpoint of improving the formation efficiency of synthetic ASPD, and the obtained A ⁇ solution Preferably, it is prepared by a process comprising diluting with an aqueous solution. Therefore, the manufacturing method of the present disclosure includes, in other embodiments, 1) a step of preparing a liquid containing A ⁇ and a plasticizer, and 2) a step of forming a synthetic ASPD, wherein the step 1) includes an organic solvent containing a plasticizer. The step 2) includes stirring the liquid containing A ⁇ and the plasticizer obtained in the step 1).
  • the present invention relates to a method for producing synthetic ASPD.
  • a ⁇ dissolved in an organic solvent containing a plasticizer is preferably freeze-dried from the viewpoint of improving the formation efficiency of the synthetic ASPD.
  • the organic solvent is preferably an organic solvent that can dissolve A ⁇ and a plasticizer and is miscible with water, more preferably N, N-dimethylformamide (DMF), from the viewpoint of improving the formation efficiency of synthetic ASPD.
  • N, N-dimethylformamide (DMF) from the viewpoint of improving the formation efficiency of synthetic ASPD.
  • an organic solvent selected from N, N-dimethylacetamide (DMAc), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), acetone, and mixtures thereof more preferably dimethyl sulfoxide (DMSO), even more preferably anhydrous DMSO. is there.
  • the concentration of the plasticizer in the organic solvent containing the plasticizer can be appropriately determined from the dilution rate with an aqueous solution described later and the plasticizer concentration in the liquid containing A ⁇ and the plasticizer described above.
  • aqueous solution used for dilution a conventionally known buffer solution or cell culture medium can be used.
  • the aqueous solution is preferably an aqueous solution having physiological ionic strength and pH from the viewpoint of improving the formation efficiency of synthetic ASPD.
  • phosphate buffered saline PBS
  • a buffer having a tris (hydroxymethyl) methyl skeleton (HOCH 2 ) 3 C-skeleton) are used from the viewpoint of improving the formation efficiency of synthetic ASPD.
  • a solution, a 2- (hydroxymethyl) -1,3-propanediol (HMPD) solution, and a 1,3-propanediol solution are preferred.
  • the aqueous solution is more preferably PBS, and more preferably calcium and magnesium-free Dulbecco's phosphate buffered saline (D-PBS ( ⁇ )).
  • the cell culture medium used as the aqueous solution from the viewpoint of improving the formation efficiency of synthetic ASPD, BME medium, BGJb medium, CMRL1066 medium, Glasgow MEM medium, ImprovedMEM Zinc Option medium, IMDM medium, Medium199 medium, EagleMEM medium, ⁇ MEM medium, A DMEM medium, a ham F12 medium, an RPMI 1640 medium, a Fischer's medium, a mixed medium thereof, and the like are preferable, and a medium in which a pH indicator is excluded is more preferable.
  • the aqueous solution is more preferably Ham F12 medium, and more preferably L glutamine and phenol red-free Ham F12 medium.
  • the dilution ratio for diluting the A ⁇ solution with the aqueous solution is preferably 5 to 5000 times, more preferably 10 to 1000 times, still more preferably 50 to 500 times, and even more preferably from the viewpoint of improving the formation efficiency of synthetic ASPD. Is 75 to 200 times, and more preferably 90 to 120 times.
  • Preprocessing A ⁇ to be used in the above-mentioned “Preparation of liquid containing A ⁇ and plasticizer” includes the steps of improving the formation efficiency of synthetic ASPD and inducing ⁇ -helix in A ⁇ , and dissolving and lyophilizing in a volatile solvent. It is preferable to perform the treatment. In addition, from the same viewpoint, the pretreatment is preferably performed for 2 to 3 cycles, with 1 cycle consisting of dissolving powdered or freeze-dried A ⁇ in a volatile solvent and freeze-drying. In the first cycle, in order to completely dissolve A ⁇ , it is preferable to incubate after dissolving in a volatile solvent. The incubation is performed, for example, at 2 to 8 ° C.
  • the incubation is preferably performed in two stages of a first incubation performed at 2 to 8 ° C. and a second incubation performed at 25 to 40 ° C.
  • the temperature of the first incubation is 2-8 ° C., preferably about 4 ° C., and the time is, for example, overnight, preferably 6-12 hours.
  • the temperature of the second incubation is 25 to 40 ° C., preferably about 37 ° C., and the time is, for example, 30 minutes to 4 hours, preferably about 2 hours.
  • the volatile solvent used in the pretreatment is methylene chloride, acetone, 1,1,1,3,3,3-hexafluoro from the viewpoint of improving the formation efficiency of synthetic ASPD and from the viewpoint of inducing an ⁇ helix in A ⁇ .
  • -2-propanol (HFIP), tetrahydrofuran (THF), and combinations thereof are preferred, with HFIP being more preferred.
  • the present disclosure relates to a reagent kit for producing synthetic ASPD by the production method of the present disclosure, comprising freeze-dried A ⁇ , the organic solvent, and the plasticizer.
  • the freeze-dried A ⁇ is preferably subjected to the pretreatment.
  • the “preparation of a liquid containing A ⁇ and a plasticizer” can be easily performed, and the production method of the present disclosure can be performed more simply.
  • Example 1 10 ⁇ L of 65 mM bis (2-ethylhexyl) phthalate (DEHP) -containing DMSO solution prepared as described below was added to and dissolved in a freeze-dried A ⁇ 42 material (Ca. 50 nmol / tube) prepared under the following conditions. A 5 mM A ⁇ solution was obtained. To this 5 mM A ⁇ solution, 990 ⁇ L of F12 buffer (manufactured by Kojin Bio Inc.) not containing L-glutamine and phenol red was added to obtain a 50 ⁇ M A ⁇ solution. The 50 ⁇ M A ⁇ solution was rotationally stirred using a rotator at 4 ° C. for 14 hours to form a synthetic ASPD.
  • DEHP 2-ethylhexyl) phthalate
  • the synthetic ASPD was purified under the following conditions.
  • the purified synthetic ASPD had a synthetic ASPD formation efficiency of 57% (monomer conversion) calculated under the following conditions.
  • the formation of synthetic ASPD was confirmed by electron microscope observation, dot blotting using an anti-ASPD antibody, and amino acid analysis, and finally neurotoxicity was performed by a cytotoxicity test under the following conditions. .
  • a ⁇ 42 peptide consisting of the amino acid sequence of SEQ ID NO: 1 in the sequence listing was synthesized by the Fmoc method and purified using a peptide synthesizer (Applied Biosystems, model 433A). 100 mL of HFIP (1,1,1,3,3,3-hexafluoro-2-propanol, for HPLC, manufactured by Kanto Chemical Co., Ltd.) was added to and dissolved in about 50 mg of A ⁇ 42 peptide after lyophilization. Incubated overnight, incubated at 37 ° C. for 3 hours, then pipetted into tubes at 500 ⁇ L and stocked at ⁇ 80 ° C.
  • Cytotoxicity test The formation of ASPD was confirmed by the following cytotoxicity test. A fixed amount of ASPD was administered overnight using mature rat hippocampus-derived primary cultured neurons (after 19 days of culture), and neurotoxicity was measured according to the protocol using Cell Death Detection ELISA manufactured by Roche. This is an ELISA kit that quantitatively detects intracellular histone-binding DNA staging caused by apoptosis.
  • Example 1 A synthetic ASPD was produced from the A ⁇ 42 peptide in the same manner as in Example 1 except that anhydrous DMSO was used instead of the DMSO solution containing 65 mM DEHP. As a result, the synthetic ASPD formation efficiency was 1.2% (monomer conversion).
  • FIG. 1 shows an example of the results of dot blot and amino acid analysis in Example 1 and Comparative Example 1. As shown in FIG. 1, it was shown that Example 1 (DEHP +) significantly improved ASPD formation efficiency compared to Comparative Example 1 (DEHP ⁇ ).
  • FIG. 2 shows an example of the results of a cytotoxicity test using the synthetic ASPD produced in Example 1 and Comparative Example 1.
  • FIG. 2 shows cells using the solution of Example 1 (DEHP +) and the solution of Comparative Example 1 (DEHP ⁇ ) containing synthetic ASPD before purification at the A ⁇ 42 equivalent concentration (1,2,4 ⁇ M) shown in FIG. This is the result of a toxicity test.
  • the solution of Example 1 showed significant cytotoxicity compared to the solution of Comparative Example 1 in a concentration-dependent manner. Note that cytotoxicity was not observed in a solution containing the same concentration of DEHP without synthetic ASPD (data not shown).
  • FIG. 3 is an example of a photograph obtained by electron microscope observation of a solution of Example 1 (in the presence of DEHP) and a solution of Comparative Example 1 (in the absence of DEHP) containing synthetic ASPD before purification. As shown in FIG. 3, compared to Comparative Example 1, in Example 1, a large amount of synthetic ASPD of spherical bodies having a diameter of about 10 to 15 nm was confirmed.
  • Examples 3 to 6 Synthetic ASPD was produced from the A ⁇ 42 peptide in the same manner as in Example 1 except that the concentration of DEHP in the 65 mM DEHP / DMSO solution was 13, 26, 51, and 102 mM (Examples 3 to 6). The ASPD formation efficiency was measured and the cytotoxicity test was performed. As a result, the synthetic ASPD formation efficiency was 67%, 61%, 38%, and 28% (monomer conversion), respectively.
  • FIG. 4 shows an example of the measurement results of the ASPD formation efficiency and the cytotoxicity test results of Comparative Example 1 and Examples 3 to 6 (DEHP concentrations of 0, 13, 26, 51, and 102 mM, respectively). As shown in FIG. 4, the ASPD formation efficiency and cytotoxicity increased depending on the concentration of DEHP used for ASPD formation.
  • the present disclosure is useful, for example, in the fields of medicine, medicine, and research related to Alzheimer's disease and / or dementia with Lewy bodies.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

効率が向上した合成アミロスフェロイドの製造方法の提供。可塑剤の存在下でアミロイドβペプチドを含む液体を撹拌することを含む、合成アミロスフェロイドの製造方法。アミロスフェロイドとは、機能的に成熟した神経細胞に選択的に細胞死を誘発できるアミロイドβペプチドの集合体をいう。アミロスフェロイドはアルツハイマー病やレビー小体型認知症の発症において重要な役割を果たすと考えられる。

Description

合成アミロスフェロイドの製造方法
 本開示は、合成アミロスフェロイドの製造方法に関する。
 アルツハイマー病は、シナプス変性を経て成熟神経細胞が死に至る病である。最近の研究により、アルツハイマー病の発症は段階的であることがわかってきた。最初の段階として、シナプス変性が主に起こる段階がある。この段階は可逆的な段階である。前記可逆的段階の次の段階として、神経細胞死が起こる段階がある。この段階は不可逆的な段階であり、この不可逆的段階に至ることにより、アルツハイマー病が発症すると考えられている(非特許文献1)。
 シナプス変性は、主に、蓄積したβアミロイド(Aβ)2量体及び12量体がグルタミン酸受容体等に作用して起こるとされている。しかし、Aβ2量体及び12量体のいずれも、in vitro及びin vivoで神経細胞死を引き起こさない(非特許文献2)。よって、ヒトのアルツハイマー病の病態解析のために、可逆的なシナプス変性段階の後の不可逆的段階で起こる神経細胞死の原因と分子機構の解明が必要とされている。
 アミロスフェロイド(ASPD)は、非神経細胞及び幼若神経細胞には毒性を示さず、機能的に成熟した神経細胞を選択的に死にいたらしめるユニークなAβ集合体である(非特許文献1)。アミロスフェロイドは、in vitroで神経細胞死を起こす直径約10nmの球状Aβ集合体として最初に単離された(非特許文献3)。その後、この合成アミロスフェロイドに対する特異的な抗体が作製され(特許文献1及び2)、この抗体を用いてアルツハイマー病のヒト患者の脳から生体内で形成された(すなわち、ネイティブな)アミロスフェロイドが単離された(非特許文献3)。このネイティブアミロスフェロイドを用いた研究から、i)ネイティブアミロスフェロイドは、合成アミロスフェロイドと同様に、成熟神経細胞に対して選択的に細胞死を誘発し、また、ii)神経細胞脱落が認められるアルツハイマー病患者の大脳皮質におけるネイティブアミロスフェロイド量は、アルツハイマー病の重症度に相関して増加していること、そして、iii)神経細胞脱落があまり認められないアルツハイマー病患者の小脳におけるネイティブアミロスフェロイド量は微量しか存在しないことが明らかとなった(非特許文献3)。したがってアミロスフェロイドは、アルツハイマー病が発症する不可逆的段階において重要な役割を果たすと考えられる。さらに、ネイティブアミロスフェロイドは、レビー小体型認知症患者の脳からも検出されており(非特許文献1)、レビー小体型認知症においてもアミロスフェロイドはその発症において重要な役割を果たすと考えられる。
 なお、アミロスフェロイドと、シナプス変性を引き起こす主な原因であるとされるAβ2量体及び12量体とは、ともにAβ集合体ながら、異なる経路でAβモノマーから形成されることが示されている。すなわち、Aβ2量体及び12量体はAβ2量体を経由するのに対し、アミロスフェロイドはAβ3量体から形成される(非特許文献4)。
WO2006/016644 WO2009/057664
Noguchi et al. J.Biol.Chem. vol.284 no. 47, 32895-32905 (2009) Shankar et al. Nature Medicine 14, 837-842 (2008) Hoshi et al. Pro. Natl. Acad. Sci. U.S.A. vol.100, no.11, 6370-6375 (2003) Matsumura et al. J.Biol.Chem. vol.286 no. 13, 11555-11562 (2011)
 上述のとおり、アミロスフェロイドはアルツハイマー病やレビー小体型認知症において重要な役割を果たす。しかしながら、ネイティブアミロスフェロイドを患者脳から精製して治療薬などの開発に使うことは非常に困難である。よって、患者脳に存在するネイティブアミロスフェロイドと等価である合成アミロスフェロイドが、in vitroでより製造され易くなれば、アルツハイマー病やレビー小体型認知症の研究、並びに、これらの疾病に対する予防方法及び予防薬、及び、治療方法及び予防・治療薬の開発に大きく寄与するものと考えられる。例えば、合成アミロスフェロイドそのものを抗原とした能動ワクチン療法の開発や、神経細胞死の分子機構に迫り、神経細胞死阻止薬の開発が容易になる。また、現在、ヒト脳において凝集体が形成される機序がわからないため、合成アミロスフェロイドの形成をモデル系に用いて、アミロスフェロイドの形成を阻止する予防薬の開発を行うことが可能になる。
 そこで、本開示は、効率が向上した合成アミロスフェロイドの製造方法を提供する。
 本開示は、一態様において、可塑剤の存在下でアミロイドβペプチドを含む液体を撹拌することを含む合成アミロスフェロイドの製造方法(以下、「本開示の製造方法」ともいう)に関する。
 本開示の製造方法によれば、合成アミロスフェロイドの製造効率を向上することができる。
図1は、実施例1(DEHP+)及び比較例1(DEHP-)におけるASPD形成効率の測定結果の一例を示すグラフである。 図2は、実施例1(DEHP+)及び比較例1(DEHP-)における細胞毒性試験の結果の一例を示すグラフである。 図3は、実施例1(DEHP存在下)及び比較例1(DEHP非存在下)における電子顕微鏡観察写真の一例である。 図4は、実施例3~6及び比較例1におけるASPD形成効率測定及び細胞毒性試験の結果の一例を示すグラフである。
 本開示は、アミロイドβペプチドを含む液体を撹拌することにより合成アミロスフェロイドを形成させる場合に、前記溶液に可塑剤を存在させると形成効率が著しく向上するという知見に基づく。言い換えれば、本開示は、非特許文献1及び3に記載される従来の合成ASPDの製造方法における撹拌を可塑剤の存在下で行うことにより、合成アミロスフェロイドの形成効率が著しく向上するという知見に基づく。
 前記可塑剤が存在することで合成アミロスフェロイドの形成効率が向上するメカニズムの詳細は明らかではないが、以下のように推定される。アミロイドβは通常ではモノマーとして安定している(Grant MA et al. PNAS 104,16522-16527, 2007)。そして、アミロイドβが線維形成をする場合にはまずアミロイドβの2量体が形成されること、また、アミロイドβがアミロスフェロイド形成をする場合にはまずアミロイドβの3量体が形成されることがわかっている(Matsumura et al JBC2011、非特許文献4)。さらに、線維形成とは異なり、アミロスフェロイド形成は、生理的溶媒環境においてリン酸などの特定の部分構造を持つ溶質存在下で、その形成が促進されることがわかっている(星ら学会発表データ)。従って、可塑剤はアミロイドβモノマーと相互作用することで3量体形成を促進する効果を発揮し、特にアミロスフェロイド形成を促進していると考えられる。但し、本開示はこのメカニズムに限定して解釈されなくてもよい。なお、本明細書において「合成アミロスフェロイドの形成効率」は、例えば、使用したアミロイドβペプチド量に対する製造された合成アミロスフェロイドに含まれるアミロイドβペプチド量の割合(合成ASPDを形成するAβ量/原料のAβ量)とすることができる。前記割合は重量比でもよく、モル比であってもよい。
 [アミロスフェロイド]
 本明細書において、アミロスフェロイド(以下、「ASPD」ともいう。)とは、機能的に成熟した神経細胞に選択的に細胞死を誘発できるAβ集合体をいう。ASPDは、「合成ASPD」及び「ネイティブASPD」を含む。合成ASPD(合成アミロスフェロイド)とは、合成Aβを用いてin vitroで調製及び単離されうる、電子顕微鏡観察上で直径約10~15nmの球状体であるASPDをいう(非特許文献3)。また、ネイティブASPDとは、ヒト生体内(とりわけ、アルツハイマー病及び/又はレビー小体型認知症の患者の脳)から、単離されうるASPDをいう(非特許文献1)。合成ASPD及びネイティブASPDは、ともに、成熟ヒト神経細胞に細胞死を誘発する。ASPDに特異的な立体構造を認識できる抗ASPD抗体(モノクローナル抗体及びポリクローナル抗体)も作製されている(例えば、特許文献1及び2に開示されるhaASD1、haASD2、mASD3など)。抗ASPDモノクローナル抗体の特性解析やASPDのNMR解析の結果から、ASPDは、これまで報告された他のAβ集合体とは異なるユニークな立体構造をもつことがわかっている(例えば、非特許文献1のSupplemental Table S1)。したがって、本明細書においてASPDは、特許文献1及び2に開示されるASPDに特異的な抗ASPD抗体に反応し、かつ、機能的に成熟した神経細胞に選択的に細胞死を誘発できるAβ集合体ともいうことができる。
 [アミロイドβペプチド]
 本明細書において「アミロイドβペプチド」とは、アミロイド前駆体タンパク質(APP)がα-、β-、γ-セレクターゼに切断されることよって切り出されるペプチドをいい、「βアミロイド」、「Aβ」又は「Aβペプチド」とも表記される。また、本明細書において、Aβはそのアミノ酸配列の長さからAβ1-39、Aβ1-40、Aβ1-41、Aβ1-42、及びAβ1-43と呼ばれるものを含みうる。本明細書において、Aβは、ヒト型(ヒトに存在する配列)であってもよく、非ヒト型(ヒト以外の動物に存在する配列)であってもよい。また、本明細書において、Aβは、生体内の(ネイティブな)Aβ、及び、合成されたAβを含みうる。合成Aβは、特に限定されないが、公知のペプチド合成法(例えば、Fmoc法やBoc法)で合成でき、例えば、公知のペプチド合成機を利用して製造できる。ヒト型のAβ1-42(「Aβ42」ともいう。)は、アミノ酸配列(N末端から):DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA(配列番号1)で表わされるアミノ酸配列からなるペプチドである。また、ヒト型のAβ1-41(Aβ41)、Aβ1-40(Aβ40)、及びAβ1-39(Aβ39)は、配列番号1のアミノ酸配列のC末端からそれぞれA、IA、及びVIAを欠いたアミノ酸配列からなるペプチドである。さらに、ヒト型のAβ1-43(Aβ43)は、配列番号1のアミノ酸配列のC末端にトレオニン残基(T/Thr)が1つ付加されたアミノ酸配列からなるペプチドである。
 [可塑剤]
 本明細書において「可塑剤」は、特に限定はなく公知のものが挙げられる。本開示の製造方法に使用する可塑剤としては、合成ASPDの形成効率向上の観点から、例えば、ジ-n-オクチルフタレート、ジ-2-エチルヘキシルフタレート(DEHP)、ジベンジルフタレート、ジイソデシルフタレート等のフタル酸エステル、ジオクチルイソフタレート等のイソフタル酸エステル、ジ-n-ブチルアジペート、ジオクチルアジペート等のアジピン酸エステル、ジ-n-ブチルマレート等のマレイン酸エステル、アセチルトリ-n-ブチルシトレート等のクエン酸エステル、モノブチルイタコネート等のイタコン酸エステル、ブチルオレート等のオレイン酸エステル、ジアセチルカプリル酸モノグリセライド、ジアセチルラウリン酸モノグリセライド、リシノール酸モノグリセライド、デカグリセリンモノエレート等の多価アルコールエステル、トリクレジルホスフェート等のリン酸エステル、ポリエチレングリコール(以下PEG)、PEGジアセテート、ポリプロピレングリコール(以下PPG)、PEG-PPG-PEGブロックポリマー、PPG-PEG-PPGブロックポリマー等のポリアルキレングリコール類、トリエチレングリコールモノメチルエーテル乳酸オリゴマーエステル等の乳酸オリゴマーエステル類、ジエチレングリコールロジンエステルアセテート等のロジン酸エステル類が好ましい。これらの中でも、同様の観点から、ジ-n-オクチルフタレート、ジ-2-エチルヘキシルフタレート、ジベンジルフタレート、ジイソデシルフタレート等のフタル酸エステルがより好ましく、ジ-2-エチルヘキシルフタレートがさらに好ましい。
 [撹拌]
 本明細書において「撹拌」とは、流体に動きを加えることをいう。本開示において「撹拌」は、Aβの集合及び/又はASPDの形成を妨げないように、低速及び/又はおだやかな撹拌であることが好ましい。本開示における撹拌は、Aβを含む液体を保持する容器を動かすこと、例えば、前記容器に、回転、振とう、揺動、及びこれらの組み合わせの動きを加えることで行ってもよく、或いは、Aβを含む液体中に撹拌子を配置し、前記撹拌子を回転させることにより行ってもよい。撹拌の強さは、上述のとおり、低速及び/又はおだやかであることが好ましく、非特許文献1及び3に記載される従来の合成ASPDの製造方法における撹拌と同程度であってよい。また、本開示の製造方法における撹拌は、所定の時間内に連続的に行ってもよく、断続的に行ってもよい。
 [合成ASPDの形成]
 本開示の製造方法は、可塑剤の存在下でAβを含む液体を撹拌することを含む。合成ASPDは、前記撹拌中に前記Aβが集合又は会合をすることで形成されると考えられる。したがって、本開示の製造方法は、一実施形態において、合成ASPD形成工程を含み、前記工程は、Aβ及び可塑剤を含む液体を撹拌することを含む。
 合成ASPD形成工程に供する、Aβ及び可塑剤を含む液体におけるAβの含有量は、合成ASPDの形成効率向上の観点から、0.1~500μMが好ましく、より好ましくは1~350μM、さらに好ましくは10~200μM、さらにより好ましくは20~100μM、さらにより好ましくは30~75μM、さらにより好ましくは40~60μMである。前記液体に含まれるAβは、合成ASPDの形成効率向上の観点から、モノマーであること、すなわち、合成ASPD形成工程の前に既にAβ集合体を形成していないことが好ましい。また、前記液体に含まれるAβは、1種類であってもよく、複数種類の混合物であってもよい。例えば、Aβ42又はAβ40の1種類であってもよく、Aβ42とAβ40との混合物であってもよい。
 合成ASPD形成工程に供する、Aβ及び可塑剤を含む液体における可塑剤の含有量は、合成ASPDの形成効率向上の観点から、10μM~10mMが好ましく、より好ましくは100~1000μM、さらに好ましくは200~900μM、さらにより好ましくは400~800μM,さらにより好ましくは500~750μM、さらにより好ましくは600~700μMである。前記液体に含まれる可塑剤は、1種類であってもよく、複数種類の混合物であってもよい。
 合成ASPD形成工程における撹拌の温度は、合成ASPDの形成効率向上の観点から、0℃を超え40℃以下が好ましく、より好ましくは37℃以下、さらに好ましくは32℃以下、さらにより好ましくは12℃以下、さらにより好ましくは5℃以下である。なお、本明細書において、「撹拌の温度」とは、撹拌を行う環境温度又は周囲温度をいう。
 合成ASPD形成工程における撹拌の時間は、例えば、10時間~8日である。前記工程に供する前記液体中のAβがAβ42である場合、撹拌時間は、合成ASPDの形成効率向上の観点から、10~20時間が好ましく、より好ましくは11~18時間、さらに好ましくは12~16時間、さらにより好ましくは13~15時間である。前記AβがAβ40である場合、撹拌時間は、合成ASPDの形成効率向上の観点から、4~8日が好ましく、より好ましくは5~7日である。前記Aβがこれら以外又は混合物である場合は、上記範囲内で適宜調節できる。
 [合成ASPDの形成確認]
 本開示の製造方法、又は、前記合成ASPD形成工程で形成された合成ASPDは、細胞毒性及び/又は抗体反応性で確認することができる。例えば、成熟した神経細胞に添加した場合に細胞死(アポトーシス)を誘導できれば、ASPDの存在が確認できる(非特許文献1及び3)。あるいは、ASPDの存在は、ASPDに特異的な抗体を用いて確認できる。前記抗体としては、特許文献1及び2に開示されるhaASD1、haASD2、mASD3等のASPDに特異的なモノクローナル抗体やrpASD1等のASPDに特異的なポリクローナル抗体を使用できる。これら抗体を用いれば、従来公知の方法にしたがって、合成ASPDを定量することもできる。
 [合成ASPDの精製]
 本開示の製造方法、又は、前記合成ASPD形成工程で形成された合成ASPDは、撹拌後の液体を孔径0.22μmのフィルタを用いてろ過し、そのろ液を50kDa又は100kDaカットオフの限外ろ過器でろ過し、滞留物を回収することによって精製できる。或いは、前記合成ASPDは、ASPDに特異的な抗体、例えば、前記特許文献1又は2に開示される抗体を用いた免疫沈降法によっても精製できる。本開示の製造方法は、形成された合成ASPDを精製する工程を含んでもよい。但し、合成ASPDの精製方法は、この方法に限定されない。
 [Aβ及び可塑剤を含む液体の調製]
 本開示の製造方法において、撹拌に供する、Aβ及び可塑剤を含む液体は、合成ASPDの形成効率向上の観点から、可塑剤を含む有機溶媒にAβを溶解すること、及び、得られたAβ溶液を水性溶液で希釈することを含む方法で調製されることが好ましい。したがって、本開示の製造方法は、その他の実施形態において、1)Aβ及び可塑剤を含む液体の調製工程、及び2)合成ASPD形成工程を含み、前記工程1)は、可塑剤を含む有機溶媒にAβを溶解すること、及び、得られたAβ溶液を水性溶液で希釈することを含み、前記工程2)は、前記工程1)で得られたAβ及び可塑剤を含む液体を撹拌することを含む、合成ASPDの製造方法に関する。
 可塑剤を含む有機溶媒に溶解させるAβは、合成ASPDの形成効率向上の観点から、凍結乾燥であることが好ましい。前記有機溶媒は、合成ASPDの形成効率向上の観点から、Aβ及び可塑剤を溶解可能であり、かつ、水混和性である有機溶媒が好ましく、より好ましくはN,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、テトラヒドロフラン(THF)、ジメチルスルホキシド(DMSO)、アセトン、及びこれらの混合物から選択される有機溶媒、さらに好ましくはジメチルスルホキシド(DMSO)、さらにより好ましくは無水DMSOである。
 前記可塑剤を含む有機溶媒における可塑剤の濃度は、後述する水性溶液による希釈倍率と前述したAβ及び可塑剤を含む液体における可塑剤濃度とから適宜決定できる。
 希釈に用いる水性溶液は、従来公知のバッファー溶液や細胞培養培地が使用できる。前記水性溶液としては、合成ASPDの形成効率向上の観点から、生理的イオン強度とpHを有する水性溶液が好ましい。
 前記水性溶液として用いるバッファー溶液としては、合成ASPDの形成効率向上の観点から、リン酸緩衝生理食塩水(PBS)、tris(hydroxymethyl)methyl骨格((HOCH2)3C-骨格)を持つバッファーの溶液、2-(hydroxymethyl)-1,3-propanediol(HMPD)溶液、及び、1,3-propanediol溶液が好ましい。なお、前記tris(hydroxymethyl)methyl骨格を持つバッファーとしては、N-Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid(TES)、tris(hydroxymethyl)aminomethane(Tris)、N-[Tris(hydroxymethyl)methyl]glycine(Tricine)、N-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid(TAPS)及び1,1,1-tris(hydroxymethyl)ethane(THME)が挙げられる。前記水性溶液としては、同様の観点から、PBSがより好ましく、カルシウム及びマグネシウム不含ダルベッコリン酸緩衝生理食塩水(D-PBS(-))がさらに好ましい。
 前記水性溶液として用いる細胞培養培地としては、合成ASPDの形成効率向上の観点から、BME培地、BGJb培地、CMRL1066培地、GlasgowMEM培地、ImprovedMEM Zinc Option培地、IMDM培地、Medium199培地、EagleMEM培地、αMEM培地、DMEM培地、ハムF12培地、RPMI1640培地、Fischer’s培地、及びこれらの混合培地等が好ましく、これらの培地においてpH指示薬を除いたものがより好ましい。前記水性溶液としては、同様の観点から、ハムF12培地がより好ましく、Lグルタミン及びフェノールレッド不含ハムF12培地がさらに好ましい。
 前記Aβ溶液を前記水性溶液で希釈する希釈倍率は、合成ASPDの形成効率向上の観点から、5~5000倍が好ましく、より好ましくは10~1000倍、さらに好ましくは50~500倍、さらにより好ましくは75~200倍、さらにより好ましくは90~120倍である。
 [前処理]
 前記「Aβ及び可塑剤を含む液体の調製」に供するAβは、合成ASPDの形成効率向上の観点及びAβにαへリックスを誘導する観点から、揮発性溶媒に溶解し凍結乾燥することを含む前処理を施すことが好ましい。また、前記前処理は、同様の観点から、粉末状又は凍結乾燥のAβを揮発性溶媒に溶解し凍結乾燥することを1サイクルとし、2~3サイクル行うことが好ましい。前記1サイクル目においては、Aβを完全に溶解するために、揮発性溶媒で溶解したのちインキュベーションすることが好ましい。前記インキュベーションは、例えば、2~8℃(好ましくは約4℃)で、オーバーナイト(例えば、6~12時間)行った後に、25~40℃(好ましくは約37℃)で、30分~4時間(好ましくは約2時間)行うことが好ましいが、この条件に限定されない。また、前記インキュベーションは、一又は複数の実施形態において、2~8℃で行う第1のインキュベーションと、25~40℃で行う第2のインキュベーションとの2段階のインキュベーションを行うことが好ましい。第1のインキュベーションの温度は、2~8℃であり、好ましくは約4℃であり、時間は、例えば、オーバーナイト、好ましくは6~12時間である。第2のインキュベーションの温度は、25~40℃であり、好ましくは約37℃であり、時間は、例えば、30分~4時間、好ましくは約2時間である。
 前記前処理で使用する揮発性溶媒は、合成ASPDの形成効率向上の観点及びAβにαへリックスを誘導する観点から、塩化メチレン、アセトン、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(HFIP)、テトラヒドロフラン(THF)、及びこれらの組み合わせなどが好ましく、HFIPがより好ましい。
 [試薬キット]
 本開示は、その他の態様において、凍結乾燥したAβと、前記有機溶媒と、前記可塑剤とを含む、本開示の製造方法によって合成ASPDを製造するための試薬キットに関する。前記凍結乾燥したAβは、前記前処理が行われたものであることが好ましい。本開示の試薬キットによれば、容易に前記「Aβ及び可塑剤を含む液体の調製」を行うことができ、一層簡便に本開示の製造方法を行うことができる。
 [実施例1]
 下記の条件で調製された凍結乾燥状態のAβ42原料(Ca.50nmol/チューブ)に、下記のように調製した65mMフタル酸ビス(2-エチルヘキシル)(DEHP)含有DMSO溶液を10μL添加して溶解させ、5mM Aβ溶液を得た。この5mM Aβ溶液に、L-グルタミン及びフェノールレッドを含まないF12バッファー(コージンバイオ社製)990μL添加し、50μM Aβ溶液を得た。この50μM Aβ溶液を、ローテータを用い、4℃、14時間、回転撹拌することにより、合成ASPDを形成させた。形成された合成ASPDを含む前記溶液から、下記の条件で合成ASPDを精製した。精製した合成ASPDは、下記条件で算出される合成ASPD形成効率は57%(モノマー換算)であった。なお、合成ASPDが形成されたことの確認は、電子顕微鏡観察、及び抗ASPD抗体を用いたドットブロット、アミノ酸分析を用いて行い、最終的に神経毒性は下記条件の細胞毒性試験にて行った。
 〔Aβ42原料の調製方法〕
 配列表の配列番号1のアミノ酸配列からなるAβ42ペプチドを、ペプチド合成機(Applied Biosystems社製、model 433A)を用いFmoc法により合成し、精製した。凍結乾燥後の約50mgのAβ42ペプチドに、100mLのHFIP(1,1,1,3,3,3-hexafluoro-2-propanol、HPLC用、関東化学社製)を添加して溶解し、4℃、オーバーナイトでインキュベーションし、37℃、3時間インキュベーションし、その後、チューブに500μLずつ分注して-80℃でストックした。ストックしたAβ42溶液を凍結乾燥後、再度HFIPを500μL添加しAβ42を溶解した(Aβ濃度Ca.100μM)。この溶液を再び凍結乾燥し、-20℃でストックし、Aβ42原料とした。
 〔65mM DEHP/DMSO溶液の調製〕
 75.7μLの無水DMSO(dimethyl sulfoxide anhydrous SIGMA社製)に2μLのDEHP(bis(2-ethylhexyl)phthalate 東京化成工業社製)を添加し、65mM DEHP/DMSO溶液とした。
 〔合成ASPDの精製条件〕
 回転撹拌後の500μLの合成ASPD溶液を孔径0.22μmのフィルタでろ過し、ろ液を100kDa又は50kDaカットオフの限外ろ過器でろ過し、滞留物を回収し、「158-669kDa 合成ASPDフラクション」とした。
 〔ASPD形成効率の測定条件(算出方法)〕
 ASPD形成効率を調べるため、上記のとおり精製したASPD量を、ウサギポリクローナル抗ASPD抗体rpASD1を用いたドットブロット法により、濃度既知の標準ASPDをもとに算定した。これをさらに確認するため、アミノ酸分析によりアミロイドβ含有量を求めた。
 〔細胞毒性試験〕
 ASPDの形成は、以下の細胞毒性試験により確認した。成熟したラット海馬由来初代培養神経細胞(培養19日以降)を用いて、一定量のASPDを一晩投与し、神経毒性をロシュ社製のCell Death Detection ELISAを用いてプロトコルに従って測定した。これは、アポトーシスにより生じる、細胞内のヒストン結合DNA段片化を定量的に検出するELISAキットである。
 [比較例1]
 65mM DEHP含有DMSO溶液に換えて無水DMSOを用いた他は実施例1と同様にして、Aβ42ペプチドから合成ASPDを製造した。その結果、合成ASPD形成効率は1.2%(モノマー換算)であった。
 実施例1及び比較例1のドットブロット及びアミノ酸分析の結果の一例を図1に示す。図1に示すとおり、実施例1(DEHP+)は、比較例1(DEHP-)に比べて著しくASPD形成効率が向上したことが示された。
 また、実施例1及び比較例1により製造された合成ASPDを用いた細胞毒性試験の結果の一例を図2に示す。図2は、精製前の合成ASPDを含む実施例1(DEHP+)の溶液及び比較例1(DEHP-)の溶液を、同図に示すAβ42換算濃度(1,2,4μM)で使用して細胞毒性試験を行った結果である。図2に示すとおり、実施例1の溶液は、濃度依存的に、比較例1の溶液に比べて著しい細胞毒性を示した。なお、合成ASPDを含まない同濃度のDEHPを含む溶液では細胞毒性は認められなかった(データ示さず)。
 図3は、精製前の合成ASPDを含む実施例1(DEHP存在下)の溶液及び比較例1(DEHP非存在下)の溶液を電子顕微鏡観察した写真の一例である。図3に示す通り、比較例1に比べて実施例1において、直径約10~15nmの球状体の合成ASPDが大量に確認された。
 [実施例3~6]
 65mM DEHP/DMSO溶液のDEHPの濃度を13、26、51、及び102mMとした他は実施例1と同様にしてAβ42ペプチドから合成ASPDを製造し(実施例3~6)、実施例1と同様にASPD形成効率の測定及び細胞毒性試験を行った。その結果、合成ASPD形成効率は、それぞれ、67%、61%、38%、及び28%(モノマー換算)であった。比較例1及び実施例3~6(DEHP濃度がそれぞれ、0、13、26、51、及び102mM)のASPD形成効率の測定結果及び細胞毒性試験の結果の一例を図4に示す。図4に示す通り、ASPD形成に使用したDEHPの濃度に依存してASPD形成効率及び細胞毒性が増加した。
 本開示は、例えば、アルツハイマー病及び/又はレビー小体型認知症に関する医療及び医薬、研究の分野で有用である。

Claims (5)

  1. 可塑剤の存在下でアミロイドβペプチドを含む液体を撹拌することを含む、合成アミロスフェロイドの製造方法。
  2. アミロイドβペプチドを、前記可塑剤を含む有機溶媒に溶解すること、
    前記アミロイドβペプチドの溶液を水性溶液で希釈すること、及び、
    前記希釈後の溶液を撹拌することを含む、請求項1記載の合成アミロスフェロイドの製造方法。
  3. 前記有機溶媒が、水混和性溶媒である、請求項2記載の合成アミロスフェロイドの製造方法。
  4. 前記可塑剤が、フタル酸エステルである、請求項1から3のいずれかに記載の合成アミロスフェロイドの製造方法。
  5. 請求項2から4のいずれかに記載の製造方法に使用する試薬キットであって、
    凍結乾燥したアミロイドβペプチドと、前記有機溶媒と、前記可塑剤とを含む、試薬キット。
PCT/JP2012/082831 2011-12-22 2012-12-18 合成アミロスフェロイドの製造方法 WO2013094614A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013550292A JP5831859B2 (ja) 2011-12-22 2012-12-18 合成アミロスフェロイドの製造方法
EP12859274.8A EP2796464B1 (en) 2011-12-22 2012-12-18 Method for producing synthetic amylospheroid
CN201280046592.XA CN103827140B (zh) 2011-12-22 2012-12-18 合成淀粉样蛋白球体的制造方法
US14/347,049 US8946327B2 (en) 2011-12-22 2012-12-18 Method for producing synthetic amylospheroid
HK14110906.6A HK1197417A1 (zh) 2011-12-22 2014-10-30 合成澱粉樣蛋白球體的製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-281845 2011-12-22
JP2011281845 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013094614A1 true WO2013094614A1 (ja) 2013-06-27

Family

ID=48668501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082831 WO2013094614A1 (ja) 2011-12-22 2012-12-18 合成アミロスフェロイドの製造方法

Country Status (7)

Country Link
US (1) US8946327B2 (ja)
EP (1) EP2796464B1 (ja)
JP (1) JP5831859B2 (ja)
CN (1) CN103827140B (ja)
HK (1) HK1197417A1 (ja)
TW (1) TWI579300B (ja)
WO (1) WO2013094614A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179646A1 (ja) * 2016-04-14 2017-10-19 Taoヘルスライフファーマ株式会社 アミロスフェロイド(aspd)様構造体及び医薬組成物
WO2021100744A1 (ja) 2019-11-19 2021-05-27 Taoヘルスライフファーマ株式会社 アミロスフェロイド(ASPD)の代替物となりうるアミロイドβタンパク質(Aβ)の架橋体、及びASPDの分析

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016644A1 (ja) 2004-08-11 2006-02-16 Mitsubishi Chemical Corporation 抗体及びその利用
JP2006342108A (ja) * 2005-06-09 2006-12-21 Mitsubishi Chemicals Corp アミロスフェロイドにより発生する疾患の予防治療剤
WO2009057664A1 (ja) 2007-10-29 2009-05-07 Mitsubishi Chemical Corporation 抗体及びその利用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4227275B2 (ja) * 2000-03-09 2009-02-18 三菱化学株式会社 高い毒性を有するアミロイドβ蛋白質の調製方法
KR101667623B1 (ko) * 2005-11-30 2016-10-19 애브비 인코포레이티드 아밀로이드 베타 단백질에 대한 모노클로날 항체 및 이의 용도

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016644A1 (ja) 2004-08-11 2006-02-16 Mitsubishi Chemical Corporation 抗体及びその利用
JP2006342108A (ja) * 2005-06-09 2006-12-21 Mitsubishi Chemicals Corp アミロスフェロイドにより発生する疾患の予防治療剤
WO2009057664A1 (ja) 2007-10-29 2009-05-07 Mitsubishi Chemical Corporation 抗体及びその利用

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
GRANT MA ET AL., PNAS, vol. 104, 2007, pages 16522 - 16527
HOSHI ET AL., PRO. NATL. ACAD. SCI., U.S.A., vol. 100, no. 11, 2003, pages 6370 - 6375
MATSUMURA ET AL., J. BIOL. CHEM., vol. 286, no. 13, 2011, pages 11555 - 11562
MATSUMURA ET AL., JBC, 2011
MINAKO HOSHI: "'Katachi' ga Seigyo suru Shinkei no Shi Amylospheroid kara Byotai Roka no Ango o Toku", PROTEIN, NUCLEIC ACID AND ENZYME, vol. 49, no. 7, 2004, pages 1098 - 1100, XP002999355 *
MINAKO HOSHI: "Morphology and neurotoxicity of newly identified spherical a-amyloid aggregates, 'amylospheroid', aiming at elucidation of the neurodegenerative cascades in Alzheimer's disease", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, vol. 76, no. 7, 2004, pages 631 - 639, XP008172810 *
NOGUCHI ET AL., J. BIOL. CHEM., vol. 284, no. 47, 2009, pages 32895 - 32905
See also references of EP2796464A4 *
SHANKAR ET AL., NATURE MEDICINE, vol. 14, 2008, pages 837 - 842

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179646A1 (ja) * 2016-04-14 2017-10-19 Taoヘルスライフファーマ株式会社 アミロスフェロイド(aspd)様構造体及び医薬組成物
JPWO2017179646A1 (ja) * 2016-04-14 2019-02-21 Taoヘルスライフファーマ株式会社 アミロスフェロイド(aspd)様構造体及び医薬組成物
EP3444344A4 (en) * 2016-04-14 2020-02-19 TAO Health Life Pharma Co., Ltd. AMYLOSPHEROID (ASPD) -LIKE STRUCTURE AND PHARMACEUTICAL COMPOSITION
JP7161401B2 (ja) 2016-04-14 2022-10-26 公益財団法人神戸医療産業都市推進機構 アミロスフェロイド(aspd)様構造体及び医薬組成物
WO2021100744A1 (ja) 2019-11-19 2021-05-27 Taoヘルスライフファーマ株式会社 アミロスフェロイド(ASPD)の代替物となりうるアミロイドβタンパク質(Aβ)の架橋体、及びASPDの分析

Also Published As

Publication number Publication date
CN103827140B (zh) 2016-05-25
EP2796464A4 (en) 2015-07-08
JPWO2013094614A1 (ja) 2015-04-27
HK1197417A1 (zh) 2015-01-16
EP2796464A1 (en) 2014-10-29
US8946327B2 (en) 2015-02-03
CN103827140A (zh) 2014-05-28
JP5831859B2 (ja) 2015-12-09
TW201331222A (zh) 2013-08-01
EP2796464B1 (en) 2016-10-26
US20140350229A1 (en) 2014-11-27
TWI579300B (zh) 2017-04-21

Similar Documents

Publication Publication Date Title
JP2023082115A (ja) 老化関連症状を治療する方法および医薬組成物
JP7384672B2 (ja) C末端cdnf断片及びc末端manf断片、それらを含む医薬組成物、並びにそれらの使用
US20200017563A1 (en) Structure-based peptide inhibitors that target the tau vqiink fibrillization segment
ES2634230T3 (es) Péptido beta amiloide modificado
BR112020008202A2 (pt) construções de imunógeno de peptídeo tau
RU2016152151A (ru) Препарат, содержащий фактор viii и пептиды фактора фон виллебранда
JP5831859B2 (ja) 合成アミロスフェロイドの製造方法
JP5986931B2 (ja) 血液脳関門を透過する薬物輸送体、ペプチド及びその用途
US9580469B2 (en) Peptides for the treatment and early diagnosis of Alzheimer's disease and other tauopathies
WO2014161370A1 (zh) 鱼精蛋白模拟肽及其药用盐与应用
CN106866792B (zh) 一类环十肽分子及其应用
WO2015098963A1 (ja) カルレティキュリンの発現促進方法および該方法に用いられる合成ペプチド
JP2021519578A (ja) C末端cdnf断片、それらを含む医薬組成物、並びにそれらの使用
ES2815699T3 (es) Péptidos que se unen de forma específica a especies A-beta para la terapia y/o el diagnóstico de la demencia de Alzheimer
CN102675419A (zh) 一种Aβ短肽聚合抑制剂及其制备与应用
WO2017179646A1 (ja) アミロスフェロイド(aspd)様構造体及び医薬組成物
WO2009111906A1 (zh) 用于预防和/或治疗阿尔茨海默病的β片层阻断肽
WO2017041733A1 (zh) 具有抑制阿尔兹海默症Aβ蛋白聚集的多肽及其用途
WO2021163280A2 (en) Wp1 tau aggregation inhibitor peptide from woodpecker homolog
US9809627B2 (en) Cyclized transthyretin peptide and methods of use therefor
CN109476702B (zh) 肽及其用途
JP2013241402A (ja) Gapdh凝集阻害剤
WO2015062803A1 (en) Modified segments of islet amyloid polypeptide
Malhis Selection and characterization of D-enantiomeric peptides for the investigation of options for therapy and diagnosis of Alzheimer’s disease
JP2021123551A (ja) アミロイドβ42架橋アナログペプチド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550292

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012859274

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012859274

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14347049

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE