WO2013094531A1 - 被測定物特性測定装置 - Google Patents

被測定物特性測定装置 Download PDF

Info

Publication number
WO2013094531A1
WO2013094531A1 PCT/JP2012/082504 JP2012082504W WO2013094531A1 WO 2013094531 A1 WO2013094531 A1 WO 2013094531A1 JP 2012082504 W JP2012082504 W JP 2012082504W WO 2013094531 A1 WO2013094531 A1 WO 2013094531A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
piezoelectric substrate
comb
wave
surface acoustic
Prior art date
Application number
PCT/JP2012/082504
Other languages
English (en)
French (fr)
Inventor
直之 吉村
谷津田 博美
Original Assignee
日本無線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本無線株式会社 filed Critical 日本無線株式会社
Priority to BR112014014734-5A priority Critical patent/BR112014014734B1/pt
Priority to CN201280063121.XA priority patent/CN104024846B/zh
Priority to SG11201403344QA priority patent/SG11201403344QA/en
Priority to KR1020147016588A priority patent/KR101603052B1/ko
Priority to EP12860189.5A priority patent/EP2799860B1/en
Priority to US14/366,641 priority patent/US9645116B2/en
Priority to IN1391MUN2014 priority patent/IN2014MN01391A/en
Priority to CA2859626A priority patent/CA2859626C/en
Publication of WO2013094531A1 publication Critical patent/WO2013094531A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/022Liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0426Bulk waves, e.g. quartz crystal microbalance, torsional waves

Definitions

  • the present invention provides a comb-shaped electrode formed on a piezoelectric substrate for exciting a surface acoustic wave, and a reaction in which an object to be measured is loaded between the comb-shaped electrode and an end of the piezoelectric substrate in the propagation direction of the surface acoustic wave.
  • the present invention relates to an object characteristic measuring apparatus including a surface acoustic wave element in which a field is formed.
  • a surface acoustic wave element includes a piezoelectric substrate, and a transmission electrode and a reception electrode made up of comb-like electrode fingers provided on the piezoelectric substrate.
  • a transmission electrode and a reception electrode made up of comb-like electrode fingers provided on the piezoelectric substrate.
  • the surface acoustic wave device configured as described above, when an electric signal is supplied to the transmission electrode, an electric field is generated between the electrode fingers, and the surface acoustic wave is excited by the piezoelectric effect, and the surface acoustic wave is generated on the piezoelectric substrate. And the receiving electrode is excited to be converted into an electric signal.
  • a sliding surface acoustic wave SH-SAW
  • a surface acoustic wave sensor has been studied (Patent Document 1).
  • the surface acoustic wave sensor there is a difference in the characteristics of the signal obtained at the receiving electrode depending on whether the area of the object to be measured loaded on the piezoelectric substrate is electrically open or short-circuited. It is possible to obtain the dielectric constant and conductivity as physical characteristics of the object to be measured. Further, when a concavo-convex structure is formed on the propagation path between the transmission electrode and the reception electrode on the piezoelectric substrate and the object to be measured is loaded in the concave portion, the loaded object to be measured forms a film in a pseudo manner. This film is excited together with the piezoelectric substrate, and the density of the object to be measured can be obtained using the mass load effect in which the resonance frequency changes based on the mass of the film (Patent Document 2).
  • Patent Document 3 a surface acoustic wave sensor including one transmission / reception electrode using reflection of surface acoustic waves is known.
  • Patent Document 3 an acoustic wave excited by a transmission / reception electrode propagates through a reaction field loaded with an object to be measured, then is reflected by an end of the piezoelectric substrate, and is input to the transmission / reception electrode again. Based on this signal, the physical characteristics of the object to be measured can be measured.
  • the surface acoustic wave element can be made compact by configuring the surface acoustic wave element with one transmission / reception electrode.
  • the elastic wave includes a surface acoustic wave propagating along the surface of the piezoelectric substrate and a bulk wave propagating inside the piezoelectric substrate.
  • the elastic wave including the surface acoustic wave and the bulk wave excited by the transmission / reception electrode is reflected at the end of the piezoelectric substrate and is input to the transmission / reception electrode. Is done. Therefore, since the obtained signal includes a signal based on the surface acoustic wave and a signal based on the bulk wave, the physical characteristics of the object to be measured may not be obtained with high accuracy.
  • the present invention has been made to solve the above-described problems, and separates a bulk wave signal from an elastic wave signal, and based on the surface acoustic wave signal, accurately determines the physical characteristics of the object to be measured. It is an object of the present invention to provide a device characteristic measuring apparatus that can be obtained in a simple manner.
  • An object property measuring apparatus is formed on a first surface of a piezoelectric substrate, excites an elastic wave, receives a reflection based on the elastic wave, the comb electrode, A third surface formed at a position different from the first surface in the normal direction of the first surface between the second surface orthogonal to the first surface of the piezoelectric substrate in the propagation direction of the elastic wave; A reflective portion having a fourth surface connecting the end of the first surface and the third surface formed perpendicular to the normal direction of the first surface; and between the comb electrode and the reflective portion A surface acoustic wave device including a reaction field formed and loaded with an object to be measured; and a propagation part formed between the reflection part and the second surface, and the reaction field is generated from the comb electrode.
  • the surface acoustic wave propagating on the surface of the piezoelectric substrate is reflected from the bulk wave propagating in the piezoelectric substrate included in the elastic wave reflected by the second surface of the piezoelectric substrate and received by the comb electrode. Based on the extracted surface acoustic waves, the characteristics of the object to be measured are obtained.
  • the height d of the wall of the reflecting portion in the direction from the surface of the piezoelectric substrate toward the inside of the piezoelectric substrate is expressed by the following relationship: It is preferable that the value satisfies the above. ⁇ / 2 ⁇ d ⁇ H / 2 ⁇ : wavelength of the elastic wave H: thickness of the piezoelectric substrate
  • the comb-shaped electrode includes a plurality of electrode fingers, N (N is an integer of 1 or more) pairs, from the fourth surface of the reflecting portion.
  • the distance L2 to the end of the piezoelectric substrate is preferably a value that satisfies the relationship of the following formula. L2 ⁇ N ⁇ ⁇ / 2 ⁇ : wavelength of the elastic wave N: number of pairs of electrode fingers constituting the comb electrode
  • the third surface of the reflecting portion is parallel to the first surface of the piezoelectric substrate.
  • it is preferable that at least a part of the third surface of the reflective portion is a curved surface.
  • at least one portion of the third surface of the reflective portion is a predetermined angle with respect to a normal direction of the first surface of the piezoelectric substrate. It is preferable that the inclined surface is inclined.
  • the reflecting portion is filled with a resin so as not to protrude from the first surface of the piezoelectric substrate.
  • the piezoelectric substrate includes a plurality of comb-shaped electrodes formed in a direction perpendicular to a propagation direction of the elastic wave, and each comb-shaped electrode is formed. It is preferable that a plurality of the reaction fields corresponding to the comb electrodes are formed between the electrode and the third surface of the reflecting portion.
  • the surface acoustic wave propagates through the reaction field, is reflected by the reflecting surface of the reflecting portion, and is received by the comb-shaped electrode, whereas the bulk wave is bulked from the reaction field.
  • the signal based on the bulk wave can be separated from the signal based on the elastic wave using this delay time, and the signal based on the surface acoustic wave can be extracted. Therefore, the physical characteristics of the object to be measured can be obtained with high accuracy based on the signal from the surface acoustic wave.
  • a plurality of objects to be measured are formed by forming a plurality of comb-shaped electrodes in the extending direction of the reflecting portion and forming a plurality of reaction fields corresponding to each comb-shaped electrode between each of the comb-shaped electrodes and the reflecting portion.
  • the physical characteristics of can be obtained with high accuracy.
  • FIG. 1B is a cross-sectional view of the surface acoustic wave element shown in FIG. 1A taken along line IB-IB. It is explanatory drawing of the relationship between the reception time and signal level of a slip surface acoustic wave signal and a bulk wave signal by the comb-shaped electrode of the surface acoustic wave element of 1st Embodiment of this invention. It is a partial expanded sectional view of the modification of the groove part formed in the surface acoustic wave element of 1st Embodiment of this invention.
  • 1 is a cross-sectional view taken along the line IB-IB of an object property measuring apparatus including a surface acoustic wave element.
  • FIG. 16 is a cross-sectional view of the surface acoustic wave element shown in FIG. 15 taken along the line IB-IB. It is an expanded sectional view which shows the part shown by the code
  • FIG. 1A is a plan configuration diagram of a device characteristic measuring apparatus having surface acoustic waves according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along the line IB-IB of the surface acoustic wave element shown in FIG. 1A.
  • the measurement object property measuring apparatus 10 measures physical properties of a liquid measurement object, for example.
  • a device characteristic measuring apparatus 10 includes a surface acoustic wave element 12, a measuring unit 20 including an oscillator 14, a distributor 16, a switch 17, and an elastic wave detector 18, and a processing unit 22 including a personal computer. Is provided.
  • the surface acoustic wave element 12 includes a piezoelectric substrate 24, a comb electrode 26 formed on the piezoelectric substrate 24 to excite an acoustic wave, and an end portion of the piezoelectric substrate 24 in the propagation direction (arrow X direction) of the comb electrode 26 and the acoustic wave. 28 between the groove portion 30 and the end portion 28, the reaction field 32 formed between the comb-shaped electrode 26 and the groove portion 30 and loaded with the object to be measured. And a bulk wave propagation part 34 (propagation part) through which the formed bulk wave propagates.
  • Elastic waves include various types of waves such as surface acoustic waves (SAW: Surface Acoustic Wave) and bulk waves.
  • SAW Surface Acoustic Wave
  • the surface acoustic wave is a wave that propagates along the surface of the piezoelectric substrate
  • the bulk wave is a wave that propagates inside the piezoelectric substrate.
  • SH-SAW Shear Horizontal Acoustic Acoustic Wave
  • a description will be given using a sliding surface acoustic wave as an example of a surface acoustic wave.
  • the slip surface acoustic wave propagates on the surface layer portion (first surface) of the piezoelectric substrate 24, and a part of the slip surface acoustic wave is the reflecting surface (fourth surface) 36 of the groove portion (reflecting portion) 30.
  • the rest of the slip surface acoustic wave passes between the bottom surface (third surface) of the groove 30 and the bottom surface of the piezoelectric substrate 24 in FIG. 1B.
  • the bulk wave propagates to the entire piezoelectric substrate 24, a part of the bulk wave is reflected by the reflecting surface 36 of the groove portion 30, and the remainder of the bulk wave is the bottom surface of the groove portion 30 and the lower surface of the piezoelectric substrate 24 in FIG. 1B.
  • the structure of the piezoelectric substrate 24 is not particularly limited as long as the piezoelectric substrate 24 has a function capable of propagating the surface acoustic wave.
  • the piezoelectric substrate 24 is a 36 ° rotated Y-plate X-propagating LiTaO 3 (lithium tantalate single crystal). Preferably there is.
  • the comb electrode 26 is configured by arranging a plurality of pairs of electrode fingers 27a and 27b having different polarities in the propagation direction at intervals of the wavelength ⁇ of the surface acoustic wave (for example, four pairs in FIG. 1A).
  • the comb electrode 26 excites a surface acoustic wave based on a high-frequency oscillation signal generated by the oscillator 14 (for example, the center frequency is 250 MHz) and propagates it to the reaction field 32.
  • the comb electrode 26 receives the sliding surface acoustic wave that propagates through the reaction field 32 and is reflected by the reflecting surface 36 of the groove 30 and returns through the reaction field 32.
  • the comb electrode 26 receives a bulk wave that propagates from the reaction field 32 to the bulk wave propagation unit 34, is reflected by the end 28 of the piezoelectric substrate 24, and returns via the bulk wave propagation unit 34 and the reaction field 32. To do.
  • the comb-shaped electrode 26 is sealed with a sealing member 38 such as resin or glass in order to avoid a decrease in measurement accuracy due to adhesion of an object to be measured.
  • the groove part 30 is arranged in a direction (arrow Y direction) orthogonal to the propagation direction of the surface acoustic wave.
  • the groove 30 is formed to extend from one end (first substrate end) of the piezoelectric substrate 24 to the other end (second substrate end) in a direction orthogonal to the propagation direction of the surface acoustic wave.
  • the groove 30 has a reflective surface 36 that is substantially perpendicular to the surface of the piezoelectric substrate 24 through which the surface acoustic wave propagates.
  • the cross-sectional shape of the groove 30 is a convex polygon that protrudes from the surface layer portion of the piezoelectric substrate 24 toward the inside of the piezoelectric substrate 24.
  • the shape surrounded by the reflecting surface 36 of the groove 30, the bottom surface, and the imaginary line that is flush with the surface of the bulk wave propagation portion 34 and extends so as to close the groove 30 is a convex polygon.
  • the cross-sectional shape of the groove part 30 is a quadrangle.
  • the reflection surface 36 reflects the sliding surface acoustic wave toward the comb electrode 26.
  • the depth d of the groove portion 30 in the direction from the surface of the piezoelectric substrate 24 toward the inside of the piezoelectric substrate 24 is determined by the designer of the measured object property measuring apparatus 10. A value satisfying the expression relationship is selected.
  • ⁇ / 2 ⁇ d ⁇ H / 2 ⁇ wavelength of surface acoustic wave
  • H thickness of piezoelectric substrate 24
  • a metal film 40 deposited on the piezoelectric substrate 24 is formed.
  • the metal film 40 constitutes a short-circuit propagation path that is electrically short-circuited.
  • the material of the metal film 40 is not particularly limited, but it is preferable to use gold that is chemically stable with respect to the object to be measured dropped onto the reaction field 32.
  • the bulk wave propagation unit 34 is a region where the bulk wave is propagated, and the distance L2 from the reflection surface 36 of the groove 30 to the end 28 of the piezoelectric substrate 24 is determined by the designer of the measured object property measuring apparatus 10 as follows: A value satisfying the relationship is selected.
  • L2 ⁇ N ⁇ ⁇ / 2 ⁇ wavelength of surface acoustic wave
  • N number of pairs of electrode fingers 27a and 27b
  • the oscillator 14 constituting the measuring unit 20 generates a high frequency oscillation signal.
  • the distributor 16 supplies the high-frequency oscillation signal to the comb-shaped electrode 26 and also supplies it to the elastic wave detector 18.
  • the acoustic wave detector 18 detects the amplitude ratio, phase difference, and propagation delay difference between the high-frequency oscillation signal distributed by the distributor 16 and the signal based on the surface acoustic wave received by the comb-shaped electrode 26, and detects the detected amplitude.
  • a signal based on the ratio, phase difference, and propagation delay difference is output to the processing unit 22.
  • the processing unit 22 obtains the physical characteristics of the object to be measured based on the signal supplied from the elastic wave detector 18.
  • the processing unit 22 switches the connection between the terminal 1 and the terminal 3 of the switch 17 or the connection between the terminal 2 and the terminal 3 at a predetermined timing.
  • the physical characteristics are, for example, the viscosity and density of the object to be measured. For example, when nothing is dropped on the reaction field 32, the processing unit 22 obtains a frequency change and a phase change of the supplied signal. When nothing is dropped on the reaction field 32, the object to be measured is air. Next, when the object to be measured is dropped on the reaction field 32, the frequency change and phase change of the supplied signal are obtained. The processing unit 22 calculates the viscosity, density, and the like of the dropped measurement object by calculating these two measurement data.
  • FIG. 6 is a diagram for explaining the propagation of the slip surface acoustic wave signal and the bulk wave signal in the first embodiment.
  • FIG. 6 shows a part of a cross section taken along the line IB-IB of the surface acoustic wave element shown in FIG. 1A, as in FIG. 1B.
  • a curved line s111 represents a slip surface acoustic wave signal
  • curved lines s112 and s113 represent a bulk wave signal.
  • the measurer drops the object to be measured onto the reaction field 32 of the surface acoustic wave element 12.
  • the comb electrode 26 is hermetically sealed by the sealing member 38, it is possible to avoid a situation in which the measurement accuracy decreases due to the object to be measured attached to the comb electrode 26.
  • the measurement object may be a pure liquid or a mixed liquid as long as it is a liquid measurement object, and is particularly effective when measuring physical properties of alcohols such as methanol and ethanol. It is.
  • physical characteristics can be measured even in a state where an object to be measured includes antigens, antibodies, bacteria, and the like.
  • the high-frequency oscillation signal generated in burst by the oscillator 14 is distributed by the distributor 16, and the same signal is supplied to the comb electrode 26 and the elastic wave detector 18.
  • the comb electrode 26 excites an elastic wave based on the supplied high-frequency oscillation signal.
  • the elastic wave is propagated in the direction of the arrow X along the reaction field 32 where the object to be measured is dropped.
  • the slip surface acoustic wave s111 propagates through the surface layer portion of the piezoelectric substrate 24, and a part thereof is reflected by the reflecting surface 36 (reflecting surface 36A (FIG. 6)) of the groove portion 30. After being reflected, it propagates again through the reaction field 32 and is received by the comb electrode 26.
  • the depth d of the groove portion 30 is selected by the designer of the measured object property measuring apparatus 10 as follows.
  • the slip surface acoustic wave is a wave that propagates along the surface layer portion of the piezoelectric substrate 24.
  • the depth d of the groove part 30 is a value satisfying the relationship of the following formula (1): ⁇ / 2 ⁇ d (1)
  • the wavelength of the elastic wave
  • the surface acoustic wave element 12 can reflect the slip surface acoustic wave of 50% or more on the reflecting surface 36 of the groove 30 and receive it by the comb electrode 26.
  • the bulk wave is a wave propagating throughout the piezoelectric substrate 24. Therefore, a value satisfying the relationship of the following expression (2) so that the depth d of the groove 30 is not more than half of the thickness H of the piezoelectric substrate 24 d ⁇ H / 2 (2) Accordingly, the surface acoustic wave element 12 suppresses the reflection of the bulk wave by the reflecting surface 36 of the groove 30 to 50% or less, and the remaining bulk wave is transmitted from between the bottom surface of the groove 30 and the lower surface of the piezoelectric substrate 24. It can be propagated to the bulk propagation unit 34.
  • the designer determines the depth d of the groove part from the expressions (1) and (2) by the following expression (3 ) Satisfying the relationship ⁇ / 2 ⁇ d ⁇ H / 2 (3) Select
  • the designer sets the distance L2 of the bulk wave propagation unit 34 as follows. That is, the interval between the plurality of pairs of electrode fingers 27a and 27b having different polarities constituting the comb-shaped electrode 26 is the wavelength ⁇ of the elastic wave, and the number of pairs of electrode fingers 27a and 27b is N, the width of the comb-shaped electrode 26 Is (N ⁇ ⁇ ) (where N is an integer of 1 or more).
  • the designer determines that the time t1 until the slip surface acoustic wave is reflected by the reflecting surface 36 of the groove 30 and returns to the comb electrode 26, and the bulk wave is piezoelectric.
  • the designer determines the distance L2 of the propagation unit 36 from the equations (4) and (5). And a value satisfying the relationship of the following expression (6): L2 ⁇ N ⁇ ⁇ / 2 (6) Select
  • FIG. 2 is an explanatory diagram of the relationship between the reception time and the signal level of the slip surface acoustic wave signal and the bulk wave signal by the comb electrode 26 of the surface acoustic wave element 12 according to the first embodiment.
  • the horizontal axis represents time
  • the vertical axis represents the signal level.
  • the elastic wave detector 18 detects the amplitude ratio, phase difference, and propagation delay difference between the high-frequency oscillation signal supplied from the distributor 16 and the received signal, and the detected amplitude ratio, phase difference, and propagation delay difference are detected. Is output to the processing unit 22.
  • the processing unit 22 separates a bulk wave signal delayed for a predetermined time with respect to the slip surface acoustic wave signal from among the signals supplied from the acoustic wave detector 18 and converts the bulk wave signal into a signal related to the slip surface acoustic wave signal. Based on this, the physical characteristics of the object to be measured are obtained.
  • a signal s101 separated around time t1 is a slip surface acoustic wave signal
  • a signal s102 separated around time t2 delayed from the slip surface acoustic wave signal is a bulk wave signal. .
  • the device characteristic measuring apparatus 10 including the surface acoustic wave element 12 according to the first embodiment propagates through the reaction field 32 and is reflected by the reflecting surface 36 of the groove (reflecting part) 30 and then comb-shaped.
  • the surface acoustic wave input to the electrode 26 and the reaction field 32 pass through the lower part of the groove 30 through the reaction field 32, propagate through the bulk wave propagation unit 34, are reflected by the end 28 of the piezoelectric substrate 24, and then input to the comb electrode 26.
  • a predetermined time difference is generated with the bulk wave to be generated.
  • the processing unit 22 can separate from the signal supplied from the elastic wave detector 18 the signal based on the bulk wave supplied after a predetermined time delay with respect to the signal based on the slip surface acoustic wave. As a result, the processing unit 22 can obtain the physical characteristics of the measurement object dropped on the reaction field 32 with high accuracy based on the signal related to the slip surface acoustic wave.
  • the surface acoustic wave element 12 reflects and reciprocates a sliding surface acoustic wave by the reflecting surface 36 of the groove 30, while reflecting and reciprocating a bulk wave by the end portion 28 of the piezoelectric substrate 24. 26 is configured to detect slip surface acoustic waves and bulk waves. Therefore, it is possible to obtain the device property measuring apparatus 10 having the small and inexpensive surface acoustic wave element 12 that can obtain the physical property of the device to be measured with high accuracy.
  • FIG. 3 is a partially enlarged cross-sectional view of a modified example of the groove 30 formed in the surface acoustic wave element 12 of the first embodiment.
  • FIG. 3 shows a part of a cross section taken along line IB-IB of the surface acoustic wave element shown in FIG. 1A, as in FIG. 1B.
  • the groove portion 30 is filled with a resin 42, for example, an epoxy resin, as long as it does not protrude from the surface of the piezoelectric substrate 24.
  • the depth of the groove part 30 is a depth which satisfy
  • FIG. 4 is a plan configuration diagram of an object characteristic measuring apparatus 46 including the surface acoustic wave element 44 according to the second embodiment.
  • the material which comprises the surface acoustic wave element 44 is the same as that of the surface acoustic wave element 12 of 1st Embodiment.
  • the DUT characteristic measurement device 46 includes a surface acoustic wave element 44, a measurement unit 54 including an oscillator 48, a distributor 50, an elastic wave detector 52, a switch 53a and a switch 53b, and a processing unit 56.
  • the processing unit 56 switches the connection between the terminal 1 and the terminal 3 or the connection between the terminal 2 and the terminal 3 of the switch 53a and the switch 53b.
  • the surface acoustic wave element 44 includes two comb-shaped electrodes 60a and 60b formed on the piezoelectric substrate 58 (first surface), and between the comb-shaped electrodes 60a and 60b and the end portion (second surface) 62 of the piezoelectric substrate 58.
  • a bulk wave propagation part 68 formed between the parts 62.
  • the two comb-shaped electrodes 60a and 60b are formed side by side in the longitudinal direction (arrow Y direction) of the groove portion 64, and like the comb-shaped electrode 26 (see FIGS. 1A and 1B), a sealing member 70a such as resin or glass, Sealed by 70b.
  • the comb-shaped electrodes 60a and 60b correspond to the comb-shaped electrodes 26 in FIGS. 1A and 1B, respectively, and each have a plurality of pairs of electrode fingers corresponding to a plurality of pairs of electrode fingers 27a and 27b having different polarities. .
  • the groove portion 64 is formed between the two comb-shaped electrodes 60a and 60b and the end portion 62 of the piezoelectric substrate 58 in the propagation direction of the surface acoustic wave (arrow X direction), and is a reflection surface (fourth surface) corresponding to the reflection surface 36. ) 72 is formed. Moreover, the cross section of the groove part 64 is the same as that of FIG. 1B, for example, and the depth of a groove part is shown by the code
  • the reaction fields 66a and 66b are formed between the comb electrodes 60a and 60b and the groove portion 64 in correspondence with the comb electrodes 60a and 60b.
  • Metal films 74a and 74b deposited on the piezoelectric substrate 58 are formed in the reaction fields 66a and 66b.
  • a bulk wave propagation part 68 similar to the bulk wave propagation part 34 is formed between the groove part 64 and the end part 62.
  • the oscillator 48 constituting the measurement unit 54 generates a high frequency oscillation signal.
  • the distributor 50 supplies a high-frequency oscillation signal to the comb electrodes 60 a and 60 b and also supplies the elastic wave detector 52.
  • the elastic wave detector 52 detects and detects the amplitude ratio, phase difference, and propagation delay difference between the high-frequency oscillation signal distributed by the distributor 50 and the signals based on the surface acoustic waves received by the comb electrodes 60a and 60b.
  • a signal based on the amplitude ratio, the phase difference, and the propagation delay difference is output to the processing unit 56.
  • the processing unit 56 Based on the signal supplied from the elastic wave detector 52, the processing unit 56 obtains the physical characteristics of the measurement object dropped on the reaction fields 66a and 66b.
  • the first set (comb electrode 60a, reaction field 66a) and the second set (comb electrode 60b, reaction field 66b) have propagation directions. They are arranged in parallel so as to be parallel to the X direction.
  • the high-frequency oscillation signal generated by the oscillator 48 is distributed by the distributor 50 and supplied to the comb-shaped electrodes 60 a and 60 b of the surface acoustic wave element 44 and the acoustic wave detector 52 of the measurement unit 54.
  • an elastic wave is excited based on the supplied high-frequency oscillation signal, and the slip surface acoustic wave propagates in the direction of the arrow X along the reaction field 66a on which the object to be measured is dropped. To reach. Next, the slip surface acoustic wave is reflected by the reflecting surface 72, propagates again through the reaction field 66a, and is received by the comb electrode 60a.
  • the slip surface acoustic wave excited by the comb electrode 60b is the same as that of the above-described embodiment.
  • the bulk wave excited by the comb electrode 60 a propagates from the reaction field 66 a through the bulk wave propagation unit 68 and reaches the end 62.
  • the bulk wave is reflected by the end 62, propagates again through the bulk wave propagation unit 68 and the reaction field 66a, and is received by the comb electrode 60a.
  • the bulk wave excited by the comb electrode 60b is the same as that in the above-described embodiment.
  • the slip surface acoustic waves and bulk waves received by the comb-shaped electrodes 60a and 60b are converted into slip surface acoustic wave signals and bulk wave signals, and then supplied to the acoustic wave detector 52.
  • the elastic wave detector 52 detects the amplitude ratio, phase difference, and propagation delay difference between the high-frequency oscillation signal supplied from the distributor 50 and the received signal, and outputs a signal based on the detected amplitude ratio and phase difference.
  • the data is output to the processing unit 56.
  • the processing unit 56 separates the signal related to the bulk wave delayed for a predetermined time from the signal related to the slip surface acoustic wave from the signals supplied from the acoustic wave detector 52, and the obtained slip surface acoustic wave is obtained.
  • the physical characteristics of each object to be measured dropped onto the reaction fields 66a and 66b are obtained on the basis of the signals related to the above.
  • the signal related to the surface acoustic wave is related to the bulk wave in the same manner as the device property measuring apparatus 10 according to the first embodiment.
  • the signals are separated, and the physical characteristics of the measured objects dropped on the reaction fields 66a and 66b can be obtained based on the signals related to the slip surface acoustic waves.
  • the device characteristic measuring apparatus 46 can simultaneously obtain the physical characteristics of the same or different objects to be measured with high accuracy.
  • the physical properties of the measured objects dropped on the reaction fields 66a and 66b can be obtained simultaneously. Further, by dropping the object to be measured only on one reaction field 66a and processing the sliding surface acoustic wave signals detected by the comb electrodes 60a and 60b, the environmental conditions of the surface acoustic wave element 44 can be changed, for example, the temperature It is also possible to obtain the physical characteristics of the object to be measured with high accuracy by compensating for the influence of the change.
  • FIG. 5 is a plan configuration diagram of an object characteristic measuring device 78 including the surface acoustic wave element 76 according to the third embodiment.
  • the same components as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the material constituting the surface acoustic wave element 76 is the same as that of the surface acoustic wave element 12 of the first embodiment.
  • the cross section of the groove part 64 is the same as that of FIG. 1B, for example, and the depth of a groove part is shown by the code
  • the depth of the groove part 30 is a depth that satisfies the expression (3).
  • the surface acoustic wave element 76 As shown in FIG. 5, in the surface acoustic wave element 76, a part of the metal film 74b of the reaction field 66b in the surface acoustic wave element 44 (see FIG. 4) of the second embodiment is peeled off, and the piezoelectric substrate 58 is exposed. A peeling portion 80 is provided. Except for the configuration of the peeling portion 80, the configuration of the surface acoustic wave element 76 is the same as that of the surface acoustic wave element 44.
  • the reaction field 66b where the piezoelectric substrate 58 is exposed is in an electrically open state having amplitude / phase characteristics different from those of the reaction field 66a.
  • the output signal when the reaction field 66a is electrically short-circuited is subjected only to mechanical interaction. Further, the output signal when the reaction field 66b is electrically opened is subjected to physical interaction (electrical interaction and mechanical interaction). Therefore, the relative dielectric constant and conductivity of the object to be measured can be obtained by canceling the mechanical interaction from the output signals based on the two reaction fields 66b and 66a and extracting the electrical interaction (for example, Takefumi Hatou et al., “Development of SAW Oscillator Integrated SAW Sensor System”, IEICE Technical Report, IEICE, February 2003).
  • the same device to be measured is dropped on the reaction fields 66a and 66b, and then elastic waves are excited by the comb electrodes 60a and 60b. Is done.
  • the processing unit 56 includes a signal relating to the slip surface acoustic wave obtained from the reaction field 66a that is electrically short-circuited, and a signal relating to the slip surface acoustic wave obtained from the reaction field 66b that is electrically open. Based on the above, physical characteristics such as dielectric constant and conductivity of the object to be measured can be obtained with high accuracy.
  • FIG. 7 is a cross-sectional view taken along the line IB-IB of the device characteristic measuring apparatus having the surface acoustic wave element 12 ′. 7 shows the cross-sectional view of FIG. 1A according to the first embodiment, but the structure shown in FIG. 7 is also used in the second embodiment (FIG. 4) and the third embodiment (FIG. 5). Can be applied as well. As shown in FIG.
  • the surface acoustic wave element 12 ′ has a third surface 36 ⁇ / b> C ′ disposed at a position different from the surface in the normal direction of the surface (first surface) of the piezoelectric substrate 24.
  • the third surface is continuous with the upper surface of the bulk wave propagation unit 34.
  • the reflective surface 36A ′ that is the fourth surface is formed by connecting the end of the first surface and the end of the third surface. That is, the device property measuring apparatus (10, 46, and 78) according to the present invention has only the reflection surface 36 (36A, 36 ', and 72), and the reflection surface 36 (36A, 36', and 72). It is not necessary to have the surface 36B (refer FIG. 6) provided in parallel.
  • the slip surface acoustic wave s111 is reflected by the reflecting surface 36A ′, and the bulk wave s113 is reflected by the end portion 28. Therefore, the slip surface acoustic wave s111 is reflected. And bulk wave s113 can be separated. Therefore, it is possible to obtain the device-under-test characteristic measuring apparatus 10 including the small and inexpensive surface acoustic wave element 12 ′ that can obtain the physical characteristics of the device under test with high accuracy.
  • FIG. 8 is a diagram illustrating an example of an actual measurement value when the depth d of the groove 30 in the first embodiment is 0.06 [mm].
  • FIG. 9 is a diagram illustrating an example of an actual measurement value when the depth d of the groove 30 in the first embodiment is 0.01 [mm].
  • the horizontal axis represents time
  • the vertical axis represents the signal level.
  • curves s401 and s411 are characteristics of bulk wave with respect to time and signal level
  • curves s402 and s412 are characteristics of slip surface acoustic wave with respect to time versus signal level. As shown in FIG. 1B or FIG.
  • the bottom surface (third surface) of the groove portion 30 is formed substantially parallel to the bottom surface of the piezoelectric substrate 24.
  • the level difference between the bulk wave s401 and the slip surface acoustic wave s402 is between about 2 [ ⁇ s] and about 3 [ ⁇ s]. Is approximately 60 [dB].
  • the depth d of the groove 30 is 0.01 [mm]
  • the bulk wave s411 and the slip surface acoustic wave s412 are between the time of about 2 [ ⁇ s] to about 3 [ ⁇ s].
  • the level difference is about 70 [dB].
  • the signal level of the bulk wave is increased. This is because, as described with reference to FIG. 6, the bulk wave is reflected on the reflection surface 36 ⁇ / b> A of the groove 30 and the signal level returning to the comb-shaped electrode 26 is increased. For this reason, when the reflective surface 36A satisfies the relational expression (3) described above, the level difference between the bulk wave s401 and the slip surface acoustic wave s402 can be increased.
  • FIG. 10 is a diagram for explaining the reflection by the end of the groove 30.
  • a point 401 represents the end of the reflective surface (fourth surface) 36 ⁇ / b> A in the groove 30.
  • a curve s421 represents a bulk wave
  • an arrow s422 and an arrow s423 represent a bulk wave newly generated by the end 401.
  • Reference numeral 36 ⁇ / b> B represents a surface provided in contact with the bulk wave propagation portion 34 so as to face the reflection surface 36 ⁇ / b> A
  • reference numeral 36 ⁇ / b> C represents a bottom surface (third surface) of the groove portion 30.
  • FIG. 10 in addition to the bulk wave s113 that passes between the bottom surface 36C of the groove portion 30 and the lower surface of the piezoelectric substrate 24 and is reflected by the end portion (second surface) 28, it is reflected by the reflection surface 36A of the groove portion 30.
  • the bulk wave s421 reflected by the end 401 of the reflecting surface 36A is not simply reflected by the end 401, but generates a new bulk wave as indicated by arrows s422 and s423. Since the newly generated bulk waves s422 and s423 arrive at the comb-shaped electrode 26 with a delay, the signal level of the bulk wave s401 increases after about 3 [ ⁇ s] as shown in FIG. Yes. For this reason, in 4th Embodiment, the isolation
  • FIG. 11 is a diagram illustrating the shape of the groove 30a according to the fourth embodiment.
  • the direction in which the surface acoustic wave propagates is the X direction
  • the direction perpendicular to the direction in which the surface acoustic wave propagates is the Y direction
  • the thickness direction of the piezoelectric substrate 24 is the Z direction.
  • FIG. 11 is a diagram of an example in which the groove portion 30a of the fourth embodiment is applied to the device characteristic measuring apparatus 10 shown in FIG. 1A of the first embodiment, but the device to be measured of the second and third embodiments.
  • the present invention is also applicable to the measurement object characteristic measuring devices 46 and 78.
  • H is the thickness of the piezoelectric substrate 24 in the Z direction. As shown in FIG.
  • the groove (reflecting part) 30a includes a side surface (fourth surface) 36Aa and a side surface 36Ba having a depth d in the Z direction, and a semicircular curved surface (third surface) 36Ca having a diameter w, for example. (At least part of the third surface is a curved surface).
  • the depth d of the side surface 36Aa is not less than ⁇ / 2 and not more than H / 2, as in the first embodiment.
  • the side surface 36Ba may be formed substantially parallel to the side surface 36Aa.
  • the depth d ′ in the Z direction of the curved surface 36Ca is, for example, w / 2.
  • the total depth of the groove 30a is a maximum d + d ′.
  • the bottom surface 36Ca of the groove 30a in the surface acoustic wave element 12a is not a shape substantially parallel to the bottom surface of the piezoelectric substrate 24 like the bottom surface 36C (see FIG. 6) of the first to third embodiments, but a curved surface. Have. For this reason, the position of the bottom surface 36Ca differs in the X direction for each position in the Z direction. More specifically, the position in the X direction is different for each position in the Z direction.
  • the groove part 30a be formed in a substantially semicircle by a convex polygon.
  • the side surface 36Aa corresponds to the reflecting surface 36 of the first embodiment.
  • FIG. 12 is a diagram illustrating an example of actual measurement values when the groove 30a illustrated in FIG. 11 is provided.
  • the horizontal axis represents time
  • the vertical axis represents the signal level.
  • a curve s451 is a characteristic of the bulk wave with respect to time versus signal level
  • a curve s452 is a characteristic of the slip surface acoustic wave with respect to time against signal level.
  • FIG. 12 shows measured values when the depth d + d ′ of the groove 30a in FIG. 11 is 0.06 [mm].
  • the level difference between the bulk wave s451 and the slip surface acoustic wave s452 is about 70 [ dB].
  • FIG. 12 shows measured values when the depth d + d ′ of the groove 30a in FIG. 11 is 0.06 [mm].
  • the signal level of the bulk wave s401 has increased since about 3 [ ⁇ s], but in the fourth embodiment, as shown in FIG. 12, the bulk wave s451 is passed even after about 3 [ ⁇ s]. Level does not rise.
  • the measured values shown in FIG. 12 are the same in FIG. 8 having the same depth of 0.06 [mm] and in FIG. Compared with, the signal level of the bulk wave is reduced.
  • the groove 30a included in the surface acoustic wave element 12a according to the fourth embodiment has the side surface 36Aa perpendicular to the XY plane, like the groove 30 described in the first to third embodiments.
  • the bottom surface has a curved surface 36Ca.
  • 13 and 14 are modifications of the groove portion according to the fourth embodiment.
  • 13 and 14 are part of a cross-sectional view of the surface acoustic wave element in the XZ plane.
  • the thickness of the piezoelectric substrate in the Z direction is H.
  • the groove part (reflecting part) 30b of the surface acoustic wave element 12b includes a side face 36Ab and a side face 36Bb having a depth d in the Z direction, a slope 36Cb1 (third face), and a slope 36Cb2 (third face). ).
  • the inclined surface 36Cb1 is a flat surface that is inclined at an angle ⁇ 1 with respect to the side surface 36Ab and is in contact with the side surface 36Ab at one end (end portion 411, first end).
  • the slope 36Cb2 is a flat surface that is inclined at an angle ⁇ 1 with respect to the side surface 36Bb and that is in contact with the side surface 36Bb at one end (first end).
  • the other end (the end portion 412 and the second end) of the slope 36Cb1 is in contact with the other end of the slope 36Cb2.
  • the depth d of the side surface 36Ab is not less than ⁇ / 2 and not more than H / 2, as in the first embodiment.
  • the depth of the groove 30b in the Z direction is a maximum d + d ′. That is, at least one part of the slope of the groove 30b is a slope formed at a predetermined angle with respect to the normal direction of the first surface of the piezoelectric substrate.
  • the cross-sectional shape of the groove portion 30 b is a convex polygon that protrudes from the surface layer portion of the piezoelectric substrate 24 toward the inside of the piezoelectric substrate 24.
  • the cross-sectional shape of the groove 30b is a pentagon.
  • the case where the depths of the side surface 36Ab and the side surface 36Bb are the same has been described, but the depths may be different.
  • the depth d of the side surface 36Ab may be not less than ⁇ / 2 and not more than H / 2.
  • the angle ⁇ 1 formed by the side surface 36Ab and the inclined surface 36Cb1 and the angle ⁇ 1 formed by the side surface 36Bb and the inclined surface 36Cb2 may be the same or different.
  • the groove part 30b is formed in the convex polygon.
  • the groove portion (reflecting portion) 30c of the surface acoustic wave element 12c includes a side surface 36Ac having a depth d in the Z direction, a side surface 36Bc having a depth d + d ′ in the Z direction, and a slope 36Cc1 (third surface). ) And a bottom surface 36Cc2.
  • the slope 36Cc1 is a plane that is inclined at an angle ⁇ 2 with respect to the side surface 36Ac, and is in contact with the side surface 36Ac at one end (end portion 421, first end).
  • the bottom surface 36Cc2 is in contact with the inclined surface 36Cc1 at the other end (end portion 422, second end) of the inclined surface 36Cc1, the other end of the bottom surface 36Cc2 is in contact with the lower end of the side surface 36Bc, and the bottom surface 36Cc2 is a piezoelectric substrate. It is parallel to the lower surface of 24.
  • the depth d of the side surface 36Ac is not less than ⁇ / 2 and not more than H / 2, as in the first embodiment. Further, the depth of the groove 30c in the Z direction is a maximum d + d ′.
  • the cross-sectional shape of the groove 30 c is a convex polygon that protrudes from the surface layer portion of the piezoelectric substrate 24 toward the inside of the piezoelectric substrate 24.
  • It is a convex polygon (hereinafter referred to as a convex polygon).
  • the cross-sectional shape of the groove 30c is a pentagon.
  • the example in which the groove 30c has the bottom surface 36Cc2 has been described, but the bottom surface 36Cc2 may not be provided.
  • the other end of the slope 36Cc1 may be in contact with the lower end of the side surface 36Bc.
  • the groove part 30c is formed in the convex polygon.
  • the groove 30 b has an end 411 and an end 412. For this reason, a new bulk wave is generated by these end portions.
  • the groove 30 c has an end 421 and an end 422. For this reason, a new bulk wave is generated by these end portions.
  • the groove portion 30b of the fourth embodiment has a slope 36Cb1 continuous to the side surface 36Ab of the depth d.
  • the groove part 30c of 4th Embodiment has the slope 36Cc1 which follows the side surface 36Ac of the depth d.
  • the bulk wave is reflected not only at the end portions (411 and 412 or 421 and 422) described above but also at each position of the inclined surface 36Cb1 or 36Cc1.
  • the slope 36Cb1 or 36Cc1 is different in each position on the XZ plane of the slope, like the bottom face 36Ca shown in FIG. Therefore, in this embodiment, the comb-shaped electrode 24 receives the bulk waves reflected at each position in addition to the new bulk waves generated at the end portions 411, 412, 421, and 422 at different times.
  • the bottom surface 36Ca is a curved surface
  • the bulk wave received by the comb electrode 24 is dispersed in the time direction. Therefore, according to the surface acoustic wave element 12b or 12c including the groove 30b or 30c of FIG. 13 or FIG. 14, the signal level due to the bulk wave can be reduced.
  • the comb electrode 24 receives a signal based on a slip surface acoustic wave reflected by a side surface (36Aa, 36Ab, or 36Ac).
  • the comb-shaped electrode 24 receives a signal based on a bulk wave reflected by the side surface (36Aa, 36Ab, or 36Ac), the bottom surface 36Ca or the slope (36Cb1, or 36Cc1), and the end portion 28.
  • the bulk wave reflected by the bottom surface 36Ca or the inclined surface (36Cb1 or 36Cc1) and the end portion 28 is dispersed and received.
  • the bulk wave can be dispersed, so that the influence of the newly generated bulk wave can be reduced.
  • the bulk wave can be further reduced as compared with the first to third embodiments, the bulk wave can be separated from the slip surface acoustic wave.
  • the physical characteristics of the object to be measured can be obtained with high accuracy by using the slip surface acoustic wave thus separated from the bulk wave.
  • FIG. 15 is a plan configuration diagram of an object characteristic measuring apparatus 10a including the surface acoustic wave element 12a according to the fifth embodiment.
  • 16A is a cross-sectional view of the surface acoustic wave element 12a shown in FIG. 15 taken along the line IB-IB.
  • FIG. 16B is an enlarged cross-sectional view showing a portion indicated by reference symbol A in FIG. 16A and is an enlarged view of a portion including the reflection portion 500.
  • the device-to-be-measured characteristic measuring apparatus 10a measures physical properties of the object to be measured.
  • the device characteristic measuring apparatus 10a includes a surface acoustic wave element 12a, a measuring unit 20a including an oscillator 14a, a distributor 16a, a switch 17a, and an elastic wave detector 18a, and a processing unit 22 including a personal computer. Is provided.
  • the measurement unit 20a has the same function as the measurement unit 20 of the first embodiment.
  • the surface acoustic wave element 12a includes a piezoelectric substrate 24, a comb electrode 26 formed on the piezoelectric substrate 24 to excite an acoustic wave, and an end portion of the piezoelectric substrate 24 in the propagation direction (arrow X direction) of the comb electrode 26 and the acoustic wave. 28, a reaction part 32 formed between the comb-shaped electrode 26 and the reflection parts 501 to 503 and loaded with an object to be measured, the reflection parts 501 to 503 and the end part 28. And a bulk wave propagation part 34 through which a bulk wave is formed.
  • the reflection unit 500 includes reflection units 501 to 503.
  • the surface acoustic wave element 12a of this embodiment is different from that of the first embodiment in that it includes reflection portions 501 to 503. Further, in FIGS. 15, 16A, and 16B, the propagation direction of the elastic wave is defined as the X direction, and the direction orthogonal to the propagation direction of the surface acoustic wave is defined as the Y direction.
  • the reflecting portions 501 to 503 are formed so as to extend from one end (first substrate end) of the piezoelectric substrate 24 to the other end (second substrate end) in the Y direction.
  • the reflecting portions 501 to 503 have a wall having a height h (see FIGS. 16A and 16B) substantially perpendicular to the surface of the piezoelectric substrate 24 through which the elastic wave propagates.
  • the wall height h of the reflectors 501 to 503 is determined according to the wavelength ⁇ of the surface acoustic wave.
  • the reflection part 501 is formed in the X direction at a distance L11 from the reaction field 32. Further, the width in the X direction of the reflecting portion 501 is L12.
  • the reflecting portion 501 has a surface 511 (third surface) in the X direction, and has a reflecting surface 521 (fourth surface) having a height h from the surface of the piezoelectric substrate 24.
  • the reflecting portion 502 is formed in the X direction at a distance L13 from the reflecting portion 501.
  • the width in the X direction of the reflecting portion 502 is L14.
  • the reflecting portion 502 has a surface 512 (third surface) in the X direction, and has a reflecting surface 522 (fourth surface) having a height h from the surface of the piezoelectric substrate 24.
  • the reflection part 503 is formed in the X direction at a distance L15 from the reflection part 502. Further, the width in the X direction of the reflecting portion 503 is L16.
  • the reflecting portion 503 has a surface 513 (third surface) in the X direction, and has a reflecting surface 523 (fourth surface) having a height h from the surface of the piezoelectric substrate 24.
  • the surface acoustic wave propagates through the surface layer portion of the piezoelectric substrate 24 and is reflected by the surfaces 521 to 523 of the reflecting portions 501 to 503, and then propagates through the reaction field 32 again and is received by the comb electrode 26.
  • the distances L11, L13, and L15 may be the same or different.
  • the widths L12, L14 and L16 may be the same or different.
  • the heights h of the reflecting surfaces 521 to 522 of the reflecting portions 501 to 503 may be the same or different.
  • FIG. 16A, and FIG. 16B show an example in which the surface acoustic wave element 12a includes three reflecting portions, but the number of reflecting portions may be one or more.
  • the processing unit 22 switches the switch 17a so that the terminal 1 and the terminal 3 are connected.
  • the distributor 16a supplies the high frequency oscillation signal to the comb electrode 26 via the switch 17a.
  • the comb electrode 26 is excited by an elastic wave based on the supplied high-frequency oscillation signal.
  • the elastic wave is propagated in the direction of the arrow X along the reaction field 32 where the object to be measured is dropped.
  • the slip surface acoustic wave which is a surface acoustic wave, propagates through the surface layer portion of the piezoelectric substrate 24 and is reflected by the reflecting surfaces 521 to 523 of the reflecting portions 501 to 503, and then again.
  • the bulk wave propagates through the bulk wave propagation part 34 and the reaction field 32 inside the piezoelectric substrate 24 and reaches the end part 28 of the piezoelectric substrate 24.
  • the bulk wave is reflected by the end portion 28, propagates again through the bulk wave propagation unit 34 and the reaction field 32, and is received by the comb electrode 26.
  • the processing unit 22 switches the switch 17a so that the terminal 2 and the terminal 3 are connected.
  • the surface acoustic wave and bulk wave received by the comb electrode 26 are converted into a surface acoustic wave signal and a bulk wave signal, and then supplied to the acoustic wave detector 18a.
  • the acoustic wave detector 18a detects, for example, a surface acoustic wave signal generated by reflection of the reflection unit 502 located at the center of three of the reflection units 501 to 503.
  • the elastic wave detector 18a may detect the surface acoustic wave signal by the reflection of the reflecting part arranged at the center in the reflecting parts 501 to 503.
  • the elastic wave detector 18a is the second reflection arranged at the center of the four reflection parts.
  • the detection may be performed using a surface acoustic wave signal from the part or the third reflection part.
  • the surface acoustic wave propagates through the reaction field 32, is reflected by the reflecting surfaces (521 to 523) of the reflecting unit 500, and is reflected by the comb electrode 26.
  • the bulk wave propagates from the reaction field to the bulk wave propagation portion 34 and is reflected by the end portion 28 of the piezoelectric substrate 24
  • the bulk wave is delayed by a predetermined time from the surface acoustic wave and then comb-shaped electrodes. 26 is received. Therefore, the signal based on the bulk wave can be separated from the signal based on the elastic wave using this delay time, and the signal based on the surface acoustic wave can be extracted. Therefore, the physical characteristics of the object to be measured can be obtained with high accuracy based on the signal from the surface acoustic wave.
  • the reflective portion 500 may be applied instead of the groove portion 64 of FIG. 4 and the groove portion 64 of FIG. 16A and 16B show examples in which the shapes of the surfaces 511 to 513 of the reflecting portions 501 to 503 are substantially planar with the piezoelectric substrate 24, but the present invention is not limited to this example.
  • the shapes of the surfaces 511 to 513 of the reflecting portions 501 to 503 may be other shapes such as a semicircle and a slope.
  • the groove portion 64 formed in the surface acoustic wave element 44 of the second embodiment and the surface acoustic wave element 76 of the third embodiment is covered with the resin 42 in the same manner as shown in FIG. Even when a part of the object to be measured is dropped, the physical characteristics of the object to be measured can be obtained with high accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 本発明の被測定物特性測定装置は、圧電基板上の第1面に形成され弾性波を励振させ弾性波に基づく反射を受信する櫛形電極と、櫛形電極と弾性波の伝搬方向における第1面に直交する第2面との間に第1面の法線方向に第1面と異なる位置に形成される第3面と、第1面の法線方向に垂直に形成される第1面の端部と第3面とを結ぶ第4面とを有する反射部と、櫛形電極と反射部との間に形成され被測定物が負荷される反応場と、反射部と第2面との間に形成されている伝搬部とを備える弾性表面波素子を備え、櫛形電極から反応場を伝搬し第4面により反射され櫛形電極により受信された弾性波から、第2面により反射され櫛形電極により受信された弾性表面波に含まれるバルク波から分離した弾性表面波に基づき被測定物の特性を求める。

Description

被測定物特性測定装置
 本発明は、圧電基板上に形成され弾性表面波を励振させる櫛形電極と、前記櫛形電極と前記弾性表面波の伝搬方向における前記圧電基板の端部との間に被測定物が負荷される反応場とが形成される弾性表面波素子を備えた被測定物特性測定装置に関する。
 本願は、2011年12月22日に出願された特願2011-281603号及び2012年10月19日に出願された特願2012-232060号に基づき優先権を主張し、その内容をここに援用する。
 一般に、弾性表面波素子は、圧電基板と、前記圧電基板上に設けられた櫛歯状電極指からなる送信電極及び受信電極とを備えている。このように構成される弾性表面波素子では、送信電極に電気信号が供給されると、電極指間に電界が発生し、圧電効果により弾性表面波が励振され、その弾性表面波が圧電基板上を伝搬して受信電極を励振させ、電気信号に変換される。この弾性表面波のうち、圧電基板の表面に平行に偏波するすべり弾性表面波(SH-SAW:Shear horizontal Surface Acoustic Wave)を利用し、各種物質の検出や物性値等の測定を行うための弾性表面波センサが研究されている(特許文献1)。
 弾性表面波センサでは、圧電基板上に負荷された被測定物の領域が電気的に開放されている場合と短絡されている場合とで、受信電極で得られる信号の特性に差異があることを利用し、被測定物の物理的特性として誘電率、導電率を求めることができる。また、圧電基板上の送信電極と受信電極との間の伝搬路上に凹凸構造を形成し、その凹部に被測定物を負荷すると、負荷された被測定物は擬似的に膜を形成する。この膜が圧電基板とともに励振し、膜の質量に基づいて共振周波数が変化する質量負荷効果を利用して、被測定物の密度を求めることができる(特許文献2)。
 一方、特許文献1、2の弾性表面波センサは、送信電極及び受信電極が圧電基板上に形成されているが、弾性表面波の反射を利用した1つの送受信電極からなる弾性表面波センサが知られている(特許文献3)。この弾性表面波センサでは、送受信電極で励振された弾性波は、被測定物が負荷された反応場を伝搬した後、圧電基板の端部で反射され、再び送受信電極に入力される。この信号に基づき、被測定物の物理的特性を測定することができる。この場合、弾性表面波素子を1つの送受信電極で構成することにより、弾性表面波素子を小型に構成することができる。
日本国特許第3481298号公報 日本国特許第3248683号公報 日本国特開2009-300302号公報
 ところで、弾性波には、圧電基板の表面に沿って伝搬する弾性表面波と、圧電基板の内部を伝搬するバルク波とが含まれている。特許文献3に開示された構成からなる弾性表面波センサの場合、送受信電極で励振された弾性表面波及びバルク波を含めた弾性波が、圧電基板の端部で反射され、共に送受信電極に入力される。従って、得られた信号には、弾性表面波に基づく信号と、バルク波に基づく信号とが混在しているため、被測定物の物理的特性を高精度に求めることができない場合がある。
 本発明は、前記の不具合を解消するためになされたものであって、弾性波による信号からバルク波による信号を分離し、弾性表面波による信号に基づき、被測定物の物理的特性を高精度に求めることのできる被測定物特性測定装置を提供することを目的とする。
 本発明の一態様に係る被測定物特性測定装置は、圧電基板上の第1面に形成され、弾性波を励振させ、前記弾性波に基づく反射を受信する櫛形電極と、前記櫛形電極と前記弾性波の伝搬方向における前記圧電基板の前記第1面に直交する第2面との間に、前記第1面の法線方向に前記第1面と異なる位置に形成される第3面と、前記第1面の法線方向に垂直に形成される前記第1面の端部と前記第3面とを結ぶ第4面とを有する反射部と、前記櫛形電極と前記反射部との間に形成され被測定物が負荷される反応場と、前記反射部と前記第2面との間に形成されている伝搬部と、を備える弾性表面波素子を備え、前記櫛形電極から前記反応場を伝搬し、前記反射部の前記第4面により反射され、前記櫛形電極により受信された前記弾性波に含まれる前記圧電基板の表面を伝搬する弾性表面波を、前記圧電基板の前記第2面により反射され、前記櫛形電極により受信された前記弾性波に含まれる前記圧電基板の内部を伝搬するバルク波から分離して抽出し、抽出した前記弾性表面波に基づき、前記被測定物の特性を求める。
 また、本発明の一態様に係る前記被測定物特性測定装置において、前記圧電基板の前記表面から前記圧電基板の内部に向かう方向における前記反射部が有する壁の高さdは、次式の関係を満たす値であることが好ましい。
  λ/2≦d≦H/2
    λ:前記弾性波の波長
    H:前記圧電基板の厚さ
 また、本発明の一態様に係る前記被測定物特性測定装置において、前記櫛形電極は、複数の電極指をN(Nは1以上の整数)対、備え、前記反射部の前記第4面から前記圧電基板の前記端部までの距離L2は、次式の関係を満たす値であることが好ましい。
  L2≧N×λ/2
    λ:前記弾性波の波長
    N:前記櫛形電極を構成する複数の電極指の対の数
 また、本発明の一態様に係る前記被測定物特性測定装置において、前記反射部が有する前記第3面は、前記圧電基板の前記第1面に対して平行であることが好ましい。
 また、本発明の一態様に係る前記被測定物特性測定装置において、前記反射部が有する前記第3面の少なくとも1部は、曲面であることが好ましい。
 また、本発明の一態様に係る前記被測定物特性測定装置において、前記反射部が有する前記第3面の少なくとも1部は、前記圧電基板の前記第1面の法線方向に対して所定角度傾斜して形成されている斜面であることが好ましい。
 また、本発明の一態様に係る前記被測定物特性測定装置において、前記反射部には、前記圧電基板の前記第1面から突出しない範囲で樹脂が充填されることが好ましい。
 また、本発明の一態様に係る前記被測定物特性測定装置において、前記圧電基板には、前記弾性波の伝搬方向に対して垂直方向に複数の前記櫛形電極が形成されるとともに、前記各櫛形電極と前記反射部の前記第3面との間に、前記各櫛形電極に対応する複数の前記反応場が形成されることが好ましい。
 本発明の被測定物特性測定装置では、弾性表面波は、反応場を伝搬し、反射部の反射面により反射されて櫛形電極で受信されるのに対して、バルク波は、反応場からバルク波伝搬部に伝搬し、圧電基板の端部で反射された後、弾性表面波よりも所定時間だけ遅延して櫛形電極で受信される。そのため、この遅延時間を利用して弾性波に基づく信号からバルク波に基づく信号を分離し、弾性表面波による信号を抽出することができる。従って、弾性表面波による信号に基づき、被測定物の物理的特性を高精度に求めることができる。
 また、反射部の延在方向に複数の櫛形電極を形成するとともに、各櫛形電極と反射部との間に、各櫛形電極に対応する複数の反応場を形成することにより、複数の被測定物の物理的特性を同時に高精度に求めることができる。
本発明の第1実施形態の弾性表面波素子を備えた被測定物特性測定装置の平面構成図である。 図1Aに示す弾性表面波素子のIB-IB線断面図である。 本発明の第1実施形態の弾性表面波素子の櫛形電極によるすべり弾性表面波信号及びバルク波信号の受信時間と信号レベルとの関係説明図である。 本発明の第1実施形態の弾性表面波素子に形成される溝部の変形例の部分拡大断面図である。 本発明の第2実施形態の弾性表面波素子を備えた被測定物特性測定装置の平面構成図である。 本発明の第3実施形態の弾性表面波素子を備えた被測定物特性測定装置の平面構成図である。 本発明の第1実施形態におけるすべり弾性表面波信号及びバルク波信号の伝搬を説明する図である。 弾性表面波素子を備えた被測定物特性測定装置のIB-IB線断面図である。 本発明の第1実施形態における溝部の深さが0.06[mm]の場合の実測値の一例を示す図である。 本発明の第1実施形態における溝部の深さが0.01[mm]の場合の実測値の一例を示す図である。 本発明の第4実施形態における溝部の形状を説明する図である。 本発明の第4実施形態に係る溝部の形状を説明する図である。 図11に示した溝部を備える場合の実測値の一例を示す図である。 本発明の第4実施形態に係る溝部の変形例である。 本発明の第4実施形態に係る溝部の変形例である。 本発明の第5実施形態の弾性表面波素子を備えた被測定物特性測定装置の平面構成図である。 図15に示す弾性表面波素子のIB-IB線断面図である。 図16Aの符号Aで示された部分を示す拡大断面図である。
 以下、本発明の実施形態について図面を参照して説明する。
<第1実施形態の構成>
 図1Aは、第1実施形態の弾性表面波を備えた被測定物特性測定装置の平面構成図、図1Bは、図1Aに示す弾性表面波素子のIB-IB線断面図である。
 被測定物特性測定装置10は、例えば液体状の被測定物の物理的特性を測定する。被測定物特性測定装置10は、弾性表面波素子12と、発振器14、分配器16、スイッチ17及び弾性波検出器18から構成される測定部20と、パソコン等で構成される処理部22とを備える。
 弾性表面波素子12は、圧電基板24と、圧電基板24上に形成され弾性波を励振させる櫛形電極26と、櫛形電極26と弾性波の伝搬方向(矢印X方向)における圧電基板24の端部28との間に形成される溝部(反射部)30と、櫛形電極26と溝部30との間に形成され被測定物が負荷される反応場32と、溝部30と端部28との間に形成されるバルク波が伝搬するバルク波伝搬部34(伝搬部)とを備える。
 弾性波(elastic wave)は、弾性表面波(SAW:Surface Acoustic Wave)、バルク波等の各種の波を含む。なお、弾性表面波は、圧電基板の表面に沿って伝搬する波であり、バルク波は、圧電基板の内部を伝搬する波である。また、被測定物が液体の場合、弾性表面波は、すべり弾性表面波(SH-SAW:Shear horizontal Surface Acoustic Wave)である。第1実施形態では、弾性表面波の例としてすべり弾性表面波を用いて説明する。第1実施形態では、すべり弾性表面波は、圧電基板24の表層部分(第1面)を伝搬し、すべり弾性表面波の一部が溝部(反射部)30の反射面(第4面)36で反射され、すべり弾性表面波の残りが図1Bにおける溝部30の底面(第3面)と圧電基板24の下面との間を通過する。また、バルク波は、圧電基板24の全体に伝搬し、バルク波の一部が溝部30の反射面36で反射され、バルク波の残りが図1Bにおける溝部30の底面と圧電基板24の下面との間を通過し、バルク波伝搬部34を伝搬した後、圧電基板24の端部(第2面)28で反射される。ここで、図1A及び図1Bに示すように、溝部30が有する底面は、圧電基板24の表層部分に対して平行である。
 圧電基板24は、弾性表面波を伝搬させることができる機能を有していれば、圧電基板24の構造は特に限定されないが、36°回転Y板X伝搬LiTaO(タンタル酸リチウム単結晶)であることが好ましい。
 櫛形電極26は、極性の異なる複数対の電極指27a、27bを弾性表面波の波長λの間隔で伝搬方向にN対が配列して構成される(例えば、図1Aでは4対)。櫛形電極26は、発振器14で生成された高周波発振信号(例えば、中心周波数が250MHz)に基づいて弾性表面波を励振させ、反応場32に伝搬させる。櫛形電極26は、反応場32を伝搬して溝部30の反射面36により反射され、反応場32を介して戻ってきたすべり弾性表面波を受信する。また、櫛形電極26は、反応場32からバルク波伝搬部34に伝搬して圧電基板24の端部28により反射され、バルク波伝搬部34及び反応場32を介して戻ってきたバルク波を受信する。櫛形電極26は、被測定物が付着することで測定精度が低下することを回避するため、樹脂又はガラス等の封止部材38により密閉される。
 溝部30は、弾性表面波の伝搬方向と直交する方向(矢印Y方向)に配置されている。溝部30は、弾性表面波の伝搬方向と直交する方向に圧電基板24の一方の端(第一基板端)から他端(第二基板端)に延在するように形成されている。溝部30は、弾性表面波が伝搬する圧電基板24の表面に略垂直な反射面36を有している。このように、溝部30の断面形状は、圧電基板24の表層部分から圧電基板24の内部に向けて突出するような凸状の多角形である。換言すると、溝部30の反射面36と、底面と、バルク波伝搬部34の表面と同一平面であって溝部30を閉じるように延長された仮想線とによって囲まれた形状が凸状の多角形である(以下、凸多角形と称する)である。本実施形態では、溝部30の断面形状が四角形である。反射面36は、すべり弾性表面波を櫛形電極26に向けて反射する。溝部30の圧電基板24の表面から圧電基板24の内部に向かう方向における深さd(図1B参照、反射部が有する壁の高さd)は、被測定物特性測定装置10の設計者により次式の関係を満たす値が選択される。
  λ/2≦d≦H/2
    λ:弾性表面波の波長
    H:圧電基板24の厚さ
 反応場32には、圧電基板24上に蒸着された金属膜40が形成される。金属膜40は、電気的に短絡された短絡伝搬路を構成する。金属膜40の材料は、特に限られないが、反応場32に滴下される被測定物に対して化学的に安定している金を用いることが好ましい。
 バルク波伝搬部34は、バルク波が伝搬される領域であり、溝部30の反射面36から圧電基板24の端部28までの距離L2は、被測定物特性測定装置10の設計者により次式の関係を満たす値が選択される。
  L2≧N×λ/2
  λ:弾性表面波の波長
  N:電極指27a、27bの対の数
 測定部20を構成する発振器14は、高周波発振信号を生成する。分配器16は、高周波発振信号を櫛形電極26に供給するとともに、弾性波検出器18に供給する。弾性波検出器18は、分配器16で分配された高周波発振信号と、櫛形電極26により受信された弾性表面波に基づく信号との振幅比、位相差及び伝搬遅延差を検出し、検出した振幅比、位相差及び伝搬遅延差に基づく信号を処理部22に出力する。処理部22は、弾性波検出器18から供給される信号に基づき、被測定物の物理的特性を求める。また、処理部22は、所定のタイミングで、スイッチ17の端子1と端子3との接続、または端子2と端子3との接続を切り替える。なお、物理的特性とは、例えば、被測定物の粘度、密度等である。処理部22は、例えば、反応場32に何も滴下されていない状態のとき、供給された信号の周波数変化、位相変化を求める。反応場32にまず何も滴下しない場合、被測定物は空気である。次に、反応場32に被測定物が滴下されている状態のとき、供給された信号の周波数変化、位相変化を求める。処理部22は、この2つの測定データの算出することで、滴下された被測定物の粘度や密度等を算出する。
<第1実施形態による測定処理>
 第1実施形態に係る被測定物特性測定装置10は、基本的には以上のように構成される。次に、被測定物特性測定装置10を用いた被測定物の物理的特性の測定処理について、図1A、図1B、及び図6を用いて説明する。図6は、第1実施形態におけるすべり弾性表面波信号及びバルク波信号の伝搬を説明する図である。図6は、図1Bと同様に、図1Aに示す弾性表面波素子のIB-IB線断面の一部を示している。図6において、曲線s111は、すべり弾性表面波信号を表し、曲線s112及びs113は、バルク波信号を表している。
 先ず、測定者は、被測定物を弾性表面波素子12の反応場32に滴下する。この場合、櫛形電極26は、封止部材38によって密閉されているため、櫛形電極26に被測定物が付着することで測定精度が低下する事態を回避することができる。なお、被測定物としては、液体状の被測定物であれば、例えば、純液、混合液のいずれであってもよく、メタノール、エタノール等のアルコールの物理的特性を測定する場合に特に有効である。また、被測定物に抗原、抗体、バクテリア等が含まれる状態においても、物理的特性を測定できる。
 次に、発振器14でバースト的に生成された高周波発振信号は、分配器16で分配され、櫛形電極26及び弾性波検出器18に同一信号が供給される。櫛形電極26では、供給された高周波発振信号に基づいて弾性波が励振される。弾性波は、被測定物の滴下された反応場32に沿って矢印X方向に伝搬される。
 この場合、反応場32を伝搬する弾性波のうち、すべり弾性表面波s111は、圧電基板24の表層部分を伝搬し、一部が溝部30の反射面36(反射面36A(図6))によって反射された後、再度、反応場32を伝搬し、櫛形電極26で受信される。
 また、反応場32を伝搬する弾性波のうち、バルク波(s112、s113)は、圧電基板24の全体に伝搬し、図6に示すように一部(s113)が溝部30の底面と圧電基板24の下面との間を通過してバルク波伝搬部34を伝搬し、圧電基板24の端部28に到達する。次いで、このバルク波s113は、端部28によって反射された後、再度、バルク波伝搬部34及び反応場32を伝搬し、櫛形電極26で受信される。
 ここで、すべり弾性表面波を高精度に検出するため、溝部30の深さdは以下のように被測定物特性測定装置10の設計者が選択する。すべり弾性表面波は、圧電基板24の表層部分に沿って伝搬する波である。このため、溝部30の深さdを、次式(1)の関係を満たす値
  λ/2≦d                (1)
    λ:弾性波の波長
に選択することにより、弾性表面波素子12は、50%以上のすべり弾性表面波を溝部30の反射面36で反射させ、櫛形電極26で受信することができる。
 一方、バルク波は、圧電基板24の全体に伝搬する波である。このため、溝部30の深さdが圧電基板24の厚さHの半分以下となるように、次式(2)の関係を満たす値
  d≦H/2                (2)
に選択することにより、弾性表面波素子12は、溝部30の反射面36によるバルク波の反射を50%以下に抑え、残りのバルク波を溝部30の底面と圧電基板24の下面との間からバルク伝搬部34に伝搬させることができる。
 従って、設計者は、溝部30の反射面36によって反射されるすべり弾性表面波を高精度に検出するために、(1)、(2)式から、溝部の深さdを、次式(3)の関係を満たす値
    λ/2≦d≦H/2          (3)
に選択する。
 また、溝部30の反射面36によって反射されるすべり弾性表面波と、バルク波伝搬部34を伝搬し、圧電基板24の端部28によって反射されたバルク波とを時間的に分離して検出するため、設計者は、バルク波伝搬部34の距離L2を以下のように設定する。すなわち、櫛形電極26を構成する極性の異なる複数対の電極指27a、27bの間隔は、弾性波の波長λであり、電極指27a、27bの対の数をNとすると、櫛形電極26の幅は、(N×λ)である(ただし、Nは1以上の整数)。すべり弾性表面波とバルク波とを確実に分離するために、設計者は、すべり弾性表面波が溝部30の反射面36で反射されて櫛形電極26に戻るまでの時間t1と、バルク波が圧電基板24の端部28で反射されて櫛形電極26に戻るまでの時間t2との時間差(t2-t1)を、次式(4)の関係を満たす値
  t2-t1≧N×λ/v          (4)
    v:弾性波の伝搬速度
に選択する。この時間差(t2-t1)は、バルク波が距離L2の伝搬部36を往復するのに要する時間であるから、次式(5)
  t2-t1=2×L2/v         (5)
である。
 従って、受信した弾性波からバルク波を時間的に分離し、すべり弾性表面波を高精度に検出するために、設計者は、(4)、(5)式から、伝搬部36の距離L2を、次式(6)の関係を満たす値
  L2≧N×λ/2             (6)
に選択する。
 櫛形電極26により受信されたすべり弾性表面波及びバルク波は、すべり弾性表面波信号及びバルク波信号に変換された後、弾性波検出器18に供給される。図2は、第1実施形態の弾性表面波素子12の櫛形電極26によるすべり弾性表面波信号及びバルク波信号の受信時間と信号レベルとの関係説明図である。図2において、横軸は時間を表し、縦軸は信号レベルを表している。弾性波検出器18は、分配器16から供給された高周波発振信号と、受信した信号との振幅比、位相差及び伝搬遅延差を検出し、当該検出された振幅比、位相差及び伝搬遅延差に基づく信号を処理部22に出力する。処理部22は、弾性波検出器18から供給されたこれらの信号のうち、すべり弾性表面波信号に対して所定時間遅延しているバルク波信号を分離し、すべり弾性表面波信号に係る信号に基づき、被測定物の物理的特性を求める。図2において、時間t1を中心に分離されている信号s101がすべり弾性表面波信号であり、このすべり弾性表面波信号より遅延した時間t2を中心に分離されている信号s102がバルク波信号である。
 このように、第1実施形態の弾性表面波素子12を備えた被測定物特性測定装置10は、反応場32を伝搬し、溝部(反射部)30の反射面36によって反射された後、櫛形電極26に入力するすべり弾性表面波と、反応場32から溝部30の下部を通過してバルク波伝搬部34を伝搬し、圧電基板24の端部28によって反射された後、櫛形電極26に入力するバルク波との間に所定の時間差が生じるように構成されている。従って、処理部22は、弾性波検出器18より供給された信号から、すべり弾性表面波に基づく信号に対して所定時間遅延して供給されるバルク波に基づく信号を分離することができる。この結果、処理部22は、すべり弾性表面波に係る信号に基づいて、反応場32に滴下された被測定物の物理的特性を高精度に求めることができる。
 また、弾性表面波素子12は、すべり弾性表面波を溝部30の反射面36で反射させて往復させる一方、バルク波を圧電基板24の端部28で反射させて往復させ、単一の櫛形電極26ですべり弾性表面波及びバルク波を検出する構成としている。従って、被測定物の物理的特性を高精度に求めることのできる小型で安価な弾性表面波素子12を備えた被測定物特性測定装置10を得ることができる。
 図3は、第1実施形態の弾性表面波素子12に形成される溝部30の変形例の部分拡大断面図である。図3は、図1Bと同様に、図1Aに示す弾性表面波素子のIB-IB線断面の一部を示している。溝部30には、圧電基板24の表面から突出しない範囲で、樹脂42、例えば、エポキシ樹脂が充填される。なお、図3において、溝部30の深さは(3)式を満たす深さである。
 このように構成することにより、溝部30の反射面36によるすべり弾性表面波に対する音響(特性)インピーダンスの変化を抑制することができる。すなわち、溝部30に樹脂42を充填しない場合、溝部30に空気層があるときと、溝部30に液体状の被測定物が滴下されたときとでは、反射面36の音響(特性)インピーダンスが大きく異なる。従って、溝部30に被測定物が滴下されてしまうと、櫛形電極26により検出される信号レベルも大きく変化し、測定誤差が大きくなることが懸念される。これに対して、溝部30の一部に樹脂42を充填した場合、被測定物の一部が溝部30に滴下されるような事態が生じても、反射面36の音響(特性)インピーダンスの変化が小さい。このため、被測定物の滴下状態によって櫛形電極26により検出される信号レベルが異なってしまう事態を回避することができる。この結果、被測定物の物理的特性を安定した状態で高精度に求めることができる。
 なお、圧電基板24の表面から樹脂42が突出しないように樹脂42を溝部30に充填することにより、溝部30内の樹脂42上に被測定物が滴下された場合であっても、溝部30の反射面36により反射されるすべり弾性表面波に対する影響が少ない。このため、被測定物の物理的特性を高精度に求めることができる。
<第2実施形態の構成>
 図4は、第2実施形態の弾性表面波素子44を備えた被測定物特性測定装置46の平面構成図である。なお、弾性表面波素子44を構成する材料は、第1実施形態の弾性表面波素子12と同様である。
 被測定物特性測定装置46は、弾性表面波素子44と、発振器48、分配器50、弾性波検出器52、スイッチ53a及びスイッチ53bから構成される測定部54と、処理部56とを備える。なお、スイッチ53a及びスイッチ53bの端子1と端子3との接続、または端子2と端子3との接続の切替は、処理部56が行う。
 弾性表面波素子44は、圧電基板58上(第1面)に形成される2つの櫛形電極60a、60bと、櫛形電極60a、60bと圧電基板58の端部(第2面)62との間に形成される溝部(反射部)64と、各櫛形電極60a、60bと溝部64との間に、各櫛形電極60a、60bに対応して形成される反応場66a、66bと、溝部64と端部62との間に形成されるバルク波伝搬部68とを備える。
 2つの櫛形電極60a、60bは、溝部64の長手方向(矢印Y方向)に併設して形成され、櫛形電極26(図1A、図1B参照)と同様に樹脂又はガラス等の封止部材70a、70bにより密閉される。なお、櫛形電極60a及び60bは、各々、図1A、図1Bの櫛形電極26に相当し、各々が極性の異なる複数対の電極指27a及び27bに相当する複数対の電極指を有している。
 溝部64は、2つの櫛形電極60a、60bと弾性表面波の伝搬方向(矢印X方向)における圧電基板58の端部62との間に形成され、反射面36に対応する反射面(第4面)72が形成される。また、溝部64の断面は、例えば図1Bと同様であり、溝部の深さは符号dで示されている。溝部30の深さは(3)式を満たす深さである。
 反応場66a、66bは、各櫛形電極60a、60bと溝部64との間に、各櫛形電極60a、60bに対応して形成される。各反応場66a、66bには、圧電基板58上に蒸着された金属膜74a、74bが形成される。
 溝部64と端部62との間には、バルク波伝搬部34(図1A、図1B参照)と同様のバルク波伝搬部68が形成される。
 測定部54を構成する発振器48は、高周波発振信号を生成する。分配器50は、高周波発振信号を各櫛形電極60a、60bに供給するとともに、弾性波検出器52に供給する。弾性波検出器52は、分配器50で分配された高周波発振信号と、各櫛形電極60a、60bで受信した弾性表面波に基づく信号との振幅比、位相差及び伝搬遅延差を検出し、検出した振幅比、位相差及び伝搬遅延差に基づく信号を処理部56に出力する。処理部56は、弾性波検出器52から供給された信号に基づき、各反応場66a、66bに滴下された被測定物の物理的特性を求める。
 このように、第2実施形態の被測定物特性測定装置46は、第1組(櫛形電極60a、反応場66a)と、第2組(櫛形電極60b、反応場66b)とが、伝搬方向がX方向に平行になるように、並列して配置されている。
<第2実施形態による測定処理>
 このように構成される第2実施形態に係る測定装置46では、第1実施形態に係る測定装置10と同様にして、各反応場66a、66bに滴下された被測定物の物理的特性を測定することができる。
 すなわち、発振器48で生成された高周波発振信号は、分配器50で分配され、弾性表面波素子44の各櫛形電極60a、60b及び測定部54の弾性波検出器52に供給される。
 櫛形電極60aでは、供給された高周波発振信号に基づいて弾性波が励振され、すべり弾性表面波が被測定物の滴下された反応場66aに沿って矢印X方向に伝搬した後、反射面72に到達する。次いで、すべり弾性表面波は、反射面72によって反射され、再度、反応場66aを伝搬し、櫛形電極60aで受信される。櫛形電極60bにより励振されたすべり弾性表面波は、上述した実施形態と同様である。
 また、櫛形電極60aにより励振されたバルク波は、反応場66aからバルク波伝搬部68を伝搬し、端部62に到達する。次いで、バルク波は、端部62によって反射され、再度、バルク波伝搬部68及び反応場66aを伝搬し、櫛形電極60aで受信される。櫛形電極60bにより励振されたバルク波は、上述した実施形態と同様である。
 各櫛形電極60a、60bにより受信されたすべり弾性表面波及びバルク波は、すべり弾性表面波信号及びバルク波信号に変換された後、弾性波検出器52に供給される。弾性波検出器52は、分配器50から供給された高周波発振信号と、受信した信号との振幅比、位相差及び伝搬遅延差を検出し、当該検出された振幅比、位相差に基づく信号を処理部56に出力する。処理部56は、弾性波検出器52から供給された信号のうち、すべり弾性表面波に係る信号に対して所定時間遅延しているバルク波に係る信号を分離し、得られたすべり弾性表面波に係る信号に基づき、反応場66a、66bに滴下された各被測定物の物理的特性を求める。
 このように構成される第2実施形態に係る被測定物特性測定装置46では、第1実施形態に係る被測定物特性測定装置10と同様にして、弾性表面波に係る信号からバルク波に係る信号を分離し、すべり弾性表面波に係る信号に基づき、各反応場66a、66bに滴下された各被測定物の物理的特性を求めることができる。すなわち、被測定物特性測定装置46では、同一又は異なる複数の被測定物の物理的特性を同時に高精度に求めることができる。
 また、第2実施形態の弾性表面波素子44を含む被測定物特性測定装置46では、各反応場66a、66bに滴下された各被測定物の物理的特性を同時に求めることができる。さらに、一方の反応場66aにのみ被測定物を滴下させ、各櫛形電極60a、60bが検出したすべり弾性表面波信号を処理することにより、弾性表面波素子44の環境条件の変化、例えば、温度変化の影響を補償して被測定物の物理的特性を高精度に求めることもできる。
<第3実施形態>
 図5は、第3実施形態の弾性表面波素子76を備えた被測定物特性測定装置78の平面構成図である。なお、第2実施形態と同一の構成要素には同一の参照符号を付し、その詳細な説明を省略する。また、弾性表面波素子76を構成する材料は、第1実施形態の弾性表面波素子12と同様である。また、溝部64の断面は、例えば図1Bと同様であり、溝部の深さは符号dで示されている。溝部30の深さは(3)式を満たす深さである。
 弾性表面波素子76は、図5に示すように、第2実施形態の弾性表面波素子44(図4参照)における反応場66bの金属膜74bの一部が剥離され、圧電基板58が露出した剥離部80を有する。剥離部80の構成を除いて、弾性表面波素子76の構成は、弾性表面波素子44と同一の構成である。圧電基板58が露出する反応場66bは、反応場66aとは異なる振幅・位相特性を有する電気的な開放状態である。
 反応場66aが電気的に短絡されている場合の出力信号は、力学的相互作用のみを受けている。また、反応場66bが電気的に開放されている場合の出力信号は、物理的相互作用(電気的相互作用及び力学的相互作用)を受けている。従って、2つの反応場66bと反応場66aに基づく出力信号から力学的相互作用を相殺し、電気的相互作用を抽出することにより、被測定物の比誘電率や導電率を求めることができる(例えば、羽藤逸文他2名、「SAW発振器一体型SAWセンサシステムの開発」、信学技報、電子情報通信学会、2003年2月 参照)。
 このように構成される第3実施形態に係る被測定物特性測定装置78では、各反応場66a、66bに同一の被測定物が滴下され、次いで、各櫛形電極60a、60bにより弾性波が励振される。処理部56は、電気的に短絡されている反応場66aから得られたすべり弾性表面波に係る信号と、電気的に開放されている反応場66bから得られたすべり弾性表面波に係る信号とに基づき、被測定物の誘電率や導電率等の物理的特性を高精度に求めることができる。
 なお、第1~第3実施形態では、溝部(反射部)(30、64)が溝である例を説明したが、本発明はこの構造に限られない。図7は、弾性表面波素子12’を備えた被測定物特性測定装置のIB-IB線断面図である。なお、図7は、第1実施形態に係る図1Aの断面図を示しているが、第2実施形態(図4)、第3実施形態(図5)にも、図7に示された構造を同様に適用できる。
 図7に示すように、弾性表面波素子12’は、圧電基板24の表面(第1面)の法線方向に表面と異なる位置に配置された第3面36C’が形成されている。この第3面は、バルク波伝搬部34の上面と連続している。そして、第4面である反射面36A’は、第1面の端部と第3面の端部とを結んで形成されている。すなわち、本発明に係る被測定物特性測定装置(10、46、及び78)では、反射面36(36A、36’、及び72)のみ有し、反射面36(36A、36’、及び72)に平行に設けられている面36B(図6参照)を有していなくてもよい。このように構成することで、第1~第3実施形態と同様に、すべり弾性表面波s111が反射面36A’により反射し、バルク波s113が端部28により反射するので、すべり弾性表面波s111とバルク波s113とを分離することができる。従って、被測定物の物理的特性を高精度に求めることのできる小型で安価な弾性表面波素子12’を備えた被測定物特性測定装置10を得ることができる。
<第4実施形態>
 図8は、第1実施形態における溝部30の深さdが0.06[mm]の場合の実測値の一例を示す図である。図9は、第1実施形態における溝部30の深さdが0.01[mm]の場合の実測値の一例を示す図である。図8及び図9において、横軸は時間を表し、縦軸は信号レベルを表している。図8及び図9において、曲線s401及びs411は、バルク波の時間対信号レベルの特性であり、曲線s402及びs412は、すべり弾性表面波の時間対信号レベルの特性である。
 図1Bまたは図6に示すように、第1実施形態において溝部30の底面(第3面)は、圧電基板24の下面と略平行に形成されている。
 図8に示すように溝部30の深さdが0.06[mm]の場合、時刻約2[μs]~約3[μs]の間、バルク波s401とすべり弾性表面波s402とのレベル差は、約60[dB]である。次に、図9に示すように溝部30の深さdが0.01[mm]の場合、時刻約2[μs]~約3[μs]の間、バルク波s411とすべり弾性表面波s412とのレベル差は、約70[dB]である。
 このように、溝部30の深さdが所定の深さより深い場合、バルク波の信号レベルが大きくなる。この要因は、図6で説明したように、溝部30の反射面36Aにバルク波が反射して、櫛形電極26に戻ってくる信号レベルが大きくなるためである。このため、反射面36Aが上述した関係式(3)を満たす場合、バルク波s401とすべり弾性表面波s402とのレベル差を大きくできる。
 しかしながら、図9に示すように溝部30の深さdが0.01[mm]であっても、時刻約3[μs]過ぎから、バルク波s401の信号レベルが上昇している。ここで、時刻約3[μs]過ぎから、バルク波s401の信号レベルが上昇する理由を説明する。
 図10は、溝部30における端部による反射を説明する図である。図6と同じ箇所は、同じ符号を用いて説明を省略する。
 図10において、点401は溝部30における反射面(第4面)36Aの端部を表している。また、曲線s421はバルク波を表し、矢印s422と矢印s423は、端部401により、新たに発生したバルク波を表している。また符号36Bは、反射面36Aと対向してバルク波伝搬部34に接して設けられている面を表し、符号36Cは、溝部30の底面(第3面)を表している。
 図10に示すように、溝部30の底面36Cと圧電基板24の下面との間を通過し端部(第2面)28で反射するバルク波s113以外に、溝部30の反射面36Aで反射するバルク波s112、s421がある。反射面36Aの端部401で反射するバルク波s421は、単に端部401で反射するだけではなく、矢印s422及び矢印s423のように、新たなバルク波を発生させる。このように新たに発生したバルク波s422及びs423が、遅れて櫛形電極26に到達するため、図9に示したように時刻約3[μs]過ぎから、バルク波s401の信号レベルが上昇している。
 このため、第4実施形態では、溝部の端部で新たに発生するバルク波を抑えることで、さらにバルク波とすべり弾性表面波との分離を良くする。
 図11は、第4実施形態に係る溝部30aの形状を説明する図である。図11において、弾性表面波が伝搬する方向をX方向、弾性表面波が伝搬する方向に対して垂直な方向をY方向、圧電基板24の厚み方向をZ方向とする。なお、図11は、第1実施形態の図1Aに示した被測定物特性測定装置10に第4実施形態の溝部30aを適用した例の図であるが、第2及び第3実施形態の被測定物特性測定装置46及び78にも適用可能である。またHは圧電基板24のZ方向の厚みである。
 図11に示すように、溝部(反射部)30aは、Z方向に深さdの側面(第4面)36Aa及び側面36Baと、例えば直径wの半円の曲面(第3面)36Caとを有している(前記第3面の少なくとも1部が曲面である)。この側面36Aaの深さdは、第1実施形態と同様に、λ/2以上かつH/2以下である。また、第1~第3実施形態と同様に、側面36Baは、側面36Aaと略平行して形成されていてもよい。
 曲面36CaのZ方向の深さd’は、例えばw/2である。従って、溝部30aの深さの合計は、最大d+d’である。
 このように、弾性表面波素子12aにおける溝部30aの底面36Caは、第1~第3実施形態の底面36C(図6参照)のように圧電基板24の下面と略平行な形状ではなく、曲面を有している。このため、底面36Caは、Z方向の位置毎にX方向の位置が異なる。Z方向の位置毎にX方向の位置が異なるとは、具体的には、底面36Caの各座標をXZ平面で表した場合、位置1=(x1、z1)、位置2=(x2、z2)、・・・のように、位置毎に少なくともX方向かZ方向の座標が異なることである。なお、溝部30aは、凸多角形により略半円に形成されるようにしてもよい。
 なお、第4実施形態では、側面36Aaが、第1実施形態の反射面36に相当する。
 図12は、図11に示した溝部30aを備える場合の実測値の一例を示す図である。図12において、横軸は時間を表し、縦軸は信号レベルを表している。また、曲線s451は、バルク波の時間対信号レベルの特性であり、曲線s452は、すべり弾性表面波の時間対信号レベルの特性である。図12は、図11において溝部30aの深さd+d’が0.06[mm]である場合の実測値である。
 図12に示すように溝部30aを有する場合、時刻約2[μs]~約3[μs]の間、バルク波s451とすべり弾性表面波s452とのレベル差は、図9と同様に約70[dB]である。図9では、時刻約3[μs]過ぎから、バルク波s401の信号レベルが上昇していたが、第4実施形態では、図12に示すように時刻約3[μs]過ぎてもバルク波s451のレベルが上昇しない。このように、図12に示した測定値は、同じ深さ0.06[mm]である図8、及び側面36A及び36Bを有して深さが0.01[mm]の図9のどちらと比較しても、バルク波の信号レベルが低減されている。
 ここで、第4実施形態の溝部30aを被測定物特性測定装置に適用した場合に、バルク波による信号レベルを減少できる理由を説明する。図10で説明したように、バルク波が反射する面に端部があると、この端部により新たなバルク波が発生する。図11のように、溝部30aの側面36Aaと連続する底面36Caを、曲面により形成した場合、側面36Aaと底面36Caとの接続部等に端部が形成されない。このため、図11に示した溝部30aのように形成すれば、端部による新たなバルク波が発生しない。
 図11の場合、側面36Aaに加えて底面36Caでもバルク波が反射する。しかしながら、底面36Caが曲面のため、この面で反射し、櫛形電極26(図1A、図1B参照)が受信するバルク波のタイミングが、例えばZ方向の深さの位置毎に異なる。すなわち、櫛形電極26が受信するバルク波が分散する。この結果、第4実施形態によれば、図12に示したように、時刻約3[μs]過ぎてもバルク波による信号レベルを減少できる。
 以上のように、第4実施形態による弾性表面波素子12aが有する溝部30aは、第1~第3実施形態で説明した溝部30と同様にXY平面に対して垂直な側面36Aaを有し、さらに底面として曲面36Caを有している。この構成により、第4実施形態の被測定物特性測定装置における弾性表面波素子12aは、第1~第3実施形態と比べて、さらにすべり弾性表面波とバルク波との分離を向上できる。この結果、被測定物の物理的特性を高精度に求めることができる小型で安価な弾性表面波素子12aを備えた被測定物特性測定装置10を得ることができる。
 次に、溝部の形状の変形例を説明する。
 図13及び図14は、第4実施形態に係る溝部の変形例である。なお、図13及び図14は、XZ平面における弾性表面波素子の断面図の一部である。また、圧電基板のZ方向の厚みはHである。
 図13に示すように、弾性表面波素子12bの溝部(反射部)30bは、Z方向に深さdの側面36Ab及び側面36Bbと、斜面36Cb1(第3面)と、斜面36Cb2(第3面)とを有している。斜面36Cb1は、側面36Abに対して角θ1で傾斜しており、一端(端部411、第一端)で側面36Abと接している平面である。斜面36Cb2は、側面36Bbに対して角θ1で傾斜しており、一端(第一端)で側面36Bbと接している平面である。斜面36Cb1の他端(端部412、第二端)は、斜面36Cb2の他端と接している。また、側面36Abの深さdは、第1実施形態と同様に、λ/2以上かつH/2以下である。また、溝部30bのZ方向における深さは、最大d+d’である。即ち、溝部30bが有する斜面の少なくとも1部は、圧電基板の第1面の法線方向に対して所定角度傾斜して形成されている斜面である。このように、溝部30bの断面形状は、圧電基板24の表層部分から圧電基板24の内部に向けて突出するような凸状の多角形である。換言すると、側面36Abと、側面36Bbと、斜面36Cb1と、斜面36Cb2と、バルク波伝搬部34の表面と同一平面であって溝部30bを閉じるように延長された仮想線とによって囲まれた形状が凸状の多角形である(以下、凸多角形と称する)である。本実施形態では、溝部30bの断面形状が五角形である。
 なお、図13に示した例では、側面36Abと側面36Bbとの深さが同じ場合を説明したが、深さは異なっていてもよい。ただし、この場合であっても、側面36Abの深さdは、λ/2以上かつH/2以下であればよい。同様に、側面36Abと斜面36Cb1とのなす角θ1と、側面36Bbと斜面36Cb2とのなす角θ1とは、同じであっても異なっていてもよい。このように溝部30bは、凸多角形に形成されている。
 図14に示すように、弾性表面波素子12cの溝部(反射部)30cは、Z方向に深さdの側面36Acと、Z方向に深さd+d’の側面36Bcと、斜面36Cc1(第3面)と、底面36Cc2とを有している。斜面36Cc1は、側面36Acに対して角θ2で傾斜しており、一端(端部421、第一端)で側面36Acと接している平面である。底面36Cc2の一端は、斜面36Cc1の他端(端部422、第二端)で斜面36Cc1と接しており、底面36Cc2の他端は、側面36Bcの下端と接しており、底面36Cc2は、圧電基板24の下面と平行である。
 この側面36Acの深さdは、第1実施形態と同様に、λ/2以上かつH/2以下である。また、溝部30cのZ方向における深さは、最大d+d’である。 即ち、溝部30cが有する斜面の少なくとも1部は、圧電基板の第1面の法線方向に対して所定角度傾斜して形成されている斜面である。このように、溝部30cの断面形状は、圧電基板24の表層部分から圧電基板24の内部に向けて突出するような凸状の多角形である。換言すると、側面36Acと、側面36Bcと、斜面36Cc1と、底面36Cc2と、バルク波伝搬部34の表面と同一平面であって溝部30cを閉じるように延長された仮想線とによって囲まれた形状が凸状の多角形である(以下、凸多角形と称する)である。本実施形態では、溝部30cの断面形状が五角形である。
 なお、図14に示した例では、溝部30cが底面36Cc2を有している例を説明したが、底面36Cc2を有していなくてもよい。この場合、斜面36Cc1の他端は、側面36Bcの下端と接していてもよい。このように溝部30cは、凸多角形に形成されている。
 次に、図13及び図14のような形状の溝部におけるバルク波の伝搬について説明する。
 図13に示したように、溝部30bは、端部411及び端部412を有している。このため、これらの端部により新たなバルク波が生じる。同様に、図14に示したように、溝部30cは、端部421及び端部422を有している。このため、これらの端部により新たなバルク波が生じる。
 しかしながら、第4実施形態の溝部30bは、第1~第3実施形態(例えば図6)と異なり、深さdの側面36Abに連続する斜面36Cb1を有している。同様に、第4実施形態の溝部30cは、深さdの側面36Acに連続する斜面36Cc1を有している。
 このため、バルク波は、上述した端部(411及び412、または421及び422)で反射するのみではなく、斜面36Cb1または36Cc1の各位置で反射する。斜面36Cb1または36Cc1は、図11に示した底面36Caと同様に、斜面のXZ平面の各位置が異なる。
 従って、本実施形態では、端部411、412、421、及び422で発生した新たなバルク波に加え、各位置で反射したバルク波を、各々、異なる時刻に櫛形電極24が受信する。この結果、底面36Caが曲面の場合と同様に、櫛形電極24が受信するバルク波が時間方向に分散する。従って、図13または図14の溝部30bまたは30cを備える弾性表面波素子12bまたは12cによれば、バルク波による信号レベルを減少できる。
 以上のように、第4実施形態では、第1~第3実施形態の溝部(30または64)が有する深さdの側面(36Aa、36Ab、または36Ac)に加えて、曲面の底面36Caまたは斜面(36Cb1、または36Cc1)を有している。この構成により、第1~第3実施形態と同様に、櫛形電極24は、側面(36Aa、36Ab、または36Ac)により反射したすべり弾性表面波に基づく信号を受信する。また、櫛形電極24は、側面(36Aa、36Ab、または36Ac)、底面36Caまたは斜面(36Cb1、または36Cc1)、及び端部28により反射したバルク波に基づく信号を受信する。上記のうち、底面36Caまたは斜面(36Cb1、または36Cc1)、及び端部28により反射したバルク波は、分散されて受信される。これにより、図13のように側面36Abと斜面36Cb1との間に端部411等があっても、バルク波を分散できるので、新たに発生するバルク波の影響を低減できる。
 従って、第4実施形態によれば、第1~第3実施形態より、さらにバルク波を低減できるので、バルク波とすべり弾性表面波と分離できる。この結果、第4実施形態では、このようにしてバルク波から分離されたすべり弾性表面波を用いることで、被測定物の物理的特性を高精度に求めることができる。
<第5実施形態>
 図15は、第5実施形態の弾性表面波素子12aを備えた被測定物特性測定装置10aの平面構成図である。図16Aは、図15に示す弾性表面波素子12aのIB-IB線断面図である。図16Bは、図16Aの符号Aで示された部分を示す拡大断面図であり、反射部500を含む部分の拡大図である。
 被測定物特性測定装置10aは、被測定物の物理的特性を測定する。被測定物特性測定装置10aは、弾性表面波素子12aと、発振器14a、分配器16a、スイッチ17a及び弾性波検出器18aから構成される測定部20aと、パソコン等で構成される処理部22とを備える。測定部20aは、第1実施形態の測定部20と同様の機能を有している。
 弾性表面波素子12aは、圧電基板24と、圧電基板24上に形成され弾性波を励振させる櫛形電極26と、櫛形電極26と弾性波の伝搬方向(矢印X方向)における圧電基板24の端部28との間に形成される反射部500と、櫛形電極26と反射部501~503との間に形成され被測定物が負荷される反応場32と、反射部501~503と端部28との間に形成されるバルク波が伝搬するバルク波伝搬部34とを備える。反射部500は、反射部501~503を備える。本実施形態の弾性表面波素子12aは、反射部501~503を備えている点で、第1実施形態と異なる。
 また、図15,図16A,及び図16Bにおいて、弾性波の伝搬方向をX方向、弾性表面波の伝搬方向と直交する方向をY方向とする。
 反射部501~503は、Y方向に圧電基板24の一方の端(第一基板端)から他端(第二基板端)に延在するように形成されている。反射部501~503は、弾性波が伝搬する圧電基板24の表面に略垂直な高さh(図16A及び図16B参照)の壁を有している。反射部501~503の壁の高さhは、弾性表面波の波長λに応じて決定されている。
 反射部501は、X方向に、反応場32から距離L11離れて形成されている。また、反射部501のX方向の幅は、L12である。反射部501は、X方向に面511(第3面)を有し、圧電基板24の表面から高さhの反射面521(第4面)を有している。
 反射部502は、X方向に、反射部501から距離L13離れて形成されている。また、反射部502のX方向の幅は、L14である。反射部502は、X方向に面512(第3面)を有し、圧電基板24の表面から高さhの反射面522(第4面)を有している。
 反射部503は、X方向に、反射部502から距離L15離れて形成されている。また、反射部503のX方向の幅は、L16である。反射部503は、X方向に面513(第3面)を有し、圧電基板24の表面から高さhの反射面523(第4面)を有している。
 弾性表面波は、圧電基板24の表層部分を伝搬し、反射部501~503の各面521~523によって反射された後、再度、反応場32を伝搬し、櫛形電極26で受信される。
 なお、距離L11、L13及びL15は、同じであっても異なっていてもよい。幅L12、L14及びL16は、同じであっても異なっていてもよい。また、反射部501~503の反射面521~522の高さhは、同じであっても異なっていてもよい。
 なお、図15,図16A,及び図16Bでは、弾性表面波素子12aが反射部を3つ備える例を示したが、反射部の数は、1つ以上であればよい。
 次に、被測定物特性測定装置10aによる処理の一例を説明する。
 処理部22は、スイッチ17aを端子1と端子3とが接続されるように切り替える。これにより、分配器16aは、スイッチ17aを介して、高周波発振信号を櫛形電極26に供給する。
 櫛形電極26は、供給された高周波発振信号に基づいて弾性波が励振される。弾性波は、被測定物の滴下された反応場32に沿って矢印X方向に伝搬される。
 反応場32を伝搬する弾性波のうち、弾性表面波であるすべり弾性表面波は、圧電基板24の表層部分を伝搬し、反射部501~503の反射面521~523によって反射された後、再度、反応場32を伝搬し、櫛形電極26で受信される。また、バルク波は、圧電基板24の内部のバルク波伝搬部34及び反応場32を伝搬し、圧電基板24の端部28に達する。次いで、このバルク波は、端部28によって反射された後、再度、バルク波伝搬部34及び反応場32を伝搬し、櫛形電極26で受信される。
 処理部22は、スイッチ17aを端子2と端子3とが接続されるように切り替える。
 櫛形電極26により受信された弾性表面波及びバルク波は、弾性表面波信号及びバルク波信号に変換された後、弾性波検出器18aに供給される。
 なお、弾性波検出器18aは、例えば、反射部501~503のうち、3つのうちの中心に位置されている反射部502の反射による弾性表面波信号を用いて検出する。反射部が2つ以上の場合、弾性波検出器18aは、反射部501~503において中心に配置されている反射部の反射による弾性表面波信号を用いて検出するようにしてもよい。反射部の数が偶数の場合、例えば反射部が4つの場合(第1反射部~第4反射部)、弾性波検出器18aは、4つの反射部のうち中心に配置されている第2反射部または第3反射部による弾性表面波信号を用いて検出するようにしてもよい。
 以上のように、第5実施形態の被測定物特性測定装置10aにおいて、弾性表面波は、反応場32を伝搬し、反射部500の反射面(521~523)により反射されて櫛形電極26で受信されるのに対して、バルク波は、反応場からバルク波伝搬部34に伝搬し、圧電基板24の端部28で反射された後、弾性表面波よりも所定時間だけ遅延して櫛形電極26で受信される。そのため、この遅延時間を利用して弾性波に基づく信号からバルク波に基づく信号を分離し、弾性表面波による信号を抽出することができる。従って、弾性表面波による信号に基づき、被測定物の物理的特性を高精度に求めることができる。
 なお、第5実施形態では、櫛形電極26、反応場32が1つの例を説明したが、第2及び第3実施形態のように複数であってもよい。この場合であっても、例えば、図4の溝部64、図5の溝部64の代わりに反射部500を適用してもよい。
 また、図16A及び図16Bでは、反射部501~503の面511~513の形状は、圧電基板24と略平面な形状の例を示したが、本発明はこの例に限られない。反射部501~503の面511~513の形状は、他の形状、例えば半円、斜面等であってもよい。
 なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で変更することが可能である。
 例えば、第2実施形態の弾性表面波素子44及び第3実施形態の弾性表面波素子76に形成される溝部64は、図3に示す場合と同様に、樹脂42で覆うことにより、溝部64に被測定物の一部が滴下された場合であっても、被測定物の物理的特性を高精度に求めることができる。
10、10a、46、78…被測定物特性測定装置
12、12a、44、76…弾性表面波素子
14、48…発振器
16、50…分配器
18、52…弾性波検出器
20、54…測定部
22、56…処理部
24、58…圧電基板
26、60a、60b…櫛形電極
27a、27b…電極指
28、62…端部
30、64…溝部
32、66a、66b…反応場
34、68…バルク波伝搬部
36、72、521~523…反射面
38、70a、70b…封止部材
40、74a、74b…金属膜
42…樹脂
80…剥離部
500~504…反射部

Claims (8)

  1.  圧電基板上の第1面に形成され、弾性波を励振させ、前記弾性波に基づく反射を受信する櫛形電極と、
     前記櫛形電極と前記弾性波の伝搬方向における前記圧電基板の前記第1面に直交する第2面との間に、前記第1面の法線方向に前記第1面と異なる位置に形成される第3面と、前記第1面の法線方向に垂直に形成される前記第1面の端部と前記第3面とを結ぶ第4面とを有する反射部と、
     前記櫛形電極と前記反射部との間に形成され被測定物が負荷される反応場と、
     前記反射部と前記第2面との間に形成されている伝搬部と、
     を備える弾性表面波素子を備え、
     前記櫛形電極から前記反応場を伝搬し、前記反射部の前記第4面により反射され、前記櫛形電極により受信された前記弾性波に含まれる前記圧電基板の表面を伝搬する弾性表面波を、前記圧電基板の前記第2面により反射され、前記櫛形電極により受信された前記弾性波に含まれる前記圧電基板の内部を伝搬するバルク波から分離して抽出し、抽出した前記弾性表面波に基づき、前記被測定物の特性を求める
     ことを特徴とする被測定物特性測定装置。
  2.  前記圧電基板の前記表面から前記圧電基板の内部に向かう方向における前記反射部が有する壁の高さdは、次式の関係を満たす値である
     λ/2≦d≦H/2
        λ:前記弾性波の波長
        H:前記圧電基板の厚さ
     ことを特徴とする請求項1に記載の被測定物特性測定装置。
  3.  前記櫛形電極は、
     複数の電極指をN(Nは1以上の整数)対、備え、
     前記反射部の前記第4面から前記圧電基板の前記端部までの距離L2は、次式の関係を満たす値である
     L2≧N×λ/2
        λ:前記弾性波の波長
        N:前記櫛形電極を構成する複数の電極指の対の数
     ことを特徴とする請求項1または請求項2に記載の被測定物特性測定装置。
  4.  前記反射部が有する前記第3面は、前記圧電基板の前記第1面に対して平行である
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の被測定物特性測定装置。
  5.  前記反射部が有する前記第3面の少なくとも1部は、曲面である
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の被測定物特性測定装置。
  6.  前記反射部が有する前記第3面の少なくとも1部は、前記圧電基板の前記第1面の法線方向に対して所定角度傾斜して形成されている斜面である
     ことを特徴とする請求項1から請求項3、請求項5のいずれか一項に記載の被測定物特性測定装置。
  7.  前記反射部には、
     前記圧電基板の前記第1面から突出しない範囲で樹脂が充填される
     ことを特徴とする請求項1から請求項6のいずれか一項に記載の被測定物特性測定装置。
  8.  前記圧電基板には、前記弾性波の伝搬方向に対して垂直方向に複数の前記櫛形電極が形成されるとともに、前記各櫛形電極と前記反射部の前記第3面との間に、前記各櫛形電極に対応する複数の前記反応場が形成される
     ことを特徴とする請求項1から請求項7のいずれか一項に記載の被測定物特性測定装置。
PCT/JP2012/082504 2011-12-22 2012-12-14 被測定物特性測定装置 WO2013094531A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112014014734-5A BR112014014734B1 (pt) 2011-12-22 2012-12-14 Aparelho de medição de características de objeto
CN201280063121.XA CN104024846B (zh) 2011-12-22 2012-12-14 被测量物特性测量装置
SG11201403344QA SG11201403344QA (en) 2011-12-22 2012-12-14 Object characteristics measurement apparatus
KR1020147016588A KR101603052B1 (ko) 2011-12-22 2012-12-14 피측정물 특성 측정장치
EP12860189.5A EP2799860B1 (en) 2011-12-22 2012-12-14 Device for measuring characteristic of measurement object with a surface acoustic wave device
US14/366,641 US9645116B2 (en) 2011-12-22 2012-12-14 Object characteristics measurement apparatus
IN1391MUN2014 IN2014MN01391A (ja) 2011-12-22 2012-12-14
CA2859626A CA2859626C (en) 2011-12-22 2012-12-14 Object characteristics measurement apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-281603 2011-12-22
JP2011281603 2011-12-22
JP2012232060A JP5956901B2 (ja) 2011-12-22 2012-10-19 被測定物特性測定装置
JP2012-232060 2012-10-19

Publications (1)

Publication Number Publication Date
WO2013094531A1 true WO2013094531A1 (ja) 2013-06-27

Family

ID=48668422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082504 WO2013094531A1 (ja) 2011-12-22 2012-12-14 被測定物特性測定装置

Country Status (11)

Country Link
US (1) US9645116B2 (ja)
EP (1) EP2799860B1 (ja)
JP (1) JP5956901B2 (ja)
KR (1) KR101603052B1 (ja)
CN (1) CN104024846B (ja)
BR (1) BR112014014734B1 (ja)
CA (1) CA2859626C (ja)
IN (1) IN2014MN01391A (ja)
MY (1) MY170911A (ja)
SG (1) SG11201403344QA (ja)
WO (1) WO2013094531A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300145B2 (ja) * 2014-01-30 2018-03-28 日本無線株式会社 弾性表面波センサおよび測定装置
US9603668B2 (en) 2014-07-02 2017-03-28 Covidien Lp Dynamic 3D lung map view for tool navigation inside the lung
EP3225984B1 (en) 2014-11-29 2020-11-25 KYOCERA Corporation Sensor apparatus
JP2018054321A (ja) * 2016-09-26 2018-04-05 日本精機株式会社 液体種類特定装置
SE541055C2 (en) * 2017-05-30 2019-03-19 Aldo Jesorka A surface acoustic wave resonant sensor
CN108593769B (zh) * 2018-03-05 2020-08-11 四川升拓检测技术股份有限公司 利用多通道控制弹性波的归一化信号激振无损检测方法
WO2019198162A1 (ja) * 2018-04-10 2019-10-17 日本たばこ産業株式会社 霧化ユニット
FR3100405B1 (fr) * 2019-09-04 2021-12-31 Frecnsys Capteur à ondes acoustiques différentiel
FR3120488B1 (fr) * 2021-03-03 2023-09-15 Frecnsys Dispositif capteur a ondes acoustiques de surface
TWI825603B (zh) * 2021-06-15 2023-12-11 嘉碩生醫電子股份有限公司 用於在生物液體中估計不同分子的含量的感測系統及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2821263B2 (ja) * 1990-11-28 1998-11-05 株式会社日立製作所 弾性表面波装置、及びそれを用いた通信装置
JP3248683B2 (ja) 1998-01-20 2002-01-21 富士工業株式会社 液体の密度と粘度の分離測定方法及び装置
JP2003133888A (ja) * 2001-08-14 2003-05-09 Murata Mfg Co Ltd 端面反射型表面波フィルタ
JP3481298B2 (ja) 1994-03-24 2003-12-22 富士工業株式会社 溶液センサ
JP2004336503A (ja) * 2003-05-09 2004-11-25 Fujitsu Media Device Kk 弾性表面波素子及びその製造方法
JP2007010378A (ja) * 2005-06-28 2007-01-18 Seiko Epson Corp 弾性表面波素子及びその製造方法、弾性表面波センサ、並びに弾性表面波センサシステム
JP2009300302A (ja) 2008-06-16 2009-12-24 Japan Radio Co Ltd 被測定物特性測定装置
WO2010021100A1 (ja) * 2008-08-18 2010-02-25 株式会社村田製作所 弾性表面波センサー装置
JP2010107485A (ja) * 2008-10-31 2010-05-13 Japan Radio Co Ltd 比誘電率・導電率測定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739290A (en) * 1971-05-05 1973-06-12 Secr Defence Acoustic surface wave devices
JPS56132806A (en) 1980-03-22 1981-10-17 Murata Mfg Co Ltd Elastic surface wave equipment
US4767198A (en) * 1987-06-24 1988-08-30 Unisys Corporation SAW/BAW Bragg cell
US5367216A (en) * 1991-08-02 1994-11-22 Canon Kabushiki Kaisha Surface acoustic wave element and communication system using the same
JP3705722B2 (ja) * 1999-10-20 2005-10-12 株式会社村田製作所 表面波装置
JP2005214713A (ja) 2004-01-28 2005-08-11 Sony Corp 湿度状態検出システム
US7205701B2 (en) 2004-09-03 2007-04-17 Honeywell International Inc. Passive wireless acoustic wave chemical sensor
JP4714885B2 (ja) 2005-03-18 2011-06-29 日本無線株式会社 弾性波センサ
JP2007225546A (ja) * 2006-02-27 2007-09-06 Seiko Epson Corp 弾性表面波センサ
JP4933956B2 (ja) * 2007-05-16 2012-05-16 日本無線株式会社 弾性表面波センサ及び弾性表面波センサを備えた生体分子測定装置。
CN101868916A (zh) * 2007-11-20 2010-10-20 日本无线株式会社 表面声波元件和液态材料特性测量装置
JP5154304B2 (ja) 2008-05-21 2013-02-27 日本無線株式会社 被測定物特性測定装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2821263B2 (ja) * 1990-11-28 1998-11-05 株式会社日立製作所 弾性表面波装置、及びそれを用いた通信装置
JP3481298B2 (ja) 1994-03-24 2003-12-22 富士工業株式会社 溶液センサ
JP3248683B2 (ja) 1998-01-20 2002-01-21 富士工業株式会社 液体の密度と粘度の分離測定方法及び装置
JP2003133888A (ja) * 2001-08-14 2003-05-09 Murata Mfg Co Ltd 端面反射型表面波フィルタ
JP2004336503A (ja) * 2003-05-09 2004-11-25 Fujitsu Media Device Kk 弾性表面波素子及びその製造方法
JP2007010378A (ja) * 2005-06-28 2007-01-18 Seiko Epson Corp 弾性表面波素子及びその製造方法、弾性表面波センサ、並びに弾性表面波センサシステム
JP2009300302A (ja) 2008-06-16 2009-12-24 Japan Radio Co Ltd 被測定物特性測定装置
WO2010021100A1 (ja) * 2008-08-18 2010-02-25 株式会社村田製作所 弾性表面波センサー装置
JP2010107485A (ja) * 2008-10-31 2010-05-13 Japan Radio Co Ltd 比誘電率・導電率測定装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ITSUFUMI; HATO: "Development of Novel SAW Liquid Sensing System with SAW Signal Generator", TECHNICAL REPORT OF IEICE, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, February 2003 (2003-02-01)
JUN KONDO ET AL.: "Development Of Surface Acoustic Wave Sensing System In Liquid", TECHNICAL REPORT OF IEICE, 1997, pages 1 - 6, XP008172595 *
See also references of EP2799860A4

Also Published As

Publication number Publication date
BR112014014734B1 (pt) 2021-08-10
JP5956901B2 (ja) 2016-07-27
CA2859626A1 (en) 2013-06-27
JP2013148572A (ja) 2013-08-01
CN104024846B (zh) 2016-06-08
SG11201403344QA (en) 2014-09-26
EP2799860A4 (en) 2015-09-23
KR20140093279A (ko) 2014-07-25
KR101603052B1 (ko) 2016-03-14
BR112014014734A2 (pt) 2020-12-08
EP2799860A1 (en) 2014-11-05
US20150000414A1 (en) 2015-01-01
BR112014014734A8 (pt) 2013-06-27
CN104024846A (zh) 2014-09-03
US9645116B2 (en) 2017-05-09
CA2859626C (en) 2016-10-25
IN2014MN01391A (ja) 2015-07-03
EP2799860B1 (en) 2017-10-25
MY170911A (en) 2019-09-14

Similar Documents

Publication Publication Date Title
JP5956901B2 (ja) 被測定物特性測定装置
US10775222B2 (en) Measurement device and method for determining a fluid flow in a measurement tube
KR101911437B1 (ko) Saw 배열 센서
CN102042844B (zh) 声表面波测量传感器及参数分析方法
KR101776089B1 (ko) 표면탄성파 센서 시스템 및 다중울림파를 이용한 측정 방법
EP2338047A2 (en) Method and device for determining characteristics of a medium
JP2020060588A (ja) センサ素子およびセンサ装置
JP2008267968A (ja) 被測定物特性測定装置
JP5431687B2 (ja) 被測定物特性測定装置
US8922095B2 (en) Transponder having coupled resonant modes and including a variable load
US8636953B2 (en) Surface acoustic wave sensing device
JP6300145B2 (ja) 弾性表面波センサおよび測定装置
KR20140119278A (ko) 표면탄성파에 의한 비접촉 무전원 무선 온도 측정 방법
JP2008298768A (ja) 比誘電率測定装置
RU2427943C1 (ru) Пассивный датчик на поверхностных акустических волнах
JP2010032245A (ja) 比誘電率・導電率測定装置
JP7351508B2 (ja) 認識信号生成素子及び素子認識システム
JP2014192692A (ja) 弾性表面波デバイス及びこれを用いた物理量検出装置
JP7310145B2 (ja) センサ装置
JP2012181093A (ja) 弾性表面波センサ
JP4389552B2 (ja) 弾性波素子および弾性波素子を用いた環境差異検出装置
JP2021128144A (ja) センサ装置
JP5683199B2 (ja) 弾性表面波デバイス
RU2422774C1 (ru) Чувствительный элемент для дистанционного измерения
JP2010107485A (ja) 比誘電率・導電率測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2859626

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20147016588

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14366641

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012860189

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012860189

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014014734

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014014734

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140616

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref document number: 112014014734

Country of ref document: BR

Kind code of ref document: A8

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2433 DE 22/08/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112014014734

Country of ref document: BR

Kind code of ref document: A8

Free format text: APRESENTAR, EM ATE 60 (SESSENTA) DIAS, DOCUMENTOS COMPROBATORIOS QUE EXPLIQUEM E REGULARIZEM A DIVERGENCIA NO NOME DO INVENTOR CONSTANTE NA PUBLICACAO INTERNACIONAL WO/2013/094531 DE 27/06/2013 COMO HIROMI YATSUDA E O CONSTANTE NO FORMULARIO DA PETICAO INICIAL NO 020140020028 DE 16/03/2014 COMO HIROMU YATSUDA UMA VEZ QUE NAO HOUVE ENVIO DE DOCUMENTO COMPROVANDO QUE OS NOME CORRETO DO INVENTOR E O DECLARADO NA ENTRADA NACIONAL.

ENP Entry into the national phase

Ref document number: 112014014734

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140616