WO2013094522A1 - 液体霧化装置 - Google Patents

液体霧化装置 Download PDF

Info

Publication number
WO2013094522A1
WO2013094522A1 PCT/JP2012/082420 JP2012082420W WO2013094522A1 WO 2013094522 A1 WO2013094522 A1 WO 2013094522A1 JP 2012082420 W JP2012082420 W JP 2012082420W WO 2013094522 A1 WO2013094522 A1 WO 2013094522A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
spray
outlet
gas injection
Prior art date
Application number
PCT/JP2012/082420
Other languages
English (en)
French (fr)
Inventor
博良 麻川
良太 久下
Original Assignee
ノズルネットワーク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノズルネットワーク株式会社 filed Critical ノズルネットワーク株式会社
Priority to CN201280063153.XA priority Critical patent/CN104039460A/zh
Priority to US14/365,953 priority patent/US20140332606A1/en
Priority to EP12860939.3A priority patent/EP2799149A4/en
Publication of WO2013094522A1 publication Critical patent/WO2013094522A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0861Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with one single jet constituted by a liquid or a mixture containing a liquid and several gas jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0869Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point the liquid or other fluent material being sucked or aspirated from an outlet orifice by another fluid, e.g. a gas, coming from another outlet orifice
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0425Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid without any source of compressed gas, e.g. the air being sucked by the pressurised liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a liquid atomizing apparatus for atomizing a liquid.
  • Conventional atomization techniques include gas-liquid mixing type (two-fluid type), ultrasonic type, ultra-high pressure type (100 MPa to 300 MPa), and evaporation type.
  • a general two-fluid nozzle injects gas and a liquid in the same injection direction, and refines
  • a spray nozzle device for generating fine particle mist is known (Patent Document 1).
  • This spray nozzle device has a first nozzle part and a second nozzle part, and can collide the spray liquid from the first nozzle part with the spray liquid from the second nozzle part to form a fine particle mist.
  • the cost is high and the spraying is not low energy.
  • the present invention provides a liquid atomization apparatus that can atomize a liquid with low gas energy without applying substantial pressure to the liquid, using a novel principle different from the above-described prior art miniaturization principle.
  • the purpose is to do.
  • the liquid atomization apparatus of the present invention includes a first gas injection unit and a second gas injection unit for injecting two gas flows, A liquid passage portion having a passage through which liquid flows by forming two gas flows by the first gas injection portion and the second gas injection portion; This is an area in which the liquid flowing from the liquid passage portion collides with the gas flow injected from the first gas injection portion and the gas flow injected from the second gas injection portion to atomize the liquid.
  • a gas-liquid mixing area, A nozzle body having a spray outlet for spraying the mist atomized in the gas-liquid mixing area to the outside is provided.
  • an energy source for example, a liquid pump
  • the liquid can be sucked and atomized only by a low gas energy source (for example, an air pump). That is, if a gas is sent to the nozzle body, the liquid can be sucked up by the siphon effect to form a low-speed spray mist. Further, as the gas pressure (gas flow rate) is increased, the suction force of the liquid is also increased, the fog amount (the amount of fog generated) is increased, and the miniaturization can be promoted.
  • FIG. 1A is a front view of a spray outlet portion of a nozzle body.
  • the first and second gas injection units 1 and 2 extend from opposite left and right toward the central gas-liquid mixing area unit 120.
  • the gas-liquid mixing area part 120 is provided inside the spray outlet part 30 and forms a recess.
  • the present invention is internal mixing in the concave gas-liquid mixing area 120. After the gas flows (11, 21) collide with each other in the gas-liquid mixing area 120, the gas flows out from the tip of the spray outlet 30 to the outside of the open space.
  • This gas flow causes the gas-liquid mixing area part 120 to be in a negative pressure state, and the liquid 61 is sucked up from the liquid source (for example, the liquid storage part) through the liquid passage part 6 (liquid orifice).
  • Reference numeral 6 a indicates an outlet tip of the liquid passage portion 6.
  • Reference numeral 30 a indicates an outer surface portion of the spray outlet portion 30.
  • FIG. 1B is an enlarged view of the AA cross section of FIG. 1A.
  • FIG. 1C is an enlarged view of the BB cross section of FIG. 1A.
  • the injected gas flows 11 and 21 collide with each other to form a collision portion 100.
  • a portion including the collision portion 100 is referred to as a collision wall.
  • the liquid 61 is sucked up through the liquid passage part 6 toward the collision wall (collision part 100). When the liquid 61 collides with the collision wall, the liquid 61 is crushed (atomized) to become a mist 62. An area where the mist 62 is generated is indicated by a broken line as the gas-liquid mixing area 120.
  • the mist 62 spreads from the tip of the spray outlet 30 to a wide angle (spreads in a fan shape) and is sprayed.
  • a spray pattern of fog for example, it is formed in a wide fan shape, and its cross-sectional shape is elliptical or oval. Parallel to the collision surface where the gas flows collide (in the direction in which the collision surface expands), the gas that collided (after the collision) diffuses, and the mist 62 spreads in a fan shape and is ejected in this direction.
  • the spray angle was 20 ° to 30 °.
  • the siphon force according to the present invention it is possible to perform wide-angle spray with the major-axis angle ⁇ of the spray pattern being 70 ° to 90 °. Become. Further, not only a wide-angle spray pattern of 70 ° to 90 ° but also a spray angle ⁇ of 70 ° or less is possible, and for example, it can be set to 20 ° to 40 °.
  • the gas flow pressure Pa (MPa) is, for example, in the range of 0.005 to 0.80.
  • the low-energy gas pressure Pa (MPa) is preferably 0.01 to 0.15, more preferably 0.03 to 0.1.
  • the liquid can be atomized with only low gas energy.
  • the pressure of the gas flow can be used, for example, in the range of 0.1 to 0.8 (MPa), preferably 0.15 to 0.7, more preferably 0.2 to 0.6, More preferably, it is 0.25 to 0.5.
  • the pressures of the two gas streams are preferably set to be the same or substantially the same, and the flow rates are preferably set to be the same or substantially the same.
  • the cross-sectional shape of the gas flow injected from the gas injection unit is not particularly limited, and examples thereof include a circular shape, an elliptical shape, a rectangular shape, and a polygonal shape.
  • the cross-sectional shape of the gas flow depends on the orifice cross-section of the gas injection unit.
  • the cross-sectional shape of the liquid passage portion is not particularly limited.
  • the spray outlet part 30 may be formed integrally with a member (gas injection part 1, 2) for forming a gas orifice, or may be formed by a separate member.
  • an intersection angle between an injection direction axis of the first gas injection unit and an injection direction axis of the second gas injection unit is in a range of 90 ° to 180 °.
  • the angle ranges in which the respective injection direction axes of the first gas injection unit 1 and the second gas injection unit 2 intersect are the gas injected from the first gas injection unit 1 and the gas injected from the second gas injection unit 2.
  • FIG. 2 shows the collision angle ⁇ .
  • the “collision angle ⁇ ” is 90 ° to 220 °, preferably 90 ° to 180 °, and more preferably 90 ° to 120 °.
  • the liquid passage section has two or more passages. According to this configuration, it becomes possible to suck up the liquid from the two passages by the siphon effect, and the amount of liquid sucked up can be doubled, so that the spray amount can be improved. Moreover, if three passages are provided, the number will be tripled. On the other hand, when three or four passages are formed, the size of the nozzle body is increased. Further, by providing two or a plurality of passages, the spray cross section with a spray angle of 20 ° to 30 ° can be formed into a circular pattern. FIG. 3A shows an example in which there is one passage, and FIG. 3B shows an example in which there are two passages.
  • the invention comprises a cover body for refining while guiding the mist sprayed from the spray outlet part along the spray axis direction of the spray outlet part,
  • the cover body is An air intake that allows air to flow inside and outside the cover body;
  • a fog passage section for guiding the fog upward;
  • a liquid storage portion for storing the liquid, The liquid storage portion communicates with the liquid passage portion, and the liquid flows to the liquid passage portion.
  • the mist sprayed from the spray outlet of the nozzle body can be further refined and sprayed to the outside of the apparatus at a low speed by the cover body. Since low-speed spraying is possible, it is possible to reduce mist from adhering to the wall surface inside the cover portion and forming droplets. Moreover, since it can comprise so that the liquid of a liquid storage part may flow into the liquid channel
  • the cover main body further includes a baffle portion for guiding the mist along the spray axis direction of the spray outlet portion. Fog is guided into the baffle portion, and miniaturization is promoted.
  • the baffle portion has an oval, elliptical or rectangular guide port, an inner hollow portion having a hollow inside, and an opening outlet portion in which at least two openings are formed.
  • a mist having an oval or oval spray cross section enters the guide port of the baffle section having a cross section shape corresponding to the spray cross section shape, and then passes through the inner space portion. It exits from an opening outlet having two openings. The mist is further refined by the baffle portion.
  • the cover body is A base part connected to the nozzle body and having the liquid storage part, a first cover part connected to the base part, a second cover part connected to the first cover part, and the second cover part And an intake cylinder portion having the intake portion, and a third cover portion connected to the intake cylinder portion and having the outlet portion formed therein.
  • a base part, a 1st cover part, and a 2nd cover part may be comprised by a single member, and may be comprised and connected by another member.
  • a 1st cover part and a 2nd cover part may be comprised by a single member, and may be comprised and connected by another member.
  • a 2nd cover part and a 3rd cover part may be comprised by a single member, and may be comprised and connected by another member.
  • You may comprise a base part, a 1st cover part, a 2nd cover part, and a 3rd cover part with a single member.
  • the outlet portion is formed to be inclined at a predetermined angle with respect to the spray axis direction of the spray outlet portion.
  • the “predetermined angle” is, for example, 30 ° to 150 °.
  • FIG. 4A shows a case of 90 °.
  • the angle of the outlet can be set according to the purpose of use.
  • a gas passage for flowing the gas flow is formed in the base portion.
  • the gas passage portion is connected to a gas pressure source (for example, an air pump).
  • the gas is not particularly limited, and examples thereof include air, clean air (clean air), nitrogen, inert gas, fuel mixed air, oxygen, and the like, and can be appropriately set according to the purpose of use.
  • the liquid is not particularly limited, but a low-viscosity liquid is preferable.
  • cosmetic liquids such as water, ionized water, moisturizing liquid, beauty water, lotion, etc.
  • examples thereof include paints, fuel oils, coating agents, solvents, and resins.
  • FIG. 1B is an enlarged view of the AA cross section of FIG. 1A.
  • 1B is an enlarged view of a BB cross section of FIG. 1A.
  • FIG. It is a schematic diagram for demonstrating the crossing angle formed with two gas injection axes. It is a schematic diagram which shows the example which has one liquid channel
  • FIG. It is the external appearance schematic diagram which looked at the liquid atomization apparatus of Embodiment 1 from the top. It is a cross-sectional schematic diagram of a nozzle body.
  • FIG. 8A It is a figure for demonstrating the gas-liquid orifice part of a nozzle main body. It is a figure for demonstrating the cap part of a nozzle main body. It is a cross-sectional schematic diagram of the whole liquid atomization apparatus of Embodiment 2. It is a front view (upper half cross section) of a baffle part. It is a side view (upper half cross section) of a baffle part. It is a bottom view of a baffle part. It is a top view of a baffle part. It is a schematic diagram (partial sectional view) of the entire liquid atomizing apparatus of the third embodiment. It is a front view of FIG. 8A. It is an enlarged view of the A section of FIG. 8A.
  • FIG. 9B is a YY sectional view of FIG. 9A. It is the figure which looked at the spray outlet part of FIG. 9A from the front.
  • FIG. 10A It is an enlarged view of the A section of FIG. 10A.
  • FIG. 10B is a sectional view taken along line BB in FIG. 10C. It is a side view (upper half sectional view) of a gas-liquid orifice part.
  • FIG. 11B is a sectional view taken along line XX in FIG. 11A. It is the figure which looked at the spray outlet part of FIG. 11A from the front.
  • FIG. 4A is a schematic cross-sectional view of the entire liquid atomizing apparatus 1.
  • the liquid atomizing apparatus 1 includes a nozzle body 10 that performs primary atomization, and a cover body 50 that further atomizes the mist sprayed from the nozzle body 10 to further refine the mist.
  • FIG. 4C shows a schematic cross-sectional view of the nozzle body 10.
  • the nozzle body 10 includes a gas-liquid orifice part 11 and a cap part 15.
  • a liquid passage portion 110 is formed at the axial center of the gas-liquid orifice portion 11.
  • the liquid passage portion 111 includes a liquid orifice 111 in the nozzle body outlet direction.
  • a recess (recess) 111 a having a diameter larger than the diameter of the liquid orifice 111 is formed at the outlet of the liquid orifice 111.
  • the direction where the recessed part 111a is provided tends to have a strong siphon force.
  • the liquid passage portion 110 communicates with a liquid storage portion 58 described later.
  • FIG. 5A shows a cross-sectional view of the gas-liquid orifice portion 11.
  • Two gas passage portions 131 are formed in the gas-liquid orifice portion 11 in the axial direction, and each of the gas passage portions 131 communicates with each of the groove portions 132 formed on the outer wall surface.
  • the two gas passage parts 131 and the groove part 132 correspond to first and second gas injection parts.
  • a gas orifice is formed by covering the groove portion 132 with the inner wall surface of the cap portion 15.
  • the first and second gas injection units 131 are connected to an external air pump (not shown) through a gas passage 511 formed in the base unit 51 described later.
  • a spray outlet 30 is formed at the tip of the nozzle body.
  • the liquid By flowing the gas flow from the two grooves 132, the liquid is sucked up through the liquid orifice 111, the sucked liquid collides with the gas flow, the liquid is atomized, and the mist is sprayed from the spray outlet 30 ( (Low speed spraying).
  • the area in which the liquid is atomized in this way is the gas-liquid mixing area part, and the inner space (the space surrounded by the inner wall 33) widening toward the end of the cross section toward the outlet of the spray outlet part 30 and the outlet front of the hollow part 111a.
  • atomization is realized by performing internal mixing of gas and liquid in the gas-liquid mixing area.
  • the crossing angle formed by the gas flows formed by the two grooves 132 is 110 °.
  • the cross-sectional shape of the groove 132 is V-shaped (triangle).
  • FIG. 5B shows a cross-sectional view of the cap portion 15.
  • the cap portion 15 is formed with four through portions 151 for passing the liquid to the liquid passage portion 110 through the liquid storage portion 58.
  • a passage 114 is formed in the gas-liquid orifice portion 11 for passing the liquid to the liquid passage portion 110 at a position corresponding to the position of the penetrating portion 151, and the passage 114 communicates with the hole portion 115 (two are formed). The liquid flows from the hole portion 115 to the liquid passage portion 110.
  • the cover body 50 has a function of miniaturizing the mist sprayed from the spray outlet 30 along the spray axis direction of the spray outlet 30.
  • the cover body 50 is connected to the lower portion of the nozzle body 10 and has a base 51 having a liquid storage portion 58, a first cover 52 connected to the base 51, and a second connected to the first cover 52. It has a cover part 53, an intake cylinder part 54 connected to the second cover part 53 and having an intake part 541, and a third cover part 55 connected to the intake cylinder part 54 and formed with an outlet part 56.
  • the first cover portion 52, the intake cylinder portion 54, and the third cover portion 55 guide the mist sprayed from the nozzle body 10 upward (corresponding to a mist passage portion).
  • the cover body 50 is not limited to the shape shown in FIG. 4A, and the tip side may not be bent in an L shape, may be inclined at an obtuse angle or an acute angle with respect to the spraying direction, and may be straight.
  • FIG. 4B shows a schematic external view of the liquid atomizing apparatus 1 as viewed from above.
  • a plurality of air intake portions 541 are formed in the air intake cylinder portion 54, and the air intake portions 541 allow air to flow inside and outside the cover main body.
  • the outlet portion 56 is formed to be inclined at an angle of 90 ° with respect to the spray axis direction of the spray outlet portion 30, guides the mist to the outside, and discharges the mist.
  • the liquid storage portion 58 formed in the base portion 51 has a hollow shape, and is formed between the inner wall surface of the base portion 51 and the first cover portion 51 and the outer wall surface of the nozzle body 10. The liquid storage portion 58 communicates with the liquid passage portion 110.
  • a gas passage 511 for flowing a gas flow through the base portion 51 is formed.
  • the nozzle body 10 is assembled in the base portion 51 with the packing 16 interposed at the bottom of the nozzle body 10.
  • the connection method between the cover portions and the intake cylinder portions is not particularly limited, and may be configured to be detachable, for example, may be coupled by screw type coupling or fitting. Moreover, when connecting each member, you may interpose sealing members, such as packing.
  • the second embodiment shown in FIG. 6 has a structure in which the baffle unit 70 is provided in the liquid atomizing apparatus 1 of the first embodiment.
  • the baffle portion 70 is disposed in the cover body 50 from the inside of the first cover portion 52 to the inside of the intake cylinder portion 54 along the spray axis direction of the spray outlet portion 30.
  • the mist sprayed by the baffle portion 70 is further refined.
  • FIGS. 7A to 7D show front, side, bottom, and top views of the baffle unit 70.
  • the baffle portion 70 includes a flange portion 71 formed at the bottom portion, an oval guide port 71, an inner hollow portion 72 having a hollow inside, an opening outlet portion 74 in which two openings 74a and 74b are formed, a ceiling. And a surface portion 75. 7A to 7D, the longitudinal directions of the openings 74a and 74b and the top surface portion 75 are configured to be parallel to the longitudinal direction of the guide port 71, but are not particularly limited thereto.
  • the shape, position, and number of the openings 74a and 74b of the opening outlet portion 74 are not limited to the drawings. Further, the shape and position of the top surface portion 75 are not limited to the drawings.
  • Embodiments 1 and 2 The spray characteristics were evaluated using the liquid atomization apparatus having the configuration shown in the first and second embodiments.
  • the cross-sectional diameter of the liquid orifice 111 is ⁇ 0.28, the cross-sectional diameter of the recess 111a is ⁇ 0.5 mm, the groove 132 has a V-shaped cross section, the width is 0.18 mm, and the cutting depth is 0.3 mm.
  • the gas flow cross section is smaller than the liquid cross section. Air was used as the gas and water was used as the liquid.
  • the spray angle sprayed from the spray outlet of the nozzle body was set to 30 °.
  • Example 1 the air amount Qa (NL / min) of the gas injection and the effective fog when the air pressure Pa of the gas injection is changed to 0.05 and 0.07 (MPa) under the condition of no baffle portion.
  • the amount Qf mist spray amount from the cover outlet portion
  • the average particle diameter (SMD) of the fog sprayed from the outlet portion were evaluated. The evaluation results are shown in Table 1.
  • the average particle size (SMD) was measured with a laser diffraction measuring instrument. The measurement position was 20 mm from the outlet.
  • Example 1 and 2 primary fog is generated by low-speed spraying from the nozzle body with an average particle diameter (SMD) of 10 to 20 ⁇ m, and the mist is refined by passing through the cover body, so that the average particle diameter (SMD) is reduced. A secondary fog of 5-13 ⁇ m was easily obtained. Since the primary fog is a low-speed spray, it is also reduced that a part of mist adheres to the inner wall surface of the cover body to form droplets. From the results of Examples 1 and 2, it was confirmed that the liquid can be sucked and atomized with low gas energy (low gas pressure). Further, as the gas pressure (gas flow rate) was increased, the liquid suction force was increased, the amount of atomization (fog amount) was increased, and miniaturization was promoted.
  • SMD average particle diameter
  • Embodiment 3 The liquid atomizing device of Embodiment 3 is configured as a nozzle device.
  • FIG. 8A shows a partial sectional view of the entire nozzle device 80.
  • FIG. 8B shows a front view of the spray outlet 30.
  • the cap part 81 is screw-coupled with the cylindrical part 82 and packing interposed.
  • the cylindrical portion 82 is connected to an external air pump and has a supply port 82a for supplying gas.
  • Two gas orifices 835a and 835b (concave groove shape having a rectangular cross section) and two liquid orifices 832 and 833 (circular cross section) are formed in the gas / liquid orifice portion 83.
  • the gas-liquid orifice part 83 is fitted into the nozzle holding part 84 with packing interposed. By screwing the cap part 81 to the cylindrical part 82, the gas-liquid orifice part 83 is pushed and fixed to the nozzle holding part 84 side by the cap part 81.
  • a gas passage portion 82b is formed between the cylindrical portion 82 and the nozzle holding portion 84, and communicates with the two gas orifices 835a and 835b.
  • a liquid passage 84 a is formed in the axial direction of the nozzle holding portion 84 and communicates with the two liquid orifices 832 and 833.
  • a depression (recess) 834 is formed at the outlet of the two liquid orifices 832 and 833.
  • the two liquid orifices 832 and 833 have a structure in which the inner wall surface of the cap portion 81 covers a concave groove on the outer surface of the gas-liquid orifice.
  • the collision angle ( ⁇ ) between the gas flows formed by the two gas orifices 835a and 835b is 110 °.
  • 9A to 9C show the gas-liquid orifice portion 83.
  • FIG. 8C is an enlarged view of part A of FIG. 8A.
  • the spray outlet portion 30 is configured by a penetrating portion of the cap portion 81, and has an inclined portion 31 that is inclined so as to widen at the end of the cross section along the spraying direction, and the inclined portion 31 is disposed so as to protrude outward, And the step part 32 is formed.
  • the inclined portion 31 prevents the sprayed mist from adhering to the tip portion of the cap portion 81.
  • FIG. 8D shows a BB cross section of FIG. 8C.
  • the gas orifice 835a (835b) communicates with the recess 834, and the gas flow is released to the outside which is an open space.
  • the depression 834 becomes negative pressure, and the liquid is sucked up from the liquid orifices 832 and 833, respectively, and atomized by the gas flow. Since the liquid is sucked up by the two liquid orifices 832 and 833, the amount of suction is increased. Further, it is possible to generate a mist having a spray pattern with a circular cross section having a spray angle of 20 ° to 30 ° with a low speed spray flow.
  • Atomization is achieved by internal mixing.
  • each member is not limited to screw fixing, and other connecting means can be used, and a seal member (not shown) (for example, an O-ring) is appropriately incorporated in the gap between the members. Good.
  • the cap part 81 and the gas-liquid orifice part 83 form the first and second gas orifices 835a and 835b.
  • the first and second gas orifices are formed by a single member. Also good.
  • the cross-sectional shape of the first and second gas orifices is not limited to a rectangle, and may be another polygonal shape or a circular shape.
  • the collision angle ⁇ between the gas flows is not limited to 110 °, and can be set in the range of 90 ° to 180 °, for example.
  • a structure in which a concave groove shape is formed on the inner wall surface of the cap portion 81 and the outer wall surface of the gas-liquid orifice 83 is covered may be employed.
  • Example 3 The spray characteristics were evaluated using the liquid atomization apparatus (nozzle apparatus) having the configuration shown in Embodiment 3 (Example 5).
  • the two liquid orifices 832 and 833 have a cross-sectional diameter of ⁇ 0.15
  • the hollow portion 834 has a cross-sectional diameter of ⁇ 0.81 mm
  • the gas orifices 835a and 835b have a rectangular cross section, a width of 0.2 mm, and a slit depth of 0. 2 mm. Air was used as the gas and water was used as the liquid.
  • Example 5 when the air pressure Pa of gas injection is 0.05 (MPa), the air amount Qa (NL / min) of gas injection, the spray amount Qw (mist spray amount from the spray outlet), the spray
  • the average particle size (SMD) of the mist sprayed from the outlet was evaluated.
  • the evaluation results are shown in Table 3.
  • the average particle size (SMD) was measured with a laser diffraction measuring instrument. The measurement position was 20 mm from the spray outlet.
  • Example 5 The mist generated in Example 5 was a low-speed spray flow, and had a spray pattern with a circular cross section with a spray angle of 25 °. Although the average particle size (SMD) was relatively high, the spray amount Qf increased due to the increased suction amount.
  • SMD average particle size
  • Embodiment 4 The liquid atomizing device of Embodiment 4 is configured as a nozzle device.
  • FIG. 10A shows a partial sectional view of the entire nozzle device 80.
  • FIG. 10B is a front view of the spray outlet 30.
  • the cap part 81 is screw-coupled with the cylindrical part 82 and packing interposed.
  • the cylindrical portion 82 is connected to an external air pump and has a supply port 82a for supplying gas.
  • Two gas orifices 835 a and 835 b (concave groove shape) and one liquid orifice 831 (circular cross section) are formed in the gas-liquid orifice portion 83.
  • the gas-liquid orifice part 83 is fitted into the nozzle holding part 84 with packing interposed.
  • a gas passage portion 82b is formed between the cylindrical portion 82 and the nozzle holding portion 84, and communicates with the two gas orifices 835a and 835b.
  • a liquid passage 84 a is formed in the axial direction of the nozzle holding portion 84 and communicates with one liquid orifice 831.
  • a recess (recess) 834 is formed at the outlet of the liquid orifice 831. If the dent 834 is present, the siphon force tends to be strong.
  • the liquid orifice 831 has a structure in which the inner wall surface of the cap portion 81 covers a concave groove on the outer surface of the gas-liquid orifice.
  • the collision angle ( ⁇ ) between the gas flows formed by the two gas orifices 835a and 835b is 110 °.
  • 11A to 11C show the gas-liquid orifice portion 83.
  • FIG. 10C is an enlarged view of part A of FIG. 10A.
  • the spray outlet part 30 is configured by a penetrating part of the cap part 81, and has an inclined part 31 that is inclined in a fan shape with a widening at the end of the cross section along the spray direction, and is arranged so that the inclined part 31 protrudes outward.
  • a step 32 is formed.
  • the inclined portion 31 prevents the sprayed mist from adhering to the tip portion of the cap portion 81.
  • FIG. 10D shows a BB cross section of FIG. 10C.
  • the gas orifice 835a (835b) communicates with the recess 834, and the gas flow is released to the outside which is an open space.
  • the recess 834 becomes negative pressure, and the liquid is sucked up from the liquid orifice 831 and atomized by the gas flow.
  • a gas flow is flowed with low gas energy, a mist with a spray pattern having an elliptical cross section (or oval) with a spray angle of 70 ° to 90 ° can be generated by a low-speed spray flow due to the siphon effect.
  • the spray pattern having an elliptical cross section can be adjusted.
  • the gas-liquid mixing area portion configured to have an internal space (a space surrounded by the inclined portion 31) widening toward the outlet of the spray outlet portion 30 and a hollow portion 834, Atomization is achieved by internal mixing.
  • each member is not limited to screw fixing, and other connecting means can be used, and a seal member (not shown) (for example, an O-ring) is appropriately incorporated in the gap between the members. Good.
  • the cap part 81 and the gas-liquid orifice part 83 form the first and second gas orifices 835a and 835b.
  • the first and second gas orifices are formed by a single member. Also good.
  • the cross-sectional shape of the first and second gas orifices is not limited to a rectangle, and may be another polygonal shape or a circular shape.
  • the collision angle ⁇ between the gas flows is not limited to 110 °, and can be set in the range of 90 ° to 180 °, for example.
  • a structure in which a concave groove shape is formed on the inner wall surface of the cap portion 81 and the outer wall surface of the gas-liquid orifice 83 is covered may be employed.
  • Embodiment 4 The spray characteristics were evaluated using the liquid atomization apparatus (nozzle apparatus) having the configuration shown in Embodiment 4 (Example 6).
  • the liquid orifice 831 has a cross-sectional diameter of ⁇ 0.2
  • the recess 834 has a cross-sectional diameter of ⁇ 0.73 mm
  • the gas orifices 835a and 835b have a rectangular cross section, a width of 0.15 mm, and a slit depth of 0.3 mm.
  • Air was used as the gas and water was used as the liquid.
  • Example 6 when the air pressure Pa of gas injection is 0.05 (MPa), the air amount Qa (NL / min) of gas injection, the spray amount Qw (mist spray amount from the spray outlet), the spray
  • the average particle diameter (SMD) of the mist sprayed from the angle ⁇ and the spray outlet was evaluated.
  • the evaluation results are shown in Table 4.
  • the average particle size (SMD) was measured with a laser diffraction measuring instrument. The measurement position was 20 mm from the spray outlet.
  • Example 6 The mist generated in Example 6 was a low-velocity spray flow and had a spray pattern with an elliptical cross section with a spray angle ⁇ of 80 °.
  • the liquid orifice 831 has a cross-sectional diameter of ⁇ 0.4
  • the recess 834 has a cross-sectional diameter of ⁇ 0.73 mm
  • the gas orifices 835a and 835b have a cross-section. Is V-shaped, its width is 0.3 mm, and the depth of cut is 0.2 mm. Only the nozzle device, the case where the cover body 50 of FIG. 4A was attached to the nozzle device, and the case where the cover body 50 and the baffle portion 70 of FIG. 6 were attached were evaluated. Air was used as the gas and water was used as the liquid.
  • Example 7 when the air pressure Pa of the gas injection is changed from 0.05 (MPa) to 0.5 (MPa), the air amount Qa (NL / min) of the gas injection, the spray amount Qw ⁇ Qf (nozzle spray) The amount of spray from the outlet / cover outlet and the effective fog amount) and the average particle size (SMD) of the sprayed mist were evaluated.
  • the evaluation results are shown in Table 5.
  • the average particle size (SMD) was measured with a laser diffraction measuring instrument. The measurement position was 50 mm from each spray outlet.
  • Example 7 The mist generated in Example 7 was a low-velocity spray flow and had a spray pattern with an elliptical cross section with a spray angle ⁇ of 80 °.

Landscapes

  • Nozzles (AREA)

Abstract

 液体に実施的に圧力をかけずに、低気体エネルギーで液体を霧化させることができる液体霧化装置を提供するために、本発明の液体霧化装置は、2つの気体流を噴射するための第1気体噴射部(1)および第2気体噴射部(2)と、前記第1気体噴射部(1)および第2気体噴射部(2)による気体流の形成によって液体が流れる通路を有する液体通路部(6)と、前記液体通路部(6)から流れてきた液体に対し前記第1気体噴射部(1)から噴射された気体流と前記第2気体噴射部(2)から噴射された気体流とを衝突させて当該液体を霧化させるエリアである気液混合エリア部(120)と、前記気 液混合エリア部(120)で霧化された霧を外部に噴霧する噴霧出口部(30)と、を有するノズル本体を備える。

Description

液体霧化装置
 本発明は、液体を霧化するための液体霧化装置に関する。
 従来の霧化技術として、気液混合式(二流体式)、超音波式、超高圧式(100MPa~300MPa)、蒸発式等がある。一般的な二流体ノズルは、気体と液体とを同一噴射方向で噴射させて気液の随伴流によるせん断効果で液体を微細化する。ところで、半導体ウエハ等への蒸着コーティング、医療機器(例えば、吸入機)、美容用薬液噴霧器、保湿用薬液噴霧器等の分野では、低エネルギーで液体を霧化させたいとの要求がある。
 また、気液混合式二流体ノズルの一例として、微粒子ミストを生成するための噴霧ノズル装置が知られている(特許文献1)。この噴霧ノズル装置は、第1ノズル部と第2ノズル部を有し、第1ノズル部からの噴霧液と第2ノズル部からの噴霧液とを衝突させて、微粒子ミストを形成することができる。しかしながら、2流体ノズル部を2つ備えるため、コスト高であり、低エネルギーでの噴霧ではなかった。
特開2002-126587号公報
 本発明は、上述の従来技術の微細化原理とは異なる新規原理を用いて、液体に実質的に圧力をかけずに、低気体エネルギーで液体を霧化させることができる液体霧化装置を提供することを目的とする。
 本発明の液体霧化装置は、2つの気体流を噴射するための第1気体噴射部および第2気体噴射部と、
 前記第1気体噴射部および第2気体噴射部による2つの気体流の形成によって液体が流れる通路を有する液体通路部と、
 前記液体通路部から流れてきた液体に対し前記第1気体噴射部から噴射された気体流と前記第2気体噴射部から噴射された気体流とを衝突させて当該液体を霧化させるエリアである気液混合エリア部と、
 前記気液混合エリア部で霧化された霧を外部に噴霧する噴霧出口部と、を有するノズル本体を備えることを特徴とする。
 この構成によれば、液体を噴射させるためのエネルギー源(例えば液体ポンプ)を必要とせずに、低気体エネルギー源(例えばエアポンプ)だけで、液体を吸い上げてこの液体を霧化できる。すなわち、ノズル本体に気体を送ればサイフォン効果により液体を吸い上げて低速噴霧の霧を作ることができる。また、気体圧(気体流量)を高めるほど液体の吸引力も高くなりフォッグ量(発生する霧の噴霧量)が増加し、微細化を促進できる。
 まず、本発明の原理について図1A~1Cを参照しながら説明する。図1Aは、ノズル本体の噴霧出口部を正面視した図である。対向する左右から中心の気液混合エリア部120に向かって第1、第2気体噴射部1、2が伸びる。気液混合エリア部120は、噴霧出口部30の内部に設けられ、凹部を形成している。本発明は、凹形状の気液混合エリア部120内における内部混合である。この気液混合エリア部120で気体流同士(11、21)が衝突した後に、気体は、開放空間の外部へ噴霧出口部30の先端部から流れ出る。この気体流の流れによって気液混合エリア部120が負圧状態になり、液体源(例えば液体収容部)から液体通路部6(液体オリフィス)を通じて液体61が吸い上げられる。符号6aは、液体通路部6の出口先端部を示す。符号30aは、噴霧出口部30の外側表面部を示す。
 図1Bは、図1AのA-A断面の拡大図である。図1Cは、図1AのB-B断面の拡大図である。噴射された気体流同士11、21が衝突して、衝突部100が形成される。この衝突部100を含む部分を衝突壁と呼ぶ。この衝突壁(衝突部100)に向かって、液体通路部6を通じて液体61が吸い上げられる。この衝突壁に液体61が衝突することで、液体61が粉砕(霧化)され霧62となる。霧62が発生するエリアを気液混合エリア部120として破線で示す。霧62は、噴霧出口部30の先端から広角に広がって(扇状に広がって)噴霧される。霧の噴霧パターンとして、例えば、幅広の扇状に形成され、その断面形状は楕円状または長円状となる。気体流同士が衝突した衝突面に平行に(衝突面が拡張する方向に)、衝突した(衝突後の)気体が拡散し、この方向に霧62が扇状に広がって噴出される。従来の二流体ノズルでのサイフォン力では、噴霧角が20°~30°であったが、本発明のサイフォン力では噴霧パターンにおける長径方向の角γが70°~90°の広角噴霧が可能になる。また、70°~90°の広角噴霧パターンだけでなく、70°以下の噴霧角γが可能であり、例えば、20°~40°にすることもできる。
 また、気体流の圧力Pa(MPa)は、例えば、0.005~0.80の範囲が例示される。低エネルギーの気体圧力Pa(MPa)としては、好ましくは0.01~0.15、より好ましくは0.03~0.1である。本発明では、このように低気体エネルギーのみで液体を霧化できる。また、本発明では、気体流の圧力を例えば、0.1~0.8(MPa)の範囲でも使用でき、好ましくは0.15~0.7、より好ましくは0.2~0.6、さらに好ましくは0.25~0.5が好ましい。
 2本の気体流の圧力は、同じまたは略同じに設定することが好ましく、その流量も、同じまたは略同じに設定することが好ましい。また、気体噴射部から噴射される気体流の断面形状は、特に制限されず、例えば、円状、楕円状、矩形状、多角形状が挙げられる。気体流の断面形状は、気体噴射部のオリフィス断面に依存する。
 液体通路部の断面形状は、特に制限されない。
 また、霧62は、その周囲を囲む噴霧出口部30によって噴霧方向が規制される。噴霧出口部30は、気体オリフィスを形成するための部材(気体噴射部1、2)と一体に形成されていてもよく、別部材で形成していてもよい。
 上記発明の一実施形態として、前記第1気体噴射部の噴射方向軸と前記第2気体噴射部の噴射方向軸との交差角度が90°~180°の範囲であることが好ましい。第1気体噴射部1および第2気体噴射部2のそれぞれの噴射方向軸が交差する角度範囲は、第1気体噴射部1から噴射された気体と第2気体噴射部2から噴射された気体の衝突角に相当する。図2に衝突角αを示す。例えば、「衝突角α」は、90°~220°であり、好ましくは90°~180°であり、より好ましくは90°~120°である。
 上記発明の一実施形態として、前記液体通路部は、前記通路を2つあるいは2つ以上有する。この構成によれば、サイフォン効果で、2つの通路から液体を吸い上げることが可能になり、液体の吸い上げ量を2倍にできるため、噴霧量を向上できる。また、3つの通路を設ければ3倍になる。一方、3つ、4つの通路を形成する場合には、ノズル本体のサイズが大きくなる。また、通路を2つあるいは複数設けることで、噴霧パターンを噴霧角20°~30°の噴霧断面を円状パターンにすることができる。図3Aは、通路が一つである例を示し、図3Bは、通路が2つである例を示す。
 上記発明の一実施形態として、前記噴霧出口部の噴霧軸方向に沿って、前記噴霧出口部から噴霧された霧を誘導しつつ微細化するためのカバー本体を備え、
 前記カバー本体は、
 カバー本体内外の空気の流通を可能とする吸気部と、
 前記霧を上方へ導く霧通路部と、
 前記霧通路部を通過した霧を外部へ導く出口部と、
 前記液体を収容する液体収容部と、を有し、
 前記液体収容部が前記液体通路部に通じ、前記液体が当該液体通路部へ流れる。
 この構成では、カバー本体によって、ノズル本体の噴霧出口部から噴霧された霧をさらに微細化して装置外部へ低速に噴射させることができる。低速噴霧が可能なことで、カバー部内部の壁面に霧が付着して液滴化することも減少する。また、液体収容部の液体をノズル本体の液体通路部に流れるように構成できるため、液体をカバー本体内部にセットできる。このカバー本体内部で霧が液化した場合、カバー本体内部の壁面を通じて、液体収容部に流れるため、液の再利用も簡単になる。また、カバー本体内壁面への霧の付着量を減少させるため、霧の噴霧角γを20°~40°にすることが好ましい。
 上記発明の一実施形態として、外部の液体タンクから管などを介して液体通路部に液体が流れる構造が挙げられる。
 上記発明の一実施形態として、前記カバー本体内部に、前記噴霧出口部の噴霧軸方向に沿って、前記霧が案内されるバッフル部をさらに有する。このバッフル部内に霧が案内されて微細化が促進される。
 上記実施形態として、前記バッフル部は、長円状、楕円状または長方形状の案内口と、内部が空洞の内空部と、少なくとも2つの開口が形成された開口出口部とを有する。噴霧断面が楕円状または長円状の霧(γ=20°~40°)が、その噴霧断面形状に応じた断面形状であるバッフル部の案内口に入り、次いで内空部を通って、2つの開口を有する開口出口部から出ていく。このバッフル部によって、霧がさらに微細化される。
 上記発明の一実施形態として、前記カバー本体は、
前記ノズル本体と連接されかつ前記液体収容部を有するベース部と、前記ベース部に連接される第1カバー部と、前記第1カバー部に連接される第2カバー部と、前記第2カバー部に連接されかつ前記吸気部を有する吸気筒部と、前記吸気筒部と連接されかつ前記出口部が形成される第3カバー部とを有する。
 これによって、小型で量産可能な簡単な部品でかつ少ない部品点数でカバー本体を構成できる。この実施形態として、ベース部と第1カバー部と第2カバー部とを単一部材で構成してもよく、別部材で構成して連結してもよい。第1カバー部と第2カバー部とを単一部材で構成してもよく、別部材で構成して連結してもよい。第2カバー部と第3カバー部とを単一部材で構成してもよく、別部材で構成して連結してもよい。ベース部、第1カバー部、第2カバー部および第3カバー部を単一部材で構成してもよい。
 上記発明の一実施形態として、前記出口部が、前記噴霧出口部の噴霧軸方向に対し、所定の角度で傾斜して形成されている。上記「所定の角度」は、例えば30°~150°であり、例えば、図4Aは90°の場合を示す。使用目的に応じて出口部の角度を設定できる。
 上記発明の一実施形態として、前記ベース部に前記気体流を流すための気体通路が形成されている。気体通路部は気体圧力源(例えばエアポンプ)に接続される。
 上記気体としては、特に制限されないが、例えば、空気、清浄空気(クリーンエア)、窒素、不活性ガス、燃料混合エア、酸素等が挙げられ、使用目的に応じて適宜設定可能である。
 上記液体としては、特に制限されないが、低粘度の液体が好ましく、例えば、水、イオン化水、保湿液、美用水、化粧水等の化粧薬液、医薬液、殺菌液、除菌液等の薬液、塗料、燃料油、コーティング剤、溶剤、樹脂等が挙げられる。
ノズル本体の噴霧出口部を正面視した図である。 図1AのA-A断面の拡大図である。 図1AのB-B断面の拡大図である。 2つの気体噴射軸で形成される交差角度を説明するための模式図である。 液体通路が1つである例を示す模式図である。 液体通路が2つである例を示す模式図である。 実施形態1の液体霧化装置の全体の断面模式図である。 実施形態1の液体霧化装置を上から見た外観模式図である。 ノズル本体の断面模式図である。 ノズル本体の気液オリフィス部を説明するための図である。 ノズル本体のキャップ部を説明するための図である。 実施形態2の液体霧化装置の全体の断面模式図である。 バッフル部の正面図(上半分断面)である。 バッフル部の側面図(上半分断面)である。 バッフル部の底面図である。 バッフル部の天面図である。 実施形態3の液体霧化装置の全体の模式図(一部断面図)である。 図8Aの正面図である。 図8AのA部の拡大図である。 図8CのB-B断面図である。 気液オリフィス部の側面断面図である。 図9AのY-Y断面図である。 図9Aの噴霧出口部を正面視した図である。 実施形態4の液体霧化装置の全体の模式図(一部断面図)である。 図10Aの正面図である。 図10AのA部の拡大図である。 図10CのB-B断面図である。 気液オリフィス部の側面図(上半分断面図)である。 図11AのX-X断面図である。 図11Aの噴霧出口部を正面視した図である。
 (実施形態1)
 本実施形態のノズル本体およびカバー本体を有する液体霧化装置1を図面を参照しながら説明する。図4Aは、液体霧化装置1の全体の断面模式図である。液体霧化装置1は、一次霧化を行うノズル本体10と、ノズル本体10から噴霧された霧をさらに微細化を促進する二次霧化するカバー本体50を有する。
 図4Cに、ノズル本体10の断面模式図を示す。ノズル本体10は、気液オリフィス部11と、キャップ部15を備える。気液オリフィス部11の軸方向中心部に液体通路部110が形成される。液体通路部111は、ノズル本体出口方向に液体オリフィス111を備える。液体オリフィス111の出口に、液体オリフィス111の直径よりも大きい直径の窪み部(凹部)111aが形成される。なお、別実施形態として窪部111aを設けない構造でもよいが、窪部111aを設けたほうがサイフォン力が強い傾向である。液体通路部110は、後述する液体収容部58と通じている。
 図5Aに、気液オリフィス部11の断面図を示す。気液オリフィス部11には、軸方向に2本の気体通路部131が形成され、気体通路部131のそれぞれが外壁表面に形成された溝部132のそれぞれに通じている。この2本の気体通路部131と溝部132とは第1、第2気体噴射部に相当する。溝部132をキャップ部15の内壁面で蓋をすることで気体オリフィスが形成される。第1、第2気体噴射部131は、後述するベース部51に形成された気体通路511を介して外部のエアポンプ(不図示)に接続される。ノズル本体の先端には、噴霧出口部30が形成される。2本の溝部132から気体流を流すことで、液体が液体オリフィス111を通って吸い上げられ、吸い上げられた液体が気体流と衝突し、液体が霧化され、霧が噴霧出口部30から噴霧(低速噴霧)される。このように液体が霧化されるエリアが気液混合エリア部であり、噴霧出口部30の出口に向かって断面末広がりの内部空間(内部壁33で囲まれた空間)と窪み部111aの出口前方部を有して構成される。本実施形態では、気液混合エリア部での気液の内部混合を行うことで霧化を実現している。本実施形態1では、2本の溝部132による気体流同士で形成される交差角度は、110°である。溝部132の断面形状はV字状(三角形)である。
 図5Bに、キャップ部15の断面図を示す。キャップ部15には、液体収容部58に通じて液体を液体通路部110へ送るための貫通部151が4つ形成されている。この貫通部151の位置に対応した位置に液体を液体通路部110へ通じる通路114が気液オリフィス部11に形成され、この通路114は孔部115(2つ形成されている)に通じてこの孔部115から液体が液体通路部110に流れる。
 カバー本体50は、噴霧出口部30の噴霧軸方向に沿って、噴霧出口部30から噴霧された霧を誘導しつつ微細化する機能である。カバー本体50は、ノズル本体10の下部と連接されかつ液体収容部58を有するベース部51と、ベース部51に連接される第1カバー部52と、第1カバー部52に連接される第2カバー部53と、第2カバー部53に連接されかつ吸気部541を有する吸気筒部54と、吸気筒部54と連接されかつ出口部56が形成される第3カバー部55とを有する。第1カバー部52、吸気筒部54、第3カバー部55とで、ノズル本体10から噴霧された霧を上方へ導く(霧通路部に相当する)。カバー本体50は、図4Aに示す形状に限定されず、先端側がL字状曲がっていなくてもよく、噴霧方向に対し鈍角または鋭角に傾斜していてもよく、ストレートでもよい。
 図4Bに液体霧化装置1を上から見た外観模式図を示す。吸気筒部54には、複数の吸気部541が形成されており、この吸気部541によって、カバー本体内外の空気の流通を可能とする。出口部56は、噴霧出口部30の噴霧軸方向に対し、90°の角度で傾斜して形成され、霧を外部へ導き、霧を放出する。ベース部51に形成された液体収容部58は、窪み形状であり、ベース部51と第1カバー部51との内壁面およびノズル本体10の外壁面との間に形成される。この液体収容部58が液体通路部110に通じている。また、ベース部51に気体流を流すための気体通路511が形成されている。ノズル本体10の底部にパッキン16を介在させてノズル本体10をベース部51に組み込んでいる。各カバー部、吸気筒部同士の連結方法は、特に制限されず、着脱自在に構成してもよく、例えば、ネジ式結合、嵌め合わせで結合してもよい。また、各部材同士の連結に際し、パッキンなどのシール部材を介在させてもよい。
(実施形態2)
 図6に示す実施形態2は、実施形態1の液体霧化装置1において、バッフル部70が設けられた構造である。バッフル部70は、カバー本体50内部に、噴霧出口部30の噴霧軸方向に沿って、第1カバー部52の内部から吸気筒部54の内部に渡って配置される。このバッフル部70で噴霧された霧がさらに微細化される。
 図7A~7Dにバッフル部70の正面、側面、底面、天面の各図を示す。バッフル部70は、底部に形成されたフランジ部71と、長円状の案内口71と、内部が空洞の内空部72と、2つの開口74a、74bが形成された開口出口部74、天面部75とを有する。図7A~7Dにおいて、開口74a、74b、天面部75のそれぞれの長手方向が、案内口71の長手方向と平行に構成されているが、特にこれに制限されない。開口出口部74の開口74a、74bの形状、位置、個数は図面に限定されない。また、天面部75の形状、位置も図面に限定されない。
<実施形態1、2の実験例>
実施形態1、2に示す構成の液体霧化装置を用いて噴霧特性を評価した。液体オリフィス111の断面直径がφ0.28、窪み部111aの断面直径がφ0.5mm、溝部132はV字状断面であり、その幅が0.18mm、切り込み深さ0.3mmとした。液体の断面よりも気体流の断面が小さい。気体に空気を用い、液体に水を用いた。ノズル本体の噴霧出口部から噴霧される噴霧角が30°になるように設定した。実施例1、2は、バッフル部なしの条件で、気体噴射の空気圧Paを0.05、0.07(MPa)に変えたときの、気体噴射の空気量Qa(NL/min)、有効フォッグ量Qf(カバー出口部からの霧の噴霧量)、出口部から噴霧された霧の平均粒子径(SMD)を評価した。評価結果を表1に示す。平均粒子径(SMD)はレーザー回折法の計測装置により測定した。測定位置は、出口部から20mmの位置とした。
Figure JPOXMLDOC01-appb-T000001
実施例3、4は、バッフル部70を使用した条件で、気体噴射の空気圧Paを0.045、0.07(MPa)に変えたときの、気体噴射の空気量Qa(NL/min)、有効フォッグ量Qf(カバー出口部からの霧の噴霧量)、出口部から噴霧された霧の平均粒子径(SMD)を評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1、2では、ノズル本体から低速噴霧で平均粒子径(SMD)が10~20μmの一次フォッグが発生し、カバー本体を通過することで霧が微細化されて平均粒子径(SMD)が5~13μmの二次フォッグを簡単に得られた。一次フォッグが低速噴霧であるため、カバー本体内壁面に一部の霧が付着して液滴化することも減少している。実施例1、2の結果から、低気体エネルギー(低気体圧力)で液体を吸い上げて霧化できることが確認された。また、気体圧(気体流量)高めるほど、液体の吸引力も高くなり霧化量(フォッグ量)も増加し、微細化も促進された。
 実施例3、4では、バッフル部の微細化の効果で、実施例1,2よりも有効フォッグ量Qfが増加し、平均粒子径(SMD)も小さくなった。
 (実施形態3)
 実施形態3の液体霧化装置は、ノズル装置として構成されている。図8Aにノズル装置80の全体の一部断面図を示す。図8Bに噴霧出口部30を正面視した図を示す。キャップ部81は筒状部82とパッキンを介在させてネジ結合している。筒状部82は、外部のエアポンプに接続されて気体を供給するための供給口82aが形成されている。気液オリフィス部83には2つの気体オリフィス835a、835b(断面矩形の凹溝形状)と、2つの液体オリフィス832、833(断面円状)が形成されている。気液オリフィス部83は、パッキンを介在させてノズル抑え部84にはめ込まれている。上記キャップ部81を筒状部82にネジ結合させることで、キャップ部81で気液オリフィス部83がノズル抑え部84側に押し込められて固定される。筒状部82とノズル抑え部84との間に気体通路部82bが形成されており、2本の気体オリフィス835a、835bに通じている。ノズル抑え部84の軸方向に液体通路84aが形成されており、2本の液体オリフィス832、833に通じている。2本の液体オリフィス832、833の出口に窪み部(凹部)834が形成されている。この窪み部834があるとサイフォン力が強い傾向がある。2本の液体オリフィス832、833は、気液オリフィス外表面の凹溝にキャップ部81の内壁面が蓋をしている構造である。2本の気体オリフィス835a、835bとで形成される気体流同士の衝突角(α)が110°である。図9A~9Cに気液オリフィス部83を示す。
 図8Cは、図8AのA部拡大図である。噴霧出口部30は、キャップ部81の貫通部で構成されており、噴霧方向に沿って、断面末広がりに傾斜した傾斜部31を有し、この傾斜部31が外側に突き出すように配置されて、かつ段差部32が形成されている。この傾斜部31によって、噴霧される霧がキャップ部81の先端部に付着することを抑制している。 図8Dに、図8CのB-B断面を示す。窪み部834に気体オリフィス835a(835b)が通じて、開放空間である外部に気体流が放出される。このとき、窪み部834が負圧になって液体オリフィス832、833からそれぞれ液体が吸い上げられ、気体流によって霧化される。2つの液体オリフィス832、833で吸い上げられるため、吸い上げ量が大きくなる。また、低速度噴霧流で、噴霧角が20°~30°の断面円状の噴霧パターンの霧を生成できる。本実施形態では、噴霧出口部30の出口に向かって断面末広がりの内部空間(傾斜部31で囲まれた空間)と窪み部834とを有して構成される気液混合エリア部において気液の内部混合を行い霧化を実現している。
 各部材の固定方法はネジ固定に限定されず、他の連結手段を用いることができ、また、各部材間の隙間には不図示のシール部材(例えばOリング等)が適宜組み込まれていてもよい。
 上記実施形態3では、キャップ部81と気液オリフィス部83とで、第1、第2気体オリフィス835a、835bを形成しているが、単一部材で第1、第2気体オリフィスを形成してもよい。また、第1、2気体オリフィスの断面形状が矩形に限定されず、他の多角形状でもよく、円状でもよい。また、気体流同士の衝突角αは、110°に限定されず、例えば、90°~180°の範囲で設定できる。また、凹溝形状をキャップ部81の内壁面に形成して気液オリフィス83の外壁面で蓋をする構造でもよい。
<実施形態3の実験例>
実施形態3に示す構成の液体霧化装置(ノズル装置)を用いて噴霧特性を評価した(実施例5)。2つの液体オリフィス832、833の断面直径がφ0.15、窪み部834の断面直径がφ0.81mm、気体オリフィス835a、835bは断面が矩形状であり、その幅が0.2mm、スリット深さ0.2mmとした。気体に空気を用い、液体に水を用いた。実施例5は、気体噴射の空気圧Paを0.05(MPa)としたときの、気体噴射の空気量Qa(NL/min)、噴霧量Qw(噴霧出口部からの霧の噴霧量)、噴霧出口部から噴霧された霧の平均粒子径(SMD)を評価した。評価結果を表3に示す。平均粒子径(SMD)はレーザー回折法の計測装置により測定した。測定位置は、噴霧出口部から20mmの位置とした。
Figure JPOXMLDOC01-appb-T000003
 実施例5で生成された霧は、低速度噴霧流であり、噴霧角が25°の断面円状の噴霧パターンであった。平均粒子径(SMD)が比較的高いものの、吸い上げ量が大きくなったことで噴霧量Qfが増加した。
 (実施形態4)
 実施形態4の液体霧化装置は、ノズル装置として構成されている。図10Aにノズル装置80の全体の一部断面図を示す。図10Bに噴霧出口部30を正面視した図を示す。キャップ部81は筒状部82とパッキンを介在させてネジ結合している。筒状部82は、外部のエアポンプに接続されて気体を供給するための供給口82aが形成されている。気液オリフィス部83には2つの気体オリフィス835a、835b(凹溝形状)と、1つの液体オリフィス831(断面円状)が形成されている。気液オリフィス部83は、パッキンを介在させてノズル抑え部84にはめ込まれている。上記キャップ部81を筒状部82にネジ結合させることで、キャップ部81で気液オリフィス部83がノズル抑え部84側に押し込められて固定される。筒状部82とノズル抑え部84との間に気体通路部82bが形成されており、2本の気体オリフィス835a、835bに通じている。ノズル抑え部84の軸方向に液体通路84aが形成されており、1つの液体オリフィス831に通じている。液体オリフィス831の出口に窪み部(凹部)834が形成されている。この窪み部834があるとサイフォン力が強い傾向がある。液体オリフィス831は、気液オリフィス外表面の凹溝にキャップ部81の内壁面が蓋をしている構造である。2つの気体オリフィス835a、835bとで形成される気体流同士の衝突角(α)が110°である。図11A~11Cに気液オリフィス部83を示す。
 図10Cは、図10AのA部拡大図である。噴霧出口部30は、キャップ部81の貫通部で構成されており、噴霧方向に沿って、断面末広がりの扇状に傾斜した傾斜部31を有し、この傾斜部31が外側に突き出すように配置されて、かつ段差部32が形成されている。この傾斜部31によって、噴霧される霧がキャップ部81の先端部に付着することを抑制している。 図10Dに、図10CのB-B断面を示す。窪み部834に気体オリフィス835a(835b)が通じて、開放空間である外部に気体流が放出される。このとき、窪部834が負圧になって液体オリフィス831から液体が吸い上げられ、気体流によって霧化される。低気体エネルギーで気体流を流せば、サイフォン効果によって、液体を吸い上げて低速噴霧流で、噴霧角が70°~90°の断面楕円(または長円)状の噴霧パターンの霧を生成できる。気体オリフィスの矩形断面のスリット深さを変えることで、断面楕円状の噴霧パターンを調整できる。本実施形態では、噴霧出口部30の出口に向かって断面末広がりの内部空間(傾斜部31で囲まれた空間)と窪み部834とを有して構成される気液混合エリア部において気液の内部混合を行い霧化を実現している。
 各部材の固定方法はネジ固定に限定されず、他の連結手段を用いることができ、また、各部材間の隙間には不図示のシール部材(例えばOリング等)が適宜組み込まれていてもよい。
 上記実施形態4では、キャップ部81と気液オリフィス部83とで、第1、第2気体オリフィス835a、835bを形成しているが、単一部材で第1、第2気体オリフィスを形成してもよい。また、第1、2気体オリフィスの断面形状が矩形に限定されず、他の多角形状でもよく、円状でもよい。また、気体流同士の衝突角αは、110°に限定されず、例えば、90°~180°の範囲で設定できる。また、凹溝形状をキャップ部81の内壁面に形成して気液オリフィス83の外壁面で蓋をする構造でもよい。
<実施形態4の実験例>
実施形態4に示す構成の液体霧化装置(ノズル装置)を用いて噴霧特性を評価した(実施例6)。液体オリフィス831の断面直径がφ0.2、窪部834の断面直径がφ0.73mm、気体オリフィス835a、835bは断面が矩形状であり、その幅が0.15mm、スリット深さ0.3mmとした。気体に空気を用い、液体に水を用いた。実施例6は、気体噴射の空気圧Paを0.05(MPa)としたときの、気体噴射の空気量Qa(NL/min)、噴霧量Qw(噴霧出口部からの霧の噴霧量)、噴霧角γ、噴霧出口部から噴霧された霧の平均粒子径(SMD)を評価した。評価結果を表4に示す。平均粒子径(SMD)はレーザー回折法の計測装置により測定した。測定位置は、噴霧出口部から20mmの位置とした。
Figure JPOXMLDOC01-appb-T000004
 実施例6で生成された霧は、低速度噴霧流であり、噴霧角γが80°の断面楕円状の噴霧パターンであった。
<実施例7>
 上記実施形態4の液体霧化装置(ノズル装置)の構成において、液体オリフィス831の断面直径がφ0.4、窪部834の液体オリフィス側の断面直径がφ0.73mm、気体オリフィス835a、835bは断面がV字状であり、その幅が0.3mm、切り込み深さが0.2mmとした。このノズル装置のみと、ノズル装置に図4Aのカバー本体50を装着した場合、図6のカバー本体50およびバッフル部70を装着した場合について評価した。気体に空気を用い、液体に水を用いた。実施例7は、気体噴射の空気圧Paを0.05(MPa)~0.5(MPa)まで変えたときの、気体噴射の空気量Qa(NL/min)、噴霧量Qw・Qf(ノズル噴霧出口部・カバー出口部からの噴霧量、有効フォッグ量)、噴霧された霧の平均粒子径(SMD)を評価した。評価結果を表5に示す。平均粒子径(SMD)はレーザー回折法の計測装置により測定した。測定位置は、それぞれの噴霧出口部から50mmの位置とした。
Figure JPOXMLDOC01-appb-T000005
 実施例7で生成された霧は、低速度噴霧流であり、噴霧角γが80°の断面楕円状の噴霧パターンであった。
1    第1気体噴射部(気体オリフィス)
2    第2気体噴射部(気体オリフィス)
6    液体通路部(液体オリフィス)
10   ノズル本体
30   噴霧出口部
50   カバー本体
70   バッフル部
120  気液混合エリア部

Claims (9)

  1.  2つの気体流を噴射するための第1気体噴射部および第2気体噴射部と、
     前記第1気体噴射部および第2気体噴射部による2つの気体流の形成によって液体が流れる通路を有する液体通路部と、
     前記液体通路部から流れてきた液体に対し前記第1気体噴射部から噴射された気体流と前記第2気体噴射部から噴射された気体流とを衝突させて当該液体を霧化させるエリアである気液混合エリア部と、
     前記気液混合エリア部で霧化された霧を外部に噴霧する噴霧出口部と、を有するノズル本体を備えることを特徴とする液体霧化装置。
  2.  前記第1気体噴射部の噴射方向軸と前記第2気体噴射部の噴射方向軸との交差角度が90°~180°の範囲である、請求項1に記載の液体霧化装置。
  3.  前記液体通路部は、前記通路を2つあるいは2つ以上有する、請求項1または2に記載の液体霧化装置。
  4.  前記噴霧出口部の噴霧軸方向に沿って、前記噴霧出口部から噴霧された霧を誘導しつつ微細化するためのカバー本体を備え、
     前記カバー本体は、
     カバー本体内外の空気の流通を可能とする吸気部と、
     前記霧を上方へ導く霧通路部と、
     前記霧通路部を通過した霧を外部へ導く出口部と、
     前記液体を収容する液体収容部と、を有し、
     前記液体収容部が前記液体通路部に通じ、前記液体が当該液体通路部へ流れる、請求項1から3のいずれか1項に記載の液体霧化装置。
  5.  前記カバー本体内部に、前記噴霧出口部の噴霧軸方向に沿って、前記霧が案内されるバッフル部をさらに有する、請求項4に記載の液体霧化装置。
  6.  前記バッフル部は、長円状、楕円状または長方形状の案内口と、内部が空洞の内空部と、少なくとも2つの開口が形成された開口出口部とを有する、請求項5に記載の液体霧化装置。
  7.  前記カバー本体は、
    前記ノズル本体と連接されかつ前記液体収容部を有するベース部と、前記ベース部に連接される第1カバー部と、前記第1カバー部に連接される第2カバー部と、前記第2カバー部に連接されかつ前記吸気部を有する吸気筒部と、前記吸気筒部と連接されかつ前記出口部が形成される第3カバー部とを有する、請求項4から5のいずれか1項に記載の液体霧化装置。
  8.  前記出口部が、前記噴霧出口部の噴霧軸方向に対し、所定の角度で傾斜して形成されている、請求項4に記載の液体霧化装置。
  9. 前記ベース部に前記気体流を流すための気体通路が形成されている、請求項7または8に記載の液体霧化装置。
     
     
     
PCT/JP2012/082420 2011-12-19 2012-12-13 液体霧化装置 WO2013094522A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280063153.XA CN104039460A (zh) 2011-12-19 2012-12-13 液体雾化装置
US14/365,953 US20140332606A1 (en) 2011-12-19 2012-12-13 Liquid atomizing device and liquid atomizing method
EP12860939.3A EP2799149A4 (en) 2011-12-19 2012-12-13 liquid spraying

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-277336 2011-12-19
JP2011277336 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013094522A1 true WO2013094522A1 (ja) 2013-06-27

Family

ID=48668413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082420 WO2013094522A1 (ja) 2011-12-19 2012-12-13 液体霧化装置

Country Status (5)

Country Link
US (1) US20140332606A1 (ja)
EP (1) EP2799149A4 (ja)
JP (1) JPWO2013094522A1 (ja)
CN (1) CN104039460A (ja)
WO (1) WO2013094522A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210040889A (ko) * 2021-03-25 2021-04-14 주식회사 수본 분무상태 조절이 가능한 살균 소독용 미스트 샤워 장치
KR20210149555A (ko) 2020-06-02 2021-12-09 이기선 살균장치

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH713113A1 (de) * 2016-11-08 2018-05-15 Chemspeed Tech Ag Sprühverfahren zur Beschichtung eines Substrats mit einer in einem Gasstrom zerstäubten Substanz.
FR3069463B1 (fr) * 2017-07-31 2020-07-17 Saint-Gobain Isover Installation de fabrication de laine minerale et dispositif de projection d’une composition d’encollage equipant une telle installation
US10948824B2 (en) * 2018-06-28 2021-03-16 Taiwan Semiconductor Manufacturing Co., Ltd. Dispensing nozzle design and dispensing method thereof
CN108672121A (zh) * 2018-07-18 2018-10-19 上海艾魁英生物科技有限公司 一种高粘稠度溶菌酶二聚体蛋白液雾化装置
CN109701760A (zh) * 2018-12-29 2019-05-03 中创华鼎(锦州)新能源科技有限公司 一种可以自行清洗的流体喷嘴总成
JP7201229B2 (ja) * 2019-03-28 2023-01-10 株式会社エアレックス 除染装置
JP7181178B2 (ja) * 2019-11-19 2022-11-30 日立造船株式会社 ノズルおよび加水分解装置
JP7431021B2 (ja) * 2019-11-29 2024-02-14 アネスト岩田株式会社 スプレーガン
CN113398519A (zh) * 2021-05-20 2021-09-17 中国舰船研究设计中心 一种气助式水幕和水雾复合喷射装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126587A (ja) 2000-10-19 2002-05-08 Bio Media Co Ltd 噴霧ノズル装置
JP2007038124A (ja) * 2005-08-02 2007-02-15 Institute Of Physical & Chemical Research 液体微粒子化ノズル及びそれを用いた装置
JP2010247106A (ja) * 2009-04-17 2010-11-04 Nozzle Network Co Ltd 微細化促進用の気液混合ノズル装置
JP2011098284A (ja) * 2009-11-05 2011-05-19 Nozzle Network Co Ltd 気液混合ノズル
JP2011212649A (ja) * 2010-03-15 2011-10-27 Nozzle Network Co Ltd 二流体ノズルおよびその二流体ノズルを備える微細化装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1934474A1 (de) * 1968-07-09 1970-01-15 Lucas Industries Ltd Zerstaeuberduese
US4278418A (en) * 1975-12-15 1981-07-14 Strenkert Lynn A Process and apparatus for stoichiometric combustion of fuel oil
US6161778A (en) * 1999-06-11 2000-12-19 Spraying Systems Co. Air atomizing nozzle assembly with improved air cap
DE10009573B4 (de) * 2000-02-29 2006-01-26 Mabo Steuerungselemente Vertriebs-Gmbh Düseneinrichtung, insbesondere angeordnet in sanitären Wasserbecken und Behältern
JP4130630B2 (ja) * 2001-09-19 2008-08-06 シー.アディガ カイヤーニ 超微細な液滴を有するミストの生成、抽出及び送出のための方法及び装置
US7114910B2 (en) * 2003-01-24 2006-10-03 Turbotect Ltd. Method and injection nozzle for interspersing a gas flow with liquid droplets
US20050183718A1 (en) * 2004-02-24 2005-08-25 Boehringer Ingelheim International Gmbh Nebulizer
JP4973841B2 (ja) * 2006-07-21 2012-07-11 株式会社タクマ 二流体噴射ノズル
CN101992160B (zh) * 2009-08-27 2014-11-05 斯普瑞喷雾系统(上海)有限公司 大调整比的双流体喷嘴装置及其大调整比方法
JP5562601B2 (ja) * 2009-09-15 2014-07-30 ノズルネットワーク株式会社 微細化促進用器具および微細化促進用器具の気液混合ノズル装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126587A (ja) 2000-10-19 2002-05-08 Bio Media Co Ltd 噴霧ノズル装置
JP2007038124A (ja) * 2005-08-02 2007-02-15 Institute Of Physical & Chemical Research 液体微粒子化ノズル及びそれを用いた装置
JP2010247106A (ja) * 2009-04-17 2010-11-04 Nozzle Network Co Ltd 微細化促進用の気液混合ノズル装置
JP2011098284A (ja) * 2009-11-05 2011-05-19 Nozzle Network Co Ltd 気液混合ノズル
JP2011212649A (ja) * 2010-03-15 2011-10-27 Nozzle Network Co Ltd 二流体ノズルおよびその二流体ノズルを備える微細化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2799149A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210149555A (ko) 2020-06-02 2021-12-09 이기선 살균장치
KR102443729B1 (ko) * 2020-06-02 2022-09-14 이기선 살균장치
KR20210040889A (ko) * 2021-03-25 2021-04-14 주식회사 수본 분무상태 조절이 가능한 살균 소독용 미스트 샤워 장치
KR102282852B1 (ko) 2021-03-25 2021-07-28 주식회사 수본 분무상태 조절이 가능한 살균 소독용 미스트 샤워 장치

Also Published As

Publication number Publication date
EP2799149A1 (en) 2014-11-05
US20140332606A1 (en) 2014-11-13
JPWO2013094522A1 (ja) 2015-04-27
EP2799149A4 (en) 2015-03-25
CN104039460A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2013094522A1 (ja) 液体霧化装置
JP5971532B2 (ja) 液体霧化装置
JP6347432B2 (ja) 噴霧装置
JP3319752B2 (ja) 噴霧ノズル
JP6350951B2 (ja) 噴霧装置
US10272456B2 (en) Spraying apparatus
WO2016076038A1 (ja) スプレーノズルおよび該スプレーノズルを備えた加湿器
US20060283980A1 (en) Atomizer system integrated with micro-mixing mechanism
WO2012137603A1 (ja) 液体霧化装置
US20150035179A1 (en) Liquid atomization device
JP2012179518A (ja) ドライミスト噴射ノズル
CN103182097A (zh) 小型扩香仪
US20130181063A1 (en) Liquid Atomizing Device and Liquid Atomizing Method
RU2755024C2 (ru) Сопло для различных жидкостей
JP7502775B2 (ja) 噴霧ノズル
JP2022014191A (ja) 噴霧ノズル
JP2022014190A (ja) 噴霧ノズル
WO2013073336A1 (ja) 液体霧化装置
JP2006035081A (ja) 薬液散布用ノズル及び散布器
WO2023228634A1 (ja) 噴霧装置
AU2014333607A1 (en) Spray nozzle comprising a cyclone-like swirl chamber
TWI527628B (zh) Ultrasonic nozzle of two-fluid atomizing device
JP6820018B2 (ja) 液体散布ノズル
JP2023179262A (ja) 噴霧ノズル
JP2018196847A (ja) 噴霧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550254

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14365953

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012860939

Country of ref document: EP