WO2013094466A1 - 位相差フィルム、偏光板及び液晶表示装置 - Google Patents

位相差フィルム、偏光板及び液晶表示装置 Download PDF

Info

Publication number
WO2013094466A1
WO2013094466A1 PCT/JP2012/082017 JP2012082017W WO2013094466A1 WO 2013094466 A1 WO2013094466 A1 WO 2013094466A1 JP 2012082017 W JP2012082017 W JP 2012082017W WO 2013094466 A1 WO2013094466 A1 WO 2013094466A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
retardation film
liquid crystal
range
crystal display
Prior art date
Application number
PCT/JP2012/082017
Other languages
English (en)
French (fr)
Inventor
崇 南條
由紀 金子
浩 居野家
矢野 健太郎
高木 隆裕
村上 隆
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020147015828A priority Critical patent/KR101644727B1/ko
Priority to JP2013522018A priority patent/JP5348356B1/ja
Publication of WO2013094466A1 publication Critical patent/WO2013094466A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate

Definitions

  • the present invention provides a retardation film which is excellent in economical efficiency, has improved color tone stability (color tint resistance) when stored for a long time in a harsh environment, and has excellent image unevenness resistance.
  • the present invention relates to a polarizing plate and a liquid crystal display device.
  • LCD Liquid Crystal Display
  • various optical films having various characteristics such as a polarizing film and a retardation film are used.
  • polarizing plates used there for thinning, lightening, and high production in addition to economic efficiency.
  • polarizing plate protective films, retardation films, and the like as constituent members.
  • liquid crystal display elements As the application of liquid crystal display elements is expanded, there is a demand for further increasing the aperture ratio and improving the viewing angle of liquid crystal display elements.
  • Examples of the technology relating to high definition include a color filter on array structure (hereinafter abbreviated as COA) described in Patent Documents 1 to 3, HtVA (High transmission Vertical Alignment), and the like.
  • the COA has a configuration in which a color filter is formed on a counter substrate different from a thin film transistor (hereinafter abbreviated as TFT) substrate, but directly on the TFT substrate.
  • TFT thin film transistor
  • HtVA forms a liquid crystal layer by enclosing a nematic liquid crystal having positive dielectric anisotropy between glass substrates.
  • nematic liquid crystal having positive dielectric anisotropy As the nematic liquid crystal having positive dielectric anisotropy, a known liquid crystal display device used in each of TN type (Twisted Nematic type) or IPS type (In-Plane Switching type) liquid crystal display devices should be used. Can do.
  • TN type Transmission Nematic type
  • IPS type In-Plane Switching type
  • a cellulose acetate film having a low retardation and a high degree of retardation is used. It has a characteristic that it is susceptible to hydrolysis, and it is difficult to make a thin film because of the characteristics of the additive that is added.
  • a method of adding a sugar ester compound as a hydrolysis adjusting agent or a phase difference controlling agent to a cellulose acetate film has been disclosed (for example, see Patent Document 4).
  • the sugar ester compound is simply added as a plasticizer to the cellulose acetate film, the color tone variation after being stored for a long period of time in a high temperature and high humidity environment is increased, as described above. It has been found that when the screen is enlarged, it becomes apparent as color unevenness or image unevenness. It has been found that this phenomenon appears particularly when a sugar ester compound having an excessively low coloring degree is used.
  • JP 2008-146004 A JP 2010-250117 A JP 2009-301010 A JP 2011-53645 A
  • the present invention has been made in view of the above-mentioned problems, and the solution to the problem is excellent in economic efficiency and improved color tone stability (resistance to color fluctuation) when stored for a long time in a harsh environment. And providing a retardation film having excellent image unevenness resistance, a polarizing plate and a liquid crystal display device having the retardation film.
  • a cellulose acylate having a total acyl group substitution degree in the range of 2.00 to 2.55 and a hue APHA in a 50 mass% toluene solution of 50 to 50% Retardation film containing monosaccharides or disaccharides in the range of 300 is excellent in economic efficiency and improved color stability (color variation resistance) when stored for a long time in harsh environments.
  • a retardation film excellent in image unevenness resistance can be realized, and it is as soon as the present invention is reached.
  • Cellulose acylate having a total acyl group substitution degree in the range of 2.00 to 2.55 and a monosaccharide or disaccharide, and hue APHA in a 50% by mass toluene solution of the monosaccharide or disaccharide
  • a retardation film having a thickness in the range of 50 to 300.
  • R 1 to R 8 each represent a hydrogen atom, a substituted or unsubstituted alkylcarbonyl group, or a substituted or unsubstituted arylcarbonyl group, and R 1 to R 8 may be the same or different. It may be. ] 4).
  • the yellow index value (Y.I.) satisfies the condition specified by the following expression (1), and the value of b * satisfies the condition specified by the following expression (2).
  • the retardation film according to any one of the above.
  • Formula (1) 0.8 ⁇ Y. I. ⁇ 2.0 Formula (2) 0.3 ⁇ b * ⁇ 0.6 5.
  • the mass ratio (B / (A + B) ⁇ 100) of the monosaccharide or disaccharide to the total mass of the cellulose acylate (A) and the monosaccharide or disaccharide (B) is 5.0 to 25.0 mass%.
  • the retardation film according to any one of items 1 to 4, wherein the retardation film is in the range of.
  • a liquid crystal display device comprising the polarizing plate according to item 6 in a liquid crystal cell.
  • the phase difference film is excellent in economic efficiency and has improved color tone stability (color tint resistance) when stored over a long period in a harsh environment, and has excellent image unevenness resistance
  • a polarizing plate and a liquid crystal display device including the same can be provided.
  • a film containing a sugar ester compound having a low degree of coloration specifically a sugar ester compound having a hue APHA of less than 50
  • a film containing a sugar ester compound having a low degree of coloration specifically a sugar ester compound having a hue APHA of less than 50
  • it has a low coloration degree and good characteristics, it exhibits coloration when stored over a long period of time in a high-temperature and high-humidity environment. found.
  • This phenomenon occurs particularly when such a retardation film is used in a vertical alignment type liquid crystal display device adopting a color filter on array method capable of increasing the contrast among liquid crystal display devices. It turned out that the problem became more obvious.
  • the present inventors have found that monosaccharides or disaccharides having a hue APHA in the range of 50 to 300 when dissolved in a toluene solution at a concentration of 50% by mass. Or, by using disaccharides, when formed into a thin film, there is no effect of coloring under practical conditions, and when stored for a long time in a high temperature and high humidity environment, On the other hand, it has been found that the rate of change in hue after storage is extremely small, and as a result, it is possible to remarkably improve tint fluctuation stability and image unevenness resistance. In addition, the present inventors have found that it also has an effect on cost reduction by avoiding excessive quality of lower coloring degree.
  • a monosaccharide or disaccharide having an APHA value of less than 50 when a monosaccharide or disaccharide having an APHA value of less than 50 is used, the influence of humidity in the display device and the influence of heat when the panel is lit are added, and the film is colored at an accelerated rate (exponentially).
  • a monosaccharide or disaccharide having an APHA value in the range specified in the present invention it may be due to the influence of a colored oxide, or the film may be colored for a long time under a high temperature and high humidity environment. I guess it was suppressed.
  • a monosaccharide or disaccharide having an APHA value greater than 300 when a monosaccharide or disaccharide having an APHA value greater than 300 is used, deterioration of the color tone, reduction of contrast, etc. are already manifested at the initial stage of production, resulting in practical problems.
  • the conceptual diagram which shows an example of a structure of the vertical alignment type (VA type
  • the conceptual diagram which shows an example of a structure of a liquid vertical alignment type (VA type) liquid crystal display device.
  • the retardation film of the present invention contains a cellulose acylate having a total acyl group substitution degree in the range of 2.00 to 2.55, and a monosaccharide or disaccharide.
  • the hue APHA in a 50% by mass toluene solution is in the range of 50 to 300. This feature is a technical feature common to the inventions according to claims 1 to 7.
  • the monosaccharide or disaccharide is a sugar ester compound having a total average substitution degree within the range of 4.50 to 6.00. More preferably, the sugar ester compound is a compound represented by the general formula (1).
  • the retardation film of the present invention has a yellow index value (YI) of 0.8 ⁇ Y. I.
  • YI yellow index value
  • b * 0.3 ⁇ b * ⁇ 0.6.
  • the mass ratio of monosaccharide or disaccharide to the total mass of cellulose acylate (A) and monosaccharide or disaccharide (B) is 5.0 to 25. It is preferable to be within the range of 0.0 mass%.
  • the polarizing plate comprising the retardation film of the present invention is provided on at least one surface of the liquid crystal cell, preferably the polarizing plate is an array substrate.
  • a color filter-on-array structure having a color filter layer thereon.
  • is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
  • the retardation film of the present invention has at least 1) a cellulose acylate having a total acyl group substitution degree in the range of 2.00 to 2.55, and 2) a hue APHA in a toluene solution having a concentration of 50% by mass of 50. It contains monosaccharides or disaccharides in the range of ⁇ 300.
  • the cellulose acylate used in the retardation film of the present invention can be manufactured at low cost, has high retardation development, and can be made into a thin film even when it is a retardation film having a high retardation,
  • the total acyl group substitution degree of cellulose acylate ie, acetyl group substitution degree
  • the dope viscosity will not increase excessively, and the film surface quality will be stabilized and the stretching tension will be prevented from rising. And haze can be set low.
  • the total acyl group substitution degree is 2.55 or less, a desired phase difference can be obtained.
  • the method for measuring the degree of acyl group substitution can be carried out in accordance with ASTM D-817-91, and the preferred total degree of acyl group substitution is in the range of 2.2 to 2.45.
  • the weight average molecular weight (Mw) of cellulose acylate is preferably in the range of 30000 to 300000, since the mechanical strength of the resulting film is strong. Further, those within the range of 100,000 to 250,000 are preferably used.
  • the value of the ratio Mw / Mn of the cellulose mass (Mw) and the number average molecular weight (Mn) is preferably in the range of 1.4 to 3.0.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of cellulose acylate can be measured using gel permeation chromatography (GPC).
  • cellulose as a raw material for cellulose acylate, but examples include cotton linters, wood pulp (derived from conifers and hardwoods), and kenaf. Moreover, the cellulose acylate obtained from them can be mixed and used in arbitrary ratios, respectively.
  • Examples of the cellulose acylate that can be used in the retardation film of the present invention include cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, and cellulose acetate phthalate. And at least one selected from cellulose phthalate.
  • particularly preferable cellulose esters include cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
  • the cellulose acylate according to the present invention can be produced by a known method. Specifically, it can be synthesized with reference to the methods described in JP-A-10-45804, JP-A-2009-161701 and the like.
  • the monosaccharide or disaccharide applied to the preparation of the retardation film of the present invention has a hue APHA when dissolved in a toluene solution at a concentration of 50% by mass within a range of 50 to 300, that is, a monosaccharide or It is characterized by a certain degree of coloring as a disaccharide.
  • a cellulose acylate for example, diacetyl cellulose is used as a resin in a retardation film
  • a monosaccharide or disaccharide specifically, a sugar ester compound is used as a hydrolysis regulator or a retardation control agent. It had been.
  • This monosaccharide or disaccharide is generally produced through the following process, and sugar production will be described as an example.
  • sugar production After going through a cleaning process to remove impurities from the raw sugar solution prepared by pressing and extracting from plants (eg sugarcane), etc., it is concentrated and grown in a vacuum crystal can (crystallized by evaporating water: sucrose) As a result, “Shirashita” which is a mixture of sugar and honey is prepared (crystallization process).
  • the white bottom is separated into sugar and honey by a product separator, the sugar is dried at a predetermined temperature and time.
  • the present inventors have found that a monosaccharide or disaccharide having a hue APHA in the range of 50 to 300 when dissolved in a toluene solution at a concentration of 50% by mass.
  • disaccharides when molded into a thin film, there is no effect of coloring under practical conditions, and when stored for a long time under high temperature and high humidity environment, The present inventors have found that the change rate of hue is extremely small, and as a result, the hue fluctuation stability and the image unevenness resistance can be remarkably improved. In addition, it has an effect on cost reduction by avoiding excessive quality of lower coloring degree.
  • the hue APHA according to the present invention is an index representing a hue defined by the American Public Health Association.
  • a 50% by mass toluene solution of a monosaccharide or disaccharide, a sugar ester compound or a compound represented by the general formula (1) according to the present invention is prepared, and this toluene solution is based on JISK 1557.
  • the Hazen unit color number (APHA) was measured according to JISK 0071-1. Specifically, it can be obtained by measuring a toluene solution containing the above monosaccharide or disaccharide at a concentration of 50% by mass using “COH-400” manufactured by Nippon Denshoku.
  • a means for controlling the APHA value of a monosaccharide or disaccharide a sugar ester compound or a compound represented by the general formula (1)
  • the monosaccharide or disaccharide, the sugar ester compound or the above Among the steps for producing the compound represented by the general formula (1), a monosaccharide having a desired APHA value by adjusting the drying temperature and drying time in the final drying step using a heater, an infrared dryer or the like.
  • a disaccharide, a sugar ester compound, or a compound represented by the general formula (1) can be obtained.
  • the APHA value may always change according to the progress of drying (drying temperature, drying time), it is preferable to terminate the drying when the desired APHA value is reached while monitoring the APHA value during the drying process.
  • the monosaccharide or disaccharide applicable to the present invention is not particularly limited as long as the hue APHA when dissolved in a toluene solution at a concentration of 50% by mass is in the range of 50 to 300.
  • gentiobiose, gentiotriose, gentiotetraose, xylotriose, galactosyl sucrose, and the like are also included.
  • sucrose examples, sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose is more preferable.
  • the monosaccharide or disaccharide according to the present invention is preferably a sugar ester compound having a total average substitution degree in the range of 4.50 to 6.00.
  • a sugar ester compound having at least one and at least 12 pyranose or furanose structures and esterifying a part of the OH group of the structure is further preferable.
  • the monocarboxylic acid used for esterifying a part of the OH group in the pyranose structure or furanose structure according to the present invention is not particularly limited, and known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, An aromatic monocarboxylic acid or the like can be used.
  • the carboxylic acid used may be one kind or a mixture of two or more kinds.
  • Preferred aliphatic monocarboxylic acids include, for example, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecyl acid, Saturated lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, mellicic acid, and laxaric acid
  • unsaturated fatty acids such as fatty acids, undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and
  • Examples of preferable alicyclic monocarboxylic acids include acetic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene.
  • aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralincarboxylic acid, or derivatives thereof.
  • the oligosaccharide ester compound can be applied as a compound having 1 to 12 at least one of the pyranose structure or furanose structure according to the present invention.
  • Oligosaccharides are produced by allowing an enzyme such as amylase to act on starch, sucrose, etc.
  • examples of oligosaccharides that can be applied to the present invention include maltooligosaccharides, isomaltoligosaccharides, fructooligosaccharides, galactooligosaccharides, and xylooligos. Sugar.
  • R 1 to R 8 each represents a hydrogen atom, a substituted or unsubstituted alkylcarbonyl group, or a substituted or unsubstituted arylcarbonyl group, and R 1 to R 8 are the same. Or different.
  • the average substitution degree of the compound represented by the general formula (1) according to the present invention is preferably in the range of 4.50 to 6.00.
  • the degree of substitution of the compound represented by the general formula (1) is a substituent other than a hydrogen atom (an alkylcarbonyl group or an arylcarbonyl group among the eight hydroxy groups included in the general formula (1). ), That is, the number including a group other than a hydrogen atom among R 1 to R 8 in the general formula (1). Accordingly, when all of R 1 to R 8 are substituted with a substituent other than a hydrogen atom, the degree of substitution is a maximum value of 8.0, and when all of R 1 to R 8 are hydrogen atoms, the degree of substitution is Becomes 0.0.
  • the average degree of substitution of the compound represented by the general formula (1) is preferably within the range of 4.50 to 6.00.
  • the compound having the structure represented by the general formula (1) it is difficult to synthesize a single kind of compound in which the number of hydroxy groups and the number of OR groups are fixed, and the number of hydroxy groups in the formula, OR Since it is known that a compound in which several kinds of components having different groups are mixed is used, it is appropriate to use the average degree of substitution as the degree of substitution of the general formula (1) in the present invention.
  • the average substitution degree can be measured from the area ratio of the chart showing the substitution degree distribution by chromatography.
  • sugar as a raw material for synthesizing the sugar ester compound according to the present invention examples include the same compounds (monosaccharides or disaccharides) described as the monosaccharide or disaccharide.
  • the carboxylic acids used for esterification of the compound represented by the general formula (1) according to the present invention are not particularly limited, and examples thereof include the same carboxylic acids that can be used for the preparation of the aforementioned sugar ester compounds. be able to.
  • R represents R 1 to R 8 in the general formula (1).
  • the retardation film of the present invention can contain an ester compound represented by the following general formula (2) from the viewpoint of retardation stability particularly in the environmental change of the polarizing plate.
  • B represents a hydroxy group or a carboxylic acid residue
  • G represents an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or 4 to 12 carbon atoms.
  • A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms.
  • n represents an integer of 1 or more.
  • examples of the alkylene glycol component having 2 to 12 carbon atoms include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, and 1,3-butane.
  • Diol 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol) ), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3 -Methyl-1,5-pentanediol-1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol Examples include 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol,
  • an alkylene glycol having 2 to 12 carbon atoms is particularly preferable because of its excellent compatibility with cellulose acetate.
  • aryl glycol component having 6 to 12 carbon atoms examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol and the like, and these glycols can be used as one kind or a mixture of two or more kinds.
  • Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, and the like. These glycols may be used alone or in combination of two or more. Can be used as a mixture of
  • alkylene dicarboxylic acid component having 4 to 12 carbon atoms examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, and the like. Or it is used as a mixture of two or more.
  • arylene dicarboxylic acid component having 6 to 12 carbon atoms examples include phthalic acid, terephthalic acid, isophthalic acid, 1,5 naphthalene dicarboxylic acid, 1,4 naphthalene dicarboxylic acid, and 2,6-naphthalene dicarboxylic acid.
  • plasticizer In the retardation film of this invention, a plasticizer can be contained as needed.
  • the plasticizer applicable to the present invention is not particularly limited, but preferably a polycarboxylic acid ester plasticizer, a glycolate plasticizer, a phthalate ester plasticizer, a fatty acid ester plasticizer, and a polyhydric alcohol. It is selected from ester plasticizers, ester plasticizers, acrylic plasticizers and the like.
  • At least one is preferably a polyhydric alcohol ester plasticizer.
  • the polyhydric alcohol ester plasticizer is a plasticizer composed of an ester of a divalent or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
  • a divalent to 20-valent aliphatic polyhydric alcohol ester is preferred.
  • the polyhydric alcohol preferably used in the present invention is a compound represented by the following general formula (3).
  • R 11 - (OH) n R 11 represents an n-valent organic group, n represents a positive integer of 2 or more, and the OH group represents an alcoholic or phenolic hydroxy group.
  • Preferred examples of the polyhydric alcohol include the following, but the present invention is not limited to these.
  • triethylene glycol triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane, and xylitol are preferable.
  • Examples of preferred monocarboxylic acids include the following, but the present invention is not limited thereto.
  • aliphatic monocarboxylic acid a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used.
  • the number of carbon atoms is more preferably 1-20, and particularly preferably 1-10.
  • acetic acid is contained, the compatibility with cellulose acylate is increased, and it is preferable to use a mixture of acetic acid and other monocarboxylic acid.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanoic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • Examples of preferred alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include those in which 1 to 3 alkoxy groups such as alkyl group, methoxy group or ethoxy group are introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, biphenylcarboxylic acid, Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as naphthalenecarboxylic acid and tetralincarboxylic acid, or derivatives thereof. In particular, benzoic acid is preferred.
  • the molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably in the range of 300 to 1500, and more preferably in the range of 350 to 750. A higher molecular weight is preferable because it is less likely to volatilize, and a lower molecular weight is preferable in terms of moisture permeability and compatibility with cellulose acylate.
  • the carboxylic acid used in the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
  • the glycolate plasticizer is not particularly limited, but alkylphthalylalkyl glycolates can be preferably used.
  • alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl Ethyl glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl Glycolate, butyl phthalyl propyl glycolate, methyl phthalyl octyl glycolate, ethyl phthalyl octyl glycolate, octyl phthalyl
  • phthalate ester plasticizer examples include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, and dicyclohexyl terephthalate.
  • citrate ester plasticizer examples include acetyl trimethyl citrate, acetyl triethyl citrate, and acetyl tributyl citrate.
  • fatty acid ester plasticizer examples include butyl oleate, methylacetyl ricinoleate, dibutyl sebacate and the like.
  • phosphate ester plasticizer examples include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like.
  • the polyvalent carboxylic acid ester compound is composed of an ester of a divalent or higher, preferably a divalent to 20valent polyvalent carboxylic acid and an alcohol.
  • the aliphatic polyvalent carboxylic acid is preferably divalent to 20-valent, and in the case of an aromatic polyvalent carboxylic acid or alicyclic polyvalent carboxylic acid, it is preferably trivalent to 20-valent.
  • the polyvalent carboxylic acid is represented by the following general formula (4).
  • R 12 (COOH) m1 (OH) n1
  • R 12 is an (m1 + n1) -valent organic group
  • m1 is a positive integer of 2 or more
  • n1 is an integer of 0 or more
  • a COOH group is a carboxy group
  • an OH group is an alcoholic or phenolic hydroxy group Represents a group.
  • Preferred examples of the polyvalent carboxylic acid include the following, but the present invention is not limited to these.
  • Trivalent or higher aromatic polyvalent carboxylic acids such as trimellitic acid, trimesic acid, pyromellitic acid or derivatives thereof, succinic acid, adipic acid, azelaic acid, sebacic acid, oxalic acid, fumaric acid, maleic acid, tetrahydrophthal
  • An aliphatic polyvalent carboxylic acid such as an acid, an oxypolyvalent carboxylic acid such as tartaric acid, tartronic acid, malic acid and citric acid can be preferably used.
  • the alcohol used in the polyvalent carboxylic acid ester compound that can be used in the present invention is not particularly limited, and known alcohols and phenols can be used.
  • an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, the carbon number is in the range of 1-20, and particularly preferably in the range of 1-10.
  • alicyclic alcohols such as cyclopentanol and cyclohexanol or derivatives thereof
  • aromatic alcohols such as benzyl alcohol and cinnamyl alcohol, or derivatives thereof can be preferably used.
  • the alcoholic or phenolic hydroxy group of the oxypolycarboxylic acid may be esterified with a monocarboxylic acid.
  • monocarboxylic acids include the following, but the present invention is not limited thereto.
  • a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, the carbon number is in the range of 1-20, and particularly preferably in the range of 1-10.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid , Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, undecylenic acid, Examples thereof include unsaturated fatty acids such as oleic acid, sorbic acid, linoleic acid, linolenic acid and arachidonic acid.
  • Examples of preferred alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenyl carboxylic acid, naphthalene carboxylic acid, and tetralin carboxylic acid.
  • benzoic acid and toluic acid examples include two or more benzene rings such as biphenyl carboxylic acid, naphthalene carboxylic acid, and tetralin carboxylic acid.
  • the aromatic monocarboxylic acid which has, or derivatives thereof can be mentioned.
  • Particularly preferred are acetic acid, propionic acid, and benzoic acid.
  • the molecular weight of the polyvalent carboxylic acid ester compound is not particularly limited, but the molecular weight is preferably in the range of 300 to 1,000, and more preferably in the range of 350 to 750. From the standpoint of improving retention, a larger molecular weight is preferable, and a smaller molecular weight is preferable in terms of moisture permeability and compatibility with cellulose acylate.
  • the alcohol used for the synthesis of the polyvalent carboxylic acid ester that can be used in the present invention may be one kind or a mixture of two or more kinds.
  • the acid value of the polyvalent carboxylic acid ester compound that can be used in the present invention is preferably 1 mgKOH / g or less, and more preferably 0.2 mgKOH / g or less. By setting the acid value within the above range, retardation fluctuations are also suppressed, which is preferable.
  • the acid value refers to the number of milligrams of potassium hydroxide necessary for neutralizing the acid (carboxy group present in the sample) contained in 1 g of the sample.
  • the acid value is measured according to JIS K0070.
  • ATEC acetyl triethyl citrate
  • ATBC acetyl tributyl citrate
  • benzoyl tributyl citrate acetyl triphenyl citrate
  • acetyl tribenzyl citrate dibutyl tartrate
  • diacetyldibutyl tartrate tributyl trimellitic acid
  • tetrabutyl pyromellitic acid examples include diacetyldibutyl tartrate, tributyl trimellitic acid, and tetrabutyl pyromellitic acid
  • a ultraviolet absorber in the retardation film of this invention, can also be contained as needed.
  • the ultraviolet absorber is a compound having a characteristic of absorbing ultraviolet rays of 400 nm or less, and is intended to improve durability.
  • the transmittance at a wavelength of 370 nm is preferably 10% or less, more preferably. Is 5% or less, more preferably 2% or less.
  • the ultraviolet absorber that can be used in the present invention is not particularly limited, and examples thereof include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex salts. Compound, inorganic powder and the like.
  • tinuvins such as tinuvin 109, tinuvin 171, tinuvin 234, tinuvin 326, tinuvin 327, tinuvin 328, tinuvin 928, and these are all manufactured by BASF Japan. It is a commercial item and can be preferably used.
  • the ultraviolet absorber preferably used in the present invention is a benzotriazole ultraviolet absorber, a benzophenone ultraviolet absorber, or a triazine ultraviolet absorber, and particularly preferably a benzotriazole ultraviolet absorber or a benzophenone ultraviolet absorber.
  • a discotic compound such as a compound having a 1,3,5-triazine ring is also preferably used as the ultraviolet absorber.
  • the retardation film of the present invention preferably contains two or more kinds of ultraviolet absorbers.
  • a polymeric ultraviolet absorber can also be preferably used, and in particular, a polymer type ultraviolet absorber described in JP-A-6-148430 is preferably used.
  • the UV absorber can be added by dissolving the UV absorber at a desired concentration in alcohols such as methanol, ethanol and butanol, organic solvents such as methylene chloride, methyl acetate, acetone and dioxolane or mixed solvents thereof. It may be added to the dope or directly into the dope composition.
  • alcohols such as methanol, ethanol and butanol
  • organic solvents such as methylene chloride, methyl acetate, acetone and dioxolane or mixed solvents thereof. It may be added to the dope or directly into the dope composition.
  • an inorganic powder that does not dissolve in an organic solvent it is preferable to use a dissolver or a sand mill in the organic solvent and cellulose acylate to disperse and then add to the dope.
  • the amount of UV absorber used is not uniform depending on the type of UV absorber, operating conditions, etc., but when the dry film thickness of the retardation film is in the range of 30 to 200 ⁇ m, it is 0 for the retardation film.
  • the addition is preferably within the range of 5 to 10% by mass, and more preferably within the range of 0.6 to 4% by mass.
  • Antioxidant In the retardation film of the present invention, an antioxidant can be used. Antioxidants are also referred to as deterioration inhibitors or stabilizers. For example, the effect of delaying or preventing the retardation film from being decomposed by the residual solvent halogen in the retardation film, phosphoric acid of the phosphoric acid plasticizer, etc. It is preferable to contain it.
  • a hindered phenol compound is preferably used.
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di- -T-butyl-4-hydroxyphenyl) propionate] triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], oct Decyl-3- (3,5-di-t-butyl-4-hydroxyphenyl
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred.
  • hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di- A phosphorus processing stabilizer such as t-butylphenyl) phosphite may be used in combination.
  • the amount of these compounds added is preferably in the range of 1 ppm to 1.0% by mass ratio with respect to cellulose acylate, and more preferably in the range of 10 to 1000 ppm.
  • the retardation film of the present invention includes, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, silica It is preferable to contain organic fine particles composed of inorganic fine particles such as aluminum oxide, magnesium silicate and calcium phosphate, and crosslinked polymers. Among these, silicon dioxide is preferable from the viewpoint that the haze of the retardation film can be kept low.
  • the primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably in the range of 5 to 16 nm, and particularly preferably in the range of 5 to 12 nm.
  • These fine particles are preferably included in the retardation film by forming secondary particles having a particle size in the range of 0.1 to 5 ⁇ m.
  • the average particle size as a preferable secondary particle is in the range of 0.1 to 2 ⁇ m. More preferably, it is in the range of 0.2 to 0.6 ⁇ m.
  • the primary average particle size of the fine particles used in the present invention is measured by observing the particles with a transmission electron microscope (magnification of 500,000 to 2,000,000 times), observing 100 particles, measuring the particle size, and calculating the average value. To the primary average particle size.
  • the apparent specific gravity of the fine particles is preferably 70 g / liter or more, more preferably in the range of 90 to 200 g / liter, and particularly preferably in the range of 100 to 200 g / liter.
  • a larger apparent specific gravity makes it possible to prepare a high-concentration dispersion, which improves haze and agglomerates, and is particularly preferable when preparing a dope having a high solid content concentration. .
  • Silicon dioxide fine particles having an average primary particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more are, for example, a mixture of vaporized silicon tetrachloride and hydrogen in a temperature range of 1000 to 1200 ° C. in the air. It can be obtained by burning with. Moreover, for example, it is marketed with the brand name of Aerosil 200V, Aerosil R972V (above, Nippon Aerosil Co., Ltd. product), and they can also be used.
  • the apparent specific gravity described above is calculated by the following equation by taking a certain amount of silicon dioxide fine particles in a graduated cylinder, measuring the volume and mass at this time.
  • g / liter mass of silicon dioxide (g) / volume of silicon dioxide (liter) [Characteristic value of retardation film] (Yellow index value Y.I.)
  • the yellow index (YI) value of the retardation film referred to in the present invention can be determined by the method described in JIS standard K7105-6.3. As a specific method of measuring the yellow index value in the present invention, using a spectrophotometer U-3200 manufactured by Hitachi, Ltd. and the attached saturation calculation program, etc., the tristimulus values X, Y, and Z of the color are obtained, The yellow index value was determined according to the following formula.
  • Yellow index 100 (1.28X-1.06Z) / Y (B * value)
  • the b * value which is one of yellowness indexes, is in the range of 0.3 ⁇ b * ⁇ 0.6.
  • the b * value according to the present invention is obtained, for example, by measuring with a spectrocolorimeter CM-3700d (manufactured by Konica Minolta Sensing Co., Ltd.) using D65 (color temperature 6504K) as a light source and a viewing angle of 10 °. be able to.
  • CM-3700d manufactured by Konica Minolta Sensing Co., Ltd.
  • D65 color temperature 6504K
  • the moisture permeability of the retardation film of the present invention is preferably in the range of 300 to 1800 g / m 2 ⁇ 24 h when measured in an environment of 40 ° C. and 90% RH, and more preferably in the range of 400 to 1500 g / m 2 ⁇ It is preferably within the range of 24 h, particularly preferably within the range of 40 to 1300 g / m 2 ⁇ 24 h.
  • the moisture permeability here can be measured according to the method described in JIS Z 0208.
  • the breaking elongation of the retardation film of the present invention is preferably in the range of 10 to 80%, more preferably in the range of 20 to 50%.
  • the elongation at break was determined by measuring the stress at break (MPa) in the direction of the slow axis of the film and in the direction perpendicular thereto by measurement according to JIS K7127-1999, and multiplying the film thickness of the film by the stress at break. The thing is calculated as the elongation at break (N).
  • the visible light transmittance of the retardation film of the present invention is preferably 90% or more, and more preferably 93% or more.
  • the visible light transmittance can be obtained by using a spectrophotometer V-2450 manufactured by Shimadzu Corporation to obtain an average transmittance in the visible light region (400 to 700 nm).
  • the haze of the retardation film of the present invention is preferably less than 1%, particularly preferably in the range of 0 to 0.2%.
  • the haze of the retardation film of the present invention can be measured using, for example, a haze meter (1001DP type, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the retardation film of the present invention can be preferably used regardless of whether it is a film produced by a solution casting method or a film produced by a melt casting method.
  • the production process of the retardation film of the present invention by the solution casting method mainly includes a step of preparing a dope by dissolving a cellulose acylate and an additive in a solvent, on an endless metal support that moves the dope indefinitely. , A step of drying the cast dope as a web, a step of peeling the web from the metal support, a step of maintaining the stretch or width, a step of further drying, and a step of winding the finished film. .
  • the concentration of cellulose acylate in the dope is preferable in terms of being able to reduce the drying load after casting to a metal support, but if the concentration of cellulose acylate is too high, the load during filtration increases, Filtration accuracy decreases.
  • the concentration that achieves both of these is preferably in the range of 10 to 35% by mass, and more preferably in the range of 15 to 25% by mass.
  • the organic solvent used in the dope may be used alone or in combination of two or more. However, it is preferable in terms of production efficiency that a good solvent and a poor solvent of cellulose acylate are mixed and used. A larger amount is preferable from the viewpoint of the solubility of cellulose acylate.
  • the preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent.
  • a good solvent and a poor solvent what dissolve
  • the good solvent and the poor solvent change depending on the average acetylation degree (acetyl group substitution degree) of cellulose acylate.
  • the good solvent used in the present invention is not particularly limited, and examples thereof include organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred is methylene chloride or methyl acetate.
  • the poor solvent used in the present invention is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used.
  • the dope preferably contains 0.01 to 2% by mass of water.
  • the solvent used for dissolving cellulose acylate the solvent removed from the film by drying in the film forming process can be recovered and reused.
  • the recovered solvent may contain trace amounts of additives added to the cellulose acylate, such as plasticizers, UV absorbers, polymers, and monomer components. It can be used, or refined if necessary, and can be reused after removing these additives.
  • additives added to the cellulose acylate such as plasticizers, UV absorbers, polymers, and monomer components. It can be used, or refined if necessary, and can be reused after removing these additives.
  • a general method can be used as a method for dissolving cellulose acylate. Combining heating and pressurization is one of the preferred methods because it can be heated above the boiling point at normal pressure.
  • cellulose acylate is mixed with a poor solvent and wetted or swollen, and then a good solvent is added and dissolved is also preferably used.
  • the pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside.
  • a jacket type is preferable in terms of easy temperature control.
  • the heating temperature with the addition of the solvent is preferably higher from the viewpoint of the solubility of cellulose acylate, but if the heating temperature is too high, the required pressure increases and the productivity deteriorates.
  • the preferable heating temperature is in the range of 45 to 120 ° C, more preferably in the range of 60 to 110 ° C, and still more preferably in the range of 70 ° C to 105 ° C. Further, the pressure is adjusted so that the solvent used at the set temperature does not boil.
  • a cooling dissolution method is also preferably used as a dope preparation method, whereby cellulose acylate can be dissolved in a low boiling point solvent such as methyl acetate.
  • the cellulose acylate solution prepared as described above is then filtered using an appropriate filter medium such as filter paper.
  • an appropriate filter medium such as filter paper.
  • the filter medium to be used it is preferable that the absolute filtration accuracy is small in order to remove insoluble matters and the like. However, if the absolute filtration accuracy is too small, there is a problem that the filter medium is easily clogged.
  • a filter medium having an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium in the range of 0.001 to 0.008 mm is more preferable, and a filter medium in the range of 0.003 to 0.006 mm is more preferable.
  • the material of the filter medium is not particularly limited, and a normal filter medium can be used. However, a plastic filter medium such as polypropylene or Teflon (registered trademark), or a metal filter medium such as stainless steel may cause fibers to fall off. Less preferred.
  • Impurities contained in the raw material cellulose acylate, especially luminescent spots, are removed and reduced by filtration.
  • Bright spot foreign matter is arranged in a crossed Nicol state with two polarizing plates, an optical film or the like is placed between them, and light is applied from one polarizing plate side, and observed from the other polarizing plate side. It is a point (foreign matter) that light from the opposite side sometimes leaks, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 pieces / cm 2 or less.
  • it is 100 pieces / cm 2 or less, still more preferably 50 pieces / m 2 or less, and particularly preferably 0 to 10 pieces / cm 2 . Further, it is preferable that the number of bright spots of 0.01 mm or less is small.
  • the dope can be filtered by a conventionally known method, but the method of filtering while heating at a temperature not lower than the boiling point of the solvent at normal pressure and at a range where the solvent does not boil under pressure is the filtration before and after the filtration.
  • the increase in pressure difference (referred to as differential pressure) is small and preferable.
  • the preferred temperature is in the range of 45 to 120 ° C, more preferably in the range of 45 to 70 ° C, and still more preferably in the range of 45 to 55 ° C.
  • the filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.
  • the metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width is preferably in the range of 1 to 4 m.
  • the surface temperature of the metal support in the casting step is in the temperature range of ⁇ 50 ° C. to less than the boiling point of the solvent, and a higher temperature is preferable because the web drying rate can be increased. May deteriorate.
  • the preferred support temperature is in the range of 0 to 55 ° C, more preferably in the range of 25 to 50 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, and examples thereof include a method of blowing hot air or cold air, and a method of bringing hot water into contact with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When warm air is used, there is a case where wind at a temperature higher than the target temperature is used.
  • the amount of residual solvent when peeling the web from the metal support is preferably in the range of 10 to 150% by weight, more preferably 20 to 40% by weight. Or in the range of 60 to 130% by mass, particularly preferably in the range of 20 to 30% by mass or in the range of 70 to 120% by mass.
  • the amount of residual solvent is defined by the following equation.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 Note that M is the mass of a sample collected at any time during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support, and further dried, so that the residual solvent amount is preferably 1.0% by mass or less, more preferably 0.1% by mass or less. It is particularly preferably 0.01% by mass or less including 0%.
  • a roller drying method (a method in which webs are alternately passed through a plurality of rollers arranged above and below) and a method of drying while transporting the web by a tenter method are employed.
  • the retardation film of the present invention it is particularly preferable to stretch in the width direction (also referred to as a transverse direction or a TD direction) by a tenter method in which both ends of the web are gripped by clips or the like.
  • the peeling tension is preferably 300 N / m or less.
  • the means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roller, microwaves, or the like, but from the viewpoint of simplicity, a method using hot air is preferable.
  • the drying temperature in the web drying step is preferably increased stepwise within a range of 40 to 200 ° C.
  • the film thickness of the retardation film is not particularly limited, but is used within a range of 10 to 200 ⁇ m.
  • the film thickness is particularly preferably in the range of 10 to 100 ⁇ m. More preferably, it is in the range of 20 to 60 ⁇ m.
  • a film having a width in the range of 1 to 4 m can be used.
  • those having a width in the range of 1.4 to 4 m are preferably used, and particularly preferably in the range of 1.6 to 3 m. If the width is 4 m or less, stable film conveyance can be performed.
  • the retardation film of the present invention has a retardation value Ro defined by the following formula (i) in the range of 30 to 90 nm, and a retardation value Rt defined by the following formula (ii) in the range of 70 to 300 nm. It is a preferable range of retardation for enlarging the viewing angle of a VA type (MVA, PVA) liquid crystal display device described later.
  • a retardation value Ro defined by the following formula (i) in the range of 30 to 90 nm
  • Rt defined by the following formula (ii) in the range of 70 to 300 nm. It is a preferable range of retardation for enlarging the viewing angle of a VA type (MVA, PVA) liquid crystal display device described later.
  • n x is a refractive index in a slow axis direction in the film plane
  • n y is a refractive index in a fast axis direction in the film plane
  • n z is the film It is the refractive index in the thickness direction.
  • d is the thickness (nm) of the film.
  • the retardation values Ro and Rt can be measured using an automatic birefringence meter.
  • KOBRA-21ADH manufactured by Oji Scientific Instruments
  • Oji Scientific Instruments can be used as an automatic birefringence meter and can be obtained at a wavelength of 589 nm in an environment of a temperature of 23 ° C. and a humidity of 55% RH.
  • the retardation film has the structure defined in the present invention, and further the refractive index is controlled by operations such as control of conveyance tension and stretching conditions.
  • the retardation value can be changed by lowering or increasing the tension in the longitudinal direction.
  • it can be controlled by biaxially or uniaxially stretching sequentially or simultaneously with respect to the longitudinal direction (film forming direction) of the film and the direction orthogonal to the longitudinal direction in the film plane, that is, the width direction.
  • the draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 0.8 to 1.5 times in the casting direction and 1.1 to 2.5 times in the width direction, respectively. It is preferable to carry out within a range of 0.8 to 1.0 times in the extending direction and 1.2 to 2.0 times in the width direction.
  • the stretching temperature is preferably in the range of 120 ° C. to 200 ° C., more preferably in the range of 150 ° C. to 200 ° C., and further preferably in the range of more than 150 ° C. and 190 ° C. or less.
  • the residual solvent in the film is preferably in the range of 0 to 20%, more preferably in the range of 0 to 15%.
  • the residual solvent is stretched at 155 ° C. under a condition of 11%, or the residual solvent is stretched at 155 ° C. under a condition of 2%.
  • the method of stretching the web For example, a method in which a difference in peripheral speed is applied to a plurality of rollers, and the rollers are stretched in the longitudinal direction using the difference in peripheral speed between the rollers, and both ends of the web are fixed with clips and pins, and the interval between the clips and pins is increased in the traveling direction. And a method of stretching in the vertical direction, a method of stretching in the horizontal direction and stretching in the horizontal direction, a method of stretching in the vertical and horizontal directions and stretching in both the vertical and horizontal directions, and the like. Of course, these methods may be used in combination.
  • driving the clip portion by the linear drive method is preferable from the viewpoint that smooth stretching can be performed and the risk of breakage and the like can be reduced.
  • the width maintenance or lateral stretching in the film forming step is preferably performed by a tenter, and may be a pin tenter or a clip tenter.
  • ⁇ 1 is preferably ⁇ 1 ° or more and + 1 ° or less, It is more preferably ⁇ 0.5 ° or more and + 0.5 ° or less.
  • This ⁇ 1 can be defined as an orientation angle, and ⁇ 1 can be measured using an automatic birefringence meter KOBRA-21ADH (Oji Scientific Instruments).
  • KOBRA-21ADH automatic birefringence meter
  • the retardation film of the present invention can be provided in a polarizing plate and a liquid crystal display device using the polarizing plate.
  • the polarizing plate of the present invention is characterized by being a polarizing plate in which the retardation film of the present invention is bonded to at least one surface of a polarizer.
  • the liquid crystal display device of the present invention is characterized in that the polarizing plate of the present invention is bonded to at least one liquid crystal cell surface.
  • the polarizing plate of the present invention can be produced by a general method.
  • a method for producing a retardation film of the present invention by laminating at least one surface of a polarizer produced by subjecting the polarizer side of the retardation film to alkali saponification treatment and immersion drawing in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution. Is preferred.
  • the retardation film of the present invention may be used, or another film may be bonded.
  • Examples of other applicable films include commercially available cellulose ester films (for example, Konica Minoltak KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC4UE, KC4UA, KC8UH, KC8UH, KC8UH, KC8UH, KC8U KC8UXW-RHA-C, KC8UXW-RHA-NC, KC4UXW-RHA-NC, manufactured by Konica Minolta Opto Co., Ltd.) can be preferably used.
  • cellulose ester films for example, Konica Minoltak KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC4UE, KC4UA, KC8UH, KC8UH, KC8UH, KC8
  • the polarizing plate used on the surface side of the liquid crystal display device can be provided with an antireflection layer, an antistatic layer, an antifouling layer, and a backcoat layer as necessary. .
  • a polarizer which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass.
  • a typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol.
  • iodine is dyed on a system film and one in which dichroic dye is dyed.
  • the polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing it by uniaxial stretching, or by dyeing and then uniaxially stretching and then preferably performing a durability treatment with a boron compound. .
  • the thickness of the polarizer is preferably in the range of 5 to 30 ⁇ m, particularly preferably in the range of 10 to 20 ⁇ m.
  • the ethylene unit content described in JP 2003-248123 A, JP 2003-342322 A, etc. is in the range of 1 to 4 mol%
  • the polymerization degree is in the range of 2000 to 4000
  • the saponification degree is 99.
  • Ethylene-modified polyvinyl alcohol in the range of 0.0 to 99.99 mol% is also preferably used.
  • an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature in the range of 66 to 73 ° C. is preferably used.
  • a polarizer using this ethylene-modified polyvinyl alcohol film is excellent in polarization performance and durability performance, has few color spots, and is particularly preferably used for a large liquid crystal display device.
  • the polarizer obtained as described above is usually bonded with a protective film on both sides or one side.
  • the adhesive used for pasting include polyvinyl alcohol (hereinafter abbreviated as PVA) adhesives and urethane adhesives. Among them, PVA adhesives are preferably used. It is done.
  • the retardation film of the present invention can be applied to liquid crystal display devices in various display modes.
  • TN Transmission Nematic
  • IPS In-Plane Switching
  • FLC Fluoroelectric Liquid Crystal
  • OCB Optically CompliantNST
  • Liquid crystal devices of the present invention that can be used for various drive systems such as (Super Twisted Nematic), VA (Vertically Aligned), ECB (Electrically Controlled Birefringence) and HAN (Hybrid Aligned Nematic). From the viewpoint of being able to demonstrate effectively, It is preferably applied to straight alignment type liquid crystal display device.
  • a vertical alignment type liquid crystal display device includes a backlight, a color filter layer, a vertical alignment type liquid crystal cell in which liquid crystal is sandwiched between two transparent substrates, and a surface side of the vertical alignment type liquid crystal cell.
  • a color filter-on-array (COA) system comprising a polarizing plate including the retardation film of the present invention on the (viewing side) and the backlight side and having a color filter layer on one side of the transparent substrate is adopted. It is preferable to use a vertical alignment type liquid crystal cell.
  • the COA method includes, for example, a color filter integrated drive substrate in which a color filter is directly formed on a drive side substrate of a liquid crystal cell, and a counter electrode (conductive layer) as described in JP-A-10-206888. ) And a counter substrate with a spacer interposed therebetween, and a liquid crystal material is sealed in the gap, and a color filter is formed on the reflective electrode, and a bonding margin is provided at high definition.
  • the yield and aperture ratio can be improved by widening.
  • FIG. 1 is a conceptual diagram showing an example of a configuration of a vertical alignment type liquid crystal display device adopting a color filter on array (COA) system according to the present invention.
  • COA color filter on array
  • the basic configuration of the vertical alignment type liquid crystal display device includes a backlight 10, a liquid crystal 4 between a transparent substrate 7 having a color filter 5 and a thin layer transistor (TFT) 6 and the other transparent substrate 3.
  • TFT thin layer transistor
  • polarizing plates 11 and 13 mainly composed of polarizers 1 and 9 and retardation films 2 and 8 are arranged.
  • Example 1 Production of retardation film >> [Production of Retardation Film 101] (Preparation of cellulose acylate 1) 1300 g of propionic acid was added to 300 g of cellulose (manufactured by Nippon Paper Industries Co., Ltd., dissolved pulp), and stirred at 54 ° C. for 30 minutes. After the mixture was cooled, esterification was performed by adding 1000 g of cooled propionic anhydride and 13 g of sulfuric acid in an ice bath. In the esterification, stirring was performed for 150 minutes while adjusting the liquid temperature so as not to exceed 40 ° C.
  • cellulose acylate 1 had a total acyl group substitution degree of 2.45, an acetyl group substitution degree of 2.45, and a weight average molecular weight of 200,000.
  • the total acyl group substitution degree was measured according to ASTM D-817-91.
  • the weight average molecular weight was measured according to the above-mentioned method using gel permeation chromatography (GPC).
  • the main dope 1 was prepared by charging in a heated dissolution tank and dissolving with stirring.
  • Formation of retardation film 1 solution casting method
  • the main dope 1 was uniformly cast on an endless stainless steel band support having a surface temperature of 22 ° C. and a width of 2 m using a die coater.
  • the solvent was evaporated until the residual amount of the solvent in the cast film reached 75% by mass, and then peeled off from the stainless steel belt support with a peeling tension of 130 N / m.
  • the peeled film was stretched 20% in the width direction (TD direction) using a tenter while applying heat at 170 ° C.
  • the residual solvent amount at the start of stretching was 15% by mass.
  • drying was completed while the drying zone was conveyed by a number of rollers.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m.
  • a retardation film 101 having a dry film thickness of 40 ⁇ m was obtained.
  • a retardation film 102 was produced in the same manner except that 12 parts by mass of sucrose 1 prepared as follows was added to the main dope.
  • sucrose 1 After preparing a commercially available 50% by mass aqueous solution of purified sucrose, it was slowly evaporated with heating and dried to take out the crystals, and then dried with hot air at 90 ° C. for 30 minutes to give sucrose 1 Was prepared. As a result of preparing a 50% by mass toluene solution of this sucrose 1 and measuring the hue APHA by the method described later, it was 15.
  • a retardation film 103 was produced in the same manner except that 12 parts by mass of sucrose 2 prepared as follows was added to the main dope.
  • sucrose 1 After preparing a 50% by mass aqueous solution of purified sucrose on the market, slowly evaporate to dryness while heating and take out the crystals, and then dry with hot air at 90 ° C. for 60 minutes to obtain sucrose 2 Prepared. A 50 mass% toluene solution of this sucrose 2 was prepared, and the hue APHA was measured by the method described later. As a result, it was 70.
  • a retardation film 104 was produced in the same manner as in the production of the retardation film 101 except that 12 parts by mass of the sugar ester compound 1 (Exemplary Compound 1-7) prepared as follows was added to the main dope.
  • the inside of the Kolben was depressurized to 4 ⁇ 10 2 Pa or less, and after excess pyridine was distilled off at 60 ° C., the inside of the Kolben was depressurized to 1.3 ⁇ 10 Pa or less and the temperature was raised to 120 ° C. Most of the acid and benzoic acid formed were distilled off. Finally, 100 g of water was added to the fractionated toluene layer, washed with water at room temperature for 30 minutes, and then the toluene layer was fractionated and distilled under reduced pressure (1 ⁇ 10 2 Pa or less) at 75 ° C. for 30 minutes. Was distilled off and dried to obtain a sugar ester compound 1 (exemplary compound 1-7) having an average degree of substitution of 5.6. The average degree of substitution was measured from the area ratio of the chart showing the degree of substitution distribution by high performance liquid chromatography by a conventional method.
  • retardation films 105 to 108 were produced in the same manner except that the sugar ester compounds 2 to 5 prepared above were used in place of the sugar ester compound 1 (exemplary compound 1-7). did.
  • retardation film 109 In the production of the retardation film 104, the sugar ester compound 1 (exemplary compound 1-7, average substitution degree: 5.6, drying time: 30 minutes, hue APHA value: 30) was used instead of the sugar ester compound 6 (exemplary compound 1-7, average substitution degree: 5.6, hue APHA value: 30).
  • a retardation film 109 was produced in the same manner except that Compound 1-3, average substitution degree: 5.4, drying time: 30 minutes, hue APHA value: 40) was used.
  • retardation films 120 to 123 were produced in the same manner except that the above prepared cellulose acylates 2 to 5 were used in place of the cellulose acylate 1.
  • retardation film 128 In the production of the retardation film 105, in place of the sugar ester compound 1-7, tinuvin 928, which is an ultraviolet absorber, was used under the conditions that the yellow index value after film formation was 0.88 and the b * value was 0.33. A retardation film 128 was produced in the same manner except that Ciba Japan Co., Ltd. (described as Ti928 in Table 1) was added.
  • Table 1 shows the composition and characteristic values of the retardation film produced as described above.
  • Yellow index value increase ⁇ YI is less than 0.2 ⁇ : Yellow index value increase ⁇ YI is 0.2 or more and less than 0.4 ⁇ : Yellow index value increase ⁇ YI is 0.4 or more and less than 0.6 ⁇ : Yellow index value increase ⁇ YI is 0.6 or more and less than 0.9 XX: Yellow index value increase ⁇ YI is 0.9 or more Yes [Evaluation of uneven yellowing resistance]
  • the 1 m ⁇ 1 m retardation film treated in the environment of 60 ° C. and 90% relative humidity prepared in the above-mentioned evaluation of high temperature and high humidity resistance was subjected to visual observation of yellow coloring unevenness through a blue filter. The yellow coloring unevenness resistance was evaluated according to the criteria of
  • the retardation film having the structure defined in the present invention has a yellow color change rate ⁇ YI even after being stored for a long time in a high-temperature and high-humidity environment as compared with the comparative example. Is small, excellent in color tone stability, and the occurrence of yellow coloring unevenness is suppressed.
  • Example 2 ⁇ Production of polarizing plate> (Preparation of polarizing plates 101A to 128A) A 120 ⁇ m-thick polyvinyl alcohol film was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide, and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid, and 100 g of water, and then washed with water. A polarizer was obtained by drying.
  • Example 2 Next, the polarizer and the retardation films 101 to 128 produced in Example 1 were bonded to each other according to the following steps 1 to 5, and Konica Minolta Tack KC4UY (Konica Minolta Advanced Layer Co., Ltd. cellulose ester film) was bonded to the back side. Polarizing plates 101A to 128A were produced.
  • Konica Minolta Tack KC4UY Konica Minolta Advanced Layer Co., Ltd. cellulose ester film
  • Step 1 Each retardation film and Konica Minoltak KC4UY were immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried to saponify the side to be bonded to the polarizer.
  • Step 2 The prepared polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 Excess adhesive adhered to the polarizer in Step 2 was lightly wiped off and placed on each retardation film treated in Step 1.
  • Step 4 Each retardation film laminated in Step 3, a polarizer, and Konica Minolta Tack KC4UY on the back side were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.
  • Step 5 A sample obtained by bonding the polarizer prepared in Step 4 to each of the retardation films and Konica Minoltack KC4UY in a dryer at 80 ° C. is dried for 2 minutes, and polarized light corresponding to the retardation films 101 to 128, respectively. Plates 101A to 128A were produced.
  • the liquid crystal cell 1 of this liquid crystal display device has the structure shown in FIG. 1, and has a color filter on array structure in which a color filter and a thin film transistor are arranged on one side of a transparent substrate.
  • liquid crystal display devices 101A to 128A instead of the polarizing plates 101A to 128A, polarizing plates 101B to 128B using retardation films treated for 2000 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90% are used. Liquid crystal display devices 101B to 128B were fabricated in the same manner except that the changes were made.
  • the liquid crystal cell 2 of this liquid crystal display device has the configuration shown in FIG. 2, and has a configuration in which the color filter 5 is arranged on the transparent substrate 3 and the thin film transistor 6 is arranged on the transparent substrate 7 with respect to the configuration shown in FIG. 1. It is.
  • liquid crystal display devices 129A and 130A instead of the polarizing plates 104A and 105A, the polarizing plates 104B and 105B using retardation films processed for 2000 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90% were used. Liquid crystal display devices 129B and 129B were produced in the same manner except that the changes were made.
  • ⁇ xy value is less than 0.05 ⁇ : ⁇ xy value is 0.05 or more and less than 0.07 ⁇ : ⁇ xy value is 0.07 or more and less than 0.09 ⁇ : ⁇ xy value Table 3 shows the evaluation results obtained as described above.
  • the liquid crystal display device using the retardation film of the present invention was resistant to color shift even after being processed for a long time in a high temperature and high humidity environment with respect to the comparative example. It can be seen that excellent characteristics can be expressed.
  • the retardation film of the present invention has excellent characteristics of color tone stability (resistance to tint fluctuation) and image unevenness when stored for a long time in a harsh environment, and is suitable for a polarizing plate and a liquid crystal display device. Available.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明の課題は、経済性に優れ、かつ苛酷な環境下で長期間にわたり保存された際の色調安定性(色味変動耐性)が向上し、画像ムラ耐性に優れた位相差フィルムと、それを用いた偏光板及び液晶表示装置を提供することである。本発明の位相差フィルムは、総アシル基置換度が2.00~2.55の範囲内であるセルロースアシレートと、単糖類又は二糖類とを含有し、該単糖類又は二糖類の50質量%トルエン溶液における色相APHAが、50~300の範囲であることを特徴とする。

Description

位相差フィルム、偏光板及び液晶表示装置
 本発明は、経済性に優れ、かつ苛酷な環境下で長期間にわたり保存された際の色調安定性(色味変動耐性)が向上し、画像ムラ耐性に優れた位相差フィルムと、それを具備した偏光板及び液晶表示装置に関する。
 昨今、自動車搭載用の液晶ディスプレイ、大型液晶テレビのディスプレイ、携帯電話、ノートパソコン等の普及により、液晶表示装置(Liquid Crystal Display 以下、LCDと略記する。)の需要が急速に伸びでいる。このようなLCDには、偏光フィルムや位相差フィルムなどの様々な特性を備えた各種光学フィルムが使用されている。LCDの需要の増加に伴い、そこで使用される偏光板に対しても、経済性に加え、薄膜化、軽量化、高生産化に対する要望がなされている。さらに、LCDの大画面化に伴い、その構成部材としての偏光板保護フィルム、位相差フィルム等に対しても、薄膜化、広面積化が求められている。
 一方、液晶表示素子の用途拡大に伴い、液晶表示素子のより一層の高開口率化や視野角の改善が要望されている。高精細化に関する技術としては、例えば、特許文献1~3に記載されているカラーフィルター・オン・アレイ構造(以下、COAと略記する。)やHtVA(High transmission Vertical Alignment)等が挙げられる。
 従来の液晶表示素子においては、COAは、薄膜トランジスタ(Thin Film Transistor 以下、TFTと略記する。)基板とは別の対向基板に、カラーフィルターを形成した構成であったが、TFT基板上に、直接、カラーフィルターを形成することにより、従来、重ねあわせの際のズレを見込んで、画素を開口面積の狭い状態で形成していた点の改善が図られるようになってきている。一方、HtVAは、ガラス基板間に正の誘電率異方性を有するネマチック液晶を封入することにより液晶層を形成する。正の誘電率異方性を有するネマチック液晶としては、TN型(Twisted Nematic型)、あるいはIPS型(In-Plane Switching型)の各液晶表示装置に使用されているような公知のものを用いることができる。
 ただ、両者の液晶表示装置では、高いコントラストが重要視されているが、初期段階では高コントラストを達成することができるものの、高温高湿環境下で長期間にわたり保存された後で、色調変動が非常に大きく問題であり、特に、大画面化した場合には色ムラや画像ムラとして顕在化し、高品位の画像を安定して達成する上では障害となっており、早急な改良が求められている。特に、COA構造を有する液晶表示装置の場合には、カラーフィルターがバックライト側に配置されているため、バックライトによる熱の影響を、より多く受けることになる。特に、近年では、液晶表示装置自体の軽量化や厚みを薄くする試みが盛んに行われており、カラーフィルターは、よりバックライトと近接する位置に配置されるため、さらに不利な環境条件となっている。
 上記のCOA構造においては、電極部材及び光源の熱の影響により、特に、高温高湿環境下で長時間にわたり使用した際に、カラーフィルターのR、Gの損失が大きく、その結果が画像(色調等)に影響することが分かった。
 一方、上記のような液晶表示装置に用いられる位相差フィルムでは、位相差発現性の高い低置換度のセルロースアセテートフィルムが用いられているが、低置換度のセルロースアセテートフィルムは、一般的には加水分解を受けやすい特性を有し、また、添加している添加剤の特性から、薄膜化が困難とされている。この問題に対し、セルロースアセテートフィルムに、加水分解調整剤あるいは位相差制御剤として糖エステル化合物を添加する方法が開示されている(例えば、特許文献4参照。)。
 しかしながら、セルロースアセテートフィルムに対し、単に糖エステル化合物を可塑剤として添加した場合には、上記と同様に、高温高湿環境下で長期間にわたり保存された後での色調変動が大きくなり、特に、大画面化した場合には色ムラや画像ムラとして顕在化してしまうことが分かった。この現象は、特に、着色度が過度に低い糖エステル化合物を用いた場合に発現することが判明した。
特開2008-146004号公報 特開2010-250117号公報 特開2009-301010号公報 特開2011-53645号公報
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、経済性に優れ、かつ苛酷な環境下で長期間にわたり保存された際の色調安定性(色味変動耐性)が向上し、画像ムラ耐性に優れた位相差フィルムと、それを具備した偏光板及び液晶表示装置を提供することである。
 本発明者は、上記問題に鑑み鋭意検討を行った結果、総アシル基置換度が2.00~2.55の範囲内であるセルロースアシレートと、50質量%トルエン溶液における色相APHAが50~300の範囲内である単糖類又は二糖類とを含有する位相差フィルムにより、経済性に優れ、かつ苛酷な環境下で長期間にわたり保存された際の色調安定性(色味変動耐性)が向上し、画像ムラ耐性に優れた位相差フィルムを実現することができることを見出し、本発明にいたった次第である。
 すなわち、本発明の上記問題は、下記の手段により解決される。
 1.総アシル基置換度が2.00~2.55の範囲内であるセルロースアシレートと、単糖類又は二糖類とを含有し、該単糖類又は二糖類の50質量%トルエン溶液における色相APHAが、50~300の範囲内であることを特徴とする位相差フィルム。
 2.前記単糖類又は二糖類が、総平均置換度が4.50~6.00の範囲内である糖エステル化合物であることを特徴とする第1項に記載の位相差フィルム。
 3.前記糖エステル化合物が、下記一般式(1)で表される化合物であることを特徴とする第2項に記載の位相差フィルム。
Figure JPOXMLDOC01-appb-C000002
〔式中、R~Rは、各々、水素原子、置換若しくは無置換のアルキルカルボニル基、又は置換若しくは無置換のアリールカルボニル基を表し、R~Rは同じであっても、異なっていてもよい。〕
 4.イエローインデックス値(Y.I.)が下式(1)で規定する条件を満たし、かつbの値が下式(2)で規定する条件を満たすことを特徴とする請求項1から3までのいずれか一項に記載の位相差フィルム。
 式(1)
   0.8<Y.I.<2.0
 式(2)
   0.3<b<0.6
 5.前記セルロースアシレート(A)及び前記単糖類又は二糖類(B)の総質量に対する該単糖類又は二糖類の質量比率(B/(A+B)×100)が、5.0~25.0質量%の範囲内であることを特徴とする第1項から第4項までのいずれか一項に記載の位相差フィルム。
 6.第1項から第5項までのいずれか一項に記載の位相差フィルムを具備することを特徴とする偏光板。
 7.第6項に記載の偏光板を液晶セルに具備することを特徴とする液晶表示装置。
 8.前記偏光板が、アレイ基板上にカラーフィルター層を備えたカラーフィルター・オン・アレイ構造に具備されていることを特徴とする第7項に記載の液晶表示装置。
 本発明の上記手段により、経済性に優れ、かつ苛酷な環境下で長期間にわたり保存された際の色調安定性(色味変動耐性)が向上し、画像ムラ耐性に優れた位相差フィルムと、それを具備した偏光板及び液晶表示装置を提供できる。
 すなわち、従来、位相差フィルムにおいては、着色度の低い糖エステル化合物、具体的には、色相APHAが50未満の糖エステル化合物を含有するフィルムを、表示装置に使用することにより、確かに製造直後の着色度は低く、良好な特性ではあるが、高温、高湿環境下で長期間にわたり保存した際に着色を呈し、製造初期の色相に対し、色味変動や画像ムラが顕在化しやすいことが判明した。この現象は、特に、液晶表示装置の中でも、高コントラスト化が可能なカラー・フィルター・オン・アレイ方式を採用した垂直配向型液晶表示装置にこのような位相差フィルムを用いた場合、そのような問題がより顕在化することが判明した。
 本発明者らは、上記問題に対し鋭意検討を進めた結果、単糖類又は二糖類として、50質量%の濃度でトルエン溶液に溶解した際の色相APHAが50~300の範囲内にある単糖類又は二糖類を用いることにより、薄膜のフィルム状に成形した際、実用的な条件での着色の影響は無く、かつ高温、高湿環境下で長期間にわたり保存した際に、製造初期の色相に対し、保存後における色相の変化率が極めて小さく、その結果、色味変動安定性や画像ムラ耐性が顕著に改良できることを見出したものである。加えて、より低い着色度という過剰品質を避けることより、コスト低減に対する効果も併せて有していることを見出したものである。更に、APHAの値が50未満の単糖類又は二糖類を用いた場合には、表示装置内における湿度の影響やパネル点灯時の熱の影響も加わり、加速度的(指数関数的)にフィルムの着色が進行するが、本発明で規定する範囲のAPHA値を有する単糖類又は二糖類を用いることにより、着色した酸化物の影響によるものか、フィルムの着色が高温、高湿環境下で長期間にわたり抑えられたと推測している。これに対し、APHAの値が300より大きい単糖類又は二糖類を用いた場合には、製造初期段階で、既に色味の劣化やコントラストの低下等が顕在化し、実用上問題が生じてしまう。
カラーフィルター・オン・アレイ(COA)方式を採用した垂直配向型(VA型)液晶表示装置の構成の一例を示す概念図。 液垂直配向型(VA型)液晶表示装置の構成の一例を示す概念図。
 本発明の位相差フィルムは、総アシル基置換度が2.00~2.55の範囲内にあるセルロースアシレートと、単糖類又は二糖類とを含有し、該単糖類又は二糖類は、その50質量%トルエン溶液における色相APHAが、50~300の範囲内であることを特徴とする。この特徴は、請求項1から請求項7に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の目的効果をより発現できる観点から、単糖類又は二糖類が、総平均置換度が4.50~6.00の範囲内である糖エステル化合物であることが好ましく、より好ましくは、糖エステル化合物が前記一般式(1)で表される化合物である。
 また、本発明の位相差フィルムが、イエローインデックス値(Y.I.)が0.8<Y.I.<2.0であり、かつbの値が0.3<b<0.6であることが好ましい。
 また、本発明においては、セルロースアシレート(A)及び単糖類又は二糖類(B)の総質量に対する単糖類又は二糖類の質量比率(B/(A+B)×100)が、5.0~25.0質量%の範囲内であることが好ましい。
 また、本発明の液晶表示装置においては、本発明の位相差フィルムから構成される偏光板を液晶セルの少なくとも一方の面に具備していることを特徴とし、好ましくは、偏光板が、アレイ基板上にカラーフィルター層を備えたカラーフィルター・オン・アレイ構造に具備していることである。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本発明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 《位相差フィルム》
 本発明の位相差フィルムは、少なくとも、1)総アシル基置換度が2.00~2.55の範囲内にあるセルロースアシレートと、2)50質量%の濃度のトルエン溶液における色相APHAが50~300の範囲内にある単糖類又は二糖類を含有することを特徴とする。
 〔セルロースアシレート〕
 本発明の位相差フィルムに用いられるセルロースアシレートは、安価で製造可能であり、位相差発現性が高く、高い位相差を有する位相差フィルムとする場合であっても薄膜化可能であること、高い位相差を発現させても延伸倍率を低く抑えることができ、破断等の故障を回避できる観点から、総アシル基置換度が2.00~2.55の範囲内であるセルロースアシレートであることを特徴とする。
 セルロースアシレートの総アシル基置換度(すなわち、アセチル基置換度)が2.00以上であれば、ドープ粘度が過度に上昇することがなく、フィルム面品質の安定化、延伸張力の上昇を抑えることができ、ヘイズを低く設定することができる。また、総アシル基置換度が2.55以下であれば、所望の位相差を得ることができる。アシル基置換度の測定方法は、ASTMのD-817-91に準じて実施することができ、好ましい総アシル基置換度は、2.2~2.45の範囲内である。
 セルロースアシレートの重量平均分子量(Mw)は、30000~300000の範囲内であることが、得られるフィルムの機械的強度が強く好ましい。更に100000~250000の範囲内のものが好ましく用いられる。
 セルロース子量(Mw)と数平均分子量(Mn)の比Mw/Mnの値は、1.4~3.0の範囲内であることが好ましい。
 セルロースアシレートの数平均分子量(Mn)、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。
 測定条件の一例を、以下に示す。
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用する)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500の13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に用いる。
 セルロースアシレートの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることができる。また、それらから得られたセルロースアシレートは、それぞれ任意の割合で混合使用することができる。
 本発明の位相差フィルムに用いることができるセルロースアシレートとしては、例えば、セルロース(ジ、トリ)アセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、及びセルロースフタレートから選ばれる少なくとも一種であることが好ましい。これらの中で特に好ましいセルロースエステルは、セルローストリアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネートやセルロースアセテートブチレートが挙げられる。
 本発明に係るセルロースアシレートは、公知の方法により製造することができる。具体的には特開平10-45804号公報、特開2009-161701号公報などに記載の方法を参考にして合成することができる。
 〔単糖類又は二糖類〕
 本発明の位相差フィルムの作製に適用する単糖類又は二糖類は、トルエン溶液に50質量%の濃度で溶解した際の色相APHAが、50~300の範囲内であること、すなわち、単糖類又は二糖類としてある程度の着色を呈していることを特徴とする。
 従来、位相差フィルムにおいて、樹脂としてセルロースアシレート、例えば、ジアセチルセルロースを用いる場合には、加水分解調整剤あるいは位相差制御剤として、単糖類又は二糖類、具体的には、糖エステル化合物が使用されていた。
 この単糖類又は二糖類は、一般的には、以下のプロセスを経て製造されており、砂糖の製造を一例に説明する。植物(例えば、サトウキビ)等から圧搾、抽出して調製した原料糖溶液から不純物等を取り除く清浄工程を経て、真空結晶缶で濃縮育晶(水分を蒸発させて結晶化させること:煎糖)することにより、砂糖とみつの混合物である「白下」を調製する(結晶工程)。次いで、白下を製品分離機で砂糖とみつに分離した後、砂糖は所定の温度、時間で乾燥処理が施される。
 上記砂糖の製造工程では、より着色度の低い、すなわち、より白い砂糖を製造するために、煎糖を調製する原料糖溶液を煮詰める工程や、みつと分離した後の単糖類又は二糖類を乾燥する工程、あるいが単糖類又は二糖類をエステル化して糖エステルを調製する際には、乾燥温度等を厳密に管理し、糖の焦げつき等を防止する必要があり、そのため、収率の低下やコストの上昇を招いている。
 加えて、本発明者らが検討を進めた結果、位相差フィルムに、着色度の低い糖エステル化合物、具体的には、色相APHAが50未満の糖エステル化合物を使用すると、確かに製造直後の着色度は低いが、高温、高湿環境下で長期間にわたり保存した際に着色を呈し、製造初期に対しする色味変動幅が増大し、かえって画像ムラが顕在化しやすくなることが判明した。この現象は、特に、液晶表示装置の中でも、カラー・フィルター・オン・アレイ方式を採用した垂直配向型液晶表示装置で位相差フィルムを用いた場合に、より影響が大きいことが判明した。
 本発明者らは、上記問題に対し鋭意検討を進めた結果、単糖類又は二糖類として、トルエン溶液に50質量%の濃度で溶解した際の色相APHAが50~300の範囲にある単糖類又は二糖類を用いることにより、薄膜のフィルム状に成形した際、実用的な条件での着色の影響は無く、かつ高温、高湿環境下で長期間にわたり保存した際に、製造初期から保存後における色相の変化率が極めて小さく、その結果、色味変動安定性や画像ムラ耐性が顕著に改良できることを見出したものである。加えて、より低い着色度という過剰品質を避けることより、コスト低減に対する効果も有している。
 本発明に係る色相APHAとは、米国公衆衛生協会(American Public Health Association)で規定している色相を表す指標である。
 本発明においては、単糖類又は二糖類、糖エステル化合物あるいは本発明に係る前記一般式(1)で表される化合物の50質量%のトルエン溶液を調製し、このトルエン溶液について、JISK 1557に基づき、JISK 0071-1に準拠して、ハーゼン単位色数(APHA)を測定した。具体的には、上記単糖類又は二糖類等を50質量%の濃度で含有するトルエン溶液を、日本電色製「COH-400」を用いて測定して求めることができる。
 本発明において、単糖類又は二糖類、糖エステル化合物あるいは前記一般式(1)で表される化合物のAPHAの値を制御する手段としては、最終的に単糖類又は二糖類、糖エステル化合物あるいは前記一般式(1)で表される化合物を製造する工程のうち、ヒーターや赤外線乾燥機等を用いた最終の乾燥工程における乾燥温度や乾燥時間を調整することにより、所望のAPHA値を有する単糖類又は二糖類、糖エステル化合物あるいは前記一般式(1)で表される化合物を得ることができる。
 APHA値は、乾燥の進行(乾燥温度、乾燥時間)に従って常に変化する場合があるため、乾燥過程でAPHA値をモニターしながら、所望のAPHA値に到達した段階で乾燥を終了させることが好ましい。
 (単糖類又は二糖類)
 本発明に適用可能な単糖類又は二糖類としては、トルエン溶液に50質量%の濃度で溶解した際の色相APHAが50~300の範囲内であれば、その種類には特に制限は無く、例えば、グルコース、ガラクトース、マンノース、フルクトース、キシロース、あるいはアラビノース、ラクトース、スクロース、ニストース、1F-フラクトシルニストース、スタキオース、マルチトール、ラクチトール、ラクチュロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノースあるいはケストース挙げられる。この他、ゲンチオビオース、ゲンチオトリオース、ゲンチオテトラオース、キシロトリオース、ガラクトシルスクロースなども挙げられる。
 これらの化合物の中で、特に、ピラノース構造とフラノース構造を両方有する化合物が好ましい。例としては、スクロース、ケストース、ニストース、1F-フラクトシルニストース、スタキオースなどが好ましく、更に好ましくは、スクロースである。
 (糖エステル化合物)
 本発明においては、本発明に係る単糖類又は二糖類が、総平均置換度が4.50~6.00の範囲内にある糖エステル化合物であることが好ましい。
 本発明においては、更には、ピラノース構造又はフラノース構造の少なくとも一種を1個以上、12個以下有し、その構造のOH基の一部をエステル化した糖エステル化合物であることが好ましい。
 本発明に係るピラノース構造又はフラノース構造中のOH基の一部をエステル化するのに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。用いられるカルボン酸は一種類でもよいし、二種以上の混合であってもよい。
 好ましい脂肪族モノカルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸等を挙げることができる。
 好ましい脂環族モノカルボン酸の例としては、酢酸、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、アルコキシ基を導入した芳香族モノカルボン酸、ケイ皮酸、ベンジル酸、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、又はそれらの誘導体を挙げることができ、より具体的には、キシリル酸、ヘメリト酸、メシチレン酸、プレーニチル酸、Y-イソジュリル酸、ジュリル酸、メシト酸、α-イソジュリル酸、クミン酸、α-トルイル酸、ヒドロアトロパ酸、アトロパ酸、ヒドロケイ皮酸、サリチル酸、o-アニス酸、m-アニス酸、p-アニス酸、クレオソート酸、o-ホモサリチル酸、m-ホモサリチル酸、p-ホモサリチル酸、o-ピロカテク酸、β-レソルシル酸、バニリン酸、イソバニリン酸、ベラトルム酸、o-ベラトルム酸、没食子酸、アサロン酸、マンデル酸、ホモアニス酸、ホモバニリン酸、ホモベラトルム酸、o-ホモベラトルム酸、フタロン酸、p-クマル酸を挙げることができるが、特に、安息香酸が好ましい。
 また、オリゴ糖のエステル化合物を、本発明に係るピラノース構造又はフラノース構造の少なくとも一種を1~12個有する化合物として適用できる。
 オリゴ糖は、澱粉、ショ糖等にアミラーゼ等の酵素を作用させて製造されるもので、本発明に適用できるオリゴ糖としては、例えば、マルトオリゴ糖、イソマルトオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、キシロオリゴ糖が挙げられる。
 (一般式(1)で表される化合物)
 次いで、下記一般式(1)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000003
 前記一般式(1)において、R~Rは、各々、水素原子、置換若しくは無置換のアルキルカルボニル基、又は置換若しくは無置換のアリールカルボニル基を表し、R~Rは同じであっても、異なっていてもよい。
 本発明に係る一般式(1)で表される化合物の平均置換度は、4.50~6.00の範囲内であることが好ましい。
 本発明において、上記一般式(1)で表される化合物の置換度とは、一般式(1)に含まれる8つのヒドロキシ基のうち、水素原子以外の置換基(アルキルカルボニル基又はアリールカルボニル基)で置換されている数を表し、すなわち、一般式(1)のR~Rのうち、水素原子以外の基を含む数を表す。したがって、R~Rがすべて水素原子以外の置換基により置換された場合に、置換度は最大値の8.0となり、R~Rがすべて水素原子である場合には、置換度が0.0となる。
 本発明においては、一般式(1)で表される化合物の平均置換度が、4.50~6.00の範囲内であることが好ましい。一般式(1)で表される構造を有する化合物は、ヒドロキシ基の数、OR基の数が固定された単一種の化合物を合成することは困難であり、式中のヒドロキシ基の数、OR基の異なる成分が数種類混合された化合物となることが知られているため、本発明における一般式(1)の置換度としては、平均置換度を用いることが適当であり、常法により高速液体クロマトグラフィによって置換度分布を示すチャートの面積比から平均置換度を測定することができる。
 本発明に係る糖エステル化合物の合成原料の糖の例としては、前述の単糖類又は二糖類として記載したのと同様の化合物(単糖類又は二糖類)を挙げることができる。
 本発明に係る一般式(1)で表される化合物のエステル化に用いられるカルボン酸類としては、特に制限はなく、前述の糖エステル化合物の調製に用いることのできるのと同様のカルボン酸類を挙げることができる。
 本発明に係る一般式(1)で表される化合物の具体例の一部を以下に示すが、本発明はこれらに限定されない。なお、下記表中に記載のRは、一般式(1)におけるR~Rを表す。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 〔その他の添加剤〕
 (エステル化合物)
 本発明の位相差フィルムには、特に偏光板の環境変化でのリタデーション安定性の観点から、下記一般式(2)で表されるエステル化合物を含有することができる。
 一般式(2)
   B-(G-A)-G-B
 上記一般式(2)において、Bはヒドロキシ基又はカルボン酸残基を表し、Gは炭素数2~12のアルキレングリコール残基、炭素数6~12のアリールグリコール残基又は炭素数が4~12のオキシアルキレングリコール残基を表し、Aは炭素数4~12のアルキレンジカルボン酸残基又は炭素数6~12のアリールジカルボン酸残基を表す。nは1以上の整数を表す。
 一般式(2)において、炭素数2~12のアルキレングリコール成分としては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール-1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等が挙げられ、これらのグリコールは、1種又は2種以上の混合物として使用される。
 特に、炭素数2~12のアルキレングリコールが、セルロースアセテートとの相溶性に優れているため、特に好ましい。
 炭素数6~12のアリールグリコール成分としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノール等が挙げられ、これらのグリコールは、1種又は2種以上の混合物として使用できる。
 また、炭素数4~12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等が挙げられ、これらのグリコールは、1種又は2種以上の混合物として使用できる。
 炭素数4~12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマル酸、グルタール酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等が挙げられ、これらは、それぞれ1種又は2種以上の混合物として使用される。炭素数6~12のアリーレンジカルボン酸成分としては、例えばフタル酸、テレフタル酸、イソフタル酸、1,5ナフタレンジカルボン酸、1,4ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸等が挙げられる。
 (可塑剤)
 本発明の位相差フィルムにおいては、必要に応じて可塑剤を含有することができる。
 本発明に適用可能な可塑剤としては、特に限定されないが、好ましくは、多価カルボン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、脂肪酸エステル系可塑剤及び多価アルコールエステル系可塑剤、エステル系可塑剤、アクリル系可塑剤等から選択される。
 そのうち、可塑剤を2種以上用いる場合は、少なくとも1種は多価アルコールエステル系可塑剤であることが好ましい。
 多価アルコールエステル系可塑剤は、2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環又はシクロアルキル環を有することが好ましい。好ましくは2~20価の脂肪族多価アルコールエステルである。
 本発明に好ましく用いられる多価アルコールは、下記一般式(3)で表される化合物である。
 一般式(3)
   R11-(OH)
 上記一般式(3)において、R11はn価の有機基、nは2以上の正の整数、OH基はアルコール性又はフェノール性ヒドロキシ基を表す。
 好ましい多価アルコールとしては、例えば、以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。
 アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジブチレングリコール、1,2,4-ブタントリオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3-メチルペンタン-1,3,5-トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。
 特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
 多価アルコールエステルの合成に用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いることが、透湿性、保留性を向上させる点で好ましい。
 好ましいモノカルボン酸の例としては、以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
 脂肪族モノカルボン酸としては、炭素数1~32の直鎖又は側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1~20であることが更に好ましく、1~10であることが特に好ましい。酢酸を含有させると、セルロースアシレートとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、メトキシ基あるいはエトキシ基などのアルコキシ基を1~3個を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、又はそれらの誘導体を挙げることができる。特に、安息香酸が好ましい。
 多価アルコールエステルの分子量は、特に制限はないが、300~1500の範囲内であることが好ましく、350~750の範囲内であることが更に好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースアシレートとの相溶性の点では小さい方が好ましい。
 多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。
 グリコレート系可塑剤は特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることができる。
 アルキルフタリルアルキルグリコレート類としては、例えば、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられる。
 フタル酸エステル系可塑剤としては、例えば、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が挙げられる。
 クエン酸エステル系可塑剤としては、例えば、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が挙げられる。
 脂肪酸エステル系可塑剤として、例えば、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が挙げられる。
 リン酸エステル系可塑剤としては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられる。
 多価カルボン酸エステル化合物としては、2価以上、好ましくは2価~20価の多価カルボン酸とアルコールのエステルよりなる。また、脂肪族多価カルボン酸は2~20価であることが好ましく、芳香族多価カルボン酸、脂環式多価カルボン酸の場合は3価~20価であることが好ましい。
 多価カルボン酸は、下記一般式(4)で表される。
 一般式(4)
   R12(COOH)m1(OH)n1
 上記一般式(4)において、R12は(m1+n1)価の有機基、m1は2以上の正の整数、n1は0以上の整数、COOH基はカルボキシ基、OH基はアルコール性又はフェノール性ヒドロキシ基を表す。
 好ましい多価カルボン酸の例としては、例えば、以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。
 トリメリット酸、トリメシン酸、ピロメリット酸のような3価以上の芳香族多価カルボン酸又はその誘導体、コハク酸、アジピン酸、アゼライン酸、セバシン酸、シュウ酸、フマル酸、マレイン酸、テトラヒドロフタル酸のような脂肪族多価カルボン酸、酒石酸、タルトロン酸、リンゴ酸、クエン酸のようなオキシ多価カルボン酸などを好ましく用いることができる。特に、オキシ多価カルボン酸を用いることが、保留性向上などの点で好ましい。
 本発明に用いることのできる多価カルボン酸エステル化合物に用いられるアルコールとしては、特に制限はなく公知のアルコール、フェノール類を用いることができる。
 例えば、炭素数が1~32の直鎖又は側鎖を持った脂肪族飽和アルコール又は脂肪族不飽和アルコールを好ましく用いることができる。炭素数が1~20の範囲内であることが更に好ましく、炭素数が1~10の範囲内であることが特に好ましい。
 また、シクロペンタノール、シクロヘキサノールなどの脂環式アルコール又はその誘導体、ベンジルアルコール、シンナミルアルコールなどの芳香族アルコール又はその誘導体なども好ましく用いることができる。
 多価カルボン酸として、オキシ多価カルボン酸を用いる場合は、オキシ多価カルボン酸のアルコール性又はフェノール性のヒドロキシ基を、モノカルボン酸を用いてエステル化しても良い。好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
 脂肪族モノカルボン酸としては、炭素数が1~32の直鎖又は側鎖を持った脂肪酸を好ましく用いることができる。炭素数が1~20の範囲内であることが更に好ましく、炭素数が1~10の範囲内であることが特に好ましい。
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸などの飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸などを挙げることができる。
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸などの安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸などのベンゼン環を2個以上持つ芳香族モノカルボン酸、又はそれらの誘導体を挙げることができる。特に酢酸、プロピオン酸、安息香酸であることが好ましい。
 多価カルボン酸エステル化合物の分子量は、特に制限はないが、分子量が300~1000の範囲内であることが好ましく、350~750の範囲内であることが更に好ましい。保留性向上の点では、分子量は大きい方が好ましく、透湿性、セルロースアシレートとの相溶性の点では小さい方が好ましい。
 本発明に用いることができる多価カルボン酸エステルの合成に用いられるアルコール類は、一種類でも良いし、二種以上の混合であっても良い。
 本発明に用いることのできる多価カルボン酸エステル化合物の酸価は、1mgKOH/g以下であることが好ましく、0.2mgKOH/g以下であることが更に好ましい。酸価を上記範囲にすることによって、リタデーションの環境変動も抑制されるため好ましい。
 なお、酸価とは、試料1g中に含まれる酸(試料中に存在するカルボキシ基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価はJIS K0070に準拠して測定したものである。
 本発明において、特に好ましい多価カルボン酸エステル化合物の例を以下に示すが、本発明はこれに限定されるものではない。
 例えば、トリエチルシトレート、トリブチルシトレート、アセチルトリエチルシトレート(略称:ATEC)、アセチルトリブチルシトレート(略称:ATBC)、ベンゾイルトリブチルシトレート、アセチルトリフェニルシトレート、アセチルトリベンジルシトレート、酒石酸ジブチル、酒石酸ジアセチルジブチル、トリメリット酸トリブチル、ピロメリット酸テトラブチル等が挙げられる。
 (紫外線吸収剤)
 本発明の位相差フィルムおいては、必要に応じて、紫外線吸収剤を含有することもできる。紫外線吸収剤は、400nm以下の紫外線を吸収する特性を備えた化合物であり、耐久性を向上させることを目的としており、特に波長370nmでの透過率が10%以下であることが好ましく、より好ましくは5%以下、更に好ましくは2%以下である。
 本発明に用いることのできる紫外線吸収剤としては、特に限定されないが、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。
 例えば、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノン等がある。また、市販品として入手することも可能であり、例えば、チヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビン類があり、これらはいずれもBASFジャパン社製の市販品であり好ましく使用できる。
 本発明で好ましく用いられる紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤であり、特に好ましくはベンゾトリアゾール系紫外線吸収剤又はベンゾフェノン系紫外線吸収剤である。
 この他、1,3,5-トリアジン環を有する化合物等の円盤状化合物も紫外線吸収剤として好ましく用いられる。
 本発明の位相差フィルムは、紫外線吸収剤を2種以上含有することが好ましい。
 また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることができ、特に特開平6-148430号公報に記載のポリマータイプの紫外線吸収剤が好ましく用いられる。
 紫外線吸収剤の添加方法は、メタノール、エタノール、ブタノール等のアルコール類やメチレンクロライド、酢酸メチル、アセトン、ジオキソラン等の有機溶媒あるいはこれらの混合溶媒に、紫外線吸収剤を所望の濃度で溶解してからドープに添加するか、又は直接ドープ組成中に添加してもよい。
 無機粉体のように有機溶媒に溶解しないものは、有機溶媒とセルロースアシレート中にディゾルバーやサンドミルを使用し、分散してからドープに添加することが好ましい。
 紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、位相差フィルムの乾燥膜厚が30~200μmの範囲内である場合は、位相差フィルムに対して0.5~10質量%の範囲内で添加することが好ましく、0.6~4質量%の範囲内が更に好ましい。
 (酸化防止剤)
 本発明の位相差フィルムにおいては、酸化防止剤を用いることができる。酸化防止剤は劣化防止剤あるいは安定剤ともいわれ、例えば、位相差フィルム中の残留溶媒のハロゲンやリン酸系可塑剤のリン酸等により位相差フィルムが分解するのを遅らせたり、防いだりする効果を有するので含有させるのが好ましい。
 このような酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト等を挙げることができる。
 特に、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕が好ましい。また、例えば、N,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4-ジ-t-ブチルフェニル)フォスファイト等のリン系加工安定剤を併用してもよい。
 これらの化合物の添加量は、セルロースアシレートに対して質量割合で1ppm~1.0%の範囲が好ましく、10~1000ppmの範囲が更に好ましい。
 (微粒子)
 本発明の位相差フィルムには、取扱性を向上させる観点から、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子などから構成される有機微粒子を含有させることが好ましい。中でも、二酸化ケイ素が位相差フィルムのヘイズを低く抑えることができる観点から好ましい。
 微粒子の一次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5~16nmの範囲内であり、特に好ましくは、5~12nmの範囲内である。
 これらの微粒子は、0.1~5μmの粒径範囲の二次粒子を形成して位相差フィルムに含まれることが好ましく、好ましい二次粒子としての平均粒径は0.1~2μmの範囲内であり、更に好ましくは0.2~0.6μmの範囲内である。これにより、フィルム表面に高さが0.1~1.0μm程度の範囲の凹凸構造を形成し、これによってフィルム表面に適切な滑り性を与えることができる。
 本発明に用いる微粒子の一次平均粒子径の測定は、透過型電子顕微鏡(倍率50万~200万倍)で粒子の観察を行い、粒子100個を観察して粒子径を測定し、その平均値をもって、一次平均粒子径とする。
 微粒子の見掛け比重としては、70g/リットル以上が好ましく、更に好ましくは、90~200g/リットルの範囲内であり、特に好ましくは、100~200g/リットルの範囲内である。見掛け比重が大きい程、高濃度の分散液を調製することが可能になり、ヘイズ、凝集物が良化するため好ましく、また、固形分濃度の高いドープを調製する際には、特に好ましく用いられる。
 一次粒子の平均径が20nm以下、見掛け比重が70g/リットル以上の二酸化珪素微粒子は、例えば、気化させた四塩化珪素と水素を混合させたものを1000~1200℃の温度範囲内にて空気中で燃焼させることで得ることができる。また、例えば、アエロジル200V、アエロジルR972V(以上、日本アエロジル(株)製)の商品名で市販されており、それらを使用することもできる。
 上記記載の見掛け比重は、二酸化珪素微粒子を一定量メスシリンダーに採り、この時の容積と質量を測定し、下記式で算出したものである。
 見掛け比重(g/リットル)=二酸化珪素の質量(g)/二酸化珪素の容積(リットル)
 〔位相差フィルムの特性値〕
 (イエローインデックス値Y.I.)
 本発明の位相差フィルムにおいては、黄色味の指標の一つであるイエローインデックスY.I.が、0.8<Y.I.<2.0の範囲内にあることが好ましい。
 本発明でいう位相差フィルムのイエローインデックス(Y.I.)値は、JIS規格K7105-6.3に記載の方法で求めることができる。本発明における具体的なイエローインデックス値の測定方法としては、日立製作所製の分光光度計U-3200と付属の彩度計算プログラム等を用いて、色の三刺激値X、Y、Zを求め、下式に従ってイエローインデックス値を求めた。
   イエローインデックス=100(1.28X-1.06Z)/Y
 (b値)
 本発明の位相差フィルムにおいては、黄色味の指標の一つであるb値が、0.3<b<0.6の範囲内にあることが好ましい。
 本発明に係るb値は、例えば、分光測色計CM-3700d(コニカミノルタセンシング(株)製)で、光源としてD65(色温度6504K)を用い、視野角10°で測定することにより求めることができる。
 〔位相差フィルムの物性値〕
 本発明の位相差フィルムの透湿度は、40℃、90%RHの環境下で測定したとき、300~1800g/m・24hの範囲内であることが好ましく、更に400~1500g/m・24hの範囲内であることが好ましく、40~1300g/m・24hの範囲内であることが特に好ましい。ここでいう透湿度は、JIS Z 0208に記載の方法に従い測定することができる。
 本発明の位相差フィルムの破断伸度は10~80%の範囲内であることが好ましく20~50%の範囲内であることが更に好ましい。
 破断伸度は、JIS K7127-1999に準拠した測定により、フィルムの遅相軸方向、及びそれと直交する方向の破断点応力(MPa)を測定し、この破断点応力にフィルムの膜厚を掛けたものを破断伸度(N)として算出する。
 本発明の位相差フィルムの可視光透過率は90%以上であることが好ましく、93%以上であることが更に好ましい。
 可視光透過率は、島津製作所製の分光光度計V-2450を用い、可視光領域(400~700nm)における平均透過率を求めることができる。
 本発明の位相差フィルムのヘイズは1%未満であることが好ましく0~0.2%の範囲であることが特に好ましい。
 本発明の位相差フィルムのヘイズは、例えば、ヘイズ計(1001DP型、日本電色工業(株)製)を用いて測定することができる。
 《位相差フィルムの製造方法》
 次に、本発明の位相差フィルムの製造方法について説明する。
 本発明の位相差フィルムは、溶液流延法で製造されたフィルムであっても、溶融流延法で製造されたフィルムであっても、いずれも好ましく用いることができる。
 本発明の位相差フィルムの溶液流延法による製造プロセスとしては、主に、セルロースアシレート及び添加剤を溶媒に溶解させてドープを調製する工程、ドープを無限に移行する無端の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体からウェブを剥離する工程、延伸又は幅を保持する工程、更に乾燥する工程、仕上がったフィルムを巻取る工程により行われる。
 はじめに、ドープを調製する工程について述べる。ドープ中のセルロースアシレートの濃度は、濃い方が金属支持体に流延した後の乾燥負荷が低減できる点で好ましいが、セルロースアシレートの濃度が高すぎると、濾過時の負荷が増えて、濾過精度が低下する。これらを両立する濃度としては、10~35質量%の範囲内が好ましく、更に好ましくは、15~25質量%の範囲内である。
 ドープで用いられる有機溶媒は、単独で用いても2種以上を併用してもよいが、セルロースアシレートの良溶媒と貧溶媒を混合して使用することが生産効率の点で好ましく、良溶媒が多い方がセルロースアシレートの溶解性の点で好ましい。
 良溶媒と貧溶媒の混合比率の好ましい範囲は、良溶媒が70~98質量%の範囲内であり、貧溶媒が2~30質量%である。良溶媒、貧溶媒とは、使用するセルロースアシレートを単独で溶解するものを良溶媒、単独で膨潤するか又は溶解しないものを貧溶媒と定義している。
 そのため、セルロースアシレートの平均酢化度(アセチル基置換度)によって良溶媒、貧溶媒が変わる。
 本発明に用いられる良溶媒は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくは、メチレンクロライド又は酢酸メチルが挙げられる。
 また、本発明に用いられる貧溶媒は、特に限定されないが、例えば、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01~2質量%含有していることが好ましい。
 また、セルロースアシレートの溶解に用いられる溶媒は、フィルム製膜工程で乾燥によりフィルムから除去された溶媒を回収し、これを再利用して用いることもできる。
 回収溶媒中に、セルロースアシレートに添加されている添加剤、例えば、可塑剤、紫外線吸収剤、ポリマー、モノマー成分などが微量含有されている場合もあるが、これらが含まれていても好ましく再利用することができるし、必要であれば精製して、これらの添加剤を除いた後に、再利用することもできる。
 上記ドープを調製する時、セルロースアシレートの溶解方法としては、一般的な方法を用いることができる。加熱と加圧を組み合わせると、常圧における沸点以上に加熱できる点から、好ましい方法の一つである。
 溶媒の常圧での沸点以上で、かつ加圧下で溶媒が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止することができる観点から好ましい。
 また、セルロースアシレートを貧溶媒と混合して湿潤あるいは膨潤させた後、更に良溶媒を添加して溶解する方法も好ましく用いられる。
 加圧は、窒素ガス等の不活性気体を圧入する方法や、加熱によって溶媒の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易である点で好ましい。
 溶媒を添加しての加熱温度は、高い方がセルロースアシレートの溶解性の観点から好ましいが、加熱温度が高過ぎると、必要とされる圧力が高くなり、生産性が悪くなる。
 好ましい加熱温度は45~120℃の範囲内であり、60~110℃の範囲内がより好ましく、70℃~105℃の範囲内が更に好ましい。また、圧力は、設定温度で使用している溶媒が沸騰しない条件に調整される。
 本発明において、ドープ調製方法として、冷却溶解法も好ましく用いられ、これによって酢酸メチルなどの低沸点溶媒にセルロースアシレートを溶解させることができる。
 以上のようにして調製されたセルロースアシレート溶液は、次いで、濾紙等の適当な濾過材を用いて濾過する。使用する濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生し易いという問題がある。
 このため絶対濾過精度が0.008mm以下の濾材が好ましく、0.001~0.008mmの範囲内の濾材がより好ましく、0.003~0.006mmの範囲内の濾材が更に好ましい。
 濾材の材質は、特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススチール等の金属製の濾材が繊維の脱落等がなく好ましい。
 濾過により、原料のセルロースアシレートに含まれていた不純物、特に輝点異物を除去、低減する。
 輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間に光学フィルム等を配置し、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数としては、200個/cm以下であることが好ましい。
 より好ましくは100個/cm以下であり、更に好ましくは50個/m以下であり、特に好ましくは0~10個/cm以下である。また、0.01mm以下の輝点も少ない方が好ましい。
 ドープの濾過は従来公知の方法で行うことができるが、溶媒の常圧での沸点以上で、かつ加圧下で溶媒が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後での濾圧の差(差圧という)の上昇が小さく、好ましい。
 好ましい温度は45~120℃の範囲内であり、45~70℃の範囲内がより好ましく、45~55℃の範囲内であることが更に好ましい。
 濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。
 次いで、ドープの流延方法について説明する。
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススチールベルト、若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。
 キャストの幅は1~4mの範囲内とすることが好ましい。流延工程の金属支持体の表面温度は-50℃~溶媒の沸点未満の温度範囲で、温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡し、平面性が劣化する場合がある。
 好ましい支持体温度は0~55℃の範囲内であり、25~50℃の範囲内が更に好ましい。あるいは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。
 金属支持体の温度を制御する方法は、特に制限されないが、例えば、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法が挙げられる。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は、目的の温度よりも高い温度の風を使う場合がある。
 位相差フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%の範囲内であることが好ましく、更に好ましくは20~40質量%の範囲内又は60~130質量%の範囲内であり、特に好ましくは、20~30質量%の範囲内又は70~120質量%の範囲内である。
 本発明において、残留溶媒量は下式で定義される。
   残留溶媒量(質量%)={(M-N)/N}×100
 尚、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間加熱した後の質量である。
 また、位相差フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1.0質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0%を含む0.01質量%以下である。
 フィルム乾燥工程では、一般に、ローラー乾燥方式(上下に配置した多数のローラーにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
 本発明の位相差フィルムを作製するためには、ウェブの両端をクリップ等で把持するテンター方式で、幅方向(横方向、TD方向ともいう。)に延伸を行うことが特に好ましい。剥離張力として、300N/m以下で剥離することが好ましい。
 ウェブを乾燥させる手段は、特に制限なく、一般的は、熱風、赤外線、加熱ローラー、マイクロ波等で行うことができるが、簡便さの点からは、熱風を用いる方法が好ましい。
 ウェブの乾燥工程における乾燥温度は、40~200℃の範囲内で段階的に高くしていくことが好ましい。
 位相差フィルムの膜厚は、特に限定はされないが、10~200μmの範囲内で用いられる。特に、膜厚としては、10~100μmの範囲内であることが特に好ましい。更に好ましくは20~60μmの範囲内である。
 本発明の位相差フィルムは、幅1~4mの範囲内のものを用いることができる。特に幅1.4~4mの範囲内のものが好ましく用いられ、特に好ましくは1.6~3mの範囲内である。幅が4m以下であれば、安定したフィルム搬送を行うことができる。
 本発明の位相差フィルムは、下記式(i)で定義されるリタデーション値Roが30~90nmの範囲内であり、下記式(ii)で定義されるリタデーション値Rtが70~300nmの範囲内であることが、後述するVA型(MVA、PVA)の液晶表示装置の視野角を拡大する上で好ましい位相差の範囲である。
 式(i)Ro=(n-n)×d
 式(ii)Rt={(n+n)/2-n}×d
 上記式(i)及び(ii)において、nはフィルム面内の遅相軸方向の屈折率であり、nはフィルム面内の進相軸方向の屈折率であり、nはフィルムの厚み方向の屈折率である。dはフィルムの厚さ(nm)である。
 なお、リタデーション値Ro及びRtは、自動複屈折率計を用いて測定することができる。例えば、自動複屈折率計としてKOBRA-21ADH(王子計測機器株式会社製)を用い、温度23℃、湿度55%RHの環境下で、波長589nmで求めることができる。
 本発明で目標とするリタデーション値Ro及びRtを得るには、位相差フィルムが本発明で規定する構成をとり、更に搬送張力の制御、延伸条件等の操作により屈折率制御を行うことが好ましい。
 例えば、長手方向の張力を低く又は高くすることでリタデーション値を変動させることが可能となる。
 また、フィルムの長手方向(製膜方向)及びそれとフィルム面内で直交する方向、即ち幅手方向に対して、逐次又は同時に2軸延伸若しくは1軸延伸することにより制御することができる。
 互いに直交する2軸方向の延伸倍率は、それぞれ最終的には流延方向に0.8~1.5倍、幅方向に1.1~2.5倍の範囲内とすることが好ましく、流延方向に0.8~1.0倍、幅方向に1.2~2.0倍に範囲内で行うことが好ましい。
 延伸温度は120℃~200℃の範囲内が好ましく、さらに好ましくは150℃~200℃の範囲内であり、さらに好ましくは150℃を超えて190℃以下の範囲内で延伸するのが好ましい。
 延伸を行う場合には、フィルム中の残留溶媒が0~20%の範囲内で行うことが好ましく、さらに好ましくは0~15%の範囲内で延伸するのが好ましい。
 具体的には155℃で残留溶媒が11%の条件で延伸する、あるいは155℃で残留溶媒が2%の条件で延伸するのが好ましい。若しくは160℃で残留溶媒が11%の条件で延伸するのが好ましく、あるいは160℃で残留溶媒が1%未満の条件で延伸するのが好ましい。
 ウェブを延伸する方法には特に限定はない。例えば、複数のローラーに周速差をつけ、その間でローラー周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、同様に横方向に広げて横方向に延伸する方法、あるいは縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。もちろんこれ等の方法は、組み合わせて用いてもよい。
 また、所謂テンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸を行うことができ、破断等の危険性が減少できる観点から好ましい。
 製膜工程のこれらの幅保持あるいは横方向の延伸は、テンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。
 本発明の位相差フィルムの遅相軸又は進相軸がフィルム面内に存在し、製膜方向とのなす角をθ1とする場合、θ1は-1°以上+1°以下であることが好ましく、-0.5°以上+0.5°以下であることがより好ましい。
 このθ1は配向角として定義でき、θ1の測定は、自動複屈折計KOBRA-21ADH(王子計測機器)を用いて行うことができる。θ1が各々上記関係を満たすことは、表示画像において高い輝度を得ること、光漏れを抑制又は防止することができ、カラー液晶表示装置においては、忠実な色再現を得ることに寄与できる。
 《偏光板》
 本発明の位相差フィルムは、偏光板、それを用いた液晶表示装置に具備させることができる。
 本発明の偏光板は、本発明の位相差フィルムを、偏光子の少なくとも一方の面に貼合した偏光板であることが特徴である。本発明の液晶表示装置は、少なくとも一方の液晶セル面に、本発明の偏光板が、貼り合わされたものであることが特徴である。
 本発明の偏光板は、一般的な方法で作製することができる。本発明の位相差フィルムの偏光子側をアルカリ鹸化処理し、沃素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせて作製する方法が好ましい。
 偏光子のもう一方の面には、本発明の位相差フィルムを用いても、また他のフィルムを貼合しても良い。
 上記適用可能な他のフィルムとしては、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC4UE、KC4UA、KC5UA、KC8UE、KC8UY-HA、KC8UX-RHA、KC8UXW-RHA-C、KC8UXW-RHA-NC、KC4UXW-RHA-NC、以上コニカミノルタオプト(株)製)を好ましく用いることができる。
 液晶表示装置の表面側に用いられる偏光板は、防眩層あるいはクリアハードコート層のほか、反射防止層、帯電防止層、防汚層、バックコート層を、それぞれ必要に応じて設けることができる。
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。
 偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色したもの、あるいは染色した後、一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光子の膜厚は5~30μmの範囲内が好ましく、特に10~20μmの範囲内であることが好ましい。
 また、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量が1~4モル%の範囲内、重合度が2000~4000の範囲内、鹸化度が99.0~99.99モル%の範囲内のエチレン変性ポリビニルアルコールも好ましく用いられる。
 中でも、熱水切断温度が66~73℃の範囲内であるエチレン変性ポリビニルアルコールフィルムが好ましく用いられる。
 このエチレン変性ポリビニルアルコールフィルムを用いた偏光子は、偏光性能及び耐久性能に優れていることに加え、色斑が少なく、大型液晶表示装置に特に好ましく用いられる。
 以上のようにして得られた偏光子は、通常、その両面又は片面に保護フィルムが貼合される。貼合する際に用いられる接着剤としては、ポリビニルアルコール(以下、PVAと略記する。)系の接着剤やウレタン系の接着剤などを挙げることができるが、中でもPVA系の接着剤が好ましく用いられる。
 《液晶表示装置》
 本発明の偏光板を液晶表示装置に用いることによって、種々の視認性に優れた本発明の液晶表示装置を作製することができる。
 本発明の位相差フィルムは、様々な表示モードの液晶表示装置に適用でき、例えば、TN(Twisted Nematic)、IPS(In-PlaneSwitching)、FLC(Ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Supper Twisted Nematic)、VA(Vertically Aligned)、ECB(Electrically Controlled Birefringence)及びHAN(Hybrid Aligned Nematic)などの各種駆動方式の液晶表示装置に用いることができるが、本発明の位相差フィルムの特性を効果的に発揮することができる観点から、垂直配向型液晶表示装置に適用することが好ましい。垂直配向型液晶表示装置は、バックライトと、カラーフィルター層と、液晶が2枚の透明基板の透明基板で挟持して構成される垂直配向型液晶セルと、該垂直配向型液晶セルの表面側(視認側)とバックライト側にそれぞれ本発明の位相差フィルムを含む偏光板とで構成され、かつ透明基板の一方にカラーフィルター層を備えたカラーフィルター・オン・アレイ(COA)方式を採用した垂直配向型液晶セルを用いることが好ましい。
 当該COA方式は、例えば、特開平10-206888号公報などに記載されているように、カラーフィルターが液晶セルの駆動側基板に直接形成されたカラーフィルター一体型駆動基板と、対向電極(導電層)を備える対向基板とをスペーサを介在させて対向配置し、その間隙部に液晶材料を封入して構成されるものであり、カラーフィルターを反射電極の上に形成し、高精細時に貼り合わせマージンを広くして歩留まりや開口率を向上させることができる。
 図1は、本発明に係るカラーフィルター・オン・アレイ(COA)方式を採用した垂直配向型液晶表示装置の構成の一例を示す概念図である。
 図1において、垂直配向型液晶表示装置の基本的構成としては、バックライト10と、カラーフィルター5と薄層トランジスタ(TFT)6を有する透明基板7と他方の透明基板3との間に液晶4が挟持されている液晶セル12を有する。これらの透明基板3、7の外側には、主に偏光子1、9と位相差フィルム2、8から構成される偏光板11、13が配置された構成を有する。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 実施例1
 《位相差フィルムの作製》
 〔位相差フィルム101の作製〕
 (セルロースアシレート1の調製)
 セルロース(日本製紙(株)製、溶解パルプ)300gに、プロピオン酸1300gを加え、54℃で30分撹拌した。混合物を冷却した後、氷浴中で、冷却した無水プロピオン酸の1000gと、硫酸の13gを加えてエステル化を行った。なお、エステル化においては、液温が40℃を超えないように調節しながら、150分攪拌を行った。反応終了後、プロピオン酸300gと水100gの混合液を20分かけて滴下し、過剰の無水物を加水分解した。反応液の温度を40℃に保持しながら、プロピオン酸900gと水300gを加えて1時間撹拌した。次いで、プロピオン酸マグネシウム20gを含有した水溶液中に混合物を添加し、しばらく撹拌した後、ろ過及び乾燥し、セルロースアシレート1を得た。得られたセルロースアシレート1は、総アシル基置換度が2.45、アセチル基置換度が2.45、重量平均分子量が200000であった。なお、総アシル基置換度(アセチル基置換度)の測定方法は、ASTMのD-817-91に準じて行った。また、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、前述の方法に従って測定した。
 (微粒子添加液1の調製)
 微粒子(アエロジル R812、日本アエロジル(株)製)の11質量部と、エタノールの89質量部とを、ディゾルバーを用いて50分間攪拌及び混合した後、マントンゴーリン分散機で分散を行って、微粒子分散液を調製した。
 次いで、99質量部のメチレンクロライドを充填した溶解タンクに、十分に攪拌しながら、上記調製した微粒子分散液の5質量部をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った後、これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
 (主ドープ1の調製)
 次いで、加圧溶解タンクに、メチレンクロライドとエタノールを添加した。その後、この混合溶媒の入った加圧溶解タンクに、上記調製した総アシル基置換度(アセチル基置換度)が2.45のセルロースアシレート1を攪拌しながら添加し、これを加熱、攪拌しながら完全に溶解した。次いで、上記調製した微粒子添加液1を添加した後、安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ1を調製した。上記調製した主ドープ1の組成の詳細は以下のとおりである。
 〈主ドープ1の組成〉
 メチレンクロライド                  340質量部
 エタノール                       64質量部
 セルロースアシレート1(アセチル基置換度2.45、重量平均分子量:約20万)                       100質量部
 微粒子添加液1                      1質量部
 上記各添加剤を、密閉されている加熱溶解タンクに投入し、攪拌しながら溶解して主ドープ1を調製した。
 (位相差フィルム1の製膜:溶液流延法)
 ベルト流延装置を用い、表面温度22℃、2m幅の無端ステンレスバンド支持体上に、上記主ドープ1を、ダイコータを用いて均一に流延した。ステンレスバンド支持体上で、流延したフィルム中の溶媒残留量が75質量%になるまで溶媒を蒸発させ、次いで、剥離張力130N/mで、ステンレスベルト支持体上から剥離した。剥離したフィルムを、170℃の熱を付与しながらテンターを用いて幅方向(TD方向)に20%延伸した。延伸開始時の残留溶媒量は、15質量%であった。
 次いで、乾燥ゾーンを多数のローラーで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。以上のようにして、乾燥膜厚40μmの位相差フィルム101を得た。
 〔位相差フィルム102の作製〕
 上記位相差フィルム101の作製において、主ドープに下記のようにして調製したショ糖1を12質量部添加した以外は同様にして、位相差フィルム102を作製した。
 〈ショ糖1の調製〉
 市販の精製済みショ糖の50質量%水溶液を調製した後、加熱しながらゆっくりと蒸発、乾固させて結晶を取り出した後、90℃の温風で30分かけて乾燥させて、ショ糖1を調製した。このショ糖1の50質量%トルエン溶液を調製し、後述の方法で色相APHAを測定した結果、15であった。
 〔位相差フィルム103の作製〕
 上記位相差フィルム101の作製において、主ドープに下記のようにして調製したショ糖2を12質量部添加した以外は同様にして、位相差フィルム103を作製した。
 〈ショ糖1の調製〉
 市販の精製済みショ糖の50質量%水溶液を調製した後、加熱しながらゆっくりと蒸発乾固して結晶を取り出した後、90℃の温風で60分かけて乾燥させて、ショ糖2を調製した。このショ糖2の50質量%トルエン溶液を調製し、後述の方法で色相APHAを測定した結果、70であった。
 〔位相差フィルム104の作製〕
 上記位相差フィルム101の作製において、主ドープに下記のようにして調製した糖エステル化合物1(例示化合物1-7)を12質量部添加した以外は同様にして、位相差フィルム104を作製した。
 〈糖エステル化合物1(例示化合物1-7)の調製〉
 撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖34.2g(0.1モル)、無水安息香酸180.8g(0.6モル)、ピリジン379.7g(4.8モル)を仕込み、撹拌下に窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。最後に、分取したトルエン層に水100gを添加し、常温で30分間水洗した後、トルエン層を分取し、減圧下(1×10Pa以下)、75℃で30分かけて、トルエンの留去及び乾燥させて、平均置換度が5.6の糖エステル化合物1(例示化合物1-7)を得た。平均置換度は、常法により高速液体クロマトグラフィによって置換度分布を示すチャートの面積比から平均置換度を測定した。
 また、上記調製した糖エステル化合物1(例示化合物1-7)の50質量%トルエン溶液を調製し、後述の方法で色相APHAを測定した結果、30であった。
 〔位相差フィルム105~108の作製〕
 〈糖エステル化合物2~5の調製〉
 上記糖エステル化合物1(例示化合物1-7)の調製において、最終乾燥時間を糖エステル化合物1の1.3倍、1.8倍、2.1倍、4.0倍にそれぞれ変更した以外は同様にして、糖エステル化合物2~5を調製した。調製した糖エステル化合物2~5の50質量%トルエン溶液における色相APHAは、それぞれ70、180、290、400であった。
 〈位相差フィルムの作製〉
 上記位相差フィルム104の作製において、糖エステル化合物1(例示化合物1-7)に代えて、上記調製した糖エステル化合物2~5を用いた以外は同様にして、位相差フィルム105~108を作製した。
 〔位相差フィルム109の作製〕
 上記位相差フィルム104の作製において、糖エステル化合物1(例示化合物1-7、平均置換度:5.6、乾燥時間:30分、色相APHA値:30)に代えて、糖エステル化合物6(例示化合物1-3、平均置換度:5.4、乾燥時間:30分、色相APHA値:40)を用いた以外は同様にして、位相差フィルム109を作製した。
 〔位相差フィルム110~112の作製〕
 〈糖エステル化合物7~9の調製〉
 上記糖エステル化合物6(例示化合物1-3)の調製において、最終乾燥時間を糖エステル化合物6の1.3倍、1.8倍、1.8倍、2.4倍にそれぞれ変更した以外は同様にして、糖エステル化合物7~9を調製した。調製した糖エステル化合物7~9の50質量%トルエン溶液における色相APHAは、それぞれ70、180、320であった。
 〈位相差フィルムの作製〉
 上記位相差フィルム109の作製において、色相APHA値が40の糖エステル化合物6(例示化合物1-3)に代えて、上記調製した糖エステル化合物7~9を用いた以外は同様にして、位相差フィルム110~112を作製した。
 〔位相差フィルム113の作製〕
 上記位相差フィルム104の作製において、糖エステル化合物1(例示化合物1-7、平均置換度:5.6、乾燥時間:30分、色相APHA値:30)に代えて、糖エステル化合物10(例示化合物1-12、平均置換度:5.5、乾燥時間:30分、色相APHA値:40)を用いた以外は同様にして、位相差フィルム113を作製した。
 〔位相差フィルム114~116の作製〕
 〈糖エステル化合物11~13の調製〉
 上記糖エステル化合物10(例示化合物1-12)の調製において、最終乾燥時間を糖エステル化合物10の1.3倍、1.8倍、1.8倍、2.4倍にそれぞれ変更した以外は同様にして、糖エステル化合物11~13を調製した。調製した糖エステル化合物11~13の50質量%トルエン溶液における色相APHAは、それぞれ70、180、320であった。
 〈位相差フィルムの作製〉
 上記位相差フィルム113の作製において、色相APHA値が40の糖エステル化合物10(例示化合物1-12)に代えて、上記調製した糖エステル化合物11~13を用いた以外は同様にして、位相差フィルム114~116を作製した。
 〔位相差フィルム117~119の作製〕
 上記位相差フィルム104の作製において、糖エステル化合物1(例示化合物1-7、平均置換度:5.6)に代えて、糖エステル化合物14(例示化合物1-5、平均置換度:4.0)、糖エステル化合物15(例示化合物1-6、平均置換度:5.0)、糖エステル化合物16(例示化合物1-9、平均置換度:7.0)をそれぞれ用いた以外は同様にして、位相差フィルム117~119を作製した。
 〔位相差フィルム120~123の作製〕
 (セルロースアシレート2~5の調製)
 前記セルロースアシレート1の調製において、プロピオン酸、無水プロピオン酸の他に、更に、酢酸、無水酢酸、酪酸、無水酪酸を適宜使用して、酸の量を調整した以外は同様にしてセルロースのエステル化操作を行い、アセチル基置換度がそれぞれ1.98、2.05、2.20、2.62であるセルロースアシレート2~5(重量平均分子量:約20万)を調製した。
 (位相差フィルムの作製)
 上記位相差フィルム105の作製において、セルロースアシレート1に代えて、上記調製したセルロースアシレート2~5をそれぞれ用いた以外は同様にして、位相差フィルム120~123を作製した。
 〔位相差フィルム124~126の作製〕
 上記位相差フィルム105の作製において、糖エステル化合物1-7の添加量比率(糖エステル化合物/(セルロースアシレート+糖エステル化合物)×100(%)、表1に記載の*1欄)を、それぞれ5.2質量%、22.1質量%、26.3質量%に変更した以外は同様にして、位相差フィルム124~126を作製した。なお、位相差フィルム105の糖エステル化合物1-7の添加量比率は、10.7質量%である。
 〔位相差フィルム127の作製〕
 上記位相差フィルム105の作製において、糖エステル化合物1-7に代えて、製膜後のイエローインデックス値が0.88、b値が0.33となる条件で、イエロー染料であるタートラジンを添加した以外は同様にして、位相差フィルム127を作製した。
 〔位相差フィルム128の作製〕
 上記位相差フィルム105の作製において、糖エステル化合物1-7に代えて、製膜後のイエローインデックス値が0.88、b値が0.33となる条件で、紫外線吸収剤であるチヌビン928(チバジャパン社製、表1にはTi928と記載)を添加した以外は同様にして、位相差フィルム128を作製した。
 〔各特性値の測定〕
 (単糖類又は二糖類、糖エステル化合物、比較化合物の色相APHA値の測定)
 測定対象の単糖類又は二糖類、糖エステル化合物、比較化合物(タートラジン、Ti-928)を、50質量%の濃度でトルエンに溶解して、測定液を調製した。次いで、この測定液を、日本電色製「COH-400」を用いて測定して、色相APHA値を求めた。
 (イエローインデックスY.I.の測定)
 各位相差フィルムについて、日立製作所製の分光光度計U-3200と付属の彩度計算プログラム等を用いて、色の三刺激値X、Y、Zを求め、下式に従ってイエローインデックス値Y.I.(YIともいう)を求めた。
   イエローインデックス値Y.I.=100(1.28X-1.06Z)/Y
 (b値の測定)
 各位相差フィルムについて、分光測色計CM-3700d(コニカミノルタセンシング(株)製)により、光源としてD65(色温度6504K)を用い、視野角10°で測定することにより求めた。
 以上により作製した位相差フィルムの構成と特性値を、表1に示す。
Figure JPOXMLDOC01-appb-T000007
 《位相差フィルムの評価》
 上記作製した各位相差フィルムについて、下記の方法に従って、各評価を行った。
 〔高温高湿耐性の評価:色調安定性〕
 上記作製した各位相差フィルムを、温度60℃、相対湿度90%の環境下で2000時間保存した。次いで、高温高湿処理を行った各位相差フィルムのイエローインデックス値(YI)を測定し、上記未処理の状態で測定した表1に記載のイエローインデックス値であるY.I.(YI)に対するイエローインデックス値の上昇度ΔYI(YI-YI)を求め、下記の基準に従って、高温高湿耐性(色調安定性)を評価した。
 ◎:イエローインデックス値の上昇度ΔYIが、0.2未満である
 ○:イエローインデックス値の上昇度ΔYIが、0.2以上、0.4未満である
 △:イエローインデックス値の上昇度ΔYIが、0.4以上、0.6未満である
 ×:イエローインデックス値の上昇度ΔYIが、0.6以上、0.9未満である
 ××:イエローインデックス値の上昇度ΔYIが、0.9以上である
 〔イエロー着色むら耐性の評価〕
 上記高温高湿耐性の評価で作製した温度60℃、相対湿度90%の環境下で2000時間処理した1m×1mの位相差フィルムについて、ブルーフィルターを介してイエロー着色むらの目視観察を行い、下記の基準に従ってイエロー着色むら耐性を評価した。
 ◎:イエロー着色むらの発生が全く認められず、均一な面質である
 ○:ほぼイエロー着色むらの発生が認められない
 △:弱いイエロー着色むらの発生が認められるが、実用上許容される範囲の品質である
 ×:強いイエロー着色むらの発生が認められ、実用上懸念される品質である
 以上により得られた結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000008
 表2に記載の結果より明らかなように、本発明で規定する構成からなる位相差フィルムは、比較例に対し、高温高湿環境下で長期間にわたり保存した後でも、イエロー着色の変動率ΔYIが小さく、色調安定性に優れ、かつイエロー着色むらの発生が抑制されていることが分かる。
 実施例2
 《偏光板の作製》
 (偏光板101A~128Aの作製)
 厚さ120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した後、水洗、乾燥して偏光子を得た。
 次いで、下記工程1~5に従って偏光子と実施例1で作製した位相差フィルム101~128と、裏面側にはコニカミノルタタックKC4UY(コニカミノルタアドバンストレイヤー(株)製セルロースエステルフィルム)を貼り合わせて偏光板101A~128Aを作製した。
 工程1:各位相差フィルム及びコニカミノルタタックKC4UYを、60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬し、次いで水洗し乾燥して、偏光子と貼合する側を鹸化した。
 工程2:上記調製した偏光子を、固形分2質量%のポリビニルアルコール接着剤槽中に1~2秒浸漬した。
 工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き除き、これを工程1で処理した各位相差フィルムの上に乗せて配置した。
 工程4:工程3で積層した各位相差フィルムと偏光子と裏面側のコニカミノルタタックKC4UYを圧力20~30N/cm、搬送スピードは約2m/分で貼合した。
 工程5:80℃の乾燥機中に工程4で作製した偏光子と各位相差フィルムとコニカミノルタタックKC4UYとを貼り合わせた試料を2分間乾燥し、それぞれ、位相差フィルム101~128に対応する偏光板101A~128Aを作製した。
 (偏光板101B~128Bの作製)
 上記偏光板101A~128Aの作製において、位相差フィルム101~128に代えて、実施例1の高温高湿耐性の評価で作製した温度60℃、相対湿度90%の環境下で2000時間処理した位相差フィルムを用いた以外は同様にして、偏光板101B~128Bを作製した。
 《液晶表示装置の作製》
 (液晶表示装置101A~128A、液晶表示装置101B~128Bの作製)
 SONY製のBRAVIA KDL-46HX800の偏光板を剥離し、代わりに上記作製した偏光板101A~128Aをそれぞれ装着して、液晶表示装置101A~128Aを作製した。
 この液晶表示装置の液晶セル1は、図1に記載の構成からなり、カラーフィルターと薄膜トランジスタが透明基板の一方に配置されているカラーフィルター・オン・アレイ構造を有している。
 次いで、上記液晶表示装置101A~128Aの作製において、偏光板101A~128Aに代えて、温度60℃、相対湿度90%の環境下で2000時間処理した位相差フィルムを用いた偏光板101B~128Bに変更した以外は同様にして、液晶表示装置101B~128Bを作製した。
 (液晶表示装置129A、130A、129B、130Bの作製)
 SONY社製のBRAVIA KDL40V5の偏光板を剥離し、代わりに上記作製した偏光板104A、105Aをそれぞれ用いて、液晶表示装置129A、130Aを作製した。
 この液晶表示装置の液晶セル2は、図2に記載の構成からなり、図1に記載の構成に対し、カラーフィルター5が透明基板3上に、薄膜トランジスタ6が透明基板7に配置されている構成である。
 次いで、上記液晶表示装置129A、130Aの作製において、偏光板104A、105Aに代えて、温度60℃、相対湿度90%の環境下で2000時間処理した位相差フィルムを用いた偏光板104B、105Bに変更した以外は同様にして、液晶表示装置129B、129Bを作製した。
 《液晶表示装置の評価》
 (カラーシフト耐性1の評価)
 上記作製した液晶表示装置101A~130A(未処理の位相差フィルムを使用、Aシリーズの液晶表示装置と称す。)と、液晶表示装置101B~130B(温度60℃、相対湿度90%の環境下で2000時間処理した位相差フィルムを使用、Bシリーズの液晶表示装置と称す。)について、カラーチャート画像を表示し、それぞれ対比する液晶表示装置同士のカラーシフト(色調変動)を比較観察し、下記の基準に従ってカラーシフト耐性1の評価を行った。
 ◎:Aシリーズの液晶表示装置と、Bシリーズの液晶表示装置の間で、カラーシフト(色調変動)は全く認められない
 ○:Aシリーズの液晶表示装置と、Bシリーズの液晶表示装置の間で、カラーシフト(色調変動)はほぼ認められない
 △:Aシリーズの液晶表示装置と、Bシリーズの液晶表示装置の間で、特定の色表示でカラーシフト(色調変動)がやや認められるが、実用上問題はない
 ×:Aシリーズの液晶表示装置と、Bシリーズの液晶表示装置の間で、強いカラーシフト(色調変動)が認めら、実用上問題となる品質である
 (カラーシフト耐性2の評価)
 上記作製した液晶表示装置101B~130B(温度60℃、相対湿度90%の環境下で2000時間処理した位相差フィルム使用)について、測定機(EZ-Contrast160D、ELDIM社製)を用いて色味変動について測定した。
 CIE1931、xy色度図において、ニュートラルな色味がD65光源と仮定した時のニュートラルな色味(x、y)=(0.313、0.34)と、倒れ角θ=0°における色味の最大色味変動幅Δxyを測定し、下記の基準に従ってカラーシフト耐性2を評価した。
 ◎:Δxy値が、0.05未満である
 ○:Δxy値が、0.05以上、0.07未満である
 △:Δxy値が、0.07以上、0.09未満である
 ×:Δxy値が、0.09以上である
 以上により得られた各評価結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000009
 表3に記載の結果より明らかなように、本発明の位相差フィルムを用いた液晶表示装置は、比較例に対して、高温高湿環境下で長時間にわたり処理された後でも、カラーシフト耐性に優れた特性を発現できることがわかる。
 本発明の位相差フィルムは、酷な環境下で長期間にわたり保存された際の色調安定性(色味変動耐性)及び画像ムラ耐性に優れた特性を備え、偏光板及び液晶表示装置に好適に利用できる。
 1、9 偏光子
 2 位相差フィルムB
 3、7 透明基板
 4 誘電率異方性が負の液晶
 5 カラーフィルター
 6 薄膜トランジスタ
 8 位相差フィルムA
 10 バックライト
 11、13 偏光板
 12 液晶セル

Claims (8)

  1.  総アシル基置換度が2.00~2.55の範囲内であるセルロースアシレートと、単糖類又は二糖類とを含有し、該単糖類又は二糖類の50質量%トルエン溶液における色相APHAが、50~300の範囲内であることを特徴とする位相差フィルム。
  2.  前記単糖類又は二糖類が、総平均置換度が4.50~6.00の範囲内である糖エステル化合物であることを特徴とする請求項1に記載の位相差フィルム。
  3.  前記糖エステル化合物が、下記一般式(1)で表される化合物であることを特徴とする請求項2に記載の位相差フィルム。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、R~Rは、各々、水素原子、置換若しくは無置換のアルキルカルボニル基、又は置換若しくは無置換のアリールカルボニル基を表し、R~Rは同じであっても、異なっていてもよい。〕
  4.  イエローインデックス値(Y.I.)が下式(1)で規定する条件を満たし、かつbの値が下式(2)で規定する条件を満たすことを特徴とする請求項1から3までのいずれか一項に記載の位相差フィルム。
     式(1)
       0.8<Y.I.<2.0
     式(2)
       0.3<b<0.6
  5.  前記セルロースアシレート(A)及び前記単糖類又は二糖類(B)の総質量に対する該単糖類又は二糖類の質量比率(B/(A+B)×100)が、5.0~25.0質量%の範囲内であることを特徴とする請求項1から4までのいずれか一項に記載の位相差フィルム。
  6.  請求項1から請求項5までのいずれか一項に記載の位相差フィルムを用いたことを特徴とする偏光板。
  7.  請求項6に記載の偏光板を液晶セルに用いたことを特徴とする液晶表示装置。
  8.  前記偏光板が、アレイ基板上にカラーフィルター層を備えたカラーフィルター・オン・アレイ構造に具備されていることを特徴とする請求項7に記載の液晶表示装置。
PCT/JP2012/082017 2011-12-22 2012-12-11 位相差フィルム、偏光板及び液晶表示装置 WO2013094466A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147015828A KR101644727B1 (ko) 2011-12-22 2012-12-11 위상차 필름, 편광판 및 액정 표시 장치
JP2013522018A JP5348356B1 (ja) 2011-12-22 2012-12-11 位相差フィルム、偏光板及び液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011281385 2011-12-22
JP2011-281385 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013094466A1 true WO2013094466A1 (ja) 2013-06-27

Family

ID=48668360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082017 WO2013094466A1 (ja) 2011-12-22 2012-12-11 位相差フィルム、偏光板及び液晶表示装置

Country Status (3)

Country Link
JP (1) JP5348356B1 (ja)
KR (1) KR101644727B1 (ja)
WO (1) WO2013094466A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098546A1 (ja) * 2013-12-26 2015-07-02 コニカミノルタ株式会社 バーティカルアライメント用位相差フィルム
CN109844580A (zh) * 2016-10-12 2019-06-04 柯尼卡美能达株式会社 偏振片和液晶显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101705651B1 (ko) * 2015-07-20 2017-02-22 주식회사 효성 셀룰로오스 에스테르 위상차 필름
KR102137552B1 (ko) * 2017-12-27 2020-07-24 삼성에스디아이 주식회사 액정 위상차 필름, 이를 포함하는 적층체, 이를 포함하는 편광판 및 이를 포함하는 발광표시장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269076A (ja) * 1995-02-01 1996-10-15 Kao Corp アルキルグリコシドの製造方法
JP2007153843A (ja) * 2005-12-07 2007-06-21 Dai Ichi Kogyo Seiyaku Co Ltd アルキルグリコシドの製造方法
JP2009221290A (ja) * 2008-03-14 2009-10-01 Konica Minolta Opto Inc セルロースエステルフィルム及びそれを用いた位相差フィルム、液晶表示装置
JP2011053645A (ja) * 2009-08-05 2011-03-17 Konica Minolta Opto Inc セルロースアセテートフィルム、偏光板及び液晶表示装置
JP2011121327A (ja) * 2009-12-14 2011-06-23 Fujifilm Corp セルロースアシレートフィルム、その製造方法、偏光板および液晶表示装置
JP2011236152A (ja) * 2010-05-10 2011-11-24 Gun Ei Chem Ind Co Ltd 糖組成物およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100497452C (zh) * 2002-01-16 2009-06-10 伊士曼化工公司 用作聚合物的增塑剂的新型糖酯和多元醇酯、包含所述增塑剂的组合物和制品以及所述增塑剂的使用方法
KR101300819B1 (ko) 2006-12-05 2013-08-26 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
US8760479B2 (en) 2008-06-16 2014-06-24 Samsung Display Co., Ltd. Liquid crystal display
JP5446415B2 (ja) 2009-04-16 2014-03-19 凸版印刷株式会社 液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269076A (ja) * 1995-02-01 1996-10-15 Kao Corp アルキルグリコシドの製造方法
JP2007153843A (ja) * 2005-12-07 2007-06-21 Dai Ichi Kogyo Seiyaku Co Ltd アルキルグリコシドの製造方法
JP2009221290A (ja) * 2008-03-14 2009-10-01 Konica Minolta Opto Inc セルロースエステルフィルム及びそれを用いた位相差フィルム、液晶表示装置
JP2011053645A (ja) * 2009-08-05 2011-03-17 Konica Minolta Opto Inc セルロースアセテートフィルム、偏光板及び液晶表示装置
JP2011121327A (ja) * 2009-12-14 2011-06-23 Fujifilm Corp セルロースアシレートフィルム、その製造方法、偏光板および液晶表示装置
JP2011236152A (ja) * 2010-05-10 2011-11-24 Gun Ei Chem Ind Co Ltd 糖組成物およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098546A1 (ja) * 2013-12-26 2015-07-02 コニカミノルタ株式会社 バーティカルアライメント用位相差フィルム
TWI556000B (zh) * 2013-12-26 2016-11-01 Konica Minolta Inc Vertical alignment with phase difference film
CN109844580A (zh) * 2016-10-12 2019-06-04 柯尼卡美能达株式会社 偏振片和液晶显示装置
CN109844580B (zh) * 2016-10-12 2021-09-28 柯尼卡美能达株式会社 偏振片和液晶显示装置

Also Published As

Publication number Publication date
JPWO2013094466A1 (ja) 2015-04-27
KR20140097342A (ko) 2014-08-06
KR101644727B1 (ko) 2016-08-01
JP5348356B1 (ja) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5201135B2 (ja) 光学補償フィルムとそれを用いた偏光板及び液晶表示装置
WO2011016279A1 (ja) セルロースアセテートフィルム、偏光板及び液晶表示装置
JP5440407B2 (ja) 偏光板、液晶表示装置及びセルロースアセテートフィルムの製造方法
JP5754445B2 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
WO2012026199A1 (ja) 位相差フィルム、及びそれを用いた偏光板、液晶表示装置
WO2009119142A1 (ja) セルロースエステルフィルム
JP5741850B2 (ja) 光学フィルム、それを含む偏光板および液晶表示装置
JP5348356B1 (ja) 位相差フィルム、偏光板及び液晶表示装置
JP5428045B2 (ja) 液晶表示装置
WO2011135980A1 (ja) セルロースアセテートフィルム、及びそれを用いた偏光板、液晶表示装置
JP2015092262A (ja) バーティカルアライメント型液晶表示装置
WO2009101839A1 (ja) 位相差フィルム
WO2011114764A1 (ja) 位相差フィルム及びそれが備えられた偏光板
JP5360063B2 (ja) 液晶表示装置
JP5733312B2 (ja) セルロースアセテートフィルムの製造方法
JP5233935B2 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置並びにリターデーション発現剤
JP5760922B2 (ja) 光学フィルムとその製造方法、偏光板および液晶表示装置
WO2015098546A1 (ja) バーティカルアライメント用位相差フィルム
JP5724820B2 (ja) セルロースエステルフィルム、位相差フィルム、偏光板および液晶表示装置
WO2013125420A1 (ja) 光学フィルム、偏光板及び液晶表示装置
JP2013083706A (ja) 光学フィルム、それを含む偏光板および液晶表示装置
JP2010159361A (ja) セルロースエステルフィルム及び液晶表示装置
JP2011242433A (ja) 位相差フィルム、位相差フィルムの製造方法及びそれを用いた偏光板、液晶表示装置
JP2012108349A (ja) 位相差フィルム、その製造方法、偏光板、及び液晶表示装置
WO2012073581A1 (ja) 位相差フィルム、及びそれを用いた偏光板、液晶表示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013522018

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147015828

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859069

Country of ref document: EP

Kind code of ref document: A1