WO2013125420A1 - 光学フィルム、偏光板及び液晶表示装置 - Google Patents

光学フィルム、偏光板及び液晶表示装置 Download PDF

Info

Publication number
WO2013125420A1
WO2013125420A1 PCT/JP2013/053454 JP2013053454W WO2013125420A1 WO 2013125420 A1 WO2013125420 A1 WO 2013125420A1 JP 2013053454 W JP2013053454 W JP 2013053454W WO 2013125420 A1 WO2013125420 A1 WO 2013125420A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optical film
acid
general formula
film
Prior art date
Application number
PCT/JP2013/053454
Other languages
English (en)
French (fr)
Inventor
福坂 潔
一成 中原
宏佳 木内
鈴木 隆嗣
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014500676A priority Critical patent/JP6028792B2/ja
Publication of WO2013125420A1 publication Critical patent/WO2013125420A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/357Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/14Mixed esters, e.g. cellulose acetate-butyrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133635Multifunctional compensators

Definitions

  • the present invention relates to an optical film, a polarizing plate, and a liquid crystal display device. More specifically, the present invention relates to an optical film containing a cellulose ester, a polarizing plate provided with the optical film, and a liquid crystal display device.
  • Resin films such as cellulose ester, polycarbonate, and polyolefin are used for optical films, mainly optical compensation films for liquid crystal display devices.
  • an optical film (cellulose ester film) containing a cellulose ester is widely used because of its excellent bonding property to a polyvinyl alcohol film used as a polarizer. Since the cellulose ester film itself does not have sufficient birefringence necessary for the optical compensation film, various studies have been made to impart birefringence to the cellulose ester film.
  • a 1,3,5-triazine compound has been proposed as a compound having a high retardation increasing ability (see, for example, Patent Document 1).
  • a polarizing plate prepared using a thinned optical compensation film containing the compound and a liquid crystal display device using the polarizing plate are inferior in durability such as light resistance and wet heat resistance.
  • problems of uneven front contrast and deterioration of viewing angle under high temperature and high humidity there were problems of uneven front contrast and deterioration of viewing angle under high temperature and high humidity.
  • the said compound was added, the brittleness of the film deteriorated and there was a problem in slitting characteristics.
  • the present invention has been made in view of the above circumstances, and a solution to the problem is to provide an optical film having high retardation expression, bleeding out being suppressed, low internal haze, and excellent brittleness. That is. It is another object of the present invention to provide a polarizing plate provided with the optical film and having good light resistance and wet heat resistance, and a liquid crystal display device with reduced front contrast unevenness and humidity dependency of a viewing angle.
  • an optical film containing a cellulose ester has a phenyl at a specific position of a compound in which a benzene ring and a heterocycle are condensed as a retardation developer.
  • a compound having a group and having a substituent via at least one of the 3-position, 4-position and 5-position of the phenyl group via a linking group and having a molecular weight in the range of 280 to 380 thus, it has been found that an optical film having high retardation expression and excellent bleeding out characteristics, internal haze, and brittleness can be obtained.
  • An optical film containing a cellulose ester comprising a compound represented by the following general formula (1) having a molecular weight in the range of 280 to 380.
  • X 1 represents an oxygen atom, a nitrogen atom or a sulfur atom
  • X 2 represents an oxygen atom, a sulfur atom, a nitrogen atom or NR 4
  • X 3 represents an oxygen atom or a sulfur atom
  • R 4 represents a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group or a heteroaryl group
  • R 1 represents a substituent
  • L 1 represents O, OCO, COO, NR 5 CO, SO 2 NR 5 , Represents SO 2 , SO 2 O, NR 5 SO 2 or OSO 2
  • R 5 represents a hydrogen atom, an alkyl group or an aryl group
  • R 2 represents an aryl group or an alkyl group
  • m is from 0 to 2 N represents an integer of 1 to 3, and when n is 2 or more, a plurality of L 1 and R 1 may be the same or different, and the substitution position of L 1 and R 2 is the 3rd position 4th or 5th position, the broken line is a single bond or a double bond Represent.
  • L 1 is OCO or NR 5 CO
  • R 5 is a hydrogen atom, an alkyl group
  • the compound represented by the general formula (1) is a compound represented by the following general formula (2),
  • the optical film according to item 1 or 2
  • the retardation value Ro in the in-plane direction represented by the following formula is in the range of 20 to 150 nm at a measurement wavelength of 590 nm, and the retardation value in the thickness direction.
  • Rth is in the range of 70 to 350 nm.
  • Formula (I) Ro (n x -n y) ⁇ d
  • Rth ⁇ (n x + n y ) / 2 ⁇ n z ⁇ ⁇ d
  • N x represents a refractive index in the direction x in which the refractive index is maximized in the plane direction of the optical film
  • n y is in the plane direction of the optical film
  • Nz represents the refractive index in the thickness direction z of the optical film
  • d (nm) represents the thickness of the optical film.
  • a liquid crystal display device wherein the polarizing plate according to item 9 is provided on at least one surface of a liquid crystal cell.
  • the optical film of the present invention can provide an optical film having high retardation expression, bleed-out suppression, low internal haze and excellent brittleness. Therefore, the polarizing plate provided with the optical film can obtain good light resistance and moisture and heat resistance, and by using the polarizing plate, the liquid crystal with reduced front contrast unevenness and humidity dependency of the viewing angle is reduced.
  • a display device can be provided.
  • the compound contained in the optical film is preferably a compound having a large birefringence, and a compound having a large birefringence has a high molecular polarizability and an anisotropic polarizability.
  • a compound having a phenyl group at a specific position of a compound in which a benzene ring and a heterocycle are condensed can be given as a specific structure because it is preferably a compound having high properties.
  • the structure in which the benzene ring and the heterocycle are condensed and the phenyl group have a planar structure
  • the linking group moiety interacts with the cellulose ester
  • the birefringence of the planar structure is the same axis as the orientation axis of the cellulose ester, so the polarizability anisotropy is controlled in a certain direction and high retardation is achieved. Is considered to be expressed.
  • the substituent via the linking group is not limited as long as it does not inhibit the interaction between the linking group and the cellulose ester.
  • the polarizability of the compound can be obtained by calculation using the molecular orbital method or the density functional method, and the polarizability anisotropy of the compound can be obtained by the method described in, for example, JP-A-2009-222994. .
  • the phenyl group is liable to have a twisted structure, and thus the retardation expression is significantly reduced.
  • the compound according to the present invention includes —O—, —OCO—, —COO—, —NR 5 CO—, —SO 2 NR 5 as a linking group from the viewpoint of retardation development, bleed out and internal haze.
  • —, —SO 2 —, SO 2 O—, —NR 5 SO 2 — or —OSO 2 — R 5 represents a hydrogen atom, an alkyl group or an aryl group
  • R 5 represents a hydrogen atom, an alkyl group or an aryl group
  • compatibility with the cellulose ester is improved and high retardation is exhibited.
  • the compound of the present invention forms a hydrogen bond with the cellulose ester, and thus is immobilized in an arrangement along the molecular chain of the cellulose ester, so that the retardation expression is improved. At the same time, it is considered that high compatibility is imparted. Furthermore, by setting the molecular weight of the compound of the present invention within the range of 280 to 380, bleed out and internal haze can be greatly improved.
  • the optical film of the present invention is an optical film containing a cellulose ester, characterized in that it contains a compound represented by the general formula (1) having a molecular weight in the range of 280 to 380.
  • L 1 is OCO or NR 5 CO
  • R 5 is a hydrogen atom, an alkyl group or An aryl group is preferred.
  • the compound represented by the general formula (1) is a compound represented by the general formula (2), and m of the compound represented by the general formula (2) is 0.
  • the compound represented by the general formula (2) is a compound represented by the general formula (3), has high retardation expression, bleed out is suppressed, internal haze is low, and It is preferable when obtaining an optical film excellent in brittleness.
  • the cellulose ester is a cellulose ester having a specific acyl group substitution degree that satisfies the formulas (a) and (b), the general formula (1), the general formula (2), and the general formula It is preferable for obtaining an optical film having excellent compatibility with the compound represented by the formula (3), high retardation development property, suppression of bleed-out, low internal haze and excellent brittleness.
  • the film thickness of the optical film is preferably in the range of 20 to 60 ⁇ m from the viewpoint of suppressing bleed out and being excellent in brittleness.
  • the optical film has an in-plane retardation value Ro of 20 to 150 nm represented by the above formula at a wavelength of 590 nm under an environment of 23 ° C. and 55% RH, and a retardation value in the thickness direction.
  • Rth of 70 to 350 nm is preferable for providing an optical compensation film with good visibility.
  • the optical film of the present invention is suitably provided in a polarizing plate and a liquid crystal display device, a polarizing plate having good light resistance and wet heat resistance, and liquid crystal with reduced front contrast unevenness and humidity dependency of a viewing angle.
  • a display device is provided.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • optical film of the present invention contains a cellulose ester, a compound represented by the general formula (1), and other optional components.
  • the cellulose ester contained in the optical film of the present invention is not particularly limited, but is preferably a linear or branched carboxylic acid ester having about 2 to 22 carbon atoms.
  • the carboxylic acid constituting the ester may form a ring or an aromatic carboxylic acid.
  • the carboxylic acid constituting the ester may have a substituent.
  • the carboxylic acid constituting the ester is particularly preferably a lower fatty acid having 6 or less carbon atoms.
  • cellulose esters include cellulose acetate; cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate, and the like.
  • Mixture of cellulose having propionate group or butyrate group in addition to acetyl group Examples include fatty acid esters.
  • the cellulose ester satisfies both the following formulas (a) and (b).
  • X is the degree of substitution of the acetyl group
  • Y is the degree of substitution of the propionyl group or butyryl group, or the degree of substitution of a mixture thereof.
  • the degree of substitution of the acyl group can be measured according to ASTM-D817-96.
  • Cellulose acetate propionate satisfies 1.0 ⁇ X ⁇ 2.4, preferably 0.1 ⁇ Y ⁇ 1.5, and 2.0 ⁇ X + Y ⁇ 2.5.
  • the cellulose acetate is preferably 1.5 ⁇ X ⁇ 2.5, more preferably 2.0 ⁇ X ⁇ 2.5.
  • the cellulose acetate most preferably used is cellulose diacetate (DAC) with 2.0 ⁇ X ⁇ 2.5.
  • cellulose acetates having different degrees of substitution may be mixed and used.
  • the mixing ratio of different cellulose acetates is not particularly limited, and may be in the range of 10:90 to 90:10 (mass ratio).
  • the number average molecular weight of the cellulose ester is preferably in the range of 6 ⁇ 10 4 to 3 ⁇ 10 5 , and more preferably in the range of 7 ⁇ 10 4 to 2 ⁇ 10 5 . It is because the mechanical strength of the obtained film becomes high.
  • the weight average molecular weight Mw and the number average molecular weight Mn of the cellulose ester can be measured using gel permeation chromatography (GPC). An example of measurement conditions is as follows, but is not limited to this, and an equivalent measurement method can be used.
  • the raw material cellulose of the cellulose ester is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively.
  • Cellulose esters such as cellulose acetate and cellulose acetate propionate can be produced by known methods. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804.
  • the compound represented by the general formula (1) contained in the optical film of the present invention will be described.
  • the compound represented by the general formula (1) may be a compound represented by the general formula (2) and the general formula (3).
  • R 1 represents a substituent.
  • substituent represented by R 1 include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, trifluoromethyl group, etc.
  • Cycloalkyl group for example, cyclopropyl group, cyclopentyl group, cyclohexyl group, adamantyl group, etc.
  • aryl group for example, phenyl group, naphthyl group, etc.
  • heterocyclic group for example, pyridyl group, pyrimidyl group, oxazolyl group
  • alkenyl group for example, vinyl group, 2-propenyl group, 3-butenyl group, 1-methyl-3-propenyl group, 3-pentenyl group, 1-methyl) -3-butenyl group, 4-hexenyl group, cyclohexenyl group, styryl group, etc.
  • a Examples thereof include a alkynyl group (for example, propargyl group) and an alkylsulfony
  • the substituent represented by R 1 is further an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, trifluoromethyl group, etc.) ,
  • a cycloalkyl group eg, cyclopropyl group, cyclopentyl group, cyclohexyl group, adamantyl group, etc.
  • an aryl group eg, phenyl group, naphthyl group, etc.
  • a heterocyclic group eg, pyridyl group, pyrimidyl group, oxazolyl group, Thiazolyl group, oxadiazolyl group, thiadiazolyl group, imidazolyl group, etc.
  • acylamino group eg, acetylamino group, be
  • the substituent represented by R 1 is preferably an alkyl group, a cycloalkyl group, or an aryl group, more preferably an alkyl group or an aryl group, and particularly preferably an alkyl group.
  • L 1 represents O, OCO, COO, NR 5 CO, SO 2 NR 5 , SO 2 , SO 2 O, NR 5 SO 2 or OSO 2
  • R 5 represents a hydrogen atom
  • L 1 is preferably OCO or NR 5 CO, and particularly preferably OCO, from the viewpoint of interaction with the cellulose ester.
  • L 1 is substituted at any of the 3-position, 4-position or 5-position, and most preferably substituted at the 4-position.
  • substitution position as described above, the polarizability anisotropy of the compound is increased, and high retardation expression can be obtained from the interaction with the cellulose ester.
  • n represents an integer of 1 to 3.
  • the plurality of L 1 and R 1 may be the same or different. Preferably it is 1 or 2, most preferably 1.
  • X 1 represents an oxygen atom, a nitrogen atom or a sulfur atom
  • X 2 represents an oxygen atom, a sulfur atom, a nitrogen atom or NR 4
  • X 3 represents an oxygen atom or a sulfur atom.
  • R 4 include a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, and a heteroaryl group.
  • X 1 is preferably an oxygen atom or a nitrogen atom, and particularly preferably a nitrogen atom.
  • X 2 is preferably an oxygen atom or a nitrogen atom, and particularly preferably an oxygen atom.
  • X 3 is preferably an oxygen atom or a sulfur atom, and particularly preferably an oxygen atom.
  • R 2 represents an aryl group or an alkyl group.
  • the aryl group include a phenyl group and a naphthyl group.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • An alkyl group is preferable, and a methyl group is more preferable.
  • m represents an integer of 0-2. Preferably it is 0 to 1, most preferably 0.
  • the plurality of R 2 may be the same or different.
  • the substitution position of R 2 is any one of the 3rd, 4th and 5th positions.
  • the broken line portion represents a single bond or a double bond.
  • X 1, X 2 and X 3 is the same as defined in the X 1, X 2 and X3 in the general formula (1).
  • L 1 and R 1 has the same meaning as L 1 and R 1 in the general formula (1).
  • R 2 has the same meaning as R 2 in the general formula (1).
  • n has the same meaning as m in the general formula (1).
  • a broken line part represents a single bond or a double bond.
  • L 1 and R 1 has the same meaning as L 1 and R 1 in the general formula (1).
  • the optical film of the present invention contains a cellulose ester and a compound represented by the general formula (1).
  • the compound represented by the general formula (1) is a cellulose ester. It is preferable to be added in the inside. “Added” means dissolved or dispersed in the cellulose ester. A desired retardation value cannot be obtained simply by applying the compound represented by the general formula (1) only to the surface of the optical film.
  • the optical film of the present invention preferably contains the compound represented by the general formula (1) within a range of 1 to 20 parts by mass with respect to 100 parts by mass of the cellulose ester in order to obtain a desired retardation. .
  • the retardation can be expressed, and by setting it to 20 parts by mass or less, both the retardation expression and the compatibility can be achieved.
  • the addition amount of the compound represented by the general formula (1) is more preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the cellulose ester, and in the range of 2 to 5 parts by mass. It is particularly preferred. Within this range, sufficient retardation can be imparted to the optical film of the present invention, and internal haze and bleed-out characteristics can be kept good.
  • the optical film of this invention should just contain at least 1 or more types of compounds represented by the said General formula (1), and gives desired retardation value in combination with compounds other than the said General formula (1). You can also
  • the optical film of the present invention may contain other optional components in addition to the cellulose ester and the compound represented by the general formula (1).
  • optional components include wavelength dispersion control agents, sugar esters, plasticizers, ultraviolet absorbers, antioxidants, and fine particles.
  • the optical film of the present invention can also contain a wavelength dispersion controlling agent.
  • the “wavelength dispersion controlling agent” is a compound that adjusts the wavelength dispersion of the retardation value of the optical film.
  • Preferable examples of the wavelength dispersion controlling agent include discotic compounds described in JP-A Nos. 2001-166144 and 2003-344655, and compounds described in JP-A 2010-163482.
  • the wavelength dispersion controlling agent preferably has an absorption maximum in the wavelength range of 250 to 400 nm or in the wavelength range of 270 to 380 nm.
  • the wavelength dispersion controlling agent can be used alone or in combination of two or more.
  • the addition amount of the wavelength dispersion control agent is preferably in the range of 1.0 to 20% by mass, more preferably in the range of 1.5 to 15% by mass, and 2.0 to 10% with respect to 100 parts by mass of the cellulose ester. Most preferred is in the range of mass%.
  • the wavelength dispersion control agent can be added by dissolving the wavelength dispersion control agent in an organic solvent such as alcohol, methylene chloride or dioxolane, and then adding it to the cellulose ester solution (dope) or adding it directly into the dope composition. May be.
  • the wavelength dispersion control agent may be added in advance to the cellulose ester mixed solution; it may be added in any step from the preparation of the cellulose ester dope to casting. In the latter case, a solution in which a wavelength dispersion controlling agent and a small amount of cellulose ester are dissolved is added in-line to a dope in which cellulose ester is dissolved in a solvent and mixed.
  • the mixing is preferably performed with an in-line mixer such as a static mixer (manufactured by Toray Engineering) or SWJ (Toray static type in-pipe mixer Hi-Mixer).
  • a matting agent may be added together with the wavelength dispersion controlling agent, or additives such as a retardation controlling agent, a plasticizer, a deterioration preventing agent and a peeling accelerator may be added.
  • the pressurized container When using an in-line mixer, it is preferable to concentrate and dissolve under high pressure; the pressurized container only needs to be able to withstand a predetermined pressure and to be heated and stirred under pressure. Instruments such as a pressure gauge and a thermometer are appropriately disposed in the pressurized container.
  • the pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or by increasing the vapor pressure of the solvent by heating.
  • Heating is preferably performed from the outside of the container.
  • a jacket type heater is preferable because of easy temperature control.
  • the heating temperature with the addition of the solvent is preferably a temperature not lower than the boiling point of the solvent used and in a range where the solvent does not boil, for example, in the range of 30 to 150 ° C. Adjust the pressure so that the solvent does not boil at the set temperature. After dissolution, it is taken out from the container while cooling, or extracted from the container with a pump or the like and cooled with a heat exchanger or the like, and used for film formation.
  • the cooling temperature at this time may be cooled to room temperature, but it is more preferable to cool to a temperature range 5 to 10 ° C. lower than the boiling point and perform casting at that temperature because the dope viscosity can be reduced.
  • the optical film of the present invention preferably contains a sugar ester other than cellulose ester.
  • the sugar ester is a compound containing at least one of a furanose structure or a pyranose structure.
  • the sugar ester may be a monosaccharide or a polysaccharide having 2 to 12 sugar structures linked together.
  • the sugar ester is preferably a compound in which at least one OH group of the sugar structure is esterified.
  • the esterification rate of the sugar ester is preferably 70% or more of the OH groups present in the pyranose structure or furanose structure.
  • sugars constituting the sugar ester examples include glucose, galactose, mannose, fructose, xylose, or arabinose, lactose, sucrose, nystose, 1F-fructosylnystose, stachyose, maltitol, lactitol, lactulose, cellobiose, maltose, Cellotriose, maltotriose, raffinose or kestose are included.
  • examples of the sugar constituting the sugar ester include gentiobiose, gentiotriose, gentiotetraose, xylotriose, galactosyl sucrose, and the like. Of course, the sugar is not limited to these.
  • the sugar structure constituting the sugar ester preferably contains both a pyranose structure and a furanose structure.
  • Preferred examples of the sugar constituting the sugar ester include sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose, and more preferably sucrose.
  • the monocarboxylic acid for esterification is not particularly limited, and known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid and the like can be used.
  • the carboxylic acid used may be one type or a mixture of two or more types.
  • Examples of preferred aliphatic monocarboxylic acids constituting the esters of sugar esters include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl- Hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicin
  • saturated fatty acids such as acid and lacteric acid
  • unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachi
  • Examples of preferable alicyclic monocarboxylic acid constituting the ester of a sugar ester include cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, or derivatives thereof.
  • aromatic monocarboxylic acids constituting the esters of sugar esters include aromatic monocarboxylic acids, cinnamates, and benzyls in which alkyl groups and alkoxy groups are introduced into the benzene ring of benzoic acids such as benzoic acid and toluic acid.
  • Aromatic monocarboxylic acids having two or more benzene rings such as acid, biphenyl carboxylic acid, naphthalene carboxylic acid, tetralin carboxylic acid, or derivatives thereof are included.
  • Oligosaccharide esters can be used as sugar esters in the present invention. Oligosaccharides are produced by allowing an enzyme such as amylase to act on starch, sucrose, etc. Examples of preferred oligosaccharides include maltooligosaccharides, isomalto-oligosaccharides, fructooligosaccharides, galactooligosaccharides, and xylo-oligosaccharides. .
  • the sugar ester is a compound obtained by condensing 1 or more and 12 or less of at least one of a pyranose structure or a furanose structure represented by the following general formula (A).
  • R 11 to R 15 and R 21 to R 25 in the general formula (A) are an acyl group having 2 to 22 carbon atoms or a hydrogen atom, m and n are each an integer of 0 to 12, and m + n is an integer of 1 to 12 It is.
  • R 11 to R 15 and R 21 to R 25 are preferably a benzoyl group or a hydrogen atom.
  • the benzoyl group may have a substituent R 26 (p is 0 to 5), and examples thereof include an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group. Further, these alkyl group, alkenyl group, and phenyl group are It may have a substituent. Oligosaccharide esters can also be produced in the same manner as other sugar esters.
  • sugar ester used in the present invention include compounds described in paragraphs [0130] to [0137] of JP2012-230154A and paragraphs [0077] to [0078] of JP2012-230282A.
  • the present invention is not limited to this.
  • the optical film of the present invention preferably contains 0.5 to 30% by mass of the sugar ester, particularly 5%, in order to suppress the fluctuation of the retardation value and stabilize the display quality. It is preferable to contain ⁇ 30% by mass.
  • the optical film of the present invention may contain a plasticizer.
  • the plasticizer is not particularly limited, but is preferably a polycarboxylic acid ester plasticizer, a glycolate plasticizer, a phthalate ester plasticizer, a fatty acid ester plasticizer, a polyhydric alcohol ester plasticizer, or a polyester plasticizer. Agent, acrylic plasticizer and the like.
  • at least one is preferably a polyhydric alcohol ester plasticizer.
  • the polyhydric alcohol ester plasticizer is a plasticizer comprising an ester of a dihydric or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
  • a divalent to 20-valent aliphatic polyhydric alcohol ester is preferred.
  • the polyhydric alcohol constituting the polyhydric alcohol ester plasticizer is represented by the general formula (a).
  • Ra represents an n-valent organic group
  • n represents a positive integer of 2 or more
  • an OH group represents an alcoholic or phenolic hydroxy group.
  • Examples of preferred polyhydric alcohols constituting the polyhydric alcohol ester plasticizer include adonitol, arabitol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, Dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, 1,5-pentanediol, 1 , 6-hexanediol, hexanetriol, galactitol, mannitol, 3-methylpentane-1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, xylitol, etc. It is not particularly limited. In particular, triethylene glycol, tetraethylene glycol, dipropy
  • Examples of monocarboxylic acids constituting the polyhydric alcohol ester plasticizer are not particularly limited, and known aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, aromatic monocarboxylic acids and the like can be used. Use of an alicyclic monocarboxylic acid or aromatic monocarboxylic acid is preferred in terms of improving moisture permeability and retention.
  • Examples of preferable monocarboxylic acid include, but are not limited to, the following.
  • Examples of the aliphatic monocarboxylic acid include fatty acids having a straight chain or a side chain having 1 to 32 carbon atoms.
  • the number of carbon atoms is more preferably 1-20, and particularly preferably 1-10.
  • acetic acid is contained, the compatibility with the cellulose ester is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanoic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • Examples of preferable alicyclic monocarboxylic acids include cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, or derivatives thereof.
  • aromatic monocarboxylic acids examples include those in which 1 to 3 alkoxy groups such as alkyl group, methoxy group or ethoxy group are introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, biphenylcarboxylic acid, Aromatic monocarboxylic acids having two or more benzene rings such as naphthalenecarboxylic acid and tetralincarboxylic acid, or derivatives thereof are included. Benzoic acid is particularly preferable.
  • the carboxylic acid constituting the ester of the polyhydric alcohol ester plasticizer may be one kind or a combination of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
  • the molecular weight of the polyhydric alcohol ester plasticizer is not particularly limited, but is preferably in the range of 300 to 1500, and more preferably in the range of 350 to 750. A higher molecular weight is preferred because it is less likely to volatilize, and a smaller one is preferred in terms of moisture permeability and compatibility with cellulose ester.
  • glycolate plasticizer is not particularly limited, but alkylphthalylalkyl glycolates are preferably used.
  • alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl Ethyl glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl Glycolate, butyl phthalyl propyl glycolate, methyl phthalyl
  • phthalate ester plasticizer examples include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, dicyclohexyl terephthalate and the like.
  • citrate plasticizer examples include acetyl trimethyl citrate, acetyl triethyl citrate, acetyl tributyl citrate and the like.
  • fatty acid ester plasticizer examples include butyl oleate, methylacetyl ricinoleate, dibutyl sebacate and the like.
  • phosphate ester plasticizer examples include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate and the like.
  • the polyvalent carboxylic acid ester plasticizer is an esterified product of a divalent or higher, preferably divalent to valent 20 polyvalent carboxylic acid and an alcohol.
  • the aliphatic polyvalent carboxylic acid is preferably divalent to 20-valent, and in the case of an aromatic polyvalent carboxylic acid or alicyclic polyvalent carboxylic acid, it is preferably trivalent to 20-valent.
  • the polyvalent carboxylic acid is represented by the following general formula (b).
  • Rb (COOH) m (OH) n
  • Rb represents an (m + n) -valent organic group
  • m represents a positive integer of 2 or more
  • n represents an integer of 0 or more
  • a COOH group represents a carboxy group
  • an OH group represents an alcoholic or phenolic hydroxy group.
  • preferable polyvalent carboxylic acids include trivalent or higher aromatic polyvalent carboxylic acids such as trimellitic acid, trimesic acid, and pyromellitic acid or derivatives thereof, succinic acid, adipic acid, azelaic acid, sebacic acid, sulphate Examples thereof include, but are not limited to, aliphatic polyvalent carboxylic acids such as acid, fumaric acid, maleic acid, and tetrahydrophthalic acid, and oxypolyvalent carboxylic acids such as tartaric acid, tartronic acid, malic acid, and citric acid.
  • use of an oxypolycarboxylic acid such as an
  • the alcohol constituting the ester of the polycarboxylic acid ester plasticizer may be a known alcohol or phenol and is not particularly limited.
  • it is an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms.
  • alicyclic alcohols such as cyclopentanol and cyclohexanol or derivatives thereof, aromatic alcohols such as benzyl alcohol and cinnamyl alcohol, or derivatives thereof can also be preferably used.
  • the alcohol constituting the ester of the polycarboxylic acid ester plasticizer may be one kind or a mixture of two or more kinds.
  • the alcoholic hydroxy group or phenolic hydroxy group of the oxypolycarboxylic acid may be esterified with a monocarboxylic acid.
  • the monocarboxylic acid is preferably an aliphatic monocarboxylic acid, but is not limited thereto.
  • the aliphatic monocarboxylic acid is preferably a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • Examples of preferable alicyclic monocarboxylic acids include cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenylcarboxylic acid, naphthalenecarboxylic acid, and tetralincarboxylic acid. Aromatic monocarboxylic acids possessed by them, or derivatives thereof.
  • the molecular weight of the polycarboxylic acid ester plasticizer is not particularly limited, but is preferably in the range of 300 to 1000, more preferably in the range of 350 to 750.
  • the larger one is preferable in terms of improving the retentivity of the plasticizer; the smaller one is preferable in terms of moisture permeability and compatibility with the cellulose ester.
  • the acid value of the polycarboxylic acid ester plasticizer is preferably 1 mgKOH / g or less, and more preferably 0.2 mgKOH / g or less. Setting the acid value in the above range is preferable because the environmental fluctuation of the retardation is also suppressed.
  • the acid value refers to the number of milligrams of potassium hydroxide necessary for neutralizing the acid (carboxy group present in the sample) contained in 1 g of the sample. The acid value is measured according to JIS K0070.
  • polycarboxylic acid ester plasticizer examples include triethyl citrate, tributyl citrate, acetyl triethyl citrate (ATEC), acetyl tributyl citrate (ATBC), benzoyl tributyl citrate, acetyl triphenyl citrate, Acetyl tribenzyl citrate, dibutyl tartrate, diacetyl dibutyl tartrate, tributyl trimellitic acid, tetrabutyl pyromellitic acid and the like can be mentioned, but not limited thereto.
  • polyester plasticizer is, for example, a polyester plasticizer having an aromatic ring or a cycloalkyl ring in the molecule.
  • the polyester plasticizer is, for example, an aromatic terminal ester plasticizer represented by the following general formula (c).
  • the polyester plasticizer represented by the general formula (c) includes a benzene monocarboxylic acid residue represented by B, an alkylene glycol residue, an oxyalkylene glycol residue or an aryl glycol residue represented by G, and an alkylene represented by A.
  • the polyester plasticizer can be obtained by the same reaction as a normal polyester plasticizer.
  • polyester plasticizers examples include benzoic acid, para-tert-butyl benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethyl benzoic acid, ethyl benzoic acid, normal propyl benzoic acid, aminobenzoic acid , Acetoxybenzoic acid, and the like, which may be one or a combination of two or more thereof.
  • alkylene glycol component having 2 to 12 carbon atoms of the polyester plasticizer examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3- Methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol,
  • Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the polyester plasticizer include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, and the like. It can be used as a mixture of seeds or more.
  • alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the polyester plasticizer examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid and the like. These are each used as a mixture of one or more.
  • arylene dicarboxylic acid component having 6 to 12 carbon atoms include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, and the like.
  • the number average molecular weight of the polyester plasticizer is preferably in the range of 300 to 1500, more preferably in the range of 400 to 1000.
  • the acid value is 0.5 mgKOH / g or less, the hydroxy group value is 25 mgKOH / g or less, more preferably the acid value is 0.3 mgKOH / g or less, and the hydroxy group value is 15 mgKOH / g or less.
  • the (meth) acrylic polymer as an acrylic plasticizer includes at least an ethylenically unsaturated monomer Xa having no aromatic ring and a hydroxy group in the molecule, and ethylene having a hydroxy group without an aromatic ring in the molecule. It may be a polymer X having a weight average molecular weight of 3000 or more and 30000 or less obtained by copolymerization with the unsaturated unsaturated monomer Xb.
  • the (meth) acrylic polymer as the acrylic plasticizer may be a polymer Y having a weight average molecular weight of 500 or more and 3000 or less obtained by polymerizing an ethylenically unsaturated monomer Ya having no aromatic ring. .
  • the polymer X is preferably represented by the following general formula (X), and the polymer Y is preferably represented by the following general formula (Y).
  • Rc, Re, and Rg represent H or a methyl group.
  • Rd represents an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group.
  • Rf, and Rh represents a CH 2, C 2 H 4 or C 3 H 6.
  • Ry represents a hydroxy group, H or an alkyl group having 3 or less carbon atoms.
  • Xc represents a monomer unit that can be polymerized to Xa and Xb.
  • Yb represents a monomer unit copolymerizable with Ya.
  • the amount of these plasticizers to be added is preferably in the range of 0.5 to 30% by mass, particularly preferably in the range of 5 to 20% by mass with respect to the cellulose ester.
  • the optical film of the present invention contains a cellulose ester-based resin, but may contain other resins.
  • other resins include cellulose ether resins, polycarbonate resins, polystyrene resins, polysulfone resins, polyester resins, polyarylate resins, acrylic resins, olefin resins (norbornene resins, cyclic olefins). Resin, cyclic conjugated diene resin, vinyl alicyclic hydrocarbon resin, etc.).
  • Preferred examples of other resins include polycarbonate resins, acrylic resins, and cyclic olefin resins. When other resins are used, the content thereof is preferably in the range of 5 to 70% by mass of the optical film.
  • the optical film of the present invention may contain an ultraviolet absorber, and may contain two or more ultraviolet absorbers.
  • the ultraviolet absorber is intended to improve durability by absorbing ultraviolet light having a wavelength of 400 nm or less, and the transmittance at a wavelength of 370 nm is particularly preferably 10% or less, more preferably 5% or less. Preferably it is 2% or less.
  • the ultraviolet absorber is not particularly limited, and examples thereof include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders, and the like. .
  • ultraviolet absorbers include 5-chloro-2- (3,5-di-sec-butyl-2-hydroxylphenyl) -2H-benzotriazole, (2-2H-benzotriazol-2-yl)- 6- (Linear and side chain dodecyl) -4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone and the like are included.
  • tinuvins such as tinuvin 109, tinuvin 171, tinuvin 234, tinuvin 326, tinuvin 327, tinuvin 328, and tinuvin 928, which are commercially available from BASF Japan and can be preferably used.
  • the UV absorber is a benzotriazole-based UV absorber, a benzophenone-based UV absorber, or a triazine-based UV absorber, and particularly preferably a benzotriazole-based UV absorber or a benzophenone-based UV absorber.
  • a discotic compound such as a compound having a 1,3,5-triazine ring is also preferable as the ultraviolet absorber.
  • the UV absorber may be a polymer UV absorber; in particular, the polymer type UV absorber described in JP-A-6-148430 is preferred.
  • Addition of the UV absorber is performed by dissolving the UV absorber in an alcohol such as methanol, ethanol, butanol, an organic solvent such as methylene chloride, methyl acetate, acetone, dioxolane, or a mixed solvent thereof, or You may add directly in dope composition.
  • dissolve in an organic solvent like an inorganic powder uses a dissolver and a sand mill in an organic solvent and a cellulose ester, and is added to dope after dispersing.
  • the content of the ultraviolet absorber in the optical film is preferably in the range of 0.5 to 10% by mass, more preferably in the range of 0.6 to 4% by mass when the dry film thickness of the optical film is 30 to 200 ⁇ m. preferable. However, it is adjusted according to the type of UV absorber, usage conditions, and the like.
  • Antioxidants are also referred to as deterioration inhibitors.
  • the optical film When a liquid crystal image display device or the like is placed in a high humidity and high temperature state, the optical film may be deteriorated.
  • the antioxidant delays or suppresses the decomposition of the optical film due to, for example, halogen in the residual solvent amount in the optical film, phosphoric acid of the phosphoric acid plasticizer, or the like.
  • the antioxidant is preferably a hindered phenol compound, for example.
  • hindered phenol compounds include 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate].
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred.
  • Antioxidants include hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine, tris (2,4- A phosphorus processing stabilizer such as di-t-butylphenyl) phosphite may be used in combination.
  • hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine, tris (2,4- A phosphorus processing stabilizer such as di-t-butylphenyl) phosphite may be used in combination.
  • the addition amount of the antioxidant in the optical film of the present invention is preferably in the range of 1 ppm to 1.0% by mass ratio with respect to the cellulose ester, and more preferably in the range of 10 to 1000 ppm.
  • the optical film of the present invention may contain fine particles in order to improve slipperiness.
  • the dynamic friction coefficient of one surface of the optical film of the present invention is preferably in the range of 0.2 to 1.0.
  • the fine particles may be inorganic fine particles or organic fine particles.
  • inorganic fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate And calcium phosphate.
  • organic fine particles include polytetrafluoroethylene, cellulose acetate, polystyrene, polymethyl methacrylate, polypropyl methacrylate, polymethyl acrylate, polyethylene carbonate, acrylic styrene resin, silicone resin, polycarbonate resin, benzoguanamine resin, melamine
  • a polymer compound synthesized by a suspension polymerization method, a polymer compound made spherical by a spray drying method or a dispersion method, or an inorganic compound can also be used as fine particles.
  • fine particles containing silicon are preferable, and silicon dioxide is particularly preferable. This is to reduce the turbidity of the optical film.
  • the average primary particle size of the fine particles is preferably in the range of 5 to 400 nm, more preferably in the range of 10 to 300 nm.
  • the fine particles may be mainly contained as secondary aggregates having a particle size in the range of 0.05 to 0.3 ⁇ m. If the average particle size of the primary particles of the fine particles is in the range of 100 to 400 nm, it is also preferable that they are contained in the optical film as primary particles without agglomeration.
  • the content of fine particles in the optical film is preferably within a range of 0.01 to 1% by mass, and particularly preferably within a range of 0.05 to 0.5% by mass. In the case of an optical film having a multilayer structure formed by a co-casting method, it is preferable that fine particles of this addition amount are disposed on the film surface.
  • Silicon dioxide fine particles are commercially available, for example, under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.).
  • Zirconium oxide fine particles are commercially available, for example, under the trade names Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.).
  • organic fine particles examples include silicone resin, fluororesin, and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name.
  • Aerosil 200V and Aerosil R972V are particularly preferred because they have a large effect of reducing the friction coefficient while keeping the turbidity of the optical film low.
  • Arbitrary components may be batch-added to a dope that is a cellulose ester-containing solution before film formation, or an additive solution may be separately prepared and added in-line. In particular, it is preferable to add a part or all of the fine particles in-line in order to reduce the load on the filter medium.
  • the additive solution When the additive solution is added in-line, it is preferable to add a small amount of cellulose ester to the additive solution in order to improve mixing with the dope.
  • the amount of the cellulose ester in the additive solution is preferably in the range of 1 to 10 parts by mass, more preferably in the range of 3 to 5 parts by mass with respect to 100 parts by mass of the solvent.
  • the in-line addition and mixing are preferably performed using an in-line mixer such as a static mixer (manufactured by Toray Engineering) or SWJ (Toray static type in-pipe mixer Hi-Mixer).
  • a static mixer manufactured by Toray Engineering
  • SWJ Toray static type in-pipe mixer Hi-Mixer
  • the manufacturing method of the optical film of this invention is demonstrated.
  • the optical film according to the present invention can be produced by either a solution casting method or a melt casting method.
  • the production of the optical film of the present invention comprises a step of dissolving a cellulose ester and an additive in a solvent to prepare a dope, a step of casting the dope onto an endless metal support that moves indefinitely, a web of the cast dope As a step of drying, a step of peeling from a metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.
  • Dope preparation process The process for preparing the dope will be described.
  • a high concentration of cellulose ester in the dope is preferable because a drying load after casting on a metal support is reduced.
  • the concentration of the cellulose ester in the dope is preferably in the range of 10 to 35% by mass, and more preferably in the range of 15 to 25% by mass.
  • the dope solvent is a single solvent or a mixed solvent of two or more, but a mixed solvent of a good solvent and a poor solvent of cellulose ester is preferable in terms of production efficiency.
  • the more good solvent is preferable in terms of the solubility of the cellulose ester.
  • the preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent. Those that dissolve the cellulose ester used alone are defined as good solvents, and those that swell or do not dissolve alone are defined as poor solvents. Therefore, depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester, the types of good solvent and poor solvent change.
  • acetone is a good solvent for cellulose acetate ester (acetyl group substitution degree 2.4) and cellulose acetate propionate, and is a poor solvent for cellulose acetate ester (acetyl group substitution degree 2.8).
  • good solvents include, but are not limited to, organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred is methylene chloride or methyl acetate.
  • the poor solvent examples include methanol, ethanol, n-butanol, cyclohexane, cyclohexanone, and the like, but are not particularly limited.
  • the water content in the dope is preferably in the range of 0.01 to 2% by mass.
  • the dope solvent is removed and recovered from the film by drying in the film-forming process.
  • the recovered solvent can be reused.
  • additives such as plasticizers, UV absorbers, polymers, monomer components, etc. in the recovered solvent, but even if these are included, they can be reused and are necessary. It can be purified and reused.
  • a general method can be used for dissolving the cellulose ester in the preparation of the dope. If heated while applying pressure, it can be heated to a temperature equal to or higher than the boiling point at normal pressure. When the solution is stirred and dissolved at a temperature that is equal to or higher than the boiling point of the solvent at normal pressure and the solvent does not boil under pressure, the generation of massive undissolved materials called gels and maco can be prevented. Further, it is also preferable that after mixing the cellulose ester with a poor solvent to wet or swell, a good solvent is further added and dissolved.
  • Pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or a method of developing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside, while a jacket type heater, for example, is preferable because of easy temperature control.
  • a higher heating temperature is preferable because the solubility of the cellulose ester is improved.
  • the preferred heating temperature is 45 to 120 ° C, more preferably 60 to 110 ° C, and still more preferably in the range of 70 ° C to 105 ° C. The pressure is adjusted so that the solvent does not boil at the set temperature.
  • a cooling dissolution method is also preferably used.
  • the cellulose ester can be dissolved in a solvent such as methyl acetate by a cooling dissolution method.
  • the cellulose ester solution is filtered using an appropriate filter medium such as filter paper.
  • the absolute filtration accuracy of the filter medium is preferably small in order to remove insoluble matters and the like. However, if the absolute filtration accuracy is too small, the filter medium is likely to be clogged. Therefore, a filter medium having an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium in the range of 0.001 to 0.008 mm is more preferable, and a filter medium in the range of 0.003 to 0.006 mm is more preferable.
  • the material of the filter medium is not particularly limited, and a normal filter medium can be used.
  • Plastic filter media such as polypropylene and Teflon (registered trademark) and metal filter media such as stainless steel are preferred because they do not drop off fibers. It is preferable to remove and reduce impurities, particularly bright spot foreign matters, contained in the raw material cellulose ester by filtration.
  • a bright spot foreign object is when two polarizing plates are placed in a crossed Nicols state, an optical film is placed between them, and light is applied from one polarizing plate side, and observed from the other polarizing plate side. It is a point (foreign matter) where light from the opposite side appears to leak.
  • the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less, more preferably 100 / cm 2 or less, still more preferably 50 / cm 2 or less, and still more preferably. 0 to 10 pieces / cm 2 or less. Further, it is preferable that the number of bright spots of 0.01 mm or less is small.
  • Filtration of the cellulose ester solution can be performed by a usual method. Filtration at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil under pressure is preferable because the difference in filtration pressure before and after filtration (referred to as differential pressure) is small.
  • a preferred temperature is 45 to 120 ° C., more preferably 45 to 70 ° C., and even more preferably within a range of 45 to 55 ° C.
  • the pressure in the filtration environment is preferably small, preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.
  • the dope is cast.
  • the surface of the metal support in the casting (casting) process is preferably mirror-finished.
  • the metal support is preferably a stainless steel belt or a drum whose surface is plated with a casting.
  • the width of the cast can be in the range of 1 to 4 m.
  • the surface temperature of the metal support in the casting process can be set at a temperature between ⁇ 50 ° C. and less than the boiling point of the solvent. A higher surface temperature of the metal support is preferable because the web drying speed can be increased. On the other hand, if the surface temperature of the metal support is too high, the web may foam or the flatness may deteriorate.
  • the support temperature is preferably in the range of 0 to 40 ° C, more preferably in the range of 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not limited, but there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When warm air is used, wind at a temperature higher than the target temperature may be used.
  • the amount of residual solvent in the web when peeled from the metal support is preferably in the range of 10 to 150% by mass, more preferably in the range of 20 to 40% by mass or 60%. Is in the range of 20 to 30% by weight or in the range of 70 to 120% by weight.
  • the amount of residual solvent is defined by the following formula.
  • M is the mass of the web or film taken at any time during or after production.
  • N is the mass after heating the web or film at 115 ° C. for 1 hour.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 (Stretching process)
  • the web peeled from the metal support is preferably stretched. Specifically, the web is preferably stretched in the width direction (lateral direction) by a tenter method in which both ends of the web are gripped by clips or the like.
  • the peel tension is preferably 300 N / m or less.
  • refractive index control (retardation control) by stretching the web peeled from the metal support.
  • Stretching can be, for example, uniaxially stretched in the longitudinal direction (film forming direction) of the film or in the direction perpendicular to the film plane (that is, the width direction), or biaxially stretched in both directions sequentially or simultaneously.
  • Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension.
  • the draw ratios in the biaxial directions perpendicular to each other are preferably finally in the range of 0.8 to 1.5 times in the casting direction and in the range of 1.1 to 2.5 times in the width direction; A range of 0.9 to 1.0 times in the casting direction and a range of 1.2 to 2.0 times in the width direction are preferable.
  • the stretching temperature is preferably in the range of 120 ° C to 200 ° C, more preferably in the range of 140 ° C to 180 ° C.
  • the residual solvent in the film at the time of stretching is preferably in the range of 20 to 0%, more preferably in the range of 15 to 0%.
  • the method for stretching the web is not particularly limited.
  • a method of stretching in the vertical direction a method of stretching in the horizontal direction and stretching in the horizontal direction, a method of stretching in the vertical and horizontal directions and stretching in both the vertical and horizontal directions, and the like.
  • tenter method when the clip portion is driven by the linear drive method, smooth stretching can be performed, and the risk of breakage and the like can be reduced.
  • a tenter it may be a pin tenter or a clip tenter.
  • the stretched film is further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, and particularly preferably 0.01% by mass or less.
  • a roller drying method a method in which webs are alternately passed through a plurality of rollers arranged above and below
  • a method of drying while transporting the web by a tenter method are adopted.
  • the means for drying the stretched film is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roller, a microwave, or the like, but is preferably performed with hot air from the viewpoint of simplicity.
  • the drying temperature in the web drying step is preferably increased stepwise in the range of 40 to 200 ° C.
  • the film thickness of the optical film of the present invention is not particularly limited, but is preferably in the range of 10 to 200 ⁇ m, more preferably in the range of 10 to 100 ⁇ m, and still more preferably in the range of 20 to 60 ⁇ m. If it is this range, since the improvement of the moisture permeability depending on the film thickness of a film and the expression property of retardation can be compatible, it is preferable. Moreover, the slitting characteristic of the optical film having a film thickness in this range is improved.
  • the width of the optical film of the present invention is preferably in the range of 1 to 4 m, more preferably in the range of 1.4 to 4 m, and particularly preferably in the range of 1.6 to 3 m. If it exceeds 4 m, conveyance becomes difficult.
  • the moisture permeability of the optical film of the present invention is preferably in the range of 10 to 1200 g / m 2 ⁇ 24 h at 40 ° C. and 90% RH.
  • the moisture permeability can be measured according to the method described in JIS Z 0208: 1976.
  • the breaking elongation of the optical film of the present invention is preferably in the range of 10 to 80%.
  • the elongation at break can be determined by measurement according to JIS-K7127-1999.
  • the visible light transmittance of the optical film of the present invention is preferably 90% or more, and more preferably 93% or more.
  • a visible light transmittance (Tv) at 380 to 780 nm was measured using a U-4000 self-recording spectrophotometer manufactured by Hitachi, Ltd. according to the method measured by JIS Z 8722.
  • the haze of the optical film of the present invention is preferably less than 1%, particularly preferably in the range of 0 to 0.1%. Measurement is performed using a haze meter (1001DP type, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the wet heat resistance of the optical film of the present invention can be evaluated by dimensional change with respect to humidity change. Evaluation of the dimensional change with respect to the heat and humidity change is performed by the following method. Two marks (crosses) are provided in the casting direction of the produced optical film. This is treated at a temperature of 60 ° C. and a relative humidity of 90% RH for 1000 hours. The distance between the marks (crosses) before and after treatment is measured with an optical microscope. The dimensional change rate (%) is calculated by the following formula.
  • the dimensional change rate (%) [(a1-a2) / a1] ⁇ 100 a1: Distance before wet heat treatment a2: Distance after wet heat treatment
  • the dimensional change rate (%) is preferably less than 0.5%, more preferably less than 0.3%. preferable. If it is such a dimensional change rate, it can be evaluated that it is an optical film which shows sufficient low hygroscopicity.
  • a liquid crystal layer or a resin layer may be applied and formed on the optical film of the present invention, and further stretched.
  • the resulting laminated film can have retardation values over a wider range.
  • the optical film of the present invention is preferably a functional film used for various display devices such as a liquid crystal display, a plasma display, and an organic EL display.
  • the optical film of the present invention is a polarizing plate protective film for liquid crystal display devices, a retardation film, an antireflection film, a brightness enhancement film, a hard coat film, an antiglare film, an antistatic film, an enlarged viewing angle, etc. Or an optical compensation film.
  • the optical film of the present invention is a polarizing plate protective film, a retardation film, or an optical compensation film.
  • the optical film of the present invention can serve as both a retardation film and a polarizing plate protective film.
  • optical compensation film Since liquid crystal displays use anisotropic liquid crystal materials and polarizing plates, there is a problem of viewing angle that even when good display is obtained when viewed from the front, display performance is degraded when viewed from an oblique direction. . Therefore, a viewing angle compensator is necessary to improve the performance of the liquid crystal display.
  • the average refractive index distribution of the liquid crystal cell is larger in the cell thickness direction and smaller in the in-plane direction. Therefore, the viewing angle compensator must cancel this anisotropy. In other words, it is effective that the viewing angle compensation plate has a refractive index smaller than that in the in-plane direction, that is, a so-called negative uniaxial structure.
  • the optical film of the present invention can be an optical compensation film having such a function.
  • optical film of the present invention When the optical film of the present invention is used for a VA mode liquid crystal cell, a total of two optical films may be used, one on each side of the cell (two-sheet type), or one of the upper and lower sides of the cell. An optical film may be used only on the side (single sheet type).
  • the retardation value Ro in the in-plane direction represented by the following formula is preferably in the range of 20 to 150 nm at a measurement wavelength of 590 nm in an environment of 23 ° C. and 55% RH. More preferably within the range of 40 nm to 130 nm.
  • the retardation value Rth value in the thickness direction is preferably in the range of 70 to 350 nm and more preferably in the range of 170 nm to 270 nm at a measurement wavelength of 590 nm in an environment of 23 ° C. and 55% RH.
  • These retardation values can be measured using an automatic birefringence meter KOBRA-WPR (Oji Scientific Instruments).
  • the optical film of the present invention has a slow axis or a fast axis in the film plane, and the angle “ ⁇ 1” formed by the slow axis or the fast axis and the film forming direction axis is ⁇ 1 ° or more and + 1 °.
  • ⁇ 1 can be defined as an orientation angle, and the measurement of ⁇ 1 can be performed using an automatic birefringence meter KOBRA-WPR (Oji Scientific Instruments).
  • An optical film in which ⁇ 1 satisfies the above relationship increases the brightness of a display image of a liquid crystal display device including the same, suppresses or prevents light leakage, and faithfully reproduces color in a color liquid crystal display device.
  • the optical film of this invention can be used for a polarizing plate and a liquid crystal display device provided with the same.
  • the optical film of the present invention is preferably a film that doubles as a polarizing plate protective film and a retardation film. In that case, it is not necessary to prepare a retardation film separate from the polarizing plate protective film. Therefore, the thickness of the liquid crystal display device can be reduced and the manufacturing process can be simplified.
  • the polarizing plate has a polarizer and a polarizing plate protective film bonded to one or both surfaces of the polarizer.
  • a polarizer is an element that allows only light of a plane of polarization in a certain direction to pass through.
  • a typical polarizer is a polyvinyl alcohol polarizing film, which is dichroic with a polyvinyl alcohol film dyed with iodine. There are dyed dyes.
  • the polarizer is obtained by forming a polyvinyl alcohol aqueous solution into a film and dyeing it by uniaxial stretching or dyeing or uniaxially stretching the dye, and then preferably performing a durability treatment with a boron compound.
  • the thickness of the polarizer is preferably in the range of 5 to 30 ⁇ m, particularly preferably in the range of 10 to 20 ⁇ m.
  • the polarizing plate of the present invention can be produced by a general method.
  • the surface of the optical film of the present invention attached to the polarizer is subjected to alkali saponification treatment.
  • the optical film of the present invention is bonded to at least one surface of a polarizer produced by immersing and stretching in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution.
  • Another conventional polarizing plate protective film may be bonded to the other surface of the polarizer.
  • Examples of conventional polarizing plate protective films include commercially available cellulose ester films (for example, Konica Minoltack KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC6UY, KC4UY, KC4UE, KC8UE-HA-C KC8UXW-RHA-C, KC8UXW-RHA-NC, KC4UXW-RHA-NC, and the like manufactured by Konica Minolta Advanced Layer Co., Ltd.).
  • the liquid crystal display device of the present invention includes a polarizing plate including the optical film of the present invention. Specifically, the optical film of the present invention is included in the polarizing plate disposed in at least one of the liquid crystal cells; the film on the liquid crystal cell side of the polarizing plate is the optical film of the present invention.
  • a polarizing plate is bonded to one or both surfaces of the liquid crystal cell via an adhesive layer.
  • the polarizing plate protective film used on the surface side of the liquid crystal display device of the present invention preferably has an antireflection layer, an antistatic layer, an antifouling layer, and a backcoat layer in addition to the antiglare layer or the clear hard coat layer. .
  • the optical film and polarizing plate of the present invention can be used for liquid crystal display devices of various drive systems such as STN, TN, OCB, HAN, VA (MVA, PVA), IPS, OCB.
  • it is preferably used for a VA (MVA, PVA) type liquid crystal display device.
  • VA MVA, PVA
  • the liquid crystal display device of the present invention is excellent in various visibility.
  • Example 1 The detail of the cellulose ester used in Example 1 is shown.
  • Cellulose ester A Cellulose diacetate having a number average molecular weight of 70,000 having an acetyl group substitution degree of 2.40 (denoted as DAC in the table)
  • Cellulose ester B cellulose acetate propionate having a number average molecular weight of 70,000 having an acetyl group substitution degree of 1.58, a propionyl group substitution degree of 0.9, and a total acyl group substitution degree of 2.48 (denoted as CAP in the table)
  • Cellulose ester C Cellulose triacetate having a number average molecular weight of 70,000 having an acetyl group substitution degree of 2.85 (described as TAC in the table)
  • TAC Preparation of optical film 101>
  • a main dope having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose ester A was added to a pressurized dissolution tank containing a solvent while stirring, and this was heated and completely dissolved while stirring.
  • composition of main dope Methylene chloride 340 parts by weight Ethanol 60 parts by weight Cellulose ester A 100 parts by weight Retardation developer: Exemplified compound A-034 3 parts by weight Sugar ester The following compounds 5 parts by weight Fine particle additive liquid 1 1 part by weight
  • the above additive components were put into a sealed container, dissolved while stirring, and this was added to Azumi filter paper No. 1 manufactured by Azumi Filter Paper Co., Ltd.
  • the main dope was prepared by filtration using 244.
  • the dope was cast uniformly on a stainless steel belt support at a temperature of 31 ° C. and a width of 1500 mm.
  • the temperature of the stainless steel belt was controlled at 28 ° C.
  • the solvent was evaporated until the amount of residual solvent in the cast film was 75%. Subsequently, it peeled from the stainless steel belt support body with the peeling tension of 128 N / m. The peeled film was stretched 24% in the width direction using a tenter while applying heat at 142 ° C. The residual solvent at the start of stretching was 17%.
  • drying was completed while the drying zone was conveyed by a number of rollers.
  • the drying temperature was 120 ° C. and the transport tension was 122 N / m.
  • an optical film 101 having a dry film thickness of 40 ⁇ m was obtained.
  • the average refractive index of the optical film was measured using an Abbe refractometer (4T). Moreover, the thickness of the optical film was measured using a commercially available micrometer.
  • Retardation of an optical film at a wavelength of 590 nm in an optical film left for 24 hours in an environment of 23 ° C. and 55% RH using an automatic birefringence meter KOBRA-WPR (manufactured by Oji Scientific Instruments) was measured.
  • the average refractive index and the film thickness were input into the following formula, and the retardation value Ro in the in-plane direction and the retardation value Rth in the thickness direction were determined.
  • the direction of the slow axis was also measured at the same time.
  • n x is the maximum refractive index in the film plane
  • n y is a refractive index of n x direction orthogonal
  • n z is the film thickness direction of the refractive index
  • d represents the thickness of the film (nm).
  • Haze meter (turbidity meter) (model: NDH 2000, manufactured by Nippon Denshoku Industries Co., Ltd.) A 5V9W halogen bulb was used as the light source, and a silicon photocell (with a relative visibility filter) was used as the light receiving unit.
  • the cellulose acetate film of the present invention preferably has a value of 0.05 or less in the haze measurement of the film when a solvent having a refractive index of ⁇ 0.05 is dropped onto the film with this apparatus.
  • the measurement conditions were measured according to JIS K-7136.
  • the blank haze 1 of a measuring instrument other than the film is measured.
  • the haze 2 including the sample is measured according to the following procedure.
  • a sample film to be measured is placed thereon so that air bubbles do not enter (see FIG. 2).
  • a cover glass is placed thereon (see FIG. 4).
  • the glass and glycerin used in the above measurement are as follows.
  • Dimensional change rate (%) [(a1-a2) / a1] ⁇ 100 (a1 represents a distance before wet heat treatment, a2 represents a distance after wet heat treatment) A: Less than 0.3% B: 0.3% or more, less than 0.5% C: 0.5% or more, less than 0.7% D: 0.7% or more (Compatibility evaluation)
  • the film before stretching in the production of the optical film was dried at 120 ° C. for 15 minutes, and the haze of the film was measured using a haze meter (1001DP type, manufactured by Nippon Denshoku Industries Co., Ltd.). From the measurement results, evaluation was performed according to the following criteria. Evaluation A and B were judged to be a level which is satisfactory practically.
  • the haze of the produced optical film was measured using a haze meter (1001DP type, manufactured by Nippon Denshoku Industries Co., Ltd.). From the measurement results, evaluation was performed according to the following criteria. Evaluations A and B were judged to be at a level where there was no practical problem.
  • the optical films 101 to 136 of the examples are more excellent in retardation development than the optical films 137 to 148 of the comparative examples, and have internal haze and compatibility (haze). And, durability (bleed out resistance) is good, and it can be seen that the optical film is practically excellent.
  • the optical film 139 using the comparative compound C-006 had an internal haze and retardation value because the compound was deposited in the step of evaporating the solvent until the amount of residual solvent in the film reached 75% during the production of the optical film. could not be measured.
  • the optical film containing the retardation enhancer of the present invention exhibits a large retardation, and the cellulose ester even when the amount of the retardation enhancer is increased. It is understood that this is an excellent optical film having a low internal haze and a high retardation value.
  • Example 2 Using the main dope used in the production of the optical film 104 of Example 1, the dope flow rate during casting was changed to produce optical films 201 to 206 having the film thicknesses shown in Table 2. It was produced in the same manner as in Example 1 except for the dope flow rate at the time of casting.
  • the optical films 201 to 206 were evaluated for retardation, suitability for slitting, and bleed-out resistance, and are shown in Table 3. At that time, the optical film 137 produced in Example 1 was added as a comparative example.
  • the brittleness was evaluated by the following evaluation method.
  • the defect rate is less than 2%
  • the defect rate is less than 2-5%
  • the defect rate is less than 5-10%
  • the defect rate is 10% or more
  • the optical films 201 to 206 of the examples are excellent in retardation development, and are excellent in brittleness (slitting suitability) and durability (bleedout resistance). Furthermore, it can be seen that the optical films 202 to 205 having a film thickness in the range of 20 to 60 ⁇ m are particularly effective.
  • the optical film 137 of the comparative example has a film thickness of 40 ⁇ m, but both brittleness (slitting suitability) and durability (bleedout resistance) were inferior.
  • Example 3 ⁇ Production and evaluation of polarizing plate> A 120 ⁇ m-thick polyvinyl alcohol film was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). The obtained stretched film was immersed in an aqueous solution composed of 0.069 g of iodine, 4.5 g of potassium iodide and 100 g of water for 52 seconds, and then 60 ° C. composed of 6.5 g of potassium iodide, 7.0 g of boric acid and 100 g of water. Soaked in an aqueous solution. This was washed with water and dried to obtain a polarizer.
  • optical films 101 to 148 and optical films 201 to 206 are bonded to one surface of the polarizer; and Konica Minolta Tack KC4UY (Konica Minolta Advanced) is bonded to the other surface of the polarizer.
  • Layered cellulose ester films) were laminated to produce polarizing plates 101 to 147 and polarizing plates 201 to 206.
  • Step 1 Optical films 101 to 148 and optical films 201 to 206 are immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 95 seconds, then washed with water and dried to saponify the side to be bonded to the polarizer. An optical film was obtained.
  • Step 2 The polarizer was immersed for 1 to 2 seconds in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass, and then excess adhesive adhered to the polarizer was gently wiped off.
  • Step 3 The polarizer obtained in Step 2 was placed on the optical film treated in Step 1.
  • Step 4 The optical film and the polarizer in the laminate obtained in Step 3 were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.
  • Step 5 The laminate polarizer prepared in Step 4 and a Konica Minoltack KC4UY were bonded to each other in a dryer at 80 ° C. and dried for 2 minutes to prepare Polarizing Plates 101 to 148 and Polarizing Plates 201 to 206. .
  • the parallel transmittance (H0) and the direct transmittance (H90) of the sample that had not been subjected to forced deterioration were measured. From the measured value, the polarization degree P0 was calculated according to the following formula. Thereafter, each polarizing plate was subjected to forced deterioration treatment under the conditions of a sunshine weather meter for 500 hours and no UV cut filter. Thereafter, the parallel transmittance (H0 ′) and the direct transmittance (H90 ′) were measured again. From the measured value, the polarization degree P500 after the forced deterioration treatment was calculated according to the following formula.
  • Polarization degree P0 [(H0 ⁇ H90) / (H0 + H90)] 1/2 ⁇ 100
  • Polarization degree P500 [(H0′ ⁇ H90 ′) / (H0 ′ + H90 ′)] 1/2 ⁇ 100 From the calculated degree of polarization P0 and the degree of polarization P500, the amount of change in the degree of polarization was calculated according to the following formula.
  • Polarization degree change P0 ⁇ P500
  • the light resistance was evaluated based on the following criteria for the obtained degree of polarization change. Evaluations A and B were judged to be at a level where there was no practical problem.
  • Two polarizing plates of 500 mm ⁇ 500 mm were prepared. Each was heat-treated (conditions: left at 70 ° C. and 90% RH for 100 hours). Two polarizing plates were laminated so as to be in a crossed Nicols state. When light was irradiated from one surface of the laminated body, the length of the white portion generated at the edge portion of the other surface was measured.
  • the white spot portion to be measured is the longest white spot portion among a plurality of white spot portions generated near the center of each of the four edge portions of the polarizing plate.
  • the white spots that occur at the edge means that light passes through the edge of the polarizing plate that does not transmit light in the crossed Nicols state, and this is the cause of the failure that the image is not displayed at the edge of the polarizing plate. Become.
  • the ratio of the measured white spot length to the length of one side of the polarizing plate (500 mm) was calculated. From the ratio, it was determined that evaluations A and B, which were evaluated for moisture and heat resistance based on the following criteria, were practically acceptable levels.
  • Edge whiteness is less than 5% (a level that is not a problem as a polarizing plate)
  • the polarizing plates 101 to 136 and the polarizing plates 201 to 206 of the examples were excellent in practical use because they had better light resistance and moisture and heat resistance than the comparative polarizing plates 137 to 148. It is a polarizing plate. From the comparison with the results of the polarizing plates 137 to 145 using the comparative compounds C-001 to C-007, the objective of the present invention is achieved by the fact that the retardation developer compound has a specific structure and substituent. You can see that
  • the retardation of the optical film containing the retardation developer of the present invention is large, and even when the amount of addition of the retardation developer is increased, the retardation developer is a cellulose ester. Compatible with. Therefore, the polarizing plates 101 to 136 of the present invention are practically excellent polarizing plates.
  • Example 4 Provide and evaluation of liquid crystal display device> A liquid crystal panel for viewing angle measurement was produced as follows, and the characteristics of the liquid crystal display device were evaluated.
  • the polarizing plates on both sides bonded to the liquid crystal cell were peeled off. Instead, the produced polarizing plates 101 to 148 and polarizing plates 201 to 206 were bonded to both surfaces of the glass surface of the liquid crystal cell, respectively.
  • the polarizing plate is bonded so that the optical films of Examples and Comparative Examples are on the liquid crystal cell side, and the direction of the absorption axis of the polarizing plate to be bonded is the direction of the absorption axis of the polarizing plate previously bonded. I went to be the same. In this manner, liquid crystal display devices 101 to 148 and liquid crystal display devices 201 to 206 were produced.
  • A Variation with front contrast of 0 to less than 5% and small variation B: Variation with front contrast of less than 5 to 10% and slight variation C: Variation with front contrast of 10% or more, Unevenness (viewing angle degradation)
  • the viewing angle of the liquid crystal display device was measured to confirm that the change during the measurement was a reversible fluctuation.
  • the viewing angle was measured by turning on a white display screen and a black display screen on a liquid crystal display device, and using an EZ-Contrast 160D manufactured by ELDIM, an angle at which a contrast of 10: 1 can be maintained was defined as a viewing angle.
  • the polarizing plates 101 to 136 of the examples, the liquid crystal display devices 101 to 136 including the polarizing plates 201 to 206, and the liquid crystal display devices 201 to 206 are the polarizing plates of the comparative examples.
  • the front contrast unevenness is good, and the viewing angle variation is small even under conditions where the humidity varies.
  • the liquid crystal display device is extremely stable and excellent in durability.
  • the optical film of the present invention has high retardation expression, bleed-out is suppressed, internal haze is low, excellent in brittleness, and in addition, it is an optical film having high light resistance and high humidity and heat resistance. It is preferably used as an optical film of a liquid crystal display device, particularly a polarizing plate protective film having an optical compensation function. Thereby, the front contrast unevenness of the liquid crystal display device can be suppressed and the viewing angle can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明の課題は、高いリターデーション発現性を有し、ブリードアウトが抑制され、かつ内部ヘイズの低い光学フィルムを提供することである。更には、当該光学フィルムが具備され、良好な耐光性と耐湿熱性とを有する偏光板、及び正面コントラストのムラや視野角の湿度依存性が低減された液晶表示装置を提供することである。 本発明の光学フィルムは、セルロースエステルを含有する光学フィルムであって、分子量が280~380の範囲内にある下記一般式(1)で表される化合物を含有することを特徴とする。 

Description

光学フィルム、偏光板及び液晶表示装置
 本発明は、光学フィルム、偏光板及び液晶表示装置に関する。より詳しくは、セルロースエステルを含有する光学フィルム、該光学フィルムが具備された偏光板及び液晶表示装置に関する。
 セルロースエステル、ポリカーボネート、ポリオレフィン等の樹脂フィルムは、光学フィルム、主に液晶表示装置用光学補償フィルムに用いられている。その中でも、セルロースエステルを含有する光学フィルム(セルロースエステルフィルム)は、偏光子として用いられるポリビニルアルコールフィルムへの貼合性が優れていることから広く用いられている。セルロースエステルフィルムそのものは、光学補償フィルムに必須な複屈折性が十分ではないため、セルロースエステルフィルムに複屈折性を付与するさまざまな検討がなされてきている。
 近年、薄型軽量ノートパソコンや、薄型大画面のTVの開発が進み、それに伴って液晶表示装置用光学補償フィルムもますます薄膜化、大型化、高性能化への要求が強くなってきている。セルロースエステルフィルムの湿度耐久性はフィルムの膜厚に依存しており、フィルム膜厚を薄くすることで改善される。その反面、フィルムの膜厚を薄くするとリターデーション値が小さくなる。そのため、リターデーション上昇能が高い添加剤(リターデーション発現剤)が求められる。
 リターデーション上昇能が高い化合物として、例えば1,3,5-トリアジン系化合物が提案されている(例えば、特許文献1参照。)。しかしながら、当該化合物を含む薄膜化された光学補償フィルムを用いて作製した偏光板及びそれを用いた液晶表示装置は、耐光性や耐湿熱性などの耐久性が劣るという問題が判明した。更に高温、高湿下で正面コントラストムラや視野角劣化の問題も見られた。また、当該化合物を添加するとフィルムの脆性が劣化しスリッティング特性に問題があった。
 一方、紫外線吸収剤として、ベンゾオキサジノン化合物を高分子材料に添加する技術が開示されている(例えば、特許文献2、特許文献3、特許文献4参照。)。しかしながら、セルロースエステルを含有する光学フィルムに、当該化合物を添加して光学フィルムを作製した場合、リターデーション値の発現性が低く、ブリードアウトが生じるという問題があった。
 また、ベンゾオキサジノン化合物を紫外線吸収剤として、セルロースエステルを含有する光学フィルムに添加する技術が開示されている(例えば、特許文献5参照。)。しかしながら、セルロースエステルを含む光学フィルムに、当該化合物を添加して光学フィルムを作製した場合、リターデーション発現性が不十分であり、内部ヘイズが高く、相溶性の改善が求められていた。
 以上のように、従来公知のリターデーション発現剤を光学フィルムに添加した場合、リターデーション発現性が十分でなく、耐久性の改善や脆性の改善が求められていた。また、従来公知のベンザオキサジノン骨格を有する紫外線吸収剤をリターデーション発現剤として用いる技術は知られておらず、セルロースエステルを含有する光学フィルムに該紫外線吸収剤を添加した場合、リターデーション発現性が十分でなく、内部ヘイズ及びブリードアウトの改善が必要であった。
特開2006-188718号公報 特開2009-185217号公報 特表2005-504047号公報 特表2005-507006号公報 特開2009-20399号公報
 本発明は、上記事情に鑑みてなされたものであり、その解決課題は、高いリターデーション発現性を有し、ブリードアウトが抑制され、かつ内部ヘイズが低く、脆性に優れた光学フィルムを提供することである。更には、当該光学フィルムが具備された、良好な耐光性と耐湿熱性とを有する偏光板、及び正面コントラストのムラや視野角の湿度依存性が低減された液晶表示装置を提供することである。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、セルロースエステルを含有する光学フィルムであって、リターデーション発現剤として、ベンゼン環とヘテロ環が縮環した化合物の特定の位置にフェニル基を有し、該フェニル基の3位、4位及び5位の少なくとも一つに連結基を介した置換基を有する化合物で、かつ、分子量が280~380の範囲にある化合物を添加することで、高いリターデーション発現性を有し、ブリードアウト特性、内部ヘイズ、脆性に優れた光学フィルムが得られることを見いだした。更に、この光学フィルムを用いることで、耐光性及び耐湿熱性が良好な偏光板を得ることができ、該偏光板の使用により、正面コントラストムラ及び視野角の湿度依存性が低減された液晶表示装置が得られることを見いだした。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.セルロースエステルを含有する光学フィルムであって、分子量が280~380の範囲内にある下記一般式(1)で表される化合物を含有することを特徴とする光学フィルム。
Figure JPOXMLDOC01-appb-C000004
(式中、Xは、酸素原子、窒素原子又は硫黄原子を表し、Xは、酸素原子、硫黄原子、窒素原子又はNRを表し、Xは、酸素原子又は硫黄原子を表す。Rは、水素原子、アルキル基、アリール基、ヘテロ環基又はヘテロアリール基を表す。Rは、置換基を表す。Lは、O、OCO、COO、NRCO、SONR、SO、SOO、NRSO又はOSOを表す。Rは水素原子、アルキル基又はアリール基を表す。Rは、アリール基又はアルキル基を表す。mは、0~2の整数を表す。nは、1~3の整数を表し、nが2以上の場合、複数のL及びRは同じでも異なっていても良い。L及びRの置換位置は、3位、4位、5位のいずれかであり、破線部は、単結合若しくは二重結合を表す。)
 2.前記一般式(1)で表される化合物において、LがOCO又はNRCOであり、Rが水素原子、アルキル基又はアリール基であることを特徴とする第1項に記載の光学フィルム。
 3.前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物であることを特徴とする第1項又は第2項に記載の光学フィルム。
Figure JPOXMLDOC01-appb-C000005
(式中、X、X及びXは、前記一般式(1)のX、X及びXと同義である。L及びRは、前記一般式(1)のL及びRと同義である。Rは、前記一般式(1)のRと同義である。mは、前記一般式(1)のmと同義である。破線部は、単結合若しくは二重結合を表す。)
 4.前記一般式(2)で表される化合物のmが、0であることを特徴とする第3項に記載の光学フィルム。
 5.前記一般式(2)で表される化合物が、下記一般式(3)で表される化合物であることを特徴とする第3項又は第4項に記載の光学フィルム。
Figure JPOXMLDOC01-appb-C000006
(式中、L及びRは、前記一般式(1)のL及びRと同義である。)
 6.前記セルロースエステルが、下記式(a)及び(b)を満たすことを特徴とする第1項から第5項までのいずれか一項に記載の光学フィルム。
 式(a)  1.5≦X+Y≦2.5
 式(b)    0≦Y≦1.5
(式中、Xはアセチル基の置換度、Yはプロピオニル基又はブチリル基、若しくはそれらの混合物の置換度を表す。)
 7.前記光学フィルムの膜厚が、20~60μmの範囲内であることを特徴とする第1項から第6項までのいずれか一項に記載の光学フィルム。
 8.23℃、55%RHの環境下で、測定波長が590nmにおいて、下記式で表される面内方向のリターデーション値Roが20~150nmの範囲内であり、厚さ方向のリターデーション値Rthが70~350nmの範囲内であることを特徴とする第1項から第7項までのいずれか一項に記載の光学フィルム。
 式(I)  Ro=(n-n)×d
 式(II)  Rth={(n+n)/2-n}×d
(nは、光学フィルムの面内方向において屈折率が最大になる方向xにおける屈折率を表し、nは光学フィルムの面内方向において、前記方向xと直交する方向yにおける屈折率を表し、nは、光学フィルムの厚さ方向zにおける屈折率を表し、d(nm)は光学フィルムの厚さを表す。)
 9.第1項から第8項までのいずれか一項に記載の光学フィルムが、偏光子の少なくとも一方の面に具備されたことを特徴とする偏光板。
 10.前記第9項に記載の偏光板が、液晶セルの少なくとも一方の面に具備されたことを特徴とする液晶表示装置。
 本発明の上記手段により、本発明の光学フィルムは、高いリターデーション発現性を有し、ブリードアウトが抑制され、かつ、内部ヘイズが低く、脆性に優れた光学フィルムを得ることができる。よって、当該光学フィルムが具備された偏光板は、良好な耐光性と耐湿熱性が得ることができ、当該偏光板を用いることによって、正面コントラストのムラや視野角の湿度依存性が低減された液晶表示装置を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 光学フィルムに含有される化合物が、高いリターデーション値を発現するためには、複屈折が大きい化合物であることが好ましく、複屈折が大きい化合物は、分子の分極率が高く、かつ分極率異方性が高い化合物であることが好ましいことから、具体的な構造としては、ベンゼン環とヘテロ環が縮環した化合物の特定の位置にフェニル基を有する化合物を挙げることができる。更に、該フェニル基の3位、4位及び5位の少なくとも一つに特定の連結基を導入することにより、ベンゼン環とヘテロ環が縮環した構造と前記フェニル基が平面構造となり、かつ、連結基部分がセルロースエステルと相互作用することによって、前記平面構造の複屈折が大きな軸とセルロースエステルの配向軸が同一軸となるため、分極率異方性が一定方向に制御され、高いリターデーションが発現しているものと考えられる。この時、連結基を介した置換基は、連結基とセルロースエステルの相互作用を阻害しないものである限り限定されない。化合物の分極率は、分子軌道法又は密度汎関数法を用いた計算によって求めることができ、化合物の分極率異方性は、例えば特開2009-222994号公報に記載の方法で求めることができる。連結基を介した置換基が、該フェニル基の2位若しくは6位に置換した場合は、フェニル基がねじれ構造を取りやすくなるため、リターデーション発現性が著しく低下する。
 また、本発明に係る化合物は、リターデーション発現性、ブリードアウト及び内部ヘイズの観点から、連結基として、-O-、-OCO-、-COO-、-NRCO-、-SONR-、-SO-、SOO-、-NRSO-又は-OSO-(Rは水素原子、アルキル基又はアリール基を表す。)を有し、かつ、分子量が280~380の範囲であることが重要である。該連結基を有することで、セルロースエステルとの相溶性が向上し、高いリターデーションを発現する。これは、該連結基を導入することにより、本発明化合物がセルロースエステルと水素結合を形成することで、セルロースエステルの分子鎖に沿った配置で固定化されるため、リターデーション発現性が向上するとともに、高い相溶性が付与されていると考えられる。更に、本発明化合物の分子量を280~380の範囲内とすることで、ブリードアウト及び内部ヘイズを大幅に改善することができる。
スライドガラス上にグリセリンを滴下した状態を示す模式図 グリセリン上に試料フィルムを置いた状態を示す模式図 試料フィルム上にグリセリンを滴下した状態を示す模式図 グリセリン上にカバーガラスを置いた状態を示す模式図
 本発明の光学フィルムは、セルロースエステルを含有する光学フィルムであって、分子量が280~380の範囲内にある前記一般式(1)で表される化合物を含有することを特徴とする。
 この特徴は、請求項1から請求項10までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記一般式(1)で表される化合物において、LがOCO又はNRCOであり、Rが水素原子、アルキル基又はアリール基であることが好ましい。
 また、前記一般式(1)で表される化合物が、前記一般式(2)で表される化合物であること、該一般式(2)で表される化合物のmが、0であること、前記一般式(2)で表される化合物が、前記一般式(3)で表される化合物であることが、高いリターデーション発現性を有し、ブリードアウトが抑制され、内部ヘイズが低く、かつ脆性に優れる光学フィルムを得る上で好ましい。
 また、前記セルロースエステルが、前記式(a)及び(b)を満たす特定のアシル基置換度を有するセルロースエステルであることが、前記一般式(1)、前記一般式(2)、及び前記一般式(3)で表される化合物との相溶性に優れ、高いリターデーション発現性を有し、ブリードアウトが抑制され、内部ヘイズが低く、かつ脆性に優れる光学フィルムを得る上で好ましい。
 また、前記光学フィルムの膜厚が、20~60μmの範囲内であることが、ブリードアウトが抑制され、脆性に優れる観点からも好ましい。
 更に、光学フィルムが、23℃、55%RHの環境下で、波長が590nmにおいて、前記式で表される面内方向のリターデーション値Roが20~150nmであり、厚さ方向のリターデーション値Rthが70~350nmであることが、視認性の良い光学補償フィルムを提供する上で好ましい。
 本発明の光学フィルムは、偏光板、及び液晶表示装置に好適に具備され、良好な耐光性と耐湿熱性とを有する偏光板、及び正面コントラストのムラや視野角の湿度依存性が低減された液晶表示装置を提供する。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 <本発明の光学フィルム>
 本発明の光学フィルムは、セルロースエステルと、一般式(1)で表される化合物と、他の任意成分とを含有する。
 <セルロースエステル>
 本発明の光学フィルムに含まれるセルロースエステルは特に限定されないが、炭素数2~22程度の直鎖又は分岐のカルボン酸エステルであることが好ましい。エステルを構成するカルボン酸は環を形成してもよく、芳香族カルボン酸でもよい。エステルを構成するカルボン酸は、置換基を有してもよい。エステルを構成するカルボン酸は、特に炭素数が6以下の低級脂肪酸であることが好ましい。
 好ましいセルロースエステルの具体例には、セルロースアセテート;セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレートのような、アセチル基の他にプロピオネート基又はブチレート基が結合したセルロースの混合脂肪酸エステルが挙げられる。
 セルロースエステルは、下記式(a)及び(b)を共に満足するとより好ましい。式中、Xはアセチル基の置換度、Yはプロピオニル基又はブチリル基の置換度、若しくはその混合物の置換度である。アシル基の置換度は、ASTM-D817-96に準じて測定することができる。
 式(a)  1.5≦X+Y≦2.5
 式(b)    0≦Y≦1.5
 セルロースエステルは、セルロースアセテート(Y=0)、及びセルロースアセテートプロピオネート(Y;プロピオニル基、Y>0)がさらに好ましい。セルロースアセテートプロピオネートは、1.0≦X≦2.4であり、0.1≦Y≦1.5、2.0≦X+Y≦2.5であることが好ましい。セルロースアセテートとしては1.5≦X≦2.5が好ましく、2.0≦X≦2.5のセルロースアセテートがさらに好ましい。最も好ましく用いられるセルロースアセテートは、2.0≦X≦2.5のセルロースジアセテート(DAC)である。
 上述のセルロースアセテート又はセルロースアセテートプロピオネートを用いることで、リターデーションに優れ、機械強度、環境変動に優れた光学フィルムが得られる。
 所望の光学特性を得るために置換度の異なるセルロースアセテートを混合して用いてもよい。異なるセルロースアセテートの混合比は特に限定されず、10:90~90:10(質量比)の範囲内でありうる。
 セルロースエステルの数平均分子量は6×10~3×10の範囲、さらに7×10~2×10の範囲であると好ましい。得られるフィルムの機械的強度が高くなるからである。セルロースエステルの重量平均分子量Mw、数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。測定条件の一例は以下のとおりであるが、これに限られることはなく、同等の測定方法を用いることも可能である。
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用する)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500の13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に用いる。
 セルロースエステルの原料セルロースは、特に限定されないが、綿花リンター、木材パルプ、ケナフなどを挙げることができる。またそれらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することができる。
 セルロースアセテート、セルロースアセテートプロピオネートなどのセルロースエステルは、公知の方法により製造することができる。具体的には特開平10-45804号公報に記載の方法を参考にして合成することができる。
 <一般式(1)で表される化合物>
 本発明の光学フィルムに含まれる、一般式(1)で表される化合物を説明する。一般式(1)で表される化合物は、一般式(2)及び一般式(3)で表される化合物でありうる。一般式(1)で表される化合物の分子量は、280~380の範囲内とすることで、高いリターデーション発現性を有しながら、ブリードアウト及び内部ヘイズを大幅に改善することができる。分子量が280未満の場合はリターデーション発現性が小さく、またブリードアウトも起こりやすく、380を超えると、セルロースエステルとの相溶性が劣化し、内部ヘイズが高くなる。
Figure JPOXMLDOC01-appb-C000007
 前記一般式(1)において、Rは置換基を表す。Rで表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリフルオロメチル基等)、シクロアルキル基(例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等)、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロ環基(例えば、ピリジル基、ピリミジル基、オキサゾリル基、チアゾリル基、オキサジアゾリル基、チアジアゾリル基、イミダゾリル基等)、アルケニル基(例えば、ビニル基、2-プロペニル基、3-ブテニル基、1-メチル-3-プロペニル基、3-ペンテニル基、1-メチル-3-ブテニル基、4-ヘキセニル基、シクロヘキセニル基、スチリル基等)、アルキニル基(例えば、プロパルギル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)などを挙げることができる。
 Rが表す置換基は、更に、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリフルオロメチル基等)、シクロアルキル基(例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等)、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロ環基(例えば、ピリジル基、ピリミジル基、オキサゾリル基、チアゾリル基、オキサジアゾリル基、チアジアゾリル基、イミダゾリル基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルケニル基(例えば、ビニル基、2-プロペニル基、3-ブテニル基、1-メチル-3-プロペニル基、3-ペンテニル基、1-メチル-3-ブテニル基、4-ヘキセニル基、シクロヘキセニル基、スチリル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキニル基(例えば、プロパルギル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基等)、アルキルスルフィニル基(例えば、メチルスルフィニル基等)、アリールスルフィニル基(例えば、フェニルスルフィニル基等)、ホスホノ基、アシル基(例えば、アセチル基、ピバロイル基、ベンゾイル基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、ブチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、フェニルアミノカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、スルホンアミド基(例えば、メタンスルホンアミド基、ベンゼンスルホンアミド基等)、シアノ基、アルキルオキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、シロキシ基、アシルオキシ基(例えば、アセチルオキシ基、ベンゾイルオキシ基等)、スルホン酸基又はその塩、アミノカルボニルオキシ基、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基等)、アニリノ基(例えば、フェニルアミノ基、クロロフェニルアミノ基、トルイジノ基、アニシジノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、イミド基、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2-ピリジルアミノウレイド基等)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ基、フェノキシカルボニルアミノ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、フェノキシカルボニル等)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)、カルバメート基(例えば、メチルカルバメート基、フェニルカルバメート基)、アルキルオキシフェニル基(例えば、メトキシフェニル基等)、アシルオキシフェニル基(例えば、アセチルオキシフェニル基等)、チオウレイド基、カルボキシ基、カルボン酸の塩、ヒドロキシ基、メルカプト基、ニトロ基などで、複数置換されていてもよく、隣り合う置換基同士が結合して環を形成してもよい。
 Rで表される置換基としては、アルキル基、シクロアルキル基又はアリール基が好ましく、更に好ましくは、アルキル基又はアリール基であり、特に好ましくは、アルキル基である。Rをこれらの置換基とすることで、前記連結基Lとセルロースエステルの相互作用がより強くなるため、内部ヘイズが低く、リターデーション発現性に優れた光学フィルムを得ることができる。
 前記一般式(1)において、Lは、O、OCO、COO、NRCO、SONR、SO、SOO、NRSO又はOSOを表し、Rは水素原子、アルキル基又はアリール基を表す。好ましくは、水素原子又はアルキル基であり、最も好ましくは、水素原子である。
 Lは、セルロースエステルとの相互作用の観点から、OCO又はNRCOが好ましく、特にOCOが好ましい。
 Lは、3位、4位又は5位のいずれかの位置に置換しており、4位に置換することが最も好ましい。前記の置換位置とすることで、化合物の分極率異方性が高くなり、セルロースエステルとの相互作用から、高いリターデーション発現性を得ることができる。
 前記一般式(1)において、nは、1~3の整数を表す。nが2以上の場合、複数のL及びRは、同じでも異なっていても良い。好ましくは1又は2であり、最も好ましくは1である。
 前記一般式(1)において、Xは、酸素原子、窒素原子又は硫黄原子を表し、Xは、酸素原子、硫黄原子、窒素原子又はNRを表し、Xは、酸素原子又は硫黄原子を表す。Rとしては、水素原子、アルキル基、アリール基、ヘテロ環基又はヘテロアリール基を挙げることができる。
 Xは、酸素原子又は窒素原子が好ましく、窒素原子が特に好ましい。
 Xは、酸素原子又は窒素原子が好ましく、酸素原子が特に好ましい。
 Xは、酸素原子又は硫黄原子が好ましく、酸素原子が特に好ましい。
 前記一般式(1)において、Rは、アリール基又はアルキル基を表す。アリール基としては、例えば、フェニル基又はナフチル基が挙げられる。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基等が挙げられる。好ましくは、アルキル基であり、更に好ましくは、メチル基である。
 前記一般式(1)において、mは、0~2の整数を表す。好ましくは0~1であり、最も好ましくは0である。mが2の場合、複数のRは同じでも異なっていても良い。また、mが1~2の場合、Rの置換位置は、3位、4位又は5位のいずれかである。前記の置換位置とすることで、化合物の平面性が保たれるため、高いリターデーション発現性を得ることができる。
 前記一般式(1)において、破線部は、単結合若しくは二重結合を表す。
 前記一般式(2)において、X、X及びXは、前記一般式(1)のX、X及びX3と同義である。
 前記一般式(2)において、L及びRは、前記一般式(1)のL及びRと同義である。
 前記一般式(2)において、Rは、前記一般式(1)のRと同義である。
 前記一般式(2)において、mは、前記一般式(1)のmと同義である。
 前記一般式(2)において、破線部は、単結合若しくは二重結合を表す。
 前記一般式(3)において、L及びRは、前記一般式(1)のL及びRと同義である。
 以下に前記一般式(1)、前記一般式(2)及び一般式(3)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 本発明の光学フィルムは、セルロースエステルと前記一般式(1)で表される化合物とを含むが、所望のリターデーション値を得るために、前記一般式(1)で表される化合物がセルロースエステル中に添加されていることが好ましい。添加されているとは、セルロースエステル中に溶解又は分散されていることをいう。前記一般式(1)で表される化合物が、光学フィルムの表面にのみ塗布されているだけでは、所望のリターデーション値が得られない。
 本発明の光学フィルムは、所望のリターデーションを得るために、前記一般式(1)で表される化合物を、セルロースエステル100質量部に対して1~20質量部の範囲内で含むことが好ましい。1質量部よりも大きいと、リターデーションを発現性することができ、20質量部以下にすることでリターデーション発現性と相溶性を両立することができる。
 さらに、前記一般式(1)で表される化合物の添加量は、セルロースエステル100質量部に対して1~10質量部の範囲内であることがより好ましく、2~5質量部の範囲内であることが特に好ましい。この範囲内であれば、本発明の光学フィルムに十分なリターデーションを付与するとともに内部ヘイズ、ブリードアウト特性を良好に保つことができる。
 本発明の光学フィルムは、前記一般式(1)で表される化合物を少なくとも1種以上含有していればよく、前記一般式(1)以外の化合物を併用して所望のリターデーション値を付与することもできる。
 <一般式(1)で表される化合物の合成>
 前記一般式(1)で表される化合物は、一般的な方法で合成可能である。以下に例示化合物の合成例を記す。
 (例示化合物A-001の合成)
 2Lのナスフラスコに4-ヒドロキシ安息香酸56g、1N NaOH水溶液800mlを加えて40℃で撹拌、溶解して無水酢酸50gを滴下した。1時間撹拌したのちに水冷して酢酸30mlを加えた。1時間撹拌した後に濾過、水洗、乾燥することでp-アセトキシ安息香酸を54.5g得た。
 100mlのナスフラスコにp-アセトキシ安息香酸を5.0g、塩化チオニル3.0ml、DMF0.1mlを加えて80℃で3時間加熱した。溶媒と塩化チオニルを減圧留去することでp-アセトキシ安息香酸クロリドを5.6g得た。
 200mlのナスフラスコにピリジン50ml、無水イサト酸4.5gを加えて50℃に加熱したのちにp-アセトキシ安息香酸クロリド5.6gを滴下した。滴下終了後に外温を120℃まで昇温した。2時間後に室温まで冷却し、水100mlを加えて1時間撹拌した。濾過、メタノール洗浄後に乾燥することで粗精製物6.4gを得た。粗精製物をカラムクロマトグラフィー(展開溶媒:トルエン)により精製することで例示化合物A-001を3.8g得た。得られた例示化合物A-001はNMR及びMassスペクトルにより同定した。
 (例示化合物A-046の合成)
 500mlナスフラスコにサリチルアミド42.0g、キシレン100ml、ピリジン5mlを加えて150℃で加熱、還流した。この反応液にp-アセトキシ安息香酸クロリド66.9gを1時間で滴下した。滴下終了後7時間加熱還流した後に室温まで冷却し、溶媒を減圧留去した。残さをカラムクロマトグラフィー(展開溶媒:トルエン/アセトン=5/1)により精製することで8.7gの例示化合物A-046を得た。得られた例示化合物A-046はNMR及びMassスペクトルにより同定した。
 (例示化合物A-079の合成)
 アントラニル酸メチル10gとピリジン30mlを溶解して氷水冷した。この溶液にp-アセトキシ安息香酸クロリドを14g滴下した。反応液に水200mlを加えて2時間撹拌した。析出した固体を濾過、水洗することで2-(4-アセトキシベンズアミド)安息香酸メチルを13.2g得た。
 中間体C10.4g、5硫化リン18gと乾燥ピリジン150mlを加えて140℃に加熱して18時間加熱還流した。加熱終了後、反応液を氷水に注ぎ撹拌した。析出した固体を濾過した後にジクロロメタンに溶解し、無水硫酸マグネシウムを用いて乾燥した。ジクロロメタンを減圧留去し、ジクロロメタン/エタノールから再結晶することで例示化合物A-079を6.9g得た。得られた例示化合物A-079はNMR及びMassスペクトルにより同定した。
 (例示化合物A-088の合成)
 200mlのナスフラスコに4-シアノフェノール5.6g、1N NaOH水溶液80mlを加えて40℃で撹拌して無水酢酸5.5gを滴下した。1時間撹拌した後に水冷して酢酸3mlを加えた。1時間撹拌した後に濾過、水洗、乾燥することで中間体Cを4.7g得た。
 200mlナスフラスコに2-(4-アセトキシベンズアミド)安息香酸メチル4.7g、チオサリチル酸メチル9.8g、トリエチルアミン6.5g、トルエン30mlを加えて窒素化、25時間加熱還流した。加熱終了後に溶媒を減圧留去した。カラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=5/1)により精製することで3.2gの例示化合物A-088を得た。得られた例示化合物A-088はNMR及びMassスペクトルにより同定した。
 その他の一般式(1)で表される化合物も、本願明細書の開示と公知技術を参照して合成することができる。
 本発明の光学フィルムは、セルロースエステル及び一般式(1)で表される化合物に加えて、他の任意成分を含みうる。任意成分の例には、波長分散制御剤、糖エステル、可塑剤、紫外線吸収剤、酸化防止剤、及び微粒子などが含まれる。
 <波長分散制御剤>
 本発明の光学フィルムは、波長分散制御剤を含有することもできる。「波長分散制御剤」とは光学フィルムのリターデーション値の波長分散を調節する化合物である。波長分散制御剤の好ましい例には、特開2001-166144号公報及び特開2003-344655号公報に記載の円盤状化合物や、特開2010-163482号公報に記載の化合物が含まれる。
 波長分散制御剤は、250~400nmの波長範囲に、又は270~380nmの波長範囲に吸収極大を有することが好ましい。
 波長分散制御剤は、単独あるいは2種類以上混合して用いることができる。波長分散制御剤の添加量は、セルロースエステル100質量部に対して、1.0~20質量%の範囲内が好ましく、1.5~15質量%の範囲内がさらに好ましく、2.0~10質量%の範囲内が最も好ましい。波長分散制御剤の添加方法は、アルコールやメチレンクロライド、ジオキソランの有機溶媒に波長分散制御剤を溶解してから、セルロースエステル溶液(ドープ)に添加してもよいし、又は直接ドープ組成中に添加してもよい。
 波長分散制御剤は、セルロースエステルの混合溶液中にあらかじめ添加されてもよく;セルロースエステルのドープを作製してから流延するまでのいずれかの工程で添加されてもよい。後者の場合、セルロースエステルを溶剤に溶解させたドープに、波長分散制御剤と少量のセルロースエステルとを溶解させた溶液をインライン添加して混合する。当該混合は、例えば、スタチックミキサー(東レエンジニアリング製)、SWJ(東レ静止型管内混合器 Hi-Mixer)などのインラインミキサーで行うことが好ましい。
 波長分散制御剤とともにマット剤を添加してもよいし、リターデーション制御剤、可塑剤、劣化防止剤、剥離促進剤などの添加剤を添加してもよい。
 インラインミキサーを用いる場合、高圧下で濃縮溶解することが好ましく;加圧容器は、所定の圧力に耐えることができ、加圧下で加熱、撹拌ができればよい。加圧容器には、圧力計、温度計などの計器類を適宜配設する。加圧は窒素ガスなどの不活性気体を圧入する方法や、加熱による溶剤の蒸気圧の上昇によって行ってもよい。
 加熱は容器外部から行うことが好ましく、例えばジャケットタイプのヒーターは温度コントロールが容易で好ましい。溶剤を添加しての加熱温度は、使用溶剤の沸点以上で、かつ該溶剤が沸騰しない範囲の温度が好ましく、例えば30~150℃の範囲に設定する。設定温度で、溶剤が沸騰しないように圧力を調整する。溶解後は冷却しながら容器から取り出すか、又は容器からポンプ等で抜き出して熱交換器などで冷却し、これを製膜に供する。このときの冷却温度は常温まで冷却してもよいが、沸点より5~10℃低い温度範囲まで冷却し、その温度のままキャスティングを行う方が、ドープ粘度を低減できるためより好ましい。
 <糖エステル>
 本発明の光学フィルムは、セルロースエステル以外の糖エステルを含むことが好ましい。該糖エステルとは、フラノース構造又はピラノース構造の少なくともいずれかを含む化合物である。糖エステルは、単糖であっても、糖構造が2~12個連結した多糖であってもよい。そして、糖エステルは、糖構造が有するOH基の少なくとも一つがエステル化された化合物が好ましい。糖エステルのエステル化率は、ピラノース構造又はフラノース構造内に存在するOH基の70%以上であることが好ましい。
 糖エステルを構成する糖の例には、グルコース、ガラクトース、マンノース、フルクトース、キシロース、あるいはアラビノース、ラクトース、スクロース、ニストース、1F-フラクトシルニストース、スタキオース、マルチトール、ラクチトール、ラクチュロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノースあるいはケストースなどが含まれる。さらに、糖エステルを構成する糖の例には、ゲンチオビオース、ゲンチオトリオース、ゲンチオテトラオース、キシロトリオース、ガラクトシルスクロースなども含まれる。もちろん、糖はこれらに限定されない。糖エステルを構成する糖構造は、特にピラノース構造とフラノース構造を両方含むことが好ましい。
 糖エステルを構成する糖の好ましい例は、スクロース、ケストース、ニストース、1F-フラクトシルニストース、スタキオースなどであり、更に好ましくは、スクロースである。
 糖エステルでは、ピラノース構造又はフラノース構造中のOH基の全て若しくは一部がエステル化されている。エステル化のためのモノカルボン酸は、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。
 糖エステルのエステルを構成する好ましい脂肪族モノカルボン酸の例には、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸などが含まれる。
 糖エステルのエステルを構成する好ましい脂環族モノカルボン酸の例には、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体が含まれる。
 糖エステルのエステルを構成する好ましい芳香族モノカルボン酸の例には、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、アルコキシ基を導入した芳香族モノカルボン酸、ケイ皮酸、ベンジル酸、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、又はそれらの誘導体が含まれる。より具体的には、キシリル酸、ヘメリト酸、メシチレン酸、プレーニチル酸、γ-イソジュリル酸、ジュリル酸、メシト酸、α-イソジュリル酸、クミン酸、α-トルイル酸、ヒドロアトロパ酸、アトロパ酸、ヒドロケイ皮酸、サリチル酸、o-アニス酸、m-アニス酸、p-アニス酸、クレオソート酸、o-ホモサリチル酸、m-ホモサリチル酸、p-ホモサリチル酸、o-ピロカテク酸、β-レソルシル酸、バニリン酸、イソバニリン酸、ベラトルム酸、o-ベラトルム酸、没食子酸、アサロン酸、マンデル酸、ホモアニス酸、ホモバニリン酸、ホモベラトルム酸、o-ホモベラトルム酸、フタロン酸、p-クマル酸が含まれ;特に安息香酸が好ましい。
 オリゴ糖のエステルは、本発明における糖エステルとして用いられうる。オリゴ糖は、デンプン、ショ糖等にアミラーゼなどの酵素を作用させて製造されるもので、好ましいオリゴ糖の例には、マルトオリゴ糖、イソマルトオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、キシロオリゴ糖が挙げられる。
 糖エステルは、下記一般式(A)で表されるピラノース構造又はフラノース構造の少なくとも1種を1個以上12個以下縮合した化合物である。一般式(A)におけるR11~R15、R21~R25は、炭素数2~22のアシル基又は水素原子を、m及びnはそれぞれ0~12の整数、m+nは1~12の整数である。
Figure JPOXMLDOC01-appb-C000020
 R11~R15、R21~R25は、ベンゾイル基、水素原子であることが好ましい。ベンゾイル基は置換基R26(pは0~5)を有していてもよく、例えばアルキル基、アルケニル基、アルコキシル基、フェニル基が挙げられ、更にこれらのアルキル基、アルケニル基、フェニル基は置換基を有していてもよい。オリゴ糖のエステルも、他の糖エステルと同様な方法で製造することができる。
 本発明に用いられる糖エステルの具体例としては、特開2012-230154号公報段落〔0130〕~〔0137〕、及び特開2012-230282号公報段落〔0077〕~〔0078〕に記載の化合物を挙げることができるが、本発明はこれに限定されるものではない。
 本発明の光学フィルムは、位相差値の変動を抑制して、表示品位を安定化するために、前記糖エステルを、光学フィルムの0.5~30質量%含むことが好ましく、特には、5~30質量%含むことが好ましい。
 〈可塑剤〉
 本発明の光学フィルムは、可塑剤を含みうる。可塑剤は特に限定されないが、好ましくは、多価カルボン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、脂肪酸エステル系可塑剤及び多価アルコールエステル系可塑剤、ポリエステル系可塑剤、アクリル系可塑剤などから選択される。本発明の光学フィルムに可塑剤を2種以上含ませる場合は、少なくとも1種は多価アルコールエステル系可塑剤であることが好ましい。
 (多価アルコールエステル系可塑剤)
 多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環又はシクロアルキル環を有することが好ましい。好ましくは2~20価の脂肪族多価アルコールエステルである。
 多価アルコールエステル系可塑剤を構成する多価アルコールは、一般式(a)で表される。
 一般式(a) Ra-(OH)
 ここで、Raはn価の有機基、nは2以上の正の整数、OH基はアルコール性又はフェノール性のヒドロキシ基を表す。
 多価アルコールエステル系可塑剤を構成する好ましい多価アルコールの例には、アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジブチレングリコール、1,2,4-ブタントリオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3-メチルペンタン-1,3,5-トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトールなどが含まれるが、特に限定されない。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
 多価アルコールエステル系可塑剤を構成するモノカルボン酸の例には、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。
 好ましいモノカルボン酸の例としては以下を挙げることができるが、これに限定されない。
 脂肪族モノカルボン酸の例には、炭素数1~32の直鎖又は側鎖を有する脂肪酸が含まれる。炭素数は1~20であることが更に好ましく、1~10であることが特に好ましい。酢酸を含有させるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。
 好ましい脂環族モノカルボン酸の例には、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体が含まれる。
 好ましい芳香族モノカルボン酸の例には、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、メトキシ基あるいはエトキシ基などのアルコキシ基を1~3個を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、又はそれらの誘導体が含まれる。特に安息香酸が好ましい。
 多価アルコールエステル系可塑剤のエステルを構成するカルボン酸は1種類でもよいし、2種以上の組み合わせであってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。
 多価アルコールエステル系可塑剤の分子量は特に制限はないが、300~1500の範囲内であることが好ましく、350~750の範囲内であることが更に好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。
 (グリコレート系可塑剤)
 グリコレート系可塑剤は、特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いられる。アルキルフタリルアルキルグリコレート類の例には、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が含まれる。
 (フタル酸エステル系可塑剤)
 フタル酸エステル系可塑剤の例には、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が含まれる。
 (クエン酸エステル系可塑剤)
 クエン酸エステル系可塑剤の例には、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が含まれる。
 (脂肪酸エステル系可塑剤)
 脂肪酸エステル系可塑剤の例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が含まれる。
 (リン酸エステル系可塑剤)
 リン酸エステル系可塑剤の例には、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェートなどが含まれる。
 (多価カルボン酸エステル系可塑剤)
 多価カルボン酸エステル系可塑剤は、2価以上、好ましくは2価~20価の多価カルボン酸とアルコールとのエステル化物である。また、脂肪族多価カルボン酸は2~20価であることが好ましく、芳香族多価カルボン酸、脂環式多価カルボン酸の場合は3価~20価であることが好ましい。
 多価カルボン酸は、次の一般式(b)で表される。
 一般式(b) Rb(COOH)(OH)
(ただし、Rbは(m+n)価の有機基、mは2以上の正の整数、nは0以上の整数、COOH基はカルボキシ基、OH基はアルコール性又はフェノール性ヒドロキシ基を表す。)
 好ましい多価カルボン酸の例には、トリメリット酸、トリメシン酸、ピロメリット酸のような3価以上の芳香族多価カルボン酸又はその誘導体、コハク酸、アジピン酸、アゼライン酸、セバシン酸、シュウ酸、フマル酸、マレイン酸、テトラヒドロフタル酸のような脂肪族多価カルボン酸、酒石酸、タルトロン酸、リンゴ酸、クエン酸のようなオキシ多価カルボン酸などが含まれるが、これらに限定されない。特にオキシ多価カルボン酸を用いると、可塑剤の保留性(光学フィルムから揮発しないこと)が向上するために好ましい。
 多価カルボン酸エステル系可塑剤のエステルを構成するアルコールは、公知のアルコール、フェノール類であってもよく、特に制限はない。例えば炭素数1~32の直鎖又は側鎖を持った脂肪族飽和アルコール又は脂肪族不飽和アルコールである。炭素数1~20であることが更に好ましく、炭素数1~10であることが特に好ましい。また、シクロペンタノール、シクロヘキサノールなどの脂環式アルコール又はその誘導体、ベンジルアルコール、シンナミルアルコールなどの芳香族アルコール又はその誘導体なども好ましく用いることができる。
 多価カルボン酸エステル系可塑剤のエステルを構成するアルコール類は1種類でも良いし、2種以上の混合であっても良い。
 多価カルボン酸としてオキシ多価カルボン酸を用いる場合は、オキシ多価カルボン酸のアルコール性ヒドロキシ基又はフェノール性ヒドロキシ基を、モノカルボン酸を用いてエステル化してもよい。モノカルボン酸の好ましいは、脂肪族モノカルボン酸であるが、これに限定されない。
 脂肪族モノカルボン酸は、炭素数1~32の直鎖又は側鎖を持った脂肪酸が好ましい。炭素数1~20であることが更に好ましく、炭素数1~10であることが特に好ましい。好ましい脂肪族モノカルボン酸としては酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸などの飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸などを挙げることができる。
 好ましい脂環族モノカルボン酸の例には、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。
 好ましい芳香族モノカルボン酸の例には、安息香酸、トルイル酸などの安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸などのベンゼン環を2個以上もつ芳香族モノカルボン酸、又はそれらの誘導体を挙げることができる。
 多価カルボン酸エステル系可塑剤の分子量は特に制限されないが、分子量300~1000の範囲であることが好ましく、350~750の範囲であることが更に好ましい。可塑剤の保留性向上の点では大きい方が好ましく;透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。
 多価カルボン酸エステル系可塑剤の酸価は1mgKOH/g以下であることが好ましく、0.2mgKOH/g以下であることが更に好ましい。酸価を上記範囲にすることによってリターデーションの環境変動も抑制されるため好ましい。酸価は、試料1g中に含まれる酸(試料中に存在するカルボキシ基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価はJIS K0070に準拠して測定したものである。
 多価カルボン酸エステル系可塑剤の特に好ましい例には、トリエチルシトレート、トリブチルシトレート、アセチルトリエチルシトレート(ATEC)、アセチルトリブチルシトレート(ATBC)、ベンゾイルトリブチルシトレート、アセチルトリフェニルシトレート、アセチルトリベンジルシトレート、酒石酸ジブチル、酒石酸ジアセチルジブチル、トリメリット酸トリブチル、ピロメリット酸テトラブチル等が挙げられるが、これらに限定されない。
 (ポリエステル系可塑剤)
 ポリエステル系可塑剤は、例えば、分子内に芳香環又はシクロアルキル環を有するポリエステル系可塑剤である。ポリエステル系可塑剤は、例えば、下記一般式(c)で表せる芳香族末端エステル系可塑剤である。
 一般式(c) B-(G-A)-G-B
 (式中、Bはベンゼンモノカルボン酸残基、Gは炭素数2~12のアルキレングリコール残基又は炭素数6~12のアリールグリコール残基又は炭素数が4~12のオキシアルキレングリコール残基、Aは炭素数4~12のアルキレンジカルボン酸残基又は炭素数6~12のアリールジカルボン酸残基を表し、またnは1以上の整数を表す。)
 一般式(c)のポリエステル系可塑剤は、Bで示されるベンゼンモノカルボン酸残基と、Gで示されるアルキレングリコール残基、オキシアルキレングリコール残基又はアリールグリコール残基と、Aで示されるアルキレンジカルボン酸残基又はアリールジカルボン酸残基と、から構成される。ポリエステル系可塑剤は、通常のポリエステル系可塑剤と同様の反応により得られる。
 ポリエステル系可塑剤のベンゼンモノカルボン酸成分の例には、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸などが含まれ、これらの1種又は2種以上の組み合わせでありうる。
 ポリエステル系可塑剤の炭素数2~12のアルキレングリコール成分の例には、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等が含まれる。これらのグリコールは、1種又は2種以上の混合物として使用される。特に炭素数2~12のアルキレングリコールがセルロースエステルとの相溶性に優れているため、特に好ましい。
 ポリエステル系可塑剤の炭素数4~12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等があり、これらのグリコールは、1種又は2種以上の混合物として使用できる。
 ポリエステル系可塑剤の炭素数4~12のアルキレンジカルボン酸成分の例には、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等が含まれる。これらは、それぞれ1種又は2種以上の混合物として使用される。炭素数6~12のアリーレンジカルボン酸成分としては、フタル酸、テレフタル酸、イソフタル酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸等がある。
 ポリエステル系可塑剤の数平均分子量は、好ましくは300~1500の範囲、より好ましくは400~1000の範囲が好適である。また、その酸価は、0.5mgKOH/g以下、ヒドロキシ基価は25mgKOH/g以下、より好ましくは酸価0.3mgKOH/g以下、ヒドロキシ基価は15mgKOH/g以下である。
 (アクリル系可塑剤)
 アクリル系可塑剤としての(メタ)アクリル系重合体は、少なくとも、分子内に芳香環とヒドロキシ基を有しないエチレン性不飽和モノマーXaと、分子内に芳香環を有さずヒドロキシ基を有するエチレン性不飽和モノマーXbとを共重合して得られた重量平均分子量3000以上30000以下の重合体Xでありうる。
 又は、アクリル系可塑剤としての(メタ)アクリル系重合体は、芳香環を有さないエチレン性不飽和モノマーYaを重合して得られた重量平均分子量500以上3000以下の重合体Yでありうる。
 重合体Xは下記一般式(X)で示され、重合体Yは下記一般式(Y)で示されることが好ましい。
 一般式(X):-[CH-C(-Rc)(-CORd)]-[CH-C(-Re)(-CORf-OH)-]-[Xc]
 一般式(Y):Ry-[CH-C(-Rg)(-CORh-OH)-]-[Yb]
 式(X)又は式(Y)において、Rc、Re、及びRgは、H又はメチル基を表す。Rdは、炭素数1~12のアルキル基又はシクロアルキル基を表す。Rf、及びRhは、CH、C又はCを表す。Ryは、ヒドロキシ基、H又は炭素数3以内のアルキル基を表す。Xcは、Xa、及びXbに重合可能なモノマー単位を表す。Ybは、Yaに共重合可能なモノマー単位を表す。m、n、k、p及びqは、モル組成比を表す。ただしm≠0、n≠0、k≠0、m+n+p=100、k+q=100である。
 これらの可塑剤の添加量としてはセルロースエステルに対して、0.5~30質量%の範囲内含むことが好ましく、特には、5~20質量%の範囲内含むことが好ましい。
 [他の樹脂]
 本発明の光学フィルムには、セルロースエステル系樹脂が含まれるが、その他の樹脂が含まれていてもよい。その他の樹脂の例には、セルロースエ-テル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリスルホン系樹脂、ポリエステル系樹脂、ポリアリレート系樹脂、アクリル系樹脂、オレフィン系樹脂(ノルボルネン系樹脂、環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂等)などが含まれる。他の樹脂の好ましい例には、ポリカーボネート系樹脂、アクリル系樹脂、環状オレフィン系樹脂が含まれる。他の樹脂を使用する場合、その含有量は、光学フィルムの5~70質量%の範囲内が好ましい。
 [紫外線吸収剤]
 本発明の光学フィルムは、紫外線吸収剤を含有してもよく、紫外線吸収剤を2種以上含有してもよい。紫外線吸収剤は400nm以下の紫外線を吸収することで、耐久性を向上させることを目的としており、特に波長370nmでの透過率が10%以下であることが好ましく、より好ましくは5%以下、更に好ましくは2%以下である。
 紫外線吸収剤は特に限定されないが、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。
 紫外線吸収剤の具体例には、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシルフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノンなどが含まれる。また、チヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928などのチヌビン類があり、これらはBASFジャパン社製の市販品であり好ましく使用できる。
 紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤であり、特に好ましくはベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤などが好ましい。この他、1,3,5-トリアジン環を有する化合物等の円盤状化合物も紫外線吸収剤として好ましい。
 紫外線吸収剤は、高分子紫外線吸収剤であってもよく;特に特開平6-148430号公報記載のポリマータイプの紫外線吸収剤が好ましい。
 紫外線吸収剤の添加は、メタノール、エタノール、ブタノール等のアルコールやメチレンクロライド、酢酸メチル、アセトン、ジオキソラン等の有機溶媒あるいはこれらの混合溶媒に紫外線吸収剤を溶解してからドープに添加するか、又は直接ドープ組成中に添加してもよい。また、無機粉体のように有機溶剤に溶解しない剤は、有機溶剤とセルロースエステル中にディゾルバーやサンドミルを使用し、分散してからドープに添加する。
 光学フィルムにおける紫外線吸収剤の含有量は、光学フィルムの乾燥膜厚が30~200μmの場合は、0.5~10質量%の範囲内が好ましく、0.6~4質量%の範囲内が更に好ましい。ただし、紫外線吸収剤の種類、使用条件等により調整される。
 [酸化防止剤]
 酸化防止剤は、劣化防止剤ともいわれる。高湿高温の状態に液晶画像表示装置などが置かれた場合には、光学フィルムの劣化が起こる場合がある。酸化防止剤は、例えば、光学フィルム中の残留溶媒量のハロゲンやリン酸系可塑剤のリン酸等による光学フィルムの分解を遅らせたり、抑制したりする。
 酸化防止剤は、例えば、ヒンダードフェノール系化合物が好ましい。ヒンダードフェノール系化合物の例には、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト等を挙げることができる。特に、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕が好ましい。
 酸化防止剤として、N,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤や、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト等のリン系加工安定剤などを併用してもよい。
 本発明の光学フィルムにおける酸化防止剤の添加量は、セルロースエステルに対する質量割合で1ppm~1.0%の範囲内が好ましく、10~1000ppmの範囲内が更に好ましい。
 [微粒子]
 本発明の光学フィルムは、滑り性を良くするために微粒子を含有してもよい。本発明の光学フィルムの一方の面の動摩擦係数が、0.2~1.0の範囲内であることが好ましい。
 微粒子は、無機物微粒子であっても、有機物微粒子であってもよい。無機物微粒子の例には、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムなどが含まれる。有機物微粒子の例には、ポリテトラフルオロエチレン、セルロースアセテート、ポリスチレン、ポリメチルメタクリレート、ポリプピルメタクリレート、ポリメチルアクリレート、ポリエチレンカーボネート、アクリルスチレン系樹脂、シリコーン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン系樹脂、メラミン系樹脂、ポリオレフィン系粉末、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、あるいはポリフッ化エチレン系樹脂、デンプン等の有機高分子化合物の粉砕分級物などが含まれる。さらに、懸濁重合法で合成した高分子化合物、スプレードライ法あるいは分散法等により球型にした高分子化合物、又は無機化合物も、微粒子として用いることができる。なかでも微粒子は、ケイ素を含む微粒子が好ましく、特に二酸化ケイ素が好ましい。光学フィルムの濁度を低くするためである。
 微粒子の一次粒子の平均粒径は、5~400nmの範囲内が好ましく、10~300nmの範囲内がより好ましい。光学フィルムにおいて微粒子は、主に粒径0.05~0.3μmの範囲内の二次凝集体として含有されていてもよい。微粒子の一次粒子の平均粒径が100~400nmの範囲内であれば、凝集せずに一次粒子として光学フィルムに含まれていることも好ましい。
 光学フィルムにおける微粒子の含有量は、0.01~1質量%の範囲内であることが好ましく、特に0.05~0.5質量%の範囲内が好ましい。共流延法による多層構成の光学フィルムの場合は、フィルム表面に、この添加量の微粒子が配置されることが好ましい。
 二酸化ケイ素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されている。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されている。
 有機物微粒子の例には、シリコーン樹脂、フッ素樹脂及びアクリル樹脂などが含まれる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されている。
 これらの中でもアエロジル200V、アエロジルR972Vが光学フィルムの濁度を低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。
 任意の成分(各種添加剤)は、製膜前のセルロースエステル含有溶液であるドープにバッチ添加されてもよいし、添加剤溶解液を別途用意してインライン添加してもよい。特に微粒子は濾過材への負荷を減らすために、一部又は全量をインライン添加することが好ましい。
 添加剤溶解液をインライン添加する場合は、ドープとの混合性をよくするため、添加剤溶解液に少量のセルロースエステルを添加することが好ましい。添加剤溶解液におけるセルロースエステルの量は、溶剤100質量部に対して1~10質量部の範囲内が好ましく、より好ましくは3~5質量部の範囲内である。
 インライン添加や混合は、例えば、スタチックミキサー(東レエンジニアリング製)、SWJ(東レ静止型管内混合器 Hi-Mixer)等のインラインミキサー等を用いて行うことが好ましい。
 〈光学フィルムの製造方法〉
 本発明の光学フィルムの製造方法について説明する。本発明に係る光学フィルムは、溶液流延法でも、溶融流延法でも製造されうる。
 本発明の光学フィルムの製造は、セルロースエステル及び添加剤を溶剤に溶解させてドープを調製する工程、ドープを無限に移行する無端の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸又は幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻取る工程により行われる。
 (ドープ調製工程)
 ドープを調製する工程について述べる。ドープ中のセルロースエステルの濃度が高いと、金属支持体に流延した後の乾燥負荷が低減するため好ましい。一方、ドープ中のセルロースエステルの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。そのため、ドープ中のセルロースエステルの濃度は10~35質量%の範囲内が好ましく、更に好ましくは、15~25質量%の範囲内である。
 ドープの溶剤は、単独又は2種以上の混合溶剤であるが、セルロースエステルの良溶剤と貧溶剤との混合溶媒であると、生産効率の点で好ましい。良溶剤が多い方がセルロースエステルの溶解性の点で好ましい。良溶剤と貧溶剤の混合比率の好ましい範囲は、良溶剤が70~98質量%の範囲内であり、貧溶剤が2~30質量%の範囲内である。使用するセルロースエステルを単独で溶解するものを良溶剤とし、単独で膨潤するか又は溶解しないものを貧溶剤と定義する。そのため、セルロースエステルの平均酢化度(アセチル基置換度)によっては、良溶剤及び貧溶剤の種類が変わる。例えばアセトンは、セルロースの酢酸エステル(アセチル基置換度2.4)、セルロースアセテートプロピオネートにとっては良溶剤であり、セルロースの酢酸エステル(アセチル基置換度2.8)にとっては貧溶剤である。
 良溶剤の例には、メチレンクロライドなどの有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられるが、特に限定されない。特に好ましくはメチレンクロライド又は酢酸メチルが挙げられる。
 貧溶剤の例には、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が挙げられるが、特に限定されない。また、ドープ中の水の含有量は0.01~2質量%の範囲内であることが好ましい。
 ドープの溶剤は、フィルム製膜工程で乾燥によりフィルムから除去及び回収される。回収溶剤を再利用して用いることができる。回収溶剤中に添加剤、例えば可塑剤、紫外線吸収剤、ポリマー、モノマー成分などが微量含有されていることもあるが、これらが含まれていても好ましく再利用することができるし、必要であれば精製して再利用することもできる。
 ドープの調製におけるセルロースエステルの溶解は、一般的な方法を用いることができる。加圧をしながら加熱すれば、常圧における沸点以上の温度にまで加熱できる。常圧での溶剤の沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で溶液を撹拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止できる。また、セルロースエステルを貧溶剤と混合して湿潤あるいは膨潤させた後、更に良溶剤を添加して溶解することも好ましい。
 加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶剤の蒸気圧を発現させる方法によって行ってもよい。加熱は外部から行うことが好ましく、一方、例えばジャケットタイプヒーターは温度コントロールが容易で好ましい。
 加熱温度が高い方が、セルロースエステルの溶解性が向上するので好ましい。一方、加熱温度が高過ぎると、反応圧力が高くなり生産性が低下する。好ましい加熱温度は45~120℃であり、60~110℃がより好ましく、70℃~105℃の範囲内が更に好ましい。また、圧力は設定温度で溶剤が沸騰しないように調整される。
 ドープの調製には、冷却溶解法も好ましく用いられる。冷却溶解法によって酢酸メチルなどの溶剤にセルロースエステルを溶解させることができる。
 次に、セルロースエステル溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材の絶対濾過精度は、不溶物等を除去するために小さい方が好ましい。しかしながら、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生しやすい。このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001~0.008mmの範囲の濾材がより好ましく、0.003~0.006mmの範囲の濾材が更に好ましい。
 濾過材の材質は特に制限はなく、通常の濾過材を使用することができる。ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾過材は、繊維の脱落などがなく好ましい。濾過により、原料のセルロースエステルに含まれていた不純物、特に輝点異物を除去及び低減することが好ましい。
 輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間に光学フィルムを配置し、一方の偏光板の側から光を当てて、他方の偏光板の側から観察したときに反対側からの光が漏れて見える点(異物)のことである。0.01mm以上の径を有する輝点数が200個/cm以下であることが好ましく、より好ましくは100個/cm以下であり、更に好ましくは50個/cm以下であり、更に好ましくは0~10個/cm以下である。また、0.01mm以下の輝点も少ない方が好ましい。
 セルロースエステル溶液の濾過は、通常の方法で行うことができる。常圧での溶剤の沸点以上で、かつ加圧下で溶剤が沸騰しない範囲の温度で濾過すると、濾過前後の濾圧の差(差圧という)の発現が小さく好ましい。好ましい温度は45~120℃であり、45~70℃がより好ましく、45~55℃の範囲内であることが更に好ましい。濾過環境の圧力は小さい方が好ましく、1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。
 (ドープの流延、乾燥、剥離工程)
 次に、ドープを流延する。流延(キャスト)工程における金属支持体の表面は、鏡面仕上げされていることが好ましい。金属支持体は、ステンレススティールベルト、若しくは鋳物で表面をメッキ仕上げしたドラムが好ましい。キャストの幅は1~4mの範囲内とすることができる。
 流延工程の金属支持体の表面温度は-50℃~溶剤の沸点未満の温度で設定されうる。金属支持体の表面温度が高い方が、ウェブの乾燥速度が速くできるので好ましい。一方、金属支持体の表面温度が高過ぎると、ウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度は0~40℃の範囲であり、5~30℃の範囲が更に好ましい。また、金属支持体を冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい。
 金属支持体の温度を制御する方法は制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は目的の温度よりも高い温度の風を使う場合がある。
 得られる光学フィルムの平面性を高めるために、金属支持体から剥離するときのウェブ中の残留溶媒量は、10~150質量%の範囲が好ましく、更に好ましくは20~40質量%の範囲又は60の範囲~130質量%の範囲であり;特に好ましくは、20~30質量%の範囲又は70~120質量%の範囲内である。
 本発明においては、残留溶媒量は下記式で定義される。下記式において、“M”は、製造中又は製造後の任意の時点で採取したウェブ又はフィルムの質量である。“N”は、当該ウェブ又はフィルムを115℃で1時間加熱した後の質量である。
 残留溶媒量(質量%)={(M-N)/N}×100
 (延伸工程)
 金属支持体から剥離されたウェブは、延伸されることが好ましい。具体的には、ウェブの両端をクリップ等で把持するテンター方式で幅方向(横方向)に延伸されることが好ましい。剥離張力は300N/m以下とすることが好ましい。
 金属支持体から剥離されたウェブを延伸することで、屈折率制御(リターデーションの制御)を行うことが好ましい。
 延伸は、例えばフィルムの長手方向(製膜方向)又はそれとフィルム面内で直交する方向(即ち幅手方向)に一軸延伸するか、又は両方向に逐次又は同時に二軸延伸することができる。同時二軸延伸には、一方向に延伸し、もう一方を張力を緩和して収縮させることも含まれる。
 互いに直交する二軸方向の延伸倍率は、それぞれ最終的には流延方向に0.8~1.5倍の範囲、幅方向に1.1~2.5倍の範囲とすることが好ましく;流延方向に0.9~1.0倍の範囲、幅方向に1.2~2.0倍の範囲とすることが好ましい。
 延伸温度は120℃~200℃の範囲が好ましく、さらに好ましくは140℃~180℃の範囲である。延伸時のフィルム中の残留溶媒は20~0%の範囲が好ましく、さらに好ましくは15~0%の範囲である。
 ウェブを延伸する方法は特に限定されない。例えば、複数のローラーに周速差をつけ、その間でローラー周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、同様に横方向に広げて横方向に延伸する方法、あるいは縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。これらの方法を組み合わせてもよい。また、いわゆるテンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸を行うことができ、破断等の危険性が減少できる。
 製膜工程のこれらの幅保持あるいは横方向の延伸はテンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。なお、搬送方向と幅方向を同時に延伸しても、逐次延伸を行ってもよい。
 (フィルム乾燥工程)
 延伸されたフィルムをさらに乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下とし、特に好ましくは0.01質量%以下とする。フィルム乾燥工程では一般にローラー乾燥方式(上下に配置した多数のローラーにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
 延伸フィルムを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ローラー、マイクロ波等で行うことができるが、簡便さの点から熱風で行うことが好ましい。ウェブの乾燥工程における乾燥温度は40~200℃の範囲で段階的に高くしていくことが好ましい。
 なお、ここでは溶液流延製膜法について述べたが、溶融流延製膜法でフィルムを製造することを妨げるものではない。
 <光学フィルムの特性>
 本発明の光学フィルムの膜厚は特に限定されないが、10~200μmの範囲であることが好ましく、10~100μmの範囲であることがより好ましく、更に好ましくは20~60μmの範囲である。この範囲であれば、フィルムの膜厚に依存する透湿度の改善と、リターデーションの発現性が両立できるため好ましい。また、この範囲の膜厚の光学フィルムのスリッティング特性もよくなる。
 本発明の光学フィルムの幅は、1~4mの範囲が好ましく、1.4~4mの範囲がより好まし、特に好ましくは1.6~3mの範囲である。4mを超えると搬送が困難となる。
 本発明の光学フィルムの透湿度は、40℃、90%RHで10~1200g/m・24hの範囲が好ましい。透湿度はJIS Z 0208:1976に記載の方法に従って測定することができる。
 本発明の光学フィルムの破断伸度は、10~80%の範囲であることが好ましい。破断伸度は、JIS-K7127-1999に準拠した測定で求められる。
 本発明の光学フィルムの可視光透過率は90%以上であることが好ましく、93%以上であることが更に好ましい。日立製作所社製のU-4000自記分光光度計を用い、JIS Z 8722で測定されている方法に準拠して、380~780nmにおける可視光透過率(Tv)を測定した。
 本発明の光学フィルムのヘイズは1%未満であることが好ましく0~0.1%の範囲であることが特に好ましい。ヘイズ計(1001DP型、日本電色工業(株)製)を用いて測定する。
 本発明の光学フィルムの耐湿熱性は、湿度変化に対する寸法変化により評価することができる。熱湿変化に対する寸法変化の評価は、以下の方法で行われる。作製した光学フィルムの流延方向に、目印(十字)を2か所つける。これを、温度60℃、相対湿度90%RHで1000時間処理する。処理前と処理後の目印(十字)同士の距離を光学顕微鏡で測定する。下記式で寸法変化率(%)を算出する。
 寸法変化率(%)=〔(a1-a2)/a1〕×100
 a1:湿熱処理前の距離
 a2:湿熱処理後の距離
 液晶表示装置の偏光板用保護フィルムが吸湿により寸法が変化すると、ムラや位相差値の変化が発生し、コントラストの低下や色ムラといった問題を発生させる。特に屋外で使用される液晶表示装置に用いられる偏光板保護フィルムには、この問題が顕著に発生しやすい。そこで、本発明の光学フィルムを液晶表示装置の偏光板用保護フィルムとして用いる場合は、寸法変化率(%)が0.5%未満とすることが好ましく、0.3%未満であることがより好ましい。このような寸法変化率であれば、十分な低吸湿性を示す光学フィルムであると評価できる。
 本発明の光学フィルムに、液晶層や樹脂層を塗布形成し、さらにそれを延伸してもよい。それにより得られる積層フィルムは、さらに広い範囲にわたる位相差値を有しうる。
 <光学フィルムの用途>
 本発明の光学フィルムは、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等の各種表示装置に用いられる機能フィルムであることが好ましい。具体的には、本発明の光学フィルムは、液晶表示装置用の偏光板保護フィルム、位相差フィルム、反射防止フィルム、輝度向上フィルム、ハードコートフィルム、防眩フィルム、帯電防止フィルム、視野角拡大等の光学補償フィルムなどでありうる。典型的には、本発明の光学フィルムは、偏光板保護フィルム、位相差フィルム、光学補償フィルムである。本発明の光学フィルムは、位相差フィルムと偏光板保護フィルムとを兼ねることができる。
 (光学補償フィルム)
 液晶ディスプレイは、異方性を持つ液晶材料や偏光板を使用するために正面から見た場合に良好な表示が得られても、斜めから見ると表示性能が低下するという視野角の問題がある。そのため、液晶ディスプレイの性能向上のためには視野角補償板が必要である。平均的な液晶セルの屈折率分布は、セルの厚さ方向で大きく、面内方向でより小さい。そのため、視野角補償板は、この異方性を相殺しなければならない。つまり、視野角補償板は、膜厚方向の屈折率が面内方向より小さな屈折率を有すること、いわゆる負の一軸性構造を有することが有効である。本発明の光学フィルムは、そのような機能を有する光学補償フィルムともなりうる。
 本発明の光学フィルムをVAモードの液晶セルに使用する場合、セルの両側に1枚ずつ合計2枚の光学フィルムを使用してもよいし(2枚型)、セルの上下のいずれか一方の側にのみ光学フィルムを使用してもよい(1枚型)。
 本発明の光学フィルムは、下記式で表される面内方向のリターデーション値Roが23℃、55%RHの環境下で、測定波長が590nmにおいて20~150nmの範囲内であることが好ましく、40nm~130nmの範囲内がさらに好ましい。厚さ方向のリターデーション値Rth値は23℃、55%RHの環境下で、測定波長が590nmにおいて70~350nmの範囲内であることが好ましく、170nm~270nmの範囲内がさらに好ましい。これらのリターデーション値は自動複屈折計KOBRA-WPR(王子計測機器)を用いて測定することができる。
  式(I)  Ro=(n-n)×d
  式(II)  Rth={(n+n)/2-nz}×d
(nは、光学フィルムの面内方向において屈折率が最大になる方向xにおける屈折率を表し、nは光学フィルムの面内方向において、前記方向xと直交する方向yにおける屈折率を表し、nは、光学フィルムの厚さ方向zにおける屈折率を表し、d(nm)は光学フィルムの厚さを表す。)
 本発明の光学フィルムは、フィルム面内に遅相軸又は進相軸を有し、遅相軸又は進相軸と製膜方向の軸とのなす角度“θ1”は、-1°以上+1°以下であることが好ましく、-0.5°以上+0.5°以下であることがより好ましい。θ1は配向角として定義でき、θ1の測定は、自動複屈折計KOBRA-WPR(王子計測機器)を用いて行うことができる。θ1が上記関係を満たす光学フィルムは、それを含む液晶表示装置の表示画像の輝度を高め、光漏れを抑制又は防止し、カラー液晶表示装置においては忠実に色を再現させる。
 <偏光板>
 本発明の光学フィルムは、偏光板及びそれを具備する液晶表示装置に使用することができる。本発明の光学フィルムは、偏光板保護フィルムと位相差フィルムとを兼ねたフィルムとされることが好ましい。その場合には、偏光板保護フィルムとは別個の位相差フィルムを用意する必要がない。そのため、液晶表示装置の厚さを薄くでき、製造プロセスを簡略化することができる。
 偏光板は、偏光子と、偏光子の一方又は両方の面に張り合わされた偏光板保護フィルムを有する。
 偏光子とは、一定方向の偏波面の光だけを通す素子であり、代表的な偏光子は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。
 偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行って得る。偏光子の膜厚は5~30μmの範囲内が好ましく、特に10~20μmの範囲内であることが好ましい。
 本発明の偏光板は、一般的な方法で作製されうる。本発明の光学フィルムの偏光子に貼り付ける表面をアルカリ鹸化処理する。ヨウ素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、本発明の光学フィルムを、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせる。偏光子のもう一方の面には、他の従来の偏光板保護フィルムを貼り合わせてもよい。
 従来の偏光板保護フィルムの例には、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC6UY、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC8UX-RHA、KC8UXW-RHA-C、KC8UXW-RHA-NC、KC4UXW-RHA-NC、以上コニカミノルタアドバンストレイヤー(株)製)などが含まれる。
 <液晶表示装置>
 本発明の液晶表示装置は、本発明の光学フィルムを含む偏光板を具備する。具体的には、液晶セルの少なくとも一方に配置された偏光板に、本発明の光学フィルムが含まれ;当該偏光板の液晶セル側のフィルムが、本発明の光学フィルムである。
 本発明の液晶表示装置において、液晶セルの一方又は両方の面に、偏光板が粘着層を介して貼り合わされていることが好ましい。
 本発明の液晶表示装置の表面側に用いられる偏光板保護フィルムには、防眩層あるいはクリアハードコート層の他、反射防止層、帯電防止層、防汚層、バックコート層を有することが好ましい。
 本発明の光学フィルムや偏光板は、STN、TN、OCB、HAN、VA(MVA、PVA)、IPS、OCBなどの各種駆動方式の液晶表示装置に用いることができる。特にVA(MVA、PVA)型液晶表示装置に用いられることが好ましい。特に、30型以上の大画面の液晶表示装置に用いられても、光漏れによる黒表示時の着色を低減し、正面コントラストなど視認性を高めうる。このように、本発明の液晶表示装置は種々の視認性に優れる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 実施例1
 実施例1で使用するセルロースエステルの詳細を示す。
 セルロースエステルA:アセチル基置換度2.40である数平均分子量70000のセルロースジアセテート(表中、DACと記載)
 セルロースエステルB:アセチル基置換度1.58、プロピオニル基置換度0.9、総アシル基置換度2.48である数平均分子量70000のセルロースアセテートプロピオネート(表中、CAPと記載)
 セルロースエステルC:アセチル基置換度2.85である数平均分子量70000のセルローストリアセテート(表中TACと記載)
 <光学フィルム101の作製>
 〈微粒子分散液の調製〉
 11.3質量部の微粒子(アエロジル R972V 日本アエロジル(株)製)と、84質量部のエタノールとを、ディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散した。
 〈微粒子添加液1の調製〉
 溶解タンク中の十分撹拌されているメチレンクロライド(100質量部)に、5質量部の微粒子分散液を、ゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。
 <主ドープの調製>
 下記組成の主ドープを調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースエステルAを撹拌しながら投入し、これを加熱し、撹拌しながら完全に溶解した。
 〈主ドープの組成〉
 メチレンクロライド                  340質量部
 エタノール                       60質量部
 セルロースエステルA                 100質量部
 リターデーション発現剤:例示化合物A-034       3質量部
 糖エステル 下記化合物                  5質量部
 微粒子添加液1                      1質量部
Figure JPOXMLDOC01-appb-C000021
 更に上記添加剤成分を密閉容器に投入し、撹拌しながら溶解して、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープを調製した。次いで、無端ベルト流延装置を用い、ドープを温度31℃、1500mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は28℃に制御した。
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させた。次いで、剥離張力128N/mで、ステンレスベルト支持体上から剥離した。剥離したフィルムを、142℃の熱をかけながらテンターを用いて幅方向に24%延伸した。延伸開始時の残留溶媒は17%であった。
 次いで、乾燥ゾーンを多数のローラーで搬送させながら乾燥を終了させた。乾燥温度は120℃で、搬送張力は122N/mとした。以上のようにして、乾燥膜厚40μmの光学フィルム101を得た。
 <光学フィルム102~148の作製>
 光学フィルム101の作製において、セルロースエステルの種類とリターデーション発現剤である一般式(1)で表される化合物の例示化合物の種類と量(質量部)のみを表1及び表2のように変更した以外は同様にして、本発明の光学フィルム102~136と比較の光学フィルム137~148を作製した。使用したセルロースエステルA(DAC)に代わるセルロースエステルの添加量は、セルロースエステルA(DAC)と同じ質量部とした。
 比較の光学フィルム137~145の製造に使用したリターデーション発現剤(C-001~C-007)の構造を示す。
Figure JPOXMLDOC01-appb-C000022
 《光学フィルムの評価》
 作製した光学フィルム101~148について、以下の評価を行った。評価結果を表1及び表2に示す。
 (リターデーション)
 アッベ屈折率計(4T)を用いて光学フィルムの平均屈折率を測定した。また、市販のマイクロメーターを用いて光学フィルムの厚さを測定した。
 自動複屈折計KOBRA-WPR(王子計測機器(株)製)を用いて、23℃、55%RHの環境下24時間放置した光学フィルムにおいて、同環境下、波長が590nmにおいて光学フィルムのリターデーションの測定を行った。平均屈折率と膜厚を下記式に入力し、面内方向のリターデーション値Ro、厚さ方向のリターデーション値Rthの値を求めた。遅相軸の方向も同時に測定した。下記式において、nはフィルム面内の最大屈折率、nはnと直交方向の屈折率、nはフィルム厚さ方向の屈折率、dはフィルムの厚さ(nm)を表す。
  式(I)  Ro=(n-n)×d
  式(II)  Rth={(n+n)/2-n}×d
 (内部ヘイズ値)
 作製したセルロースアセテートフィルムを、23℃55%RHの環境にて5時間以上調湿した後、下記方法により内部ヘイズ値を評価した。
 〈内部ヘイズ測定装置〉
 ヘイズメーター(濁度計)(型式:NDH 2000、日本電色工業(株)製)
 光源は、5V9Wハロゲン球、受光部は、シリコンフォトセル(比視感度フィルター付き)を用いた。
 本発明のセルロースアセテートフィルムは、この装置にてフィルム屈折率±0.05の屈折率の溶剤をフィルム上に滴下した場合のフィルムのヘイズ測定において、その値が0.05以下であることが好ましい。測定条件はJIS K-7136に準じて測定した。
 内部ヘイズ測定は以下のように行う。図1~図4を持って説明する。
 まず、フィルム以外の測定器具のブランクヘイズ1を測定する。
 1.きれいにしたスライドガラスの上にグリセリンを一滴(0.05ml)たらす。このとき液滴に気泡が入らないように注意する。ガラスは見た目がきれいでも汚れていることがあるので必ず洗剤で洗浄したものを使用する。(図1参照。)
 2.その上にカバーガラスを乗せる。カバーガラスは押さえなくてもグリセリンは広がる。
 3.ヘイズメーターにセットしブランクヘイズ1を測定する。
 次いで以下の手順で、試料を含めたヘイズ2を測定する。
 4.スライドガラス上にグリセリンを0.05ml滴下する(図1参照。)。
 5.その上に測定する試料フィルムを気泡が入らないように乗せる(図2参照。)。
 6.試料フィルム上にグリセリンを0.05ml滴下する(図3参照。)。
 7.その上にカバーガラスを載せる(図4参照。)。
 8.上記のように作製した積層体(上から、カバーガラス/グリセリン/試料フィルム/グリセリン/スライドガラス)をヘイズメーターにセットしヘイズ2を測定する。
 9.(ヘイズ2)-(ヘイズ1)=(本発明のセルロースアセテートフィルムの内部ヘイズ)を算出する。
 上記ヘイズの測定は全て23℃55%RHにて行った。
 また、上記測定にて使用したガラス、グリセリンは以下のとおりである。
 ガラス:MICRO SLIDE GLASS S9213 MATSUNAMI
 グリセリン: 関東化学製 鹿特級(純度>99.0%) 屈折率1.47
 (ブリードアウト耐性)
 耐久性を、以下に説明するブリードアウト耐性で評価した。光学フィルムを、80℃、90%RHの高温高湿雰囲気下で1000時間放置後、光学フィルム表面のブリードアウト(結晶析出)の有無を目視観察した。観察結果から、下記基準に従って評価を行った。評価A及びBが実用上問題ないレベルと判断した。
 A:表面にブリードアウトの発生が全く認められない
 B:表面で、部分的なブリードアウトが僅かに認められる
 C:表面で、全面にわたりブリードアウトが僅かに認められる
 D:表面で、全面にわたり明確なブリードアウトが認められる
 (耐湿熱性:熱湿変化に対する寸法変化)
 作製した光学フィルムの流延方向に、目印(十字)を2か所つけて60℃、90%RHで1000時間処理し、処理前と処理後の目印(十字)の距離を光学顕微鏡で測定した。測定結果から、下記基準で寸法変化を評価することで、光学フィルムの耐久性として、耐湿熱性を評価した。
 寸法変化率(%)=〔(a1-a2)/a1〕×100 (a1は湿熱処理前の距離、a2は湿熱処理後の距離を表す)
 A:0.3%未満
 B:0.3%以上、0.5%未満
 C:0.5%以上、0.7%未満
 D:0.7%以上
 (相溶性評価)
 光学フィルムの製造における延伸前のフィルムを、120℃で15分乾燥させて、当該フィルムのヘイズをヘイズ計(1001DP型、日本電色工業(株)製)を用いて測定した。測定結果から、下記基準に従って評価を行った。評価A及びBが、実用上問題ないレベルと判断した。
 A:ヘイズが0.5%未満
 B:ヘイズが0.5~1.0%未満
 C:ヘイズが1.0~1.5%未満
 D:ヘイズが1.5%以上
 E:化合物が析出
 (延伸後のヘイズ)
 作製した光学フィルムのヘイズをヘイズ計(1001DP型、日本電色工業(株)製)を用いて測定した。測定結果から、下記基準に従って評価を行った。評価A及びBが実用上問題ないレベルと判断した。
 A:ヘイズが0.5%未満
 B:ヘイズが0.5~1.0%未満
 C:ヘイズが1.0~1.5%未満
 D:ヘイズが1.5%以上
 E:化合物が析出
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 表1及び表2に示されるように、実施例の光学フィルム101~136は、比較例の光学フィルム137~148に比べて、リターデーションの発現性に優れ、かつ内部ヘイズ、相溶性(ヘイズ)、及び耐久性(ブリードアウト耐性)が良好であり、実用上優れた光学フィルムであることが分かる。
 比較化合物C-001~C-007を使用した光学フィルム137~145の結果との比較から、リターデーション発現剤としての化合物に特定の置換基があると、内部ヘイズの値が低くなり、相溶性及びリターデーション発現性が向上することが分かる。
 また、比較化合物C-006を使用した光学フィルム139は、光学フィルム作製時に、フィルム中の残留溶媒量が75%になるまで溶媒を蒸発させる工程において、化合物が析出したため、内部ヘイズ及びリターデーション値を測定することができなかった。
 実施例の光学フィルム101~136、特に129~136の結果から、本発明のリターデーション発現剤を含む光学フィルムは大きな位相差を発現し、リターデーション発現剤の添加量を増量してもセルロースエステルに相溶するため、内部ヘイズが低く、リターデーション値が高い、優れた光学フィルムであることが分かる。
 実施例2
 実施例1の光学フィルム104の作製で用いた主ドープを用いて、流延時のドープの流量を変化させて、表2に示す膜厚の光学フィルム201~206を作製した。流延時のドープの流量以外は、実施例1と同様にして作製した。光学フィルム201~206についてリターデーション、スリィッティング適性、ブリードアウト耐性について評価し、表3に示した。その際、比較例として実施例1で作製した光学フィルム137を加えた。
 なお、脆性については以下の評価方法で評価した。
 (スリィッティング適性)
 脆性を、以下に説明するスリッティング適性で評価した。油圧卓上プレス機に60°の摩耗させた上刃、90°の下刃を30μmの間隔になるようにして取り付けた。両刃の間に各光学フィルムを置き、上刃の下降速度を6m/分で、幅90cm、長さ100cmの大きさの試料を100本連続して切り出した。裁断した試料の破断面を、光学顕微鏡を用いて50倍で観察して、切れ味を比較した。バリやへき開、切断できない、切りくずの発生等何らかの不良が発生したフィルムの発生本数を数え、不良率を計算し、下記の基準に従ってスリッティング適性の評価を行った。評価A及びBが、実用上問題ないレベルと判断した。
 A:不良率が2%未満
 B:不良率が2~5%未満
 C:不良率が5~10%未満
 D:不良率が10%以上
Figure JPOXMLDOC01-appb-T000025
 表3から明らかなように、実施例の光学フィルム201~206はリターデーション発現性に優れ、かつ脆性(スリッティング適性)及び耐久性(ブリードアウト耐性)に優れている。更に、膜厚が20~60μmの範囲にある光学フィルム202~205は、特にその効果が高いことが分かる。
 比較例の光学フィルム137は膜厚が40μmであるが、脆性(スリッティング適性)及び耐久性(ブリードアウト耐性)が共に劣っていた。
 実施例3
 <偏光板の作製と評価>
 厚さ120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。得られた延伸フィルムを、ヨウ素0.069g、ヨウ化カリウム4.5g、水100gからなる水溶液に52秒間浸漬し、次いでヨウ化カリウム6.5g、ホウ酸7.0g、水100gからなる60℃の水溶液に浸漬した。これを水洗、乾燥して偏光子とした。
 次いで、下記工程1~5に従って、偏光子の一方の面に、光学フィルム101~148、及び光学フィルム201~206を貼り合わせ;かつ偏光子の他方の面に、コニカミノルタタックKC4UY(コニカミノルタアドバンストレイヤー(株)製セルロースエステルフィルム)を貼り合わせて、偏光板101~147、及び偏光板201~206を作製した。
 工程1:光学フィルム101~148、光学フィルム201~206を、60℃の2モル/Lの水酸化ナトリウム溶液に95秒間浸漬し、次いで水洗し乾燥して、偏光子と貼合する側を鹸化した光学フィルムを得た。
 工程2:偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1~2秒浸漬し、その後、偏光子に付着した過剰の接着剤を軽く拭き除いた。
 工程3:工程2で得た偏光子を、工程1で処理した光学フィルム上に配置した。
 工程4:工程3で得た積層体における光学フィルムと偏光子とを、圧力20~30N/cm、搬送スピード約2m/分で貼合した。
 工程5:80℃の乾燥機中に工程4で作製した積層体の偏光子と、コニカミノルタタックKC4UYとを貼り合わせて2分間乾燥し、偏光板101~148、偏光板201~206を作製した。
 作製した偏光板の耐久性を、以下のとおり評価した。結果を表4及び表5に示す。
 (耐光性)
 強制劣化未処理試料の平行透過率(H0)と直行透過率(H90)を測定した。測定値から、下式に従って偏光度P0を算出した。その後、各偏光板をサンシャインウェザーメーター500時間、UVカットフィルター無しの条件で強制劣化処理を施した。その後、再度、平行透過率(H0′)と直行透過率(H90′)を測定した。測定値から、下記式に従って強制劣化処理後の偏光度P500を算出した。
 偏光度P0=〔(H0-H90)/(H0+H90)〕1/2×100
 偏光度P500=〔(H0′-H90′)/(H0′+H90′)〕1/2×100
 算出された偏光度P0と偏光度P500から、下式に従って偏光度変化量を下記式により求めた。
 偏光度変化量=P0-P500
 求めた偏光度変化量を、以下の基準にて耐光性の評価を行った。評価A及びBが実用上問題ないレベルと判断した。
 A:偏光度変化量が2%未満
 B:偏光度変化量が2%以上10%未満
 C:偏光度変化量が10%以上25%未満
 D:偏光度変化量が25%以上
 (耐湿熱性)
 500mm×500mmの偏光板を2枚用意した。それぞれを熱処理(条件:70℃、90%RHで100時間放置する)した。2枚の偏光板を直交ニコル状態になるように積層した。積層体の一方の面から光を照射したときに、他方の面の縁部分に生じる白抜け部分の長さを測定した。測定対象とした白抜け部分は、偏光板の四つの縁部分のそれぞれ中心付近に生じる複数の白抜け部分のうち、最も長い白抜け部分とする。縁部分に生じる白抜けは、直交ニコル状態で光を通さない偏光板の縁の部分で光が通っている状態を意味しており、偏光板の縁の部分で画像表示がされない故障の原因となる。
 測定した白抜け部分の長さの、偏光板の一辺の長さ(500mm)に対する比率を算出した。当該比率から、以下の基準に基づいて耐湿熱性を評価した、評価A及びBが実用上問題ないレベルと判断した。
 A:縁の白抜けが5%未満(偏光板として問題ないレベル)
 B:縁の白抜けが5%以上10%未満(偏光板として問題ないレベル)
 C:縁の白抜けが10%以上20%未満(偏光板として何とか使えるレベル)
 D:縁の白抜けが20%以上(偏光板として問題のあるレベル)
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 表4及び表5から明らかなように、実施例の偏光板101~136、及び偏光板201~206は、比較の偏光板137~148に比べて耐光性、耐湿熱性が良好な実用上優れた偏光板である。比較化合物C-001~C-007を使用した偏光板137~145の結果との比較から、リターデーション発現剤の化合物が特定の構造と置換基を有することで、本発明の目的を達成することができることが分かる。
 実施例1の光学フィルム101~136の結果から、本発明のリターデーション発現剤を含む光学フィルムの位相差は大きく、リターデーション発現剤の添加量を増量しても、リターデーション発現剤がセルロースエステルに相溶する。そのため、本発明の偏光板101~136は実用上優れた偏光板となる。
 実施例4
 <液晶表示装置の作製と評価>
 視野角測定を行う液晶パネルを以下のようにして作製し、液晶表示装置の特性を評価した。SONY製40型ディスプレイKLV-40J3000における、液晶セルに貼合されていた両面の偏光板を剥がした。その代わりに、作製した偏光板101~148、偏光板201~206をそれぞれ液晶セルのガラス面の両面に貼合した。偏光板の貼り合わせは、実施例及び比較例の光学フィルムが液晶セル側となるように、かつ、貼り合わせる偏光板の吸収軸の方向があらかじめ貼合されていた偏光板の吸収軸の方向と同一になるように行った。このようにして、液晶表示装置101~148、及び液晶表示装置201~206を各々作製した。
 上記のようにして作製した液晶表示装置について、以下に記載した評価を行った。その結果を表6及び表7に示す。
 (正面コントラストムラ)
 23℃55%RHの環境で、各々の液晶表示装置のバックライトを1週間連続点灯した。その後、液晶表示装置の白表示と黒表示の表示画面の法線方向からの輝度を測定した。測定にはELDIM社製EZ-Contrast160Dを用いた。測定した輝度の比を正面コントラストとした。正面コントラストは、式(表示装置の法線方向から測定した白表示の輝度/表示装置の法線方向から測定した黒表示の輝度)で定義される。
 液晶表示装置の表示画面の任意の5点の正面コントラストを測定し、以下の基準にて評価した。評価A及びBが実用上問題ないレベルと判断した。
 A:正面コントラストが0~5%未満のばらつきであり、ムラが小さい
 B:正面コントラストが5~10%未満のばらつきであり、ムラがややある
 C:正面コントラストが10%以上のばらつきであり、ムラが大きい
 (視野角劣化)
 25℃50%RHの環境下に5時間置かれた液晶表示装置の視野角測定を行った。続いて、当該液晶表示装置を25℃20%RHの環境下に5時間おき、液晶表示装置の視野角測定を行った。次に、当該液晶表示装置を25℃80%RHの環境下に5時間おき、液晶表示装置の視野角を測定した。最後に当該液晶表示装置を、再度25℃50%RHの環境下に5時間おき、液晶表示装置の視野角を測定し、前記測定の際の変化が可逆変動であることを確認した。なお、視野角測定は、液晶表示装置に白表示と黒表示の表示画面を点灯し、ELDIM社製EZ-Contrast160Dを用いて、コントラスト10:1を維持できる角度を視野角とした。
 これらの測定結果から、下記基準にて視野角劣化を評価した。評価A及びBが、実用上問題ないレベルと判断した。
 A:視野角変動が認められない
 B:視野角変動がやや認められる
 C:視野角変動が認められる
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 表6及び表7から明らかなように、実施例の偏光板101~136、及び偏光板201~206を具備する液晶表示装置101~136、及び液晶表示装置201~206は、比較例の偏光板137~148を用いた液晶表示装置137~148に比べて正面コントラストムラが良好で、湿度が変動する条件下でも視野角変動が少ない。このように、極めて安定かつ、耐久性に優れた液晶表示装置であることが分かる。
 比較化合物C-001~C-007を使用した偏光板137~145の結果との比較から、リターデーション発現剤が特定の構造と置換基を有することで、本発明の課題を達成できることが分かる。
 本発明の光学フィルムは、高いリターデーション発現性を有し、ブリードアウトが抑制され、かつ内部ヘイズが低く、脆性に優れ、加えて耐光性、耐湿熱性の高い光学フィルムであることから、特に、液晶表示装置の光学フィルム、なかでも光学補償機能を有する偏光板保護フィルムとして好ましく用いられる。それにより、液晶表示装置の正面コントラストムラを抑制し、視野角を向上させることができる。
 GL スライドガラス
 gr グリセリン
 F 試料フィルム

Claims (10)

  1.  セルロースエステルを含有する光学フィルムであって、分子量が280~380の範囲内にある下記一般式(1)で表される化合物を含有することを特徴とする光学フィルム。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは、酸素原子、窒素原子又は硫黄原子を表し、Xは、酸素原子、硫黄原子、窒素原子又はNRを表し、Xは、酸素原子又は硫黄原子を表す。Rは、水素原子、アルキル基、アリール基、ヘテロ環基又はヘテロアリール基を表す。Rは、置換基を表す。Lは、O、OCO、COO、NRCO、SONR、SO、SOO、NRSO又はOSOを表す。Rは水素原子、アルキル基又はアリール基を表す。Rは、アリール基又はアルキル基を表す。mは、0~2の整数を表す。nは、1~3の整数を表し、nが2以上の場合、複数のL及びRは同じでも異なっていても良い。L及びRの置換位置は、3位、4位、5位のいずれかであり、破線部は、単結合若しくは二重結合を表す。)
  2.  前記一般式(1)で表される化合物において、LがOCO又はNRCOであり、Rが水素原子、アルキル基又はアリール基であることを特徴とする請求項1に記載の光学フィルム。
  3.  前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物であることを特徴とする請求項1又は請求項2に記載の光学フィルム。
    Figure JPOXMLDOC01-appb-C000002
    (式中、X、X及びXは、前記一般式(1)のX、X及びXと同義である。L及びRは、前記一般式(1)のL及びRと同義である。Rは、前記一般式(1)のRと同義である。mは、前記一般式(1)のmと同義である。破線部は、単結合若しくは二重結合を表す。)
  4.  前記一般式(2)で表される化合物のmが、0であることを特徴とする請求項3に記載の光学フィルム。
  5.  前記一般式(2)で表される化合物が、下記一般式(3)で表される化合物であることを特徴とする請求項3又は請求項4に記載の光学フィルム。
    Figure JPOXMLDOC01-appb-C000003
    (式中、L及びRは、前記一般式(1)のL及びRと同義である。)
  6.  前記セルロースエステルが、下記式(a)及び(b)を満たすことを特徴とする請求項1から請求項5までのいずれか一項に記載の光学フィルム。
     式(a)  1.5≦X+Y≦2.5
     式(b)    0≦Y≦1.5
    (式中、Xはアセチル基の置換度、Yはプロピオニル基又はブチリル基、若しくはそれらの混合物の置換度を表す。)
  7.  前記光学フィルムの膜厚が、20~60μmの範囲内であることを特徴とする請求項1から請求項6までのいずれか一項に記載の光学フィルム。
  8.  23℃、55%RHの環境下で、測定波長が590nmにおいて、下記式で表される面内方向のリターデーション値Roが20~150nmの範囲内であり、厚さ方向のリターデーション値Rthが70~350nmの範囲内であることを特徴とする請求項1から請求項7までのいずれか一項に記載の光学フィルム。
     式(I)  Ro=(n-n)×d
     式(II)  Rth={(n+n)/2-n}×d
    (nは、光学フィルムの面内方向において屈折率が最大になる方向xにおける屈折率を表し、nは光学フィルムの面内方向において、前記方向xと直交する方向yにおける屈折率を表し、nは、光学フィルムの厚さ方向zにおける屈折率を表し、d(nm)は光学フィルムの厚さを表す。)
  9.  請求項1から請求項8までのいずれか一項に記載の光学フィルムが、偏光子の少なくとも一方の面に具備されたことを特徴とする偏光板。
  10.  請求項9に記載の偏光板が、液晶セルの少なくとも一方の面に具備されたことを特徴とする液晶表示装置。
PCT/JP2013/053454 2012-02-22 2013-02-14 光学フィルム、偏光板及び液晶表示装置 WO2013125420A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014500676A JP6028792B2 (ja) 2012-02-22 2013-02-14 光学フィルム、偏光板及び液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012036279 2012-02-22
JP2012-036279 2012-02-22

Publications (1)

Publication Number Publication Date
WO2013125420A1 true WO2013125420A1 (ja) 2013-08-29

Family

ID=49005607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053454 WO2013125420A1 (ja) 2012-02-22 2013-02-14 光学フィルム、偏光板及び液晶表示装置

Country Status (2)

Country Link
JP (1) JP6028792B2 (ja)
WO (1) WO2013125420A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017010161A1 (ja) * 2015-07-10 2018-04-19 コニカミノルタ株式会社 位相差フィルム、偏光板および垂直配向型液晶表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111914A (ja) * 1998-09-30 2000-04-21 Fuji Photo Film Co Ltd セルロースの低級脂肪酸エステルフイルム用レターデーション上昇剤、光学補償シートおよび液晶表示装置
JP2006188718A (ja) * 2006-04-10 2006-07-20 Fuji Photo Film Co Ltd セルロースの低級脂肪酸エステルフイルム用レターデーション上昇剤
JP2009020399A (ja) * 2007-07-13 2009-01-29 Konica Minolta Opto Inc 光学フィルム、偏光板、及び液晶表示装置
WO2012120897A1 (ja) * 2011-03-10 2012-09-13 コニカミノルタアドバンストレイヤー株式会社 位相差フィルム、偏光板、液晶表示装置及び化合物
JP2012189664A (ja) * 2011-03-09 2012-10-04 Konica Minolta Advanced Layers Inc 光学フィルム及びそれを用いた偏光板、液晶表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211744A (ja) * 1986-07-28 1987-01-20 Teijin Ltd 新規な紫外線吸収剤を用いる紫外線からの保護
EP1430038A1 (en) * 2001-08-13 2004-06-23 Ciba SC Holding AG Ultraviolet light absorbers
US20090239982A1 (en) * 2007-03-30 2009-09-24 Fujifilm Corporation Ultraviolet Absorbent and Heterocyclic Compound
JP5244437B2 (ja) * 2008-03-31 2013-07-24 富士フイルム株式会社 紫外線吸収剤組成物
JP2010077064A (ja) * 2008-09-25 2010-04-08 Fujifilm Corp 高分子材料
JP5342896B2 (ja) * 2009-02-19 2013-11-13 富士フイルム株式会社 ヘテロ環化合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111914A (ja) * 1998-09-30 2000-04-21 Fuji Photo Film Co Ltd セルロースの低級脂肪酸エステルフイルム用レターデーション上昇剤、光学補償シートおよび液晶表示装置
JP2006188718A (ja) * 2006-04-10 2006-07-20 Fuji Photo Film Co Ltd セルロースの低級脂肪酸エステルフイルム用レターデーション上昇剤
JP2009020399A (ja) * 2007-07-13 2009-01-29 Konica Minolta Opto Inc 光学フィルム、偏光板、及び液晶表示装置
JP2012189664A (ja) * 2011-03-09 2012-10-04 Konica Minolta Advanced Layers Inc 光学フィルム及びそれを用いた偏光板、液晶表示装置
WO2012120897A1 (ja) * 2011-03-10 2012-09-13 コニカミノルタアドバンストレイヤー株式会社 位相差フィルム、偏光板、液晶表示装置及び化合物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017010161A1 (ja) * 2015-07-10 2018-04-19 コニカミノルタ株式会社 位相差フィルム、偏光板および垂直配向型液晶表示装置

Also Published As

Publication number Publication date
JPWO2013125420A1 (ja) 2015-07-30
JP6028792B2 (ja) 2016-11-16

Similar Documents

Publication Publication Date Title
JP5728921B2 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP5201135B2 (ja) 光学補償フィルムとそれを用いた偏光板及び液晶表示装置
JP5446871B2 (ja) 光学補償フィルム、及びそれを用いた偏光板及び液晶表示装置
JP5920336B2 (ja) 位相差フィルム、偏光板、液晶表示装置及び化合物
JP5569437B2 (ja) 光学フィルム及びそれを用いた偏光板、液晶表示装置
JP5786402B2 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
WO2012077587A1 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
WO2009119142A1 (ja) セルロースエステルフィルム
JP5741850B2 (ja) 光学フィルム、それを含む偏光板および液晶表示装置
JP5857713B2 (ja) 光学フィルム、偏光板、及び液晶表示装置
JP5428045B2 (ja) 液晶表示装置
JP5724705B2 (ja) 光学フィルム、それを用いた偏光板及び液晶表示装置
WO2013125419A1 (ja) 光学フィルム、偏光板及び液晶表示装置
JP5233935B2 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置並びにリターデーション発現剤
JP6287211B2 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP5794096B2 (ja) 光学フィルム、偏光板、および液晶表示装置
JP5299110B2 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP6028792B2 (ja) 光学フィルム、偏光板及び液晶表示装置
JP5617769B2 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP5435030B2 (ja) セルロースエステル光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP5381938B2 (ja) リターデーション発現性の化合物、光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP2011076031A (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP2013097045A (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP2010159361A (ja) セルロースエステルフィルム及び液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751821

Country of ref document: EP

Kind code of ref document: A1