WO2013091520A1 - 双面有机发光二极管及其制造方法、显示装置 - Google Patents

双面有机发光二极管及其制造方法、显示装置 Download PDF

Info

Publication number
WO2013091520A1
WO2013091520A1 PCT/CN2012/086768 CN2012086768W WO2013091520A1 WO 2013091520 A1 WO2013091520 A1 WO 2013091520A1 CN 2012086768 W CN2012086768 W CN 2012086768W WO 2013091520 A1 WO2013091520 A1 WO 2013091520A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
area
layer
transparent conductive
conductive layer
Prior art date
Application number
PCT/CN2012/086768
Other languages
English (en)
French (fr)
Inventor
牛泉
许芳
尚可
阳光
Original Assignee
北京联想软件有限公司
联想(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京联想软件有限公司, 联想(北京)有限公司 filed Critical 北京联想软件有限公司
Priority to US14/342,218 priority Critical patent/US9312321B2/en
Publication of WO2013091520A1 publication Critical patent/WO2013091520A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/128Active-matrix OLED [AMOLED] displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]

Definitions

  • Double-sided organic light emitting diode manufacturing method thereof, and display device
  • Embodiments of the present invention relate to a novel organic light emitting diode, and more particularly to a double-sided organic light emitting diode, a method of fabricating the same, and a display device having the double-sided organic light emitting diode. Background technique
  • each display pixel is driven by a dedicated thin film transistor, and the corresponding organic thin film transistor (TFT) is controlled to conduct corresponding organic light emission.
  • TFT organic thin film transistor
  • the diode (0LED) emits light.
  • an organic light emitting diode can be formed as a top emitting or bottom emitting 0 LED.
  • one top-emitting 0LED and one bottom-emitting 0LED can be arranged side by side. In this case, it is inevitable to increase the area corresponding to one pixel (e.g., the display area occupied on the display screen), which is disadvantageous for increasing the resolution of the display device.
  • the TFT is usually integrated with one electrode (usually an anode electrode) of the OLED pixel. Together, the TFTs are used to simultaneously drive the two OLEDs, thereby making it impossible to achieve independent control of the two OLEDs.
  • Fig. 1A a schematic structure of such a double-sided organic light emitting diode (OLED) of a shared electrode is schematically shown.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a double-sided organic light emitting diode which is included in a double-sided light emitting diode by connecting a shared electrode thereof to an output terminal of a thin film transistor
  • the two OLEDs can be independently controlled.
  • a double-sided organic light emitting diode including: a first electrode; a first organic semiconductor layer disposed on the first electrode; a shared electrode disposed at the first organic And a second organic semiconductor layer disposed on the shared electrode; and a second electrode disposed on the second organic layer
  • the first electrode, the first organic semiconductor layer, and the shared electrode operate as a first light emitting organic diode; and the second electrode, the first The second organic semiconductor layer and the shared electrode operate as a second light emitting organic diode.
  • the double-sided organic light emitting diode further includes: a transparent conductive layer electrically connected to an output end of the thin film transistor; and a transparent insulating layer disposed on the transparent conductive layer; the first electrode is disposed On the transparent insulating layer to be electrically insulated from the transparent conductive layer; and the shared electrode is electrically connected to the transparent conductive layer.
  • an area of the transparent insulating layer is smaller than an area of the transparent conductive layer; an area of the first electrode is smaller than an area of the transparent insulating layer; The area of the semiconductor layer is larger than the area of the first electrode and less than or equal to the area of the transparent insulating layer; and the area of the shared electrode is larger than the area of the transparent insulating layer and less than or equal to the area of the transparent conductive layer.
  • a method of manufacturing a double-sided organic light emitting diode comprising: providing a first electrode; disposing a first organic semiconductor layer on the first electrode; and forming the first organic semiconductor layer on the first organic semiconductor layer A shared electrode is disposed thereon, and the shared electrode is electrically connected to an output end of the thin film transistor to be electrically insulated from the first electrode; a second organic semiconductor layer is disposed on the shared electrode; and the second organic semiconductor is disposed A second electrode is disposed on the layer, and the second electrode is electrically insulated from the first electrode and the shared electrode.
  • the method further comprises: providing a transparent conductive layer, and electrically connecting the transparent conductive layer to an output end of the thin film transistor; and arranging a transparent insulating layer on the transparent conductive layer;
  • the first electrode is disposed on the layer such that the first electrode is electrically insulated from the transparent conductive layer; and the shared electrode is electrically connected to the transparent conductive layer.
  • the transparent conductive layer completely covers the output end of the thin film transistor, and the area of the transparent conductive layer is greater than or equal to the area of the output end of the thin film transistor.
  • the transparent insulating layer is disposed on a portion of the transparent conductive layer, an area of the transparent insulating layer is smaller than an area of the transparent conductive layer; and a part of the transparent insulating layer is disposed on a portion of the transparent insulating layer a first electrode, an area of the first electrode is smaller than an area of the transparent insulating layer; a first organic semiconductor layer is disposed on the first electrode covering the first electrode, the first organic semiconductor The area of the layer is larger than the area of the first electrode and less than or equal to the transparent An area of the insulating layer; and the shared electrode is disposed on the first organic semiconductor layer covering the first organic semiconductor layer, an area of the shared electrode being larger than an area of the transparent insulating layer and less than or equal to the transparent The area of the conductive layer.
  • the shared electrode is a light-reflecting layer
  • the first electrode and the second electrode are transparent layers.
  • a display device having a pixel array, each pixel in the pixel array comprising a double-sided organic light emitting diode and a thin film transistor, wherein the double-sided organic light emitting diode comprises: a first electrode; a first organic semiconductor layer disposed on the first electrode; a shared electrode disposed on the first organic semiconductor layer and electrically connected to an output end of the thin film transistor; a semiconductor layer disposed on the shared electrode; and a second electrode disposed on the second organic semiconductor layer, wherein the first electrode, the shared electrode, and the second electrode are electrically insulated from each other .
  • the double-sided organic light emitting diode further includes: a transparent conductive layer electrically connected to an output end of the thin film transistor; and a transparent insulating layer disposed on the transparent conductive layer
  • the first electrode is disposed on the transparent insulating layer to be electrically insulated from the transparent conductive layer; and the shared electrode is electrically connected to the transparent conductive layer.
  • an area of the transparent insulating layer is smaller than an area of the transparent conductive layer; an area of the first electrode is smaller than an area of the transparent insulating layer; and an area of the first organic semiconductor layer
  • the area is larger than the area of the first electrode and less than or equal to the area of the transparent insulating layer; and the area of the shared electrode is larger than the area of the transparent insulating layer and less than or equal to the area of the transparent conductive layer.
  • the double-sided organic light emitting diode and the manufacturing method thereof and the display device according to the embodiment of the invention two OLEDs can be integrated together, and the illumination of the two OLEDs can be independently controlled, and at the same time, the application of the double sided layer is also ensured
  • the organic light emitting diode serves as the resolution of the display device of the pixel.
  • 1A is a schematic view showing a connection of a drain of a thin film transistor TFT to an anode electrode of a double-sided organic light emitting diode OLED
  • 1B is a schematic view showing connection of a drain of a TFT to a shared electrode of a double-sided organic light emitting diode OLED according to the inventive concept
  • FIG. 2A is a schematic structural view of a double-sided organic light emitting diode according to an embodiment of the present invention
  • FIG. 2B is a schematic operational view of the double-sided organic light emitting diode shown in FIG. 2A;
  • FIG. 3 is a flow chart showing a method of manufacturing a double-sided organic light emitting diode according to an embodiment of the present invention
  • FIG. 4 is a schematic process flow showing the manufacture of a double-sided organic light emitting diode according to an embodiment of the present invention. detailed description
  • a double-sided organic light emitting diode and a method of fabricating the same, and an electronic device using the double-sided organic light emitting diode according to an embodiment of the present invention to construct a pixel will be described below with reference to the accompanying drawings.
  • the same reference numerals are used to refer to the same elements. It is understood that the embodiments described herein are illustrative only and are not to be construed as limiting the scope of the invention.
  • the anode electrode of the double-sided organic light emitting diode OLED (usually, an indium tin oxide (ITO) layer is used as an anode electrode layer) is usually connected to the drain (D) of the TFT, which cannot be realized in this case.
  • ITO indium tin oxide
  • the connection of the gate (Ga te ) and the source (S) of the TFT is not shown in Fig. 1A, however, those skilled in the art can easily determine the connection manner based on common knowledge in the art.
  • FIG. 1B A schematic diagram of connecting a drain electrode of a TFT to a shared electrode of a double-sided organic light emitting diode OLED in accordance with the inventive concept is schematically illustrated in FIG. 1B.
  • a double-sided organic light emitting diode OLED according to the inventive concept is realized by taking out a shared electrode of two sub-OLEDs (for example, a top illuminator OLED and a bottom illuminator OLED) and electrically connecting the shared electrode to an output terminal of the thin film transistor Independent control of the two sub-OLEDs in the double-sided organic light emitting diode.
  • two sub-OLEDs for example, a top illuminator OLED and a bottom illuminator OLED
  • FIGS. 2 and 4 the representation of the TFT is simplified, and the gate (Ga te ), the source (S), and the drain (D) of the TFT are not specifically shown.
  • the connection manners shown in FIGS. 2 and 4 are made for the drain (D) of the TFT, in other words, the gate and source of the TFT are not connected to those in FIGS. 2 and 4.
  • the structure is connected.
  • FIGS. 2 and 4 not shown in actual scale, some of the layers may be exaggerated, and therefore, it should be understood that only FIG. 2 and FIG. 4 are only schematically shown. Each The positional arrangement of the layers.
  • the double-sided organic light emitting diode 0LED includes: a first electrode 1; a first organic semiconductor layer 2; a shared electrode 3; a second organic semiconductor layer 4; and a second electrode 5.
  • the first organic semiconductor layer 2 is disposed on the first electrode 1.
  • the shared electrode 3 is disposed on the first organic semiconductor layer 2 and is electrically connected to an output terminal (e.g., drain D) of the thin film transistor TFT.
  • the second organic semiconductor layer 4 is disposed on the shared electrode 3.
  • the second electrode 5 is disposed on the second organic semiconductor layer 4.
  • the first electrode 1, the first organic semiconductor layer 2, and the shared electrode 3 operate as a first light emitting organic diode OLED; and the second electrode 5
  • the second organic semiconductor layer 4 and the shared electrode 3 operate as a second light emitting organic diode OLED.
  • the first electrode 1, the shared electrode 3, and the second electrode 5 are drawn: the first electrode 1, the shared electrode 3, and the second electrode 5.
  • the shared electrode 3 is electrically connected to an output end of the thin film transistor TFT. Further, an appropriate voltage may be applied to the first electrode 1 and the second electrode 5, respectively, so that the voltage between the first electrode 1 and the shared electrode 3 can be independently controlled, and in the second The voltage between the electrode 5 and the shared electrode 3.
  • the double-sided organic light emitting diode OLED further includes: a transparent conductive layer 6 electrically connected to an output end of the TFT; and a transparent insulating layer 7 It is disposed on the transparent conductive layer 6.
  • the first electrode 1 is disposed on the transparent insulating layer 7, and the transparent insulating layer 7 insulates the first electrode 1 from the transparent conductive layer 6.
  • the shared electrode 3 is electrically connected to the transparent conductive layer 6, thereby achieving electrical connection with the output end of the TFT.
  • Fig. 2A in addition to the layered structure of the double-sided organic light emitting diode (OLED), a preferred integrated structure of the double-sided organic light emitting diode (OLED) and the TFT is shown.
  • the transparent conductive layer 6 is disposed on an output end of the TFT and covers at least a portion of an output end of the TFT.
  • the transparent conductive layer 6 completely covers the output end of the TFT, and in the horizontal direction as shown in FIG. 2A (ie, in the The area of the transparent conductive layer 6 is expanded in the planar direction in which the display pixels formed by the double-sided organic light emitting diodes OLEDs are sequentially arranged. More preferably, the area of the transparent conductive layer is greater than or equal to the area of the output end of the TFT (for example, the area of the drain electrode of the TFT).
  • the area of the transparent insulating layer 7 is smaller than the area of the transparent conductive layer 6, and the area of the first electrode 1 is smaller than the area of the transparent insulating layer 7.
  • the transparent insulating layer 7 is capable of isolating the transparent conductive layer 6 from the first electrode 1.
  • an area of the first organic semiconductor layer 2 is larger than an area of the first electrode 1 and equal to or smaller than an area of the transparent insulating layer 7, so that the transparent insulating layer 7 can also be the transparent conductive layer 6. Isolating from the first organic semiconductor layer 1.
  • the area of the shared electrode 3 is larger than the area of the transparent insulating layer 7 and equal to or smaller than the area of the transparent conductive layer 6, so that the shared electrode 3 can be connected to the transparent conductive layer 6.
  • the shared electrode 3 in the double-sided organic light emitting diode OLED can be taken out and the drawn shared electrode 3 can be connected to the output end of the TFT through the transparent conductive layer 6.
  • the voltages of the three electrodes in the double-sided organic light emitting diode OLED can be independently controlled, and then the independence of the two sub-zero LEDs in the double-sided organic light emitting diode OLED (the first OLED and the second OLED in FIG. 2B) can be realized. control.
  • Fig. 2B a schematic view of the double-sided organic light emitting diode OLED shown in Fig. 2A is shown.
  • the shared electrode 3 is formed as a light-reflecting layer, and the first electrode 1 and the second electrode 5 are formed as a transparent layer.
  • the double-sided organic light emitting diode is disposed on a substrate layer which is also transparent.
  • the manufacturing method 100 starts at step S101.
  • a first electrode is provided.
  • the first electrode is a transparent electrode, which can be, for example, It is an indium tin oxide (ITO) layer, or other transparent electrode material layer.
  • the first electrode can be provided by deposition.
  • a first organic semiconductor layer is disposed on the first electrode.
  • the first organic semiconductor layer can be provided by deposition.
  • the first organic semiconductor layer functions as a first light emitting layer.
  • a shared electrode is disposed on the first organic semiconductor layer, and the shared electrode is electrically connected to an output terminal of the thin film transistor to be electrically insulated from the first electrode.
  • the shared electrode is deposited on the first organic semiconductor layer, and the shared electrode layer may be, for example, an opaque aluminum (A1) or aluminum compound layer.
  • a second organic semiconductor layer is disposed on the shared electrode.
  • the second organic semiconductor layer can be provided by deposition.
  • the second organic semiconductor layer functions as a second light emitting layer.
  • a second electrode is disposed on the second organic semiconductor layer, and the second electrode is electrically insulated from the first electrode and the shared electrode.
  • the second electrode is a transparent electrode, which may for example be an indium tin oxide (ITO) layer, or another layer of transparent electrode material.
  • ITO indium tin oxide
  • the second organic semiconductor layer can be provided by deposition.
  • step S199 the method 100 of manufacturing a double-sided organic light emitting diode according to an embodiment of the present invention ends at step S199.
  • the shared electrode is opaque, which separates light emitted by the first organic semiconductor layer from light emitted by the second organic semiconductor layer. Therefore, light emitted from the first organic semiconductor layer is transmitted through the first electrode, and light emitted from the second organic semiconductor layer is transmitted through the second electrode, thereby achieving double-sided illumination.
  • the method of manufacturing the double-sided organic light emitting diode further includes steps S102 and S105 (not shown in Fig. 3).
  • a transparent conductive layer is provided, and the transparent conductive layer is electrically connected to the output end of the thin film transistor.
  • the transparent conductive layer may be, for example, an indium tin oxide (ITO) layer or other transparent electrode material having good electron mobility.
  • ITO indium tin oxide
  • the transparent conductive layer is integrated with the output end of the TFT.
  • a transparent insulating layer is disposed on the transparent conductive layer.
  • the transparent insulating layer can be provided by deposition or spin coating.
  • the first electrode and the second electrode are generated, and the first electrode and the second electrode can be supplied with power from the outside, and at the same time, by integrating the output end of the TFT and the shared electrode, Powering the shared electrode. Therefore, the voltage between the first electrode and the shared electrode, and the voltage between the second electrode and the shared electrode can be independently controlled.
  • said transparent conductive layer covers at least a portion of the output of said TFT.
  • the transparent conductive layer completely covers the output end of the TFT, and the area of the transparent conductive layer is greater than the area of the output end of the TFT (for example, the area of the drain electrode of the TFT).
  • the transparent insulating layer is disposed on a portion of the transparent conductive layer, the transparent insulating layer has an area smaller than an area of the transparent conductive layer, and the first electrode is disposed on a portion of the transparent insulating layer.
  • the area of the first electrode is smaller than the area of the transparent insulating layer, so that the transparent insulating layer can isolate the transparent conductive layer from the first electrode.
  • the first organic semiconductor layer is disposed on the first electrode covering the first electrode, and an area of the first organic semiconductor layer is larger than an area of the first electrode and less than or equal to the transparent insulation The area of the layer such that the transparent insulating layer is also capable of isolating the transparent conductive layer from the first organic semiconductor layer.
  • the shared electrode is disposed on the first organic semiconductor layer covering the first organic semiconductor layer, and an area of the shared electrode is larger than an area of the transparent insulating layer and equal to or smaller than an area of the transparent conductive layer Thereby, the shared electrode can be connected to the transparent conductive layer.
  • an IT0 layer or other transparent conductive material layer is integrated with the output end of the TFT.
  • a transparent conductive layer is provided by depositing an IT0 layer or other layer of transparent conductive material on a transparent substrate.
  • a transparent insulating layer is deposited or spin-coated on the transparent conductive layer, and the transparent insulating layer covers only a part of the transparent conductive layer.
  • a transparent electrode material layer is deposited as a first electrode layer on the transparent insulating layer.
  • the transparent electrode material layer covers only a portion of the transparent insulating layer.
  • the first electrode layer may be, for example, an IT0 layer or other transparent conductive material layer.
  • a first organic semiconductor layer is deposited on the first electrode, the first organic semiconductor layer completely covering or wrapping the first electrode layer, and covering the transparent insulating layer a part of.
  • the area of the first organic semiconductor layer is larger than the area of the first electrode and less than or equal to the area of the transparent insulating layer.
  • the first semiconductor layer itself includes a plurality of layers, for example, a hole transport layer (HTL), a light emitting layer (EL), and an electron transport layer (ETL).
  • HTL hole transport layer
  • EL light emitting layer
  • ETL electron transport layer
  • a shared electrode layer is deposited on the first semiconductor layer, and the shared electrode layer completely covers or wraps the first semiconductor layer and covers a portion of the transparent electrode layer.
  • the shared electrode layer is an opaque conductive layer, which may for example be an aluminum or aluminum compound.
  • the area of the shared electrode layer is larger than the area of the transparent insulating layer and equal to or smaller than the area of the transparent conductive layer.
  • a second organic semiconductor layer is deposited on the shared electrode layer, the second organic semiconductor layer covering a portion of the shared electrode layer.
  • the area of the second organic semiconductor layer is less than or equal to the area of the shared electrode layer.
  • the second semiconductor layer itself also includes a plurality of layers, for example, a hole transport layer (HTL), a light emitting layer (EL), and an electron transport layer (ETL).
  • HTL hole transport layer
  • EL light emitting layer
  • ETL electron transport layer
  • a transparent electrode material layer is deposited as a second electrode layer on the second organic semiconductor layer, and an area of the second electrode layer is equal to or smaller than an area of the second organic semiconductor layer .
  • the electrode material of the first electrode By appropriately selecting the electrode material of the first electrode, the electrode material of the shared electrode, the electrode material of the second electrode, the polarity of the voltage applied between the first electrode and the shared electrode, and Applying a polarity of a voltage between the second electrode and the shared electrode to specifically form a double-sided organic light emitting diode, for example:
  • first organic semiconductor layer emits light when a potential of a voltage applied on the first electrode is higher than a potential of a voltage applied across the shared electrode;
  • the electrode material of the second electrode and the shared electrode is selected such that a second electrode (for example, IT0) is used as a transparent anode and a shared electrode (for example, Ag) is used as an opaque cathode
  • a second electrode for example, IT0
  • a shared electrode for example, Ag
  • the electrode material of the first electrode and the shared electrode is selected such that the first electrode is used as a transparent cathode and the shared electrode is used as an opaque anode, when applied on the first electrode
  • the first organic semiconductor layer emits light when the potential of the voltage is lower than the potential of the voltage applied across the shared electrode;
  • the electrode material of the second electrode and the shared electrode is selected such that the second electrode is used as a transparent cathode and the shared electrode is used as an opaque anode, which is applied on the second electrode
  • the second organic semiconductor layer emits light when the potential of the voltage is lower than the potential of the voltage applied across the shared electrode.
  • embodiments of the present invention also provide a display device having a pixel array, each pixel in the pixel array including a double-sided organic light emitting diode and a thin film transistor.
  • the organic light emitting diode has the structure as described above.
  • the transparent conductive layer in the double-sided organic light emitting diode is integrated with the output of the thin film transistor.
  • the double-sided organic light emitting diode according to the embodiment of the present invention integrates two OLEDs together, and can independently control the light emission of the two OLEDs, and at the same time, also ensures the resolution of the display device using the double-sided organic light emitting diode as a pixel. rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

双面有机发光二极管及其制造方法、以及使用该双面有机发光二极管构成像素的显示装置。双面有机发光二极管包括:第一电极(1);第一有机半导体层(2),其布置在所述第一电极(1)上;共享电极(3),其布置在第一有机半导体层(2)上,并且与薄膜晶体管的输出端电连接;第二有机半导体层(4),其布置在共享电极(3)上;以及第二电极(5),其布置在第二有机半导体层(4)上,其中,第一电极(1)、共享电极(3)以及第二电极(5)彼此电绝缘。对于双面有机发光二极管,可以独立地控制其中的两个有机发光二极管。

Description

双面有机发光二极管及其制造方法、 显示装置 技术领域
本发明实施例涉及新型的有机发光二极管,更具体地涉及双面有机发光 二极管及其制造方法、 以及具有该双面有机发光二极管的显示装置。 背景技术
在有源矩阵型 (Ac t ive Ma t r ix )有机发光显示技术中, 每个显示像素 由一个专用的薄膜晶体管来驱动, 通过控制所述专用薄膜晶体管 (TFT )导 通来使对应的有机发光二极管 (0LED )发光。
通常, 有机发光二极管可以被形成为顶部发光或底部发光的 0LED。 在 双面显示的应用场景下, 对应于一个像素, 可以并排布置一个顶部发光的 0LED和一个底部发光的 0LED。 在此情况下, 必然增大了一个像素所对应的 面积(例如在显示屏幕上所占据的显示面积), 这不利于增加显示设备的分 辨率。
另外,在利用一个共享电极将顶部发光子 0LED和底部发光子 0LED集成 在一个共享电极的双面有机发光二极管 0LED的情况下, 通常将 TFT与 0LED 像素的一个电极(通常是阳极电极)集成在一起, 利用该 TFT来同时驱动这 两个 0LED , 由此无法实现这两个 0LED的独立控制。 在图 1A中, 示意性地示 出了这种共享电极的双面有机发光二极管 0LED的示意性结构。
因此, 需要一种新型的双面有机发光二极管, 其可以双面发光并且可以 独立地控制每侧的发光。 发明内容
考虑到上述问题而作出了本发明,本发明的一个目的是提供一种双面有 机发光二极管, 其通过将其中的共享电极与薄膜晶体管的输出端连接, 使得 所述双面发光二极管中包括的两个 0LED可以被独立地控制。
根据本发明实施例的一方面, 提供了双面有机发光二极管, 包括: 第一 电极; 第一有机半导体层, 其布置在所述第一电极上; 共享电极, 其布置在 所述第一有机半导体层上, 并且与薄膜晶体管的输出端电连接; 第二有机半 导体层, 其布置在所述共享电极上; 以及第二电极, 其布置在所述第二有机 半导体层上, 其中, 所述第一电极、 所述共享电极以及所述第二电极彼此电 绝缘。
优选地, 在所述双面有机发光二极管中, 所述第一电极、 所述第一有机 半导体层、 以及所述共享电极操作为第一发光有机二极管; 以及所述第二电 极、所述第二有机半导体层、以及所述共享电极操作为第二发光有机二极管。
优选地, 所述双面有机发光二极管还包括: 透明导电层, 其与薄膜晶体 管的输出端电连接; 以及透明绝缘层, 其被布置在所述透明导电层上; 所述 第一电极被布置在所述透明绝缘层上以便与所述透明导电层电绝缘; 以及所 述共享电极与所述透明导电层电连接。
优选地, 在所述双面有机发光二极管中, 所述透明绝缘层的面积小于所 述透明导电层的面积; 所述第一电极的面积小于所述透明绝缘层的面积; 所 述第一有机半导体层的面积大于所述第一电极的面积且小于等于所述透明 绝缘层的面积; 以及所述共享电极的面积大于所述透明绝缘层的面积且小于 等于所述透明导电层的面积。
根据本发明的另一方面, 提供了一种制造双面有机发光二极管的方法, 包括: 提供第一电极; 在所述第一电极上布置第一有机半导体层; 在所述第 一有机半导体层上布置共享电极, 并且使所述共享电极与薄膜晶体管的输出 端电连接而与所述第一电极电绝缘; 在所述共享电极上布置第二有机半导体 层; 以及在所述第二有机半导体层上布置第二电极, 并且使所述第二电极与 所述第一电极和所述共享电极电绝缘。
优选地, 所述方法还包括: 提供透明导电层, 并使得所述透明导电层与 所述薄膜晶体管的输出端电连接; 以及在所述透明导电层上布置透明绝缘 层; 在所述透明绝缘层上布置所述第一电极, 使得所述第一电极与所述透明 导电层电绝缘; 以及布置所述共享电极与所述透明导电层电连接。
优选地, 所述透明导电层完全覆盖所述薄膜晶体管的输出端, 并且所述 透明导电层的面积大于等于所述薄膜晶体管的输出端的面积。
优选地, 在所述方法中, 在一部分所述透明导电层上布置所述透明绝缘 层, 所述透明绝缘层的面积小于所述透明导电层的面积; 在一部分所述透明 绝缘层上布置所述第一电极, 所述第一电极的面积小于所述透明绝缘层的面 积; 覆盖所述第一电极地在所述第一电极上布置所述第一有机半导体层, 所 述第一有机半导体层的面积大于所述第一电极的面积且小于等于所述透明 绝缘层的面积; 以及覆盖所述第一有机半导体层地在所述第一有机半导体层 上布置所述共享电极, 所述共享电极的面积大于所述透明绝缘层的面积且小 于等于所述透明导电层的面积。
优选地, 所述共享电极为不透光的反射层, 以及所述第一电极和所述第 二电极为透明层。
根据本发明实施例的又一方面, 提供了显示装置, 其具有像素阵列, 所 述像素阵列中的每个像素包括双面有机发光二极管以及薄膜晶体管, 其中, 所述双面有机发光二极管包括: 第一电极; 第一有机半导体层, 其布置在所 述第一电极上; 共享电极, 其布置在所述第一有机半导体层上, 并且与所述 薄膜晶体管的输出端电连接;第二有机半导体层,其布置在所述共享电极上; 以及第二电极, 其布置在所述第二有机半导体层上, 其中, 所述第一电极、 所述共享电极以及所述第二电极彼此电绝缘。
优选地, 在所述显示装置中, 所述双面有机发光二极管还包括: 透明导 电层, 其与所述薄膜晶体管的输出端电连接; 以及透明绝缘层, 其被布置在 所述透明导电层上; 所述第一电极被布置在所述透明绝缘层上以便与所述透 明导电层电绝缘; 以及所述共享电极与所述透明导电层电连接。
优选地, 在所述显示装置中, 所述透明绝缘层的面积小于所述透明导电 层的面积; 所述第一电极的面积小于所述透明绝缘层的面积; 所述第一有机 半导体层的面积大于所述第一电极的面积且小于等于所述透明绝缘层的面 积; 以及所述共享电极的面积大于所述透明绝缘层的面积且小于等于所述透 明导电层的面积。
通过根据本发明实施例的双面有机发光二极管及其制造方法以及显示 装置, 可以将两个 0LED集成在一起, 并且可以独立地控制这两个 0LED的发 光, 并且同时也保证了应用该双面有机发光二极管作为像素的显示装置的分 辨率。 附图说明
通过结合附图对本发明的实施例进行详细描述,本发明的上述和其它目 的、 特征和优点将会变得更加清楚, 其中:
图 1A是示出薄膜晶体管 TFT的漏极与双面有机发光二极管 0LED的阳极 电极连接的示意图; 图 IB是示出根据本发明构思的将 TFT的漏极与双面有机发光二极管 0LED的共享电极连接的示意图;
图 2A是根据本发明实施例的双面有机发光二极管的示意性结构图; 图 2B是图 2A所示的双面有机发光二极管的示意性操作图;
图 3是示出根据本发明实施例的双面有机发光二极管的制造方法的流 程图; 以及
图 4是示出根据本发明实施例的制造双面有机发光二极管的示意性工 艺流程。 具体实施方式
下面将参照附图来描述根据本发明实施例的双面有机发光二极管及其 制造方法、 以及利用根据本发明实施例的双面有机发光二极管来构造像素的 电子装置。在附图中,相同的参考标号自始至终表示相同的元件。应当理解: 这里描述的实施例仅仅是说明性的, 而不应被解释为限制本发明的范围。
如 1A中所示, 通常将双面有机发光二极管 0LED的阳极电极(通常, 利 用铟锡氧化物( IT0 )层作为阳极电极层)与 TFT的漏极( D )连接, 在此情 况下无法实现对该双面有机发光二极管 0LED中的两个子 0LED (例如, 顶部 发光子 0LED和底部发光子 0LED ) 的独立控制。 此外, 为了简化, 在图 1A 中没有示出 TFT的栅极(Ga te )和源极(S ) 的连接, 然而本领域技术人员 基于本领域公知常识容易确定其连接方式。
在图 1B中示意性地示出了根据本发明构思的将 TFT的漏极电极与双面 有机发光二极管 0LED的共享电极连接的示意图。 根据本发明构思的双面有 机发光二极管 0LED , 通过引出其中两个子 0LED (例如, 顶部发光子 0LED和 底部发光子 0LED ) 的共享电极并将该共享电极与薄膜晶体管的输出端电连 接, 来实现对于该双面有机发光二极管中的两个子 0LED的独立控制。
在图 2以及图 4中,简化了 TFT的表示,而未具体示出 TFT的栅极(Ga te )、 源极(S )和漏极(D )。 然而, 应理解, 在图 2以及图 4中示出的连接方式 是针对 TFT的漏极( D )作出的, 换句话说, TFT的栅极和源极不与图 2和图 4中的连接结构相连接。
此外, 在图 2和图 4中示出的结构中, 并非按照实际比例示出, 而可能 夸大了其中的某些层, 因此, 应理解, 在图 2和图 4中仅示意性地给出了各 层的位置布置关系。
下面,将参考图 2来描述根据本发明实施例的双面有机发光二极管 0LED 的结构。
双面有机发光二极管 0LED包括: 第一电极 1 ; 第一有机半导体层 2 ; 共 享电极 3; 第二有机半导体层 4 ; 以及第二电极 5。
所述第一有机半导体层 2布置在所述第一电极 1上。所述共享电极 3布 置在所述第一有机半导体层 2上, 并且与薄膜晶体管 TFT的输出端 (例如, 漏极 D ) 电连接。
所述第二有机半导体层 4布置在所述共享电极 3上。所述第二电极 5布 置在所述第二有机半导体层 4上。
在所述双面有机发光二极管 0LED操作时, 所述第一电极 1、 所述第一 有机半导体层 2、 以及所述共享电极 3操作为第一发光有机二极管 0LED; 以 及所述第二电极 5、 所述第二有机半导体层 4、 以及所述共享电极 3操作为 第二发光有机二极管 0LED。
在所述双面有机发光二极管 0LED中, 引出了三个彼此电绝缘的电极: 所述第一电极 1、 所述共享电极 3、 以及所述第二电极 5。 所述共享电极 3 与所述薄膜晶体管 TFT的输出端电连接。 此外, 可以分别向所述第一电极 1 和第二电极 5施加适当的电压,从而可以独立地控制在所述第一电极 1和所 述共享电极 3之间的电压、 以及在所述第二电极 5和所述共享电极 3之间的 电压。
优选地, 为了将所述共享电极 3与 TFT的输出端电连接, 所述双面有机 发光二极管 0LED还包括: 透明导电层 6 , 其与 TFT的输出端电连接; 以及透 明绝缘层 7 , 其被布置在所述透明导电层 6上。
所述第一电极 1布置在所述透明绝缘层 7上,并且所述透明绝缘层 7将 所述第一电极 1与所述透明导电层 6绝缘。 另外, 所述共享电极 3与所述透 明导电层 6电连接, 从而实现与所述 TFT的输出端的电连接。
在图 2A中, 除了示出所述双面有机发光二极管 0LED的分层结构之外, 还示出了所述双面有机发光二极管 0LED与 TFT的优选的集成结构。
在所述集成结构中, 所述透明导电层 6布置在所述 TFT的输出端上, 并 且覆盖所述 TFT的输出端的至少一部分。 优选地, 所述透明导电层 6完全覆 盖所述 TFT的输出端, 并且在如图 2A所示的水平方向上 (即, 在与由所述 双面有机发光二极管 0LED所形成的显示像素依次排列的平面方向上)扩展 所述透明导电层 6的面积。更为优选地,所述透明导电层的面积大于等于 TFT 的输出端的面积 (例如, TFT的漏极电极的面积)。
在如图 2A所示的双面有机发光二极管 0LED中,所述透明绝缘层 7的面 积小于所述透明导电层 6的面积, 所述第一电极 1的面积小于所述透明绝缘 层 7的面积,从而使得所述透明绝缘层 7能够将所述透明导电层 6与所述第 一电极 1隔离。
此外,所述第一有机半导体层 2的面积大于所述第一电极 1的面积且小 于等于所述透明绝缘层 7的面积,从而使得所述透明绝缘层 7也能够将所述 透明导电层 6与所述第一有机半导体层 1隔离。
此外,所述共享电极 3的面积大于所述透明绝缘层 7的面积且小于等于 所述透明导电层 6的面积,从而使得所述共享电极 3能够与所述透明导电层 6连接。
通过如图 2A中所示的结构,可以将双面有机发光二极管 0LED中的共享 电极 3引出并且通过所述透明导电层 6将所引出的共享电极 3与 TFT的输出 端连接。 由此, 可以独立地控制双面有机发光二极管 0LED中 3个电极的电 压,继而实现了对双面有机发光二极管 0LED中的两个子 0LED (图 2B中的第 一 0LED和第二 0LED ) 的独立控制。
如图 2B所示, 示出了图 2A所示的双面有机发光二极管 0LED在操作时 的示意图。
此外, 为了实现双面发光的发光效果, 将所述共享电极 3形成为不透光 的反射层, 以及将所述第一电极 1和所述第二电极 5形成为透明层。
尽管在图 2A中未示出, 应理解, 所述双面有机发光二极管 0LED被布置 在衬底层上, 所述衬底层也是透明的。
此外,应理解, 在图 2A中仅仅示出了所述双面有机发光二极管 0LED必 须具备的基本结构,在所示出的各层之间可以沉积其它的层以便进一步改善 所述双面有机发光二极管 0LED的性能。
接下来,将参考图 3说明根据本发明实施例的双面有机发光二极管的制 造方法 100。
首先, 该制造方法 100在步骤 S101开始。
在步骤 S110 , 提供第一电极。 所述第一电极为透明电极, 其例如可以 为铟锡氧化物 ( ITO )层、 或者其它透明的电极材料层。 例如, 所述第一电 极可以通过沉积的方式来提供。
接下来, 在步骤 S120 , 在所述第一电极上布置第一有机半导体层。 例 如, 所述第一有机半导体层可以通过沉积的方式来提供。 所述第一有机半导 体层用作第一发光层。
在步骤 S130 , 在所述第一有机半导体层上布置共享电极, 并且使所述 共享电极与薄膜晶体管的输出端电连接而与所述第一电极电绝缘。 例如, 在 所述第一有机半导体层上沉积所述共享电极, 所述共享电极层例如可以为不 透明的铝 (A1 )或铝化合物层。
接下来, 在步骤 S140 , 在所述共享电极上布置第二有机半导体层。 例 如, 所述第二有机半导体层可以通过沉积的方式来提供。 所述第二有机半导 体层用作第二发光层。
然后, 在步骤 S150, 在所述第二有机半导体层上布置第二电极, 并且 使所述第二电极与所述第一电极和所述共享电极电绝缘。 所述第二电极为透 明电极, 其例如可以为铟锡氧化物( IT0 )层、 或者其它透明的电极材料层。 例如, 所述第二有机半导体层可以通过沉积的方式来提供。
最后,根据本发明实施例的双面有机发光二极管的制造方法 100在步骤 S199结束。
如前所述, 所述共享电极是非透明的, 其将所述第一有机半导体层发射 的光和所述第二有机半导体层发射的光分离。 因此, 所述第一有机半导体层 发射的光透过所述第一电极, 所述第二有机半导体层发射的光透过所述第二 电极, 由此实现了双面发光。 通过适当地选择所述第一有机半导体层和所述 第二有机半导体层的材料, 以及 /或者通过适当地调节夹在所述第一有机半 导体层两端的电压以及夹在所述第二有机半导体层两端的电压, 可以选择发 光颜色以及发光亮度。
此外, 优选地, 为了将所述共享电极与 TFT的输出端电连接, 所述双面 有机发光二极管 0LED的制造方法还包括步骤 S102和 S105(图 3中未示出)。
在步骤 S102 , 提供透明导电层, 并使得该透明导电层与薄膜晶体管的 输出端电连接。 所述透明导电层例如可以为铟锡氧化物 (IT0 )层、 或者具 有良好电子迁移性的其它透明的电极材料。 优选地, 如图 4中的( 1 )所示, 所述透明导电层与 TFT的输出端集成在一起。 在 S105 , 在所述透明导电层上布置透明绝缘层。 例如, 所述透明绝缘 层可以通过沉积或旋转涂覆的方式来提供。
由此, 通过上述制造方法, 产生了第一电极和第二电极, 可以从外部向 第一电极和第二电极供电, 同时通过将 TFT的输出端与所述共享电极集成在 一起, 也实现了对所述共享电极的供电。 因此, 可以独立地控制在所述第一 电极和所述共享电极之间的电压、 以及在所述第二电极和所述共享电极之间 的电压。
有利地,所述透明导电层覆盖所述 TFT的输出端的至少一部分。优选地, 所述透明导电层完全覆盖所述 TFT的输出端, 并且所述透明导电层的面积大 于等于 TFT的输出端的面积(例如, TFT的漏极电极的面积)。
优选地, 在一部分所述透明导电层上布置所述透明绝缘层, 所述透明绝 缘层的面积小于所述透明导电层的面积,在一部分所述透明绝缘层上布置所 述第一电极, 所述第一电极的面积小于所述透明绝缘层的面积, 从而使得所 述透明绝缘层能够将所述透明导电层与所述第一电极隔离。
优选地,覆盖所述第一电极地在所述第一电极上布置所述第一有机半导 体层, 所述第一有机半导体层的面积大于所述第一电极的面积且小于等于所 述透明绝缘层的面积,从而使得所述透明绝缘层也能够将所述透明导电层与 所述第一有机半导体层隔离。
此外,覆盖所述第一有机半导体层地在所述第一有机半导体层上布置所 述共享电极, 所述共享电极的面积大于所述透明绝缘层的面积且小于等于所 述透明导电层的面积, 从而使得所述共享电极能够与所述透明导电层连接。
接下来,参考图 4来更详细地描述根据本发明实施例的制造双面发光有 机二极管 0LED的工艺。
如图 4中的 ( 1 ) 所示, 将例如 IT0层或其它透明导电材料层与 TFT的 输出端集成。 例如, 通过在透明衬底上沉积 IT0层或其它透明导电材料层来 提供透明导电层。
如图 4中的 (2 ) 所示, 在所述透明导电层上沉积或旋转涂覆透明绝缘 层, 所述透明绝缘层只覆盖所述透明导电层的一部分。
如图 4中的 (3 ) 所示, 在所述透明绝缘层上沉积透明电极材料层作为 第一电极层。 所述透明电极材料层只覆盖所述透明绝缘层的一部分。 所述第 一电极层例如可以为 IT0层或其它透明导电材料层。 如图 4中的 (4 ) 所示, 在所述第一电极上沉积第一有机半导体层, 所 述第一有机半导体层完全覆盖或包裹所述第一电极层, 并且覆盖所述透明绝 缘层的一部分。 所述第一有机半导体层的面积大于所述第一电极的面积且小 于等于所述透明绝缘层的面积。
应注意, 如本领域技术人员已知的, 所述第一半导体层本身包括多层, 例如, 空穴传输层(HTL )、 发光层(EL )、 电子传输层(ETL )。
如图 4中的 (5 ) 所示, 在所述第一半导体层上沉积共享电极层, 所述 共享电极层完全覆盖或包裹所述第一半导体层, 并且覆盖所述透明电极层的 一部分。 所述共享电极层为不透明的导电层, 其例如可以是铝或铝化合物。 所述共享电极层的面积大于所述透明绝缘层的面积且小于等于所述透明导 电层的面积。
如图 4中的 (6 ) 所示, 在所述共享电极层上沉积第二有机半导体层, 所述第二有机半导体层覆盖所述共享电极层的一部分。 所述第二有机半导体 层的面积小于等于所述共享电极层的面积。
类似地, 所述第二半导体层本身也包括多层,例如, 空穴传输层(HTL )、 发光层(EL )、 电子传输层(ETL )。
如图 4中的 (7 ) 所示, 在所述第二有机半导体层上沉积透明电极材料 层作为第二电极层, 所述第二电极层的面积小于等于所述第二有机半导体层 的面积。
通过适当地选择所述第一电极的电极材料、 所述共享电极的电极材料、 所述第二电极的电极材料、施加在所述第一电极和所述共享电极之间的电压 极性、 以及施加在所述第二电极和所述共享电极之间的电压极性, 来具体地 形成双面有机发光二极管, 例如:
1 )在所述第一电极和所述共享电极中, 选择第一电极和共享电极的电 极材料使得将第一电极 (例如 IT0 )用作透明阳极而将共享电极 (例如 A1 ) 用作不透明阴极,在第一电极上施加的电压的电势高于在共享电极上施加的 电压的电势时, 所述第一有机半导体层发光;
2 )在所述第二电极和所述共享电极中, 选择第二电极和共享电极的电 极材料使得将第二电极(例如 IT0 )用作透明阳极而将共享电极(例如 Ag ) 用作不透明阴极,在第二电极上施加的电压的电势高于在共享电极上施加的 电压的电势时, 所述第二有机半导体层发光; 3 )在所述第一电极和所述共享电极中, 选择第一电极和共享电极的电 极材料使得将第一电极用作透明阴极而将共享电极用作不透明阳极, 当在第 一电极上施加的电压的电势低于在共享电极上施加的电压的电势时, 所述第 一有机半导体层发光;
4 )在所述第二电极和所述共享电极中, 选择第二电极和共享电极的电 极材料使得将第二电极用作透明阴极而将共享电极用作不透明阳极,在第二 电极上施加的电压的电势低于在共享电极上施加的电压的电势时, 所述第二 有机半导体层发光。
可以根据需要任意地组合上述 4种情况,本发明实施例不受具体阴极和 阳极选择的限制。
此外, 本发明实施例还提供了显示装置, 该显示装置具有像素阵列, 所 述像素阵列中的每个像素包括双面有机发光二极管以及薄膜晶体管。 所述有 机发光二极管具有如上所述的结构。 有利地, 所述双面有机发光二极管中的 透明导电层与所述薄膜晶体管的输出端集成在一起。
根据本发明实施例的双面有机发光二极管将两个 0LED集成在一起, 并 且可以独立地控制这两个 0LED的发光, 并且同时也保证了应用该双面有机 发光二极管作为像素的显示装置的分辨率。
尽管在这里参照附图描述了本发明的一些实施例,但是应当理解, 所述 实施例仅是示例性的, 而非限制性的。 本领域技术人员应当理解, 在不背离 权利要求及其等价物中限定的本发明的范围和精神的情况下,可以对这些示 例性实施例做出各种形式和细节上的变化。

Claims

1. 一种双面有机发光二极管, 包括:
第一电极;
第一有机半导体层, 其布置在所述第一电极上;
共享电极, 其布置在所述第一有机半导体层上, 并且与薄膜晶体管的输 出端电连接;
第二有机半导体层, 其布置在所述共享电极上; 以及
第二电极, 其布置在所述第二有机半导体层上,
其中, 所述第一电极、 所述共享电极以及所述第二电极彼此电绝缘。
2. 如权利要求 1所述的双面有机发光二极管, 其中,
所述第一电极、 所述第一有机半导体层、 以及所述共享电极操作为第一 发光有机二极管; 以及
所述第二电极、 所述第二有机半导体层、 以及所述共享电极操作为第二 发光有机二极管。
3. 如权利要求 1所述的双面有机发光二极管, 还包括:
透明导电层, 其与所述薄膜晶体管的输出端电连接; 以及
透明绝缘层, 其被布置在所述透明导电层上,
其中,所述第一电极被布置在所述透明绝缘层上以便与所述透明导电层 电绝缘; 以及
所述共享电极与所述透明导电层电连接。
4. 如权利要求 3所述的双面有机发光二极管, 其中,
所述透明绝缘层的面积小于所述透明导电层的面积;
所述第一电极的面积小于所述透明绝缘层的面积;
所述第一有机半导体层的面积大于所述第一电极的面积且小于等于所 述透明绝缘层的面积; 以及
所述共享电极的面积大于所述透明绝缘层的面积且小于等于所述透明 导电层的面积。
5. 如权利要求 1所述的双面有机发光二极管, 其中, 所述共享电极为 不透光的反射层, 以及所述第一电极和所述第二电极为透明层。
6. 一种显示装置, 其具有像素阵列, 所述像素阵列中的每个像素包括 双面有机发光二极管以及薄膜晶体管,
其中, 所述双面有机发光二极管包括:
第一电极;
第一有机半导体层, 其布置在所述第一电极上;
共享电极, 其布置在所述第一有机半导体层上, 并且与所述薄膜晶体管 的输出端电连接;
第二有机半导体层, 其布置在所述共享电极上; 以及
第二电极, 其布置在所述第二有机半导体层上,
其中, 所述第一电极、 所述共享电极以及所述第二电极彼此电绝缘。
7. 如权利要求 6所述的显示装置, 其中, 所述双面有机发光二极管还 包括:
透明导电层, 其与所述薄膜晶体管的输出端电连接; 以及
透明绝缘层, 其被布置在所述透明导电层上,
其中,所述第一电极被布置在所述透明绝缘层上以便与所述透明导电层 电绝缘; 以及
所述共享电极与所述透明导电层电连接。
8. 如权利要求 7所述的显示装置, 其中,
所述透明绝缘层的面积小于所述透明导电层的面积;
所述第一电极的面积小于所述透明绝缘层的面积;
所述第一有机半导体层的面积大于所述第一电极的面积且小于等于所 述透明绝缘层的面积; 以及
所述共享电极的面积大于所述透明绝缘层的面积且小于等于所述透明 导电层的面积。
9. 如权利要求 6所述的显示装置, 其中, 所述共享电极为不透光的反 射层, 以及所述第一电极和所述第二电极为透明层。
10. 如权利要求 7所述的显示装置, 其中, 所述透明导电层覆盖在所述 薄膜晶体管的输出端的至少一部分上, 并且与所述薄膜晶体管的输出端电连 接。
11. 如权利要求 10所述的显示装置, 其中, 所述透明导电层覆盖在所 述薄膜晶体管的输出端上, 所述透明导电层的面积大于等于所述薄膜晶体管 的输出端的面积。
12. 一种制造双面有机发光二极管的方法, 包括:
提供第一电极;
在所述第一电极上布置第一有机半导体层;
在所述第一有机半导体层上布置共享电极,并且使所述共享电极与薄膜 晶体管的输出端电连接而与所述第一电极电绝缘;
在所述共享电极上布置第二有机半导体层; 以及
在所述第二有机半导体层上布置第二电极,并且使所述第二电极与所述 第一电极和所述共享电极电绝缘。
1 3. 如权利要求 12所述的方法, 还包括:
提供透明导电层,并使得所述透明导电层与所述薄膜晶体管的输出端电 连接; 以及
在所述透明导电层上布置透明绝缘层,
其中, 在所述透明绝缘层上布置所述第一电极, 使得所述第一电极与所 述透明导电层电绝缘; 以及
布置所述共享电极与所述透明导电层电连接。
14. 如权利要求 1 3所述的方法, 其中,
所述透明导电层覆盖在所述薄膜晶体管的输出端的至少一部分上。
15. 如权利要求 14所述的显示装置, 其中, 所述透明导电层完全覆盖 所述薄膜晶体管的输出端, 并且所述透明导电层的面积大于等于所述薄膜晶 体管的输出端的面积。
16. 如权利要求 1 3所述的方法, 其中,
在一部分所述透明导电层上布置所述透明绝缘层,所述透明绝缘层的面 积小于所述透明导电层的面积;
在一部分所述透明绝缘层上布置所述第一电极,所述第一电极的面积小 于所述透明绝缘层的面积;
覆盖所述第一电极地在所述第一电极上布置所述第一有机半导体层,所 述第一有机半导体层的面积大于所述第一电极的面积且小于等于所述透明 绝缘层的面积; 以及
覆盖所述第一有机半导体层地在所述第一有机半导体层上布置所述共 享电极, 所述共享电极的面积大于所述透明绝缘层的面积且小于等于所述透 明导电层的面积。
PCT/CN2012/086768 2011-12-19 2012-12-17 双面有机发光二极管及其制造方法、显示装置 WO2013091520A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/342,218 US9312321B2 (en) 2011-12-19 2012-12-17 Double-sided organic light-emitting diode, and manufacturing method and display device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110427958.5A CN103165826B (zh) 2011-12-19 2011-12-19 双面有机发光二极管及其制造方法、显示装置
CN201110427958.5 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013091520A1 true WO2013091520A1 (zh) 2013-06-27

Family

ID=48588734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086768 WO2013091520A1 (zh) 2011-12-19 2012-12-17 双面有机发光二极管及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US9312321B2 (zh)
CN (1) CN103165826B (zh)
WO (1) WO2013091520A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104765157B (zh) * 2015-05-06 2017-12-08 京东方科技集团股份有限公司 显示面板及其显示方法、显示装置
CN105226068B (zh) * 2015-09-14 2018-01-26 京东方科技集团股份有限公司 一种双面显示基板及其制备方法和显示装置
CN105226069A (zh) * 2015-09-22 2016-01-06 深圳市华星光电技术有限公司 一种双面显示面板及双面显示装置
KR102536252B1 (ko) * 2016-03-25 2023-05-25 삼성디스플레이 주식회사 표시장치 및 표시장치 제조방법
CN106601777B (zh) * 2016-12-28 2019-07-12 武汉华星光电技术有限公司 双面显示装置
CN206685388U (zh) * 2017-03-14 2017-11-28 京东方科技集团股份有限公司 一种封装结构、显示面板及显示装置
CN107331687A (zh) * 2017-07-11 2017-11-07 武汉华星光电半导体显示技术有限公司 Oled双面显示器及其制作方法
CN107221291B (zh) * 2017-07-31 2019-04-23 上海天马微电子有限公司 一种显示基板、显示面板及其驱动方法、显示装置
CN108598121B (zh) * 2018-04-27 2020-06-05 京东方科技集团股份有限公司 一种双面显示基板及其制作方法、驱动电路及其驱动方法
CN110197839B (zh) * 2018-06-15 2021-08-03 京东方科技集团股份有限公司 双面显示面板及其制备方法、双面显示装置
CN109860247A (zh) * 2019-01-18 2019-06-07 深圳市华星光电半导体显示技术有限公司 一种双面显示面板及其显示装置
CN109904339A (zh) * 2019-01-22 2019-06-18 深圳市华星光电半导体显示技术有限公司 一种双面显示面板及其显示装置
WO2020237507A1 (zh) * 2019-05-28 2020-12-03 深圳市柔宇科技有限公司 Oled双面显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1700828A (zh) * 2004-05-21 2005-11-23 Lg电子有限公司 有机电致发光显示器及其制造方法
CN1979915A (zh) * 2005-11-29 2007-06-13 中华映管股份有限公司 有机电致发光元件
US20070132379A1 (en) * 2005-12-12 2007-06-14 Wintek Corporation Dual display device
CN102044554A (zh) * 2009-10-16 2011-05-04 上海天马微电子有限公司 用于双面显示的有机发光二极管显示器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1246244A3 (en) * 2001-03-30 2007-02-14 Pioneer Corporation Organic electroluminescence unit
US8263968B2 (en) * 2005-10-31 2012-09-11 The Hong Kong University Of Science And Technology Double sided emission organic light emitting diode display
CN1816228B (zh) * 2005-11-29 2010-08-25 友达光电股份有限公司 主动式发光元件与主动式发光显示装置
RU2010138903A (ru) * 2008-02-22 2012-03-27 Конинклейке Филипс Электроникс Н.В. (Nl) Двусторонний органический светоизлучающий диод (осид)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1700828A (zh) * 2004-05-21 2005-11-23 Lg电子有限公司 有机电致发光显示器及其制造方法
CN1979915A (zh) * 2005-11-29 2007-06-13 中华映管股份有限公司 有机电致发光元件
US20070132379A1 (en) * 2005-12-12 2007-06-14 Wintek Corporation Dual display device
CN102044554A (zh) * 2009-10-16 2011-05-04 上海天马微电子有限公司 用于双面显示的有机发光二极管显示器

Also Published As

Publication number Publication date
US9312321B2 (en) 2016-04-12
CN103165826A (zh) 2013-06-19
US20140306204A1 (en) 2014-10-16
CN103165826B (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
WO2013091520A1 (zh) 双面有机发光二极管及其制造方法、显示装置
KR101548304B1 (ko) 유기 전계 발광 표시장치 및 그 제조방법
JP5578712B2 (ja) 有機発光表示装置
JP4324131B2 (ja) 有機電界発光素子及びその製造方法
KR100830981B1 (ko) 유기 발광 표시 장치
US9224791B2 (en) Organic light-emitting display apparatus and method of manufacturing the same
TWI244873B (en) Organic electroluminescent display device and method of fabricating the same
KR100608403B1 (ko) 유기전계발광 소자 및 그 제조방법
KR101895616B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US9099416B2 (en) Organic light-emitting device
US20080224602A1 (en) White organic light emitting device
WO2018120108A1 (zh) 顶发光型oled显示单元、制作方法及显示面板
TW201909410A (zh) 顯示裝置及顯示裝置的製造方法
TW201017877A (en) Organic light emitting diode display device and manufacturing method thereof
KR100929167B1 (ko) 유기전계발광 표시소자 및 그 제조방법
US10205113B2 (en) Organic electroluminescence device including an emissive layer including an assistant dopant layer and light-emitting dopant layer
KR20140111839A (ko) 유기 발광 표시 장치
TWI690103B (zh) 有機發光二極體顯示器
TW201017876A (en) Organic light emitting diode display device and manufacturing method thereof
US20100252841A1 (en) Oled device having improved lifetime and resolution
WO2015027532A1 (zh) 有机发光二极管阳极连接结构及其制作方法
US20160218318A1 (en) Organic light emitting diode display
US20120319147A1 (en) Organic light emitting diode display
WO2016090752A1 (zh) Oled显示装置及其制造方法
KR101866390B1 (ko) 유기 발광 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859872

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14342218

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859872

Country of ref document: EP

Kind code of ref document: A1