WO2013091459A1 - 一种传导制冷型高功率半导体激光器及其制备方法 - Google Patents

一种传导制冷型高功率半导体激光器及其制备方法 Download PDF

Info

Publication number
WO2013091459A1
WO2013091459A1 PCT/CN2012/085031 CN2012085031W WO2013091459A1 WO 2013091459 A1 WO2013091459 A1 WO 2013091459A1 CN 2012085031 W CN2012085031 W CN 2012085031W WO 2013091459 A1 WO2013091459 A1 WO 2013091459A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
conduction
power semiconductor
substrate
soldered
Prior art date
Application number
PCT/CN2012/085031
Other languages
English (en)
French (fr)
Inventor
王警卫
刘兴胜
Original Assignee
西安炬光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安炬光科技有限公司 filed Critical 西安炬光科技有限公司
Priority to EP12859302.7A priority Critical patent/EP2797186A4/en
Priority to JP2014547688A priority patent/JP2015505163A/ja
Priority to US14/367,372 priority patent/US9031105B2/en
Publication of WO2013091459A1 publication Critical patent/WO2013091459A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4018Lasers electrically in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • H01S5/405Two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers

Definitions

  • the present invention relates to a semiconductor laser, a conduction-cooling type high power semiconductor laser and a preparation method thereof, and belongs to the field of laser technology.
  • High-power semiconductor lasers not only have the advantages of small size, light weight, high electro-optical conversion efficiency, high reliability, long service life, etc., but also because they are electrically driven, which is easy to use on various platforms, so high-power semiconductor lasers show more
  • applications such as laser processing, laser communications, medical and aesthetics, scientific research, military defense and laser entertainment displays.
  • Many applications require semiconductor lasers with long life, high stability, high reliability and long storage time. How to ensure that semiconductor lasers remain efficient during long-term use poses great challenges for semiconductor lasers and packaging technologies.
  • Conductive cooling, hard solder packaging technology can avoid failure caused by electromigration and electrothermal migration caused by soft solder packaging, can also meet the requirements of long storage time and stable operation in extreme environments, so conduction cooling semiconductor laser Products are expected to be widely used in a variety of aerospace, free space communications, processing, high temperature pumped solid / fiber lasers.
  • Fig. 1 shows the current preparation process of a conventional conduction-cooled semiconductor laser stack, in which a plurality of chips and a plurality of copper and tungsten are simultaneously welded and integrally soldered to an insulating and thermally conductive sheet, and then the module is soldered to the heat sink.
  • This structure has the following disadvantages:
  • the object of the present invention is to overcome the above disadvantages of the prior art and to provide a conduction cooling type high work.
  • the semiconductor laser and the preparation method thereof solve the problems of low yield, poor heat dissipation and low reliability of the conduction-cooled high-power semiconductor laser in the prior art.
  • a conduction-cooling type high-power semiconductor laser comprising a heat sink and one or more semiconductor laser units; the special feature is that: the semiconductor laser unit comprises a chip, a substrate for soldering heat conduction with the chip, and The substrate is soldered with an insulating sheet for insulating heat dissipation, and the semiconductor laser unit is soldered to the heat sink through an insulating sheet.
  • the above semiconductor laser unit is a semiconductor laser unit that has been tested, aged, and screened.
  • the above chips are single-layer chips (Single Emitter), short arrays (such as Mini-bar and Half-bar, standard centimeter bars) or multiple single-tube chipsets.
  • the material of the above substrate is a material having electrical conductivity and a thermal conductivity higher than 170 W/(m 2 .K) (for example, a metal material such as copper, copper tungsten, molybdenum copper, copper diamond or a metal matrix composite).
  • the above insulating sheet has a thermal conductivity higher than 120 W/(m 2 .K); it may be a ceramic (such as A1N, BeO), diamond or the like.
  • the heat sink is water-cooled, air-cooled or electronically cooled or a heat-dissipating structure in which two or more of them are combined.
  • the number of the above heat sinks may be single or multiple.
  • a method of fabricating the above-described conduction cooled high power semiconductor laser comprising the steps of:
  • a single-tube chip or a short array (such as a micro-bar and a half-bar or a standard centimeter bar) is mounted on a substrate having a heat-dissipating conductive effect, and the substrate is mounted on an insulating sheet having an insulating heat dissipation effect.
  • Semiconductor laser unit
  • a plurality of semiconductor laser units that have passed the screening are mounted on a heat sink through an insulating sheet to form a conduction-cooled high-power semiconductor laser.
  • Another method of fabricating a conduction cooled high power semiconductor laser as described above includes the following steps:
  • Each semiconductor laser unit is individually tested and aged to screen out semiconductor laser units with known performance, and mounted on a heat sink to ensure that the performance of the conduction-cooled high-power semiconductor laser is well known.
  • 1 is a schematic view showing a preparation method of a conventional conduction cooling high power semiconductor laser
  • FIG. 2 is a schematic view showing a first preparation method of a conduction cooling type high power semiconductor laser according to the present invention
  • FIG. 3 is a schematic view showing a second preparation method of a conduction cooling type high power semiconductor laser according to the present invention
  • FIG. 4 is a conduction cooling type high power semiconductor laser according to the present invention
  • Fig. 5 is a power test chart of the conduction-cooled high-power semiconductor laser produced at 50 °C.
  • Fig. 6 is a light intensity test chart of the conduction-cooled high-power semiconductor laser produced at 50 °C.
  • 1 is a semiconductor laser unit; 2 is a heat sink; 3 is a chip; 4 is a substrate; 5 is an insulating sheet.
  • FIG. 2 there is shown a first schematic diagram of a method of fabricating a conduction-cooled high power semiconductor laser of the present invention.
  • a plurality of semiconductor laser units that have passed the screening are mounted on a heat sink through an insulating layer to form a conduction-cooled high-power semiconductor laser.
  • FIG. 3 there is shown a second schematic diagram of a method of fabricating a conduction cooled high power semiconductor laser of the present invention.
  • a semiconductor laser chip is mounted on a substrate that functions as a heat dissipation conductive, and a substrate is mounted on an insulating sheet to form a semiconductor laser unit.
  • a plurality of semiconductor laser units that have passed the screening are soldered together, and then a plurality of semiconductor laser units soldered together are soldered to the heat sink through an insulating sheet to form a conduction-cooled high-power semiconductor laser.
  • FIG. 4 is a schematic view of a conduction-cooling type high power semiconductor laser according to the present invention, a conduction-cooling type high power semiconductor laser including a semiconductor laser unit 1 and a heat sink 2.
  • the semiconductor laser unit 1 is soldered to the heat sink 2.
  • the semiconductor laser unit 1 comprises a chip 3, a substrate 4 for soldering heat conduction soldered to the chip, and an insulating sheet 5 soldered to the substrate 4, and the semiconductor laser unit 1 is soldered to the heat sink 2 through the insulating sheet 5.
  • the number of semiconductor laser units 1 is one or more.
  • the semiconductor laser unit 1 is a semiconductor laser unit of a known performance that has been tested, aged, and screened.
  • the chip 3 can be a single tube chip, a short array such as a miniature bar and a half bar, a standard centimeter bar or a plurality of single tube chipsets.
  • the material of the substrate 4 is a material which is both conductive and has high thermal conductivity, and may be a metal material such as copper, copper tungsten, molybdenum copper or copper diamond or a metal matrix composite material.
  • the insulating sheet 5 is made of an insulating high thermal conductivity material, and may be ceramic (such as A1N, BeO) or diamond.
  • the heat sink 2 can be cooled by a material with high thermal conductivity, or it can be water cooled, air cooled, or electronic. Cooling or combining two or more ways to dissipate heat.
  • the current is applied to the semiconductor laser chip through an external power source, and the heat generated by the semiconductor laser chip is transmitted through the substrate to the insulating sheet and then transmitted to the heat sink to dissipate heat.
  • the chip is soldered on the substrate, and then the insulating chip is soldered on the substrate to form a semiconductor laser unit.
  • the semiconductor laser unit is individually aged, tested, screened and optionally chip with different wavelengths to realize wide-spectrum and multi-wavelength output.
  • a conduction-cooling type high-power semiconductor laser is successfully prepared, and the structure thereof is also shown in FIG. 4, and six bar chips with a power of 200 watts are selected, and six The bar chips are connected in series.
  • Figure 5 is a power test diagram of the conduction-cooled high-power semiconductor laser produced at 50 °C. It can be seen from Fig. 5 that the output cooling power of the conduction-cooled semiconductor laser is 1194 watts at 50 ° C. Conversion efficiency Up to 52%.
  • Fig. 6 is a light intensity test chart of the conduction-cooled high-power semiconductor laser produced at 50 ° C. It can be seen from Fig.
  • the conduction-cooled high-power semiconductor laser has good heat dissipation performance and can be applied to high duty ratio and high temperature environments.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种传导冷却型高功率半导体激光器及其制备方法。其中传导冷却型高功率半导体激光器包括散热器(2)和一个或者多个半导体激光器单元(1)。半导体激光器单元由芯片(3)、与芯片焊接的起散热导电作用的衬底(4)、以及与衬底焊接的起绝缘散热作用的绝缘片(5)组成,半导体激光器单元通过绝缘片焊接在散热器上。半导体激光器单元可预先进行测试、老化、筛选,提高了激光器的成品率,节省了生产成本。该激光器散热性好、可靠性高,适用于高温等复杂多变的环境中使用。

Description

一种传导制冷型高功率半导体激光器及其制备方法 技术领域
本发明涉及半导体激光器, 是一种传导冷却型高功率半导体激光器及其制 备方法, 属于激光技术领域。
背景技术
半导体激光器又称二极管激光器 (DL)。 高功率半导体激光器不但具有体 积小、 重量轻、 电光转化效率高、 可靠性高、 使用寿命长等优点, 而且由于 其采用电驱动, 便于在各个平台上使用, 因此高功率半导体激光器展示出了 更为广阔的应用, 如在激光加工、 激光通信、 医疗和美容、 科学研究、 军事 国防和激光娱乐显示等方面。 很多应用中要求半导体激光器具有长寿命、 高 稳定性、 高可靠性和长储存时间的特点。 如何确保半导体激光器在长时间的 使用中仍然保持高效的工作, 这给半导体激光器本身和封装技术带来了极大 的挑战。
采用传导制冷方式、 硬焊料封装技术, 能够避免由于软焊料封装导致的 电迁移和电热迁移所引起的失效, 也可以满足长存储时间以及在极端环境下 稳定工作的要求, 因此传导制冷型半导体激光器产品有望在各类航空航天、 自由空间通信、 加工、 高温泵浦固体 /光纤激光器等领域得到广泛的应用。
图 1 为目前传统传导冷却型半导体激光器叠阵制备流程, 其是将多个芯 片和多个铜钨同时焊接后整体焊接在绝缘导热片上, 然后再将该模组焊接在 散热器上。 该结构存在以下缺点:
( 1 ) 成品率低。 将多个芯片和多个铜钨片进行同时焊接时, 若其中一个 芯片损坏, 则这个产品将不能使用, 导致产品成品率非常低。
(2)散热性和可靠性差。 焊接好的多个芯片和多个铜钨焊接在绝缘导热 片上时, 中间位置的铜钨片由于工艺复杂, 很难焊接在绝缘导热片上, 使得 该结构产品的散热性差, 可靠性低。
发明内容
本发明的目的在于克服上述现有技术的缺点, 提供一种传导冷却型高功 率半导体激光器及其制备方法, 以解决现有技术中传导冷却型高功率半导体 激光器成品率低、 散热性差、 可靠性低等问题。
本发明的目的是通过以下技术方案来解决的:
一种传导冷却型高功率半导体激光器, 包括散热器和一个或者多个半导 体激光器单元; 其特殊之处在于: 所述半导体激光器单元由芯片、 与芯片焊 接的起散热导电作用的衬底、 以及与衬底焊接的起绝缘散热作用的绝缘片组 成, 半导体激光器单元通过绝缘片焊接在散热器上。
上述半导体激光器单元是经过测试、 老化、 筛选后的半导体激光器单元。 上述芯片为单管芯片 (Single Emitter )、 短阵列 (如微型巴条 (Mini-bar) 和半巴条 (Half-bar)、 标准厘米巴条) 或者多个单管芯片组。
上述衬底的材质为既具有导电性能并且热导率高于 170W/(m2.K)的材料 (比如铜、 铜钨、 钼铜、 铜金刚石等金属材料或金属基复合材料)。
上述绝缘片的热导率高于 120W/(m2.K); 可以是陶瓷 (如 A1N, BeO)、 金刚石等材料。
上述散热器采用水冷、 风冷或者电子制冷或者结合其中的两种或两种以 上散热方式的散热结构。
上述散热器的个数可以为单个, 也可以有多个。
一种制备上述传导冷却高功率半导体激光器的方法, 包括以下步骤:
( 1 ) 取单管芯片或短阵列 (如微型巴条和半巴条或者标准厘米巴条) 安 装在具有散热导电作用的衬底上, 将衬底安装在具有绝缘散热作用的绝缘片 上制成半导体激光器单元;
(2) 对半导体激光器单元进行测试、 老化、 筛选;
( 3 ) 将筛选后合格的多个半导体激光器单元通过绝缘片安装在散热器 上, 制成传导冷却型高功率半导体激光器。
另一种制备如上述传导冷却高功率半导体激光器的方法, 包括以下步骤:
( 1 ) 由单管芯片或短阵列 (如微型巴条和半巴条或者标准厘米巴条) 安 装在具有散热导电作用的衬底上, 将衬底安装在具有绝缘散热作用的绝缘片 上制成半导体激光器单元; (3 )将筛选后合格的多个半导体激光器单元焊接在一起, 然后将焊接在 一起的多个半导体激光器单元通过绝缘片焊接在散热器上, 制成传导冷却型 高功率半导体激光器。 本发明具有以下有益效果:
( 1 ) 成本低。 每个半导体激光器单元预先进行测试、 老化、 筛选, 提高 了生产制备过程中的成品率, 大大节省了成本;
(2) 散热性好。 将每个半导体激光器单元焊接在散热器上, 可保证每个 半导体激光器单元与散热器接触良好, 散热性显著提高, 散热效率高。
(3 )每个半导体激光器单元单独进行测试、 老化后筛选出性能已知合格 的半导体激光器单元, 将其安装在散热器上, 可保证所制成的传导冷却型高 功率半导体激光器性能已知良好。
(4) 可靠性高, 适用于高温等复杂多变的环境中使用。
附图说明
图 1为传统传导冷却高功率半导体激光器制备方法示意图;
图 2为本发明传导冷却型高功率半导体激光器第一种制备方法示意图; 图 3为本发明传导冷却型高功率半导体激光器第二种制备方法示意图; 图 4为本发明传导冷却型高功率半导体激光器结构示意图。
图 5为所制成的传导冷却型高功率半导体激光器在 50°C时功率测试图。 图 6为所制成的传导冷却型高功率半导体激光器在 50°C时光强测试图。 其中: 1为半导体激光器单元; 2为散热器; 3为芯片; 4为衬底; 5为 绝缘片。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参见图 2给出了本发明的传导冷却型高功率半导体激光器第一种制备方 法示意图。
( 1 )将半导体激光器芯片安装在起散热导电作用的衬底上, 将衬底安装 在绝缘片上制成半导体激光器单元。
(2) 将半导体激光器单元进行测试、 老化、 筛选。
( 3 ) 将筛选后合格的多个半导体激光器单元通过绝缘层安装在散热器 上, 制成传导冷却型高功率半导体激光器。
参见图 3 给出了本发明的传导冷却型高功率半导体激光器第二种制备方 法示意图。
( 1 )将半导体激光器芯片安装在起散热导电作用的衬底上, 将衬底安装 在绝缘片上制成半导体激光器单元。
(2) 将半导体激光器单元进行测试、 老化、 筛选。
(3 )将筛选后合格的多个半导体激光器单元焊接在一起, 然后将焊接在 一起的多个半导体激光器单元通过绝缘片焊接在散热器上, 制成传导冷却型 高功率半导体激光器。
图 4为本发明的传导冷却型高功率半导体激光器示意图, 一种传导冷却 型高功率半导体激光器, 包括半导体激光单元 1和散热器 2。
所述半导体激光器单元 1焊接在散热器 2上。
半导体激光器单元 1包括芯片 3、与芯片焊接的起散热导电作用的衬底 4 以及与衬底 4焊接的绝缘片 5组成, 半导体激光器单元 1通过绝缘片 5焊接 在散热器 2上。
半导体激光器单元 1的个数为 1个或者多个。
半导体激光器单元 1是经过测试、 老化、 筛选后选出的已知性能合格的 半导体激光器单元。
芯片 3可以是单管芯片、 短阵列, 如微型巴条和半巴条、 标准厘米巴条 或者多个单管芯片组。
衬底 4的材质为既导电又兼具高导热率性能的材料, 可以是铜、 铜钨、 钼铜、 铜金刚石等金属材料或金属基复合材料。
绝缘片 5的材质为绝缘高导热率材料, 可以是陶瓷 (如 A1N, BeO)、 金 刚石等材料。
散热器 2可以选用高导热率的材料来制冷, 也可使用水冷、 风冷、 电子 制冷或者选择两种或两种以上方式结合来散热。
本发明的工作原理如下:
通过外接电源, 把电流加载到半导体激光器芯片上, 半导体激光器芯片 所发出的热量通过衬底传到绝缘片上再传到散热器上将热量散出。
本发明中将芯片焊接在衬底上, 再在衬底上焊接绝缘片制成半导体激光 器单元, 半导体激光器单元单独老化, 测试, 筛选且可选用不同波长的芯片, 实现宽光谱多波长的输出。
根据本发明的传导冷却型高功率半导体激光器的制备方法, 制备成功了 传导冷却型高功率半导体激光器, 其结构也如图 4所示, 选用 6个功率为 200 瓦的巴条芯片, 将 6个巴条芯片进行串联。 图 5为所制成的传导冷却型高功 率半导体激光器在 50°C时功率测试图, 由图 5可以看出, 在 50°C, 本传导冷 却型半导体激光器输出峰值功率为 1194瓦, 转换效率达到 52%。 图 6为所制 成的传导冷却型高功率半导体激光器在 50°C时光强测试图,由图 6可以看出, 在 50°C, 本传导冷却型半导体激光器半峰全宽很窄为 2.93nm。 由此可知本传 导冷却型高功率半导体激光器散热性能良好, 可适用于高占空比和高温环境。

Claims

权利要求书
1、 一种传导冷却型高功率半导体激光器, 包括散热器和一个或者多个半 导体激光器单元; 其特征在于: 所述半导体激光器单元由芯片、 与芯片焊接 的起散热导电作用的衬底、 以及与衬底焊接的起绝缘散热作用的绝缘片组成, 半导体激光器单元通过绝缘片焊接在散热器上。
2、根据权利要求 1所述的传导冷却型高功率半导体激光器,其特征在于: 所述半导体激光器单元是经过测试、 老化、 筛选后的半导体激光器单元。
3、根据权利要求 1所述的传导冷却型高功率半导体激光器,其特征在于: 所述芯片为单管芯片、 短阵列或者多个单管芯片组。
4、根据权利要求 1所述的传导冷却型高功率半导体激光器,其特征在于: 所述衬底的材质为既具有导电性能并且热导率高于 170W/(m2.K)的材料。
5、根据权利要求 1所述的传导冷却型高功率半导体激光器,其特征在于: 所述绝缘片的热导率高于 120W/(m2_K)。
6、根据权利要求 1所述的传导冷却型高功率半导体激光器,其特征在于: 所述散热器采用水冷、 风冷或者电子制冷或者结合其中的两种或两种以上散 热方式的散热结构。
7、根据权利要求 6所述的传导冷却型高功率半导体激光器,其特征在于: 所述散热器的个数为单个或多个。
8、 制备如权利要求 1所述的传导冷却高功率半导体激光器的方法, 包括 以下步骤:
( 1 )取单管芯片或短阵列安装在具有散热导电作用的衬底上, 将衬底安 装在具有绝缘散热作用的绝缘片上制成半导体激光器单元;
(2) 对半导体激光器单元进行测试、 老化、 筛选;
( 3 ) 将筛选后合格的多个半导体激光器单元通过绝缘片安装在散热器 上, 制成传导冷却型高功率半导体激光器。
9、 制备如权利要求 1所述的传导冷却高功率半导体激光器的方法, 包括 以下步骤:
( 1 ) 由单管芯片或短阵列安装在具有散热导电作用的衬底上, 将衬底安 装在具有绝缘散热作用的绝缘片上制成半导体激光器单元;
(2) 对半导体激光器单元进行测试、 老化、 筛选;
(3)将筛选后合格的多个半导体激光器单元焊接在一起, 然后将焊接在 一起的多个半导体激光器单元通过绝缘片焊接在散热器上, 制成传导冷却型 高功率半导体激光器。
PCT/CN2012/085031 2011-12-20 2012-11-22 一种传导制冷型高功率半导体激光器及其制备方法 WO2013091459A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12859302.7A EP2797186A4 (en) 2011-12-20 2012-11-22 LINE-COOLED HIGH-PERFORMANCE SEMICONDUCTOR LASER AND MANUFACTURING METHOD THEREFOR
JP2014547688A JP2015505163A (ja) 2011-12-20 2012-11-22 伝導冷却型高出力半導体レーザーおよびその製造方法
US14/367,372 US9031105B2 (en) 2011-12-20 2012-11-22 Conduction cooled high power semiconductor laser and method for fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110453400.4A CN102570291B (zh) 2011-12-20 2011-12-20 一种传导制冷型高功率半导体激光器及其制备方法
CN201110453400.4 2011-12-20

Publications (1)

Publication Number Publication Date
WO2013091459A1 true WO2013091459A1 (zh) 2013-06-27

Family

ID=46415046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085031 WO2013091459A1 (zh) 2011-12-20 2012-11-22 一种传导制冷型高功率半导体激光器及其制备方法

Country Status (5)

Country Link
US (1) US9031105B2 (zh)
EP (1) EP2797186A4 (zh)
JP (1) JP2015505163A (zh)
CN (1) CN102570291B (zh)
WO (1) WO2013091459A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336640A (zh) * 2017-01-20 2018-07-27 山东华光光电子股份有限公司 一种高功率半导体激光器及其制备方法
CN109244825A (zh) * 2018-09-26 2019-01-18 华南师范大学 带有散热结构的边发射半导体激光器及其制备方法
US11090375B2 (en) * 2014-01-21 2021-08-17 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570291B (zh) 2011-12-20 2014-10-08 西安炬光科技有限公司 一种传导制冷型高功率半导体激光器及其制备方法
CN103532006A (zh) * 2013-10-21 2014-01-22 重庆航伟光电科技有限公司 一种半导体激光器
CN104836112B (zh) * 2015-04-17 2018-07-10 中国科学院苏州生物医学工程技术研究所 一种单管半导体激光器串联结构的绝缘散热装置
CN105182548A (zh) * 2015-10-30 2015-12-23 山东华光光电子有限公司 一种便于光纤整形的高性能半导体激光器及其封装方法
CN115494896B (zh) * 2022-11-17 2023-03-14 清华大学合肥公共安全研究院 一种激光器的升温控制方法、装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201927886U (zh) * 2010-06-11 2011-08-10 西安炬光科技有限公司 一种可替换芯片的水平阵列大功率半导体激光器
CN102255236A (zh) * 2011-05-18 2011-11-23 西安炬光科技有限公司 一种高功率半导体激光器线路封装结构及制备方法
CN102570291A (zh) * 2011-12-20 2012-07-11 西安炬光科技有限公司 一种传导制冷型高功率半导体激光器及其制备方法
CN202503191U (zh) * 2011-12-20 2012-10-24 西安炬光科技有限公司 一种传导冷却型高功率半导体激光器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393393A (en) * 1979-08-13 1983-07-12 Mcdonnell Douglas Corporation Laser diode with double sided heat sink
US5099488A (en) * 1991-03-27 1992-03-24 Spectra Diode Laboratories, Inc. Ribbed submounts for two dimensional stacked laser array
US5305344A (en) * 1993-04-29 1994-04-19 Opto Power Corporation Laser diode array
US5764675A (en) * 1994-06-30 1998-06-09 Juhala; Roland E. Diode laser array
JP3816194B2 (ja) * 1996-11-22 2006-08-30 ファナック株式会社 冷却装置、光源装置、面発光装置、およびその製造方法
JPH11296005A (ja) * 1998-04-15 1999-10-29 Sumitomo Electric Ind Ltd 加熱定着装置
US5913108A (en) * 1998-04-30 1999-06-15 Cutting Edge Optronics, Inc. Laser diode packaging
US6424667B1 (en) * 1998-12-04 2002-07-23 Jds Uniphase Corporation Solder and material designs to improve resistance to cycling fatigue in laser diode stacks
US6636538B1 (en) * 1999-03-29 2003-10-21 Cutting Edge Optronics, Inc. Laser diode packaging
CA2284946A1 (en) * 1999-10-04 2001-04-04 Institut National D'optique Laser diode array assembly made from a ridged monolithic substrate
JP2003037074A (ja) * 2001-07-26 2003-02-07 Toshiba Corp 半導体装置およびその製造方法
JP2005085824A (ja) * 2003-09-04 2005-03-31 Fanuc Ltd 冷却装置、その製造方法および半導体レーザ装置
JP4037815B2 (ja) * 2003-09-29 2008-01-23 オムロンレーザーフロント株式会社 レーザダイオードモジュール、レーザ装置、及びレーザ加工装置
JP2005234464A (ja) * 2004-02-23 2005-09-02 Tdk Corp 光トランシーバ及びこれに用いる光モジュール
US7515346B2 (en) * 2006-07-18 2009-04-07 Coherent, Inc. High power and high brightness diode-laser array for material processing applications
US7864825B2 (en) * 2006-08-10 2011-01-04 Lasertel, Inc. Method and system for a laser diode bar array assembly
CN201199606Y (zh) * 2008-01-30 2009-02-25 深圳世纪晶源光子技术有限公司 半导体激光器的封装结构
JP4645655B2 (ja) * 2008-02-04 2011-03-09 富士ゼロックス株式会社 光伝送モジュール
JP2010151794A (ja) * 2008-11-27 2010-07-08 Panasonic Corp 電子部品試験装置
JP5428485B2 (ja) * 2009-04-22 2014-02-26 富士ゼロックス株式会社 面発光型半導体レーザ素子のバーンイン方法およびそのプログラム
JP2011134947A (ja) * 2009-12-25 2011-07-07 Toyota Central R&D Labs Inc 横型半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201927886U (zh) * 2010-06-11 2011-08-10 西安炬光科技有限公司 一种可替换芯片的水平阵列大功率半导体激光器
CN102255236A (zh) * 2011-05-18 2011-11-23 西安炬光科技有限公司 一种高功率半导体激光器线路封装结构及制备方法
CN102570291A (zh) * 2011-12-20 2012-07-11 西安炬光科技有限公司 一种传导制冷型高功率半导体激光器及其制备方法
CN202503191U (zh) * 2011-12-20 2012-10-24 西安炬光科技有限公司 一种传导冷却型高功率半导体激光器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2797186A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11090375B2 (en) * 2014-01-21 2021-08-17 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
CN108336640A (zh) * 2017-01-20 2018-07-27 山东华光光电子股份有限公司 一种高功率半导体激光器及其制备方法
CN108336640B (zh) * 2017-01-20 2024-02-09 山东华光光电子股份有限公司 一种高功率半导体激光器及其制备方法
CN109244825A (zh) * 2018-09-26 2019-01-18 华南师范大学 带有散热结构的边发射半导体激光器及其制备方法
CN109244825B (zh) * 2018-09-26 2020-04-17 华南师范大学 带有散热结构的边发射半导体激光器及其制备方法

Also Published As

Publication number Publication date
CN102570291B (zh) 2014-10-08
EP2797186A4 (en) 2015-08-12
US9031105B2 (en) 2015-05-12
US20150030044A1 (en) 2015-01-29
CN102570291A (zh) 2012-07-11
JP2015505163A (ja) 2015-02-16
EP2797186A1 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
WO2013091459A1 (zh) 一种传导制冷型高功率半导体激光器及其制备方法
CN101471337B (zh) 具良好散热性能的光源模组
US7864825B2 (en) Method and system for a laser diode bar array assembly
EP2378616B1 (en) High-power semiconductor laser and method for manufacturing the same
CN103457151B (zh) 一种高温硬焊料准连续半导体激光器巴条叠阵封装方法
US20090153007A1 (en) Light source module and method for manufacturing same
JP2016054279A (ja) 半導体レーザ
CN102376845A (zh) 发光二极管的封装结构
CN112242480A (zh) 芯片级电子设备热电制冷方法
CN101841127A (zh) 一种可替换芯片的水平阵列大功率半导体激光器
JP2004221504A (ja) 熱電変換装置およびその製造方法
JP2006049736A (ja) 熱電モジュール
CN104269736B (zh) 一种传导冷却叠层阵列高功率半导体激光器
CN101740671A (zh) 发光二极管封装结构
JP5444289B2 (ja) メタルベース及びその製造方法
JPH036875A (ja) 半導体レーザ
JP2003163409A (ja) 半導体レーザーモジュール
JP2016195177A (ja) 光照射モジュール
CN112366510A (zh) 一种半导体激光器叠阵封装方法
JP2001332773A (ja) 熱電モジュール用多層基板およびその製造方法ならびにこの多層基板を用いた熱電モジュール
CN102255236A (zh) 一种高功率半导体激光器线路封装结构及制备方法
CN202503191U (zh) 一种传导冷却型高功率半导体激光器
JP2002164585A (ja) 熱電変換モジュール
CN102097744B (zh) 一种高功率半导体激光器的封装方法
CN201100917Y (zh) 高效率led构装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014547688

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14367372

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012859302

Country of ref document: EP