WO2013091453A1 - 光源系统及投影装置 - Google Patents

光源系统及投影装置 Download PDF

Info

Publication number
WO2013091453A1
WO2013091453A1 PCT/CN2012/084921 CN2012084921W WO2013091453A1 WO 2013091453 A1 WO2013091453 A1 WO 2013091453A1 CN 2012084921 W CN2012084921 W CN 2012084921W WO 2013091453 A1 WO2013091453 A1 WO 2013091453A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
supplemental
source system
wavelength conversion
Prior art date
Application number
PCT/CN2012/084921
Other languages
English (en)
French (fr)
Inventor
胡飞
李屹
曹亮亮
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to JP2014546292A priority Critical patent/JP6096211B2/ja
Priority to KR1020147018022A priority patent/KR101995543B1/ko
Priority to EP12860277.8A priority patent/EP2793079B1/en
Priority to ES12860277.8T priority patent/ES2607781T3/es
Publication of WO2013091453A1 publication Critical patent/WO2013091453A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus

Definitions

  • the present invention relates to the field of optical technologies, and in particular, to a light source system and a projection device. Background technique
  • gas discharge lamps for example, ultra-high pressure mercury lamps
  • RGB red, green, and blue
  • FIG. 1 is a schematic structural view of a prior art light source system.
  • the light source system includes an excitation light source 101, a lens 102, a color wheel 103, and a driving device 104.
  • the excitation light source 101 is used to generate an excitation light 106.
  • Lens 102 is used to collect and relay the excitation light 106 onto color wheel 103.
  • Different sections of the color wheel 103 are provided with different phosphors. Therefore, during the rotation of the color wheel 103 about the rotary shaft 105 under the driving of the driving device 104, the phosphors 106 sequentially excite the phosphors, thereby generating a color light sequence 107.
  • the phosphor may include a red phosphor, a green phosphor, and a yellow phosphor.
  • the red phosphor region of the color wheel 103 is rotated to the propagation path of the excitation light 106, the red phosphor is excited by the excitation light 106 to generate high-intensity red light.
  • the process of producing green and yellow light is the same as that of red light.
  • the conversion efficiency of the red phosphor is much lower than that of other phosphors, so it is generally necessary to supplement the luminance of the red light by an external light source.
  • FIG. 2 is a schematic structural diagram of another prior art light source system.
  • the light source system includes an excitation light source 201, a supplemental light source 202, a red light conversion device 203, and a spectral filter 204.
  • the red light 207 generated by the supplemental light source 202 and the excitation light 205 (for example, blue light) generated by the excitation light source 201 are combined by the spectral filter 204, and then incident on the red light conversion device 203 and transmitted through the red light conversion device 203.
  • the red light 206 generated by the wavelength conversion of the excitation light 205 by the red light conversion device 203 is supplemented.
  • the red light converting device 203 has a large reflectance for the red light 207, which is usually about 50%, and is reflected by the red light converting device 203. 207 will return to the supplemental light source 202 along the original path, resulting in lower light extraction efficiency.
  • the technical problem to be solved by the present invention is to provide a light source system and a projection device to improve the efficiency of the light source system.
  • a technical solution adopted by the present invention is to provide a light source system including an excitation light source, a wavelength conversion device, a first supplemental light source, a first light guiding device, and a first light collecting device.
  • An excitation light source is used to generate an excitation light.
  • a wavelength conversion device is used to convert the wavelength of the excitation light into a laser.
  • the first supplemental light source is for generating a first supplemental light, the photorefractive range of the first supplemental light being overlapped with the photorefractive range of the laser.
  • the first light guiding means is for guiding the first supplemental light generated by the first supplemental light source to the wavelength converting means.
  • the wavelength conversion device scatters and partially reflects the first supplemental light.
  • the first light collecting means is for collecting the first supplemental light scattered and reflected by the wavelength converting means.
  • the first light guiding device and the first light collecting device are sized such that the wavelength conversion device scatters and the reflected first supplemental light escaping through the first light guiding device has a luminous flux less than or equal to that collected by the first light collecting device 1/4 of the luminous flux.
  • the excitation light generated by the excitation light source at least partially overlaps the incident position formed by the first complementary light generated by the first complementary light source on the wavelength conversion device.
  • the difference between the dominant wavelength of the laser and the first supplemental light is less than 20 nanometers.
  • the light transmission range of the first supplemental light is narrower than the light transmission range of the laser light to increase the color saturation of the mixed light of the laser and the first complementary light.
  • the first light guiding device further guides the light source to generate the light source to the wavelength conversion device, and the first light collecting device further collects the laser light generated by the wavelength conversion device for wavelength conversion.
  • the range of the first complementary light is different from the excitation light
  • the light source system further includes a light combining device for the first complementary light and before the first supplementary light and the excitation light are incident on the first light guiding device The excitation light is combined.
  • the light source system further comprises a reflective substrate disposed on a side of the wavelength conversion device remote from the first supplemental light source, and the reflective substrate reflects the first supplemental light.
  • the reflective substrate is a spectral filter generated by the excitation light source; the light is incident from the side remote from the wavelength conversion device to the spectral filter and transmitted to the wavelength conversion device via the spectral filter.
  • the light source system further comprises a second light collecting device, the second light collecting device collecting the first supplemental light transmitted by the wavelength converting device, the first light collecting device scattering by the wavelength converting device And the reflected first supplemental light is collected and reflected back to the wavelength conversion device.
  • the first light collecting device is provided with a reflecting surface
  • the first light guiding device is an opening disposed on the reflecting surface, the opening is configured to transmit the first supplemental light generated by the first supplemental light source, and the reflecting surface is configured to reflect the wavelength converting device
  • the first complementary light that is scattered and reflected, the area of the opening is less than or equal to 1/4 of the area of the reflective surface
  • the reflective surface is a planar reflective surface or a curved reflective surface.
  • the curved surface of the curved surface is a spherical reflecting surface or an ellipsoid reflecting surface.
  • the opening is a through hole or a light transmitting area disposed on the reflecting surface.
  • the first light guiding device is a reflecting device, and the reflecting device is configured to reflect the first supplemental light generated by the first supplemental light source to the wavelength converting device, and the projected area of the reflecting device on the first light collecting device is smaller than the first light collecting device. 1/4 of the area of the device
  • the first light collecting device is a lens or a reflecting surface.
  • the light source system further comprises a second supplemental light source for generating a second supplemental light, the first light guiding device guiding the second supplemental light to the wavelength conversion device, the first light collecting device further collecting the wavelength conversion A second supplemental light that is scattered and reflected by the device.
  • the light source system further comprises a second supplemental light source for generating the second supplemental light, the second light guiding device guiding the second supplemental light to the wavelength conversion device, the first light
  • the collecting device further collects second supplemental light scattered and reflected by the wavelength converting device, the second light guiding device and the first light collecting device being sized such that the wavelength converting device scatters and reflects the second supplemental light through the second light guide
  • the luminous flux escaped by the guiding device is less than or equal to 1/4 of the luminous flux collected by the first light collecting device
  • the range of the second complementary light ⁇ # ⁇ is different from the range of the first complementary light ⁇ # ⁇ and overlaps with the range of the laser ⁇ # ⁇ .
  • a technical solution adopted by the present invention is to provide a projection apparatus including any of the above-described light source systems.
  • the light source system and the projection device of the present invention use the light guiding device to guide the supplementary light to the wavelength conversion device, and the light collecting device to the wavelength conversion device
  • the scattered and reflected supplemental light is collected, and by appropriately setting the size of the light guiding device and the light collecting device, the flux of the supplemental light escaping through the light guiding device is less than or equal to 1/4 of the luminous flux collected by the light collecting device
  • the loss of supplemental light due to reflection by the wavelength conversion device is avoided, thereby improving the efficiency of the light source system.
  • FIG. 1 is a schematic structural view of a light source system of the prior art
  • FIG. 2 is a schematic structural view of another light source system in the prior art
  • FIG. 3 is a schematic structural view of a first embodiment of a light source system of the present invention.
  • FIG. 4 is a schematic structural view of a second embodiment of a light source system of the present invention.
  • Figure 5 is a schematic structural view of a third embodiment of the light source system of the present invention.
  • Figure 6 is a schematic structural view of a fourth embodiment of the light source system of the present invention.
  • Figure 7 is a schematic structural view of a fifth embodiment of the light source system of the present invention.
  • Figure 8 is a schematic structural view of a sixth embodiment of the light source system of the present invention.
  • Figure 9 is a schematic view showing the structure of a seventh embodiment of the light source system of the present invention. detailed description
  • FIG. 3 is a schematic structural view of a first embodiment of a light source system according to the present invention.
  • the light source system of the present embodiment mainly includes an excitation light source 301, a supplemental light source 302, a light combining device 303, a light collecting device 304, a reflecting device 305, a wavelength converting device 306, a reflective substrate 307, and a light homogenizing device. 308.
  • the reflecting device 305 includes a curved reflecting surface 3051 (for example, a spherical reflecting surface or an ellipsoid reflecting surface) and an opening 3052 disposed on the curved reflecting surface 3051.
  • the opening 3052 can be a through hole or a light transmitting region.
  • the excitation light source 301 generates an excitation light 3011.
  • the supplemental light source 302 produces a supplemental light 3021.
  • the excitation light 3011 generated by the excitation light source 301 and the supplemental light 3021 generated by the supplemental light source 302 are combined by the light combining device 303, and then incident on the light collecting device 304, collected by the light collecting device 304, and relayed through the opening 3052.
  • Pair of wavelength conversion devices 306 The incident excitation light 3011 absorbs and the wavelength is converted into the received laser light 3012.
  • the received laser light 3012 generated by the wavelength conversion device 306 is isotropic, wherein the laser light 3012 is partially inverted with respect to the incident direction of the
  • the forward output portion of the light 3011 is reflected back to the wavelength conversion device 306 via the reflective substrate 307 disposed on the side of the wavelength conversion device 306 remote from the excitation light source 301 and the complementary light source 302, and is reversed by the wavelength conversion device 306. Output.
  • the wavelength conversion device 306 further scatters the incident supplemental light 3021, wherein the scattered partial supplemental light 3021 is reflected by the wavelength conversion device 306 and is output in reverse with respect to the incident direction of the supplemental light 3021, and another portion of the scattered supplemental light 3021 is wavelength-dependent.
  • the conversion device 306 is transmissive.
  • the transmitted partial supplemental light 3021 is reflected back to the wavelength conversion device 306 via the reflective substrate 307 and transmitted by the wavelength conversion device 306 for reverse output.
  • the curved reflecting surface 3051 collects most of the laser light 3012 and the complementary light 3021 which are inversely output by the wavelength conversion device 306 to the light homogenizing device 308 for the hooking process.
  • the curved reflecting surface 3051 when the curved reflecting surface 3051 has an ellipsoidal shape, the curved reflecting surface 3051 can reflect light from near one focus to another focus, and the excitation light 3011 and the complementary light source generated by the excitation light source 301 are required.
  • the incident position of the supplemental light 3021 generated by 302 on the wavelength conversion device 306 is set near one of the above-mentioned focal points, and the light entrance of the light-hooking device 308 is disposed near the other focus.
  • the curved reflecting surface 3051 is spherical, two symmetric points symmetric about the spherical center are disposed at a position adjacent to the center of the sphere, and the curved reflecting surface 3051 can reflect the light from one of the symmetric points to another symmetric point.
  • the incident position of the excitation light 3011 generated by the excitation light source 301 and the complementary light 3021 generated by the supplemental light source 302 on the wavelength conversion device 306 is disposed near a symmetry point, and the light entrance of the light homogenizing device 308 is set to the above. Another point of symmetry nearby.
  • the etendue of the laser light 3012 and the complementary light 3021 which are invertedly outputted by the wavelength conversion device 306 is much larger than the optical expansion amount of the excitation light 3011 and the supplementary light 3021 input through the opening 3052, for example, 4 times or 4 times
  • the light flux that is reversely output by the wavelength conversion device 306 and the complementary light 3021 escapes through the opening 3052 can be set to be smaller than or It is equal to 1/4 of the luminous flux collected by the curved reflecting surface 3051, whereby the received laser light 3012 and the complementary light 3021 which are reversely outputted by the wavelength converting means 306 can be efficiently collected to avoid excessive escape through the opening 3052.
  • the area of the opening 3052 can be set to be smaller than Or equal to 1/4 of the area of the curved reflecting surface 3051
  • the excitation light source 301 and the supplemental light source 302 may be LEDs or laser tubes.
  • the range of the light ⁇ # ⁇ of the supplemental light 3021 is different from that of the light ⁇ # ⁇ of the light 3011, and at least partially overlaps with the range of the light ⁇ # ⁇ of the laser light 3012, and the brightness of the laser light 3012 is complemented.
  • the difference between the dominant wavelengths of the excitation light 3012 and the supplemental light 3021 is preferably less than 20 nanometers.
  • the range of the light ⁇ # ⁇ of the supplementary light 3021 is preferably narrower than the range of the light ⁇ # ⁇ of the laser light 3012 to increase the color saturation of the mixed light of the laser light 3012 and the complementary light 3021.
  • the excitation light 3011 generated by the excitation light source 301 and the complementary light 3021 generated by the supplemental light source 302 at least partially overlap the incident position formed on the wavelength conversion device 306, whereby sufficient mixing of the complementary light 3021 with the laser light 3012 can be achieved.
  • the complementary light and the laser light ⁇ # ⁇ range may not overlap, for example, the wavelength conversion device is excited to generate a green laser, and the supplementary light source is a red LED. At this time, the green laser light and the red complementary light can be collected by the light. Collected by device 304.
  • the wavelength conversion device 306 may include a transparent substrate and a wavelength converting material doped inside the transparent substrate, or a wavelength converting material layer directly coated on the reflective substrate 307.
  • the wavelength converting material may be a phosphor or quantum dot material as is known in the art.
  • scattering particles or scattering structures may be further provided inside or on the surface of the transparent substrate or the wavelength converting material layer to enhance the scattering effect of the wavelength conversion device 306.
  • the light combining means 303 can employ a spectroscopic filter or a polarizing beam splitter as known in the art.
  • the light collecting device 304 can employ a lens or lens group as is known in the art.
  • the homogenizing device 308 can employ an integrator rod as is known in the art.
  • the light combining means 303, the light collecting means 304, the reflective substrate 307, and the light homogenizing means 308 are not essential elements for achieving the object of the present invention, and therefore may be omitted as appropriate.
  • the excitation light 3011 generated by the excitation light source 301 and the supplementary light 3021 generated by the supplementary light source 302 are incident side by side or incident through the opening 3052 at different angles, the light combining means 303 can be omitted.
  • the excitation light 3011 generated by the excitation light source 301 and the complementary light 3021 generated by the supplemental light source 302 are guided to the wavelength conversion device 306 by the opening 3052, and the laser light is outputted in reverse to the wavelength conversion device 306 by the curved reflection surface 3051.
  • the majority of the 3012 and the supplemental light 3021 are collected, and by appropriately setting the size of the opening 3052 and the curved reflecting surface 3051, the light flux that is absorbed by the laser light 3012 and the complementary light 3021 through the opening 3052 is less than or equal to that collected by the curved reflecting surface 3051. 1/4 of the luminous flux, avoiding the laser 3012 and the supplemental light 3021 The loss, which in turn increases the efficiency of the light source system.
  • FIG. 4 is a schematic structural view of a second embodiment of a light source system according to the present invention.
  • the light source system of the present embodiment mainly includes an excitation light source 401, a first supplemental light source 402, a light combining device 403, a light collecting device 404, a reflecting device 405, a wavelength converting device 406, a reflective substrate 407, and a hook light.
  • the reflecting device 405 includes a curved reflecting surface 4051 and a first opening 4052 and a second opening 4053 disposed on the curved reflecting surface 4051.
  • the excitation light 4011 generated by the excitation light source 401 and the first supplemental light 4021 generated by the first supplemental light source 402 are incident on the wavelength conversion device 406 through the first opening 4052 in the same manner as the light source system shown in FIG.
  • the device 406 outputs the received laser light and the first supplemental light (not shown) in reverse.
  • the curved reflecting surface 4051 collects most of the laser light and the first complementary light which are output in the reverse direction of the wavelength converting means 406 to the light hooking means 408.
  • the light source system of the present embodiment is different from the light source system shown in FIG. 3 in that the light source system of the present embodiment further includes a second supplementary light source 409, and a second opening 4053 is further disposed on the curved reflecting surface 4051.
  • the second supplemental light 4091 generated by the second supplemental light source 409 is incident on the wavelength conversion device 406 via the second opening 4053.
  • the wavelength conversion device 406 scatters the incident second supplemental light 4091, wherein the scattered portion of the second supplemental light 4091 is wavelength converted.
  • the device 406 reflects and is output in reverse with respect to the incident direction of the second supplemental light 4091, and another portion of the scattered second supplemental light 4091 is transmitted through the wavelength conversion device 406.
  • the transmitted portion of the second supplemental light 4091 is reflected back to the wavelength conversion device 406 via the reflective substrate 407 and transmitted by the wavelength conversion device 406 for reverse output.
  • the curved reflecting surface 4051 collects most of the second supplemental light 4091 outputted by the wavelength converting means 406 in the hooking means 408, and performs a hooking process with the laser and the first supplement.
  • the second supplemental light 4091 scattered and reflected by the wavelength conversion device 406 can be escaping through the second opening 4053 with a light flux less than or equal to the curved surface.
  • the light flux collected by the reflecting surface 4051 is 1/4.
  • the area of the second opening 4053 may be set to be less than or equal to 1/4 of the area of the curved reflecting surface 4051.
  • the range of the pupil # ⁇ of the second supplemental light 4091 and the range of the pupil ⁇ of the first supplemental light 4021 may be the same or different but at least partially overlap with the range of the light transmitted by the laser.
  • the received laser light may be yellow light fluorescent
  • the first complementary light 4021 may be red laser light or red light LED light
  • the second supplementary light 4091 may be green light laser or green light LED light.
  • the second supplemental light 4091 generated by the second supplemental light source 409 can be incident on the wave through the first opening 4052.
  • the long conversion device 406, or other supplemental light sources and openings may be correspondingly added to further enhance the brightness of the laser generated by the wavelength conversion device 406.
  • the first supplemental light source 402 and the second supplemental light source 409 are used to simultaneously supplement the brightness of the laser light generated by the wavelength conversion device 406, and the laser light that is inversely output by the wavelength conversion device 406 is effectively collected by the curved reflection surface 4051.
  • the first supplemental light 4021 and the second supplemental light 4091 further improve the light extraction efficiency of the light source system.
  • FIG. 5 is a schematic structural view of a third embodiment of a light source system according to the present invention.
  • the light source system of the present embodiment mainly includes an excitation light source 501, a supplemental light source 502, a light combining device 503, a light collecting device 504, a reflecting device 505, a wavelength converting device 506, and a light collecting device 507.
  • the reflecting device 505 includes a curved reflecting surface 5051 and an opening 5052 disposed on the curved reflecting surface 5051.
  • the excitation light 5011 generated by the excitation light source 501 and the supplemental light 5021 generated by the supplemental light source 502 are incident on the wavelength conversion device 506 through the opening 5052 in the same manner as the light source system shown in FIG. 3, and are inversely outputted by the wavelength conversion device 506.
  • Laser 5012 and supplemental light 5021 are incident on the wavelength conversion device 506 through the opening 5052 in the same manner as the light source system shown in FIG. 3, and are inversely outputted by the wavelength conversion device 506.
  • the light source system of the present embodiment is different from the light source system shown in Fig. 3 in that a reflective substrate is not provided on the side of the wavelength conversion device 506 of the present embodiment remote from the excitation light source 501 and the complementary light source 502.
  • the forward-receiving laser light 5012 generated by the wavelength conversion device 506 by performing wavelength conversion on the excitation light 5011 and the received laser light 5021 scattered and transmitted through the wavelength conversion device 506 are directly incident on the light collecting device 507 (for example, a lens), And collected by the light collecting device 507.
  • the laser light 5012 that is reversely transmitted by the wavelength conversion device 506 for wavelength conversion by the excitation light 5011 and the laser light 5021 that is scattered and reflected by the wavelength conversion device 506 are incident on the curved surface 5051 and are curved by the curved surface 5051. After collection, it is reflected back to the wavelength conversion device 506, transmitted through the wavelength conversion device 506, and collected by the light collection device 507.
  • the incident position of the excitation light 5011 and the complementary light 5021 on the wavelength conversion device 506 may be disposed near the center of the curved surface 5051.
  • FIG. 6 is a schematic structural view of a fourth embodiment of a light source system according to the present invention.
  • the light source system of the present embodiment mainly includes an excitation light source 601, a supplemental light source 602, a reflection device 605, a wavelength conversion device 606, a reflective substrate 607, and a hooking device 608.
  • the reflecting device 605 includes a curved reflecting surface 6051 and an opening 6052 disposed on the curved reflecting surface 6051.
  • the light source system of the present embodiment is different from the light source system shown in FIG.
  • the excitation light source 601 and the supplemental light source 602 in this embodiment are respectively located on both sides of the wavelength conversion device 606 and the reflective substrate 607, and
  • the reflective substrate 607 is located on a side of the wavelength conversion device 606 that is remote from the supplemental light source 602.
  • the reflective substrate 607 is a spectral filter that transmits the excitation light 6011 generated by the excitation light source 601, and reflects the supplemental light 6021 generated by the supplemental light source 602 and the received laser light 6012 that the wavelength conversion device 606 wavelength-converts the excitation light 6011.
  • the light 6011 generated by the excitation light source 601 is incident on the spectroscopic filter 607 from the side of the spectral filter 607 remote from the wavelength conversion device 606, and is transmitted through the spectral filter 607 and then incident on the wavelength conversion device 606.
  • Most of the received laser light 6012 generated by the wavelength conversion device 606 by the wavelength conversion device 606 is directly incident on the curved reflecting surface 6051, and the wavelength conversion device 606 reverses the wavelength of the excitation light 6011.
  • the transmitted laser light 6012 is reflected by the spectral filter 607 and then transmitted through the wavelength conversion device 606, and is mostly incident on the curved reflecting surface 6051.
  • the two are collected by the curved reflecting surface 6051 to the light hooking device 608.
  • the supplemental light 6021 generated by the supplemental light source 602 is incident on the wavelength conversion device through the opening 6052. Most of the supplemental light 6021 scattered and reflected by the wavelength conversion device 606 is directly incident on the curved reflecting surface 6051, and the complementary light 6021 scattered by the wavelength converting device 606 and transmitted is reflected by the spectral filter 607 and then passed through the wavelength converting device 606. Most of the light is incident on the curved reflecting surface 6051, and the two are collected by the curved reflecting surface 6051 to the light homogenizing device 608.
  • the spectral filter 607 can be replaced by a reflective substrate provided with an opening. At this time, the excitation light 6011 generated by the excitation light source 601 is incident to the wavelength conversion device 606 through the opening, and the complementary light 6021 transmitted by the wavelength conversion device 606 and the majority of the reversely transmitted laser light 6012 are reflected by the substrate.
  • the spectral filter 607 can also be replaced by a spherical reflector provided with an opening separate from the wavelength conversion device. At this time, the excitation light 6011 generated by the excitation light source 601 is incident on the wavelength conversion device through the opening of the reflection device, and the received laser light 6012 generated by the wavelength conversion device 606 is partially transmitted through the wavelength conversion device 606, partially emitted to the reflection device and reflected by the reflection device. Return wavelength conversion device 606
  • FIG. 7 is a schematic structural view of a fifth embodiment of a light source system according to the present invention.
  • the light source system of the present embodiment mainly includes an excitation light source 701, a supplemental light source 702, a light combining device 703, a light collecting device 704, a reflecting device 705, a wavelength converting device 706, and a reflection.
  • the light source system of the present embodiment is different from the light source system shown in FIG. 3 in that a reflecting device 705 is used instead of the reflecting device 305, wherein the reflecting device 705 includes a plane reflecting surface 7051 and an opening 7052 disposed on the plane reflecting surface 7051.
  • the excitation light 7011 generated by the excitation light source 701 and the supplemental light 7021 generated by the supplemental light source 702 are incident on the light collecting device 704 through the opening 7052, and then relayed to the wavelength conversion device 706 via the light collecting device 704 (for example, a lens).
  • the reverse-output received laser light 7012 and the complementary light 7021 are formed in the same manner as the light source system shown in FIG. Most of the received laser light 7012 and the supplemental light 7021 outputted by the wavelength conversion device 706 are collected by the light collecting device 704 and relayed to the plane reflecting surface 7051, and collected by the plane reflecting surface 7051.
  • the light flux of the laser light 7012 and the supplemental light 7021 that are reversely outputted by the wavelength conversion device 706 and escape through the opening 7052 can be made smaller than or equal to the plane reflection surface 7051.
  • the area of the opening 7052 may be less than or equal to i/ 4 of the area of the plane reflecting surface 7051.
  • the light collecting device 704 may be omitted.
  • FIG. 8 is a schematic structural view of a sixth embodiment of a light source system according to the present invention.
  • the light source system of the present embodiment mainly includes an excitation light source 801, a supplemental light source 802, a light combining device 803, a reflecting device 804, a light collecting device 805, a wavelength converting device 806, and a reflective substrate 807.
  • the light source system of the present embodiment is different from the light source system shown in Fig. 3 in that the present embodiment uses a reflecting device 804 and a light collecting device 805 instead of the reflecting device 305 of Fig. 3.
  • the excitation light 8011 generated by the excitation light source 801 and the supplemental light 8021 generated by the supplemental light source 802 are combined by the light combining device 803, and then reflected by the reflection device 804 and guided to the light collection device 805 (for example, a lens).
  • the light collecting means 805 for example, a lens
  • the light collecting means 805 for example, a lens
  • the light collecting means 805 after being relayed by the light collecting means 805, it is incident on the wavelength converting means 806, and the reverse-output received laser light 8012 and the complementary light 8021 are formed in the same manner as the light source system shown in FIG.
  • the laser light 8012 and the supplemental light 8021 which are inversely outputted by the wavelength converting means 806 are collected by the light collecting means 805, and are
  • the reflecting means 804 and the light collecting means 805 are sized such that the light flux of the laser light 8012 and the supplemental light 8021 that are reversely output by the wavelength converting means 806 escapes through the reflecting means 804 is less than or equal to the luminous flux of the light collecting means 805. 1/4. Specifically, reflection The projected area of the device 804 on the light collecting device 805 is less than 1/4 of the area of the light collecting device 805. In other embodiments, the light collecting device 805 may also be disposed on the side of the reflecting device 804 facing away from the wavelength converting device. A reflective surface (for example, a flat reflective surface or a curved reflective surface).
  • the projection area of the reflecting device 804 on the reflecting surface is smaller than 1/4 of the area of the reflecting surface. Furthermore, the reflective substrate 807 can also be omitted and the supplemental light transmitted and reflected by the wavelength conversion device 806 can be collected using the manner described in FIG.
  • FIG. 9 is a schematic structural view of a seventh embodiment of a light source system according to the present invention.
  • the light source system of the present embodiment mainly includes an excitation light source 901, a supplemental light source 902, a light combining device 903, a light collecting device 904, a reflecting device 905, a wavelength converting device 906, a reflective substrate 907, and a light homogenizing device. 908.
  • the light source system of the present embodiment is different from the light source system shown in FIG. 3 in that the reflecting surface of the reflecting device 905 is formed by two sets of concentrically arranged spherical reflecting surfaces 9051 and 9052 of different diameters, and the reflecting device 905 is formed.
  • the reflecting means 905 can be formed by nesting a plurality of other sets of spherical reflecting surfaces or at least two sets of ellipsoidal reflecting surfaces.
  • the wavelength converting means may be provided on a color wheel or other conventional ribbon or color cylinder described in the background art and driven by a suitable driving means.
  • the present invention further provides a projection apparatus comprising any one of the light source systems of the above embodiments.
  • the light source system and the projection device of the present invention guide the supplemental light to the wavelength conversion device by using the light guiding device, and collect the complementary light scattered and reflected by the wavelength conversion device by using the light collecting device, and appropriately set the light guiding device with
  • the light collecting device is sized such that the luminous flux of the supplemental light escaping through the light guiding device is less than or equal to 1/4 of the luminous flux collected by the light collecting device, thereby avoiding the loss of the first supplemental light caused by the reflection of the wavelength converting device, and further Improve the efficiency of the light source system.
  • the light guiding device can also guide the light to the wavelength converting device, and the laser light collected by the light collecting device in the reverse direction of the wavelength converting device collects the laser light, thereby further improving the efficiency of the light source system.

Abstract

一种光源系统及投影装置。光源系统包括:激发光光源(301),用于产生一激发光(3011);波长转换装置(306),用于将激发光波长转换为受激光(3012);第一补充光源(302),用于产生第一补充光(3021);第一光导引装置,用于导引第一补充光源产生的第一补充光到波长转换装置,波长转换装置散射且部分反射第一补充光;第一光收集装置,用于收集经波长转换装置散射且反射的第一补充光。第一光导引装置和第一光收集装置的尺寸设置成使得波长转换装置散射且反射的第一补充光经第一光导引装置逃逸的光通量小于或等于经第一光收集装置收集的光通量的1/4。从而,有效地收集波长转换装置反射的第一补充光,提高光源系统的出光效率。

Description

说 明 书 光源系统及投影装置 技术领域
本发明涉及光学技术领域, 特别是涉及一种光源系统及投影装置。 背景技术
目前, 许多应用场合需要用到高亮度的彩色光源, 如舞台灯光、 投影 显示器以及 RGB (红绿蓝三基色)背光等。 其中, 气体放电灯(例如, 超 高压汞灯)是一种应用于特殊照明及显示领域的传统高亮度光源。 然而, 由于汞容易造成环境污染, 因此业界正在寻求一种环保型光源来代替超高 压汞灯。
请参见图 1 , 图 1是一种现有技术的光源系统的结构示意图。如图 1所 示,该光源系统包括激发光光源 101、透镜 102、色轮 103和驱动装置 104 激发光光源 101用于产生一激发光 106。透镜 102用于将该激发光 106收集 且中继到色轮 103上。 色轮 103的不同区段设置有不同的荧光粉。 因此, 在色轮 103在驱动装置 104的驱动下绕旋转轴 105进行转动的过程中, 激 发光 106依次激发这些荧光粉, 进而产生彩色光序列 107。 例如, 荧光粉可 以包括红光荧光粉、 绿光荧光粉和黄光荧光粉。 当色轮 103 的红光荧光粉 区转动到激发光 106的传播路径上时, 红光荧光粉受到激发光 106的激发 而产生高亮度的红光。 绿光和黄光的产生过程与红光的产生过程相同。
然而,在现有的荧光粉中,红光荧光粉的转换效率远低于其他荧光粉, 因此一般需要通过外加光源对红光进行亮度补充。
请参见图 2, 图 2是另一种现有技术的光源系统的结构示意图。 如图 2 所示, 该光源系统包括激发光光源 201、 补充光源 202、 红光转换装置 203 以及分光滤光片 204。补充光源 202产生的红光 207与激发光光源 201产生 的激发光 205 (例如, 蓝光)经分光滤光片 204进行合光后入射到红光转换 装置 203 , 并经红光转换装置 203透射, 以对激发光 205经红光转换装置 203波长转换产生的红光 206进行补充。 然而, 红光转换装置 203对红光 207具有较大的反射率,通常为 50%左右,被红光转换装置 203反射的红光 207会沿原路返回到补充光源 202, 从而导致出光效率较低。 此外, 红光转 换装置 203以波长转换方式产生的红光 206 , 除一部分正向输出外, 另一部 分反向入射到分光滤光片 204, 并被分光滤光片 204透射到 ;IL&光光源 201 或反射到补充光源 202 , 同样导致出光效率较低。
综上, 需要提供一种光源系统及投影装置, 以解决现有技术的光源系 统普遍存在的上述技术问题。 发明内容
本发明主要解决的技术问题是提供一种光源系统及投影装置, 以提高 光源系统的效率。
为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种光源 系统, 包括激发光光源、 波长转换装置、 第一补充光源、 第一光导引装置 以及第一光收集装置。 激发光光源用于产生一激发光。 波长转换装置用于 将激发光波长转换成受激光。 第一补充光源用于产生第一补充光, 第一补 充光的光 ΐ鲁范围与受激光的光 ΐ鲁范围重叠。 第一光导引装置用于导引第一 补充光源产生的第一补充光到波长转换装置。 波长转换装置散射且部分反 射第一补充光。 第一光收集装置用于收集经波长转换装置散射且反射的第 一补充光。 其中, 第一光导引装置和第一光收集装置的尺寸设置成使得波 长转换装置散射且反射的第一补充光经第一光导引装置逃逸的光通量小于 或等于经第一光收集装置收集的光通量的 1/4。
其中, 激发光光源产生的激发光与第一补充光源产生的第一补充光在 波长转换装置上形成的入射位置至少部分重叠。
其中, 受激光与第一补充光的主波长之差小于 20纳米。
其中, 第一补充光的光傳范围窄于受激光的光傳范围, 以提高受激光 和第一补充光的混合光的色饱和度。
其中, 第一光导引装置进一步导引激发光光源产生的; 光到波长转 换装置, 第一光收集装置进一步收集经波长转换装置进行波长转换产生的 受激光。
其中, 第一补充光的光 ΐ#·范围不同于激发光, 光源系统进一步包括合 光装置, 用于在第一补充光和激发光入射到第一光导引装置之前对第一补 充光和激发光进行合光。 其中 , 光源系统进一步包括设置于波长转换装置的远离第一补充光源 一侧的反射衬底, 反射衬底反射第一补充光。
其中, 反射衬底为分光滤光片, 激发光光源产生的; 光从远离波长 转换装置的一侧入射到分光滤光片并经分光滤光片透射到波长转换装置。
其中, 波长转换装置部分透射第一补充光, 光源系统进一步包括第二 光收集装置, 第二光收集装置收集经波长转换装置透射的第一补充光, 第 一光收集装置将经波长转换装置散射且反射的第一补充光收集且反射回波 长转换装置。
其中, 第一光收集装置设置有一反射面, 第一光导引装置为设置于反 射面上的开口, 开口设置成透射第一补充光源产生的第一补充光, 反射面 设置成反射波长转换装置散射且反射的第一补充光, 开口的面积小于或等 于反射面的面积的 1/4
其中, 反射面为平面反射面或曲面反射面。
其中, 曲面反射面为球形反射面或椭球形反射面。
其中, 开口为设置于反射面上的通孔或透光区。
其中, 第一光导引装置为一反射装置, 反射装置设置成反射第一补充 光源产生的第一补充光到波长转换装置, 反射装置在第一光收集装置上的 投影面积小于第一光收集装置的面积的 1/4
其中, 第一光收集装置为透镜或反射面。
其中, 光源系统进一步包括第二补充光源, 第二补充光源用于产生第 二补充光, 第一光导引装置导引第二补充光到波长转换装置, 第一光收集 装置进一步收集经波长转换装置散射且反射的第二补充光。
其中, 光源系统进一步包括第二补充光源和第二光导引装置, 第二补 充光源用于产生第二补充光, 第二光导引装置导引第二补充光到波长转换 装置, 第一光收集装置进一步收集经波长转换装置散射且反射的第二补充 光, 第二光导引装置和第一光收集装置的尺寸设置成使得波长转换装置散 射且反射的第二补充光经第二光导引装置逃逸的光通量小于或等于经第一 光收集装置收集的光通量的 1/4
其中, 第二补充光的光 ΐ#·范围不同于第一补充光的光 ΐ#·范围且与受激 光的光 ΐ#·范围重叠。 为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种包括 上述任意一种光源系统的投影装置。
本发明的有益效果是: 区别于现有技术的情况, 通过上述方式, 本发 明的光源系统及投影装置利用光导引装置将补充光导引到波长转换装置, 利用光收集装置对波长转换装置散射且反射的补充光进行收集, 并通过适 当的设置光导引装置与光收集装置的尺寸, 使得补充光经光导引装置逃逸 的光通量小于或等于经光收集装置收集的光通量的 1/4, 避免了因波长转换 装置反射而导致的补充光的损失, 进而提高了光源系统的效率。 附图说明
图 1是现有技术一种光源系统的结构示意图;
图 2是现有技术另一种光源系统的结构示意图;
图 3是本发明光源系统的第一实施例的结构示意图;
图 4是本发明光源系统的第二实施例的结构示意图;
图 5是本发明光源系统的第三实施例的结构示意图;
图 6是本发明光源系统的第四实施例的结构示意图;
图 7是本发明光源系统的第五实施例的结构示意图;
图 8是本发明光源系统的第六实施例的结构示意图;
图 9是本发明光源系统的第七实施例的结构示意图。 具体实施方式
请参见图 3 , 图 3是本发明光源系统的第一实施例的结构示意图。如图 3所示, 本实施例的光源系统主要包括激发光光源 301、 补充光源 302、 合 光装置 303、 光收集装置 304、 反射装置 305、 波长转换装置 306、 反射衬 底 307以及匀光装置 308。其中,反射装置 305包括一曲面反射面 3051 (例 如,球形反射面或椭球形反射面)以及设置在曲面反射面 3051上的开口 3052。 开口 3052可以是通孔或透光区。
激发光光源 301产生一激发光 3011。补充光源 302产生一补充光 3021。 激发光光源 301产生的激发光 3011与补充光源 302产生的补充光 3021经 合光装置 303进行合光后入射到光收集装置 304,再经光收集装置 304进行 收集且中继后经开口 3052入射到波长转换装置 306。 波长转换装置 306对 入射的激发光 3011进行吸收且波长转换成受激光 3012。其中, 波长转换装 置 306产生的受激光 3012为各向同性, 其中部分受激光 3012相对于 ;|L& 光 3011 的入射方向反向输出, 另一部分相对于; 光 3011 的入射方向正 向输出。正向输出的部分 ¾^光 3011经设置于波长转换装置 306的远离激 发光光源 301和补充光源 302—侧的反射衬底 307反射回波长转换装置 306, 并经波长转换装置 306透射后反向输出。 波长转换装置 306进一步对入射 的补充光 3021进行散射,其中散射的部分补充光 3021经波长转换装置 306 反射, 且相对于补充光 3021的入射方向反向输出, 散射的另一部分补充光 3021经波长转换装置 306透射。透射的部分补充光 3021经反射衬底 307反 射回波长转换装置 306,并由波长转换装置 306透射后反向输出。 曲面反射 面 3051将波长转换装置 306反向输出的受激光 3012以及补充光 3021中的 大部分收集到匀光装置 308进行勾光处理。
在本实施例中, 曲面反射面 3051呈椭球形时, 曲面反射面 3051能够 将来自一个焦点附近的光线反射到另一个焦点附近, 此时需要将激发光光 源 301产生的激发光 3011和补充光源 302产生的补充光 3021在波长转换 装置 306上的入射位置设置于上述的一个焦点附近, 而将勾光装置 308的 入光口设置于上述的另一个焦点附近。 当曲面反射面 3051呈球形时, 在临 近球心的位置设置关于该球心对称的两对称点, 曲面反射面 3051可以将来 自其中一对称点的光线反射到另一对称点, 此时需要将激发光光源 301产 生的激发光 3011和补充光源 302产生的补充光 3021在波长转换装置 306 上的入射位置设置于上述的一个对称点附近, 而将匀光装置 308的入光口 设置于上述的另一个对称点附近。
由于经波长转换装置 306反向输出的受激光 3012以及补充光 3021的 光学扩展量( Etendue )远大于经开口 3052输入的激发光 3011和补充光 3021 的光学扩展量, 例如是 4倍或 4倍以上, 因此在本实施例中, 通过适当地 设置开口 3052和曲面反射面 3051的尺寸, 可以将波长转换装置 306反向 输出的受激光 3012以及补充光 3021经开口 3052逃逸的光通量设置成小于 或等于经曲面反射面 3051收集的光通量的 1/4, 由此可以有效地收集经波 长转换装置 306反向输出的受激光 3012以及补充光 3021 , 避免其经开口 3052过度逃逸。 具体来说, 在本实施例中, 开口 3052的面积可设置成小于 或等于曲面反射面 3051的面积的 1/4
在本实施例中,激发光光源 301和补充光源 302可以是 LED或激光管。 补充光 3021的光 ΐ#·范围不同于; 光 3011的光 ΐ#·范围, 且与受激光 3012 的光 ΐ#·范围至少部分重叠, 进而对受激光 3012进行亮度补充。 其中, 受激 光 3012与补充光 3021的主波长之差优选小于 20纳米。进一步,补充光 3021 的光 ΐ#·范围优选窄于受激光 3012的光 ΐ#·范围, 以提高受激光 3012和补充 光 3021 的混合光的色饱和度。 此外, 激发光光源 301产生的激发光 3011 与补充光源 302产生的补充光 3021在波长转换装置 306上形成的入射位置 至少部分重叠, 由此可以实现补充光 3021与受激光 3012的充分混合。
容易理解, 补充光与受激光的光 ΐ#·范围也可以不重叠, 例如波长转换 装置受激产生绿色受激光, 补充光源是红色 LED, 此时绿色受激光与红色 补充光同样可以被光收集装置 304所收集。
在本实施例中, 波长转换装置 306可以包括透明基板以及掺杂在透明 基板内部的波长转换材料, 或者是直接涂布在反射衬底 307上的波长转换 材料层。 波长转换材料可以采用本领域公知的荧光粉或量子点材料。 进一 步, 在透明基板或波长转换材料层内部或表面可以进一步设置散射粒子或 散射结构, 以提高波长转换装置 306的散射效果。 合光装置 303可以采用 本领域公知的分光滤光片或偏振分束器。 光收集装置 304 可以采用本领域 公知的透镜或透镜组。 匀光装置 308则可以采用本领域公知的积分棒。 但 如本领域技术人员所理解的,合光装置 303、光收集装置 304、反射衬底 307 以及匀光装置 308并非实现本发明目的必要元件, 因此可根据实际情况进 行省略。 例如, 当激发光光源 301产生的激发光 3011和补充光源 302产生 的补充光 3021并排或者以不同角度经开口 3052入射时, 合光装置 303则 可省略。
通过上述方式, 利用开口 3052将激发光光源 301产生的激发光 3011 和补充光源 302产生的补充光 3021导引到波长转换装置 306, 利用曲面反 射面 3051对波长转换装置 306反向输出的受激光 3012以及补充光 3021的 大部分进行收集,并通过适当地设置开口 3052和曲面反射面 3051的尺寸, 使得受激光 3012以及补充光 3021经开口 3052逃逸的光通量小于或等于经 曲面反射面 3051收集的光通量的 1/4, 避免了受激光 3012和补充光 3021 的损失, 进而提高了光源系统的效率。
请参见图 4, 图 4是本发明光源系统的第二实施例的结构示意图。如图 4所示,本实施例的光源系统主要包括激发光光源 401、第一补充光源 402 合光装置 403、 光收集装置 404、 反射装置 405、 波长转换装置 406、 反射 衬底 407、 勾光装置 408以及第二补充光源 409。 其中, 反射装置 405包括 一曲面反射面 4051以及设置在曲面反射面 4051上的第一开口 4052和第二 开口 4053。激发光光源 401产生的激发光 4011和第一补充光源 402产生的 第一补充光 4021采用与图 3所示的光源系统相同的方式经第一开口 4052 入射到波长转换装置 406,并由波长转换装置 406反向输出受激光和第一补 充光(未图示)。 曲面反射面 4051将波长转换装置 406反向输出的受激光 和第一补充光的大部分收集到勾光装置 408。本实施例的光源系统与图 3所 示的光源系统的不同之处在于, 本实施例的光源系统进一步包括第二补充 光源 409, 且曲面反射面 4051上进一步设置有第二开口 4053。 第二补充光 源 409产生的第二补充光 4091经第二开口 4053入射到波长转换装置 406 波长转换装置 406对入射的第二补充光 4091进行散射, 其中散射的部分第 二补充光 4091经波长转换装置 406反射, 且相对于第二补充光 4091的入 射方向反向输出,散射的另一部分第二补充光 4091经波长转换装置 406透 射。透射的部分第二补充光 4091经反射衬底 407反射回波长转换装置 406, 并由波长转换装置 406透射后反向输出。 曲面反射面 4051将波长转换装置 406反向输出的第二补充光 4091的大部分收集到勾光装置 408, 进而与受 激光和第一补充进行勾光处理。
在本实施例中, 通过适当的设置第二开口 4053和曲面反射面 4051的 尺寸, 可使得波长转换装置 406散射且反射的第二补充光 4091经第二开口 4053逃逸的光通量小于或等于经曲面反射面 4051收集的光通量的 1/4。 具 体来说, 第二开口 4053的面积可设置成小于或等于曲面反射面 4051的面 积的 1/4。 进一步, 第二补充光 4091的光 ΐ#·范围与第一补充光 4021的光 ΐ#· 范围可以是相同的, 或者是不同的但均与受激光的光傳范围至少部分重叠。 例如,受激光可以是黄光荧光,第一补充光 4021可以是红光激光或红光 LED 光,而第二补充光 4091可以是绿光激光或绿光 LED光。在其他实施例中, 第二补充光源 409产生的第二补充光 4091可以经第一开口 4052入射到波 长转换装置 406,或者可对应地增加其他补充光源以及开口来对波长转换装 置 406产生的受激光进行进一步的亮度补充。
通过上述方式, 利用第一补充光源 402和第二补充光源 409同时对波 长转换装置 406产生的受激光进行亮度补充, 且通过曲面反射面 4051有效 地收集波长转换装置 406反向输出的受激光、 第一补充光 4021和第二补充 光 4091 , 进而提高光源系统的出光效率。
请参见图 5, 图 5是本发明光源系统的第三实施例的结构示意图。如图 5所示, 本实施例的光源系统主要包括激发光光源 501、 补充光源 502、 合 光装置 503、 光收集装置 504、 反射装置 505、 波长转换装置 506以及光收 集装置 507。 其中, 反射装置 505包括一曲面反射面 5051以及设置在曲面 反射面 5051上的开口 5052。 激发光光源 501产生的激发光 5011和补充光 源 502产生的补充光 5021采用与图 3所示的光源系统相同的方式经开口 5052入射到波长转换装置 506,并由波长转换装置 506反向输出受激光 5012 和补充光 5021
本实施例的光源系统与图 3所示的光源系统的不同之处在于, 在本实 施例的波长转换装置 506的远离激发光光源 501和补充光源 502的一侧未 设置反射衬底。 此时, 经波长转换装置 506对激发光 5011进行波长转换产 生的正向传输的受激光 5012以及经波长转换装置 506散射且透射的受激光 5021直接入射到光收集装置 507 (例如, 透镜), 并由光收集装置 507进行 收集。 经波长转换装置 506对激发光 5011进行波长转换产生的反向传输的 受激光 5012以及经波长转换装置 506散射且反射的受激光 5021的大部分 入射到曲面反射面 5051 ,并经曲面反射面 5051收集后反射回波长转换装置 506, 再经波长转换装置 506透射后由光收集装置 507进行收集。 在本实施 例中, 当曲面反射面 5051呈球状时, 激发光 5011和补充光 5021在波长转 换装置 506上的入射位置可以设置于曲面反射面 5051的球心附近。
请参见图 6, 图 6是本发明光源系统的第四实施例的结构示意图。如图 6所示, 本实施例的光源系统主要包括激发光光源 601、 补充光源 602、 反 射装置 605、 波长转换装置 606、 反射衬底 607以及勾光装置 608。 其中, 反射装置 605包括曲面反射面 6051 以及设置于曲面反射面 6051上的开口 6052 本实施例的光源系统与图 3所示的光源系统的不同之处在于, 在本实 施例中的激发光光源 601和补充光源 602分别位于波长转换装置 606和反 射衬底 607的两侧, 且反射衬底 607位于波长转换装置 606的远离补充光 源 602的一侧。 反射衬底 607为分光滤光片, 其透射激发光光源 601产生 的激发光 6011 , 且反射补充光源 602产生的补充光 6021和波长转换装置 606对激发光 6011进行波长转换的受激光 6012。 此时, 激发光光源 601产 生的 光 6011从分光滤光片 607的远离波长转换装置 606的一侧入射到 分光滤光片 607, 并经分光滤光片 607透射后入射到波长转换装置 606。 经 波长转换装置 606对激发光 6011 进行波长转换产生的正向传输的受激光 6012的大部分直接入射到曲面反射面 6051上,而经波长转换装置 606对激 发光 6011进行波长转换产生的反向传输的受激光 6012经分光滤光片 607 反射后再经波长转换装置 606透射后大部分入射到曲面反射面 6051上, 二 者经曲面反射面 6051收集到勾光装置 608。补充光源 602产生的补充光 6021 经开口 6052入射到波长转换装置。 经波长转换装置 606散射且反射的补充 光 6021的大部分直接入射到曲面反射面 6051上, 经波长转换装置 606散 射且透射的补充光 6021经分光滤光片 607反射后再经波长转换装置 606透 射后大部分入射到曲面反射面 6051上, 二者经曲面反射面 6051收集到匀 光装置 608
在其他实施例中, 分光滤光片 607可以由设置有开口的反射衬底所代 替。 此时, 激发光光源 601产生的激发光 6011经开口入射到波长转换装置 606, 而波长转换装置 606透射的补充光 6021以及反向传输的受激光 6012 的大部分 * SJ†衬底反射。
分光滤光片 607还可以由与波长转换装置分离的设置有开口的球形反 射装置所代替。 此时, 激发光光源 601产生的激发光 6011经反射装置的开 口入射到波长转换装置, 并且波长转换装置 606产生的受激光 6012部分透 射波长转换装置 606,部分出射至反射装置并被反射装置反射回波长转换装 置 606
请参见图 7, 图 7是本发明光源系统的第五实施例的结构示意图。如图 7所示, 本实施例的光源系统主要包括激发光光源 701、 补充光源 702、 合 光装置 703、 光收集装置 704、 反射装置 705、 波长转换装置 706以及反射 衬底 707。本实施例的光源系统与图 3所示的光源系统的不同之处在于, 利 用反射装置 705代替反射装置 305 ,其中反射装置 705包括平面反射面 7051 以及设置于平面反射面 7051上的开口 7052。此时,激发光光源 701产生的 激发光 7011和补充光源 702产生的补充光 7021经开口 7052入射到光收集 装置 704, 随后经光收集装置 704 (例如,透镜)中继到波长转换装置 706, 并通过与图 3所示的光源系统相同的方式形成反向输出的受激光 7012和补 充光 7021。 波长转换装置 706反向输出的受激光 7012和补充光 7021的大 部分经光收集装置 704 收集且中继到平面反射面 7051 , 并由平面反射面 7051进行收集。 在本实施例中, 通过适当开口 7052和平面反射面 7051的 尺寸, 可以使得波长转换装置 706反向输出的受激光 7012和补充光 7021 经开口 7052逃逸的光通量小于或等于经平面反射面 7051收集的光通量的 具体来说, 可将开口 7052的面积小于或等于平面反射面 7051的面积 的 i/4。 在其他实施例中, 当平面反射面 7051 的面积足够大, 能够充分收 集波长转换装置 706反向输出的受激光 7012和补充光 7021时, 光收集装 置 704可以省略。
请参见图 8, 图 8是本发明光源系统的第六实施例的结构示意图。如图 8所示, 本实施例的光源系统主要包括激发光光源 801、 补充光源 802、 合 光装置 803、 反射装置 804、 光收集装置 805、 波长转换装置 806以及反射 衬底 807
本实施例的光源系统与图 3所示的光源系统的不同之处在于, 本实施 例利用反射装置 804和光收集装置 805代替图 3中的反射装置 305。 此时, 激发光光源 801产生的激发光 8011和补充光源 802产生的补充光 8021经 合光装置 803进行合光后, 由反射装置 804反射并导引到光收集装置 805 (例如, 透镜), 并经光收集装置 805中继后入射到波长转换装置 806, 并 通过与图 3所示的光源系统相同的方式形成反向输出的受激光 8012和补充 光 8021。 波长转换装置 806反向输出的受激光 8012和补充光 8021经光收 集装置 805进行收集, 并大部分从反射装置 804的外侧输出。
在本实施例中, 反射装置 804和光收集装置 805的尺寸设置成使得波 长转换装置 806反向输出的受激光 8012和补充光 8021经反射装置 804逃 逸的光通量小于或等于经光收集装置 805的光通量的 1/4。 具体来说, 反射 装置 804在光收集装置 805上的投影面积小于光收集装置 805的面积的 1/4 在其他实施例中, 光收集装置 805也可以是设置在反射装置 804的背向波 长转换装置的一侧的反射面(例如, 平面反射面或弧面反射面)。 此时, 反 射装置 804在反射面上的投影面积小于反射面的面积的 1/4。 此外, 反射衬 底 807也可以省略, 并利用图 5描述的方式对波长转换装置 806透射和反 射的补充光进行收集。
请参见图 9, 图 9是本发明光源系统的第七实施例的结构示意图。如图 9所示, 本实施例的光源系统主要包括激发光光源 901、 补充光源 902、 合 光装置 903、 光收集装置 904、 反射装置 905、 波长转换装置 906、 反射衬 底 907以及匀光装置 908。本实施例的光源系统与图 3所示的光源系统的不 同之处在于, 反射装置 905的反射面由两组同心设置但不同直径的球形反 射面 9051和 9052嵌套组合而成, 反射装置 905的作用与上述实施例的球 形反射面的作用相同。 在其他实施例中, 反射装置 905 可以由其他数量的 多组球形反射面或至少两组椭球形反射面嵌套组合而成。
在上述实施例中, 波长转换装置可以设置于背景技术中描述的色轮或 者其他传统的色带或色筒等元件上, 并由适当的驱动装置进行驱动。
本发明进一步提供了一种投影装置, 该投影装置包括上述实施例的光 源系统中的任意一种。
本发明的光源系统及投影装置利用光导引装置将补充光导引到波长转 换装置, 利用光收集装置对波长转换装置散射且反射的补充光进行收集, 并通过适当的设置光导引装置与光收集装置的尺寸, 使得补充光经光导引 装置逃逸的光通量小于或等于经光收集装置收集的光通量的 1/4, 避免了因 波长转换装置反射而导致的第一补充光的损失, 进而提高了光源系统的效 率。 此外, 光导引装置还可以导引; 光到波长转换装置, 并由光收集装 置对波长转换装置反向传输的受激光进行收集, 避免了受激光损失, 进一 步提高了光源系统的效率。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡 是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接 或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保护范围 内。

Claims

权 利 要 求 书
1.一种光源系统, 其特征在于, 所述光源系统包括:
激发光光源, 用于产生一激发光;
波长转换装置, 用于将所述激发光波长转换成受激光;
第一补充光源, 用于产生第一补充光;
第一光导引装置, 用于导引所述第一补充光源产生的所述第一补充光 到所述波长转换装置, 所述波长转换装置散射且部分反射所述第一补充光; 第一光收集装置, 用于收集经所述波长转换装置散射且反射的所述第 一补充光, 其中所述第一光导引装置和所述第一光收集装置的尺寸设置成 使得所述波长转换装置散射且反射的所述第一补充光经所述第一光导引装 置逃逸的光通量小于或等于经所述第一光收集装置收集的光通量的 1/4。
2. 根据权利要求 1所述的光源系统, 其特征在于, 所述第一补充光的 光傳范围与所述受激光的光傳范围至少部分重叠。
3. 根据权利要求 1所述的光源系统, 其特征在于, 所述激发光光源产 生的所述激发光与所述第一补充光源产生的所述第一补充光在所述波长转 换装置上形成的入射位置至少部分重叠。
4. 根据权利要求 1所述的光源系统, 其特征在于, 所述受激光与所述 第一补充光的主波长之差小于 20纳米。
5. 根据权利要求 1所述的光源系统, 其特征在于, 所述第一补充光的 光傳范围窄于所述受激光的光傳范围, 以提高所述受激光和所述第一补充 光的混合光的色饱和度。
6. 根据权利要求 1所述的光源系统, 其特征在于, 所述第一光导引装 置进一步导引所述激发光光源产生的所述激发光到所述波长转换装置, 所 述第一光收集装置进一步收集经所述波长转换装置进行波长转换产生的所 述受激光。
7. 根据权利要求 6所述的光源系统, 其特征在于, 所述第一补充光的 光傳范围不同于所述激发光, 所述光源系统进一步包括合光装置, 用于在 所述第一补充光和所述激发光入射到所述第一光导引装置之前对所述第一 补充光和所述激发光进行合光。
8. 根据权利要求 1所述的光源系统, 其特征在于, 所述光源系统进一 步包括设置于所述波长转换装置的远离所述第一补充光源一侧的反射衬底 , 所述反射衬底反射所述第一补充光。
9. 根据权利要求 8所述的光源系统, 其特征在于, 所述反射衬底为分 光滤光片, 所述激发光光源产生的所述激发光从远离所述波长转换装置的 一侧入射到所述分光滤光片并经所述分光滤光片透射到所述波长转换装置。
10. 根据权利要求 1所述的光源系统,其特征在于, 所述波长转换装置 部分透射所述第一补充光, 所述光源系统进一步包括第二光收集装置, 所 述第二光收集装置收集经所述波长转换装置透射的所述第一补充光, 所述 第一光收集装置将经所述波长转换装置散射且反射的所述第一补充光收集 且反射回所述波长转换装置。
11. 根据权利要求 1-10任意一项所述的光源系统, 其特征在于, 所述 第一光收集装置设置有一反射面, 所述第一光导引装置为设置于所述反射 面上的开口, 所述开口设置成透射所述第一补充光源产生的所述第一补充 光, 所述反射面设置成反射所述波长转换装置散射且反射的所述第一补充 光, 所述开口的面积小于或等于所述反射面的面积的 1/4
12. 根据权利要求 11所述的光源系统, 其特征在于, 所述反射面为平 面反射面或曲面反射面。
13. 根据权利要求 12所述的光源系统, 其特征在于, 所述曲面反射面 为球形反射面或椭球形反射面。
14. 根据权利要求 13所述的光源系统, 其特征在于, 所述开口为设置 于所述反射面上的通孔或透光区。
15. 根据权利要求 1-10任意一项所述的光源系统, 其特征在于, 所述 第一光导引装置为一反射装置, 所述反射装置设置成反射所述第一补充光 源产生的所述第一补充光到所述波长转换装置, 所述反射装置在所述第一 光收集装置上的投影面积小于所述第一光收集装置的面积的 1/4
16. 根据权利要求 15所述的光源系统, 其特征在于, 所述第一光收集 装置为透镜或反射面。
17. 根据权利要求 1所述的光源系统,其特征在于, 所述光源系统进一 步包括第二补充光源, 所述第二补充光源用于产生第二补充光, 所述第一 光导引装置导引所述第二补充光到所述波长转换装置, 所述第一光收集装 置进一步收集经所述波长转换装置散射且反射的所述第二补充光。
18. 根据权利要求 1所述的光源系统,其特征在于, 所述光源系统进一 步包括第二补充光源和第二光导引装置, 所述第二补充光源用于产生第二 补充光, 所述第二光导引装置导引所述第二补充光到所述波长转换装置, 所述第一光收集装置进一步收集经所述波长转换装置散射且反射的所述第 二补充光, 所述第二光导引装置和所述第一光收集装置的尺寸设置成使得 所述波长转换装置散射且反射的所述第二补充光经所述第二光导引装置逃 逸的光通量小于或等于经所述第一光收集装置收集的光通量的 1/4。
19. 根据权利要求 17或 18所述的光源系统,其特征在于, 所述第二补 充光的光傳范围不同于所述第一补充光的光傳范围且与所述受激光的光傳 范围重叠。
20.一种投影装置, 其特征在于, 所述投影装置包括权利要求 1-19任 意一项所述的光源系统。
PCT/CN2012/084921 2011-12-18 2012-11-20 光源系统及投影装置 WO2013091453A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014546292A JP6096211B2 (ja) 2011-12-18 2012-11-20 光源システムおよびこれを用いた投影デバイス
KR1020147018022A KR101995543B1 (ko) 2011-12-18 2012-11-20 광원 시스템 및 투영 장치
EP12860277.8A EP2793079B1 (en) 2011-12-18 2012-11-20 Light source system and projection device
ES12860277.8T ES2607781T3 (es) 2011-12-18 2012-11-20 Sistema de fuentes de luz y dispositivo de proyección que utiliza el mismo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110424488 2011-12-18
CN201110424488.7 2011-12-18
CN201210027483.5A CN102722073B (zh) 2011-12-18 2012-02-08 光源系统及投影装置
CN201210027483.5 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013091453A1 true WO2013091453A1 (zh) 2013-06-27

Family

ID=46947880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084921 WO2013091453A1 (zh) 2011-12-18 2012-11-20 光源系统及投影装置

Country Status (6)

Country Link
EP (1) EP2793079B1 (zh)
JP (1) JP6096211B2 (zh)
KR (1) KR101995543B1 (zh)
CN (1) CN102722073B (zh)
ES (1) ES2607781T3 (zh)
WO (1) WO2013091453A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9970616B2 (en) 2016-03-07 2018-05-15 Hyundai Motor Company Lighting apparatus for vehicle

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816683B2 (en) 2011-10-20 2017-11-14 Appotronics Corporation Limited Light sources system and projection device using the same
CN102722073B (zh) * 2011-12-18 2014-12-31 深圳市光峰光电技术有限公司 光源系统及投影装置
DE102012219387B4 (de) * 2012-10-24 2022-03-24 Coretronic Corporation Beleuchtungsvorrichtung mit Pumplichtquelle und Leuchtstoffanordnung und Verfahren zum Betreiben einer solchen Beleuchtungsvorrichtung
TWI493275B (zh) * 2013-04-20 2015-07-21 Appotronics China Corp 一種發光裝置及投影系統
TWI504832B (zh) * 2014-05-02 2015-10-21 Coretronic Corp 照明系統及投影裝置
US10732495B2 (en) 2014-05-02 2020-08-04 Coretronic Corporation Illumination system, projection apparatus and method for driving illumination system
CN107479311B (zh) * 2014-06-23 2020-10-20 深圳光峰科技股份有限公司 光源系统及投影设备
CN105652572B (zh) * 2014-06-23 2017-07-28 深圳市绎立锐光科技开发有限公司 光源系统及投影设备
CN105319819B (zh) * 2014-07-28 2019-09-20 深圳光峰科技股份有限公司 发光装置及投影系统
CN106154713B (zh) * 2015-04-09 2018-05-15 深圳市光峰光电技术有限公司 光源系统和投影系统
WO2016188744A1 (en) * 2015-05-26 2016-12-01 Koninklijke Philips N.V. An optical device for producing high brightness light
CN106154719B (zh) * 2016-07-10 2017-10-10 中山市捷信科技服务有限公司 一种多光源投影仪
CN107885021A (zh) * 2016-09-30 2018-04-06 海信集团有限公司 一种激光光源及激光投影设备
CN106681094B (zh) * 2016-12-23 2018-09-21 海信集团有限公司 一种荧光激发装置、投影光源及投影设备
CN106773481B (zh) * 2016-12-23 2018-10-09 海信集团有限公司 一种投影光源及投影设备
CN106707669B (zh) * 2016-12-23 2018-08-24 海信集团有限公司 一种荧光激发装置、投影光源及投影设备
CN108279548B (zh) * 2017-01-06 2021-02-02 深圳光峰科技股份有限公司 投影系统
CN108303842B (zh) 2017-01-12 2020-09-15 深圳光峰科技股份有限公司 投影显示系统
CN108663879B (zh) 2017-03-31 2021-04-06 中强光电股份有限公司 投影机及其照明系统
CN108732851B (zh) * 2017-04-14 2021-03-19 中强光电股份有限公司 投影机及其照明系统
CN108931879A (zh) * 2017-05-26 2018-12-04 深圳市光峰光电技术有限公司 光源系统、投影设备及图像显示控制方法
JP6787261B2 (ja) * 2017-06-27 2020-11-18 カシオ計算機株式会社 光源装置及び投影装置
CN109557753B (zh) * 2017-09-26 2021-03-02 深圳光峰科技股份有限公司 光源系统及投影装置
CN109696791B (zh) * 2017-10-23 2021-08-03 深圳光峰科技股份有限公司 色轮、光源系统及显示设备
CN109917610B (zh) 2017-12-12 2020-12-01 中强光电股份有限公司 光源模块以及投影装置
CN110045571B (zh) * 2018-01-16 2022-05-24 中强光电股份有限公司 光源产生装置、投影装置以及其光源产生方法
CN110471245B (zh) * 2018-05-10 2021-10-22 深圳光峰科技股份有限公司 光源系统、投影设备及照明设备
CN110703552B (zh) 2018-07-10 2021-10-15 中强光电股份有限公司 照明系统以及投影装置
WO2020024610A1 (zh) * 2018-08-01 2020-02-06 深圳市绎立锐光科技开发有限公司 光源系统及发光装置
TWI766093B (zh) * 2018-09-06 2022-06-01 鴻海精密工業股份有限公司 固態光源裝置
CN111381428B (zh) * 2018-12-29 2022-03-04 深圳光峰科技股份有限公司 光源系统及投影装置
CN112015037B (zh) * 2019-05-30 2022-06-03 无锡视美乐激光显示科技有限公司 激光光源
JP6954331B2 (ja) * 2019-08-27 2021-10-27 セイコーエプソン株式会社 光源装置、照明光学装置及びプロジェクター
CN112859353A (zh) * 2019-11-12 2021-05-28 深圳市绎立锐光科技开发有限公司 一种光源装置
CN114326274A (zh) * 2020-09-27 2022-04-12 成都极米科技股份有限公司 一种合光光源装置及投影系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347263A (ja) * 2004-06-04 2005-12-15 Lumileds Lighting Us Llc 照明装置における離間した波長変換
WO2009092041A2 (en) * 2008-01-16 2009-07-23 Abu-Ageel Nayef M Illumination systems utilizing wavelength conversion materials
CN101581410A (zh) * 2008-05-15 2009-11-18 卡西欧计算机株式会社 光源装置及投影机
CN101836160A (zh) * 2007-07-30 2010-09-15 绎立锐光科技开发公司 采用具有波长转换材料的移动模板的多色照明装置
WO2011092842A1 (ja) * 2010-01-29 2011-08-04 Necディスプレイソリューションズ株式会社 照明光学系とこれを用いたプロジェクタ
US20110205502A1 (en) * 2010-02-23 2011-08-25 Minebea Co., Ltd. Projector
WO2011118536A1 (ja) * 2010-03-25 2011-09-29 三洋電機株式会社 投写型映像表示装置および光源装置
JP2011248272A (ja) * 2010-05-31 2011-12-08 Sanyo Electric Co Ltd 光源装置及び投写型映像表示装置
CN102722073A (zh) * 2011-12-18 2012-10-10 深圳市光峰光电技术有限公司 光源系统及投影装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771772B1 (ko) * 2006-08-25 2007-10-30 삼성전기주식회사 백색 led 모듈
KR101179639B1 (ko) * 2007-11-30 2012-09-05 아카데미 오브 옵토-일렉트로닉스, 차이니즈 아카데미 오브 사이언시스 프로젝션 시스템을 위한 광원 및 프로젝션 디스플레이 장치
JP5370764B2 (ja) * 2009-09-15 2013-12-18 カシオ計算機株式会社 光源装置及びプロジェクタ
JP2011175000A (ja) * 2010-02-23 2011-09-08 Minebea Co Ltd プロジェクタ
CN102252169B (zh) * 2010-04-07 2013-04-17 深圳市光峰光电技术有限公司 高亮度激发方法及基于光波长转换的发光装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347263A (ja) * 2004-06-04 2005-12-15 Lumileds Lighting Us Llc 照明装置における離間した波長変換
CN101836160A (zh) * 2007-07-30 2010-09-15 绎立锐光科技开发公司 采用具有波长转换材料的移动模板的多色照明装置
WO2009092041A2 (en) * 2008-01-16 2009-07-23 Abu-Ageel Nayef M Illumination systems utilizing wavelength conversion materials
CN101581410A (zh) * 2008-05-15 2009-11-18 卡西欧计算机株式会社 光源装置及投影机
WO2011092842A1 (ja) * 2010-01-29 2011-08-04 Necディスプレイソリューションズ株式会社 照明光学系とこれを用いたプロジェクタ
US20110205502A1 (en) * 2010-02-23 2011-08-25 Minebea Co., Ltd. Projector
WO2011118536A1 (ja) * 2010-03-25 2011-09-29 三洋電機株式会社 投写型映像表示装置および光源装置
JP2011248272A (ja) * 2010-05-31 2011-12-08 Sanyo Electric Co Ltd 光源装置及び投写型映像表示装置
CN102722073A (zh) * 2011-12-18 2012-10-10 深圳市光峰光电技术有限公司 光源系统及投影装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9970616B2 (en) 2016-03-07 2018-05-15 Hyundai Motor Company Lighting apparatus for vehicle

Also Published As

Publication number Publication date
JP2015504241A (ja) 2015-02-05
JP6096211B2 (ja) 2017-03-15
EP2793079A1 (en) 2014-10-22
CN102722073B (zh) 2014-12-31
EP2793079A4 (en) 2015-12-23
ES2607781T3 (es) 2017-04-04
KR20140109395A (ko) 2014-09-15
CN102722073A (zh) 2012-10-10
EP2793079B1 (en) 2016-10-12
KR101995543B1 (ko) 2019-07-03

Similar Documents

Publication Publication Date Title
WO2013091453A1 (zh) 光源系统及投影装置
US20180080627A1 (en) Light sources system and projection device using the same
JP6096937B2 (ja) 発光装置及び関連する投影システム
JP6596505B2 (ja) 発光装置及び投影表示デバイス
JP6283932B2 (ja) 照明装置および映像表示装置
US9348204B2 (en) Light source module with wavelength conversion module and projection apparatus
US8545032B2 (en) Light source module and wavelength conversion module
TWI437350B (zh) 光源系統及其波長轉換裝置
US20130088689A1 (en) Light source module and projection apparatus
JP5961343B2 (ja) 光源装置及びプロジェクター
TWI524129B (zh) 照明系統以及投影裝置
WO2013063902A1 (zh) 色轮组件、光源系统以及投影装置
TW201736940A (zh) 照明系統與投影裝置
JP6926589B2 (ja) 光源装置及びプロジェクター
JP2012013898A (ja) 光源装置および投射型表示装置
TWI438490B (zh) 光源系統以及使用該光源系統之投影裝置
TW201011442A (en) A recycling system and method for increasing brightness using light pipes with one or more light sources, and a projector incorporating the same
US20190253676A1 (en) Illumination system and projection apparatus
JP2014186080A (ja) 光源装置および投写型映像表示装置
JP2007004200A (ja) 照明装置及びこれを備えるプロジェクタ
WO2017187844A1 (ja) 投射型表示装置
JP5375581B2 (ja) 照明装置及びプロジェクター
WO2013038488A1 (ja) 照明光学系および投写型表示装置
TWI766093B (zh) 固態光源裝置
TWI461818B (zh) 投影機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860277

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012860277

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012860277

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014546292

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147018022

Country of ref document: KR

Kind code of ref document: A