WO2013063902A1 - 色轮组件、光源系统以及投影装置 - Google Patents
色轮组件、光源系统以及投影装置 Download PDFInfo
- Publication number
- WO2013063902A1 WO2013063902A1 PCT/CN2012/073927 CN2012073927W WO2013063902A1 WO 2013063902 A1 WO2013063902 A1 WO 2013063902A1 CN 2012073927 W CN2012073927 W CN 2012073927W WO 2013063902 A1 WO2013063902 A1 WO 2013063902A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- color wheel
- light source
- light
- source system
- laser
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
- G03B21/204—LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
Definitions
- Color wheel assembly light source system, and projection device
- the present invention relates to the field of optical technology, and more particularly to a projection device, a light source system, and a color wheel assembly. Background technique
- solid state light sources are widely used in the field of lighting and display. It is well known that in projection devices, the excitation light generated by a solid state light source is often used to excite the fluorescent color wheel to produce a color light sequence. Wherein, different color segments of the fluorescent color wheel are respectively provided with different fluorescent materials, and different color segments of the fluorescent color wheel are alternately and periodically arranged on the propagation path of the excitation light, and then the excitation color is used to excite the fluorescent color wheel. Fluorescent materials on different color segments to produce fluorescence of different colors.
- a blue laser tube is generally used as an excitation light source, and blue light, yellow light phosphor, and red light phosphor generated by a blue light laser tube are used to generate green light, yellow light, and red light, respectively.
- the blue light produced by the blue laser tube is coherent light and needs to be de-cohered before it can be used for display purposes. If the decoherence is not thorough, the phosphor will be partially heated, which will reduce the conversion efficiency and reliability of the system. Further, when the blue light generated by the blue laser tube is used as the primary light for display, if the decoherence is not thorough, unevenness, speckle, and visual safety problems may occur on the display screen.
- the blue light produced by the blue laser tube has a color coordinate of (0.14, 0.01) and a purple color.
- the blue color coordinates required by the display industry are usually (0.15, 0.06), so the blue light generated by the blue laser tube is far from the blue light required by the industry.
- the technical problem to be solved by the present invention is to provide a projection device, a light source system, and a color wheel assembly to improve conversion efficiency and reliability of the light source system.
- a technical solution adopted by the present invention is to provide a light source system including an excitation light source, a first color wheel, and a second color wheel.
- An excitation light source is used to generate an excitation light.
- the first color wheel is provided with a primary wavelength converting material, and the primary wavelength converting material converts the wavelength of the excitation light into a laser received once.
- a second wavelength conversion material is disposed on the second color wheel, and the secondary wavelength conversion material converts the laser wavelength into a secondary laser light at a time.
- the light source system further comprises a first driving device and a second driving device, the first driving device drives the first color wheel, and the second driving device drives the second color wheel.
- the light source system further comprises a driving device, the first color wheel and the second color wheel are relatively fixed, and the driving device drives the first color wheel to synchronously move with the second color wheel.
- first color wheel and the second color wheel are two annular structures fixed coaxially.
- the spot formed by the excitation light on the first color wheel and the spot formed by the laser on the second color wheel are set at 0 or 180 degrees with respect to the center of the two annular structures.
- the driving device is a rotating device having a rotating shaft, and the two annular structures are coaxially fixed on the rotating shaft.
- the light source system further comprises a reflecting device having a semi-ellipsoidal or hemispherical reflecting surface, the reflecting surface being disposed toward the first color wheel and the second color wheel to reflect the laser generated by the first color wheel Go to the second color wheel.
- the light source system further comprises a light collecting device disposed between the first color wheel and the second color wheel, the light collecting device configured to collect and relay the laser light to the second color wheel.
- the light source system further comprises a planar reflecting means for reflecting the primary laser generated by the first color wheel to the second color wheel.
- the first color wheel is arranged to transmit or reflect the laser light once
- the second color wheel is arranged to transmit or reflect the secondary laser light
- the second color wheel comprises a first region and a second region, the secondary wavelength converting material is disposed in the first region, and the second region is configured to transmit the laser light once.
- the first region is configured to reflect the secondary laser light
- the light source system further comprises an optical path combining device that combines the optical paths of the secondary laser light that is transmitted through the second region and is reflected by the first region.
- the excitation light source generates ultraviolet or near-ultraviolet excitation light
- the primary wavelength conversion material will The wavelength of the ultraviolet or near-ultraviolet excitation light is converted into blue light
- the secondary wavelength conversion material converts the blue wavelength into red, green or yellow light.
- the light source system further comprises a supplemental light source and an optical path merging device, the supplemental light source generates a supplemental light, and the optical path merging device combines the supplemental light with the secondary laser light.
- a technical solution adopted by the present invention is to provide a projection device including the above-described light source system.
- a technical solution adopted by the present invention is to provide a color wheel assembly including a first color wheel and a second color wheel.
- the first color wheel is provided with a wavelength conversion material
- the primary wavelength conversion material converts the excitation light wavelength into a primary laser
- the second color wheel is provided with a secondary wavelength conversion material
- the secondary wavelength conversion material is once converted by the laser wavelength.
- the laser is applied twice.
- first color wheel and the second color wheel are two annular structures fixed coaxially.
- the second color wheel comprises a first region and a second region, the secondary wavelength converting material is disposed in the first region, and the second region is configured to transmit the laser light once.
- the first region is arranged to reflect the secondary laser.
- the beneficial effects of the present invention are: different from the prior art, the projection device, the light source system and the color wheel assembly of the present invention use the first color wheel to generate the second color wheel by the laser to generate the secondary laser, The secondary excitation method shares the heat load and improves the conversion efficiency and reliability of the system.
- FIG. 1 is a schematic structural view of a first embodiment of a light source system of the present invention
- Figure 2 is a front elevational view of the second color wheel of the light source system of Figure 1;
- FIG. 3 is a schematic structural view of a second embodiment of a light source system of the present invention.
- FIG. 4 is a front view of a first color wheel and a second color wheel of the light source system shown in FIG. 3;
- FIG. 5 is a schematic structural view of a third embodiment of the light source system of the present invention.
- Figure 6 is a schematic structural view of a fourth embodiment of the light source system of the present invention.
- Figure 7 is a schematic structural view of a fifth embodiment of the light source system of the present invention.
- Figure 8 is a schematic structural view of a sixth embodiment of the light source system of the present invention.
- 9 is a schematic structural view of a seventh embodiment of a light source system according to the present invention.
- FIG. 10 is a schematic structural view of an eighth embodiment of the light source system of the present invention.
- Figure 11 is a schematic view showing the structure of a ninth embodiment of the light source system of the present invention.
- Figure 12 is a front elevational view of the first color wheel and the second color wheel of the light source system shown in Figure 11; detailed description
- Figure 1 is a schematic view showing the structure of a first embodiment of a light source system of the present invention
- Figure 2 is a front view of a second color wheel of the light source system shown in Figure 1.
- the light source system 100 of the present embodiment mainly includes an excitation light source 101, a dichroic mirror 102, lenses 103, 107, and 109, a first color wheel 104, a first driving device 105, and a first The second driving device 106, the second color wheel 108 and the light homogenizing device 110.
- the excitation light source 101 is used to generate an excitation light.
- the excitation light source 101 is an ultraviolet or near ultraviolet laser or an ultraviolet or near ultraviolet light emitting diode to generate ultraviolet or near ultraviolet excitation light.
- the excitation light source 101 can also be a light source device capable of generating excitation light of other suitable wavelengths.
- the excitation light generated by the excitation light source 101 is transmitted through the dichroic mirror 102, collected by the lens 103, and relayed to the first color wheel 104.
- the first color wheel 104 is provided with a primary wavelength converting material, which in turn converts the incident excitation light wavelength into a primary received laser light.
- the first color wheel 104 has a wheel structure and is driven by the first driving device 105.
- the first driving device 105 is a rotating device for driving the first color wheel 104 to rotate about its rotation axis, so that the spot generated by the excitation light on the primary wavelength conversion material acts on the primary wavelength along the circular path.
- the first color wheel 104 may also be in the form of a strip or a cylinder, and the first driving device 105 may employ a linear translation mechanism or other driving device to cause the excitation light to be generated on the primary wavelength converting material.
- the spot acts on a different location of the primary wavelength converting material along a predetermined path.
- the first color wheel 104 is further configured to reflect the laser light once, such that the direction of exit of the primary laser light on the first color wheel 104 is opposite to the direction of incidence of the excitation light on the first color wheel 104.
- a reflective substrate can be placed under the primary wavelength conversion material. To achieve the above reflection function.
- the primary wavelength converting material uses a blue fluorescent material to convert the wavelength of the incident ultraviolet or near ultraviolet excitation light into blue light.
- the primary wavelength conversion material can convert the wavelength of the excitation light to cyan or blue and yellow.
- primary wavelength converting materials include, but are not limited to, fluorescent materials and quantum dot materials.
- the primary light reflected by the first color wheel 104 is collected by the lens 103 and relayed, and then reflected by the dichroic mirror 102, collected by the lens 107 and relayed, and then incident on the second color wheel 108.
- the first color wheel 104 is disposed perpendicular to the second color wheel 108. In other embodiments, the first color wheel 104 and the second color wheel 108 may also be disposed at other angles.
- the roles of the lenses 103 and 107 are once collected by the laser and relayed to the second color wheel 108. In other embodiments, lenses 103 and 107 may be replaced or omitted by other light collecting devices.
- the second color wheel 108 is also a wheel-like structure, and includes a green fluorescent region, a red fluorescent region, a yellow fluorescent region, and a blue light passage disposed in a circumferential direction thereof. Light zone.
- the second color wheel 108 is driven by the second drive unit 106.
- the second driving device 106 is a rotating device for driving the second color wheel 108 to rotate about its rotation axis, so that the above region is periodically disposed on the propagation path of the laser light once.
- the second color wheel 108 can also be in the form of a strip or a cylinder, while the second drive unit 106 can employ a linear translation mechanism or other drive.
- the green fluorescent region, the red fluorescent region, and the yellow fluorescent region are respectively provided with different secondary wavelength converting materials, and then the primary laser light incident thereon is converted into a secondary laser.
- the green fluorescent region is provided with a green fluorescent material
- the red fluorescent region is provided with a red fluorescent material
- the yellow fluorescent region is provided with a yellow fluorescent material.
- the green fluorescent region converts the blue light incident thereon into green light
- the red fluorescent region converts the blue light incident thereon into red light
- the yellow fluorescent region converts the blue light incident thereon into yellow light.
- the green fluorescent region, the red fluorescent region, and the yellow fluorescent region are further disposed to transmit the secondary received laser light.
- the blue light transmitting region is disposed to directly transmit the laser light, that is, blue light.
- the blue light transmitting region may further be provided with a scattering material to decohere the incident blue light.
- the primary laser light and the secondary laser light transmitted through the second color wheel 108 are collected by the lens 109 and relayed, and then enter the light hooking device 110 to perform the hooking process.
- the scattering material is disposed in one step in the green fluorescent region, the red fluorescent region, and the yellow fluorescent region, or when the incoherence of the incident blue light has satisfied the subsequent display requirements, the scattering material may be omitted.
- the primary color wheel 104 produces a laser (i.e., blue light) that is incoherent, the brightness is relatively uniform, and its color coordinates are more suitable for display applications than the blue light produced by the blue laser tube.
- a laser i.e., blue light
- the fluorescent region on the second color wheel 108 may also be any combination of one or more of a green fluorescent region, a red fluorescent region, a yellow fluorescent region, and a fluorescent region of other colors. This is not a limitation.
- FIG. 3 is a schematic view showing the structure of a second embodiment of the light source system of the present invention
- FIG. 4 is a front view of the first color wheel and the second color wheel of the light source system shown in FIG.
- the light source system 200 of the present embodiment is different from the light source system 100 shown in FIGS. 1 and 2 in that the first color wheel 204 and the second color wheel 207 of the present embodiment are relatively fixed, and Synchronous movement is driven by the drive unit 208.
- FIG. 3 is a schematic view showing the structure of a second embodiment of the light source system of the present invention
- FIG. 4 is a front view of the first color wheel and the second color wheel of the light source system shown in FIG.
- the light source system 200 of the present embodiment is different from the light source system 100 shown in FIGS. 1 and 2 in that the first color wheel 204 and the second color wheel 207 of the present embodiment are relatively fixed, and Synchronous movement is driven by the drive unit 208.
- the driving device 208 is a rotating device
- the first color wheel 204 and the second color wheel 207 are coaxially fixed on the rotating shaft of the driving device 208, and have two ring-shaped structures
- the dichroic wheel 207 is located outside the first color wheel 204.
- the second color wheel 207 can also be located inside the first color wheel 204.
- the first color wheel 204 is provided with a blue fluorescent region
- the second color wheel 207 is circumferentially segmented with a green fluorescent region, a red fluorescent region, a yellow fluorescent region, and a blue light transmitting region.
- the blue fluorescent region is provided with a blue fluorescent material
- the green fluorescent region, the red fluorescent region, and the yellow fluorescent region are respectively provided with a green fluorescent material, a red fluorescent material, and a yellow fluorescent material.
- the excitation light generated by the excitation light source 201 is transmitted through the dichroic mirror 202, collected by the lens 203, and relayed to the first color wheel 204.
- the wavelength of the excitation light is converted to blue light by the blue fluorescent material on the first color wheel 204 and is reflected by the first color wheel 204.
- the blue light reflected by the first color wheel 204 is collected and relayed by the lens 203, reflected by the dichroic mirror 202 and the total reflection mirror 205, collected by the lens 206 and relayed, and then incident on the second color wheel 207.
- the dichroic mirror 202 and the total reflection mirror 205 are disposed at 90 degrees to each other, and are disposed at 45 degrees with respect to the incident direction of the laser light once.
- the spot 201A formed on the first color wheel 204 and the spot 201B formed by the laser on the second color wheel 207 are set at 180 degrees with respect to the centers of the two ring structures of the first color wheel 204 and the second color wheel 207. .
- the two annular structures of the one color wheel 204 and the second color wheel 207 are disposed at 0 degrees or other angles.
- FIG. 5 is a schematic structural view of a third embodiment of a light source system according to the present invention.
- the light source system 300 of the present embodiment is different from the light source system 100 shown in FIG. 1 and FIG. 2 in that the first color wheel 303 of the present embodiment is configured to transmit a laser beam once, and first.
- the color wheel 303 is disposed in parallel with the second color wheel 307.
- the excitation light generated by the excitation light source 301 is incident on the first color wheel 303 driven by the first driving means 302.
- the incident excitation light wavelength is converted into a primary laser light by the primary wavelength converting material on the first color wheel 303, and is transmitted by the first color wheel 303 once.
- the primary light transmitted by the first color wheel 303 is collected by the lenses 304 and 305 and relayed to the second color wheel 307 driven by the second driving device 306.
- the second color wheel 307 includes a first region provided with a secondary wavelength converting material and a second region disposed to transmit the laser light once. Wherein, the secondary wavelength conversion material on the first region converts the primary laser light into a secondary laser light, and the second color wheel 307 transmits the secondary laser light.
- the primary laser light and the secondary laser light transmitted by the second color wheel 307 are collected by the lens 308 and relayed, and then incident on the light hooking device 309.
- FIG. 6 is a schematic structural view of a fourth embodiment of a light source system according to the present invention.
- the light source system 400 of the present embodiment is different from the light source system 200 shown in FIG. 3 in that the first color wheel 403 is disposed to transmit the received laser light once.
- the excitation light generated by the excitation light source 401 is incident on the first color wheel 403 driven by the driving device 402.
- the incident excitation light wavelength is converted into a primary laser light by the primary wavelength conversion material on the first color wheel 403, and is transmitted by the first color wheel 403 once.
- the primary light transmitted by the first color wheel 403 is collected by the laser 404 and relayed, reflected by the total reflection mirrors 405 and 406, collected by the lens 407 and relayed, and then incident on the second coaxially fixed with the first color wheel 403.
- the second color wheel 408 includes a first region provided with a secondary wavelength converting material and a second region disposed to transmit the laser light once. Wherein, the secondary wavelength conversion material on the first region will be subjected to one time
- the laser wavelength is converted into a secondary received laser light, and the second color wheel 408 transmits the secondary received laser light.
- the primary laser light received by the second color wheel 408 and the secondary laser light are collected by the lens 409 and relayed, and then incident on the light hooking device 410.
- FIG. 7 is a schematic structural view of a fifth embodiment of a light source system according to the present invention.
- the light source system 500 of the present embodiment is different from the light source system 100 shown in FIGS. 1 and 2 in that the first color wheel 503 is disposed to transmit the primary laser light while the second color wheel 508 is disposed. The reflection is twice received by the laser.
- the excitation light generated by the excitation light source 501 is collected by the lens 502 and relayed to be incident on the first color wheel 503 driven by the first driving device 504.
- the incident excitation light wavelength is converted into primary excitation light by the primary wavelength conversion material on the first color wheel 503, and is transmitted by the first color wheel 503 once.
- the primary laser light transmitted by the first color wheel 503 is collected by the lens 505 and relayed, reflected by the dichroic mirror 506, collected by the lens 507, and relayed to the second color wheel 508 driven by the second driving device 509. on.
- the second color wheel 508 includes a first region provided with a secondary wavelength converting material and a second region disposed to transmit a laser once. Wherein, the secondary wavelength conversion material on the first region converts the laser wavelength to the secondary received laser light once, and the second color wheel 508 reflects the secondary received laser light.
- the secondary laser light reflected by the second color wheel 508 is collected by the lens 507 and relayed, transmitted through the dichroic mirror 506, collected by the lens 514, relayed, and incident on the hook lighter 515.
- the optical path combining means formed by the total reflection mirrors 511, 512 and 513 and the dichroic mirror 506 is combined with the secondary laser beam path, and After being collected by the lens 514 and relayed, it is incident on the light homogenizing device 515.
- FIG. 8 is a schematic structural view of a sixth embodiment of a light source system according to the present invention.
- the light source system 600 of the present embodiment is different from the light source system 400 shown in FIG. 6 in that the second color wheel 607 of the present embodiment is disposed to reflect the secondary laser light.
- the excitation light generated by the excitation light source 601 is incident on the first color wheel 602 driven by the driving device 608.
- the incident excitation light wavelength is converted into a primary laser light by the primary wavelength conversion material on the first color wheel 602, and is transmitted by the first color wheel 602 once.
- the primary light transmitted by the first color wheel 602 is collected by the laser 603 and relayed, reflected by the total reflection mirror 604 and the dichroic mirror 605, collected by the lens 606 and relayed, and then incident on the coaxial with the first color wheel 602.
- the second color wheel 607 includes a first region provided with a secondary wavelength converting material And a second region that is configured to transmit the laser light once. Wherein, the secondary wavelength conversion material on the first region converts the primary laser light into a secondary laser light, and the second color wheel 607 reflects the secondary laser light.
- the secondary laser light reflected by the second color wheel 607 is collected by the lens 606 and relayed, transmitted through the dichroic mirror 605, collected by the lens 613 and relayed, and then incident on the light homogenizing device 614.
- the optical path combining means formed by the total reflection mirrors 610, 611 and 612 and the dichroic mirror 605 combines with the secondary laser light path, and After being collected by the lens 613 and relayed, it is incident on the hook lighter 614.
- FIG. 9 is a schematic structural view of a seventh embodiment of a light source system according to the present invention.
- the light source system 700 of the present embodiment is different from the light source system 300 shown in FIG. 5 in that the first color wheel 704 of the present embodiment is configured to reflect the laser light once, and the second color wheel 708 is set. The reflection is twice received by the laser.
- the excitation light generated by the excitation light source 701 is transmitted through the dichroic mirror 702, collected by the lens 703, relayed, and incident on the first color wheel 704 driven by the first driving device 705.
- the incident excitation light wavelength is converted into a primary laser light by the primary wavelength converting material on the first color wheel 704, and the primary excitation light is reflected by the first color wheel 704.
- the primary light reflected by the first color wheel 704 is collected by the laser 703 and relayed, reflected by the dichroic mirrors 702, 706, collected by the lens 707 and relayed, and then incident on the second color driven by the second driving device 709.
- the second color wheel 708 includes a first region provided with a secondary wavelength converting material and a second region disposed to transmit the laser light once. Wherein, the secondary wavelength converting material on the first region is converted into a secondary laser light by the laser wavelength at a time, and the secondary laser light is reflected by the second color wheel 708.
- the secondary laser light reflected by the second color wheel 708 is collected by the lens 707 and relayed, transmitted through the dichroic mirror 706, collected by the lens 714, relayed, and incident on the light homogenizing device 715.
- the optical path combining means formed by the total reflection mirrors 711, 712 and 713 and the dichroic mirror 706 merges with the secondary laser beam, and After being collected by the lens 714 and relayed, it is incident on the light homogenizing device 715.
- FIG. 10 is a schematic structural view of an eighth embodiment of a light source system according to the present invention.
- the light source system 800 of the present embodiment is different from the light source system 600 shown in FIG. 8 in that the first color wheel 804 of the present embodiment is arranged to reflect the received laser light once.
- the excitation light generated by the excitation light source 801 is transmitted through the dichroic mirror 802 and then passed through the lens 803. After being collected and relayed, it is incident on the first color wheel 804 driven by the driving device 805.
- the incident excitation light wavelength is converted into a primary laser light by the primary wavelength conversion material on the first color wheel 804, and is reflected by the first color wheel 804 once.
- the primary reflected by the first color wheel 804 is collected by the laser 803 and relayed, reflected by the dichroic mirrors 802, 806, collected by the lens 807 and relayed, and then incident on the coaxial with the first color wheel 804.
- the second color wheel 808 is on.
- the second color wheel 808 includes a first region provided with a secondary wavelength converting material and a second region disposed to transmit the laser light once. Wherein, the secondary wavelength conversion material on the first region converts the primary laser light into a secondary received laser light, and the second color wheel 808 reflects the secondary received laser light.
- the secondary laser light reflected by the second color wheel 808 is collected by the lens 807 and relayed, transmitted through the dichroic mirror 806, collected by the lens 813 and relayed, and then incident on the light homogenizing device 814.
- the optical path combining device formed by the total reflection mirrors 810, 811 and 812 and the dichroic mirror 806 is combined with the secondary laser beam, and After being collected by the lens 813 and relayed, it is incident on the light homogenizing device 814.
- FIG. 11 is a schematic structural view of a ninth embodiment of a light source system according to the present invention.
- the light source system 900 of the present embodiment is different from the light source system 200 shown in FIGS. 3-4 in that, in this embodiment, a reflective surface having a semi-ellipsoidal shape or a hemispherical shape is used.
- a reflecting device 902 is used in place of the planar mirrors of the light source system 200 (the dichroic mirror 202 and the total reflection mirror 205).
- the reflecting surface of the reflecting means 902 is disposed toward the first color wheel 903 and the second color wheel 904.
- the excitation light generated by the excitation light source 901 is incident on the first color wheel 903 driven by the driving device 905 through the top opening of the reflecting device 902.
- the wavelength of the incident excitation light is converted into a primary laser light by the primary wavelength converting material on the first color wheel 903, and is reflected by the first color wheel 903 once.
- the primary reflected by the first color wheel 903 is incident on the reflecting device 902 by the laser light, and is reflected by the reflecting device 902 onto the second color wheel 904 fixed coaxially with the first color wheel 903.
- the second color wheel 904 includes a first region provided with a secondary wavelength converting material and a second region disposed to transmit the laser light once.
- the secondary wavelength conversion material on the first region converts the primary laser light wavelength into a secondary received laser light
- the second color wheel 904 transmits the secondary received laser light.
- the primary laser light and the secondary laser light transmitted by the second color wheel 904 are collected by the lens 906 and relayed, and then incident on the light hooking device 907.
- the reflecting device The 902 is capable of reflecting the laser from near one focus of the reflecting device 902 to the vicinity of the other focus of the reflecting device 902.
- the reflecting surface of the reflecting device 902 is hemispherical, two symmetric points symmetric about the center of the ball are disposed at a position adjacent to the center of the ball, and the reflecting device 902 can also substantially reflect one of the symmetric points to the other symmetric point. .
- the spot 901A formed by the excitation light on the first color wheel 903 and the spot 901B formed by the laser on the second color wheel 904 are opposed to the first color wheel 903 and the second color.
- the center of the two annular structures of the wheel 904 is set at 0 degrees.
- the light transmissive area of the second color wheel may be omitted.
- a supplementary light source for example, a light emitting diode (LED)
- an appropriate optical path combining device may be added to the light source system.
- the complementary light e.g., blue light
- the secondary laser light e.g., red light, green light, and/or yellow light
- the present invention further provides a color wheel assembly formed by a first color wheel and a second color wheel in the above light source system and a projection apparatus using the above light source system.
- the projection device, the light source system and the color wheel assembly of the present invention use the first color wheel to generate a secondary color wheel by laser excitation, and share the heat load by means of secondary excitation. Improve system conversion efficiency and reliability.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Projection Apparatus (AREA)
Abstract
一种色轮组件、光源系统(100)以及投影装置。该光源系统包括激发光光源(101)和色轮组件。该色轮组件包括第一色轮(104)以及第二色轮(106)。该激发光光源用于产生激发光。该第一色轮上设置有一次波长转换材料,该一次波长转换材料将该激发光波长转换成一次受激光。该第二色轮上设置有二次波长转换材料,该二次波长转换材料将该一次受激光波长转换成二次受激光。本发明的二次激发可分担热量负载,并提高系统的转换效率。
Description
色轮组件、 光源系统以及投影装置
技术械
本发明涉及光学技术领域, 特别是涉及一种投影装置、 光源系统以 及色轮组件。 背景技术
目前, 固态光源广泛地应用于照明和显示领域。 众所周知, 在投影 装置中, 经常使用固态光源产生的激发光激发荧光色轮来产生彩色光序 列。 其中, 荧光色轮的不同色段上分别设置有不同的荧光材料, 并将荧 光色轮的不同色段轮流且周期性设置于激发光的传播路径上, 进而利用 激发光来激发荧光色轮的不同色段上的荧光材料, 以产生不同颜色的荧 光。 在现有技术中, 通常采用蓝光激光管作为激发光源, 并利用蓝光激 光管产生的蓝光激发绿光荧光粉、 黄光荧光粉和红光荧光粉来分别产生 绿光、 黄光和红光。 蓝光激光管产生的蓝光为相干光, 需要消相干之后 才能作为显示用途。 如果消相干不彻底, 会使得荧光粉局部受热严重, 降低系统的转换效率和可靠性。 进一步, 当蓝光激光管产生的蓝光作为 基色光用于显示时,如果消相干不彻底,则显示屏幕会出现亮度不均匀、 散斑以及视觉安全问题。此外,蓝光激光管产生的蓝光的色坐标为( 0.14, 0.01 ), 颜色发紫。 而显示行业所需的蓝光色坐标通常为 (0.15 , 0.06 ), 因此蓝光激光管产生的蓝光距离显示行业所需的蓝光尚有距离。
因此, 需要提供一种投影装置、 光源系统以及色轮组件, 以解决现 有技术光源系统所存在的转换效率和可靠性相对较低的技术问题。 发明内容
本发明主要解决的技术问题是提供一种投影装置、 光源系统以及色 轮组件, 以提高光源系统的转换效率和可靠性。
为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种光 源系统, 包括激发光光源、 第一色轮以及第二色轮。 激发光光源用于产 生一激发光。 第一色轮上设置有一次波长转换材料, 一次波长转换材料 将激发光波长转换成一次受激光。 第二色轮上设置有二次波长转换材 料, 二次波长转换材料将一次受激光波长转换成二次受激光。
其中, 光源系统进一步包括第一驱动装置和第二驱动装置, 第一驱 动装置驱动第一色轮, 第二驱动装置驱动第二色轮。
其中, 光源系统进一步包括驱动装置, 第一色轮与第二色轮相对固 定, 驱动装置驱动第一色轮与第二色轮同步运动。
其中, 第一色轮与第二色轮为同轴固定的两个环状结构。
其中, 激发光在第一色轮上形成的光斑与一次受激光在第二色轮上 形成的光斑相对两个环状结构的中心呈 0度或 180度设置。
其中, 驱动装置为具有一转动轴的转动装置, 两个环状结构同轴固 定于转动轴上。
其中, 光源系统进一步包括反射装置, 反射装置具有呈半橢球状或 呈半球状的反射面, 反射面朝向第一色轮与第二色轮设置, 以将第一色 轮产生的一次受激光反射到第二色轮上。
其中, 光源系统进一步包括设置于第一色轮与第二色轮之间的光收 集装置, 光收集装置用于将一次受激光收集并中继到第二色轮。
其中, 光源系统进一步包括平面反射装置, 以将第一色轮产生的一 次受激光反射到第二色轮上。
其中, 第一色轮设置成透射或反射一次受激光, 第二色轮设置成透 射或反射二次受激光。
其中, 第二色轮包括第一区域和第二区域, 二次波长转换材料设置 于第一区域, 第二区域设置成透射一次受激光。
其中, 第一区域设置成反射二次受激光, 光源系统进一步包括光路 合并装置, 光路合并装置将经第二区域透射的一次受激光与第一区域反 射的二次受激光进行光路合并。
其中, 激发光光源产生紫外或近紫外激发光, 一次波长转换材料将
紫外或近紫外激发光波长转换成蓝光, 二次波长转换材料将蓝光波长转 换成红光、 绿光或黄光。
其中, 光源系统进一步包括补充光源及光路合并装置, 补充光源产 生一补充光, 光路合并装置将补充光与二次受激光进行光路合并。
为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种投 影装置, 该投影装置包括上述光源系统。
为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种色 轮组件, 包括第一色轮和第二色轮。 第一色轮上设置有一次波长转换材 料, 一次波长转换材料将激发光波长转换成一次受激光, 第二色轮上设 置有二次波长转换材料, 二次波长转换材料将一次受激光波长转换成二 次受激光。
其中, 第一色轮与第二色轮为同轴固定的两个环状结构。
其中, 第二色轮包括第一区域和第二区域, 二次波长转换材料设置 于第一区域, 第二区域设置成透射一次受激光。
其中, 第一区域设置成反射二次受激光。
本发明的有益效果是: 区别于现有技术的情况,本发明的投影装置、 光源系统以及色轮组件利用第一色轮产生的一次受激光激发第二色轮 来产生二次受激光, 通过二次激发的方式分担热量负载, 可提高系统的 转换效率以及可靠性。 附图说明
图 1是本发明光源系统的第一实施例的结构示意图;
图 2是图 1所示的光源系统的第二色轮的主视图;
图 3是本发明光源系统的第二实施例的结构示意图;
图 4是图 3所示的光源系统的第一色轮和第二色轮的主视图; 图 5是本发明光源系统的第三实施例的结构示意图;
图 6是本发明光源系统的第四实施例的结构示意图;
图 7是本发明光源系统的第五实施例的结构示意图;
图 8是本发明光源系统的第六实施例的结构示意图;
图 9是本发明光源系统的第七实施例的结构示意图; 图 10是本发明光源系统的第八实施例的结构示意图;
图 11是本发明光源系统的第九实施例的结构示意图;
图 12是图 11所示的光源系统的第一色轮和第二色轮的主视图。 具体实施方式
请参见图 1和图 2, 图 1是本发明光源系统的第一实施例的结构示 意图, 图 2是图 1所示的光源系统的第二色轮的主视图。 如图 1所示, 本实施例的光源系统 100主要包括激发光光源 101、 二向色镜( dichroic mirror ) 102、 透镜 103、 107和 109、 第一色轮 104、 第一驱动装置 105、 第二驱动装置 106、 第二色轮 108以及匀光装置 110。
激发光光源 101用于产生一激发光。在本实施例中,激发光光源 101 为一紫外或近紫外激光器或者紫外或近紫外发光二极管, 以产生紫外或 近紫外激发光。 在其他实施例中, 激发光光源 101也可以是能够产生其 他适当波长的激发光的光源装置。
激发光光源 101所产生的激发光经二向色镜 102透射,再经透镜 103 收集并中继后入射到第一色轮 104上。 第一色轮 104上设置有一次波长 转换材料,进而将入射的激发光波长转换成一次受激光。在本实施例中, 第一色轮 104为轮状结构, 并由第一驱动装置 105进行驱动。 在本实施 例中, 第一驱动装置 105为转动装置, 用于驱动第一色轮 104绕其转轴 进行转动, 进而使得激发光在一次波长转换材料上产生的光斑沿圓形路 径作用于一次波长转换材料的不同位置, 避免了因激发光长时间作用于 一次波长转换材料的同一位置而导致的温度过高。 在其他实施例中, 第 一色轮 104也可以采用带状或筒状结构, 而第一驱动装置 105则可以采 用线性平移机构或其他驱动装置, 以使得激发光在一次波长转换材料上 产生的光斑沿预定路径作用于一次波长转换材料的不同位置。
在本实施例中, 第一色轮 104进一步配置成反射一次受激光, 使得 一次受激光在第一色轮 104上的出射方向与激发光在第一色轮 104上的 入射方向相反。 例如, 可通过在一次波长转换材料下方设置一反射村底
来实现上述反射功能。
在本实施例中, 一次波长转换材料采用蓝色荧光材料, 进而将入射 的紫外或近紫外激发光波长转换成蓝光。 在其他实施例中, 一次波长转 换材料可以将激发光波长转换成青光或蓝光与黄光。 在本发明中, 一次 波长转换材料包括但不限于荧光材料和量子点材料。
第一色轮 104反射的一次受激光经透镜 103收集并中继后, 经二向 色镜 102反射, 再经透镜 107收集并中继后入射到第二色轮 108。 在本 实施例中, 第一色轮 104与第二色轮 108垂直设置。 在其他实施例中, 第一色轮 104与第二色轮 108也可以成其他角度设置。 在本实施例中, 透镜 103和 107的作用将一次受激光收集并中继到第二色轮 108上。 在 其他实施例中, 透镜 103和 107可以由其他光收集装置代替或省略。
如图 2所示, 在本实施例中, 第二色轮 108同样为轮状结构, 并包 括绕其周向分段设置的绿光荧光区、 红光荧光区、 黄光荧光区以及蓝光 透光区。 第二色轮 108由第二驱动装置 106进行驱动。 在本实施例中, 第二驱动装置 106为转动装置, 用于驱动第二色轮 108绕其转轴进行转 动, 进而使得上述区域周期性设置于一次受激光的传播路径上。 在其他 实施例中, 第二色轮 108也可以采用带状或筒状结构, 而第二驱动装置 106则可以采用线性平移机构或其他驱动装置。
在本实施例中, 绿光荧光区、 红光荧光区以及黄光荧光区分别设置 有不同的二次波长转换材料, 进而将入射到其上的一次受激光波长转化 成二次受激光。 具体来说, 绿光荧光区设置有绿光荧光材料, 红光荧光 区设置有红光荧光材料, 黄光荧光区设置有黄光荧光材料。 进而, 绿光 荧光区将入射到其上的蓝光转换成绿光, 红光荧光区将入射到其上的蓝 光转换成红光, 黄光荧光区将入射到其上的蓝光转换成黄光。 在本实施 例中, 绿光荧光区、 红光荧光区以及黄光荧光区进一步设置成透射上述 二次受激光。 此外, 蓝光透光区设置成直接透射一次受激光, 即蓝光。 蓝光透光区可以进一步设置散射材料, 进而对入射的蓝光进行消相干。 经第二色轮 108透射的一次受激光和二次受激光再经透镜 109收集并中 继后进入勾光装置 110, 以进行勾光处理。 在其他实施例中, 也可以进
一步在绿光荧光区、 红光荧光区以及黄光荧光区设置散射材料, 或者当 入射的蓝光的非相干性已经满足后续显示要求了, 则可以省略散射材 料。
在本实施例中, 第一色轮 104产生的一次受激光(即蓝光)为非相 干光, 亮度相对均勾, 且其色坐标相较于蓝光激光管产生的蓝光更适用 于显示应用。
在其他实施例中, 第二色轮 108上的荧光区也可以是绿光荧光区、 红光荧光区、 黄光荧光区以及其他颜色的荧光区中的一种或多种的任意 组合, 在此不作限制。
请参见图 3和图 4, 图 3是本发明光源系统的第二实施例的结构示 意图, 图 4是图 3所示的光源系统的第一色轮和第二色轮的主视图。 如 图 3所示, 本实施例的光源系统 200与图 1和图 2所示的光源系统 100 的不同之处在于, 本实施例的第一色轮 204和第二色轮 207相对固定, 并且在驱动装置 208的驱动下同步运动。 如图 4所示, 在本实施例中, 驱动装置 208为转动装置, 第一色轮 204和第二色轮 207为同轴固定在 驱动装置 208的转动轴上两个环状结构, 并且第二色轮 207位于第一色 轮 204的外侧。在其他实施例中,第二色轮 207也可以位于第一色轮 204 的内侧。 第一色轮 204设置有蓝光荧光区, 而第二色轮 207沿周向分段 设置有绿光荧光区、 红光荧光区、 黄光荧光区以及蓝光透光区。 蓝光荧 光区设置有蓝光荧光材料, 绿光荧光区、 红光荧光区以及黄光荧光区则 分别设置有绿光荧光材料、 红光荧光材料以及黄光荧光材料。
激发光光源 201产生的激发光经二向色镜 202透射, 并经透镜 203 收集并中继后入射到第一色轮 204上。 由第一色轮 204上的蓝光荧光材 料将激发光波长转换成蓝光,并由第一色轮 204进行反射。第一色轮 204 反射的蓝光经透镜 203收集并中继, 经二向色镜 202和全反射镜 205反 射, 再经透镜 206收集并中继后入射到第二色轮 207。 在本实施例中, 二向色镜 202和全反射镜 205相互呈 90度设置, 且相对一次受激光的 入射方向呈 45度设置。 在二向色镜 202和全反射镜 205的反射作用下, 一次受激光的传播方向被平移预定距离且反转 180度, 进而使得激发光
在第一色轮 204上形成的光斑 201A与一次受激光在第二色轮 207上形 成的光斑 201B相对第一色轮 204和第二色轮 207的两个环状结构的中 心呈 180度设置。 当然, 通过适当地改变二向色镜 202和全反射镜 205 的位置, 也可以使得激发光在第一色轮 204上形成的光斑与一次受激光 在第二色轮 207上形成的光斑相对第一色轮 204和第二色轮 207的两个 环状结构呈 0度或其他角度设置。
请参见图 5 , 图 5是本发明光源系统的第三实施例的结构示意图。 如图 5所示,本实施例的光源系统 300与图 1和图 2所示的光源系统 100 的不同之处在于, 本实施例的第一色轮 303设置成透射一次受激光, 且 第一色轮 303与第二色轮 307平行设置。 此时, 激发光光源 301产生的 激发光入射到由第一驱动装置 302驱动的第一色轮 303上。 由第一色轮 303上的一次波长转换材料将入射的激发光波长转换成一次受激光, 并 由第一色轮 303透射一次受激光。 第一色轮 303透射的一次受激光经透 镜 304和 305收集并中继后入射到由第二驱动装置 306驱动的第二色轮 307上。 第二色轮 307包括设置有二次波长转换材料的第一区域以及设 置成透射一次受激光的第二区域。 其中, 由第一区域上的二次波长转换 材料将一次受激光波长转换成二次受激光, 并由第二色轮 307透射二次 受激光。 第二色轮 307透射的一次受激光以及二次受激光经透镜 308收 集并中继后入射到勾光装置 309。
请参见图 6, 图 6是本发明光源系统的第四实施例的结构示意图。 如图 6所示, 本实施例的光源系统 400与图 3所示的光源系统 200的不 同之处在于, 第一色轮 403设置成透射一次受激光。 此时, 激发光光源 401产生的激发光入射到由驱动装置 402驱动的第一色轮 403上。 由第 一色轮 403上的一次波长转换材料将入射的激发光波长转换成一次受激 光, 并由第一色轮 403透射一次受激光。 第一色轮 403透射的一次受激 光经透镜 404收集并中继, 经全反射镜 405和 406反射, 再经透镜 407 收集并中继后入射到与第一色轮 403同轴固定的第二色轮 408上。 第二 色轮 408包括设置有二次波长转换材料的第一区域以及设置成透射一次 受激光的第二区域。 其中, 由第一区域上的二次波长转换材料将一次受
激光波长转换成二次受激光, 并由第二色轮 408透射二次受激光。 第二 色轮 408透射的一次受激光以及二次受激光经透镜 409收集并中继后入 射到勾光装置 410。
请参见图 7 , 图 7是本发明光源系统的第五实施例的结构示意图。 如图 7所示,本实施例的光源系统 500与图 1和图 2所示的光源系统 100 的不同之处在于,第一色轮 503设置成透射一次受激光,而第二色轮 508 设置成反射二次受激光。此时,激发光光源 501产生的激发光经透镜 502 收集并中继后入射到由第一驱动装置 504驱动的第一色轮 503上。 由第 一色轮 503上的一次波长转换材料将入射的激发光波长转换成一次受激 光, 并由第一色轮 503透射一次受激光。 第一色轮 503透射的一次受激 光经透镜 505收集并中继, 经二向色镜 506反射, 再经透镜 507收集并 中继后入射到由第二驱动装置 509驱动的第二色轮 508上。第二色轮 508 包括设置有二次波长转换材料的第一区域以及设置成透射一次受激光 的第二区域。 其中, 由第一区域上的二次波长转换材料将一次受激光波 长转换成二次受激光,并由第二色轮 508反射二次受激光。第二色轮 508 反射的二次受激光经透镜 507收集并中继, 经二向色镜 506透射, 再经 透镜 514收集并中继后入射到勾光装置 515。 第二色轮 508透射的一次 受激光经透镜 510收集并中继后, 经由全反射镜 511、 512和 513以及 二向色镜 506所形成的光路合并装置与二次受激光进行光路合并, 并经 透镜 514收集并中继后入射到匀光装置 515。
请参见图 8 , 图 8是本发明光源系统的第六实施例的结构示意图。 如图 8所示, 本实施例的光源系统 600与图 6所示的光源系统 400的不 同之处在于, 本实施例的第二色轮 607设置成反射二次受激光。 此时, 激发光光源 601 产生的激发光入射到由驱动装置 608 驱动的第一色轮 602上。 由第一色轮 602上的一次波长转换材料将入射的激发光波长转 换成一次受激光, 并由第一色轮 602透射一次受激光。 第一色轮 602透 射的一次受激光经透镜 603收集并中继,经全反射镜 604和二向色镜 605 反射, 再经透镜 606收集并中继后入射到与第一色轮 602同轴固定的第 二色轮 607上。 第二色轮 607包括设置有二次波长转换材料的第一区域
以及设置成透射一次受激光的第二区域。 其中, 由第一区域上的二次波 长转换材料将一次受激光波长转换成二次受激光, 并由第二色轮 607反 射二次受激光。第二色轮 607反射的二次受激光经透镜 606收集并中继, 经二向色镜 605透射,再经透镜 613收集并中继后入射到匀光装置 614。 第二色轮 607透射的一次受激光经透镜 609收集并中继后, 经由全反射 镜 610、 611和 612以及二向色镜 605所形成的光路合并装置与二次受 激光进行光路合并, 并经透镜 613收集并中继后入射到勾光装置 614。
请参见图 9, 图 9是本发明光源系统的第七实施例的结构示意图。 如图 9所示, 本实施例的光源系统 700与图 5所示的光源系统 300的不 同之处在于, 本实施例的第一色轮 704设置成反射一次受激光, 第二色 轮 708设置成反射二次受激光。 此时, 激发光光源 701产生的激发光经 二向色镜 702透射, 再经透镜 703收集并中继后入射到由第一驱动装置 705驱动的第一色轮 704上。 由第一色轮 704上的一次波长转换材料将 入射的激发光波长转换成一次受激光, 并由第一色轮 704反射一次受激 光。 第一色轮 704反射的一次受激光经透镜 703收集并中继, 经二向色 镜 702、 706反射, 再经透镜 707收集并中继后入射到由第二驱动装置 709驱动的第二色轮 708上。 第二色轮 708包括设置有二次波长转换材 料的第一区域以及设置成透射一次受激光的第二区域。 其中, 第一区域 上的二次波长转换材料将一次受激光波长转换成二次受激光, 并由第二 色轮 708反射二次受激光。 第二色轮 708反射的二次受激光经透镜 707 收集并中继, 经二向色镜 706透射, 再经透镜 714收集并中继后入射到 匀光装置 715。 第二色轮 708透射的一次受激光经透镜 710收集并中继 后, 经由全反射镜 711、 712和 713以及二向色镜 706所形成的光路合 并装置与二次受激光进行光路合并, 并经透镜 714收集并中继后入射到 匀光装置 715。
请参见图 10,图 10是本发明光源系统的第八实施例的结构示意图。 如图 10所示, 本实施例的光源系统 800与图 8所示的光源系统 600的 不同之处在于, 本实施例的第一色轮 804设置成反射一次受激光。 此 时, 激发光光源 801产生的激发光经二向色镜 802透射, 再经透镜 803
收集并中继后入射到由驱动装置 805驱动的第一色轮 804上。 由第一色 轮 804上的一次波长转换材料将入射的激发光波长转换成一次受激光, 并由第一色轮 804反射一次受激光。 第一色轮 804反射的一次受激光经 透镜 803收集并中继, 经二向色镜 802、 806进行反射, 再经透镜 807 收集并中继后入射到与第一色轮 804同轴固定的第二色轮 808上。 第二 色轮 808包括设置有二次波长转换材料的第一区域以及设置成透射一次 受激光的第二区域。 其中, 由第一区域上的二次波长转换材料将一次受 激光波长转换成二次受激光, 并由第二色轮 808反射二次受激光。 第二 色轮 808反射的二次受激光经透镜 807收集并中继, 经二向色镜 806透 射, 再经透镜 813收集并中继后入射到匀光装置 814。 第二色轮 808透 射的一次受激光经透镜 809收集并中继后, 经由全反射镜 810、 811和 812以及二向色镜 806所形成的光路合并装置与二次受激光进行光路合 并, 并经透镜 813收集并中继后入射到匀光装置 814。
请参见图 11 , 图 11是本发明光源系统的第九实施例的结构示意图。 如图 11所示,本实施例的光源系统 900与图 3-4所示的光源系统 200的 不同之处在于, 在本实施例中, 利用具有呈半橢球状或呈半球状的反射 面的反射装置 902来代替光源系统 200的平面反射镜(二向色镜 202和 全反射镜 205 )。 反射装置 902的反射面朝向第一色轮 903和第二色轮 904设置。 此时, 激发光光源 901产生的激发光经反射装置 902的顶部 开口入射到由驱动装置 905驱动的第一色轮 903上。 由第一色轮 903上 的一次波长转换材料将入射的激发光波长转换成一次受激光, 并由第一 色轮 903反射一次受激光。 第一色轮 903反射的一次受激光入射到反射 装置 902上, 并由反射装置 902反射到与第一色轮 903同轴固定的第二 色轮 904上。 第二色轮 904包括设置有二次波长转换材料的第一区域以 及设置成透射一次受激光的第二区域。 其中, 由第一区域上的二次波长 转换材料将一次受激光波长转换成二次受激光, 并由第二色轮 904透射 二次受激光。 第二色轮 904透射的一次受激光和二次受激光经透镜 906 收集并中继后入射到勾光装置 907。
在本实施例中, 当反射装置 902的反射面呈半橢球状时, 反射装置
902能够将来自反射装置 902的一个焦点附近的一次受激光反射到反射 装置 902的另一个焦点附近。 当反射装置 902的反射面呈半球状时, 在 临近球心的位置设置关于该球心对称的两对称点, 反射装置 902大致也 可以把其中一对称点的一次受激光反射到另一对称点。
如图 12所示, 在本实施例中, 激发光在第一色轮 903上形成的光 斑 901A与一次受激光在第二色轮 904上形成的光斑 901B相对第一色轮 903和第二色轮 904的两个环状结构的中心呈 0度设置。
在上述实施例, 第二色轮的透光区可以省略, 此时可通过在上述光 源系统增设一补充光源 (例如, 蓝光发光二极管 (LED, Light Emitting Diode ) ) 以及适当的光路合并装置, 将补充光源产生的补充光(例如, 蓝光)与第二色轮 108产生的二次受激光(例如, 红光、绿光和 /或黄光) 进行光路合并, 进而满足后续显示要求。 当然, 也可以通过增设补充光 源和光路合并装置来补充其他颜色的光, 例如光转换效率相对较低的红 光。
本发明进一步提供一种由上述光源系统中的第一色轮和第二色轮 形成的色轮组件以及使用上述光源系统的投影装置。
综上所述, 本发明的投影装置、 光源系统以及色轮组件利用第一色 轮产生的一次受激光激发第二色轮来产生二次受激光, 通过二次激发的 方式分担热量负载, 可提高系统的转换效率以及可靠性。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或 直接或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保 护范围内。
Claims
1. 一种光源系统, 其特征在于, 所述光源系统包括:
激发光光源, 用于产生一激发光;
第一色轮, 所述第一色轮上设置有一次波长转换材料, 所述一次波 长转换材料将所述激发光波长转换成一次受激光;
第二色轮, 所述第二色轮上设置有二次波长转换材料, 所述二次波 长转换材料将所述一次受激光波长转换成二次受激光。
2. 根据权利要求 1所述的光源系统, 其特征在于, 所述光源系统进 一步包括第一驱动装置和第二驱动装置, 所述第一驱动装置驱动所述第 一色轮, 所述第二驱动装置驱动所述第二色轮。
3. 根据权利要求 1所述的光源系统, 其特征在于, 所述光源系统进 一步包括驱动装置, 所述第一色轮与所述第二色轮相对固定, 所述驱动 装置驱动所述第一色轮与所述第二色轮同步运动。
4. 根据权利要求 3所述的光源系统, 其特征在于, 所述第一色轮与 所述第二色轮为同轴固定的两个环状结构。
5. 根据权利要求 4所述的光源系统, 其特征在于, 所述激发光在所 述第一色轮上形成的光斑与所述一次受激光在所述第二色轮上形成的 光斑相对所述两个环状结构的中心呈 0度或 180度设置。
6. 根据权利要求 4所述的光源系统, 其特征在于, 所述驱动装置为 具有一转动轴的转动装置, 所述两个环状结构同轴固定于所述转动轴 上。
7. 根据权利要求 4所述的光源系统, 其特征在于, 所述光源系统进 一步包括反射装置, 所述反射装置具有呈半橢球状或呈半球状的反射 面, 所述反射面朝向所述第一色轮与所述第二色轮设置, 以将所述第一 色轮产生的所述一次受激光反射到所述第二色轮上。
8. 根据权利要求 1所述的光源系统, 其特征在于, 所述光源系统进 一步包括设置于所述第一色轮与所述第二色轮之间的光收集装置, 所述 光收集装置用于将所述一次受激光收集并中继到所述第二色轮。
9. 根据权利要求 1所述的光源系统, 其特征在于, 所述光源系统进 一步包括平面反射装置, 以将所述第一色轮产生的所述一次受激光反射 到所述第二色轮上。
10.根据权利要求 1所述的光源系统, 其特征在于, 所述第一色轮 设置成透射或反射所述一次受激光, 所述第二色轮设置成透射或反射所 述二次受激光。
11. 根据权利要求 1所述的光源系统, 其特征在于, 所述第二色轮 包括第一区域和第二区域, 所述二次波长转换材料设置于所述第一区 域, 所述第二区域设置成透射所述一次受激光。
12.根据权利要求 11所述的光源系统, 其特征在于, 所述第一区域 设置成反射所述二次受激光, 所述光源系统进一步包括光路合并装置, 所述光路合并装置将经所述第二区域透射的所述一次受激光与所述第 一区域反射的所述二次受激光进行光路合并。
13.根据权利要求 1所述的光源系统, 其特征在于, 所述激发光光 源产生紫外或近紫外激发光, 所述一次波长转换材料将所述紫外或近紫 外激发光波长转换成蓝光, 所述二次波长转换材料将所述蓝光波长转换 成红光、 绿光或黄光。
14.根据权利要求 1所述的光源系统, 其特征在于, 所述光源系统 进一步包括补充光源及光路合并装置, 所述补充光源产生一补充光, 所 述光路合并装置将所述补充光与所述二次受激光进行光路合并。
15.一种投影装置, 其特征在于, 所述投影装置包括权利要求 1-14 任意一项所述的光源系统。
16.一种色轮组件, 其特征在于, 所述色轮组件包括:
第一色轮, 所述第一色轮上设置有一次波长转换材料, 所述一次波 长转换材料将激发光波长转换成一次受激光;
第二色轮, 所述第二色轮上设置有二次波长转换材料, 所述二次波 长转换材料将所述一次受激光波长转换成二次受激光。
17.根据权利要求 16所述的色轮组件, 其特征在于, 所述第一色轮 与所述第二色轮为同轴固定的两个环状结构。
18. 根据权利要求 16所述的光源系统, 其特征在于, 所述第二色轮 包括第一区域和第二区域, 所述二次波长转换材料设置于所述第一区 域, 所述第二区域设置成透射所述一次受激光。
19.根据权利要求 18所述的光源系统, 其特征在于, 所述第一区域 设置成反射所述二次受激光。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110343612.7A CN102645825B (zh) | 2011-11-03 | 2011-11-03 | 一种投影装置、光源系统以及色轮组件 |
CN201110343612.7 | 2011-11-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013063902A1 true WO2013063902A1 (zh) | 2013-05-10 |
Family
ID=46658725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/073927 WO2013063902A1 (zh) | 2011-11-03 | 2012-04-12 | 色轮组件、光源系统以及投影装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102645825B (zh) |
WO (1) | WO2013063902A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015014513A1 (de) * | 2013-07-31 | 2015-02-05 | Osram Gmbh | Beleuchtungsvorrichtung mit leuchtstoffrad und anregungsstrahlungsquelle |
DE102014221382A1 (de) * | 2014-10-21 | 2016-04-21 | Osram Gmbh | Beleuchtungsvorrichtung mit Pumpstrahlungsquelle |
US9726966B2 (en) | 2012-12-26 | 2017-08-08 | Ricoh Company, Ltd. | Light source device and projector using the same |
TWI658292B (zh) * | 2018-06-20 | 2019-05-01 | 中強光電股份有限公司 | 照明系統與投影裝置 |
US10613318B2 (en) | 2016-11-28 | 2020-04-07 | Iview Displays (Shenzhen) Company Ltd. | Bi-directional excitation color wheel and light source system thereof |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014073136A1 (ja) * | 2012-11-07 | 2014-05-15 | パナソニック株式会社 | 光源および画像投写装置 |
CN104298057A (zh) * | 2013-07-17 | 2015-01-21 | 海信集团有限公司 | 光源组件及投影仪 |
CN105629645B (zh) * | 2014-11-07 | 2018-08-28 | 深圳市光峰光电技术有限公司 | 一种投影仪及其光源系统 |
CN104503102A (zh) * | 2014-12-12 | 2015-04-08 | 常州市武进区半导体照明应用技术研究院 | 用于调节激光照明的方法及激光照明装置 |
CN104503103A (zh) * | 2014-12-12 | 2015-04-08 | 常州市武进区半导体照明应用技术研究院 | 用于调节激光照明的方法及激光照明装置 |
CN105223762B (zh) * | 2015-11-04 | 2017-03-01 | 海信集团有限公司 | 光源输出控制方法、系统和激光投影设备 |
CN205539893U (zh) * | 2016-01-14 | 2016-08-31 | 深圳市光峰光电技术有限公司 | 一种波长转换装置、光源系统以及投影装置 |
CN106873294B (zh) * | 2016-12-06 | 2019-02-12 | 广景视睿科技(深圳)有限公司 | 一种高效散热的色轮 |
TWI626474B (zh) * | 2017-05-02 | 2018-06-11 | 台達電子工業股份有限公司 | 雷射投影光源 |
CN108931878B (zh) * | 2017-05-26 | 2021-07-23 | 深圳光峰科技股份有限公司 | 光源系统及显示设备 |
CN107609285A (zh) * | 2017-09-19 | 2018-01-19 | 四川长虹电器股份有限公司 | 荧光粉色轮分段调节的计算方法 |
CN109991802A (zh) * | 2018-01-03 | 2019-07-09 | 深圳光峰科技股份有限公司 | 光源系统及投影设备 |
CN110132541A (zh) * | 2018-02-02 | 2019-08-16 | 深圳光峰科技股份有限公司 | 光源装置及光学镜片测试系统 |
CN208780975U (zh) * | 2018-07-06 | 2019-04-23 | 中强光电股份有限公司 | 投影机及照明系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070019408A1 (en) * | 2005-06-07 | 2007-01-25 | Mcguire James P Jr | Phosphor wheel illuminator |
CN101836160A (zh) * | 2007-07-30 | 2010-09-15 | 绎立锐光科技开发公司 | 采用具有波长转换材料的移动模板的多色照明装置 |
CN202109406U (zh) * | 2010-12-08 | 2012-01-11 | 绎立锐光科技开发(深圳)有限公司 | 光波长转换轮组件及带该光波长转换轮组件的光源 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3864598B2 (ja) * | 1999-01-06 | 2007-01-10 | セイコーエプソン株式会社 | 投写型表示装置 |
JP2005274656A (ja) * | 2004-03-23 | 2005-10-06 | Fuji Photo Film Co Ltd | 表示装置及び表示方法 |
JP2006119440A (ja) * | 2004-10-22 | 2006-05-11 | Olympus Corp | 面順次照明装置及び画像投射装置 |
CN101051175A (zh) * | 2006-04-06 | 2007-10-10 | 中强光电股份有限公司 | 投影装置及其操作模式切换方法 |
JP2008020707A (ja) * | 2006-07-13 | 2008-01-31 | Seiko Epson Corp | プロジェクタ |
-
2011
- 2011-11-03 CN CN201110343612.7A patent/CN102645825B/zh active Active
-
2012
- 2012-04-12 WO PCT/CN2012/073927 patent/WO2013063902A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070019408A1 (en) * | 2005-06-07 | 2007-01-25 | Mcguire James P Jr | Phosphor wheel illuminator |
CN101836160A (zh) * | 2007-07-30 | 2010-09-15 | 绎立锐光科技开发公司 | 采用具有波长转换材料的移动模板的多色照明装置 |
CN202109406U (zh) * | 2010-12-08 | 2012-01-11 | 绎立锐光科技开发(深圳)有限公司 | 光波长转换轮组件及带该光波长转换轮组件的光源 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9726966B2 (en) | 2012-12-26 | 2017-08-08 | Ricoh Company, Ltd. | Light source device and projector using the same |
US10191361B2 (en) | 2012-12-26 | 2019-01-29 | Ricoh Company, Ltd. | Light source device including a light source section to adjust brightness and projector using the same |
US10627711B2 (en) | 2012-12-26 | 2020-04-21 | Ricoh Company, Ltd. | Light source device that emits a plurality of color lights including a fluorescent light, and projector using the same |
US11402737B2 (en) | 2012-12-26 | 2022-08-02 | Ricoh Company, Ltd. | Light source device and projector including a phosphor and a color-changing section |
WO2015014513A1 (de) * | 2013-07-31 | 2015-02-05 | Osram Gmbh | Beleuchtungsvorrichtung mit leuchtstoffrad und anregungsstrahlungsquelle |
DE102014221382A1 (de) * | 2014-10-21 | 2016-04-21 | Osram Gmbh | Beleuchtungsvorrichtung mit Pumpstrahlungsquelle |
US10613318B2 (en) | 2016-11-28 | 2020-04-07 | Iview Displays (Shenzhen) Company Ltd. | Bi-directional excitation color wheel and light source system thereof |
TWI658292B (zh) * | 2018-06-20 | 2019-05-01 | 中強光電股份有限公司 | 照明系統與投影裝置 |
Also Published As
Publication number | Publication date |
---|---|
CN102645825A (zh) | 2012-08-22 |
CN102645825B (zh) | 2014-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013063902A1 (zh) | 色轮组件、光源系统以及投影装置 | |
JP6582064B2 (ja) | 投影システム、光源システム及び光源ユニット | |
US10042240B2 (en) | Projection system, light source system and light source assembly | |
JP6392934B2 (ja) | 光源システム及び投影装置 | |
JP6096937B2 (ja) | 発光装置及び関連する投影システム | |
US10110861B2 (en) | Light source system and projection system | |
US20170255090A1 (en) | Light source system and related projection system | |
JP6186752B2 (ja) | 光源装置及び投影装置 | |
TWI524129B (zh) | 照明系統以及投影裝置 | |
US20130100423A1 (en) | Lighting device | |
WO2013091453A1 (zh) | 光源系统及投影装置 | |
US8740406B2 (en) | Method and apparatus for solid state illumination | |
TW201932969A (zh) | 照明系統與投影裝置 | |
JP6244558B2 (ja) | 光源装置及び投写型映像表示装置 | |
CN103186026B (zh) | 光源装置、光源产生方法及包含光源装置的激光投影机 | |
JP2015513762A (ja) | 発光装置、発光装置アッセンブリ及びこれに関連する投影システム | |
WO2019041803A1 (zh) | 色轮和激光投影设备 | |
TWI731105B (zh) | 光源結構及投影系統 | |
KR20120094623A (ko) | 회전 실린더를 이용한 다색 조명 장치 | |
CN106681090B (zh) | 光源模组和投影设备 | |
WO2012075947A1 (zh) | 投影系统、光源系统以及光源组件 | |
JP2012094439A (ja) | 照明装置および投影型映像表示装置 | |
WO2021037240A1 (zh) | 一种光源及投影设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12845367 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/10/2014) |