TW201011442A - A recycling system and method for increasing brightness using light pipes with one or more light sources, and a projector incorporating the same - Google Patents

A recycling system and method for increasing brightness using light pipes with one or more light sources, and a projector incorporating the same Download PDF

Info

Publication number
TW201011442A
TW201011442A TW098127550A TW98127550A TW201011442A TW 201011442 A TW201011442 A TW 201011442A TW 098127550 A TW098127550 A TW 098127550A TW 98127550 A TW98127550 A TW 98127550A TW 201011442 A TW201011442 A TW 201011442A
Authority
TW
Taiwan
Prior art keywords
light
output
pipe
source
emitting diode
Prior art date
Application number
TW098127550A
Other languages
Chinese (zh)
Other versions
TWI493273B (en
Inventor
Kenneth K Li
Original Assignee
Wavien Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/321,471 external-priority patent/US20090128781A1/en
Application filed by Wavien Inc filed Critical Wavien Inc
Publication of TW201011442A publication Critical patent/TW201011442A/en
Application granted granted Critical
Publication of TWI493273B publication Critical patent/TWI493273B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/147Beam splitting or combining systems operating by reflection only using averaging effects by spatially variable reflectivity on a microscopic level, e.g. polka dots, chequered or discontinuous patterns, or rapidly moving surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/143Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

A recycling system and method for increasing the brightness of light output using at least one recycling light pipe with at least one light source. The output end of the recycling light pipe reflects a first portion of the light back to the light source, a second portion the light to the input end of the recycling light pipe, and transmits the remaining portion of the light as output. The recycling system is incorporated into a projector to provide color projected image with increased brightness. The light source can be white LEDs, color LEDs, and dual paraboloid reflector (DPR) lamp.

Description

201011442 六、發明說明: ' 【相關申請】 _1]本中請案宣告擁有於趣年8 s 15日中請的美國第 妹:L39號臨時申請案、2009年1月7日申請的美國第61/2〇4,421 =時申請案、2009年3月18日申請的美國第6顧,228號臨時申 "”及2009年4月1〇日申請的美國第ό1η68249號臨時申請案之優 先權,上述之申請案之全部内容合併為本案之參考。 ▲[〇〇〇2]本申請係為於2〇〇9年i月μ日申請的美國第12助,仍 參 號巾賴之部分連射請案,此美國第12/321,471號巾請案宣告擁有 於2008年1月17日申請的美國第61/〇11 458號臨時申請案、於2⑽8 年6月5日巾請的美國第61/13〇,98丨號臨時中請案、於加⑽年b月* 曰申請的美國第61/130,953號臨時申請案、於2008年8月4日申請的 美國第61/m,895號臨時申請案、於2〇〇8年12月3日申請的美國第 61/200/764號臨時申請案、於2〇〇8年12月23曰申請的美國第 61/203,503號臨時申請案、於2〇〇8年12月3〇曰申請的美國第 61/203,950號臨時申請案、於2〇08年5月27日申請的美國糾㈣,〇〇2 號臨時申請案及於2008年5月30日申請的美國第61/13〇,336號臨時 _ 申請案之優先權,上述之申請案之全部内容合併為本案之參考。 [0003]本申請亦係為於2007年6月13曰申請的美國第·183〇8 號申請案之部分連續申請案,此美國第11/818,308號申請案宣告擁有 於2006年6月13日申請的美國第60/813,186號臨時申請案、^2〇〇6 年6月16日申請的美國第60/814,605號臨時申請案、於2〇〇6年7月 13曰申請的美國第60/830,946號臨時申請案、於2006年9月5曰申 請的美國第60/842,324號臨時申請案、於2006年9月28日申請的美 國第60/848,429號臨時申請案及於2006年10月30日申請的美國^ 60/855,330號臨時申請案之優先權’上述之申請案之全部内容合併為 本案之參考。 201011442 \ 【發明所屬之技術領域】 [0004] 本發明係有關一種透過有效率地耦合一或多光源至輸出端 .以提供螢幕較高之亮度的系統與方法,特別是一種回收一或多光源光 管之光源以增加亮度的系統與方法,及使用此系統及方法之投影機。 【先前技術】 [0005] 光源被使用於所有類型之照明與投影應用,許多應用要求 一照明系統在一有效的發射面積内具有高亮度。傳統上係增加較多之 光源以提高亮度,然而將多光源整合在有限空間内係有技術上的難 度,且整合與使用多光源花費昂貴而無法達到節約之目的,因此,基 參 於無須增加光源數目而可增加一光源亮度之企囷而發展本發明。 [0006] 舉例說明,微顯投影電視(Micro Display TV, MDTV)具有大 螢幕尺寸且低成本之潛力,傳統的微顯投影電視通常利用弧光燈照 亮,雖然在較低成本下此種光源為最亮的,但對於將白光分開為三種 顏色的需求與短壽命的特性是不令人滿意的,隨著發光二極體技術的 發展,使用發光二極體作為微顯投影電視的光源是必須被考慮到的, 以獲取發光二極體的長壽命特性與其他優勢,如隨開即用(instant 〇N) 等’然而’目前在使用於小影像面板或具有較大螢幕之低成本應用中, 發光二極體並不夠亮《發光二極體的光回收結構已被使用來增加光源 馨的亮度’如已授予Zimmerman等人的美國第6,869,206號專利,然而 此美國第6,869,206號專利揭露將發光二極體封入一具有光輸出孔之 光反射凹穴内;又如已授予Zimmerman等人的美國第6,144,536號專 利係揭露一螢光燈被封入一充滿氣艘之中空内部,其中螢光燈之玻璃 外殼具有一填光體塗層,且部分由碟光體塗層產生的光被回收回至磷 光體塗層;本發明即在發展一種利用一或多光源之有效率地光輕合至 輸出端以提供螢幕較高之亮度的有利方法,特別是一種使用具有一或 多光源之光管進行回收以增加亮度的系統與方法,及使用此系統及方 法之投影機。 [0007] 舉例說明,在許多照明應用,如普通照明、建築照明及最 近的投影電視中’發光二極體為其中一種光源類型;由於發光二極體 5 201011442 的低亮度,大部分的顯示器或投影機系統係有光展量限制的(etendue limited),其通常設定螢幕最大輸出的最高限度,例如當使用於投影機 時’為了提供投影機螢幕必要之高的光輸出,發光二極體必須在有效 的發射面積發射高亮度的光,特別地,發光二極體必須在小發射區域 的小立體角(solid angle)中提供強而亮的光束。 [0008]發光二極體雖然在發展上已有極大的進步,一般可用的發 光二極體之輸出亮度仍然不足夠應用至大部分的投影機,為了結合具 有主要色彩與可回收輸出光的發光二極體以增加亮度,各種的方法已 被提出使用’然而大部分的方法需要利用昂貴的元件及/或導致一大且 笨重的裝置’使得其發展受到極大的限制;因此,為了提供回收一或 ® 多光源光管之光以增加亮度的系統與方法及使用此系統及方法之投影 機而發展本發明以解決這些問題’其中光源包含但不限制為發光二極 艘、弧光燈、超高廢汞燈(UHP lamp)、微波燈(microwave lamp)或其他 同類燈’本發明之投影機亦可多路傳輸多種顏色以提供一彩色的像素 顯示與時序(time sequential)顯示。 【發明内容】 [0009] 於是’本發明目的之一係提供一種使用具有一或多光源之 光管以增加亮度的光回收系統與方法。 [0010] 本發明另一目的提供一種結合上述光回收系統之投影機。 [0011] 在本發明一實施例中,一光回收系統與方法藉由使用至少 一回收光源的光管增加光源輸出的亮度,其中該回收光源的光管具有 至少一光源,該回收光源的光管之一輸出端將光線的第一部份反射回 至光源,將光線的第二部分反射至該回收光源的光管之一輸入端,及 如輸出般傳遞剩餘部分的光,此光回收系統被結合至投影機以提供具 有增強亮度的彩色投影影像’其中光源可為白色發光二極趙、彩色發 光二極體及具有雙拋物面反射器的燈(DPRLamp>。 [0012] 藉由底下之詳細說明將容易明白本發明各種不同的目的、 6 201011442 優點與特徵,且在附加的請求項中將制指出新賴的特徵。 【實施方式】 [0040]藉由參考圖式以說_述本發明之*範實_,這些實施 例說明本發明之原理而不應構成本發明之限制。 一 [0^41]將來自-或多光源的光纽率地城合至輸出端可提供 螢幕較高之亮度,雖然在-標準的照明系統中…光源的亮度不能被 增加’本發明侧彡絲的光时及合併啸㈣幕料的輸出強 度^本發_由光·與—或多光源之輸出朗合併提供—或多光源 較南的光輸th ’此種可適麟各獅置與實制的絲可為弧光燈、 超高壓汞燈(UHPlamp)、魏二極體或微波燈等。 t〇〇42;|@ 1 根據本發明之-示範實施例,__光回收系統 1〇〇〇包含-光管1100,光管11〇〇可為實心或中空,光管11〇〇可為筆 直或錐形的,光管11⑻的輸人端謂包含-反機人面·或一反 射輸入部及輸入孔1220或一傳遞部(如jjsj^ssive);反射輸入面121〇 包含輸入端1200的一部份或部分,其係為可反射的,用以反射光;輸 入孔1220包含輸入端12〇〇的剩餘部分其係為可穿透的,用以傳遞 輸入光(IN)進入光管1100;依照本發明之觀點,輸入孔122〇可為矩形、 圓形或任何適合的形狀,反射輸入面121〇可包含一任意的波板(圖中 未示)’用以支持偏振光系統。 [0043]光管11⑽的輸出端1300包含一反射輸出面1310或一反射 輸出部’及一輸出孔1320或一傳遞輸出部;反射輸出面1310包含輸 出端1300的一部份或部分,其係為可反射的用以反射光;輸出孔 1320包含輪出端13〇〇的剩餘部分,其係為可穿透的,用以從光管11〇〇 傳遞或輸出輪出光(OUT);依照本發明之觀點,輸出孔1320可為矩形、 圓形或任何適合的形狀,反射輸出面131〇可包含一任意的波板(圖中 未示)’用以支持偏振光系統。 201011442 [0044] 根據本發明之一示範實施例’輸出孔1320可呈某種形狀 的’藉以與照明或投影系統要求的形狀與尺寸相配,例如,輸出孔1320 可為圓形或長寬比為6:9或4:3的矩形;經由輸入孔1220進入光管11〇〇 的輸入光(IN)被傳遞至光管1100的輸出端1300且部分經輸出孔132〇 離開光管1100 ’亦即部分的光將被反射回輸入端12〇〇且部分的光將 經由輸出孔1320離開光管1100,光管11〇〇將來自輸入端ι2〇〇的光 部分反射至輸出孔1320 ;可被使用位於輸入孔1220的光源可為一發 光二極體,一光管的光輸出,一受發光二極艘或雷射激發的碟光體之 光輸出’或一受發光二極體或雷射激發(pump)的反轉(up_c〇nverting)材 Φ 料之光輸出,又光源亦可為弧光燈、微波燈或具有反射器的燈。 [0045] 圖2(a)至圖2(c)所示為根據本發明一實施例之各種態樣的 光回收系統1000,圖2(a)所示為一光回收系統1000的剖面示意圖,此 光回收系統包含一具有發光二極趙1400之錐形光管11〇〇,輸入至錐 形光管1100的光係來自發光二極艘1400,錐形光管1100的輸出端 1300包含用以傳遞部分光的輸出孔丨32〇及用以回收剩餘部分光的反 射輸出面1310,來自發光二極艎14〇〇的光輸出被耦合至錐形光管 1100且部分的光被反射回發光二極體1400,部分的光再被發光二極 體1400反射(或回收)而如光輸出般的回至錐形光管11〇〇。 [0046] 圖2(b)所示為根據本發明一實施例另一種態樣的光回收系 統1000,其中錐形光管1100的輸入端12〇〇大於發光二極體M〇〇的 尺寸,輸入至錐形光管11〇〇的光係來自發光二極體14〇〇,錐形光管 1100的輸出端1300包含用以傳遞部分光的輸出孔132〇及用以回收剩 餘部分光的反射輸出面1310,如圖丨所示,輸入端12〇〇多餘的區域 或反射輸入面1210為可反射的,用以回收部分的光。 [0047] 圖2(c)所示為根據本發明一實施例另一種態樣的光回收系 統1000 ’其中輸入至光管11〇〇的光係來自另一與光源耦合之輸入光 管1500的輸出,光管15〇〇係可為筆直的、錐形的中空的或實心的, 光源可為具雙抛物面反射器系統或橢圓系統等;雖然未陳述,本發明 8 201011442 * 的光回收系統1000可利用其他的光源包含但不限制為發光二極艎、微 波燈、受短波長發光二極體或雷射激發的磷光體之光、受長波長發光 • 二極體或雷射激發(pump)的反轉(up-converting)材料之光、或其他類似 的光。 [0〇48]圖3所示為根據本發明一示範實施例之光回收系統2〇〇〇, 光回收系統2000包含一具六面的光束組合器21〇〇與至少二光管 1100 ’此二光管1100分別以LPj LP2表示,光管(LPJ及光管(LP2) 本質上與圖1所示之光回收系統1000的光管1100相似,光回收系統 2000可包含多個光源,如圖3所示’光回收系統2〇〇〇的輸出為二光 © 源的結合’每一光源2200包含一發光二極艘1400(分別以及LED2 表示)及光管(LPQ或光管(〇>2),來自發光二極體(leD^的光被輕合至 光b(LPi)且進入光束組合|§ 2100 ’光束組合器2100的六面皆被抛光 (polish),使所有面可用來進行傳遞及全反射(T〇tal201011442 VI. Description of invention: ' [Related application] _1] This article declares that the company has the US Sisters in the 8th and 15th of the year of interest: the temporary application of L39, the 61st of the US application on January 7, 2009 /2〇4,421 = the priority of the application, the US 6th Gu, the 228 Temporary Application "" filed on March 18, 2009, and the US Temporary Application No. 1?68249 filed on April 1, 2009, The entire contents of the above-mentioned application are incorporated into the reference of this case. ▲[〇〇〇2] This application is the 12th aid of the United States applied for in the 2nd and 9th of January, and is still part of the report. In this case, the US No. 12/321, 471 towel case filed the US Provisional Application No. 61/〇11 458, which was filed on January 17, 2008, and the United States No. 61/13 on June 5, 2, 10, 8 〇, 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨US Provisional Application No. 61/200/764, filed on December 3, 2008, and US Provisional No. 61/203,503, filed on December 23, 2008 The application, the US Provisional Application No. 61/203,950, which was filed on December 3, 2008, and the US Correction (4) applied for on May 27, 2008, and the provisional application No. 2 The priority of the US Provisional Application No. 61/13, No. 336, filed on May 30, 2008, the entire contents of which are hereby incorporated by reference in its entirety. [0003] This application is also incorporated herein by reference. Part of the consecutive application for the US Application No. 183〇8 filed on March 13th, this US application No. 11/818,308 declares that it has a temporary application for US No. 60/813,186 filed on June 13, 2006. The US Patent Application No. 60/814,605, filed on June 16, June, and the US Provisional Application No. 60/830,946, filed on July 13, 2002, was published in 2006. US Provisional Application No. 60/842,324, filed on September 5, US Provisional Application No. 60/848,429, filed on September 28, 2006, and US Provisional No. 60/855,330, filed on October 30, 2006 Priority of the application The entire contents of the above application are incorporated into the reference for this case. 201011442 \ [Technical field to which the invention belongs [0004] The present invention relates to a system and method for efficiently coupling one or more light sources to an output to provide a higher brightness of the screen, particularly a light source that recovers one or more light sources to increase brightness. Systems and methods, and projectors using the systems and methods. [Prior Art] [0005] Light sources are used in all types of lighting and projection applications, and many applications require a lighting system to have high brightness within an effective emission area. Traditionally, more light sources have been added to increase the brightness. However, it is technically difficult to integrate multiple light sources into a limited space, and integration and use of multiple light sources are expensive and cannot achieve the purpose of saving. Therefore, the basic reference does not need to be increased. The present invention has been developed by increasing the number of light sources and increasing the brightness of a light source. [0006] For example, a micro display TV (MDTV) has the potential of a large screen size and low cost, and a conventional micro display television is usually illuminated with an arc lamp, although at a lower cost, the light source is The brightest, but the need to separate the white light into three colors is not satisfactory. With the development of the light-emitting diode technology, it is necessary to use the light-emitting diode as the light source of the micro-projection television. Considered to obtain long-life characteristics and other advantages of light-emitting diodes, such as instant 〇N, etc. 'However' is currently used in small image panels or low-cost applications with larger screens The light-emitting diode is not sufficiently bright. The light-recycling structure of the light-emitting diode has been used to increase the brightness of the light source, as disclosed in U.S. Patent No. 6,869,206 to Zimmerman et al. The diode is enclosed in a light-reflecting recess having a light output aperture; and as disclosed in U.S. Patent No. 6,144,536 to Zimmerman et al., a fluorescent lamp is enclosed in a full a hollow interior of the gas boat, wherein the glass envelope of the fluorescent lamp has a filler coating, and part of the light generated by the disc coating is recovered back to the phosphor coating; the present invention is developing a utilization one or An advantageous method for efficiently lightly combining multiple light sources to an output to provide a higher brightness of the screen, particularly a system and method for recycling using a light pipe having one or more light sources to increase brightness, and using the system and Method of projector. [0007] For example, in many lighting applications, such as general lighting, architectural lighting, and recent projection televisions, 'light emitting diodes are one of the types of light sources; due to the low brightness of the light emitting diodes 5 201011442, most of the displays or The projector system is limited to etendue limited, which usually sets the maximum output of the screen. For example, when used in a projector, 'in order to provide the necessary high light output of the projector screen, the LED must be High-brightness light is emitted at an effective emission area, and in particular, the light-emitting diode must provide a strong, bright beam in a small solid angle of the small emission area. [0008] Although the development of the light-emitting diode has been greatly improved, the output brightness of the generally available light-emitting diode is still insufficient for most projectors, in order to combine the light with the main color and the recyclable output light. Diodes to increase brightness, various methods have been proposed to use 'however most methods require the use of expensive components and / or lead to a large and cumbersome device' so that its development is greatly limited; therefore, in order to provide recycling Or the system and method of multi-source light pipe to increase brightness and the projector using the system and method to develop the present invention to solve these problems 'where the light source includes but is not limited to a light-emitting diode, an arc lamp, a super high A UHP lamp, a microwave lamp or the like. The projector of the present invention can also multiplex multiple colors to provide a color pixel display and time sequential display. SUMMARY OF THE INVENTION [0009] Thus, one object of the present invention is to provide a light recovery system and method that uses a light pipe having one or more light sources to increase brightness. Another object of the present invention is to provide a projector incorporating the above described light recovery system. [0011] In an embodiment of the invention, a light recovery system and method increases the brightness of a light source output by using at least one light pipe that recovers a light source, wherein the light pipe of the recovered light source has at least one light source, and the light of the recovered light source One of the output ends of the tube reflects the first portion of the light back to the source, reflects the second portion of the light to one of the input ends of the light source of the recovered source, and transmits the remaining portion of the light as output, the light recovery system It is incorporated into a projector to provide a color projection image with enhanced brightness. The light source can be a white light-emitting diode, a color light-emitting diode, and a lamp with a double parabolic reflector (DPRLamp). [0012] The description will readily recognize the various objects of the present invention, the advantages and features of the present invention, and the features of the new application will be pointed out in the appended claims. [Embodiment] [0040] The present invention is described by reference to the drawings. The embodiments illustrate the principles of the present invention and are not intended to be limiting of the invention. [0^41] Combining the light gain from the - or multiple sources to the output is provided The brightness of the screen is higher, although in the - standard lighting system... the brightness of the light source cannot be increased. 'The light of the side crepe of the present invention and the output intensity of the combined whistle (four) curtain material ^ _ _ _ _ _ _ The output of the light source is combined to provide - or the light source of the south light source is more than the light of the south. The lion and the real wire can be an arc lamp, an ultra high pressure mercury lamp (UHPlamp), a Wei diode or a microwave lamp. Et. 42. According to the exemplary embodiment of the present invention, the __light recovery system 1 〇〇〇 includes a light pipe 1100, and the light pipe 11 〇〇 can be solid or hollow, and the light pipe 11 〇〇 The input end of the light pipe 11 (8) may include a - anti-machine face or a reflective input portion and an input hole 1220 or a transmission portion (such as jjsj^ssive); the reflective input surface 121 includes an input A portion or portion of the end 1200 that is reflective to reflect light; the input aperture 1220 includes a remaining portion of the input end 12 that is permeable to transmit input light (IN) Light pipe 1100; in accordance with the teachings of the present invention, the input aperture 122 can be rectangular, circular or any suitable shape, reflective input 121〇 may include an arbitrary wave plate (not shown) to support the polarized light system. [0043] The output end 1300 of the light pipe 11 (10) includes a reflective output surface 1310 or a reflective output portion 'and an output aperture 1320 Or a transmission output portion; the reflective output surface 1310 includes a portion or portion of the output end 1300 that is reflective to reflect light; and the output aperture 1320 includes the remainder of the wheel end 13〇〇, which is Passing through to transmit or output wheel light (OUT) from the light pipe 11 ;; according to the present invention, the output hole 1320 can be rectangular, circular or any suitable shape, and the reflective output surface 131 can include a Any wave plate (not shown) is used to support the polarized light system. 201011442 [0044] According to an exemplary embodiment of the present invention, the 'output aperture 1320 can be shaped to match the shape and size required by the illumination or projection system. For example, the output aperture 1320 can be circular or aspect ratio a rectangle of 6:9 or 4:3; the input light (IN) entering the light pipe 11 through the input hole 1220 is transmitted to the output end 1300 of the light pipe 1100 and partially exits the light pipe 1100 through the output hole 132. Part of the light will be reflected back to the input terminal 12 and part of the light will exit the light pipe 1100 via the output hole 1320, and the light pipe 11 will reflect the light portion from the input terminal ι2 至 to the output hole 1320; The light source located in the input hole 1220 can be a light-emitting diode, a light output of a light pipe, a light output of a light-emitting diode or a laser-excited light body or a light-emitting diode or laser excitation (pump) reverse (up_c〇nverting) material Φ material light output, and the light source can also be arc lamp, microwave lamp or lamp with reflector. 2(a) to 2(c) are diagrams showing various aspects of the light recovery system 1000 according to an embodiment of the present invention, and FIG. 2(a) is a schematic cross-sectional view of a light recovery system 1000. The light recovery system comprises a tapered light pipe 11 having a light-emitting diode 1400, and the light input to the tapered light pipe 1100 is from the light-emitting diode 1400, and the output end 1300 of the tapered light pipe 1100 is included. An output aperture 32 that transmits a portion of the light and a reflective output surface 1310 for recovering the remaining portion of the light, the light output from the light emitting diode 14 is coupled to the tapered light pipe 1100 and a portion of the light is reflected back to the light emitting In the polar body 1400, part of the light is reflected (or recovered) by the light-emitting diode 1400 and returned to the tapered light pipe 11〇〇 as a light output. 2(b) shows a light recovery system 1000 according to another aspect of the present invention, wherein the input end 12 of the tapered light pipe 1100 is larger than the size of the light emitting diode M? The light input to the tapered light pipe 11〇〇 is from the light emitting diode 14〇〇, and the output end 1300 of the tapered light pipe 1100 includes an output hole 132 for transmitting part of the light and a reflection for recovering the remaining part of the light. The output surface 1310, as shown in FIG. ,, the input area 12 〇〇 excess area or the reflective input surface 1210 is reflective to recover part of the light. 2(c) shows another embodiment of a light recovery system 1000' in which the light input to the light pipe 11A is from another input light pipe 1500 coupled to the light source. The output, the light pipe 15 can be straight, conical hollow or solid, the light source can be a double parabolic reflector system or an elliptical system, etc.; although not stated, the light recovery system 1000 of the present invention 8 201011442 * Other sources of light may be utilized, but are not limited to, light-emitting diodes, microwave lamps, phosphors that are excited by short-wavelength light-emitting diodes or lasers, long-wavelength illumination, diodes or lasers. The light of the up-converting material, or other similar light. [048] FIG. 3 illustrates a light recovery system 2A according to an exemplary embodiment of the present invention. The light recovery system 2000 includes a six-sided beam combiner 21〇〇 and at least two light pipes 1100' The two light pipes 1100 are respectively represented by LPj LP2, and the light pipes (LPJ and light pipes (LP2) are substantially similar to the light pipes 1100 of the light recovery system 1000 shown in FIG. 1, and the light recovery system 2000 may include a plurality of light sources, as shown in the figure. 3 shows that the output of the light recovery system 2〇〇〇 is a combination of two light sources. Each light source 2200 includes a light-emitting diode 1400 (represented by LED2 and LED2, respectively) and a light pipe (LPQ or light pipe (〇> 2), from the light-emitting diode (leD^ light is lightly coupled to light b (LPi) and into the beam combination | § 2100 'the six sides of the beam combiner 2100 are polished, so that all faces can be used for Transmission and total reflection (T〇tal

Reflections,TIR),光束組合器2100之一三角形表面2400亦被拋光, 使光束組合器2100作為一波導,藉此導引來自光管(LPi )及光管①巧) 的光。根據本發明一示範實施例,光束組合器21〇〇之一對角表面211〇 上有塗料以提供一部份反射/傳遞的表面,對角表面211〇可被進行部 分反射塗層的塗佈如圖4(a)所示,或空間分佈反射部如圖4⑻及圓4(c) © 所示(其中反射部係以斜剖面線區塊表示,傳遞部係以空白區塊表 示)。反射與傳遞的相對比例可依據其應用之最大輸出而最佳化;依照 本發明之觀點’具有六拋光面之光束組合器21〇〇係供作為波導而非傳 統鉅體光學(1)1此〇1^)。光管(〇>1)的輸出尺寸((11111^〇11)與光束組合 器2100的一面相配,來自光管(lPi )的光部分被反射至光管(Lp2)且被 發光二極體(LED2)回收,來自光管(lp2)的光部分被反射至光管仏匕) 且被發光二極體(LED!)回收’來自光管(lPi)及光管④朽)的光一部分經 由一輸出孔2130離開光回收系統2〇〇〇作為一輸出光(ουτ),且剩餘 部分的光被一末端反射器2120反射回光回收系統2〇〇〇,光回收系統 2000可選擇的包含一反射表面或一反射孔214〇,以藉由其將部分的光 201011442Reflections, TIR), one of the triangular surfaces 2400 of the beam combiner 2100 is also polished to cause the beam combiner 2100 to act as a waveguide, thereby directing light from the light pipe (LPi) and the light pipe. According to an exemplary embodiment of the present invention, one of the beam combiner 21's has a coating on the diagonal surface 211 to provide a partially reflective/transferred surface, and the diagonal surface 211 is coated with a partially reflective coating. As shown in Fig. 4(a), or the spatially distributed reflection portion is as shown in Fig. 4 (8) and circle 4 (c) © (wherein the reflection portion is indicated by oblique hatching blocks and the transmission portion is indicated by blank blocks). The relative ratio of reflection to transfer can be optimized according to the maximum output of its application; in accordance with the teachings of the present invention, a beam combiner 21 having six polished faces is used as a waveguide instead of conventional giant optics (1) 〇1^). The output size of the light pipe (〇>1) ((11111^〇11) matches one side of the beam combiner 2100, and the light portion from the light pipe (lPi) is reflected to the light pipe (Lp2) and is illuminated by the LED (LED2) recovery, the light portion from the light pipe (lp2) is reflected to the light pipe 仏匕) and is recovered by the light-emitting diode (LED!) from the light pipe (lPi) and the light pipe An output aperture 2130 exits the light recovery system 2 as an output light (ουτ), and the remaining portion of the light is reflected back to the light recovery system 2 by an end reflector 2120. The light recovery system 2000 optionally includes a a reflective surface or a reflective aperture 214〇, by which a portion of the light 201011442

V 輸出反射回至光回收系統2000,用以回收部份的光輸出;同時,為提 .升全反射(TIR)的躲,麟本㈣—域實細,光回㈣統2〇〇〇 , 包含一任意(0Pti0nal)的空氣間隙或低反射係數黏著劑2300介於一或 多個光學元件之間,例如光管(LPl)與光束組合器21⑻間及光管(Lp2) 與光束組合器2100間。 [0049] 圖5及圖6所示為根據本發明一示範實施例之光回收系統 2000 ’其中係使用圖1所示之光管11〇〇,圖1所示之光回收系統1〇〇〇 與圖3、圖5及圖6所示之光回收系統2〇〇〇中,所使用之光學元件係 為常見的,在此不再赘述。如圓5所示,每一發光二極體14〇〇(分別以 參 LED!& LED:表示)結合或覆蓋於光管11〇〇 (分別以LPi& 表示) 之輸入端1200的一部分,而輸入端1200的剩餘部分以反射塗層塗佈, 以提供反射輸入面1210,圖5所示之光回收系統2〇〇〇的輸出為二發 光二極體輸入的結合;在圖6中,係將圖5所示之發光二極體(LED0 及發光二極體(LED2)以其他光源取代,此其他光源包含但不限制為光 管或光燈(如弧光燈或微波燈等)被反射鏡或透鏡聚焦的輸出;選擇性 地,根據本發明一示範實施例,圖6所示之光回收系統的光學元件可 呈如圖7所示之線性配置;為提升全反射(TIR)的特性,根據本發明一 示範實施例’圖5至圖7所示之光回收系統2〇〇〇包含一空氣間隙或低 Φ 反射係數黏著劑2300介於一或多個光學元件之間,例如光管)與 光束組合器2100間及光管(LP2)與光束組合器2100間。 [0050] 根據本發明一示範實施例,如圖8所示,圖6或圖7中之 光回收系統2000包含至少三個如圖1所示之光管,即在圖8中,圖6 或圖7的光回收系統2000之末端反射器2120被光管1100取代,在囷 8中’光回收系統2000的輸出為三個光源的結合,其中可被使用位於 輸入孔1220的光源可為一發光二極體,一光管的光輸出,一受發光二 極體或雷射激發的磷光體之光輸出,或一受發光二極體或雷射激發 (pump)的反轉(up-converting)材料之光輸出等;為提升全反射(TIR)的特 性,根據本發明一示範實施例,圖8所示之光回收系統2000包含一任 201011442 意的空氣間隙或低反射係數黏著劑2300介於一或多個光學元件之間。 [〇〇51]根據本發明一示範實施例’圖9所示為一光回收系統3〇〇〇 ,包含至少四光管1100與至少二光束組合器2100(分別以21〇加及21〇此 表示),光回收系統3000結合至少四組光源的輸出至單一輸出,雖然 圖9所示為光回收系統3000具有二光束組合器21〇〇a、21〇%,但若 圖9所示之光回收系統3000可包含二組以上的光束組合器2i〇〇亦 可,依照本發明之觀點,二光束組合器21〇〇a、21〇〇b之對角表面2ιι〇 的方向係為相異,其中光束組合器2100a之對角表面211〇的方向為以 回收光為目的,光束組合器2100b之對角表面2110的方向為以輸出光 參 為目的,光束組合器2100a、2100b的三角形表面2400被抛光,使光 束組合器2100a、2100b作為一波導,藉此導引來自光管αΡι)、光管 (LP2)、光管(LP3)及光管(LP4 )的光;為提升全反射(tiR)的特性,根據 本發明一示範實施例,光回收系統3〇〇〇包含一空氣間隙或低反射係數 黏著劑2300介於一或多個光學元件之間,例如光管(LPi)與光束組合 器2100b間及光管(LP2)與光束組合器2100a間。 [0052]圖10所示為根據本發明一示範實施例之一光回收系統 4000包含一光束組合器2100、二光管1100與二光源,光源係為具有 雙拋物面反射器的燈(DPRLamp)4200a、4200b ’分別為第一光源之具 ® 有雙拋物面反射器的燈4200a及第二光源之具有雙拋物面反射器的燈 4200b ’又錐形光管分別以第一錐形光管(TLPi)&第二錐形光管(1χρ2) 表示’第一光源之具有雙拋物面反射器的燈4200a與一第一錐形光管 (TLP。耦合,且第一錐形光管(TLPi)m與光管①^的輸入孔122加麵 合,第二光源之具有雙拋物面反射器的燈4200b與一第二錐形光管 (TU»2)耦合,且第二錐形光管(XLp2)並與光管(Lj^)的輸入孔122〇b耦 合;光回收系統4000之光管(LP!、LP2)與光束組合器2100的操作,係 與圖ό及圖7所示之光回收系統2000之光管(U^、LP2)與光束組合器 2100的操作相近’光回收系統4〇〇〇利用光束組合器2100結合第二光 源之具有雙拋物面反射器的燈4200b及第一光源之具有雙拋物面反射 201011442 器的燈4200a的輸出以提供單一輸出;為提升全反射(Tm)的特性,根 據本發明一示範實施例,圖所示之光回收系統4000包含一空氣間 隙或低反射係數黏著劑2300介於一或多個光學元件之間,例如光管 (LPi、LP2)與光束組合器21〇〇間,以及錐形光管(7〇>1、與光管 ㈣、LP2)間。 [0053]根據本發明一示範實施例,如圊η所示,本發明光回收 系統2000、3000、4000之光束組合器2100的輸出面為一具有傳遞孔 或輸出孔2130的反射輸出面2500,依照本發明之概點,輸出孔2130 的形狀、尺寸與位置係可規劃的以符合特殊應用的需求。 ® [0054]如囷12所示’根據本發明一示範實施例,圓1所示之光 回收系統1000額外包含一反射式偏光膜丨6〇〇,其係與光管1100的輸 出孔1320耦合以提供偏振光輸出;為增加效率,依照本發明之觀點, 光管1100的反射輸入面1210可包含一任意的波板1230 » [〇〇55]根據本發明一示範實施例,如圖13所示,圖7所示之光 回收系統2000額外包含一反射式偏光膜1600,其係與光束組合器21〇〇 的輸出孔2130耦合以提供偏振光輸出;為增加效率,依照本發明之親 點,光管1100的反射輸入面1210可包含一任意的波板1230,圖Β ❹所示之光回收系統2000的光束組合器2100將二組分離的光源結合在 一起,以產生偏振光的單一輸出。 [0056]請參閱圖14、圖15⑻及囷15(b),為根據本發明一示範實 施例之光回收系統5000,光回收系統5000包含一具有光回收功能之 錐形的偏極化光管系統5100用以與具有雙拋物面反射器的燈4200或 系統配合使用,錐形的偏極化光管系統5100包含第一錐形光管(tlPi) 及第二錐形光管(Τ〇>2),其係具有填設透明材質的共同表面,較佳的 透明材質為折射率匹配之黏著劑、環氧化物或流體5500 ;進入第一錐 形光管(TLPi)的輸入光_被耦合進入第二錐形光管(TLP2),且以偏振 光輸出型態離開第二錐形光管(TLP2);如圖15a所示,部分輸出光被 12 201011442 任意的反射孔5300反射,輸出反射孔的一例子如圖15b所示,傳遞開 口 5310的形狀與尺寸可隨著不同應用而改變,未利用的偏振光藉由反 射式偏光膜5400被反射回具有雙抛物面反射器的燈4200,錐形的偏 極化光管系統5100之第二錐形光管(TLP2)包含一反射表面5200,其係 具有一任意的波板5210’用以反射部分的光回至反射式偏光膜54〇〇。 [0〇57]根據本發明之一示範實施例,圖16所示之光回收系統 6000包含一光束組合器2100與至少二個如圖15(a)所示之錐形的偏極 化光管系統5100作為光源。需特別提醒的是,由於囷16所示之二錐 形的偏極化光管系統5100的輸出被麵合至光束組合器2100,圖16所 參 示之錐形的偏極化光管系統5100不需設有反射式偏光膜5400與任意 的反射孔5300;圖16所示之光束組合器2100的輸出端包含有反射式 偏光膜6100與任意的反射孔6200,其係類似於反射式偏光膜5400與 具有傳遞開口 5310之任意的反射孔5300 ;雖然未示於圖16,圓16中 之每一錐形的偏極化光管系統5100可如圖14所示之被輕合至具有雙 拋物面反射器的燈4200 ;光回收系統6000的光束組合器2100可結合 至少二組光源,即二組錐形的偏極化光管系統5100,為單一的偏極化 輸出光束;需特別提醒的是,光回收系統6000藉由使用一或多個光束 組合器2100而可結合兩組以上之光源,而與囷9所示之光回收系統 ❹ 3000相似。 [0058] 隨同發光二極體之光輸出的增加,LED投影系統急速進 展’一般LED投影系統使用三種色彩的發光二極體,即紅色、綠色與 藍色。針對時序的多路傳輸(time seqUentiaimuitipiexing),每一發光二 極體的光輸出被結合至單一輸出,以產生彩色的輸出影像,三種色彩 的發光二極體係使用不同的材料製造且具有不同的溫度依存性 (temperature dependencies),為維持螢幕之固定顏色,必須有一反饋控 制’使得典型的投影系統昂貴且複雜,由於白色發光二極體不具有足 夠的紅色含量,傳統使用白色發光二極體照明已被認為色彩較差。 [0059] 本發明克服傳統照明系統與投影系統使用白色發光二極體 13 201011442 的限制,根據本發明之一示範實施例,一具光回收的白色LED投影機 能夠提升紅光色彩,如圖17所示,為根據本發明一示範實施例之結合 有光回收系統的投影機7000 ’投影機7000包含一影像面板7300、一 才又影引擎7100、一投影透鏡7200及一重放透鏡(relay lens)7400,投影 機7000利用一發光二極體14〇〇所發射的光,其中利用一光回收系統 1000使此發光二極艎1400所發射的光一部分被光回收回發光二極趙 1400以增加亮度。雖然圖π所示為一投影機7〇〇〇與光回收系統1〇〇〇 結合’需特別提醒的是’投影機亦可與本發明中所提及之其他光回收 系統結合,錐形光管1100的輸出係經由一重放透鏡7400與一彩色輪 參 7500耦合至投影引擎7100,以形成一連續的彩色系統。 [0060] 發光二極體14〇〇可為一白色磷光體發光二極體14〇〇,白 色填光體受到發光二極體或雷射,較佳者為藍光或紫外光的激發,發 光二極體1400並不限制為白色發光二極體,本發明可利用彩色發光二 極趙以提供一具有色彩提升之LED投影機,較佳者,發光二極體14〇〇 安裝在一散熱基板1410上,發光二極體hoo的輸出被耦合至一光管 1100,此光管1100可為中空或實心的,錐形或筆直的,使得輸出可適 合於特殊的應用’光管1110係位於發光二極體14〇〇的輸出且被校直 (aligned)以獲取最大的光耦合效率,光管11〇〇之輸出端13〇〇的部分表 φ 面塗佈有一反射塗層或使用一鏡子或反射器,以形成一反射輸出面 1310,致使光管11〇〇僅有一部份的輸出經彩色輪75〇〇被耦合至投影 引擎7100’然後光管mo的輸出經由重放透鏡74〇〇與投影引擎71〇〇 被投影至成像或影像面板7300,在影像面板7300上的最終影像接著 經由投影透鏡72〇〇被投影至螢幕(圖中未示)。 [0061] 根據本發明之一示範實施例,光管m〇的輸出可被塗佈 輸出塗廣,使僅有選擇性波段的光被反射,而其他波段的光則可傳 遞’致使一需求的色彩被提升’舉例說明’光管11〇〇的輸出端13〇〇 可被塗佈用以反射藍光且傳遞其他色彩的光,亦即光回收系統1〇〇〇將 提升藍光的光回收,從而加強被傳遞至投影引擎71〇〇之其他色彩的 201011442 光0 [0062] 根據本發明之一示範實施例,彩色輪7500包含二個或多 個部分具有不同色彩的濾光鏡,例如一三色系統之紅色、藍色及綠色, 或紅色、綠色、藍色及無色的,因此彩色投影機7〇〇〇利用一連續的彩 色系統,其中每一色彩被依序展示以產生一彩色影像。 [0063] 根據本發明之一示範實施例’發光二極體14〇〇係利用一 直流電路媒動。可選擇地,發光二極體1400可利用伴隨著彩色輪7500 的變電流(varing current)進行驅動,舉例說明,發光二極體1400可具 有不同的電流值’其係取決於彩色輪7500的哪一個彩色部分位於光管 1100的前端’在一特殊實施例中,當紅色部分位於光管前端時,係使 用較高的電流,使得紅光的不足被較高之電流所克服。 [0064]根據本發明一示範實施例,影像面板7300可為一數位面 鏡(Digital Mirror Device,DMD),例如由德州儀器(Texas Instruments) 或其他廠商所製造的數位面鏡,根據本發明一示範實施例,影像面板 7300 可為一石夕基液晶(liquid crystal on silicon,LC0S)面板,圖 17 所示 之光回收系統1000可包含一任意的反射式偏光膜5400,其係放置於 光管1100的輸出端1300,使得無用的(unwanted)偏振光可被反射回至 光管1100而回收。 [0065] 根據本發明一示範實施例,發光二極體1400的白色磷光 體可被發光二極體1400所發出的藍光驅動,在光回收系統1〇〇〇的光 回收過程中’被回收的藍光被發光二極體1400的磷光體吸收,且以綠 光或紅光再發射(re-emitted),因此,被回收的光具有較低的藍光輸出, 及較高的紅光及綠光輸出。 [0066] 根據本發明之一示範實施例,對於有高輸出功率要求的應 用,投影機7000利用多個發光二極體1400去驅動單一或多個磷光體 部分,使得發射的光可被輕合至光回收系統1000的光管1100,需特 別說明的是’可利用一棱鏡、光管及其他可類比的光學元件作為波導 15 201011442 將多個發光二極體的輸出結合,以在螢幕(圖中未示)產生較高的輸 出’舉例·,若韻的每-邊被反射拋光讀升全反射(卿,則棱 鏡可作為一波導。 [0067] 使用來自白色磷光艎LED的光之優點包含: 1. 白色磷光體發光二極體具有較短的波長及較大的帶隙作 gap),因此能夠在較高的接面溫度伽temperature)下操作,而放 鬆散熱的限制條件。 2. 單一色彩的發光二極體可被使用,從而排除多路傳輸 $ (multiplex)多彩色發光二極體的需求。 3. 彩色輪為一成功發展的元件且具有很長的壽命。 4. 標準的投影引擎構造可被使用,有許多多年經驗的廠商可大量 生產這些標準投影引擎。 5. 很多廠商生產白色碟光體發光二極體。 6. 使用多個較小的白色磷光體發光二極體可獲得大的發射區 域,且發射區域在發光二極體之間不具有空白的裂縫,而這些裂縫會 降低光回收效率。 魏 [0068] 如圖18所示’根據本發明之一示範實施例,一 LED投影 機8000額外包含一光回收反射器81⑻用以回收光,光回收反射器81〇〇 將發光二極體輸出的一部份反射回發光二極體丨4〇〇以回收光,發光二 極鳢1400可為一白色或彩色發光二極想,更好地,光回收反射器81〇〇 為球面的(spherical)、超環面的(t〇r〇idal)或橢圓的(ellipticai)反射器,使 得發光二極體被反映回自身,光回收反射器81⑻的一開口被使用作為 輸出孔1320,依照本發明之觀點,開口的大小可被改變以達到不同的 光回收量,利用一集光透鏡7600或具有一個以上透鏡之透鏡系統將光 輸出耦合’且聚光於一光管1100,光管1100將光均勻化(h〇mogenize) 以在光管1100的輸出產生均勻的亮度分佈,LED投影機8000的其他 16 201011442 光學元件與圖17所示之LED投影機7000相似,彩色輪7500的配置 不是在光管1100的輸入端就是在光管1100的輸出端》 . [0069]根據本發明之一示範實施例,圖19所示為利用一個以上 發光二極體1400之LED投影機8000,光回收反射器8100反映一發 光二極體至其他的發光二極體以增加LED投影機8000的光回收效 率’圓20所示為二組或四組發光二極體1400安裝於散熱基板14ι〇, 其係可被使用於LED投影機8000,在四組發光二極體的例子中,光 回收反射器8100反映一第一發光二極體至一第二發光二極體,第二發 光二極體係與第一發光二極體斜對排列,舉例說明,發光二極體A(圖 • 20中以A表示)Μ〇〇反映至發光二極體A’(圓20中以A,表示)M00且 發光二極體Β’(圖20中以Β’表示)1400反映至發光二極體β(囷20中 以Β表示)1400 ;集光透鏡7600與發光二極體1400的光輪出耦合。 [0070] 根據本發明之一示範實施例,光回收反射器81〇〇可為一 實心光學元件,如圖21所示,如一片玻璃具有一部份反射及傳遞表 面,且此表面所具有最佳化的曲率可達到最大的輸出效率,此作為光 回收反射器8100之實心玻璃係放置於發光二極艎14〇〇的輸出且被校 直(align)以獲取最大光回收,實心玻璃的輸出表面一部份以反射塗層 塗佈以提供一反射表面8110 ’而剩餘部分的輸出表面係能傳遞的,以 肇 作為一輸出孔8120 ’輸出孔8120與反射表面8110可形成於同一的連 續表面,也可被設計為具有不同的曲率以達到最佳化的光耦合。 [0071] 根據本發明之一示範實施例,如圖22至圖24所示為一 LED投影機8000 ’其中未配置有光管,以降低LED投影機8〇〇〇的製 作成本’圖18所示之LED投影機8000的集光透鏡7600係以一小透 鏡陣列組(lenslet array)8200取代,小透鏡陣列組(lenslet array)8200可 為如圖23所不之圓形或圖24所不之矩形,且由一個以上之透鏡(lens) 或小透鏡(lenslet)組成,小透鏡可被配置為勻稱的矩陣、或任意配置 的、抑或設計為某一圖案以達到最大的效率與均勻度,每一小透鏡反 映發光二極體至一平板A(示於圖22)之聚光點(Sp〇t),需特別說明的 17 201011442 是,平板A上之聚光點大體上位於相同位置,如同光管1100的輸出 端1300或輸出面(圖17),由於平板A上之聚光點係由每一小透鏡所產 生的影像所組成,總體的強度分佈是被製作均勻的,輸出接著經由影 像面板7300、投影引擎7100及投影透鏡7200而被耦合至投影螢幕(囷 中未示),依照本發明之觀點,小透鏡陣列組8200可轉換一方形發光 二極體1400為矩形的輸出以相配於不同的投影高寬比(aspect ratio)格 式,一般而言,輸出的囷案可為任何尺寸、形狀及所需的強度分佈。 [0072]根據本發明之一示範實施例,一光回收系統9〇〇〇包含一 光束分開/結合(BSC)系統9100,其中被反射拋光以提升全反射(xiR) 0 的所有表面及二組發光二極體1400係示於囷25,依照本發明之觀點, 光束分開/結合(BSC)系統9100包含二個三角形的棱鏡(所有表面被反 射拋光以提升全反射)以一部分反射介面9120結合在一起,部分反射 介面9120可以部分反射塗層製作或部分表面塗佈反射塗層,需特別說 明的是,反射比可利用塗佈表面面積的大小進行控制,舉例說明,部 分反射介面9120可包含反射條紋9125(示於圓中)或反射點(圖中未 示)〇 參The V output is reflected back to the light recovery system 2000 for recovering part of the light output; at the same time, for the lifting of the total reflection (TIR), the Lin (4)-domain is fine, and the light is returned (4). An arbitrary (0Pti0nal) air gap or low reflectance adhesive 2300 is interposed between one or more optical components, such as between light pipe (LP1) and beam combiner 21 (8) and light pipe (Lp2) and beam combiner 2100 between. 5 and FIG. 6 illustrate a light recovery system 2000' in which a light pipe 11A shown in FIG. 1 is used, and the light recovery system 1 shown in FIG. 1 is used in accordance with an exemplary embodiment of the present invention. The optical components used in the light recovery system 2 shown in FIGS. 3, 5, and 6 are common and will not be described again. As shown by the circle 5, each of the light-emitting diodes 14A (represented by LEDs & LEDs, respectively) is combined or covered with a portion of the input end 1200 of the light pipe 11 (represented by LPi & respectively). The remainder of the input 1200 is coated with a reflective coating to provide a reflective input surface 1210. The output of the light recovery system 2A shown in FIG. 5 is a combination of two LED inputs; in FIG. 6, The light-emitting diodes (LED0 and LEDs) shown in FIG. 5 are replaced by other light sources, including but not limited to light pipes or light lamps (such as arc lamps or microwave lamps). Mirror or lens focused output; alternatively, in accordance with an exemplary embodiment of the present invention, the optical components of the light recovery system of FIG. 6 may be in a linear configuration as shown in FIG. 7; to enhance total reflection (TIR) characteristics The light recovery system 2 图 shown in FIGS. 5 to 7 includes an air gap or a low Φ reflection coefficient adhesive 2300 between one or more optical elements, such as a light pipe, in accordance with an exemplary embodiment of the present invention. Between the beam combiner 2100 and the light pipe (LP2) and the beam combiner 2100. [0050] According to an exemplary embodiment of the present invention, as shown in FIG. 8, the light recovery system 2000 of FIG. 6 or FIG. 7 includes at least three light pipes as shown in FIG. 1, that is, in FIG. 8, FIG. The end reflector 2120 of the light recovery system 2000 of Figure 7 is replaced by a light pipe 1100 in which the output of the light recovery system 2000 is a combination of three light sources, wherein the light source that can be used in the input aperture 1220 can be a light source. A diode, a light output of a light pipe, a light output of a phosphor excited by a light-emitting diode or a laser, or an up-converting of a light-emitting diode or a laser pump Light output of the material, etc.; to enhance the characteristics of total reflection (TIR), according to an exemplary embodiment of the present invention, the light recovery system 2000 shown in FIG. 8 includes an air gap or low reflection coefficient adhesive 2300 of 201011442. Or between multiple optical components. [〇〇51] According to an exemplary embodiment of the present invention, FIG. 9 shows a light recovery system 3A including at least four light pipes 1100 and at least two light beam combiners 2100 (21 〇 and 21 分别 respectively) The light recovery system 3000 combines the output of at least four sets of light sources to a single output, although FIG. 9 shows that the light recovery system 3000 has two beam combiners 21〇〇a, 21〇%, but the light shown in FIG. The recycling system 3000 may include two or more beam combiners 2i, and according to the present invention, the directions of the diagonal surfaces 2ιι〇 of the two beam combiners 21〇〇a, 21〇〇b are different. Wherein the direction of the diagonal surface 211 of the beam combiner 2100a is for the purpose of recovering light, the direction of the diagonal surface 2110 of the beam combiner 2100b is for the purpose of outputting optical parameters, and the triangular surface 2400 of the beam combiner 2100a, 2100b is Polishing, the beam combiner 2100a, 2100b as a waveguide, thereby guiding light from the light pipe αΡι), the light pipe (LP2), the light pipe (LP3) and the light pipe (LP4); for enhancing total reflection (tiR) Characteristics, light recovery system, in accordance with an exemplary embodiment of the present invention 3〇〇〇 includes an air gap or low reflectance adhesive 2300 between one or more optical components, such as between light pipe (LPi) and beam combiner 2100b and between light pipe (LP2) and beam combiner 2100a . 10 shows a light recovery system 4000 comprising a beam combiner 2100, a two-light tube 1100 and two light sources, the light source being a lamp with a double parabolic reflector (DPRLamp) 4200a, in accordance with an exemplary embodiment of the present invention. , 4200b 'is the first light source with a lamp 4200a with a double parabolic reflector and a lamp 4200b with a double parabolic reflector for the second source. The tapered light tubes are respectively a first tapered light tube (TLPi) & The second tapered light pipe (1 χ ρ2) represents a lamp 4200a having a double parabolic reflector of the first light source and a first tapered light pipe (TLP coupled, and the first tapered light pipe (TLPi) m and light The input hole 122 of the tube 1^ is coupled, the lamp 4200b of the second source having a double parabolic reflector is coupled to a second tapered tube (TU»2), and the second tapered tube (XLp2) is coupled The input port 122〇b of the light pipe (Lj^) is coupled; the operation of the light pipe (LP!, LP2) and the beam combiner 2100 of the light recovery system 4000 is the same as that of the light recovery system 2000 shown in FIG. The light pipe (U^, LP2) is similar to the operation of the beam combiner 2100. The light recovery system 4 uses the beam combiner 2100 in combination with the second The output of the lamp 4200b having a double parabolic reflector and the lamp 4200a of the first source having a double parabolic reflection 201011442 to provide a single output; to enhance the characteristics of total reflection (Tm), in accordance with an exemplary embodiment of the present invention, The illustrated light recovery system 4000 includes an air gap or low reflectance adhesive 2300 between one or more optical components, such as between a light pipe (LPi, LP2) and a beam combiner 21, and a tapered light. Between the tube (7〇>1, and the light pipe (4), LP2). [0053] According to an exemplary embodiment of the present invention, as shown by 圊η, the beam combiner 2100 of the light recovery system 2000, 3000, 4000 of the present invention The output face is a reflective output face 2500 having a transfer aperture or output aperture 2130. The shape, size and position of the output aperture 2130 can be planned to meet the needs of a particular application in accordance with the present invention. 12, according to an exemplary embodiment of the present invention, the light recovery system 1000 shown by circle 1 additionally includes a reflective polarizing film 丨6〇〇 coupled to the output aperture 1320 of the light pipe 1100 to provide a polarized light output; To increase efficiency, According to the present invention, the reflective input surface 1210 of the light pipe 1100 can include an arbitrary wave plate 1230. [〇〇55] According to an exemplary embodiment of the present invention, as shown in FIG. 13, the light recovery system shown in FIG. 2000 additionally includes a reflective polarizing film 1600 coupled to the output aperture 2130 of the beam combiner 21A to provide a polarized light output; to increase efficiency, the reflective input surface 1210 of the light pipe 1100 can be used in accordance with the present invention. A beam combiner 2100 comprising an arbitrary wave plate 1230, the light recovery system 2000 shown in Fig. 2, combines two sets of separate light sources to produce a single output of polarized light. Referring to FIG. 14, FIG. 15(8) and FIG. 15(b), a light recovery system 5000 according to an exemplary embodiment of the present invention, the light recovery system 5000 includes a tapered polarized light tube having a light recovery function. System 5100 is for use with a lamp 4200 or system having a double parabolic reflector, the tapered polarized light pipe system 5100 comprising a first tapered light pipe (tlPi) and a second tapered light pipe (Τ〇> 2), which has a common surface filled with a transparent material, preferably a transparent material of refractive index matching adhesive, epoxide or fluid 5500; input light entering the first tapered light pipe (TLPi) is coupled Entering the second tapered light pipe (TLP2) and exiting the second tapered light pipe (TLP2) in a polarized light output pattern; as shown in FIG. 15a, part of the output light is reflected by any of the reflection holes 5300 of 12 201011442, and the output is reflected. An example of a hole is shown in Figure 15b. The shape and size of the transfer opening 5310 can vary with different applications. Unused polarized light is reflected back to the lamp 4200 with a double parabolic reflector by the reflective polarizing film 5400. Shaped polarized light pipe system 5100 second tapered light pipe (TLP2) A reflective surface 5200 is included having an arbitrary wave plate 5210' for reflecting a portion of the light back to the reflective polarizing film 54A. [057] According to an exemplary embodiment of the present invention, the light recovery system 6000 shown in FIG. 16 includes a beam combiner 2100 and at least two tapered polarized light tubes as shown in FIG. 15(a). System 5100 acts as a light source. It should be specially noted that since the output of the two-cone polarized light pipe system 5100 shown in FIG. 16 is integrated to the beam combiner 2100, the tapered polarized light pipe system 5100 shown in FIG. There is no need to provide a reflective polarizing film 5400 and any reflection hole 5300; the output end of the beam combiner 2100 shown in FIG. 16 includes a reflective polarizing film 6100 and an arbitrary reflecting hole 6200, which is similar to a reflective polarizing film. 5400 and any reflective aperture 5300 having a transfer opening 5310; although not shown in Figure 16, each tapered polarized light pipe system 5100 in the circle 16 can be lightly coupled to have a double paraboloid as shown in FIG. The lamp 4200 of the reflector; the beam combiner 2100 of the light recovery system 6000 can combine at least two sets of light sources, that is, two sets of tapered polarized light pipe systems 5100, as a single polarized output beam; The light recovery system 6000 can combine more than two sets of light sources by using one or more beam combiners 2100, similar to the light recovery system ❹ 3000 shown in FIG. [0058] As the light output of the light-emitting diode increases, the LED projection system advances rapidly. The general LED projection system uses three colors of light-emitting diodes, namely red, green and blue. For time-series multiplex (time seqUentiaimuitipiexing), the light output of each light-emitting diode is combined to a single output to produce a color output image. The three-color light-emitting diode system is made of different materials and has different temperatures. In order to maintain the fixed color of the screen, there must be a feedback control that makes the typical projection system expensive and complicated. Since the white LED does not have enough red content, the traditional use of white LED illumination has been used. It is considered to be poor in color. [0059] The present invention overcomes the limitations of conventional illumination systems and projection systems using white light-emitting diodes 13 201011442. According to an exemplary embodiment of the present invention, a light-recycling white LED projector can enhance red color, as shown in FIG. The projector 7000 incorporating a light recovery system according to an exemplary embodiment of the present invention includes an image panel 7300, a shadowing engine 7100, a projection lens 7200, and a playback lens. 7400, the projector 7000 utilizes light emitted by a light-emitting diode 14 ,, wherein a portion of the light emitted by the light-emitting diode 1400 is recovered by the light recovery system 1000 back to the light-emitting diode 1400 to increase brightness. Although the figure π shows a projector 7 〇〇〇 in combination with the light recovery system 1 'specially reminded that 'the projector can also be combined with other light recovery systems mentioned in the present invention, the cone light The output of tube 1100 is coupled to projection engine 7100 via a playback lens 7400 and a color wheel reference 7500 to form a continuous color system. [0060] The light-emitting diode 14〇〇 can be a white phosphor light-emitting diode 14〇〇, the white light-filling body is exposed to a light-emitting diode or a laser, preferably excited by blue light or ultraviolet light, and the light-emitting diode The polar body 1400 is not limited to a white light emitting diode. The present invention can utilize a color light emitting diode to provide a color enhanced LED projector. Preferably, the light emitting diode 14 is mounted on a heat dissipation substrate 1410. The output of the light-emitting diode hoo is coupled to a light pipe 1100, which may be hollow or solid, tapered or straight, so that the output can be adapted to a particular application 'the light pipe 1110 is located in the light-emitting two The output of the polar body 14〇〇 is aligned to obtain maximum optical coupling efficiency, and the portion φ surface of the output end 13〇〇 of the light pipe 11〇〇 is coated with a reflective coating or using a mirror or reflection a reflector to form a reflective output surface 1310 such that only a portion of the output of the light pipe 11 is coupled to the projection engine 7100' via the color wheel 75 然后 and then the output of the light pipe mo is projected and projected via the playback lens 74 Engine 71 is projected to imaging or imaging Plate 7300, the final image on the image panel through the projection lens 7300 and then is projected to the screen 72〇〇 (not shown). [0061] According to an exemplary embodiment of the present invention, the output of the light pipe m〇 can be coated and coated so that only the selective band of light is reflected, while the other bands of light can be transmitted to cause a desired color. The output 13 〇〇 of the light pipe 11 被 can be coated to reflect blue light and transmit other colors of light, that is, the light recovery system 1 〇〇〇 will enhance the blue light recovery, thereby strengthening 201011442 Light 0 that is passed to other colors of the projection engine 71. [0062] According to an exemplary embodiment of the invention, the color wheel 7500 includes two or more filters having portions of different colors, such as a three color system. Red, blue, and green, or red, green, blue, and colorless, the color projector 7 utilizes a continuous color system in which each color is sequentially displayed to produce a color image. [0063] According to an exemplary embodiment of the present invention, the light-emitting diodes 14 are mediated by a DC circuit. Alternatively, the light emitting diode 1400 can be driven by a varing current accompanying the color wheel 7500. For example, the light emitting diode 1400 can have different current values ' depending on which color wheel 7500 A colored portion is located at the front end of the light pipe 1100. In a particular embodiment, when the red portion is at the front end of the light pipe, a higher current is used, so that the red light is insufficiently overcome by the higher current. [0064] According to an exemplary embodiment of the present invention, the image panel 7300 may be a Digital Mirror Device (DMD), such as a digital mirror manufactured by Texas Instruments or other manufacturers, according to the present invention. In an exemplary embodiment, the image panel 7300 can be a liquid crystal on silicon (LCOS) panel. The light recovery system 1000 shown in FIG. 17 can include an optional reflective polarizing film 5400 disposed on the light pipe 1100. The output 1300 allows unwanted polarized light to be reflected back to the light pipe 1100 for recycling. [0065] According to an exemplary embodiment of the present invention, the white phosphor of the LED 1400 can be driven by the blue light emitted by the LED 1400, and is recovered during the light recovery process of the light recovery system 1 The blue light is absorbed by the phosphor of the light-emitting diode 1400 and re-emitted with green or red light, so that the recovered light has a lower blue light output and a higher red and green light output. . [0066] According to an exemplary embodiment of the present invention, for applications with high output power requirements, the projector 7000 utilizes a plurality of light emitting diodes 1400 to drive a single or multiple phosphor portions such that the emitted light can be lightly coupled. To the light pipe 1100 of the light recovery system 1000, it is particularly necessary to use a prism, a light pipe and other comparable optical components as the waveguide 15 201011442 to combine the outputs of the plurality of light-emitting diodes on the screen (Fig. (not shown) produces a higher output'. For example, if each side of the rhyme is reflected and polished to read the full reflection (clear, the prism can be used as a waveguide. [0067] The advantages of using light from a white phosphorescent LED include : 1. The white phosphor light-emitting diode has a shorter wavelength and a larger band gap for the gap, so it can operate at a higher junction temperature and relax the heat dissipation. 2. A single color LED can be used to eliminate the need for multiplexed multi-color LEDs. 3. The color wheel is a successfully developed component and has a long life. 4. Standard projection engine construction can be used, and manufacturers with many years of experience can mass produce these standard projection engines. 5. Many manufacturers produce white light-emitting diodes. 6. A large emission area can be obtained using a plurality of smaller white phosphor light-emitting diodes, and the emission area does not have blank cracks between the light-emitting diodes, and these cracks can reduce light recovery efficiency. [0068] As shown in FIG. 18, an LED projector 8000 additionally includes a light-recovering reflector 81 (8) for recovering light, and a light-recovering reflector 81 for outputting a light-emitting diode according to an exemplary embodiment of the present invention. A portion of the light is reflected back to the light-emitting diode 丨4〇〇 to recover light, and the light-emitting diode 1400 can be a white or color light-emitting diode. Preferably, the light-recovering reflector 81 is spherical (spherical) a toroidal (elpticidal) or elliptical (ellipticai) reflector such that the light emitting diode is reflected back to itself, an opening of the light recovery reflector 81 (8) is used as the output aperture 1320, in accordance with the present invention From the point of view, the size of the opening can be varied to achieve different amounts of light recovery, using a collecting lens 7600 or a lens system having more than one lens to couple the light output 'and concentrating on a light pipe 1100, the light pipe 1100 will light Homogenize (h〇mogenize) to produce a uniform brightness distribution at the output of the light pipe 1100. The other 16 201011442 optical components of the LED projector 8000 are similar to the LED projector 7000 shown in FIG. 17, and the color wheel 7500 is not configured in light. Tube 1100 input That is, at the output end of the light pipe 1100. [0069] According to an exemplary embodiment of the present invention, FIG. 19 shows an LED projector 8000 using one or more light-emitting diodes 1400, and the light-recovering reflector 8100 reflects a light-emitting diode. The polar body to the other light-emitting diodes is used to increase the light-recovering efficiency of the LED projector 8000. Two or four sets of light-emitting diodes 1400 are mounted on the heat-dissipating substrate 14 ι as shown by the circle 20, which can be used for LED projection. In the example of the four sets of light-emitting diodes, the light-recovering reflector 8100 reflects a first light-emitting diode to a second light-emitting diode, and the second light-emitting diode system and the first light-emitting diode are inclined. For the arrangement, for example, the light-emitting diode A (indicated by A in FIG. 20) is reflected to the light-emitting diode A' (indicated by A in the circle 20) M00 and the light-emitting diode Β' (Fig. 20 denoted by Β' 1400 is reflected to the light-emitting diode β (indicated by Β in 囷20) 1400; the light collecting lens 7600 is coupled to the light-emitting diode 1400. [0070] According to an exemplary embodiment of the present invention, the light recovery reflector 81 can be a solid optical component, as shown in FIG. 21, such as a piece of glass having a partial reflection and transfer surface, and the surface has the most The optimized curvature can achieve the maximum output efficiency. The solid glass system as the light recovery reflector 8100 is placed on the output of the LED 艎14〇〇 and is aligned to obtain maximum light recovery, and the output of the solid glass. A portion of the surface is coated with a reflective coating to provide a reflective surface 8110' and the remaining portion of the output surface is capable of being transmitted as an output aperture 8120. The output aperture 8120 and the reflective surface 8110 can be formed on the same continuous surface. It can also be designed to have different curvatures for optimal optical coupling. [0071] According to an exemplary embodiment of the present invention, as shown in FIGS. 22 to 24, an LED projector 8000' is not provided with a light pipe to reduce the manufacturing cost of the LED projector 8'. The collecting lens 7600 of the LED projector 8000 is replaced by a lenslet array 8200, and the lenslet array 8200 can be circular as shown in FIG. 23 or FIG. Rectangular, and consisting of more than one lens or lenslet, the lenslets can be configured as a symmetrical matrix, or arbitrarily configured, or designed as a pattern for maximum efficiency and uniformity, each A small lens reflects the condensing point (Sp〇t) of the light-emitting diode to a flat plate A (shown in Fig. 22). 17 201011442, which is specially described, is that the condensed spot on the flat plate A is substantially at the same position, as if The output end 1300 or the output surface of the light pipe 1100 (Fig. 17), since the light collecting point on the flat plate A is composed of images generated by each small lens, the overall intensity distribution is made uniform, and the output is then transmitted through the image. The panel 7300, the projection engine 7100, and the projection lens 7200 are In conjunction with a projection screen (not shown), in accordance with the teachings of the present invention, the lenslet array 8200 can convert a rectangular LED 1400 into a rectangular output to match different projection aspect ratio formats. In general, the output file can be of any size, shape, and desired intensity distribution. [0072] According to an exemplary embodiment of the invention, a light recovery system 9A includes a beam splitting/bonding (BSC) system 9100 in which all surfaces and groups of polished total reflection (xiR) 0 are polished and polished to enhance total reflection (xiR) 0 Light-emitting diode 1400 is shown in 囷25. In accordance with the teachings of the present invention, beam splitting/bonding (BSC) system 9100 includes two triangular prisms (all surfaces are polished to enhance total reflection) with a portion of reflective interface 9120 bonded Together, the partially reflective interface 9120 can be partially reflective coated or partially surface coated with a reflective coating. Specifically, the reflectance can be controlled by the size of the coated surface area. For example, the partially reflective interface 9120 can include reflection. Stripe 9125 (shown in the circle) or reflection point (not shown)

Lv…」一桠蒞刚〇的輸出被轉合至光束分開/結合邮〇系 統雙’來自發光二贿刚的光一部份被反射至光管删的輸出 端1300作為輸出’一部份的光指向至其他發光二極艘1400,且纖 部^的光朝著光束分開/結合(BSC)纽娜的反射表面,需特別說明 的是,由於全部六表__光,錄佳者為反射拋糾提升全反射 (頂)’使得光束分開/結合_)系統·係作為一波導。一般而士, ㈣崎謂細猶輸的將^光Lv..." The output of the 〇 〇 被 被 至 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' Pointing to other light-emitting diodes 1400, and the light of the fiber part is directed toward the beam split/bond (BSC) Nina's reflective surface, it is necessary to specifically note that since all six meters __ light, the recorded person is a reflection throw Correction of the total reflection (top) 'so that the beam is split/combined_) system is used as a waveguide. The general sage, (four) Saki said that the thin will lose

In⑽作_ ;依_殊_,光束分開/結 二步被^務Φ的輸出可作為輸出紐由―輸出光管财未示)進 步被耦σ至輸出,輸出光管可為筆直、 1100及輸出光管(圖中未示)可為 的,光管 表面刪的光回收光管的先管或一具有部分反射輸出 光管且可更包含設置於輸出端1300的-反射式 18 201011442 偏光膜1600以提供偏振輸出予一梦基液晶(liquid crystal on silicon, LCOS)面板、一液晶顯示面板或其他偏振相關系統。 [0074] 雖然光回收系統9000包含單一波導系統,其包含一光束分 開/結合(BSC)系統9100、二發光二極體1400及光管1100,光回收系 統9000可被延伸以包含一網狀波導。根據本發明一示範實施例,囷 26所示為作為波導的一種二發光二極體光回收系統9000(光管11〇〇、 一所有面皆被拋光之三角棱鏡9200,較佳者為反射拋光以增加全反射 (TIR)、及具有反射表面9110之光束分開/結合(BSC)系統9100),其中 發光二極體係設置於同一平面;囷27所示為三發光二極體光回收系統 0 9000,其係包含三組發光二極體1400、二光管1100、二具有反射表面 9110之光束分開/結合(BSC)系統9100及一三角棱鏡9200,需特別說 明的是,光回收系統9000並不限制為一、二或三組發光二極體,而可 為複數個發光二極體,其可利用一網狀波導(光管11〇〇、三角棱鏡9200 及光束分開/結合(BSC)系統9100)將光回收在一起。 [0075] 根據本發明之一示範實施例,圖28(a)至圖28(f)所示為複 數個發光二極體1400或發光二極體晶片的不同配置,其中標示為”c” 之發光二極體1400或發光二極體晶片係指發光二極體14〇〇為一彩色 發光二極體晶片,其係可為白色發光二極體晶片、紅色發光二極體晶 © 片、綠色發光二極體晶片、藍色發光二極體晶片或其他色彩的發光二 極體晶片,由於光回收反射器8100的成像品質,每一對發光二極體被 互相反映(imaged)以進行光回收’且較佳者每一對發光二極體係為相同 色彩,舉例說明,如圖28(c)所示,影像對之發光二極體(^及發光二 極體cv為相同色彩’且影像對之發光二極體ο及發光二極體c2,為相 同色彩等’圖28⑻所示為圖28(c)的紅色⑻、綠色(G)及藍色⑻版本, 其中為(I^R,)、(B,B’)及(QG’)的成像對,圖28(d)及圖28(f)所示為 發光二極體晶片排列的其他結合,需特別說明的是,發光二極體晶片 亦為可能其他的結合與配置,而應被視為被包含在本發明中,值得注 意的是特殊發光二極體晶片的配置係依據本發明之光回收系統的應 201011442 用。 [0076] 圖29所示為根據本發明一示範實施例之一 RGB連續投影 系統或RGB連續投影機9500,RGB連續投影機9500包含投影引擎 7100、成像面板7300、投射透鏡7200、重放透鏡7400、光管11〇〇、 光回收反射器8100、RGB發光二極體1400及小透鏡陣列組(lenslet array)8200。利用一作為像素強度控制之影像面板7300,RGB連續投 影機9500可及時多路傳輸三種色彩以在螢摹(圖中未示)上產生彩色影 像,藉由光回收反射器8100光回收RGB發光二極體1400的輸出, 且使用透鏡、透鏡陣列組及/或在此所述之小透鏡陣列組8200進行光 φ 耦合,特別說明’由於RGB發光二極體1400可被即時多路傳輸(time multiplex),因此彩色輪7500不再需要而未示於囷29中。 [0077] 根據本發明之一示範實施例,如圖30所示,光源9600包 含安裝於散熱基板1410之發光二極體14⑻、光回收反射器8100及任 意的透鏡系統9650可被用來做一般照明設備或與在此所述的各種投 影機結合,發光二極體1400可為單一色彩或多種色彩的發光二極體 1400’透鏡系統9650可被安裝使得光源輸出可具有一預先決定的發散 角(angle of divergence )’依照本發明之觀點,透鏡系統9650可被安裝 使得光源輸出集中在一目標’如同一投影機9500之光管11〇〇(圖29)。 [0078] 根據本發明之一示範實施例,光源96〇〇可包含一任意的 散光器9610,其係可被插設於透鏡系統%50前或後,可對光源輸出 分佈作進一步的調整。散光器9610可為一玻璃、一全像攝影的散光器 或一透鏡矩陣,根據本發明之一示範實施例’光回收反射器81〇〇、透 鏡系統9650與任意的散光器9610可利用塑膠或玻璃铸造為一體,以 容易裝配且降低製造成本。 [0079] 根據本發明之一示範實施例,透鏡系統965〇可被準直地 配置,使得光源9600可取代一具有拋物線反射器的標準燈具,依照本 發明之觀點,透鏡系統9650可被聚集地配置,使得光源9600可取代 一具有橢圓反射器之標準燈具,依照本發明之觀點,透鏡系統965〇可 20 201011442 被發散地配置’使得光源9600可取代一般聚光燈應用之標準燈具,需 特別說明的是,透鏡系統9650可額外包含一任意的散光器9610,可 對光源輸出分佈作進一步的調整以得到最佳效果。 [0080]雖然本發明已以上述之實施例具體描述,本發明之專利範 圍應解釋為包含以上所述之實施例而不能以之限定,大凡依本發明所 揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍内。 【圖式簡單說明】 [0013] 在實施方式中所列出之實施例並不能單獨用來限定本發 φ 明,且配合所附之圖式將能更了解本發明,圖式中類似的元件及特徵 具有類似的參考圖號。 [0014] 圖1所示為根據本發明之一示範實施例之包含一光管 1100之光回收系統的透視示意囷。 [0015] 圖2(a)至圖2(c)所示為根據本發明一示範實施例之各種態 樣的光回收系統剖面示意圖。 [0016] 圖3所示為根據本發明一示範實施例之包含一具六面的 光束組合器與至少二光管之光回收系統的剖面示意圖。 參 [0017]圊4(a)至圖4(c)所示為根據本發明一示範實施例之具六面 的光束組合器之對角表面的透視示意囷,其中對角表面具有部分反射 塗佈或具有空間分佈的反射部。 [0018] 圖5及圖6所示為根據本發明一示範實施例之圖3所示之 光回收系統與圖1所示之至少二光管的結合剖面示意圖。 [0019] @ 7所·示為根據本發明一示範實施例之圖3所示的光回收 系統的光學元件呈直線配置之剖面示意圖。 [0020] 囷8所不為根據本發明一示範實施例之圖6及圖7所示的 光回收系統包含至少三個囷!所示之光管之剖面示意圈。 21 201011442 [0021] 圖9所示為根據本發明一示範實施例之包含有至少四組圖 1所示光管及至少一具六面的光束組合器的光回收系統之透視示意圖。 [0022] 圖10所示為根據本發明一示範實施例之包含有一光束組 合器、二光管與二具有雙拋物面反射器的燈作為光源的光回收系統之 之剖面示意圖。 [0023] 圖11所示為根據本發明一示範實施例之光束組合器透視 囷。 [0024] 圖12所示為根據本發明一示範實施例之囷1所示的光回收 ❹ 系統包含一反射式偏光膜之剖面示意圊。 [0025] 圖13所示為根據本發明一示範實施例之圖7所示的光回收 系統包含一反射式偏光膜之剖面示意圓。 [0026] 圖14所示為根據本發明一示範實施例之包含有錐形的偏 極化光管系統及具有雙拋物面反射器的燈之光回收系統的刮面示意 囷。 [0027] 囷15a所示為根據本發明一示範實施例之囷14所示之錐形 的偏極化光管系統的剖面示意圖。 . [⑻28]圊15b所示為根據本發明一示範實施例之圖15a所示之錐 形的偏極化光管系統的反射孔之透視示意圖。 [0029] 圖10所示為根據本發明一示範實施例之包含有至少二組 圖14所示之錐形的偏極化光管系統及一光束組合器之光回收系統的 剖面示意圖。 [0030] 圖17所示為根據本發明一示範實施例之結合有光回收系 統的LED投影機之剖面示意囷。 [0031] 圖18所示為根據本發明一示範實施例之結合有光回收系 統的LED投影機之剖面示意囷。 22 201011442 [0032]圖19所示為根據本發明一示範實施例之利用二組發光二 極體的LED投影機之剖面示意囷。 [00331® 20 —為雜本酬—示範實細之二組及四組發光 二極體安裝於一散熱基板之透視示意圖。 [0034] @ 21所$為根據本發明—示範實施例之光回收反射器為 一實心光學元件之剖面示意囷。 [0035] 圖22至圖24所示為根據本發明一示範實施例之包含有小 透鏡陣列組的光投影機之剖面示意囷。 0 [0036]圖25至圖27所示為根據本發明一示範實施例之包含有一 光束分開/結合(BSC)系統的光回收系統之剖面示意圈。 [0037] 圖28⑻至圖28(f)所示為根據本發明一示範實施例之發光 二極體晶片的不同配置。 [0038] 圖29所示為根據本發明一示範實施例之一 RGB連續投影 機之剖面示意圖。 [0039] 圖30所示為根據本發明一示範實施例之光源之剖面示意 圖。 6 【主要元件符號說明】 1000 光回收系統 1100 ' LPX ' LPi 光管 ' LP3 ' lp4 1200 輸入端 1210 反射輸入面 1220 輸入孔 1230 波板 23 201011442In (10) for _ ; according to _ _ _, the beam split / junction two steps by the Φ output can be used as the output button - output light tube is not shown) progress is coupled σ to the output, the output light pipe can be straight, 1100 and The output light pipe (not shown) may be a light pipe of the light pipe to remove the light pipe or a partial reflection output light pipe and may further include a reflection type 18 201011442 polarizing film disposed at the output end 1300 1600 to provide a polarized output to a liquid crystal on silicon (LCOS) panel, a liquid crystal display panel, or other polarization dependent system. [0074] Although the light recovery system 9000 includes a single waveguide system including a beam splitting/bonding (BSC) system 9100, two light emitting diodes 1400, and a light pipe 1100, the light recovery system 9000 can be extended to include a mesh waveguide. . According to an exemplary embodiment of the present invention, the crucible 26 is shown as a two-light dipole light recovery system 9000 as a waveguide (light tube 11 〇〇, a triangular prism 9200 whose surfaces are all polished, preferably reflective polishing In order to increase total reflection (TIR), and beam splitting/bonding (BSC) system 9100 with reflective surface 9110, wherein the light emitting diode system is disposed on the same plane; 囷27 shows a three light emitting diode light recovery system 0 9000 The system includes three sets of light-emitting diodes 1400, two light pipes 1100, two light beam splitting/combining (BSC) systems 9100 having reflective surfaces 9110, and a triangular prism 9200. Specifically, the light recovery system 9000 is not Restricted to one, two or three sets of light-emitting diodes, but a plurality of light-emitting diodes, which can utilize a mesh waveguide (light tube 11 〇〇, triangular prism 9200 and beam split/combination (BSC) system 9100 ) Recover light together. [0075] According to an exemplary embodiment of the present invention, FIGS. 28(a) to 28(f) show different configurations of a plurality of light emitting diodes 1400 or light emitting diode chips, labeled "c" The light-emitting diode 1400 or the light-emitting diode chip refers to the light-emitting diode 14 as a color light-emitting diode chip, which can be a white light-emitting diode chip, a red light-emitting diode chip, and a green color. Light-emitting diode chips, blue light-emitting diode chips or other color light-emitting diode chips, each pair of light-emitting diodes are imaged for light recovery due to the image quality of the light-recovering reflector 8100 'And preferably each pair of light-emitting diode systems is of the same color. For example, as shown in FIG. 28(c), the image pair of light-emitting diodes (^ and the light-emitting diode cv are the same color' and the image pair The light-emitting diode ο and the light-emitting diode c2 are of the same color and the like, and the red (8), green (G), and blue (8) versions of FIG. 28(c) are shown in FIG. 28(8), where (I^R,) , (B, B') and (QG') imaging pairs, Figure 28 (d) and Figure 28 (f) shows the LED array Other combinations, it should be specially noted that the LED chip is also possible other combinations and configurations, and should be considered as being included in the present invention. It is worth noting that the configuration of the special LED chip is based on The light recovery system of the present invention is for use in 201011442. [0076] FIG. 29 illustrates an RGB continuous projection system or RGB continuous projector 9500 including a projection engine 7100, imaging, in accordance with an exemplary embodiment of the present invention. The panel 7300, the projection lens 7200, the reproducing lens 7400, the light pipe 11 〇〇, the light recovery reflector 8100, the RGB light emitting diode 1400, and the lenslet array 8200. Using an image panel as a pixel intensity control The 7300, RGB continuous projector 9500 can multiplex three colors in time to generate a color image on the fluorite (not shown), and recover the output of the RGB LED 1400 by the light recovery reflector 8100, and use the lens. The lens array group and/or the lenslet array group 8200 described herein performs optical φ coupling, in particular, 'because the RGB light-emitting diode 1400 can be instantaneously multiplexed (time multiplex) Therefore, the color wheel 7500 is no longer needed and is not shown in the file 29. [0077] According to an exemplary embodiment of the present invention, as shown in FIG. 30, the light source 9600 includes the light emitting diode 14 (8) mounted on the heat dissipation substrate 1410, The light recycling reflector 8100 and any lens system 9650 can be used as a general lighting device or in combination with various projectors as described herein, and the light emitting diode 1400 can be a single color or multiple colors of light emitting diode 1400' The lens system 9650 can be mounted such that the light source output can have a predetermined angle of divergence. According to the present invention, the lens system 9650 can be mounted such that the light source output is concentrated at a target 'such as the light of the same projector 9500 Tube 11〇〇 (Fig. 29). [0078] According to an exemplary embodiment of the present invention, the light source 96A may include an arbitrary diffuser 9610 that can be inserted before or after the lens system %50 to further adjust the light source output distribution. The diffuser 9610 can be a glass, a holographic astigmatism or a lens matrix. According to an exemplary embodiment of the invention, the light recovery reflector 81, the lens system 9650 and any diffuser 9610 can utilize plastic or Glass is integrated into one to ease assembly and reduce manufacturing costs. [0079] According to an exemplary embodiment of the invention, the lens system 965 can be collimated such that the light source 9600 can replace a standard luminaire having a parabolic reflector, and the lens system 9650 can be gathered in accordance with the teachings of the present invention. The configuration is such that the light source 9600 can replace a standard luminaire having an elliptical reflector. According to the perspective of the present invention, the lens system 965 can be dispersively configured to enable the light source 9600 to replace the standard luminaire for general spotlight applications. Yes, the lens system 9650 can additionally include an optional diffuser 9610 that can be further adjusted for optimal output. [0080] While the invention has been described in detail by the foregoing embodiments, the scope of the invention should be construed as being construed as being limited by the scope of the invention. It should still be covered by the patent of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS [0013] The embodiments listed in the embodiments are not intended to be limiting, and the present invention will be more fully understood by the accompanying drawings. And features have similar reference numbers. 1 is a perspective schematic view of a light recovery system including a light pipe 1100, in accordance with an exemplary embodiment of the present invention. 2(a) to 2(c) are schematic cross-sectional views showing various aspects of a light recovery system in accordance with an exemplary embodiment of the present invention. 3 is a cross-sectional view showing a light recovery system including a six-sided beam combiner and at least two light pipes, in accordance with an exemplary embodiment of the present invention. [0017] 圊4(a) to 4(c) are perspective schematic views of a diagonal surface of a six-sided beam combiner in accordance with an exemplary embodiment of the present invention, wherein the diagonal surface has a partially reflective coating A cloth or a reflective portion having a spatial distribution. 5 and FIG. 6 are schematic cross-sectional views showing the combination of the light recovery system of FIG. 3 and at least two light pipes of FIG. 1 according to an exemplary embodiment of the present invention. [0019] @7 is shown as a schematic cross-sectional view of a linear arrangement of optical elements of the light recovery system of Fig. 3 in accordance with an exemplary embodiment of the present invention. [0020] The light recovery system shown in FIGS. 6 and 7 according to an exemplary embodiment of the present invention includes at least three defects! The cross section of the light pipe shown is a circle. 21 201011442 [0021] FIG. 9 is a schematic perspective view of a light recovery system including at least four sets of light pipes of FIG. 1 and at least one six-sided beam combiner, in accordance with an exemplary embodiment of the present invention. [0022] FIG. 10 is a cross-sectional view showing a light recovery system including a beam combiner, a two-light tube, and two lamps having double parabolic reflectors as light sources, in accordance with an exemplary embodiment of the present invention. [0023] FIG. 11 illustrates a perspective view of a beam combiner in accordance with an exemplary embodiment of the present invention. 12 is a cross-sectional schematic view of a light recovery ❹ system including a reflective polarizing film according to an exemplary embodiment of the present invention. [0025] FIG. 13 is a cross-sectional schematic circle of the light recovery system of FIG. 7 including a reflective polarizing film, in accordance with an exemplary embodiment of the present invention. 14 is a plan view showing a shaving surface of a light recovery system including a tapered polarized light pipe system and a lamp having a double parabolic reflector, in accordance with an exemplary embodiment of the present invention. [0027] A 15a is a cross-sectional view of a tapered polarized light pipe system shown in FIG. 14 in accordance with an exemplary embodiment of the present invention. [(8)28] 圊15b is a schematic perspective view of a reflection aperture of the tapered polarized light pipe system shown in Fig. 15a according to an exemplary embodiment of the present invention. [0029] FIG. 10 is a cross-sectional view showing a light recovery system including at least two sets of tapered polarized light pipe systems and a beam combiner shown in FIG. 14 in accordance with an exemplary embodiment of the present invention. 17 is a cross-sectional schematic view of an LED projector incorporating a light recovery system in accordance with an exemplary embodiment of the present invention. [0031] FIG. 18 is a cross-sectional schematic view of an LED projector incorporating a light recovery system in accordance with an exemplary embodiment of the present invention. 22 201011442 [0032] FIG. 19 is a cross-sectional schematic view of an LED projector utilizing two sets of light emitting diodes in accordance with an exemplary embodiment of the present invention. [00331® 20 — For the miscellaneous payment—the schematic diagram of the two sets and four sets of light-emitting diodes mounted on a heat-dissipating substrate. [0034] @21 is a cross-sectional representation of a solid optical component in accordance with an exemplary embodiment of the present invention. 22 through 24 are schematic cross-sectional views of a light projector including a lenslet array group in accordance with an exemplary embodiment of the present invention. [0036] Figures 25 through 27 illustrate cross-sectional schematic circles of a light recovery system including a beam splitting/bonding (BSC) system in accordance with an exemplary embodiment of the present invention. 28(8) to 28(f) show different configurations of a light emitting diode wafer according to an exemplary embodiment of the present invention. 29 is a cross-sectional view showing an RGB continuous projector according to an exemplary embodiment of the present invention. [0039] FIG. 30 is a cross-sectional schematic view of a light source in accordance with an exemplary embodiment of the present invention. 6 [Main component symbol description] 1000 light recovery system 1100 ' LPX ' LPi light pipe ' LP3 ' lp4 1200 input terminal 1210 reflective input surface 1220 input hole 1230 wave plate 23 201011442

IN 輸入光 1300 輸出端 1310 反射輸出面 1320 輸出孔 OUT 輸出光 1400、LED!、 LED2發光二極體 1410 散熱基板 1500 光管 1600 反射式偏光膜 1610 部分反射輸出表面 2000 光回收系統 2100、2100a、 2100b光束組合器 2110 對角表面 2120 末端反射器 2130 輸出孔 2140 反射孔 2300 黏著劑 2400 三角形表面 2500 反射輸出面 3000 光回收系統 4000 光回收系統 4200 具有雙拋物面反射器的燈 4200a 第一光源之具有雙拋物面反射器的燈 4200b 第二光源之具有雙拋物面反射器的燈 TLP! 第一錐形光管 24 201011442IN input light 1300 output 1310 reflective output surface 1320 output hole OUT output light 1400, LED!, LED2 light-emitting diode 1410 heat-dissipating substrate 1500 light pipe 1600 reflective polarizing film 1610 partial reflection output surface 2000 light recovery system 2100, 2100a, 2100b Beam Combiner 2110 Diagonal Surface 2120 End Reflector 2130 Output Hole 2140 Reflection Hole 2300 Adhesive 2400 Triangle Surface 2500 Reflective Output Surface 3000 Light Recovery System 4000 Light Recovery System 4200 Lamp 4200a with Double Parabolic Reflector Double parabolic reflector lamp 4200b Second light source with double parabolic reflector lamp TLP! First tapered light tube 24 201011442

tlp2 第二錐形光管 5000 光回收系統 5100 錐形的偏極化光管系統 5200 反射表面 5210 波板 5300 反射孔 5310 傳遞開口 5400 反射式偏光膜 5500 流體 6000 光回收系統 6100 反射式偏光膜 6200 反射孔 7000 投影機 7100 投影引擎 7200 投影透鏡 7300 影像面板 7400 重放透鏡 7500 彩色輪 7600 集光透鏡 8000 投影機 8100 光回收反射器 8110 反射表面 8120 輸出孔 8200 小透鏡陣列組 A 平板 25 201011442 9000 9100 9110 9120 9125 9200 9500 9600 e 96i〇 9650 光回收系統 光束分開/結合系統 反射表面 部分反射介面 反射條紋 三角棱鏡 投影機 光源 散光器 透鏡系統Tlp2 second cone light tube 5000 light recovery system 5100 cone polarized light pipe system 5200 reflective surface 5210 wave plate 5300 reflection hole 5310 transmission opening 5400 reflective polarizing film 5500 fluid 6000 light recovery system 6100 reflective polarizing film 6200 Reflection hole 7000 Projector 7100 Projection engine 7200 Projection lens 7300 Image panel 7400 Replay lens 7500 Color wheel 7600 Light collecting lens 8000 Projector 8100 Light recovery reflector 8110 Reflecting surface 8120 Output hole 8200 Lens array group A Flat plate 25 201011442 9000 9100 9110 9120 9125 9200 9500 9600 e 96i〇9650 Light Recovery System Beam Separation/Combination System Reflective Surface Partial Reflection Interface Reflection Stripe Triangle Prism Projector Light Source Aperture Lens System

2626

Claims (2)

201011442 七、申請專利範圍: 1. 一種用以增加光輸出亮度之光回收裝置,包含: 一回收光源的光管包含一輸入端及一輸出端; 其中該回收光源的光管之該輸入端包含一輸入孔用以接收來自 一光源之一輸入光,及一反射輸入面; 其中該回收光源的光管之該輸出端包含一輸出孔用以輪出來自 該回收光源的光管的光,及一反射輸出面用以反射一部份朝著該輸 出端的光至該回收光源的光管的該輸入端;以及 其中該輸入孔傳遞部分被該反射輸出面反射的光之一部分至該 參 光源,以便被回收,且該反射輸入面反射部分被該反射輸出面反射 的光之剩餘部分至該回收光源的光管的該輸出端,從而藉由光回 收’而使離開該輸出孔之光的亮度增加。 2. 如請求項1所述之用以增加光輸出亮度之光回收裝置,其中該回收光 源的光管係為以下其中之一:一中空筆直光管、一中空錐形光管、一實 心筆直光管或一實心錐形光管。 3. 如請求項1所述之用以增加光輸出亮度之光回收裝置,其中該輸入孔 係為矩形或圓形,且該輸出孔係為圓形或長寬比為6:9或4:3的矩形。 • 4.如請求項1所述之用以增加光輸出亮度之光回收裝置,其中該回收光 源的光管的該反射輸出面及該反射輸出面之至少其中之一包含一波板。 5·如請求項1所述之用以増加光輸出亮度之光回收裝置,其中該光源係 為以下其中之-:耦合至一光管之一具有雙抛物面反射器的燈(dpr)、 -白色發光二極趙、-彩色發光二極體、來自一光管的輸出、受發光二 極體或雷射激發的磷光體之輸出、受發光二極艘或雷射激發的反轉 (up-converting)材料之輸出。 6.如請求項1所述之用以増加絲出亮度之光回收裝置更包含至少二 光源、至少二贼統的絲及六面的—光束組合^,其結合該至少二 27 201011442 回收光源的光管的輸出以提供單一輸出光束,其中該光束組合器的每一 面被抛光以提升全反射,使該光束組合器作為一波導。 7.如請求項6所述之用以增加光輸出亮度之光回收裝置,其中該光束組 合器包含被塗佈的一對角表面,以提供一部分反射表面。 8_如請求項7所述之用以增加光輸出亮度之光回收裝置,其中該光束組 合器的該對角表面包含具有空間分佈的反射部,以提供該部分反射表 面。 9·如請求項6所述之用以增加光輸出亮度之光回收裝置,更包含一空氣 間隙或低反射係數黏著劑在每一該回收光源的光管及該光束組合器之 ^ 間。 10. 如請求項6所述之用以增加光輸出亮度之光回收裝置,其中該光束 組合器包含一反射式偏光膜,以提供單一偏振光輸出光束。 11. 如請求項6所述之用以增加光輸出亮度之光回收裝置,每一該光源 被耗合至每一該回收光源的光管的該輸入孔;且其中每一該光源係為一 具有雙拋物面反射器(DPR)的燈耦合於一光管的一輸入端;且其中每一 該光源的該光管的一輸出端耦合至該回收光源的光管的該輸入孔。 12·如請求項11所述之用以增加光輸出亮度之光回收裝置,其中該光束 組合器包含一反射輸出面用以反射光,以及一輸出孔用以輸出光。 13. 如請求項6所述之用以増加光輸出亮度之光回收裝置,該光源的數 量為至少三個,該回收光源的光管的數量為至少三個;且其中該光束組 合器結合該至少三回收光源的光管的輸出以提供單一輸出光束。 14. 如請求項7所述之用以増加光輸出亮度之光回收裝置,該光源的數 量為至少四個’該回枚光源的光管的數量為至少四個,該光束組合器的 數量為至少二組,包括一第一光束組合器及一第二光束組合器;且其中 該第-光束組合器的對角表面係用以回收光,該第二光束組合器的對角 28 201011442 表面係用以由該光回收裝置輸出光;且其中該第一光束組合器及該第二 光束組合器的該對角表面係為彼此相異的。 15.如請求項1所述之用以增加光輸出亮度之光回枚裝置,更包含一反 射式偏光膜位於該回收光源的光管之該輸出端;且其中該回收光源的光 管包含具有共面的一第一錐形光管及一第二錐形光管,該第一錐形光管 及該第二錐形光管的共面填設有折射率匹配之黏著劑、環氧化物或流 體;且其中進入該第一錐形光管的該輸入光被耦合進入該第二錐形光 管;且其中該反射式偏光膜將未利用的偏振光反射回該光源用以回收, 藉此增加該光輸出的亮度。 Ο 16.如請求項15所述之用以增加光輸出亮度之光回收裝置,其中該光源 係為一具有雙拋物面反射器(DPR)的燈;且其中該反射式偏光膜將未利 用的偏振光反射回該具有雙拋物面反射器(DPR)的燈用以回收,藉此增 加該光輸出的亮度。 17·如請求項6所述之用以增加光輸出亮度之光回收裝置,更包含至少 一反射式偏光膜位於每一該回收光源的光管的該輸出端;且其中每一該 回收光源的光管包含共面的一第一錐形光管及一第二錐形光管,該第一 錐形光管及該第二錐形光管的共面填設有折射率匹配之黏著劑、環氧化 物或流體;且其中進入該第一錐形光管的該輸入光被搞合進入該第二錐 形光管;且其中每一該回收光源的光管的該反射式偏光膜將未利用的偏 振光反射回一相對應的光源用以回收,藉此增加該光輸出的亮度。 18· —種結合請求項1所述之光回收裝置的LED投影機,其中該光源 係為一白色發光二極體耦合至該回收光源的光管之該輸入孔;且更包含 一投影引擎、一影像面板、一投影透鏡、一重放透鏡及一彩色輪;且其 中該回收光源的光管之輸出係經由該重放透鏡、該影像面板及該彩色輪 耦合至該投影引擎,以藉由該投影透鏡提供一連續的投影彩色影像至一 螢幕。 29 201011442 19. 如請求項18所述之LED投影機’其中該影像面板係為一數位面鏡 (Digital Mirror Device,DMD)或一矽基液晶(liquid on silic〇n, LCOS)面板。 20. 如請求項18所述之LED投影機,更包含一光回收反射器將該白色 發光二極體所發射的光一部份反射回該白色發光二極艘,以回收光;且 其中該光回收反射器包含一輸出孔用以輸出光。 21. 如請求項20所述之LED投影機’其中該發光二極體包含複數個單 一色彩的發光二極髏或多種色彩的發光二極體;且其中該光回收反射器 反映(images)—發光二極體至另一發光二極體,藉以增加光回收效率。 22. 如請求項20所述之LED投影機’更包含一集光透鏡用以將離開該 光回收裝置之該輸出孔的光聚光至該回收光源的光管。 23. —種結合請求項1所述之光回收裝置的LED投影機,其中該光源 係為紅綠藍(RGB)發光二極體;且更包含一投影引擎、一影像面板、一 投影透鏡、一重放透鏡、一小透鏡陣列組(lenslet array)、及一光回收反 射器將該紅綠藍發光二極體所發射的光一部份反射回該紅綠藍發光二 極體,以回收光;且其中該光回收反射器包含一輸出孔用以輸出光且耦 合至該小透鏡陣列組;且其中該回收光源的光管之輸出係經由該重放透 ❹ 鏡、該影像面板及該小透鏡陣列組耦合至該投影引擎,用以及時多路傳 輸(multiplex)三種色彩的光,以藉由該投影透鏡提供一投影彩色影像至 一螢幕。 24. 如請求項20所述之LED投影機,其中該光回收反射器係為一具有 一輸出表面之實心光學元件;且其中該光回收反射器的該輸出表面一部 份具有反射塗佈以提供一反射表面,且該光回收反射器的該輸出表面的 剩餘部分係為可傳遞的以提供該輸出孔。 25. 如請求項1所述之用以增加光輸出亮度之光回收裝置,其中該光源 包含複數個發光二極體、一透鏡系統、及一光回收反射器將每一該發光 30 201011442 4· 二極體所發射的光一部份反射回該些發光二極體且耦合剩餘部分的光 至該透鏡系統以便輸出。 26. 如請求項25所述之用以增加光輸出亮度之光回收裝置,其中該透鏡 系統係被安裝使得光源輸出具有一預先決定的發散角。 27. 如請求項25所述之用以增加光輸出亮度之光回收裝置,其中該光源 包含一散光器放置於接收來自該光回收反射器之剩餘部分光的位置,或 放置於接收來自該透鏡系統之光輸出的位置》 28.如請求項1所述之用以增加光輸出亮度之光回收裝置,更包含: ^ 至少二光源,每一該光源係為發光二極體;及 六面的一光束分開/結合(BSC)系統,其所有表面被反射拋光以提 供反射表面且提升全反射(TIR),使得該光束分開/結合系統作為一波 導;及 其中該光束分開/結合系統反射來自每一發光二極體之第一部份 的光至該回收光源的光管的該輸出端以作為輸出,且反射來自每一 發光二極體之第二部分的光至其他的發光二極艘藉以回收,而來自 每一發光二極體之剩餘部分的光朝著該光束分開/結合系統的該反射 表面。 ❷ 29.如請求項28所述之用以增加光輸出亮度之光回收裝置,其中該光束 分開/結合系統包含一部分反射的對角介面。 30. 如s青求項28所述之用以增加光輸出亮度之光回收裝置,更包含一反 射式偏光膜位於該回收光源的光管的該輸出端,以提供一偏振光輸出。 31. 如請求項28所述之用以增加光輸出亮度之光回收裝置,更包含複數 個光束分開/結合系統;複數個發光二極體、及一三角形棱鏡之所有表面 被反射拋光以提升全反射(TIR)201011442 VII. Patent application scope: 1. A light recovery device for increasing light output brightness, comprising: a light source for recycling a light source comprising an input end and an output end; wherein the input end of the light pipe of the recovered light source comprises An input hole for receiving input light from a light source and a reflective input surface; wherein the output end of the light pipe of the recovery light source includes an output hole for rotating light from the light pipe of the recovery light source, and a reflective output surface for reflecting a portion of the light toward the output end to the input end of the light pipe of the recovery source; and wherein a portion of the light transmitted by the input aperture transmission portion is reflected to the reference source In order to be recovered, and the remaining portion of the light reflected by the reflective input surface is reflected to the output end of the light pipe of the recovery source, the brightness of the light exiting the output aperture is increased by the light recovery. 2. The light recovery device for increasing the brightness of light output according to claim 1, wherein the light pipe of the recovered light source is one of: a hollow straight light pipe, a hollow tapered light pipe, and a solid straight pipe. Light pipe or a solid conical light pipe. 3. The light recovery device of claim 1, wherein the input aperture is rectangular or circular, and the output aperture is circular or has an aspect ratio of 6:9 or 4: 3 rectangles. 4. The light recovery device for increasing the brightness of the light output according to claim 1, wherein at least one of the reflection output surface and the reflection output surface of the light pipe of the recovery light source comprises a wave plate. 5. The light recovery device of claim 1, wherein the light source is one of: - a lamp (dpr) coupled to one of the light pipes having a double parabolic reflector, - white Luminous dipole Zhao, - color LED, output from a light pipe, output of a phosphor excited by a light-emitting diode or laser, inverted by a light-emitting diode or laser (up-converting) The output of the material. 6. The light recovery device for extracting brightness according to claim 1 further comprising at least two light sources, at least two thieves and a six-sided beam combination, which combines the at least two 27 201011442 to recover the light source. The output of the light pipe provides a single output beam, wherein each side of the beam combiner is polished to enhance total reflection, making the beam combiner a waveguide. 7. The light recovery device of claim 6 for increasing the brightness of the light output, wherein the beam combiner comprises a pair of coated angular surfaces to provide a portion of the reflective surface. 8. The light recovery device of claim 7, wherein the diagonal surface of the beam combiner comprises a spatially distributed reflective portion to provide the partially reflective surface. 9. The light recovery device for increasing the brightness of light output according to claim 6, further comprising an air gap or a low reflection coefficient adhesive between each of the light pipes of the recovered light source and the beam combiner. 10. The light recovery device of claim 6 for increasing the brightness of the light output, wherein the beam combiner comprises a reflective polarizing film to provide a single polarized light output beam. 11. The light recovery device of claim 6, wherein each of the light sources is consumed by the input hole of each of the light pipes of the recovered light source; and each of the light sources is one A lamp having a double parabolic reflector (DPR) is coupled to an input of a light pipe; and an output of the light pipe of each of the light sources is coupled to the input aperture of the light pipe of the recovery source. 12. The light recovery device of claim 11 for increasing the brightness of the light output, wherein the beam combiner includes a reflective output surface for reflecting light and an output aperture for outputting light. 13. The light recovery device of claim 6, wherein the number of the light sources is at least three, and the number of light pipes of the recovered light source is at least three; and wherein the beam combiner combines At least three recover the output of the light pipe of the light source to provide a single output beam. 14. The light recovery device of claim 7, wherein the number of the light sources is at least four 'the number of light pipes of the secondary light source is at least four, and the number of the light combiners is At least two groups, including a first beam combiner and a second beam combiner; and wherein a diagonal surface of the first beam combiner is used to recover light, and a diagonal of the second beam combiner 28 201011442 surface system For outputting light by the light recycling device; and wherein the diagonal surfaces of the first beam combiner and the second beam combiner are different from each other. 15. The optical rewrit device for increasing the brightness of light output according to claim 1, further comprising a reflective polarizing film at the output end of the light pipe of the recovery light source; and wherein the light pipe of the recovery light source comprises a first tapered light pipe and a second tapered light pipe coplanar, the first tapered light pipe and the second tapered light pipe are coplanarly filled with an index matching adhesive, epoxide Or a fluid; and wherein the input light entering the first tapered light pipe is coupled into the second tapered light pipe; and wherein the reflective polarizing film reflects unused polarized light back to the light source for recycling, This increases the brightness of the light output. The light recovery device for increasing the brightness of light output according to claim 15, wherein the light source is a lamp having a double parabolic reflector (DPR); and wherein the reflective polarizing film will have unused polarization Light is reflected back to the lamp with a double parabolic reflector (DPR) for recycling, thereby increasing the brightness of the light output. The light recovery device for increasing the brightness of the light output according to claim 6, further comprising at least one reflective polarizing film at the output end of the light pipe of each of the recovered light sources; and each of the recovered light sources The light pipe comprises a first conical light pipe and a second conical light pipe coplanar, the coplanar surface of the first conical light pipe and the second conical light pipe are filled with an index matching adhesive, An epoxide or a fluid; and wherein the input light entering the first tapered light pipe is engaged into the second tapered light pipe; and wherein the reflective polarizing film of each of the light pipes of the recovered light source is not The utilized polarized light is reflected back to a corresponding source for recycling, thereby increasing the brightness of the light output. The LED projector of the light recovery device of claim 1, wherein the light source is a white light emitting diode coupled to the input hole of the light pipe of the recovery light source; and further comprising a projection engine, An image panel, a projection lens, a reproducing lens and a color wheel; and wherein the output of the light pipe of the recovered light source is coupled to the projection engine via the reproducing lens, the image panel and the color wheel, The projection lens provides a continuous projected color image to a screen. 29. The LED projector of claim 18, wherein the image panel is a Digital Mirror Device (DMD) or a liquid on silic(R) panel. 20. The LED projector of claim 18, further comprising a light recycling reflector that reflects a portion of the light emitted by the white light emitting diode back to the white light emitting diode to recover light; and wherein the light The recycling reflector includes an output aperture for outputting light. 21. The LED projector of claim 20, wherein the light emitting diode comprises a plurality of single color light emitting diodes or a plurality of color light emitting diodes; and wherein the light recycling reflector reflects - Light-emitting diode to another light-emitting diode to increase light recovery efficiency. 22. The LED projector of claim 20, further comprising a concentrating lens for concentrating light exiting the output aperture of the light recovery device to the light pipe of the recovery source. The LED projector of the light recovery device of claim 1, wherein the light source is a red, green and blue (RGB) light emitting diode; and further comprising a projection engine, an image panel, a projection lens, a reproducing lens, a lenslet array, and a light recycling reflector partially reflecting the light emitted by the red, green and blue light emitting diodes back to the red, green and blue light emitting diode to recover light And wherein the light recovery reflector comprises an output aperture for outputting light and coupled to the lenslet array group; and wherein the output of the light source of the recovery source is via the playback lens, the image panel and the small A lens array set is coupled to the projection engine to multiplex three colors of light in time to provide a projected color image to a screen by the projection lens. 24. The LED projector of claim 20, wherein the light recycling reflector is a solid optical component having an output surface; and wherein the output surface of the light recycling reflector has a reflective coating A reflective surface is provided and the remainder of the output surface of the light recycling reflector is transferable to provide the output aperture. 25. The light recovery device for increasing brightness of light output according to claim 1, wherein the light source comprises a plurality of light emitting diodes, a lens system, and a light recovery reflector for each of the light sources 30 201011442 4· The light emitted by the diode is partially reflected back to the light emitting diodes and the remaining portion of the light is coupled to the lens system for output. 26. The light recovery device of claim 25 for increasing the brightness of the light output, wherein the lens system is mounted such that the light source output has a predetermined divergence angle. 27. The light recovery device of claim 25, wherein the light source comprises a diffuser placed at a position to receive light from the remaining portion of the light recovery reflector, or placed in the receiving from the lens. The position of the light output of the system is as follows: 28. The light recovery device for increasing the brightness of the light output according to claim 1, further comprising: ^ at least two light sources, each of which is a light emitting diode; and six sides a beam splitting/bonding (BSC) system in which all surfaces are reflectively polished to provide a reflective surface and enhance total reflection (TIR) such that the beam splitting/bonding system acts as a waveguide; and wherein the beam splitting/combining system reflects from each Light from a first portion of a light-emitting diode to the output end of the light pipe of the recovered light source as an output, and reflecting light from the second portion of each light-emitting diode to other light-emitting diodes Recycling, while light from the remainder of each of the light-emitting diodes is split/coupled to the reflective surface of the system. The light recovery device of claim 28, wherein the beam splitting/bonding system comprises a portion of the reflective diagonal interface. 30. The light recovery device of claim 28, wherein the reflective light polarizing film is disposed at the output end of the light pipe of the recovered light source to provide a polarized light output. 31. The light recovery device for increasing brightness of light output according to claim 28, further comprising a plurality of beam splitting/combining systems; all surfaces of the plurality of light emitting diodes and a triangular prism are polished and polished to enhance the whole Reflection (TIR) 32· - LED投影器,包含一發光二極體以提供輸出光、一投影引擎、一 投影透鏡、一影像面板、一小透鏡陣列組、一重放透鏡、一彩色輪一 31 201011442 ❹32· - LED projector comprising a light emitting diode for providing output light, a projection engine, a projection lens, an image panel, a lenslet array group, a playback lens, and a color wheel 31 201011442 ❹ 出該輸出光的一部份至該小透鏡陣列組且將該輸 尤_餘#反㈣該發光二鋪,賴收光;且w該透鏡陣列組 及時輕合不同色彩的光且經由該彩色輪、該重放透鏡及該影像面板至該 投影引擎’以藉由該投影透鏡提供一連續的投影彩色影像至一螢幕。 33.如請求項32所述之LK)投影器,其中該小透鏡陣列組係被配置為 圓形陣列或矩形陣列。 32And outputting a portion of the output light to the lenslet array group and the light-emitting diodes are disposed on the light-emitting diodes; and the lens array group is lightly combined with light of different colors and via the color The wheel, the playback lens and the image panel to the projection engine 'by providing a continuous projected color image to the screen by the projection lens. 33. The LK) projector of claim 32, wherein the lenslet array assembly is configured as a circular array or a rectangular array. 32
TW098127550A 2008-08-15 2009-08-17 A recycling system and method for increasing brightness using light pipes with one or more light sources, and a projector incorporating the same TWI493273B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US18913908P 2008-08-15 2008-08-15
US20442109P 2009-01-07 2009-01-07
US12/321,471 US20090128781A1 (en) 2006-06-13 2009-01-20 LED multiplexer and recycler and micro-projector incorporating the Same
US16122809P 2009-03-18 2009-03-18
US16824909P 2009-04-10 2009-04-10

Publications (2)

Publication Number Publication Date
TW201011442A true TW201011442A (en) 2010-03-16
TWI493273B TWI493273B (en) 2015-07-21

Family

ID=41669363

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098127550A TWI493273B (en) 2008-08-15 2009-08-17 A recycling system and method for increasing brightness using light pipes with one or more light sources, and a projector incorporating the same

Country Status (7)

Country Link
EP (1) EP2321693A4 (en)
JP (1) JP5875865B2 (en)
KR (1) KR101694191B1 (en)
CN (1) CN102124397B (en)
CA (1) CA2732358A1 (en)
TW (1) TWI493273B (en)
WO (1) WO2010019945A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281638B2 (en) 2015-09-07 2019-05-07 Delta Electronics, Inc. Wavelength converting module and light-source module applying the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102314064A (en) * 2011-08-25 2012-01-11 北京亚视创业科技发展有限公司 Composite light tunneling used for projector (projection apparatus)
TWI450019B (en) 2011-10-06 2014-08-21 Acer Inc Illumination system and projection apparatus
CN103309134B (en) * 2012-03-15 2016-08-31 鸿富锦精密工业(深圳)有限公司 Projection arrangement
JPWO2013157211A1 (en) * 2012-04-17 2015-12-21 日本電気株式会社 Projection device
TW201405048A (en) * 2012-07-19 2014-02-01 瓦維安股份有限公司 Phosphor-based lamps for projection display
JP2018505514A (en) * 2014-12-02 2018-02-22 イノベーションズ イン オプティクス, インコーポレイテッド High radiance light emitting diode light engine
JP6749084B2 (en) * 2015-10-14 2020-09-02 株式会社ユーテクノロジー LED lighting device
JP6659240B2 (en) * 2015-06-01 2020-03-04 株式会社ユーテクノロジー LED lighting device
JP6653450B2 (en) * 2016-06-29 2020-02-26 パナソニックIpマネジメント株式会社 Light source device and lighting device
CN107044618B (en) * 2017-02-22 2020-05-05 横店集团得邦照明股份有限公司 Full-spectrum LED illuminating lamp suitable for museum
US11656474B2 (en) 2019-01-15 2023-05-23 Sony Group Corporation Collimator lens, light source device, and image display device
CN111413805A (en) * 2020-05-27 2020-07-14 史晓庆 Reflective laser lighting structure
CN114859637A (en) * 2021-02-04 2022-08-05 苏州佳世达光电有限公司 Projection device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400426A (en) * 1993-08-19 1995-03-21 Siecor Corporation Fiber optic mechanical splice having grooves for dissipating index matching material impurities
GB2340619A (en) * 1998-08-11 2000-02-23 Sharp Kk Liquid crystal projector with non-uniform lenslet arrays
US7052150B2 (en) * 1999-12-30 2006-05-30 Texas Instruments Incorporated Rod integrator
US6565235B2 (en) * 2000-10-26 2003-05-20 Cogent Light Technologies Inc. Folding an arc into itself to increase the brightness of an arc lamp
JP2003202523A (en) * 2001-11-02 2003-07-18 Nec Viewtechnology Ltd Polarization unit, polarization illumination device and projection type display device using the illumination device
JP3871940B2 (en) * 2002-02-15 2007-01-24 株式会社リコー Illumination device and display device
AU2003243590A1 (en) * 2002-06-21 2004-01-06 Wavien, Inc. Multiple lamp illumination system
US7929214B2 (en) * 2002-11-07 2011-04-19 Sony Deutschland Gmbh Illumination arrangement for a projection system
US7475992B2 (en) * 2003-06-10 2009-01-13 Abu-Ageel Nayef M Light recycler and color display system including same
JP2005091491A (en) * 2003-09-12 2005-04-07 Seiko Epson Corp Lighting device and projection display device
JP4677724B2 (en) * 2004-02-17 2011-04-27 セイコーエプソン株式会社 Projection type display device and control method of projection type display device
JP4144532B2 (en) * 2004-02-23 2008-09-03 セイコーエプソン株式会社 Illumination device and projection display device
US7261453B2 (en) * 2005-01-25 2007-08-28 Morejon Israel J LED polarizing optics for color illumination system and method of using same
EP1846799A4 (en) * 2005-02-09 2011-01-26 Inc Wavien Etendue efficient combination of multiple light sources
JP4910315B2 (en) * 2005-06-20 2012-04-04 セイコーエプソン株式会社 Display device and light emitting device
US20070284565A1 (en) * 2006-06-12 2007-12-13 3M Innovative Properties Company Led device with re-emitting semiconductor construction and optical element
EP2032895B1 (en) * 2006-06-13 2019-10-09 Meadowstar Enterprises, Ltd. Illumintion system and method for recycling light to increase the brightness of the light source
WO2008027692A2 (en) * 2006-08-02 2008-03-06 Abu-Ageel Nayef M Led-based illumination system
KR20080021426A (en) * 2006-09-04 2008-03-07 삼성테크윈 주식회사 Micro projector
JP2008209440A (en) * 2007-02-23 2008-09-11 Seiko Epson Corp Optical device and projector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281638B2 (en) 2015-09-07 2019-05-07 Delta Electronics, Inc. Wavelength converting module and light-source module applying the same

Also Published As

Publication number Publication date
KR101694191B1 (en) 2017-01-09
WO2010019945A1 (en) 2010-02-18
TWI493273B (en) 2015-07-21
CN102124397B (en) 2015-08-19
CN102124397A (en) 2011-07-13
EP2321693A4 (en) 2014-04-09
KR20110044295A (en) 2011-04-28
JP5875865B2 (en) 2016-03-02
CA2732358A1 (en) 2010-02-18
JP2012500413A (en) 2012-01-05
EP2321693A1 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
TW201011442A (en) A recycling system and method for increasing brightness using light pipes with one or more light sources, and a projector incorporating the same
US9904152B2 (en) Solid-state light source device
JP5456688B2 (en) Light source device and projection display device used in projection system
US8317331B2 (en) Recycling system and method for increasing brightness using light pipes with one or more light sources, and a projector incorporating the same
KR20100103697A (en) Light multiplexer and recycler, and micro-projector incorporating the same
JP2012027052A (en) Light source device and projection type display apparatus using the same
JP2012008303A (en) Light source device and projection type display device using the same
JP2010520498A (en) Color synthesizer for solid-state light sources
JP2011248327A (en) Illumination device and projection type display apparatus provided therewith
CN109426050B (en) Wavelength conversion element, light source device, and projector
JP2016153878A (en) Light source device and projection-type display device
US8085471B2 (en) Light integrating device for an illumination system and illumination system using the same
CN113671781B (en) Light emitting unit, light source system, and laser projection apparatus
JP5150469B2 (en) Optical unit and projection type liquid crystal display device using the same
JP5515200B2 (en) Illumination optical system and projector apparatus
JP2011112753A (en) Light source device and projector
JP2006337428A (en) Illuminating optical system, optical engine and projection image display apparatus
JP5375581B2 (en) Lighting device and projector
TWI501019B (en) Light multiplexer and recycler, and micro-projector incorporating the same
CN112859499B (en) Light source device and projector
CN115128892B (en) Light source device and projector
JP7108901B2 (en) Lighting device and projection display device
WO2022188307A1 (en) Laser light path system and projection device
JP2008102168A (en) Projector
JP2007249136A (en) Illuminator and projector

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees