JP6749084B2 - LED lighting device - Google Patents

LED lighting device Download PDF

Info

Publication number
JP6749084B2
JP6749084B2 JP2015202721A JP2015202721A JP6749084B2 JP 6749084 B2 JP6749084 B2 JP 6749084B2 JP 2015202721 A JP2015202721 A JP 2015202721A JP 2015202721 A JP2015202721 A JP 2015202721A JP 6749084 B2 JP6749084 B2 JP 6749084B2
Authority
JP
Japan
Prior art keywords
led
mirror
optical fiber
opening
plano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015202721A
Other languages
Japanese (ja)
Other versions
JP2017076492A (en
Inventor
修司 鹿野
修司 鹿野
堅治 梅津
堅治 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
U-technology Co.,Ltd.
Original Assignee
U-technology Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U-technology Co.,Ltd. filed Critical U-technology Co.,Ltd.
Priority to JP2015202721A priority Critical patent/JP6749084B2/en
Priority to US15/147,047 priority patent/US9784899B2/en
Publication of JP2017076492A publication Critical patent/JP2017076492A/en
Application granted granted Critical
Publication of JP6749084B2 publication Critical patent/JP6749084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内視鏡等に用いられるLED照明装置に関する。 The present invention relates to an LED lighting device used for an endoscope or the like.

内視鏡の照明光は光ファイバで光源から先端まで導かれ照射される。光源は100〜300W程度のキセノンランプが多く使用され、直径1〜3mmの光ファイバに対して200〜300lm/mm以上の入力が要求される。近年、長寿命化や高効率化の為、光源にLED照明装置を採用する取り組みが行われている。(特許文献1,2,3参照) The illumination light of the endoscope is guided from the light source to the tip by an optical fiber and is irradiated. A xenon lamp of about 100 to 300 W is often used as a light source, and an input of 200 to 300 lm/mm 2 or more is required for an optical fiber having a diameter of 1 to 3 mm. In recent years, efforts have been made to adopt an LED lighting device as a light source in order to prolong the life and improve the efficiency. (See Patent Documents 1, 2, and 3)

特開2009−198736号公報JP, 2009-198736, A 特開2007−148418号公報JP, 2007-148418, A 特表2013−515346号公報Special table 2013-515346 gazette

特許文献1は、LEDの出力光をレンズ光学系で光ファイバ端面に結像する照明装置および内視鏡装置に関するもので、光学系の入射NA(開口数:Numerical Aperture)と出射NAの最適化について記載している。この方式では、理想光学系を用いLED全光束を光ファイバ端面に光ファイバNAと同じNAで集光した場合、エタンデュ保存則より、
LED径xLEDNA=光ファイバ径x光ファイバNA
の関係が成り立つ。
Patent Document 1 relates to an illuminating device and an endoscope device that image the output light of an LED on an end surface of an optical fiber by a lens optical system, and optimizes an incident NA (Numerical Aperture) and an outgoing NA of the optical system. Is described. In this method, when the entire optical flux of the LED is focused on the end face of the optical fiber with the same NA as the optical fiber NA using the ideal optical system, according to the etendue conservation law,
LED diameter x LEDNA = optical fiber diameter x optical fiber NA
The relationship is established.

発光角度分布がランベルト分布のチップLEDでは、LEDNA=1であるため、
LED径=光ファイバ径x光ファイバNA
となる。したがって、例えば、直径1mmのLEDの全光束を直径1.67mm、NA0.6の光ファイバに入射することができる。
In a chip LED with a Lambertian distribution of light emission angles, LEDNA=1
LED diameter = optical fiber diameter x optical fiber NA
Becomes Therefore, for example, the entire luminous flux of the LED having a diameter of 1 mm can be incident on the optical fiber having a diameter of 1.67 mm and NA of 0.6.

しかしながら、特許文献1に記載の発明では、輝度100Mcd/mのLEDを用いた場合、光ファイバ入力は113lm/mmになり、キセノンランプと比較すると少ないという課題があった。 However, the invention described in Patent Document 1 has a problem that when an LED having a brightness of 100 Mcd/m 2 is used, the optical fiber input is 113 lm/mm 2 , which is smaller than that of a xenon lamp.

また、特許文献2の図7は、LEDと光ファイバを突き合わせるものであり、LEDと光ファイバの形状が同じであれば光ファイバ端面には全光束が一旦入射するが、光ファイバのNA以上の光線は光ファイバの外に漏れ出し、出射端まで導光されない。この方法の入射効率は、光ファイバNA=0.6の場合、
光ファイバ入力/LED出力=光ファイバNA=0.6=0.36
となる。
Further, in FIG. 7 of Patent Document 2, an LED and an optical fiber are butted against each other. If the LED and the optical fiber have the same shape, the entire light flux is once incident on the end face of the optical fiber. Rays leak out of the optical fiber and are not guided to the emission end. The incident efficiency of this method is as follows:
Optical fiber input/LED output=optical fiber NA 2 =0.6 2 =0.36
Becomes

したがって、特許文献2に記載の発明では、輝度100Mcd/mのLEDを用いた場合、光ファイバ入力は113lm/mmになり、キセノンランプと比較すると少ないという課題があった。 Therefore, the invention described in Patent Document 2 has a problem that when an LED with a brightness of 100 Mcd/m 2 is used, the optical fiber input is 113 lm/mm 2 , which is less than that of a xenon lamp.

さらに、特許文献3の図2は、LED光の一部を半球ミラーでLEDに戻し、LEDの輝度を上げる方法としては有効であるが、LED形状、配置、集光レンズ等に問題があるため、効率を低下させてしまうという課題があった。 Further, FIG. 2 of Patent Document 3 is effective as a method of returning a part of the LED light to the LED by a hemispherical mirror to increase the brightness of the LED, but there is a problem in the LED shape, arrangement, condenser lens, etc. However, there was a problem of reducing efficiency.

本発明は、LEDと半球ミラーとを備えるLED照明装置であって、前記LEDは、その発光部が平面且つ点対称形状を有し、発光角度分布がランベルト分布で、発光面が拡散面であり、前記半球ミラーは、その内面が反射面を形成し、中心に開口部があり、該反射面が前記LEDに向けて配置され、前記LEDの法線と前記半球ミラーの光軸が一致し、前記LEDと前記半球ミラーの間隔は前記半球ミラーの曲率半径以下であり、前記半球ミラーの前記開口部の寸法が照射寸法にほぼ等しく、前記LED寸法をdLED、前記LEDと前記半球ミラーの間隔をt、照射NAをNAobjectとした時に、sin(tan-1dLED/2t)≒NAobjectが成り立つことを特徴とする。 The present invention is an LED lighting device including an LED and a hemispherical mirror, wherein the LED has a light emitting portion having a planar and point-symmetrical shape, a light emitting angle distribution is a Lambertian distribution, and a light emitting surface is a diffusion surface. , The hemispherical mirror has a reflective surface on the inner surface thereof, has an opening in the center, the reflective surface is arranged toward the LED, the normal line of the LED and the optical axis of the hemispherical mirror match, The distance between the LED and the hemispherical mirror is less than or equal to the radius of curvature of the hemispherical mirror, the size of the opening of the hemispherical mirror is approximately equal to the irradiation size, the LED size is dLED, and the distance between the LED and the hemispherical mirror is When t and the irradiation NA are NAobject, sin(tan −1 dLED/2t)≈NAobject is established.

また、本発明は、LEDと平凸レンズミラーとを備えるLED照明装置であって、前記LEDは、その発光部が平面且つ点対称形状を有し、発光角度分布はランベルト分布で、発光面が拡散面であり、前記平凸レンズミラーは、その凸面内面周辺が反射面を形成し、中心に該反射面の開口部があり、前記LEDと前記平凸レンズミラーの平面側が向かい合って平行に間隔を置いて配置され、前記LEDの法線と前記平凸レンズミラーの光軸が一致し、前記LEDと前記平凸レンズミラーの球面との間隔は該平凸レンズミラーの曲率半径以下であり、前記平凸ミラーの前記開口部の寸法が照射寸法にほぼ等しく、前記LED寸法をdLED、前記LEDと前記平凸レンズミラーの間隔をt、前記平凸レンズミラーの屈折率をn、照射NAをNAobjectとした時に、nsin(tan-1dLED/2t)≒NAobjectが成り立つことを特徴とする Further, the present invention is an LED lighting device including an LED and a plano-convex lens mirror, wherein the LED has a light emitting portion having a planar and point-symmetrical shape, a light emitting angle distribution is a Lambertian distribution, and a light emitting surface is diffused. In the plano-convex lens mirror, the convex inner surface periphery forms a reflection surface, and the opening of the reflection surface is formed at the center, and the flat surface sides of the LED and the plano-convex lens mirror face each other and are spaced in parallel. The normal line of the LED is aligned with the optical axis of the plano-convex lens mirror, and the distance between the LED and the spherical surface of the plano-convex lens mirror is less than or equal to the radius of curvature of the plano-convex lens mirror. When the size of the opening is almost equal to the irradiation size, the LED size is dLED, the distance between the LED and the plano-convex lens mirror is t, the refractive index of the plano-convex lens mirror is n, and the irradiation NA is NAobject, nsin(tan -1 dLED/2t)≒NAobject

さらに、本発明は、前記ミラー開口部の位置に光ファイバを配置し、前記照射NAが光ファイバNAにほぼ等しいことを特徴とする。 Furthermore, the present invention is characterized in that an optical fiber is arranged at the position of the mirror opening, and the irradiation NA is substantially equal to the optical fiber NA.

本発明によれば、LED出力を変えることなく、入力の大きなLED照明装置を実現することができる等、種々の優れた効果を得ることができる。 According to the present invention, it is possible to obtain various excellent effects such as realizing an LED lighting device having a large input without changing the LED output.

本発明の第1の実施形態に係るLED照明装置における光線追跡図である。FIG. 3 is a ray tracing diagram in the LED lighting device according to the first embodiment of the present invention. 従来の光ファイバ用LED照明装置における光線追跡図である。It is a ray tracing figure in the conventional LED illuminating device for optical fibers. 本発明の第2の実施形態に係るLED照明装置における光線追跡図である。It is a ray tracing figure in the LED illuminating device which concerns on the 2nd Embodiment of this invention. 本発明の第1の実施形態に係るLED照明装置においてNA0.6の光ファイバ入力の計算値である。It is a calculated value of an optical fiber input of NA 0.6 in the LED lighting device according to the first embodiment of the present invention. 本発明の第1の実施形態に係るLED照明装置においてNA0.2の光ファイバ入力の計算値である。It is a calculated value of an optical fiber input of NA 0.2 in the LED lighting device according to the first embodiment of the present invention. 本発明の第1の実施形態に係るLED照明装置におけるモンテカルロ・シミュレーション光線追跡図である。FIG. 3 is a Monte Carlo simulation ray tracing diagram in the LED lighting device according to the first embodiment of the present invention. 本発明の第1の実施形態に係るLED照明装置における照射面の照度分布図である。It is an illuminance distribution chart of the irradiation surface in the LED lighting device according to the first embodiment of the present invention. 本発明の第1の実施形態に係るLED照明装置におけるの遠視野照度分布図である。FIG. 3 is a far-field illuminance distribution diagram in the LED lighting device according to the first embodiment of the present invention. 本発明の第2の実施形態に係るLED照明装置においてNA0.6の光ファイバ入力の計算値である。It is a calculated value of an optical fiber input of NA 0.6 in the LED lighting device according to the second embodiment of the present invention. 本発明の第2の実施形態に係るLED照明装置におけてNA0.2の光ファイバ入力の計算値であるIt is a calculated value of an optical fiber input of NA 0.2 in the LED lighting device according to the second embodiment of the present invention. 本発明の第2の実施形態に係るLED照明装置におけるモンテカルロ・シミュレーション光線追跡図である。It is a Monte Carlo simulation ray tracing figure in the LED lighting apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るLED照明装置における照射面の照度分布図である。It is an illuminance distribution chart of the irradiation surface in the LED lighting device according to the second embodiment of the present invention. 本発明の第2の実施形態に係るLED照明装置におけるの遠視野照度分布図である。It is a far-field illuminance distribution chart in the LED lighting device which concerns on the 2nd Embodiment of this invention. 本発明に係るLED照明装置の断面図である。It is sectional drawing of the LED illuminating device which concerns on this invention. 本発明の第3の実施形態に係るLED照明装置における光線追跡図である。It is a ray tracing figure in the LED lighting apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係るLED照明装置における照度分布のモンテカルロシミュレーション結果を示す図である。It is a figure which shows the Monte Carlo simulation result of the illuminance distribution in the LED lighting apparatus which concerns on the 3rd Embodiment of this invention.

以下、図面を参照しつつ、本発明の実施形態に係るLED照明装置について詳細に説明する。 Hereinafter, an LED lighting device according to an embodiment of the present invention will be described in detail with reference to the drawings.

まず、図1及び図2により、本発明の第1の実施形態に係るLED照明装置における光線追跡図と従来の光ファイバ用LED照明装置における光線追跡図について説明する。 First, referring to FIGS. 1 and 2, a ray tracing diagram in the LED lighting device according to the first embodiment of the present invention and a ray tracing diagram in the conventional LED lighting device for optical fiber will be described.

図2は従来の突合せ結合光ファイバ用LED光源の光線追跡図を示している。
LED1の直径:dLEDが4mm、光ファイバ8の直径:dfiberが3mm、光ファイバNA:NAfiberが0.6であり、LED1と光ファイバ8の間隔は十分小さく、LED1の法線と光ファイバ8の光軸は一致して配置されている。
FIG. 2 shows a ray tracing diagram of a conventional LED light source for a butt-coupling optical fiber.
The diameter of LED1: dLED is 4 mm, the diameter of optical fiber 8: dfiber is 3 mm, and the optical fiber NA: NAfiber is 0.6. The distance between LED1 and optical fiber 8 is sufficiently small, and the normal line of LED1 and optical fiber 8 are The optical axes are arranged so as to coincide with each other.

光ファイバ径より外側でLED1から出射した光線62は光ファイバ1の端面2に入射せず、光ファイバで導光されることは無い。光ファイバ径よりも内側でLED1から出射した光線は光ファイバ8の端面に入射するが、光ファイバNAよりも大きなNAで入射した光線6は光ファイバ8の側面より外部に出てしまい、光ファイバ8の出射端9まで導光されることは無い。導光される光線5は光ファイバ径よりも内側から出射し、光ファイバ8のNA以下のNAで光ファイバ8に入射した光線である。 The light ray 62 emitted from the LED 1 outside the diameter of the optical fiber does not enter the end face 2 of the optical fiber 1 and is not guided by the optical fiber. The light beam emitted from the LED 1 inside the optical fiber diameter is incident on the end face of the optical fiber 8, but the light beam 6 incident with a larger NA than the optical fiber NA is emitted outside from the side surface of the optical fiber 8. The light is not guided to the exit end 9 of the light source 8. The guided light beam 5 is a light beam that is emitted from the inner side of the optical fiber diameter and that is incident on the optical fiber 8 with an NA equal to or less than the NA of the optical fiber 8.

従って、この光学系の効率は
光ファイバ8で導光される光量/LED1の出力光量
=(dfiber/dLED)^2xNAfiber^2
=(3/4)^2x0.6^2=0.203
となる。
Therefore, the efficiency of this optical system is as follows: light quantity guided by the optical fiber 8/output light quantity of LED1=(dfiber/dLED)^2xNAfiber^2
=(3/4)^2x0.6^2=0.203
Becomes

本発明はLED1と光ファイバ8の間隔を最適化し入射NAと光ファイバ8のNAを一致させ、更に光ファイバ8で導光出来ない大きなNAの光をミラー3でLED1に戻し、LED1の拡散効果を利用して光ファイバ8で導光出来るように変換することにより光ファイバ8への光の入力を増加させるものである。 The present invention optimizes the distance between the LED 1 and the optical fiber 8 to make the incident NA and the NA of the optical fiber 8 coincident with each other, and returns light with a large NA that cannot be guided by the optical fiber 8 to the LED 1 by the mirror 3 to diffuse the LED 1. The light input to the optical fiber 8 is increased by converting the light so that the light can be guided by the optical fiber 8.

図1は本発明の第1の実施形態に係るLED照明装置4の光線追跡図を示している。発光部が平面且つ点対称形状、発光角度分布がランベルト分布で、発光面が拡散面であるLED1と、内面が反射面3aを形成し、中心に開口部3bがある半球ミラー3からなる光源装置で、反射面3aがLED1に向けて配置され、LED1の法線と半球ミラー3の光軸が一致し、LED1と半球ミラー3の間隔は半球ミラー3の曲率半径以下であり、半球ミラー3の開口部3bに光ファイバ8を配置し、半球ミラー3の開口部径が光ファイバ径に等しい。 FIG. 1 shows a ray tracing diagram of an LED lighting device 4 according to a first embodiment of the present invention. A light source device including a light emitting portion having a planar and point-symmetrical shape, a light emitting angle distribution having a Lambertian distribution, a light emitting surface being a diffusing surface, and a hemispherical mirror 3 having an inner surface forming a reflecting surface 3a and an opening 3b in the center. Then, the reflection surface 3a is arranged toward the LED 1, the normal line of the LED 1 and the optical axis of the hemispherical mirror 3 coincide with each other, and the distance between the LED 1 and the hemispherical mirror 3 is less than or equal to the radius of curvature of the hemispherical mirror 3, The optical fiber 8 is arranged in the opening 3b, and the diameter of the opening of the hemispherical mirror 3 is equal to the diameter of the optical fiber.

LED1から出射し、半球ミラー3の開口部3bを通る光線は、直接光ファイバ8の端面に入射する。これらの光線の内、光ファイバ8で導光される光は光ファイバ8のNA以下のNAで入射しなければならない。図1でLEDの上端から光ファイバ中心に向かう光線の場合、光ファイバ8の光軸となす角度θの正弦が光ファイバ8のNA以下でなければ導光されない。 The light beam emitted from the LED 1 and passing through the opening 3b of the hemispherical mirror 3 is directly incident on the end face of the optical fiber 8. Of these light rays, the light guided by the optical fiber 8 must enter with an NA equal to or less than the NA of the optical fiber 8. In the case of a light beam traveling from the upper end of the LED to the center of the optical fiber in FIG. 1, the light is not guided unless the sine of the angle θ with the optical axis of the optical fiber 8 is equal to or smaller than the NA of the optical fiber 8.

すなわち、以下の関係が成り立つ。
sinθ=sin(tan-1dLED/2t)≦NAfiber
ここで、tはLED1と半球ミラー3の中心との間隔である。
この条件ではLED1の上端から光ファイバ8の下端に入射した光線61の入射NAは光ファイバNAより大きくなり導光されない。逆にLED1の上端から出射し、光ファイバ8の上端に入射した光線51は光ファイバ8のNAによる導光制限に十分余裕がある。LED1から出射する全ての光線について高い入射効率を得るには、
sin(tan-1dLED/2t)≒NAfiber
であることが望ましい。
That is, the following relationship holds.
sin θ = sin(tan -1 dLED/2t) ≤ NA fiber
Here, t is the distance between the LED 1 and the center of the hemispherical mirror 3.
Under this condition, the incident NA of the light ray 61 incident from the upper end of the LED 1 to the lower end of the optical fiber 8 is larger than that of the optical fiber NA and is not guided. On the contrary, the light ray 51 emitted from the upper end of the LED 1 and incident on the upper end of the optical fiber 8 has a sufficient margin for the guide limitation by the NA of the optical fiber 8. To obtain high incidence efficiency for all the light rays emitted from LED1,
sin(tan -1 dLED/2t)≒NA fiber
Is desirable.

光ファイバ8で導光できない光線6は、反射面3aによりLED1上にLED1像を点対称に結像させる。LED1とLED1像が一致するにはLED1の形状は点対称形でなければならない。LED1の発光角度分布がランベルト分布であれば、反射面3aにより開口部3b以外に出射された全ての光線6をLED1側に戻すことができる。LED1表面が拡散面であれば、LED1に戻された光線は拡散し、開口部3bと反射面3aに向かって出射される。開口部3bに向かった光線は光ファイバ8の入力の増加に寄与する。反射面3aに向かった光も、LED1−ミラー3間で反射・拡散を繰り返すうちにいずれは開口部3bから出射する。 The light ray 6 that cannot be guided by the optical fiber 8 forms the LED1 image on the LED1 in point symmetry by the reflecting surface 3a. In order for the LED1 and the LED1 image to match, the shape of the LED1 must be point-symmetrical. If the emission angle distribution of the LED 1 is a Lambertian distribution, all the light rays 6 emitted by the reflecting surface 3a except the opening 3b can be returned to the LED 1 side. If the surface of the LED 1 is a diffusion surface, the light rays returned to the LED 1 are diffused and emitted toward the opening 3b and the reflection surface 3a. The light beam directed to the opening 3b contributes to an increase in the input of the optical fiber 8. The light directed to the reflecting surface 3a is also emitted from the opening 3b while being repeatedly reflected and diffused between the LED 1 and the mirror 3.

図3は本発明の第2の実施形態に係るLED照明装置4の光線追跡図を示している。発光部が平面且つ点対称形状、発光角度分布がランベルト分布で、発光面が拡散面であるLED1と、凸面内面周辺が反射面7aを形成し、中心に反射面の開口部7bがある平凸レンズミラー7からなる光源装置で、LED1と平凸レンズミラー7の平面側が向かい合って平行に間隔を置いて配置され、LED1の法線と平凸レンズミラー7の光軸が一致し、LED1と平凸レンズミラー7の球面の間隔は平凸レンズミラー7の曲率半径以下であり、ミラー開口部7bに光ファイバ8を配置し、ミラー開口部径が光ファイバ径に等しい。 FIG. 3 shows a ray tracing diagram of the LED lighting device 4 according to the second embodiment of the present invention. An LED 1 having a plane and point-symmetrical shape, a Lambertian distribution of emission angles, a light emitting surface that is a diffusing surface, and a plano-convex lens in which a reflective surface 7a is formed around the inner surface of the convex surface and an opening 7b of the reflective surface is formed in the center. In the light source device including the mirror 7, the flat sides of the LED 1 and the plano-convex lens mirror 7 face each other and are arranged in parallel with a space therebetween, and the normal line of the LED 1 and the optical axis of the plano-convex lens mirror 7 coincide with each other. The distance between the spherical surfaces is less than or equal to the radius of curvature of the plano-convex lens mirror 7, the optical fiber 8 is arranged in the mirror opening 7b, and the mirror opening diameter is equal to the optical fiber diameter.

LED1から出射し平凸レンズミラー7の開口部7bを通る光線は、直接光ファイバ8の端面に入射する。これらの光線の内、光ファイバ8で導光される光は光ファイバ8のNA以下のNAで入射しなければならない。図3でLED1の上端から光ファイバ8の中心に向かう光線の場合、レンズ内で光ファイバ8の光軸となす角度θの正弦が光ファイバ8のNA以下でなければ導光されない。 The light beam emitted from the LED 1 and passing through the opening 7b of the plano-convex lens mirror 7 directly enters the end face of the optical fiber 8. Of these light rays, the light guided by the optical fiber 8 must enter with an NA equal to or less than the NA of the optical fiber 8. In the case of a light beam traveling from the upper end of the LED 1 to the center of the optical fiber 8 in FIG. 3, it is not guided unless the sine of the angle θ with the optical axis of the optical fiber 8 in the lens is equal to or smaller than the NA of the optical fiber 8.

すなわち、以下の関係が成り立つ。
nsinθ=nsin(tan-1dLED/2t)≦NAfiber
ここで、nはレンズの屈折率、tはLED1と反射面の中心との距離である。また、LED及び光ファイバと平凸レンズミラーの間隔はtに比べて十分小さいものとする。
That is, the following relationship holds.
nsin θ = nsin(tan-1dLED/2t) ≤ NA fiber
Here, n is the refractive index of the lens, and t is the distance between the LED 1 and the center of the reflecting surface. The distance between the LED and the optical fiber and the plano-convex lens mirror is sufficiently smaller than t.

この条件ではLED1の上端から光ファイバ8の下端に入射した光線61の入射NAは光ファイバNAより大きくなり導光されない。逆にLED1の上端から出射し、光ファイバ8の上端に入射した光線51は光ファイバ8のNAによる導光制限に十分余裕がある。LED1から出射する全ての光線について高い入射効率を得るには、
nsin(tan-1dLED/2t)≒NAfiber
であることが望ましい
Under this condition, the incident NA of the light ray 61 incident from the upper end of the LED 1 to the lower end of the optical fiber 8 is larger than that of the optical fiber NA and is not guided. On the contrary, the light ray 51 emitted from the upper end of the LED 1 and incident on the upper end of the optical fiber 8 has a sufficient margin for the guide limitation by the NA of the optical fiber 8. To obtain high incidence efficiency for all the light rays emitted from LED1,
nsin(tan -1 dLED/2t)≒NAfiber
Is desirable

光ファイバ8で導光できない光線6は、反射面7aによりLED1上にLED1像を点対称に結像させる。LED1とLED1像が一致するにはLED1形状は点対称形でなければならない。LED1の発光角度分布がランベルト分布であれば、反射面7aにより開口部7b以外に出射されたほとんどの光線6をLED1側に戻すことができる。LED1表面が拡散面であれば、LED1に戻された光線は拡散し、開口部7bと反射面7aに向かって出射される。開口部7bに向かった光線は光ファイバ8の入力の増加に寄与する。反射面7aに向かった光も、LED1−反射面7a間で反射・拡散を繰り返すうちにいずれは開口部7bから出射する。 The light ray 6 which cannot be guided by the optical fiber 8 forms the LED1 image point-symmetrically on the LED1 by the reflecting surface 7a. In order for the LED1 and the LED1 image to match, the LED1 shape must be point-symmetrical. If the light emission angle distribution of the LED 1 is a Lambertian distribution, most of the light rays 6 emitted from the reflection surface 7a except the opening 7b can be returned to the LED 1 side. If the LED1 surface is a diffusing surface, the light rays returned to the LED1 are diffused and emitted toward the opening 7b and the reflecting surface 7a. The light beam directed to the opening 7b contributes to an increase in the input of the optical fiber 8. The light heading for the reflecting surface 7a is also emitted from the opening 7b while being repeatedly reflected and diffused between the LED1 and the reflecting surface 7a.

図4、図5は本発明の第1の実施形態に係るLED照明装置においてNA0.6及びNA0.2の光ファイバ8に対する入射効率(光ファイバ入射光束/LEDの出力光束)のミラー曲率半径:rをパラメーターとしたモンテカルロシミュレーションの結果を示す図である。但し、LED径:4mm、ミラー開口径=ファイバ径:3mm、ミラー3及びLED1の反射率は0.95である。 FIG. 4 and FIG. 5 are mirror curvature radii of incidence efficiency (optical fiber incident light flux/LED output light flux) with respect to the optical fiber 8 of NA 0.6 and NA 0.2 in the LED lighting device according to the first embodiment of the present invention: It is a figure which shows the result of the Monte Carlo simulation which used r as a parameter. However, LED diameter: 4 mm, mirror aperture diameter=fiber diameter: 3 mm, and the reflectance of the mirror 3 and the LED 1 is 0.95.

NAが0.6の光ファイバ8に対してはLED1−ミラー3の中心間距離:tが2.8mmに効率のピークがある。NAが0.2の光ファイバ8に対してはtが長いほど効率が良い。入射NAを0.6を目標とした場合、0.6のNAに対する入射効率を優先するが、同じ効率であれば出射端で光軸方向の成分が多いNA0.2の光ファイバ8に対する効率が高いほうが望ましい。そこでr=3.5mm、t=3mmを選んだ。ミラー3の中心と光ファイバ8との間隔は0mm、Φ3mm開口と光ファイバ8との間隔は0.34mmである。 For the optical fiber 8 having NA of 0.6, the efficiency peaks at the distance t between the centers of the LED 1 and the mirror 3 of 2.8 mm. For the optical fiber 8 with NA of 0.2, the longer t is, the better the efficiency is. When the incident NA is set to 0.6, the incident efficiency with respect to the NA of 0.6 is prioritized, but if the efficiency is the same, the efficiency with respect to the optical fiber 8 with the NA 0.2 having many components in the optical axis direction at the exit end is high. Higher is preferable. Therefore, r=3.5 mm and t=3 mm were selected. The distance between the center of the mirror 3 and the optical fiber 8 is 0 mm, and the distance between the Φ3 mm opening and the optical fiber 8 is 0.34 mm.

図6は上記の設計のLED光源装置のモンテカルロ光線追跡図である。LED1−ミラー3間を多くの光線が往復し、開口部に達した光線のみが光ファイバ8に入力されるのが分かる。 FIG. 6 is a Monte Carlo ray trace diagram of the LED light source device of the above design. It can be seen that many light rays travel back and forth between the LED 1 and the mirror 3, and only the light rays that have reached the opening are input to the optical fiber 8.

図7は光ファイバ8の入射端面の照度分布である。ミラー3から間隔がある為、照度分布が多少広がっている。図8は光ファイバ8を取り去り、光ファイバ8の端面位置にΦ3mmの絞りを置き、絞りから100mmはなれた位置の照度分布である。光ファイバ8に入射出来ないNA0.6以上(x軸座標75mm以上、−75mm以下)の光線も4%含まれている。10%NA(中心照度に対して10%照度の角度の正弦)は0.62、0.6光ファイバ8に対する入射効率は0.35で、従来の突合せ法の1.7倍である。輝度100Mcd/mのLEDを用いた場合、光ファイバ8への入力は190lm/mmになり、キセノンランプに近づく。 FIG. 7 is an illuminance distribution on the incident end surface of the optical fiber 8. Since there is a distance from the mirror 3, the illuminance distribution is somewhat wider. FIG. 8 shows the illuminance distribution at a position 100 mm away from the diaphragm, with the optical fiber 8 removed and a diaphragm of Φ3 mm placed at the end face position of the optical fiber 8. 4% of light rays having NA of 0.6 or more (x-axis coordinate of 75 mm or more and −75 mm or less) that cannot be incident on the optical fiber 8 are also included. The 10% NA (sine of the angle of 10% illuminance with respect to the central illuminance) is 0.62, and the incidence efficiency on the 0.6 optical fiber 8 is 0.35, which is 1.7 times that of the conventional matching method. When an LED with a brightness of 100 Mcd/m 2 is used, the input to the optical fiber 8 is 190 lm/mm 2 , and it approaches a xenon lamp.

本発明において
sin(tan-1dLED/2t)=sin(tan-14/(2x3)
=0.55≒0.6=NAfiber設計値目標
≒0.62=10%NA計算値
が成り立つ。
In the present invention
sin(tan -1 dLED/2t) = sin (tan -1 4/(2x3)
=0.55≈0.6=NA fiber design value target≈0.62=10% NA calculated value holds.

図9、図10は本発明の第2の実施形態に係るLED照明装置においてNA0.6及びNA0.2の光ファイバ8に対する入射効率のミラー曲率半径:rをパラメーターとしたモンテカルロシミュレーションの結果を示す図である。但し、LED径:4mm、ミラー7の開口径=ファイバ径:3mm、LED1−平凸レンズ7の間隔:0.1mm、平凸レンズ7−光ファイバ8の間隔:0.5mm、平凸レンズ7の屈折率:1.516、反射面7a及びLED1の反射率は0.95である。 FIG. 9 and FIG. 10 show the results of Monte Carlo simulation using the mirror curvature radius: r of the incident efficiency with respect to the optical fiber 8 of NA 0.6 and NA 0.2 as a parameter in the LED lighting device according to the second embodiment of the present invention. It is a figure. However, LED diameter: 4 mm, aperture diameter of mirror 7 = fiber diameter: 3 mm, LED1-plano-convex lens 7 spacing: 0.1 mm, plano-convex lens 7-optical fiber 8 spacing: 0.5 mm, plano-convex lens 7 refractive index : 1.516, the reflectance of the reflecting surface 7a and the LED 1 is 0.95.

図11は設計目標NA0.6に対してr=6、t=4.7mmを選択したLED光源装置のモンテカルロ光線追跡図である。 FIG. 11 is a Monte Carlo ray tracing diagram of the LED light source device in which r=6 and t=4.7 mm are selected with respect to the design target NA0.6.

図12は光ファイバ8の入射端面の照度分布である。図13は光ファイバ8の端面位置にΦ3mmの絞りを置き、絞りから100mmはなれた位置の照度分布である。光ファイバ8に入射出来ないNA0.6以上の光線も3%含まれている。10%NAは0.6、0.6の光ファイバ8に対する入射効率は0.4で、従来の突き合せ法の2倍である。輝度100Mcd/mのLEDを用いた場合、光ファイバ入力は226lm/mmになり更にキセノンランプに近づく。 FIG. 12 is an illuminance distribution on the incident end surface of the optical fiber 8. FIG. 13 shows the illuminance distribution at a position where a Φ3 mm diaphragm is placed at the position of the end face of the optical fiber 8 and a position 100 mm away from the diaphragm. A light ray having NA of 0.6 or more that cannot be incident on the optical fiber 8 is also included by 3%. When the 10% NA is 0.6, the incidence efficiency on the optical fiber 8 of 0.6 is 0.4, which is twice as high as that of the conventional butt matching method. When an LED with a brightness of 100 Mcd/m 2 is used, the optical fiber input becomes 226 lm/mm 2 , which is closer to the xenon lamp.

本発明において
nsin(tan-1dLED/2t)=1.516xsin(tan-14/(2x4.7)
=0.59≒0.6=NAfiber設計値目標
≒0.6=10%NA計算値
が成り立つ。
In the present invention, nsin(tan -1 dLED/2t)=1.516xsin (tan -1 4/(2x4.7)
=0.59≈0.6=NA fiber design value target≈0.6=10% NA calculated value holds.

図14に本発明に係る白色LEDの光学的断面図を示す。LED1は図面左、裏面側からミラー層12、半導体11(中央にPN接合11b、表面に拡散層11d)、蛍光層13からなる。PN接合で青色光線21a、21bが発生する。21aは拡散層で拡散し、表面に向かう光線22aと裏面に向かう光線22bに分かれる。光線22aは蛍光層で蛍光拡散する黄色光線23a、23bと拡散する青色光線24a、24bに分かれる。光線23a、24aはLEDから白色光として出力される。裏面方向に向かった光線21b、22bはミラー層で反射し光線25、26となって拡散層に入射し、以下光線21aと同様にふるまう。光線23b、24bは拡散層に入り、以下光線21aと同様にふるまう。 FIG. 14 shows an optical sectional view of the white LED according to the present invention. The LED 1 is composed of a mirror layer 12, a semiconductor 11 (a PN junction 11b in the center and a diffusion layer 11d on the front surface), and a fluorescent layer 13 from the back side on the left side of the drawing. Blue light rays 21a and 21b are generated at the PN junction. 21a is diffused by the diffusion layer and divided into a light ray 22a directed to the front surface and a light ray 22b directed to the back surface. The light ray 22a is divided into yellow light rays 23a and 23b which are fluorescently diffused in the fluorescent layer and blue light rays 24a and 24b which are diffused. The light rays 23a and 24a are output from the LED as white light. The rays of light 21b and 22b directed toward the back surface are reflected by the mirror layer to become rays of light 25 and 26, which are incident on the diffusion layer, and behave similarly to the ray of light 21a. The light rays 23b and 24b enter the diffusion layer and behave like the light ray 21a.

外部から蛍光層に入射した光線31は蛍光拡散光線32a、32bと拡散光線33a、33bに分かれる。光線32a、33aはLED1の外部に出力され、光線32b、33bは拡散層に入り、以下光線21aと同様にふるまう。 The light ray 31 incident on the fluorescent layer from the outside is divided into fluorescent diffused light rays 32a and 32b and diffused light rays 33a and 33b. The light rays 32a and 33a are output to the outside of the LED 1, the light rays 32b and 33b enter the diffusion layer, and behave similarly to the light ray 21a.

図14のLED1の各層の厚さがLED1の直径に対して十分に薄ければ、このLED1を光学的にマクロに見ると、ランベルト分布で発光する面発光体であり、拡散反射面であり、蛍光拡散反射面である。 If the thickness of each layer of the LED 1 of FIG. 14 is sufficiently thin with respect to the diameter of the LED 1, when the LED 1 is optically macroscopically viewed, it is a surface light emitter that emits light in a Lambertian distribution and is a diffuse reflection surface. It is a fluorescent diffuse reflection surface.

本発明に青色LEDと黄色蛍光体を使用したLEDを使う場合、LED単体のよりも本発明の出力光の色温度が下がる。これはミラーとLEDの間で反射、拡散を繰り返す青色光が蛍光物質に吸収され、黄色い蛍光を出すため、相対的に青色が減り、黄色が増すために起こる。同じ色温度を得るには、蛍光物質の量を減らす必要がある。 When the LED using the blue LED and the yellow phosphor is used in the present invention, the color temperature of the output light of the present invention is lower than that of the LED alone. This occurs because blue light, which is repeatedly reflected and diffused between the mirror and the LED, is absorbed by the fluorescent substance and emits yellow fluorescence, so that blue is relatively reduced and yellow is increased. To obtain the same color temperature, it is necessary to reduce the amount of fluorescent material.

図15は本発明の第3の実施例を示す。本発明によるLED光源装置4をシュリーレン法装置40の光源に応用した例である。ミラー開口部がシュリーレン装置光源のピンホールになる。41は凸レンズ、42は被検体、43はナイフエッジ、44はスクリーンである。LED光源装置は、LED直径:4mm、平凸レンズミラーは曲率半径:10mm、厚さ:9.2mm、ミラー開口径:1mm、LED−平凸レンズミラーの間隔は0.2mmである。 FIG. 15 shows a third embodiment of the present invention. It is an example in which the LED light source device 4 according to the present invention is applied to the light source of the schlieren method device 40. The mirror opening serves as a pinhole for the schlieren device light source. 41 is a convex lens, 42 is a subject, 43 is a knife edge, and 44 is a screen. The LED light source device has an LED diameter of 4 mm, a plano-convex lens mirror has a radius of curvature of 10 mm, a thickness of 9.2 mm, a mirror aperture diameter of 1 mm, and an LED-plano-convex lens mirror interval of 0.2 mm.

図16はミラーから100mm離れた位置の照度分布のモンテカルロシミュレーション結果で、10%NAは0.339である。本発明において
nsin(tan-1dLED/2t)=1.516xsin(tan-14/(2x9.4)
=0.315≒0.339=10%NA計算値
が成り立つ。LED及びミラーの反射率を0.95とした場合、ミラー開口部の輝度はLEDの輝度の6倍、反射率0.9でも4倍の画期的な輝度になる。
FIG. 16 is a Monte Carlo simulation result of the illuminance distribution at a position 100 mm away from the mirror, and 10% NA is 0.339. In the present invention, nsin(tan −1 dLED/2t)=1.516×sin (tan −1 4/(2×9.4)
=0.315≈0.339=10% NA calculated value holds. When the reflectivity of the LED and the mirror is 0.95, the brightness of the mirror opening is 6 times the brightness of the LED, and even when the reflectivity is 0.9, the brightness is 4 times.

1 LED
3 半球ミラー
3a 反射面
3b 開口部
7 平凸レンズミラー
7a 反射面
7b 開口部
8 光ファイバ
1 LED
3 hemispherical mirror 3a reflecting surface 3b opening 7 plano-convex lens mirror 7a reflecting surface 7b opening 8 optical fiber

Claims (3)

LEDと半球ミラーとを備えるLED照明装置であって、
前記LEDは、その発光部が平面且つ点対称形状を有し、発光角度分布がランベルト分布で、発光面が拡散面であり、
前記半球ミラーは、その内面が反射面を形成し、中心に開口部があり、該反射面が前記LEDに向けて配置され、前記LEDから出射し、前記開口部に達しない光を前記LEDに直接戻し、
前記LEDの法線と前記半球ミラーの光軸が一致し、
前記LEDと前記半球ミラーの間隔は前記半球ミラーの曲率半径以下であり、
前記半球ミラーの前記開口部の寸法が該開口部から照射される照射範囲に等しく、
前記LED寸法をdLED、前記LEDと前記半球ミラーとの間隔をt、前記開口部から照射される光のNAをNAobjectとした時に、
sin(tan−1dLED/2t)≦NAobject
が成り立つことを特徴とするLED照明装置。
An LED lighting device comprising an LED and a hemispherical mirror, comprising:
The light emitting portion of the LED has a planar and point-symmetrical shape, the light emitting angle distribution is a Lambertian distribution, and the light emitting surface is a diffusion surface,
The inner surface of the hemispherical mirror forms a reflecting surface, and an opening is formed at the center of the hemispherical mirror. The reflecting surface is arranged toward the LED, and light emitted from the LED and not reaching the opening is transmitted to the LED. Direct return,
The normal line of the LED and the optical axis of the hemispherical mirror match,
The distance between the LED and the hemispherical mirror is less than or equal to the radius of curvature of the hemispherical mirror,
The size of the opening of the hemispherical mirror is equal to the irradiation range irradiated from the opening,
When the LED size is dLED, the distance between the LED and the hemispherical mirror is t, and the NA of the light emitted from the opening is NAobject,
sin(tan −1 dLED/2t)≦NA object
The LED lighting device is characterized in that
LEDと平凸レンズミラーとを備えるLED照明装置であって、
前記LEDは、その発光部が平面且つ点対称形状を有し、発光角度分布はランベルト分布で、発光面が拡散面であり、
前記平凸レンズミラーは、その凸面内面周辺が反射面を形成し、中心に該反射面の開口部があり、前記LEDと前記平凸レンズミラーの平面側が向かい合って平行に間隔を置いて配置され、前記LEDから出射し、前記開口部に達しない光を前記LEDに直接戻し、
前記LEDの法線と前記平凸レンズミラーの光軸が一致し、
前記LEDと前記平凸レンズミラーの球面との間隔は該平凸レンズミラーの曲率半径以下であり、
前記平凸レンズミラーの前記開口部の寸法が該開口部から照射される照射範囲に等しく、
前記LED寸法をdLED、前記LEDと前記平凸レンズミラーの反射面との間隔をt、前記平凸レンズミラーの屈折率をn、前記開口部から照射される光のNAをNAobjectとした時に、
nsin(tan−1dLED/2t)≦NAobject
が成り立つことを特徴とするLED照明装置。
An LED lighting device comprising an LED and a plano-convex lens mirror,
The light emitting portion of the LED has a planar and point-symmetrical shape, the light emitting angle distribution is a Lambertian distribution, and the light emitting surface is a diffusion surface,
In the plano-convex lens mirror, the periphery of the inner surface of the convex surface forms a reflection surface, and the opening of the reflection surface is formed at the center, and the flat surface sides of the LED and the plano-convex lens mirror face each other and are arranged in parallel with each other, and Light emitted from the LED and not reaching the opening is returned directly to the LED,
The normal line of the LED and the optical axis of the plano-convex lens mirror match,
The distance between the LED and the spherical surface of the plano-convex lens mirror is less than or equal to the radius of curvature of the plano-convex lens mirror,
The size of the opening of the plano-convex lens mirror is equal to the irradiation range irradiated from the opening,
When the LED size is dLED, the distance between the LED and the reflecting surface of the plano-convex lens mirror is t, the refractive index of the plano-convex lens mirror is n, and the NA of the light emitted from the opening is NAobject,
nsin(tan −1 dLED/2t)≦NAobject
The LED lighting device is characterized in that
前記ミラー開口部の位置に光ファイバを配置し、前記開口部から照射される光のNAが光ファイバ以下であることを特徴とする請求項1又は2に記載のLED照明装置。 The LED lighting device according to claim 1 or 2, wherein an optical fiber is arranged at the position of the mirror opening, and the NA of light emitted from the opening is equal to or less than the optical fiber.
JP2015202721A 2015-06-01 2015-10-14 LED lighting device Active JP6749084B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015202721A JP6749084B2 (en) 2015-10-14 2015-10-14 LED lighting device
US15/147,047 US9784899B2 (en) 2015-06-01 2016-05-05 LED illumination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015202721A JP6749084B2 (en) 2015-10-14 2015-10-14 LED lighting device

Publications (2)

Publication Number Publication Date
JP2017076492A JP2017076492A (en) 2017-04-20
JP6749084B2 true JP6749084B2 (en) 2020-09-02

Family

ID=58551456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015202721A Active JP6749084B2 (en) 2015-06-01 2015-10-14 LED lighting device

Country Status (1)

Country Link
JP (1) JP6749084B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101835819B1 (en) * 2017-08-11 2018-03-08 주식회사 에이엘테크 Light emitting sign apparatus using optical fiber
KR101937974B1 (en) 2018-05-08 2019-01-14 주식회사 에이엘테크 Light emitting sign apparatus using optical fiber

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW576933B (en) * 2001-05-25 2004-02-21 Wavien Inc Collecting and condensing system, method for collecting electromagnetic radiation emitted by a source, tapered light pipe (TLP), numerical aperture (NA) conversion device, and portable front projection system
JP2005091491A (en) * 2003-09-12 2005-04-07 Seiko Epson Corp Lighting device and projection display device
EP1738107A4 (en) * 2004-04-23 2008-12-31 Light Prescriptions Innovators Optical manifold for light-emitting diodes
JP4875329B2 (en) * 2005-09-09 2012-02-15 オリンパスメディカルシステムズ株式会社 Condensing optical system
JP5515200B2 (en) * 2007-05-22 2014-06-11 株式会社リコー Illumination optical system and projector apparatus
CN102124397B (en) * 2008-08-15 2015-08-19 微阳有限公司 The recirculating system of brightness and method and the projector in conjunction with it is increased for using the photoconductive tube with one or more light source
JP2010199027A (en) * 2009-02-27 2010-09-09 Olympus Corp Light source device
JPWO2012017774A1 (en) * 2010-08-02 2013-10-03 日本電気株式会社 Polarizer and light emitting device
US8764246B2 (en) * 2012-06-08 2014-07-01 Tyc Brother Industrial Co., Ltd. Light unit with light guiding device
JP6178991B2 (en) * 2013-01-24 2017-08-16 パナソニックIpマネジメント株式会社 Light source unit and light source module using the same

Also Published As

Publication number Publication date
JP2017076492A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
KR101615799B1 (en) Illumination device
JP5839686B2 (en) Luminous flux control member and light emitting device
JP4546579B1 (en) Lighting lens, light emitting device, surface light source, and liquid crystal display device
JP6166270B2 (en) Light emitting device and projection system using the same
JP5380052B2 (en) LED lighting device
US20160195243A1 (en) Optical system for producing uniform illumination
JP5342939B2 (en) Lighting lens, light emitting device, surface light source, and liquid crystal display device
US10309601B2 (en) Light source device, lighting apparatus, and vehicle lamp device
US11209132B2 (en) Light source device
JP5118617B2 (en) Lighting lens, light emitting device, surface light source, and liquid crystal display device
JP2008053660A (en) Light emitting module
JP2018098162A (en) Surface light source device and display device
CN109578939B (en) Light source guiding device
JP6749084B2 (en) LED lighting device
JP2010086661A (en) Optical member, planar light source, display, and method of manufacturing the optical member
JP6748424B2 (en) Light emitting device, surface light source device, and display device
JPWO2016051863A1 (en) Lighting device
WO2017002725A1 (en) Light-emitting device, surface light source device and display device
US9784899B2 (en) LED illumination apparatus
JP6659240B2 (en) LED lighting device
JP2011228226A (en) Lens for lighting, light-emitting device, plane light source, and liquid crystal display
CN112628617A (en) Refraction and reflection type laser light-emitting device
JP7287668B2 (en) lighting equipment
US10677398B2 (en) Solid state light emitter lighting assembly and a luminaire
JP2011002544A (en) Condensing element, condensing optical system, and projector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200811

R150 Certificate of patent or registration of utility model

Ref document number: 6749084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250