WO2013089315A1 - 웨이브핀을 이용한 과열증기발생장치 - Google Patents

웨이브핀을 이용한 과열증기발생장치 Download PDF

Info

Publication number
WO2013089315A1
WO2013089315A1 PCT/KR2012/001211 KR2012001211W WO2013089315A1 WO 2013089315 A1 WO2013089315 A1 WO 2013089315A1 KR 2012001211 W KR2012001211 W KR 2012001211W WO 2013089315 A1 WO2013089315 A1 WO 2013089315A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
exhaust gas
housing
fluid tube
wave
Prior art date
Application number
PCT/KR2012/001211
Other languages
English (en)
French (fr)
Inventor
김태진
조용국
Original Assignee
주식회사 코렌스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코렌스 filed Critical 주식회사 코렌스
Priority to US14/360,354 priority Critical patent/US9631539B2/en
Publication of WO2013089315A1 publication Critical patent/WO2013089315A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/02Steam superheating characterised by heating method with heat supply by hot flue gases from the furnace of the steam boiler
    • F22G1/04Steam superheating characterised by heating method with heat supply by hot flue gases from the furnace of the steam boiler by diverting flow or hot flue gases to separate superheaters operating in reheating cycle, e.g. for reheating steam between a high-pressure turbine stage and an intermediate turbine stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B15/00Water-tube boilers of horizontal type, i.e. the water-tube sets being arranged horizontally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G7/00Steam superheaters characterised by location, arrangement, or disposition
    • F22G7/04Steam superheaters characterised by location, arrangement, or disposition in jackets around fire tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0297Side headers, e.g. for radiators having conduits laterally connected to common header
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Definitions

  • the present invention relates to a superheated steam generator, and more particularly to a superheated steam generator using a wave fin that can effectively generate the superheated steam of the working fluid using waste heat such as exhaust gas.
  • heat exchangers such as an EGR cooler, an exhaust gas cooler, a fuel cooler, an oil cooler and an intercooler for exhaust gas recirculation are used in vehicles, and recently, heat exchangers having various structures in the waste heat recovery system are configured to heat exchange various fluids.
  • Energy that is not extracted as usable mechanical energy is discharged as waste heat to the atmosphere by exhaust gas exhaust from internal combustion engines, charge air cooling, heat dissipation of engine coolant, and the like.
  • a waste heat recovery system has been utilized to actively recover such waste heat and to improve fuel efficiency. Recently, a waste heat recovery system with an organic rankin cycle has been used, and this waste heat recovery system converts the working fluid into a high temperature steam state by exchanging heat with the working fluid, and converts the working fluid in the high temperature steam state to the turbine side. By supplying it is configured to effectively extract the mechanical energy from the turbine.
  • the waste heat recovery system is provided with a superheated steam generator which converts the working fluid in the dry saturation vapor state into the heating superheated steam state by using the high heat of the exhaust gas. Can be further increased.
  • the superheated steam generator of the waste heat recovery system is configured to exchange heat between the high temperature / high pressure working fluid and the high temperature exhaust gas, so that there is a high possibility of leakage of the working fluid. There was a problem that could be.
  • the present invention has been made in view of the above, and a plurality of wave fins and a plurality of working fluid tubes are disposed in the housing, and the contact area between the exhaust gas and the working fluid passing through the plurality of wave fins is greatly enlarged.
  • the purpose of the present invention is to provide a superheated steam generator using waste heat recovery which can greatly improve the efficiency.
  • a housing having an inflow tank into which exhaust gas flows in both ends and an outflow tank through which exhaust gas flows out;
  • One side of the housing is provided with an inflow pipe into which the working fluid flows in and an outflow pipe from which the working fluid flows out, and the inflow pipe and the outflow pipe are connected to communicate with the plurality of working fluid tubes individually, and each working fluid tube
  • the upper and lower surfaces of the are characterized in that the direct contact with the adjacent wave fins.
  • a flat surface is formed on each of the upper and lower surfaces of each working fluid tube, and the flat surface of the working fluid tube is in direct contact with the wave fins.
  • Each working fluid tube has an oval cross-sectional structure, each having a flat surface on its upper and lower surfaces.
  • Each working fluid tube is bent to form an S-shape, one end of each working fluid tube is connected to the inlet pipe side, the other end of each working fluid tube is characterized in that it is connected to the outlet pipe side.
  • First and second fitting assemblies are installed at both ends of each wave fin, and a plurality of fitting slots are formed in the first and second fitting assemblies, and each of the fitting slots of the first and second fitting assemblies is provided in the respective fitting slots. It is characterized in that it is fitted to both ends of the pin.
  • the possibility of leakage of the working fluid can be minimized by minimizing the thermal stress of the fluid tube through which the high temperature / high pressure working fluid passes, and the heat exchange contact area between the working fluid passing through the fluid tube and the exhaust gas is widened. As a result, the heat exchange efficiency of the working fluid can be greatly improved.
  • FIG. 1 is a perspective view showing a superheated steam generating apparatus according to an embodiment of the present invention.
  • Figure 2 is an exploded perspective view showing a superheated steam generating apparatus according to an embodiment of the present invention.
  • FIG. 3 is an enlarged perspective view illustrating an arrow A portion of FIG. 2.
  • Figure 4 is a plan view showing a superheated steam generating apparatus according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along line B-B of FIG. 4.
  • FIG. 6 is a cross-sectional view taken along line C-C of FIG. 4.
  • FIG. 7 is a cross-sectional view taken along the line D-D of FIG. 4.
  • 1 to 7 illustrate a superheated steam generator using waste heat recovery according to an embodiment of the present invention.
  • the superheated steam generator using the waste heat recovery according to the present invention is spaced at regular intervals in the housing 100, the housing 100 having the inlet tank 110 and the outlet tank 120 at both ends It includes a plurality of exhaust gas tubes 210, a plurality of working fluid tube 310 interposed between the adjacent exhaust gas tubes 210.
  • the housing 100 has a rectangular structure in which both ends are open, and a hollow portion 130 is formed in the housing 100. Both ends of the housing 100 are coupled to the inlet tank 110 and the outlet tank 120, respectively, the inlet tank 110 and outlet tank 120 is formed in a diffuser shape. Exhaust gas flows into the housing 100 through the inflow tank 110, and exhaust gas flows outward from the housing 100 through the outflow tank 120.
  • the coupling sleeve 111 is coupled to the exhaust gas pipe (not shown) protrudes, the other end of the inlet tank 110, the fitting border 112 extends toward one end of the housing 100 do.
  • the fitting border 113 one end of the housing 100 is fitted and then coupled by welding or the like.
  • the fitting border 122 extends toward the other end of the housing 100, and the other end of the outflow tank 120 protrudes a coupling sleeve 121 to which an exhaust gas pipe (not shown) is coupled. do.
  • the other end of the housing 100 is fitted in the fitting edge 122 and then coupled by welding or the like.
  • the plurality of wave fins 210 are spaced apart at regular intervals up and down.
  • Each exhaust gas tube 210 has a plurality of peaks 211 and a plurality of valleys 212 corrugatedly connected through a plurality of side wall portions 213 in the width direction thereof, and thus the peaks 211 and the valleys 212.
  • Exhaust gas passages 215 through which the exhaust gases pass are formed between them.
  • the plurality of peaks 211 and the plurality of valleys 212 are formed to be corrugated in the flow direction of the exhaust gas.
  • Both ends of the wave fins 210 are installed at both ends of the housing 100 through the first and second fitting assemblies 410 and 420.
  • the first fitting assembly 410 has a plurality of fitting slots 411, the first fitting assembly 410 is coupled to one end of the housing 100 by welding or the like.
  • the plurality of fitting slots 411 are spaced at intervals corresponding to the spacing intervals of the wave fins 210.
  • one end of each of the wave pins 21 may be individually inserted into fitting slots 411 of the first fitting assembly 410, and then may be coupled by welding or the like.
  • the second fitting assembly 420 has a plurality of fitting slots 421, and the second fitting assembly 420 is coupled to the other end of the housing 100 by welding or the like.
  • the plurality of fitting slots 421 are spaced at intervals corresponding to the intervals between the wave fins 210. Accordingly, the other ends of the wave fins 210 may be individually inserted into the fitting slots 421 of the second fitting assembly 420, and then coupled through welding.
  • the plurality of wave fins 210 are accurately spaced apart in the vertical direction and installed in the housing 100.
  • first and second fitting assemblies 410 and 420 are hermetically coupled to both ends of the housing 100, respectively, and both ends of the housing 100 are connected to the first and second fitting assemblies 410 and 420.
  • the remaining portions except for the exhaust gas passages 215 of the wave fins 210 may be hermetically sealed.
  • the plurality of working fluid tubes 310 are interposed between the plurality of wave fins 210, and each working fluid tube 310 is formed by bending a continuous S-shaped structure. Each of the upper and lower surfaces of each working fluid tube 310 is coupled by welding or the like while directly contacting adjacent wave fins 210.
  • Each working fluid tube 310 is connected to the inlet pipe 510 through which the working fluid flows and the outflow pipe 520 through which the working fluid flows out, and the inlet pipe 510 and the outlet pipe 520 are connected to the housing 100.
  • One side of the coupling is coupled through welding or the like.
  • An opening 513 is formed at the upper end of the inlet pipe 510, and a closing hole 514 is installed at the lower end of the inlet pipe 510.
  • the working fluid flows through the upper opening 513 of the inflow pipe 510.
  • the inflow pipe 510 is installed in a vertical direction on one side adjacent to the other end of the housing 100, and a flat surface 512 is formed on one outer peripheral surface of the inflow pipe 510, and the flat surface 512 is the housing.
  • One side of the 10 is coupled through welding or the like.
  • a plurality of inflow holes 511 are formed in the flat surface 512 of the inflow pipe 510.
  • a through hole 101 corresponding to the inflow hole 511 of the plurality of inflow pipes 510 is formed at one side surface adjacent to the other end of the housing 100.
  • One end 311 of the working fluid tube 310 passes through the through hole 101 and is sealingly connected to the inlet hole 511 side of the inlet pipe 510.
  • An opening 523 is formed at an upper end of the outlet pipe 520, and a closing hole 524 is installed at the lower end of the outlet pipe 520.
  • the working fluid flows out through the top opening 523 of the outflow pipe 520.
  • Outflow pipe 520 is installed in a vertical direction on one side adjacent to one end of the housing 100, a flat surface 522 is formed on one outer peripheral surface of the outflow pipe 520, the flat surface 522 is the housing One side of the 100 is coupled through welding or the like.
  • a plurality of outlet holes 521 are formed in the flat surface 522 of the outlet pipe 520.
  • a through hole 102 corresponding to the outlet holes 521 of the plurality of outlet pipes 520 is formed at one side surface adjacent to the other end of the housing 100. After the other end 312 of the working fluid tube 310 passes through the through hole 102, it is sealingly connected to the outlet hole 521 side of the outlet pipe 510.
  • flat surfaces 313 and 314 are formed on the upper and lower surfaces of each working fluid tube 310, respectively, and the flat surfaces 313 and 314 of the working fluid tube 310 are directly connected to adjacent wave fins 210. Configured to contact. As such, the heat exchange efficiency of the working fluid passing through the working fluid tube 310 is greatly increased as the working fluid tube 310 is configured to be in surface contact with the acid 211 or the valley 212 of the wave fin 210. There is an advantage to be improved.
  • each working fluid tube 310 is formed to have an oval-shaped cross section, and the working fluid in the high-temperature / high pressure steam state of the working fluid tube 310 is formed through the oval cross-sectional structure.
  • concentration of thermal stress is minimized when passing through the inside of the 310, damage or breakage of the working fluid tube 310 may be prevented.
  • both ends 311 and 312 of the working fluid tube 310 preferably have a circular cross section to facilitate a sealing connection with the inlet pipe 510 and the outlet pipe 520.
  • the high temperature exhaust gas flows into the inflow tank 110 side of the housing 100, the high temperature exhaust gas passes through the exhaust gas passage 215 of the wave fins 210 in the housing 100 and then the outflow tank 120. Outflow to the side.
  • the working fluid in the dry saturation vapor state is introduced into the plurality of working fluid tubes 310 through the inlet pipe 510, and the working fluid is operated in a plurality of operations.
  • Heat exchanged with the high temperature exhaust gas passing through the exhaust gas passage 215 of the wave fin 210 while passing through the fluid tube 310, through which the working fluid in the saturation vapor state is converted into superheated steam May flow through 520.
  • the working fluid tube 310 is made of an oval cross-sectional structure, it is possible to minimize the thermal stress of the working fluid tube 310 through which the high-temperature / high pressure working fluid passes, and thus the working fluid It is possible to minimize the possibility of leakage, and by increasing the heat exchange contact area between the working fluid passing through the working fluid tube 310 and the exhaust gas has the advantage that can significantly improve the heat exchange efficiency of the working fluid.
  • a plurality of wave fins 210 and a plurality of working fluid tubes 310 are disposed in the hollow portion 130 of the housing 100. That is, the housing 100 is configured to hermetically seal the outside of the working fluid tubes 310. Accordingly, even if the high temperature / high pressure working fluid leaks from the working fluid 310, it can be reliably prevented from leaking to the outside by the housing 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

본 발명은 배기가스의 폐열을 이용하여 작동유체의 과열증기 발생효율을 대폭 향상시킬 수 있는 폐열회수를 이용한 과열증기발생장치에 관한 것이다. 본 발명에 의한 폐열회수를 이용한 과열증기발생장치는 양단부에 배기가스가 유입되는 유입탱크 및 배기가스가 유출되는 유출탱크을 가진 하우징; 상기 하우징 내에 설치되고, 상하 일정간격으로 이격되어 배치되는 복수의 배기가스튜브; 및 상기 복수의 배기가스튜브들 사이에 배치되는 복수의 작동유체튜브;를 포함하고, 상기 하우징의 일 측면에는 작동유체가 유입되는 유입파이프 및 작동유체가 유출되는 유출파이프가 설치되며, 상기 유입파이프 및 유출파이프에는 상기 복수의 작동유체튜브와 개별적으로 소통하도록 연결되고, 각 작동유체튜브의 상면 및 하면 각각은 인접한 배기가스튜브와 직접 접촉하는 것을 특징으로 한다.

Description

웨이브핀을 이용한 과열증기발생장치
본 발명은 과열증기발생장치에 관한 것으로, 보다 상세하게는 배기가스 등과 같은 폐열을 이용하여 작동유체의 과열증기를 효과적으로 발생시킬 수 있는 웨이브핀을 이용한 과열증기발생장치에 관한 것이다.
차량에는 배기가스 재순환용 EGR쿨러, 배기가스 쿨러, 연료쿨러, 오일쿨러, 인터쿨러 등과 같은 다양한 열교환기가 이용되고 있으며, 최근에는 폐열회수시스템 내에 다양한 구조의 열교환기가 다양한 유체들을 열교환하도록 구성되어 있다.
일반적으로, 차량, 선박 등에 이용되는 내연기관은 그 열효율이 매우 낮은 것이 널리 주지된 사실이다. 즉, 내연기관 측으로 공급되는 연료 대비 대략 30% 정도만이 출력에너지로 이용됨에 따라 연비 향상에 한계가 있었다.
사용가능한 기계적인 에너지(usable mechanical energy)로서 추출되지 못한 에너지가 내연기관의 배기가스 배출, 차지 에어 쿨링(charge air cooling), 엔진 냉각수의 방열 등에 의해 대기 중으로 폐열로서 배출된다.
이러한 폐열을 적극적으로 회수하여 연비 향상을 도모하기 위한 폐열회수시스템(waste heat recovery system)이 활용되고 있다. 최근에는 랭킨사이클(organic rankin cycle)을 가진 폐열회수시스템이 이용되고 있으며, 이러한 폐열회수시스템은 작동유체와 열교환함으로써 작동유체를 고온의 증기상태로 변환시키고, 이 고온 증기상태의 작동유체를 터빈 측으로 공급함으로써 터빈으로부터 기계적인 에너지를 효과적으로 추출할 수 있도록 구성된다.
이러한 폐열회수시스템에는 배기가스의 고열을 이용하여 건포화증기상태의 작동유체를 가열과열증기상태로 변환하는 과열증기발생장치가 구비되어 있으며, 과열증기상태의 작동유체를 터빈 측으로 공급함으로써 터빈의 효율을 더욱 높일 수 있다.
한편, 폐열회수시스템의 과열증기발생장치는 고온/고압의 작동유체 및 고온의 배기가스가 상호 열교환하도록 구성됨에 따라 작동유체의 누설가능성이 높고, 작동유체가 누설될 경우 차체 내에서 심각한 문제가 발생할 수 있는 문제점이 있었다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 하우징 내에 복수의 웨이브핀 및 복수의 작동유체튜브를 배치하고, 복수의 웨이브핀을 통과하는 배기가스와 작동유체의 접촉면적을 대폭 넓혀 그 열교환효율을 대폭 향상시킬 수 있는 폐열회수를 이용한 과열증기발생장치를 제공하는 데 그 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명에 의한 폐열회수를 이용한 과열증기발생장치는,
양단부에 배기가스가 유입되는 유입탱크 및 배기가스가 유출되는 유출탱크을 가진 하우징;
상기 하우징 내에 상하 일정간격으로 이격되어 배치되고, 복수의 산과 복수의 골이 폭방향으로 연결되며, 상기 복수의 산과 복수의 골이 배기가스의 흐름방향으로 웨이브지게 형성된 복수의 웨이브핀; 및
상기 복수의 웨이브핀들 사이에 배치되는 복수의 작동유체튜브;를 포함하고,
상기 하우징의 일 측면에는 작동유체가 유입되는 유입파이프 및 작동유체가 유출되는 유출파이프가 설치되며, 상기 유입파이프 및 유출파이프에는 상기 복수의 작동유체튜브와 개별적으로 소통하도록 연결되고, 각 작동유체튜브의 상면 및 하면 각각은 인접한 웨이브핀과 직접 접촉하는 것을 특징으로 한다.
상기 각 작동유체튜브의 상면 및 하면 각각에는 평탄면이 형성되며, 상기 작동유체튜브의 평탄면은 상기 웨이브핀과 직접 접촉하는 것을 특징으로 한다.
상기 각 작동유체튜브는 그 상면 및 하면 각각에 평탄면을 각각 가진 오발(oval)형 단면구조로 이루어지는 것을 특징으로 한다.
상기 각 작동유체튜브는 S자형으로 벤딩되어 형성되고, 상기 각 작동유체튜브의 일측단부는 유입파이프 측에 접속되며, 상기 각 작동유체튜브의 타측단부는 유출파이프 측에 접속되는 것을 특징으로 한다.
각 웨이브핀의 양단부에는 제1 및 제2 끼움조립체가 설치되고, 상기 제1 및 제2 끼움조립체에는 복수의 끼움슬롯이 형성되며, 상기 제1 및 제2 끼움조립체의 각 끼움슬롯에는 상기 각 웨이브핀의 양단부에는 끼워지는 것을 특징으로 한다.
본 발명에 의하면, 고온/고압의 작동유체가 통과하는 유체튜브의 열응력을 최소화함으로써 작동유체의 누설가능성을 최소화할 수 있고, 유체튜브를 통과하는 작동유체와 배기가스와의 열교환 접촉면적을 넓힘으로써 작동유체의 열교환효율을 대폭 향상시킬 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 과열증기발생장치를 도시한 사시도이다.
도 2는 본 발명의 일 실시예에 따른 과열증기발생장치를 도시한 분해사시도이다.
도 3은 도 2의 화살표 A부분을 확대하여 도시한 사시도이다.
도 4는 본 발명의 일 실시예에 따른 과열증기발생장치를 도시한 평면도이다.
도 5는 도 4의 B-B선을 따라 도시한 단면도이다.
도 6은 도 4의 C-C선을 따라 도시한 단면도이다.
도 7은 도 4의 D-D선을 따라 도시한 단면도이다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.
도 1 내지 도 7은 본 발명의 일 실시예에 따른 폐열회수를 이용한 과열증기발생장치를 도시한다.
도시된 바와 같이, 본 발명에 의한 폐열회수를 이용한 과열증기발생장치는 양단부에 유입탱크(110) 및 유출탱크(120)를 가진 하우징(100), 하우징(100) 내에서 상하 일정간격으로 이격되어 배치되는 복수의 배기가스튜브(210), 인접한 배기가스튜브(210)들 사이에 개재되는 복수의 작동유체튜브(310)를 포함한다.
하우징(100)은 양단부가 개방된 각형 구조로 형성되고, 하우징(100)의 내부에 중공부(130)가 형성되어 있다. 하우징(100)의 양단부에는 유입탱크(110) 및 유출탱크(120)가 각각 결합되고, 유입탱크(110) 및 유출탱크(120)는 디퓨저 형상으로 형성된다. 유입탱크(110)를 통해 하우징(100) 내로 배기가스가 유입되고, 유출탱크(120)를 통해 하우징(100) 내에서 배기가스가 외부로 유출된다.
유입탱크(110)의 일단에는 배기가스파이프(미도시)가 결합되는 결합슬리브(111)가 돌출하고, 유입탱크(110)의 타단에는 끼움테두리(112)가 하우징(100)의 일단을 향해 연장된다. 끼움테두리(113) 내에는 하우징(100)의 일단부가 끼워진 후에 용접 등을 통해 결합된다.
유출탱크(120)의 일단에는 끼움테두리(122)가 하우징(100)의 타단을 향해 연장되고, 유출탱크(120)의 타단에는 배기가스파이프(미도시)가 결합되는 결합슬리브(121)가 돌출한다. 끼움테두리(122) 내에는 하우징(100)의 타단부가 끼워진 후에 용접 등을 통해 결합된다.
복수의 웨이브핀(210)은 상하 일정간격으로 이격되어 배치된다. 각 배기가스튜브(210)는 그 폭방향으로 복수의 산(211)과 복수의 골(212)이 복수의 측벽부(213)를 통해 파형지게 연결되고, 이에 산(211)과 골(212)들 사이에는 배기가스가 통과하는 배기가스통로(215)가 각각 형성된다. 그리고, 복수의 산(211)과 복수의 골(212)은 배기가스의 흐름방향으로 파형지게 형성된다.
복수의 웨이브핀(210)은 그 양단부들이 제1 및 제2 끼움조립체(410, 420)를 통해 하우징(100)의 양단부 측에 설치된다.
제1끼움조립체(410)는 복수의 끼움슬롯(411)을 가지고, 제1끼움조립체(410)는 하우징(100)의 일단부에 용접 등을 통해 결합된다. 복수의 끼움슬롯(411)들은 웨이브핀(210)들의 이격간격에 대응하는 간격으로 이격된다. 이에 제1끼움조립체(410)의 끼움슬롯(411)들에 웨이브핀(21)들의 각 일단부가 개별적으로 끼워진 후에 용접 등을 통해 결합될 수 있다.
제2끼움조립체(420)는 복수의 끼움슬롯(421)을 가지고, 제2끼움조립체(420)는 하우징(100)의 타단부에 용접 등을 통해 결합된다. 복수의 끼움슬롯(421)들은 웨이브핀(210)들의 이격간격에 대응하는 간격으로 이격된다. 이에 제2끼움조립체(420)의 끼움슬롯(421)들에 웨이브핀(210)들의 각 타단부가 개별적으로 끼워진 후에 용접 등을 통해 결합될 수 있다.
이러한 제1 및 제2 끼움조립체(410, 420)에 의해 복수의 웨이브핀(210)은 상하방향으로 정확하게 이격되어 하우징(100) 내에 설치된다.
그리고, 제1 및 제2 끼움조립체(410, 420)는 하우징(100)의 양단부에 각각 기밀하게 결합되고, 이러한 제1 및 제2 끼움조립체(410, 420)를 통해 하우징(100)의 양단부가 웨이브핀(210)들의 배기가스통로(215)들을 제외한 나머지 부분을 기밀하게 밀봉할 수 있다.
복수의 작동유체튜브(310)들은 복수의 웨이브핀(210)들 사이에 개재되고, 각 작동유체튜브(310)는 연속적인 S자형 구조로 벤딩되어 형성된다. 각 작동유체튜브(310)의 상면 및 하면 각각은 인접한 웨이브핀(210)과 직접 접촉하면서 용접 등을 통해 결합된다.
각 작동유체튜브(310)에는 작동유체가 유입되는 유입파이프(510) 및 작동유체가 유출되는 유출파이프(520)가 소통되게 연결되고, 유입파이프(510) 및 유출파이프(520)는 하우징(100)의 일 측면에 용접 등을 통해 결합된다.
유입파이프(510)의 상단에는 개구(513)가 형성되고, 유입파이프(510)의 하단에는 폐쇄구(514)가 설치된다. 이에 유입파이프(510)의 상단 개구(513)를 통해 작동유체가 유입된다.
유입파이프(510)는 하우징(100)의 타단부에 인접한 일측면에 수직방향으로 설치되고, 유입파이프(510)의 일측 외주면에는 평탄면(512)이 형성되며, 이 평탄면(512)이 하우징(10)의 일측면에 용접 등을 통해 결합된다. 유입파이프(510)의 평탄면(512)에는 복수의 유입공(511)이 형성된다. 그리고, 하우징(100)의 타단부에 인접한 일측면에는 복수의 유입파이프(510)의 유입공(511)에 대응하는 관통공(101)이 형성된다. 작동유체튜브(310)의 일단부(311)가 관통공(101)을 통과한 후에 유입파이프(510)의 유입공(511) 측에 밀봉적으로 접속된다.
유출파이프(520)의 상단에는 개구(523)가 형성되고, 유출파이프(520)의 하단에는 폐쇄구(524)가 설치된다. 이에 유출파이프(520)의 상단 개구(523)를 통해 작동유체가 유출된다.
유출파이프(520)는 하우징(100)의 일단부에 인접한 일측면에 수직방향으로 설치되고, 유출파이프(520)의 일측 외주면에는 평탄면(522)이 형성되며, 이 평탄면(522)이 하우징(100)의 일측면에 용접 등을 통해 결합된다. 유출파이프(520)의 평탄면(522)에는 복수의 유출공(521)이 형성된다. 그리고, 하우징(100)의 타단부에 인접한 일측면에는 복수의 유출파이프(520)의 유출공(521)에 대응하는 관통공(102)이 형성된다. 작동유체튜브(310)의 타단부(312)가 관통공(102)을 통과한 후에 유출파이프(510)의 유출공(521) 측에 밀봉적으로 접속된다.
한편, 각 작동유체튜브(310)의 상면 및 하면 각각에는 평탄면(313, 314)이 형성되며, 작동유체튜브(310)의 평탄면(313, 314)은 인접하는 웨이브핀(210)와 직접 접촉하도록 구성된다. 이와 같이, 작동유체튜브(310)가 웨이브핀(210)의 산(211) 또는 골(212)과 면접촉하는 구조로 구성됨에 따라 작동유체튜브(310)를 통과하는 작동유체의 열교환효율이 대폭 향상되는 장점이 있다.
바람직하게는, 각 작동유체튜브(310)는 오발(oval)형 단면을 가지도록 형성되고, 이러한 오발형 단면 구조를 통해 작동유체튜브(310)의 고온/고압 증기상태의 작동유체가 작동유체튜브(310) 내부를 통과할 때 열응력의 집중이 최소화됨으로써 작동유체튜브(310)의 손상 내지 파손을 방지할 수 있다.
그리고, 작동유체튜브(310)의 양단부(311, 312)는 유입파이프(510) 및 유출파이프(520)와의 밀봉적인 접속을 용이하게 하도록 원형 단면을 가지는 것이 바람직하다.
이상과 같이 구성된 본 발명의 작동을 다음과 같이 상세히 설명한다.
고온의 배기가스가 하우징(100)의 유입탱크(110)측으로 유입되면, 고온의 배기가스가 하우징(100) 내의 웨이브핀(210)들의 배기가스통로(215)를 통과한 후에 유출탱크(120)측으로 유출된다.
이렇게 배기가스가 복수의 웨이브핀(210)을 통과하는 상태에서, 건포화증기상태의 작동유체가 유입파이프(510)를 통해 복수의 작동유체튜브(310) 내로 유입되고, 작동유체가 복수의 작동유체튜브(310)를 통과하면서 웨이브핀(210)의 배기가스통로(215)를 통과하는 고온의 배기가스와 열교환하며, 이를 통해 건포화증기상태의 작동유체는 과열증기로 변환된 후에 유출파이프(520)를 통해 유출될 수 있다.
이상과 같은 본 발명에 의하면, 작동유체튜브(310)가 오발형 단면구조로 이루어짐에 따라 고온/고압의 작동유체가 통과하는 작동유체튜브(310)의 열응력을 최소화할 수 있고, 이에 작동유체의 누설가능성을 최소화할 수 있으며, 작동유체튜브(310)를 통과하는 작동유체와 배기가스와의 열교환 접촉면적을 넓힘으로써 작동유체의 열교환효율을 대폭 향상시킬 수 있는 장점이 있다.
특히, 본 발명은 하우징(100)의 중공부(130) 내에 복수의 웨이브핀(210) 및 복수의 작동유체튜브(310)가 배치되어 있다. 즉, 하우징(100)이 작동유체튜브(310)들의 외측을 기밀하게 밀폐하도록 구성된다. 이에, 고온/고압의 작동유체가 작동유체(310)에서 누설되더라도 하우징(100)에 의해 외부로 누출됨을 확실하게 방지할 수 있다.

Claims (5)

  1. 양단부에 배기가스가 유입되는 유입탱크 및 배기가스가 유출되는 유출탱크을 가진 하우징;
    상기 하우징 내에 상하 일정간격으로 이격되어 배치되고, 복수의 산과 복수의 골이 폭방향으로 연결되며, 상기 복수의 산과 복수의 골이 배기가스의 흐름방향으로 웨이브지게 형성된 복수의 웨이브핀; 및
    상기 복수의 웨이브핀들 사이에 배치되는 복수의 작동유체튜브;를 포함하고,
    상기 하우징의 일 측면에는 작동유체가 유입되는 유입파이프 및 작동유체가 유출되는 유출파이프가 설치되며, 상기 유입파이프 및 유출파이프에는 상기 복수의 작동유체튜브와 개별적으로 소통하도록 연결되고, 각 작동유체튜브의 상면 및 하면 각각은 인접한 웨이브핀과 직접 접촉하는 것을 특징으로 하는 웨이브핀을 이용한 과열증기발생장치.
  2. 청구항 1에 있어서,
    상기 각 작동유체튜브의 상면 및 하면 각각에는 평탄면이 형성되며, 상기 작동유체튜브의 평탄면은 상기 웨이브핀과 직접 접촉하는 것을 특징으로 하는 웨이브핀을 이용한 과열증기발생장치.
  3. 청구항 1에 있어서,
    상기 각 작동유체튜브는 그 상면 및 하면 각각에 평탄면을 각각 가진 오발(oval)형 단면구조로 이루어지는 것을 특징으로 하는 웨이브핀을 이용한 과열증기발생장치.
  4. 청구항 1에 있어서,
    상기 각 작동유체튜브는 S자형으로 벤딩되어 형성되고, 상기 각 작동유체튜브의 일측단부는 유입파이프 측에 접속되며, 상기 각 작동유체튜브의 타측단부는 유출파이프 측에 접속되는 것을 특징으로 하는 웨이브핀을 이용한 과열증기발생장치.
  5. 청구항 1에 있어서,
    각 웨이브핀의 양단부에는 제1 및 제2 끼움조립체가 설치되고, 상기 제1 및 제2 끼움조립체에는 복수의 끼움슬롯이 형성되며, 상기 제1 및 제2 끼움조립체의 각 끼움슬롯에는 상기 각 웨이브핀의 양단부에는 끼워지는 것을 특징으로 하는 웨이브핀을 이용한 과열증기발생장치.
PCT/KR2012/001211 2011-12-13 2012-02-17 웨이브핀을 이용한 과열증기발생장치 WO2013089315A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/360,354 US9631539B2 (en) 2011-12-13 2012-02-17 Apparatus for generating superheated vapor using wave fin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0133936 2011-12-13
KR20110133936A KR101266917B1 (ko) 2011-12-13 2011-12-13 웨이브핀을 이용한 과열증기발생장치

Publications (1)

Publication Number Publication Date
WO2013089315A1 true WO2013089315A1 (ko) 2013-06-20

Family

ID=48612740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001211 WO2013089315A1 (ko) 2011-12-13 2012-02-17 웨이브핀을 이용한 과열증기발생장치

Country Status (3)

Country Link
US (1) US9631539B2 (ko)
KR (1) KR101266917B1 (ko)
WO (1) WO2013089315A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107289677A (zh) * 2016-03-31 2017-10-24 杭州三花研究院有限公司 换热器及co2冷却系统
CN107289676A (zh) * 2016-03-31 2017-10-24 杭州三花研究院有限公司 换热器及车辆空调系统
CN115388677A (zh) * 2022-08-29 2022-11-25 重庆钢铁股份有限公司 废水热量回收装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10006369B2 (en) * 2014-06-30 2018-06-26 General Electric Company Method and system for radial tubular duct heat exchangers
US9897386B2 (en) * 2015-08-10 2018-02-20 Indmar Products Company Inc. Marine engine heat exchanger
WO2017097133A1 (zh) 2015-12-09 2017-06-15 浙江三花汽车零部件有限公司 一种换热器
US10208714B2 (en) * 2016-03-31 2019-02-19 Mikutay Corporation Heat exchanger utilized as an EGR cooler in a gas recirculation system
CN112105515B (zh) 2018-03-23 2023-10-24 摩丁制造公司 容许高压的液体-制冷剂热交换器
WO2020209981A2 (en) * 2019-03-15 2020-10-15 Phase Change Energy Solutions, Inc. Thermal energy storage systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813987A (ja) * 1981-07-17 1983-01-26 Sasakura Eng Co Ltd 伝熱装置
JP2002054887A (ja) * 2000-08-10 2002-02-20 Sumitomo Precision Prod Co Ltd 高温用プレートフィン型熱交換器
JP2004044870A (ja) * 2002-07-10 2004-02-12 Sumitomo Precision Prod Co Ltd ハイブリッド熱交換器
JP2009133607A (ja) * 2007-10-30 2009-06-18 Denso Corp 熱交換器
JP2010144979A (ja) * 2008-12-17 2010-07-01 Denso Corp 熱交換器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3136038A (en) * 1960-10-06 1964-06-09 Modine Mfg Co Method of making a heat exchanger
NL273035A (ko) * 1960-12-29
US3310869A (en) * 1963-11-27 1967-03-28 Fedders Corp Method of making radiators
US4932467A (en) * 1988-10-17 1990-06-12 Sundstrand Corporation Multi-channel heat exchanger with uniform flow distribution
US4966230A (en) * 1989-01-13 1990-10-30 Modine Manufacturing Co. Serpentine fin, round tube heat exchanger
US5314013A (en) * 1991-03-15 1994-05-24 Sanden Corporation Heat exchanger
KR950009505B1 (ko) * 1993-03-05 1995-08-23 주식회사두원공조 자동차의 에어콘용 열교환기의 제조방법
US5881456A (en) * 1997-03-20 1999-03-16 Arup Alu-Rohr Und Profil Gmbh Header tubes for heat exchangers and the methods used for their manufacture
BR9809001A (pt) * 1997-04-23 2000-08-08 Insilco Corp Cano de distribuição incorporando defletores e método para a fabricação do mesmo
AU2224501A (en) 1999-12-27 2001-07-09 Sumitomo Precision Products Co., Ltd. Plate fin type heat exchanger for high temperature
DE10333577A1 (de) * 2003-07-24 2005-02-24 Bayer Technology Services Gmbh Verfahren und Vorrichtung zur Entfernung von flüchtigen Substanzen aus hochviskosen Medien
JP4079119B2 (ja) * 2004-05-27 2008-04-23 株式会社デンソー 熱交換器
JP2006105577A (ja) * 2004-09-08 2006-04-20 Usui Kokusai Sangyo Kaisha Ltd フィン構造体および該フィン構造体を内装した伝熱管並びに該伝熱管を組込んだ熱交換器
US7228711B2 (en) * 2004-11-12 2007-06-12 Carrier Corporation Tubes with elongated cross-section for flooded evaporators and condensers
CN101400959B (zh) * 2006-03-16 2010-09-29 贝洱两合公司 用于汽车的热交换器
US20080302518A1 (en) * 2007-06-07 2008-12-11 Joseph Durdel Flat tube heat exchanger
SE532837C2 (sv) * 2008-03-28 2010-04-20 Titanx Engine Cooling Holding Värmeväxlare, såsom en laddluftkylare
US9255746B2 (en) * 2012-10-26 2016-02-09 Modine Manufacturing Company Reactor core for use in a chemical reactor, and method of making the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813987A (ja) * 1981-07-17 1983-01-26 Sasakura Eng Co Ltd 伝熱装置
JP2002054887A (ja) * 2000-08-10 2002-02-20 Sumitomo Precision Prod Co Ltd 高温用プレートフィン型熱交換器
JP2004044870A (ja) * 2002-07-10 2004-02-12 Sumitomo Precision Prod Co Ltd ハイブリッド熱交換器
JP2009133607A (ja) * 2007-10-30 2009-06-18 Denso Corp 熱交換器
JP2010144979A (ja) * 2008-12-17 2010-07-01 Denso Corp 熱交換器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107289677A (zh) * 2016-03-31 2017-10-24 杭州三花研究院有限公司 换热器及co2冷却系统
CN107289676A (zh) * 2016-03-31 2017-10-24 杭州三花研究院有限公司 换热器及车辆空调系统
CN107289677B (zh) * 2016-03-31 2020-09-25 杭州三花研究院有限公司 换热器及co2冷却系统
CN107289676B (zh) * 2016-03-31 2020-09-25 杭州三花研究院有限公司 换热器及车辆空调系统
CN115388677A (zh) * 2022-08-29 2022-11-25 重庆钢铁股份有限公司 废水热量回收装置

Also Published As

Publication number Publication date
US20140352302A1 (en) 2014-12-04
US9631539B2 (en) 2017-04-25
KR101266917B1 (ko) 2013-05-27

Similar Documents

Publication Publication Date Title
WO2013089315A1 (ko) 웨이브핀을 이용한 과열증기발생장치
CN101191666B (zh) 一种燃气热水器的冷凝式换热装置
WO2013081249A1 (ko) 웨이브 핀
WO2013089357A1 (ko) 차량용 통합형 열교환기
WO2014065479A1 (ko) 더미 관을 갖는 응축 열교환기
WO2013172547A1 (en) Condensing heat exchanger and boiler/water hearter including the same
CN107246618B (zh) 一种高效节能催化燃烧设备
CN200989662Y (zh) 一种燃气热水器的冷凝式换热装置
WO2013089314A1 (ko) 폐열회수를 이용한 과열증기발생장치
CN108223206A (zh) 用于车辆的热交换器
CN201599817U (zh) 高温烟气与多介质间热量交换的整体列管式换热器
WO2016017864A1 (ko) 고효율 친환경 현열 열교환기
WO2018012717A1 (ko) 폐기열 회수 열교환기
CN215174961U (zh) 一种带中间联箱的低低温省煤器装置
JP2006002622A (ja) ガスタービン用再生器
CN208332305U (zh) 一种密封型节能烟道
CN215177128U (zh) 一种煤燃烧污染防治处理用换热装置
CN218723476U (zh) 一种换热机组
CN214502105U (zh) 一种燃气式坩埚炉的尾气热利用装置
WO2017175920A1 (ko) 이지알 쿨러용 가스튜브
CN219571975U (zh) 热交换器
CN103673703A (zh) 一种高温烟气余热回收装置
CN217900190U (zh) 一种湿法制废酸裂解用空气预热机构
CN202101580U (zh) 双壳体换热器
CN212901586U (zh) 一种并联斯特林发动机管式空气预热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857903

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14360354

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857903

Country of ref document: EP

Kind code of ref document: A1