WO2016017864A1 - 고효율 친환경 현열 열교환기 - Google Patents

고효율 친환경 현열 열교환기 Download PDF

Info

Publication number
WO2016017864A1
WO2016017864A1 PCT/KR2014/011579 KR2014011579W WO2016017864A1 WO 2016017864 A1 WO2016017864 A1 WO 2016017864A1 KR 2014011579 W KR2014011579 W KR 2014011579W WO 2016017864 A1 WO2016017864 A1 WO 2016017864A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
tube
side plate
heat exchange
elliptical
Prior art date
Application number
PCT/KR2014/011579
Other languages
English (en)
French (fr)
Inventor
최성환
신연철
김태영
Original Assignee
(주)귀뚜라미
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)귀뚜라미 filed Critical (주)귀뚜라미
Publication of WO2016017864A1 publication Critical patent/WO2016017864A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings

Definitions

  • the present invention relates to a high-efficiency eco-friendly sensible heat exchanger, and more particularly, by gently lowering the temperature of the combustion gas passing through the heat exchanger by improving the structure of the heat exchanger, while reducing the generation of harmful substances such as carbon monoxide,
  • the heat exchange efficiency between low temperature direct water is related to a high efficiency eco-friendly sensible heat exchanger.
  • the heat exchanger is a heat exchanger that intersects heating fluids and heated fluids having different temperatures, and is widely used for heating, air conditioning, power generation, cooling, and waste heat recovery in various other heating and cooling devices including boilers and air conditioners. Used.
  • the sensible heat exchanger 1 and the latent heat exchanger 2 are sequentially disposed at the lower part of the burner 8 as shown in FIGS. 1 and 2, and the burner 8 and the sensible heat Between the exchanger 1, the combustion chamber corresponding to the flame generation length is provided.
  • the sensible heat exchanger (1) the sensible heat exchange is performed between the flame and the combustion gas generated by the burner (8) burning the fuel and the low temperature direct water, and in the latent heat exchanger (2) the latent heat heat exchange between the combustion gas and the low temperature direct water. This is done.
  • the sensible heat exchanger 1 is rapidly recovered because the heat contained in the hot combustion gas is rapidly recovered through the sensible heat exchange pipe 9 and the heat exchange fin 3 of the sensible heat exchanger 1 which is in contact with the combustion chamber. ) The internal temperature gradient drops abruptly.
  • burners having a relatively high flow rate compared to a general burner that ejects a free propagating frame, such as a premix gas burner, have a shorter residence time of CO and lower the chemical reaction to CO2.
  • the heat exchanger body is overheated by the high temperature flame and combustion gas generated from the burner 8, and when the heat exchanger body is overheated, deformation occurs in the sensible heat exchanger 1. There is a problem that a failure occurs.
  • the present applicant is provided with a second heat exchanger tube 130 on the heat exchanger body 110 in the Korean Patent Application Publication No. 2014-0051760 as shown in Figure 3, the heat exchanger fin was removed from the second heat exchanger tube 130.
  • a second heat exchange tube 130 is disposed at the center of the heat exchanger body 110 based on the height of the heat exchanger body 110.
  • the temperature of the combustion gas is gently lowered, and after the combustion gas flows into the second heat exchange tube 130, the heat exchange is performed at a predetermined length downstream. To reduce emissions of CO and the like.
  • first heat exchanger tube 120 is disposed below the second heat exchanger tube 130, and after the chemical reaction occurs by adding a heat exchange fin to the surface of the first heat exchanger 130, the second heat exchanger tube 130 is disposed.
  • the heat exchange was not made sufficiently in).
  • the upper part of the second heat exchanger tube 130 is provided with a third heat exchanger tube 140 disposed along the inner circumferential surface of the heat exchanger body 110, thereby preventing the deformation or breakage of the heat exchanger due to overheating, and thus the first heat exchanger. Together with the group 120, it was possible to increase the heat exchange rate.
  • the third heat exchanger tube 140 located at the top of the heat exchanger body 110 is provided. There is a problem that rapid heat exchange occurs upstream.
  • a method of removing the third heat exchanger tube 140 may be considered, but in this case, the generation of harmful substances may be reduced while the thermal efficiency is too low because the first heat exchanger 120 alone does not provide sufficient heat exchange rate. . In other words, the two objectives of suppressing the generation of harmful substances and high efficiency cannot be achieved at the same time.
  • the brazing welding of one contact tube 111 on each of the front and rear surfaces of the heat exchanger body 110 can increase the thermal efficiency to some extent through this, the cross section has a circular heat exchange rate due to the contact tube 111. The problem is that the increase is insignificant.
  • the installation height of the contact tube 111 is located at the same or higher position than the second heat exchange tube 130 as shown, the installation height of the second heat exchange tube 130 is changed to a temperature change of the combustion gas. There is a problem of rapid change.
  • the present invention has been proposed to solve the above-described problems, and the heat exchange between the hot combustion gas and the low temperature direct water while reducing the generation of harmful substances such as carbon monoxide by gently lowering the temperature of the combustion gas passing through the heat exchanger It is to provide a high efficiency eco-friendly sensible heat exchanger to increase the efficiency.
  • the high efficiency eco-friendly sensible heat exchanger according to the present invention is surrounded by a front side plate, a rear side plate, a left side plate and a right side plate, and the upper and lower portions are open so that hot combustion gas introduced from the combustion chamber located at the upper side is discharged downward.
  • a heat exchanger body A plurality of CO reduction pipes inserted between the left side plate and the right side plate, respectively, located at an intermediate portion with respect to the height direction of the heat exchanger body to prevent the temperature of the combustion gas from being drastically reduced, thereby reducing the generation of harmful substances; ; A stainless circular U-shaped tube coupled to the outside of the left side plate and the right side plate and connecting the open ends of the CO reduction pipes disposed adjacent to each other;
  • the main heat exchanger is disposed below the CO reduction pipe and disposed relatively far from the flame compared to the CO reduction pipe, and is sandwiched between the left side plate and the right side plate, and a heat exchange fin is provided on the outer circumferential surface to increase the heat exchange rate.
  • a stainless elliptical U-shaped tube coupled to the outside of the left side plate and the right side plate and connecting the open ends of the main heat exchange tubes disposed adjacent to each other; And fixed to the inner side surfaces of the front side plate (F) and the rear side plate (B) to be exposed directly on the combustion gas flow path inside the heat exchanger body to prevent solid phase radiation of the combustion gas, and to increase the heat exchange rate.
  • a front and rear stainless steel oval tube made of a stainless steel material having an elliptical cross section.
  • the front side plate and the rear side plate is formed with an assembly groove for seating the front and rear stainless elliptical tube, respectively, the front and rear stainless elliptical tube is seated in the assembly groove and brazed and welded to the front side plate and the rear side plate It is preferable to be fixed.
  • each of the first front and rear stainless steel elliptical tube in a lower position is lower than the CO reducing pipe and higher than the main heat exchange tube
  • the second front and rear stainless elliptical tube disposed at a relatively high position is preferably disposed at a higher position than the CO reduction pipe.
  • the inlet through which the low-temperature direct water flows is installed in the main heat exchanger tube corresponding to the inflow side of the plurality of main heat exchanger tubes disposed under the heat exchanger body, and discharges hot water whose temperature rises through heat exchange.
  • the outlet port is preferably installed in the second front and rear stainless elliptical tube corresponding to the discharge side of the plurality of second front and rear stainless elliptical tubes disposed on the heat exchanger body.
  • the main heat exchange tube is a tube having an elliptical cross section
  • the stainless elliptical U tube is a connecting tube bent in an U shape with a tube having an elliptical cross section.
  • the plurality of CO reduction pipes are spaced apart in parallel to each other in the horizontal direction of the heat exchanger body, the middle portion of the heat exchanger body in which the CO reduction pipes are installed is centered on the height direction of the heat exchanger body. It is preferably in the range of up to 20% of the total height upward and 20% of the total height downward.
  • the present invention as described above adopts the CO reduction pipe, the main heat exchange tube and the front and rear stainless steel elliptical tube of different purposes and optimize their arrangement. Therefore, the temperature of the combustion gas is gently lowered to reduce the generation of harmful substances and at the same time, the heat exchange efficiency between the combustion gas and the combustion gas is increased.
  • the CO reduction pipe and the main heat exchanger tube is installed inside the heat exchanger body, and at this time supports the inner surface of the heat exchanger body by the front and rear stainless steel oval tube brazed. Thus, deformation of the heat exchanger due to overheating is prevented.
  • FIG. 1 is a partial perspective view showing a condensing boiler according to the prior art.
  • FIG. 2 is a cross-sectional view showing a condensing boiler according to the prior art.
  • FIG. 3 is a perspective view showing a sensible heat exchanger according to the prior art.
  • Figure 4 is a perspective view showing a high efficiency eco-friendly sensible heat exchanger according to the present invention.
  • Figure 5 is a front view and a cross-sectional view A-A showing a high efficiency eco-friendly sensible heat exchanger according to the present invention.
  • Figure 6 is a bottom view showing a high efficiency eco-friendly sensible heat exchanger according to the present invention.
  • FIG. 8 is a comparison diagram showing a state of thermal conduction between a pipe having a circular cross section and a pipe having an elliptical cross section.
  • the direction in which the burner is installed is determined as the upper side and the opposite side is determined as the lower side, it is obvious that the vertical direction can be changed according to the installation position of the burner.
  • the heat exchanger body will be described by dividing the front / rear / left / right side plate, but the front / rear / left / right direction may vary depending on the viewing angle.
  • it includes a stainless circular U-shaped tube 221 connecting the plurality of CO reduction pipes 220 consisting of a plurality of stainless elliptical U-shaped tube 231 connecting the plurality of main heat exchanger tube 230 to each other.
  • the CO reduction pipe 220 for different purposes, and the main heat exchange tube 230 and the front and rear stainless elliptical tube 240 includes a plurality of connectors (C1 to C4) to enable continuous circulation of water. .
  • the water (for example, low temperature direct water) introduced through the inlet IN passes through both the CO reduction pipe 220, the main heat exchange tube 230, and the front and rear stainless elliptical tubes 240 (the exact flow order is It will be described later) is discharged through the outlet (OUT).
  • the water for example, low temperature direct water
  • the heat exchanger body 210 is open to the upper and lower portions, respectively, so that the flame and high temperature combustion gas (ie, the heat source) provided from the burner (not shown) installed on the upper side penetrates the heat exchanger body 210 from the upper side to the lower side. Flows.
  • the flame and high temperature combustion gas ie, the heat source
  • the water is heated by heat exchange between the low-temperature direct water and the high-temperature heat source flowing through the CO reduction pipe 220, the main heat exchange tube 230, and the front and rear stainless elliptical tubes 240.
  • the heated water is provided as hot water or heating water.
  • the present invention adopts the CO reduction pipe 220, the main heat exchange tube 230, and the front and rear stainless elliptical tubes 240 having different purposes and optimize their arrangement. Therefore, the generation of harmful substances is reduced and the heat exchange efficiency between the combustion gas and the gas is increased.
  • the CO reduction pipe 220 and the main heat exchanger tube 230 is installed inside the heat exchanger body 210, the front and rear stainless steel oval tube 240 brazed weld of the heat exchanger body 210 Support the inner side. Thus, deformation and damage of the sensible heat exchanger due to overheating are prevented.
  • the heat exchanger body 210 constitutes the body of the sensible heat exchanger (also referred to as 'primary heat exchanger'), and the front side plate (F), the rear side plate (B), the left side plate (L) and the right side plate ( R).
  • the upper and lower portions of the heat exchanger body 210 are open so that hot combustion gas introduced from the combustion chamber (see FIG. 2) located at the upper side is discharged downward.
  • a premix gas burner ejects the flame and the combustion gas into the combustion chamber described above.
  • the condensing burner has a premixed gas burner, a combustion chamber, a sensible heat exchanger, a latent heat exchanger, and a discharge part disposed therefrom.
  • the heat exchanger body 210 of the present invention relates to a sensible heat exchanger.
  • the heat exchanger body 210 of the present invention is connected to a premixed gas burner with a combustion chamber in between like a general condensing boiler.
  • the height of the combustion chamber generally corresponds to the flame generation length of the burner, the burner and the heat exchanger body 210 are spaced apart by the flame generation length.
  • the CO reduction pipe 220 prevents the emission of harmful substances such as CO and NOx, which are combustion products, as the high temperature combustion gas discharged through the burner and the combustion chamber is rapidly frozen through heat exchange. It is for.
  • the CO reduction pipe 220 is made of a straight pipe having a circular cross section to provide a low heat exchange rate, and there is no heat exchange fin on the outer circumferential surface unlike a general heat exchange pipe.
  • the main purpose of the main heat exchanger tube 230 which will be described later, is made of a straight tube having an oval cross section so as to provide a high heat exchange rate.
  • the CO reduction pipe 220 is composed of a plurality of and is fitted between the left side plate (L) and the right side plate (R) of the heat exchanger body (210), respectively. Through holes are formed in the left side plate L and the right side plate R, respectively, as shown in FIG. 5B, which is an A-A cross-sectional view of FIG. 5A.
  • both end portions of the CO reduction pipe 220 is inserted and fixed between the left side plate (L) and the right side plate (R) to be connected to the through-holes described above. Adjacent ones of the plurality of CO reduction pipes 220 are connected to each other by a stainless circular U-tube 221.
  • the CO reduction pipes 220 of the present invention are arranged side by side in parallel in the horizontal direction inside the heat exchanger body 210, wherein the temperature of the combustion gas by being located in the middle portion with respect to the height direction of the heat exchanger body 210 To prevent a sharp decrease.
  • the middle part of the heat exchanger body 210 in which the CO reduction pipe 220 is installed is 20% of the total height upward and 20% of the total height downward relative to the center of the height direction of the heat exchanger body 210. Means up to%.
  • the reason for arranging the CO reduction pipes 220 in the center portion of the heat exchanger body 210 is that the heat exchanger does not start immediately after the hot combustion gas introduced through the combustion chamber of the burner is introduced into the heat exchanger body 210. To do this.
  • the combustion gas contains various carbon monoxide (CO). If the combustion gas is cooled by a rapid heat exchange before CO reacts with O 2 to form CO 2, the combustion gas is cooled to provide an optimum temperature. CO is emitted as it is not.
  • CO carbon monoxide
  • the present invention reduces the emission of harmful substances by the gentle temperature gradient, that is, the temperature of the combustion gas is gently lowered to the temperature at which CO is chemically converted to CO2.
  • the residence time of CO is shortened and the chemical reaction to CO 2 occurs relatively downstream.
  • the present invention prevents the generation of various harmful substances including CO by arranging the CO reduction pipe 220 spaced from the top to the downstream to prevent heat exchange immediately after the combustion gas flows into the heat exchanger body 210. .
  • the stainless circular U-shaped tube 221 connects the plurality of eco-friendly heat exchangers arranged in parallel as described above to allow the low-temperature direct water to flow through all the CO reduction pipes 220.
  • the stainless circular U-shaped tube 221 is manufactured by bending a tube having a circular cross section, and the stainless circular U-shaped tube 221 manufactured as described above is coupled to the outside of the left side plate L and the right side plate R, and is adjacent to each other.
  • the open ends of the disposed CO abatement pipes 220 are connected to each other.
  • the direct flow alternately flows in the zigzag direction as the CO reduction pipe 220 and the stainless circular U-shaped tube 221 pass alternately.
  • the main heat exchange tube 230 is mainly intended for heat exchange between the low temperature direct water and the heat source (ie, flame and combustion gas) generated in the burner, and compensates for the low heat exchange rate of the above-described CO reduction pipe 220. .
  • the CO reduction pipe 220 is basically for heat exchange, the heat exchange rate is remarkably low because the generation of harmful substances must be reduced by a gentle temperature gradient. Therefore, the main heat exchange tube 230 is further provided to increase the heat exchange rate while reducing the generation of harmful substances.
  • a plurality of main heat exchange tubes 230 are also provided, and in particular, are disposed below the CO reduction pipe 220. That is, the CO contained in the combustion gas is disposed downstream as much as possible so as to perform a full heat exchange after chemical conversion to CO 2.
  • through-holes for the main heat exchange tube 230 are formed in the heat exchanger body 210 under the left side plate L and the right side plate R, respectively. ) Are sandwiched between the left side plate (L) and the right side plate (R).
  • the main heat exchange tube 230 is an example of using a stainless steel pipe is fixed through brazing welding.
  • an oval pipe having an oval or oval cross section is used to increase the heat exchange rate.
  • the outer circumferential surface of the main heat exchange tube 230 is provided with a heat exchange fin 230a to further increase the heat exchange rate. Since the surface area is greatly widened by the heat exchange fins 230a, the heat exchange rate with the combustion gas is increased.
  • the stainless elliptical U tube 231 connects the plurality of main heat exchangers arranged in parallel as described above to each other so that the low temperature direct water flows through all the main heat exchange tubes 230.
  • the stainless oval U tube 231 is manufactured by bending a tube having an elliptical cross section, and the stainless oval U tube 231 manufactured as described above is coupled to an outer side of the left side plate L and the right side plate R, and is adjacent to each other.
  • the open ends of the arranged main heat exchanger tube 230 are connected to each other.
  • the direct flow alternately flows in a zigzag direction as the CO reduction pipe 220 and the stainless elliptical U-shaped tube 231 pass alternately.
  • the stainless elliptical U-shaped tube 231 uses an elliptical tube whose cross section is improved in pressure resistance, thereby sufficiently enduring high hydraulic pressure, and smoothing the flow of water directly.
  • the stainless oval U tube 231 as described above is also used a pipe made of stainless steel, it is preferable that the left side plate (L) and the right side plate (R) brazing welding.
  • the front and rear stainless steel oval tube 240 is to replace the third heat exchange tube 140 and the contact tube 111 according to the prior art described with reference to Figure 3, while preventing the rapid temperature drop of the combustion gas heat exchanger body It serves as a reinforcement to prevent deformation of 210.
  • the conventional third heat exchange tube 140 is installed on the upper portion of the heat exchanger body 110 close to the combustion chamber to reduce the temperature gradient mitigation effect by the second heat exchange tube 130 to the front and rear stainless steel of the present invention. Improved by the elliptical tube 240.
  • the conventional third heat exchange tube 140 is directly exposed to the combustion gas discharge passage inside the heat exchanger body 110, the combustion gas is in contact with the third heat exchange tube 140 and the solid phase radiation is excessively made rather heat exchange This is prevented from being made suddenly.
  • the conventional contact tube 111 has the effect of reinforcing the heat exchanger body 210, but since the tube is a circular cross section, the heat exchange rate is too low to appropriately serve to increase the heat exchange rate together with the first heat exchanger 120. Improve what you can't do.
  • the front and rear stainless steel oval tube 240 of the present invention is fixed to the inner side of the front side plate (F) and the rear side plate (B).
  • the front side plate (F) and the rear side plate (B) of the heat exchanger body 210 is formed in each of the assembling grooves for seating the front and rear stainless steel oval tube 240, respectively, front and rear stainless steel elliptical tube 240 is brazed and welded to the assembly groove.
  • front and rear stainless steel oval tube 240 is made of a stainless steel material and uses a tube having an elliptical cross section.
  • These tubes are also commonly referred to as 'oval pipes', which have a higher heat exchange rate than other tubes of circular cross section as described below.
  • the assembly groove is also formed in a curved shape so that the front and rear stainless steel elliptical tube 240 of the elliptical shape is in close contact.
  • the front and rear stainless elliptical tube 240 of the present invention is provided with two each in the front side plate (F) and the rear side plate (B). That is, the front side plate (F) is provided with a first front and rear stainless elliptical tube (241) and a second front and rear stainless elliptical tube (242), and the rear side plate (B) also has a first front and rear stainless elliptical tube (241) and A second front and rear stainless elliptical tube 242 is provided.
  • the first front and rear stainless elliptical tube 241 in a relatively lower position of the two front and rear stainless elliptical tubes 240 is disposed at a position lower than the CO reduction pipe 220 and higher than the main heat exchange tube 230.
  • the second front and rear stainless elliptical pipe 242 at a relatively high position is disposed at a higher position than the CO reduction pipe 220.
  • the upper and lower sides of the relative heights are compared based on the origin of the hollow part provided in each heat exchanger tube, that is, the center point of each heat exchanger tube in cross section.
  • the first front and rear stainless elliptical tube 241 and the CO reducing pipe overlap part of the whole, but the center point of the first front and rear stainless elliptical tube 241 is relatively higher. low.
  • first front and rear stainless elliptical tube 241 and the CO reduction pipe 220 are distributed up and down, and furthermore, the first front and rear stainless elliptical tube 241 is burned at a position higher than the main heat exchange tube 230.
  • the temperature gradient of the gas changes more gently throughout.
  • the second front and rear stainless steel oval tube 242 is disposed at a higher position than the environmentally friendly heat exchanger, even if disposed above the heat exchanger body 210, as described above, it helps to increase the heat exchange rate while reducing solid phase radiation. And the temperature gradient of the combustion gas is gentle from the top.
  • Figure 7 (a) shows the CO emissions of the freely propagating flame (prely propagating flame) versus the pre-burned flame (porous burner flame) at an air ratio 1.6.
  • Figure 7 (b) shows the OH mass fraction of the free propagation flame versus premixed burner flame, it can be seen that the OH mass fraction decreases as the distance from the flame increases.
  • the CO reduction pipe 220 is disposed at the center of the heat exchanger body 210, not the top thereof, to be spaced apart from the flame, and the first front and rear stainless elliptical tube 241 is disposed at a lower position so that the heat exchange is downstream. It can be seen that it is preferably made from.
  • FIG. 8 is for considering the heat transfer performance of the tube having a circular cross section
  • (b) of FIG. 8 is for considering the heat transfer performance of the tube having an elliptical cross section.
  • Equation 1 shows the total nusselt number, and the main heat exchange tube 230 and the front and rear stainless elliptical tubes 240 of the present invention as shown in FIG. It can be seen that it is more efficient because the number of Nusselles is larger and accordingly the thermal conductivity is high.
  • N tot (h tot ⁇ D) / k
  • h tot is the heat transfer rate
  • D is the diameter of the tube
  • k is the fluid thermal conductivity
  • Equation 2 shows the coefficient of friction
  • the main heat exchange tube 230 and the front and rear stainless elliptical tube 240 of the present invention is elliptical in cross section through the calculation is about compared to the circular tube in the cross section It has a coefficient of friction of 40%.
  • ⁇ p is the tube frictional pressure loss and the pressure difference between the inlet and outlet of the test section
  • is the fluid density
  • V is the fluid velocity
  • H is the height of the tube
  • L is the length of the tube.
  • the main heat exchange tube 230 and the front and rear stainless elliptical tubes 240 use an oval pipe having an elliptical cross section. Able to know.
  • Figure 9 is measured the surface temperature of the outer wall surface of the heat exchanger body 210 with a thermal imaging camera in the actual combustion state
  • Figure 9 (a) is a general heat exchanger
  • Figure 9 (B) is the present invention is applied.
  • the thermal efficiency of the present invention is more excellent.
  • the first connector (C1) to the fourth connector (C4) which has not been described above, the CO reduction pipe 220 for different purposes, the main heat exchange tube 230 and the front and rear stainless elliptical tube 240 to each other By linking it, the cold direct water passes through all of them.
  • the direct water is formed in the plurality of main heat exchange tubes 230, the first front and rear stainless elliptical tubes 241 provided in the front side plate F, the plurality of CO reduction pipes 220, and the rear side plate B. 1 Sequentially along the front and rear stainless oval tube 241, the second front and rear stainless oval tube 242 provided in the rear side plate (B) and the second front and rear stainless oval tube 242 provided in the front side plate (F) Flow to.
  • the inlet (IN) through which the low temperature direct water flows is installed in the main heat exchange tube 230 corresponding to the inflow side of the plurality of main heat exchange tubes 230 disposed under the heat exchanger body 210.
  • the outlet (OUT) for discharging the hot water of the high temperature through the heat exchange is the discharge corresponding to the discharge side of the plurality of second front and rear stainless elliptical tube (242) disposed on the upper portion of the heat exchanger body (210). 2 is installed in the front and rear stainless steel oval tube 242.
  • the heat exchange is relatively small compared to the case where the low temperature direct water flows on the upper portion of the heat exchanger body 210. To be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

본 발명은 고효율 친환경 현열 열교환기에 관한 것으로, 특히 열교환기의 구조 개선을 통해 열교환기를 통과하는 연소가스의 온도를 완만하게 하강시켜 일산화탄소와 같은 유해물질의 발생을 줄이면서도 고온의 연소가스와 저온의 직수 사이의 열교환 효율은 높이는 고효율 친환경 현열 열교환기에 관한 것이다.

Description

고효율 친환경 현열 열교환기
본 발명은 고효율 친환경 현열 열교환기에 관한 것으로, 더욱 상세하게는 열교환기의 구조 개선을 통해 열교환기를 통과하는 연소가스의 온도를 완만하게 하강시켜 일산화탄소와 같은 유해물질의 발생을 줄이면서도 고온의 연소가스와 저온의 직수 사이의 열교환 효율은 높이는 고효율 친환경 현열 열교환기에 관한 것이다.
열교환기는 서로 온도가 다른 가열 유체와 피가열 유체를 교차시켜 열전달이 이루어지게 하는 것으로, 보일러 및 공기 조화기를 포함한 그 외 다양한 냉난방 장치에서 난방, 공기조화, 동력발생, 냉각 및 폐열회수용 등으로 널리 사용된다.
특히, 한국등록특허 제0390521호 등에서 소개되는 콘덴싱 보일러는 도 1 및 도 2와 같이 버너(8)의 하부에 현열교환기(1) 및 잠열교환기(2)를 순차 배치하고, 버너(8)와 현열교환기(1) 사이에는 화염발생 길이에 대응하는 연소실을 구비한다.
이때, 현열교환기(1)에서는 버너(8)가 연료를 연소시켜 발생한 화염 및 연소가스와 저온의 직수 사이에 현열 열교환이 이루어지고, 잠열교환기(2)에서는 연소가스와 저온의 직수 사이에 잠열 열교환이 이루어진다.
그러나, 종래에는 연소실과 맞닿아 있는 현열교환기(1)의 현열교환 파이프(9) 및 열교환핀(3)(heat exchange fin)을 통해 고온의 연소가스에 포함된 열을 급격히 회수하므로 현열교환기(1) 내부의 온도 구배가 급격히 하강한다.
즉, 버너(8)에서 발생한 화염 및 고온의 연소가스가 현열교환기(1)를 통과시 현열교환 파이프(9)의 열교환핀(3)에 의해 열을 급속히 빼앗기기 시작하여 급속히 온도가 하강한다.
따라서, 연소 직후 높은 농도의 CO 등을 포함한 연소가스가 열교환핀(3)에 의해 급속히 냉각(freezing)됨에 따라 CO가 CO2로 화학 반응하기에 충분한 시간을 주지 못하므로 배출가스에 CO를 비롯한 각종 유해물질이 많이 포함된다.
또한, 예혼합 가스 버너(premix gas burner)와 같이 자유 전파 화염(freely propagating frame)을 분출하는 일반 버너에 비해 상대적으로 유속이 빠른 버너의 경우에는 CO의 체류시간이 짧아지고 CO2로의 화학반응도 하류에서 일어난다.
따라서, 연소실과 직접 맞닿아 있는 현열교환기(1)에 연소가스가 유입된 직후 현열교환 파이프(9) 및 열교환핀(3)을 통해 상류에서 즉시 열교환이 이루어지면 각종 유해물질의 발생이 더욱 증가하는 문제점이 있다.
또한, 이상과 같은 종래의 현열교환기(1)는 버너(8)에서 발생하는 고온의 화염 및 연소가스에 의해 열교환기 몸체가 과열되고, 열교환기 몸체가 과열되면 현열교환기(1)에 변형이 일어나 고장이 발생하는 문제점이 있다.
이에, 본 출원인은 도 3과 같이 한국공개특허 제2014-0051760호에서 열교환기 몸체(110)에 제2열교환관(130)을 구비하되, 제2열교환관(130)에서 열교환핀을 제거하였다. 또한, 열교환기 몸체(110)의 높이를 기준으로 그 중심부에 제2열교환관(130)을 배치하였다.
따라서, 열교환핀이 없는 제2열교환관(130)에 의해 열교환율을 낮춤으로써 연소가스의 온도를 완만하게 하강시키고, 연소가스가 제2열교환관(130)으로 유입된 후 일정 길이 하류에서 열교환이 이루어지게 함으로써 CO 등의 배출을 감소시켰다.
또한, 제2열교환관(130)의 하부에 제1열교환관(120)을 배치하되, 제1열교환기(130)의 표면에는 열교환핀을 부가함으로써 화학반응이 일어난 후에는 제2열교환관(130)에서 충분히 이루어지지 못한 열교환의 보충이 이루어지게 하였다.
또한, 제2열교환관(130)의 상부에는 열교환기 몸체(110)의 내주면을 따라 배치된 제3열교환관(140)을 구비함으로써, 과열에 의한 열교환기의 변형이나 파손을 방지하면서도 제1열교환기(120)와 함께 열교환율을 높일 수 있게 하였다.
또한, 열교환기 몸체(110)의 전후면에 단면이 원형인 접촉관(111)을 브레이징 용접 방식으로 고정함으로써 이를 통해서도 과열에 의한 열교환기의 변형이나 파손을 방지하면서 열교환율을 높일 수 있게 하였다.
그러나, 이상과 같은 종래기술에 의하면 제2열교환관(130)에 의해 유해물질의 발생을 어느 정도 저감시킬 수는 있지만, 열교환기 몸체(110)의 최상부에 위치한 제3열교환관(140)에 의해 상류에서 급격한 열교환이 이루어지는 문제가 있다.
또한, 연소가스가 연소실에서 방출된 직후 제3열교환관(140)과 접촉하는 과정에서 다량의 고체상 복사가 이루어지므로 열교환이 급격히 이루어지고, 그에 따라 연소가스의 온도 구배를 완만하게 조절하지는 못하였다.
이에, 제3열교환관(140)을 제거하는 방안이 고려될 수 있지만 이러한 경우에는 유해물질의 발생을 줄일 수 있는 반면 제1열교환기(120)만으로 충분한 열교환율을 제공하지 못하므로 열효율이 너무 낮다. 즉, 유해물질의 발생 억제 및 고효율이라는 2가지를 목적을 동시에 달성하지 못한다.
또한, 열교환기 몸체(110)의 전후면에 각각 1개씩의 접촉관(111)을 브레이징 용접하여 이를 통해 어느 정도 열효율을 높일 수는 있지만, 단면이 원형이 접촉관(111)에 의해서는 열교환율 증가가 미비하다는 문제가 있다.
또한, 도시된 바와 같이 접촉관(111)의 설치 높이가 제2열교환관(130)과 동일하거나 혹은 그보다 높은 위치에 있기 때문에, 제2열교환관(130)의 설치 높이를 연소가스의 온도 변화가 급격하게 변화한다는 문제가 있다.
본 발명은 전술한 바와 같은 문제점을 해결하기 위해 제안된 것으로, 열교환기를 통과하는 연소가스의 온도를 완만하게 하강시켜 일산화탄소와 같은 유해물질의 발생을 줄이면서도 고온의 연소가스와 저온의 직수 사이의 열교환 효율은 높이는 고효율 친환경 현열 열교환기를 제공하고자 한다.
이를 위해, 본 발명에 따른 고효율 친환경 현열 열교환기는 전방 측판, 후방 측판, 좌측 측판 및 우측 측판에 의해 둘러싸이며, 상부에 위치한 연소실에서 유입된 고온의 연소가스가 하부로 배출되도록 상하부가 각각 개방되어 있는 열교환기 몸체와; 각각 상기 좌측 측판과 우측 측판 사이에 끼워지며, 상기 열교환기 몸체의 높이 방향에 대해 중간 부분에 위치하여 상기 연소가스의 온도가 급격히 감소하는 것을 방지함으로써 유해물질의 발생을 줄이는 복수개의 CO 저감 파이프와; 상기 좌측 측판과 우측 측판의 외측에서 결합되며, 각각 인접 배치된 상기 CO 저감 파이프의 개방 단부를 서로 연결시키는 스테인레스 원형 U자관과; 상기 CO 저감 파이프의 하부에 배치되어 상기 CO 저감 파이프와 비교하여 화염으로부터 상대적으로 멀리 배치되고, 각각 상기 좌측 측판과 우측 측판 사이에 끼워지며, 열교환율을 높이도록 외주면에는 열교환핀이 구비된 메인 열교환관과; 상기 좌측 측판과 우측 측판의 외측에서 결합되며, 각각 인접 배치된 상기 메인 열교환관의 개방 단부를 서로 연결시키는 스테인레스 타원형 U자관; 및 상기 열교환기 몸체 내부의 연소가스 유동 경로 상에 직접 노출되어 연소가스의 고체상 복사가 일어나는 것을 방지하도록 상기 전방 측판(F) 및 후방 측판(B)의 내측면에 고정되며, 열교환율을 높이도록 단면이 타원형인 스테인레스 재질로 이루어진 전후면 스테인레스 타원형관;을 포함하는 것을 특징으로 한다.
이때, 상기 전방 측판 및 후방 측판에는 상기 전후면 스테인레스 타원형관이 안착되는 조립홈이 각각 형성되어 있고, 상기 전후면 스테인레스 타원형관은 상기 조립홈에 안착된 후 브레이징 용접되어 상기 전방 측판 및 후방 측판에 고정된 것이 바람직하다.
또한, 상기 전후면 스테인레스 타원형관은 상기 전방 측판 및 후방 측판에 각각 2개씩 구비되되, 상대적으로 낮은 위치에 있는 제1 전후면 스테인레스 타원형관은 상기 CO 저감 파이프보다 낮고 상기 메인 열교환관 보다는 높은 위치에 배치되고, 상대적으로 높은 위치에 있는 제2 전후면 스테인레스 타원형관은 상기 CO 저감 파이프보다 높은 위치에 배치되는 것이 바람직하다.
또한, 저온의 직수가 유입되는 입수구는 상기 열교환기 몸체의 하부에 배치된 상기 복수개의 메인 열교환관들 중 유입측에 해당하는 메인 열교환관에 설치되고, 열교환을 통해 온도가 올라간 고온의 물이 배출되는 출수구는 상기 열교환기 몸체의 상부에 배치된 복수개의 제2 전후면 스테인레스 타원형관들 중 배출측에 해당하는 제2 전후면 스테인레스 타원형관에 설치되는 것이 바람직하다.
또한, 상기 메인 열교환관은 단면이 타원형인 관이고 상기 스테인레스 타원형 U자관은 단면이 타원형인 관을 U자형으로 굽힌 연결관인 것이 바람직하다.
또한, 상기 복수개의 CO 저감 파이프들은 상기 열교환기 몸체의 수평 방향에 서로 평행하게 이격 배치되고, 상기 CO 저감 파이프들이 설치되는 상기 열교환기 몸체의 중간 부분은 상기 열교환기 몸체의 높이 방향에 대한 중심을 기준으로 상측으로 전체 높이에 대한 20% 및 하측으로 전체 높이에 대한 20%까지의 범위인 것이 바람직하다.
이상과 같은 본 발명은 서로 다른 목적의 CO 저감 파이프, 메인 열교환관 및 전후면 스테인레스 타원형관을 채택하고 이들의 배치를 최적화한다. 따라서, 연소가스의 온도를 완만하게 하강시켜 유해물질의 발생을 감소시킴과 동시에 연소가스와 사이의 열교환 효율은 높인다.
또한, 본 발명은 CO 저감 파이프와 메인 열교환관은 열교환기 몸체의 내부에 설치하고, 이때 브레이징 용접된 전후면 스테인레스 타원형관으로 열교환기 몸체의 내측면을 지지한다. 따라서, 과열에 의한 열교환기의 변형을 방지한다.
도 1은 종래 기술에 따른 콘덴싱 보일러를 나타낸 부분 사시도이다.
도 2는 종래 기술에 따른 콘덴싱 보일러를 나타낸 단면도이다.
도 3은 종래 기술에 따른 현열 열교환기를 나타낸 사시도이다.
도 4는 본 발명에 따른 고효율 친환경 현열 열교환기를 나타낸 사시도이다.
도 5는 본 발명에 따른 고효율 친환경 현열 열교환기를 나타낸 정면도 및 A-A단면도이다.
도 6은 본 발명에 따른 고효율 친환경 현열 열교환기를 나타낸 저면도이다.
도 7은 화염으로부터 거리 대 유해물질 발생량을 나타낸 그래프이다.
도 8은 단면이 원형인 관과 단면이 타원형인 관의 열전도 상태를 나타낸 비교도이다.
도 9는 본 발명에 따른 열교환기 몸체의 외벽 표면온도 측정도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 고효율 친환경 현열 열교환기에 대해 설명한다.
다만, 이하에서는 버너가 설치된 방향을 상측으로 정하고 그 반대측을 하측으로 정하나, 버너의 설치 위치에 따라 상하 방향이 바뀔 수 있음은 자명하다.
또한, 이하에서는 열교환기 몸체를 전/후/좌/우 측판으로 구분하여 설명하나 전/후/좌/우 방향은 보는 각도에 따라 달라질 수 있음은 자명하다.
먼저, 도 4의 (a) 및 (b)와 같이 본 발명에 따른 고효율 친환경 현열 열교환기는 열교환기 몸체(210)와, CO 저감 파이프(220)와, 메인 열교환관(230) 및 전후면 스테인레스 타원형관(240)을 포함한다.
또한, 복수개로 이루어진 CO 저감 파이프(220)들을 서로 연결하는 스테인레스 원형 U자관(221) 및 복수개로 이루어진 메인 열교환관(230)을 서로 연결하는 스테인레스 타원형 U자관(231)을 포함한다.
또한, 서로 다른 목적의 CO 저감 파이프(220)와, 메인 열교환관(230) 및 전후면 스테인레스 타원형관(240)을 서로 연결함으로써 물의 연속 순환이 가능하도록 여러 개의 커넥터(C1 내지 C4)를 포함한다.
이에 의해 입수구(IN)를 통해 유입된 물(예: 저온의 직수)은 CO 저감 파이프(220)와, 메인 열교환관(230) 및 전후면 스테인레스 타원형관(240)을 모두 통과(정확한 유동 순서는 후술함)한 후 출수구(OUT)를 통해 배출된다.
아울러 열교환기 몸체(210)는 상하부가 각각 개방되어 있어서 상측에 설치된 버너(미도시)에서 제공되는 화염 및 고온의 연소가스(즉, 열원)가 열교환기 몸체(210)를 상측에서 하측으로 관통하여 유동된다.
따라서, CO 저감 파이프(220)와, 메인 열교환관(230)과, 전후면 스테인레스 타원형관(240) 모두를 통과하여 유동중인 저온의 직수와 고온의 열원 사이에 열교환이 이루어져 물이 가열된다. 가열된 물은 온수나 난방수로서 제공된다.
특히, 후술하는 바와 같이 본 발명은 서로 다른 목적의 CO 저감 파이프(220), 메인 열교환관(230) 및 전후면 스테인레스 타원형관(240)을 채택하고 이들의 배치를 최적화한다. 따라서, 유해물질의 발생을 감소시킴과 동시에 연소가스와 사이의 열교환 효율은 높인다.
또한, 본 발명은 CO 저감 파이프(220)와 메인 열교환관(230)은 열교환기 몸체(210)의 내부에 설치하고, 브레이징 용접된 전후면 스테인레스 타원형관(240)으로 열교환기 몸체(210)의 내측면을 지지한다. 따라서, 과열에 의한 현열 열교환기의 변형 및 손상을 방지한다.
좀더 구체적으로, 열교환기 몸체(210)는 현열 교환기('1차 열교환기'라고도 함)의 몸체를 구성하는 것으로 전방 측판(F), 후방 측판(B), 좌측 측판(L) 및 우측 측판(R)을 포함한다.
또한, 상부에 위치한 연소실(도 2 참조)로부터 유입된 고온의 연소가스가 하부로 배출되도록 열교환기 몸체(210)의 상하부는 각각 개방되어 있다. 예혼합 가스 버너(premix gas burner)는 상술한 연소실로 화염 및 연소가스를 분출한다.
일 예로 콘덴싱 버너는 그 상부에서부터 예혼합 가스 버너, 연소실, 현열 교환기, 잠열 교환기 및 배출부가 배치되어 있는데, 본 발명의 열교환기 몸체(210)는 그 중 현열 열교환기에 관한 것이다.
본 발명의 열교환기 몸체(210)는 일반적인 콘덴싱 보일러와 마찬가지로 연소실을 사이에 두고 예혼합 가스 버너에 연결된다. 또한, 연소실의 높이는 일반적으로 버너의 화염발생 길이에 대응하므로 버너와 열교환기 몸체(210)는 화염발생 길이만큼 이격된다.
다음, CO 저감 파이프(220)은 버너 및 연소실을 통해 배출된 고온의 연소가스가 열교환을 통해 급격히 냉각(freezing)됨에 따라 연소 생성물질인 CO나 NOx와 같은 유해물질의 배출량이 증가하는 것을 방지하기 위한 것이다.
이러한 CO 저감 파이프(220)은 낮은 열교환율을 제공하도록 단면이 원형인 직선관으로 이루어지고 또한 그 외주면에는 일반적인 열교환관과 다르게 열교환핀(heat exchange fin)이 없다.
즉, 후술하는 바와 같은 메인 열교환관(230)의 주목적이 높은 열교환율을 제공하도록 단면이 타원형(oval)인 직선관으로 이루어지고 또한 그 외주면에 열교환핀(230a)을 구비한 것과 차이가 있다.
CO 저감 파이프(220)은 복수개로 이루어지며 각각 열교환기 몸체(210)의 좌측 측판(L)과 우측 측판(R) 사이에 끼워진다. 도 5의 (a)에 대한 A-A 단면도인 도 5의 (b)와 같이 좌측 측판(L)과 우측 측판(R)에는 각각 관통공들이 형성되어 있다.
따라서, CO 저감 파이프(220)의 양측 단부는 상기한 관통공에 연결되도록 좌측 측판(L)과 우측 측판(R) 사이에 삽입 고정된다. 복수개의 CO 저감 파이프(220)들 중 서로 인접한 것들은 스테인레스 원형 U자관(221)에 의해 서로 연결된다.
특히, 본 발명의 CO 저감 파이프(220)들은 열교환기 몸체(210) 내부에 수평 방향으로 평행하게 나란히 배열되는데, 이때 열교환기 몸체(210)의 높이 방향에 대해 중간 부분에 위치함으로써 연소가스의 온도가 급격히 감소하는 것을 방지한다.
CO 저감 파이프(220)가 설치되는 열교환기 몸체(210)의 중간 부분은 열교환기 몸체(210)의 높이 방향에 대한 중심을 기준으로 상측으로 전체 높이에 대한 20% 및 하측으로 전체 높이에 대한 20%까지의 범위를 의미한다.
CO 저감 파이프(220)들을 열교환기 몸체(210)의 중심 부분에 배치하는 이유는 버너의 연소실을 통해 유입된 고온의 연소가스가 열교환기 몸체(210) 내부로 유입된 후 바로 열교환이 시작되지 않게 하기 위함이다.
예컨대, 연소가스에는 CO(일산화탄소)가 다양 포함되어 있는데, 만약 CO가 O2와 반응하여 CO2로 되는 화학 반응이 일어나기 이전에 급격히 열교환이 이루어짐으로써 연소가스가 냉각되면 화학반응에 적합한 최적의 온도를 제공하지 못하므로 CO가 그대로 배출된다.
따라서, 본 발명은 완만한 온도 구배 즉, 연소가스의 온도가 완만하게 낮아지게 하여 CO가 CO2로 화학변환되는 온도가 되게 함으로써 유해물질의 방출을 감소시킨다.
또한, 예혼합 가스 버너와 같이 자유 전파 화염(freely propagating frame)을 분출하는 일반 버너에 비해 상대적으로 유속이 빠른 버너를 사용하는 경우에는 CO의 체류시간이 짧아지고 CO2로의 화학반응도 상대적으로 하류에서 일어난다.
따라서, 본 발명은 열교환기 몸체(210)에 연소가스가 유입된 직후 열교환이 이루어지는 것을 방지하도록, CO 저감 파이프(220)를 최상부에서 하류측으로 이격 배치하여 CO를 비롯한 각종 유해물질의 발생을 방지한다.
다음, 스테인레스 원형 U자관(221)은 이상과 같이 평행하게 배치된 복수개의 친환경 열교환들을 서로 연결시킴으로써 유입된 저온의 직수가 모든 CO 저감 파이프(220)들을 거치도록 한다.
이를 위해 스테인레스 원형 U자관(221)은 단면이 원형인 관을 구부려 제작되고, 이와 같이 제작된 스테인레스 원형 U자관(221)은 좌측 측판(L)과 우측 측판(R)의 외측에 결합되어, 인접 배치된 CO 저감 파이프(220)의 개방 단부를 서로 연결시킨다.
따라서, 직수는 CO 저감 파이프(220) 및 스테인레스 원형 U자관(221)을 번갈아가며 통과함에 따라 지그재그 방향으로 유동하게 된다.
다음, 메인 열교환관(230)은 저온의 직수와 버너에서 발생한 열원(즉, 화염 및 연소가스) 사이의 열교환을 주된 목적으로 하는 것으로, 상술한 CO 저감 파이프(220)의 낮은 열교환율을 보상한다.
즉, CO 저감 파이프(220)은 기본적으로 열교환을 위한 것이기는 하지만 완만한 온도구배에 의해 유해물질의 발생을 저감시켜야 하기 때문에 열교환율이 현저히 낮다. 따라서, 유해물질의 발생을 감소시키면서도 열교환율을 높이도록 메인 열교환관(230)을 더 구비한다.
이를 위해 메인 열교환관(230)도 복수개로 이루어지며 특히 CO 저감 파이프(220)의 하부에 배치된다. 즉, 연소가스에 포함된 CO가 CO2로 화학변환된 후 본격적인 열교환이 이루어지도록 최대한 하류에 배치된다.
도 5의 (b)와 같이 열교환기 몸체(210)에는 그 좌측 측판(L)과 우측 측판(R)의 하부에 각각 메인 열교환관(230)을 위한 관통공이 형성되어 있어서, 메인 열교환관(230)들이 좌측 측판(L)과 우측 측판(R) 사이에 끼워진다.
이때, 메인 열교환관(230)는 일 예로 스테인레스 재질의 파이프를 사용하며 브레이징 용접을 통해 고정된다. 특히, 열교환율을 높일 수 있도록 그 단면이 타원형 혹은 계란형인 오발 파이프(oval pipe)가 사용된다.
또한, 도 6을 통해 좀더 상세히 알 수 있는 바와 같이 메인 열교환관(230)의 외주면에는 열교환율을 더욱 높이도록 열교환핀(230a)이 구비된다. 열교환핀(230a)에 의해 표면적이 월등히 넓어지므로 연소가스와의 열교환율이 증가하는 것이다.
다음, 스테인레스 타원형 U자관(231)은 이상과 같이 평행하게 배치된 복수개의 메인 열교환들을 서로 연결시킴으로써 유입된 저온의 직수가 모든 메인 열교환관(230)를 거치게 한다.
이를 위해 스테인레스 타원형 U자관(231)은 단면이 타원형인 관을 구부려 제작되고, 이와 같이 제작된 스테인레스 타원형 U자관(231)은 좌측 측판(L)과 우측 측판(R)의 외측에 결합되어, 인접 배치된 메인 열교환관(230)의 개방 단부를 서로 연결시킨다.
따라서, 직수는 CO 저감 파이프(220) 및 스테인레스 타원형 U자관(231)을 번갈아가며 통과함에 따라 지그재그 방향으로 유동하게 된다.
이때, 스테인레스 타원형 U자관(231)은 그 단면이 타원형인 관을 사용하므로 내압성이 향상되어 높은 유압에 충분히 견디며, 직수의 유동을 원활하게 하는 효과가 있다.
다만, 이상과 같은 스테인레스 타원형 U자관(231) 역시 스테인리스 재질의 파이프가 사용되고, 좌측 측판(L)과 우측 측판(R)에 브레이징 용접되는 것이 바람직하다.
다음, 전후면 스테인레스 타원형관(240)은 도 3을 통해 설명한 종래기술에 따른 제3열교환관(140)과 접촉관(111)을 대신하는 것으로, 연소가스의 급격한 온도 저하를 방지하면서도 열교환기 몸체(210)의 변형을 방지하는 보강체로 기능한다.
즉, 종래의 제3열교환관(140)이 연소실과 가까운 열교환기 몸체(110)의 상부에 설치되어 있어서 제2열교환관(130)에 의한 온도구배 완화 효과를 저감시키는 것을 본 발명의 전후면 스테인레스 타원형관(240)에 의해 개선한다.
또한, 종래의 제3열교환관(140)은 열교환기 몸체(110) 내부의 연소가스 배출통로에 직접 노출됨에 따라 연소가스가 제3열교환관(140)에 접촉하며 고체상 복사가 과도하게 이루어져 오히려 열교환이 급격히 이루어지는 것을 방지한다.
또한, 종래의 접촉관(111)은 열교환기 몸체(210)를 보강하는 효과는 있지만 단면이 원형인 관이기 때문에 열교환율이 너무 낮아 제1열교환기(120)와 함께 열교환율을 높이는 역할을 적절히 수행하지 못하는 것을 개선한다.
또한, 상술한 종래의 접촉관(111)은 제2열교환관(130)과 동일한 높이에 배치되어 있기 때문에 접촉관(111) 및 제2열교환관(130)을 기준으로 연소가스의 온도가 너무 급격하게 낮아지는 문제를 개선한다.
이를 위해 본 발명의 전후면 스테인레스 타원형관(240)은 전방 측판(F) 및 후방 측판(B)의 내측면에 고정된다. 도 5의 (b)와 같이 열교환기 몸체(210)의 전방 측판(F) 및 후방 측판(B)에는 전후면 스테인레스 타원형관(240)이 안착되는 조립홈이 각각 형성되어 있어서 전후면 스테인레스 타원형관(240)은 조립홈에 안착된 후 브레이징 용접된다.
또한, 전후면 스테인레스 타원형관(240)은 스테인리스 재질로 이루어지고 그 단면이 타원형인 관을 사용한다. 이러한 관은 보통 '오발 파이프'라고도 하는데, 오발 파이프는 아래에서 설명하는 바와 같이 단면이 원형인 기타 관들에 비해 열교환율이 높다.
이와 같이 전후면 스테인레스 타원형관(240)의 단면이 타원형이므로 상기한 조립홈 역시 타원형의 전후면 스테인레스 타원형관(240)이 밀착되도록 만곡된 형상으로 이루어져 있다.
특히, 본 발명의 전후면 스테인레스 타원형관(240)은 전방 측판(F) 및 후방 측판(B)에 각각 2개씩 구비된다. 즉, 전방 측판(F)에 제1 전후면 스테인레스 타원형관(241) 및 제2 전후면 스테인레스 타원형관(242)을 구비하고, 후방 측판(B)에도 제1 전후면 스테인레스 타원형관(241) 및 제2 전후면 스테인레스 타원형관(242)을 구비한다.
이때, 2개의 전후면 스테인레스 타원형관(240) 중 상대적으로 낮은 위치에 있는 제1 전후면 스테인레스 타원형관(241)은 CO 저감 파이프(220)보다는 낮고 메인 열교환관(230) 보다는 높은 위치에 배치된다. 그와 동시에 상대적으로 높은 위치에 있는 제2 전후면 스테인레스 타원형관(242)은 CO 저감 파이프(220)보다 높은 위치에 배치된다.
상대적인 높이의 상하는 각 열교환관 내부에 구비된 중공부의 원점 즉, 각 열교환관을 단면으로 보았을 때 그 중심점을 기준으로 비교된다. 예컨대, 도 5의 (b)와 같이 제1 전후면 스테인레스 타원형관(241)과 CO 저감 파이프는 그 전체 중 일부가 겹치기는 하지만 그 중심점은 제1 전후면 스테인레스 타원형관(241)이 상대적으로 더 낮다.
이상과 같이 전후면 스테인레스 타원형관(240)을 전방 측판(F) 및 후방 측판(B)의 내측면에 고정시키면 과열에 의해 열교환기 몸체(210)가 변형되는 것을 방지하면서도, 타원형으로 이루어져 있어서 열교환율도 높다.
또한, 전후면 스테인레스 타원형관(240)을 전방 측판(F) 및 후방 측판(B)의 내측면에 형성된 조립홈에 안착시키면 열교환기 몸체(210) 내부에 직접 노출되는 것을 방지하므로, 종래의 제3열교환관(140)에 비해 고체상 복사를 월등히 줄여 연소가스의 급격한 냉각을 방지한다.
또한, 제1 전후면 스테인레스 타원형관(241)을 복수개의 CO 저감 파이프(220)들보다 낮은 위치에 배치하면 연소가스가 CO 저감 파이프(220)이 배치된 높이를 통과하면서 급격하게 온도가 낮아지는 것을 방지한다.
이는 제1 전후면 스테인레스 타원형관(241)과 CO 저감 파이프(220)을 상하로 분산시켰기 때문이며, 더 나아가 제1 전후면 스테인레스 타원형관(241)이 메인 열교환관(230)보다 높은 위치에 있어서 연소가스의 온도 구배를 전체적으로 더욱 완만하게 변화시킨다.
또한, 제2 전후면 스테인레스 타원형관(242)은 친환경 열교환보다 높은 위치에 배치되므로, 비록 열교환기 몸체(210)의 상부에 배치되더라도 상술한 바와 같이 고체상 복사를 줄이면서도 열교환율을 높이는데 도움을 주고, 최상부에서부터 연소가스의 온도구배가 완만해지게 하는 역할을 한다.
한편, 도 7의 (a)는 공기비 1.6에서 자유 전파 화염(Freely propagating flame) 대 예혼합 버너 화염(porous burner flame)의 CO 방출량을 나타낸 것이다.
또한, 'U'는 화염으로부터의 거리를 의미하는 것으로 그 단위인 [m/s]는 거리를 화염이 도달하는 속도로 표현한 것이다.
이때 붉은색 실선 및 점선으로 표시된 바와 같이 예혼합 버너 화염으로부터 거리가 멀수록(즉, 열교환이 하류에서 일어날수록) CO의 방출량이 월등이 저감됨을 알 수 있다.
또한, 도 7의 (b)는 자유 전파 화염 대 예혼합 버너 화염의 OH 질량분율을 나타낸 것으로, 화염으로부터의 거리가 멀수록 OH 질량분율이 줄어듬을 알 수 있다.
따라서, CO 저감 파이프(220)은 열교환기 몸체(210)의 최상부가 아닌 중심 부분에 배치하여 화염으로부터 이격시키고, 제1 전후면 스테인레스 타원형관(241)은 그보다 더 낮은 위치에 배치하여 열교환이 하류에서 이루어지는 것이 바람직함을 알 수 있다.
또한, 도 8의 (a)는 단면이 원형이 관의 열전달 성능을 고찰하기 위한 것이고, 도 8의 (b)는 단면이 타원형인 관의 열전달 성능을 고찰하기 위한 것으로, 도 8의 (b)는 본 발명의 메인 열교환관(230) 및 전후면 스테인레스 타원형관(240)에 해당한다.
이때, 아래의 [수학식 1]은 전체 누셀 수(total nusselt number)를 나타낸 것인데, 도 8의 (b)와 같은 본 발명의 메인 열교환관(230) 및 전후면 스테인레스 타원형관(240)은 전체 누셀 수가 더 크고 그에 따라 열전도율이 높으므로 더욱 고효율임을 알 수 있다.
[수학식 1]
Ntot=(htot×D)/k
(여기서, htot는 열전달율, D는 관의 직경, k는 유체 열전도율을 의미함)
또한, 아래의 [수학식 2]는 마찰계수를 나타낸 것인데, 계산을 통해 단면이 타원형인 본 발명의 메인 열교환관(230) 및 전후면 스테인레스 타원형관(240)은 단면인 원형인 관에 비해 약 40%의 마찰계수를 가진다.
[수학식 2]
f=(2×Δp×H)/(ρ×V2×L)
(여기서, Δp는 관 마찰 압력손실로서 시험부의 입구와 출구 사이의 압력차, ρ는 유체밀도, V는 유체속도, H는 관의 높이, L은 관의 길이를 의미함)
따라서, 전체 누셀 수(Ntot) 및 마찰계수(f)를 전체적으로 고려할 때, 메인 열교환관(230) 및 전후면 스테인레스 타원형관(240)은 그 단면이 타원형인 오발 파이프를 사용하는 것이 바람직함을 알 수 있다.
또한, 도 9의 (a) 및 (b)는 실제 연소상태에서 열화상 카메라로 열교환기 몸체(210)의 외벽 표면온도를 측정한 것으로, 도 9의 (a)는 일반적인 열교환기이고, 도 9의 (b)는 본 발명이 적용된 것이다.
이때, 도 9의 (a) 중 'sp1' 지점의 온도는 691℉(=366℃)임에 비해, 그에 대응하는 부분에 해당하는 도 9의 (b) 중 'sp2' 지점의 온도는 455℉(=235℃)로 낮아지는 것을 통해 본 발명의 열효율이 더 뛰어남을 알 수 있다.
한편, 위에서 설명을 생략한 제1 커넥터(C1) 내지 제4 커넥터(C4)는 서로 다른 목적의 CO 저감 파이프(220)와, 메인 열교환관(230) 및 전후면 스테인레스 타원형관(240)을 서로 연결함으로써 저온의 직수가 이들 모두를 통과하도록 하는 것이다.
따라서, 직수는 복수개의 메인 열교환관(230), 전방 측판(F)에 구비된 제1 전후면 스테인레스 타원형관(241), 복수개의 CO 저감 파이프(220), 후방 측판(B)에 구비된 제1 전후면 스테인레스 타원형관(241), 후방 측판(B)에 구비된 제2 전후면 스테인레스 타원형관(242) 및 전방 측판(F)에 구비된 제2 전후면 스테인레스 타원형관(242)을 따라 순차로 유동한다.
이때, 저온의 직수가 유입되는 입수구(IN)는 열교환기 몸체(210)의 하부에 배치된 복수개의 메인 열교환관(230)들 중 유입측에 해당하는 메인 열교환관(230)에 설치된다.
반면, 열교환을 통해 온도가 올라간 고온의 물이 배출되는 출수구(OUT)는 열교환기 몸체(210)의 상부에 배치된 복수개의 제2 전후면 스테인레스 타원형관(242)들 중 배출측에 해당하는 제2 전후면 스테인레스 타원형관(242)에 설치된다.
따라서, 열교환을 통해 온도가 올라간 직수가 버너와 가까운 열교환기 몸체(210)의 상부를 따라 유동하게 되므로, 열교환기 몸체(210)의 상부에 저온의 직수가 유동하는 경우에 비해 열교환이 상대적으로 작게 이루어지도록 한다.
이상, 본 발명의 특정 실시예에 대하여 상술하였다. 그러나, 본 발명의 사상 및 범위는 이러한 특정 실시예에 한정되는 것이 아니라, 본 발명의 요지를 변경하지 않는 범위 내에서 다양하게 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 이해할 것이다.
따라서, 이상에서 기술한 실시예들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이므로, 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 하며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.

Claims (6)

  1. 전방 측판(F), 후방 측판(B), 좌측 측판(L) 및 우측 측판(R)에 의해 둘러싸이며, 상부에 위치한 연소실에서 유입된 고온의 연소가스가 하부로 배출되도록 상하부가 각각 개방되어 있는 열교환기 몸체(210)와;
    각각 상기 좌측 측판(L)과 우측 측판(R) 사이에 끼워지며, 상기 열교환기 몸체(210)의 높이 방향에 대해 중간 부분에 위치하여 상기 연소가스의 온도가 급격히 감소하는 것을 방지함으로써 유해물질의 발생을 줄이는 복수개의 CO 저감 파이프(220)와;
    상기 좌측 측판(L)과 우측 측판(R)의 외측에서 결합되며, 각각 인접 배치된 상기 CO 저감 파이프(220)의 개방 단부를 서로 연결시키는 스테인레스 원형 U자관(221)과;
    상기 CO 저감 파이프(220)의 하부에 배치되어 상기 CO 저감 파이프(220)와 비교하여 화염으로부터 상대적으로 멀리 배치되고, 각각 상기 좌측 측판(L)과 우측 측판(R) 사이에 끼워지며, 열교환율을 높이도록 외주면에는 열교환핀(230a)이 구비된 메인 열교환관(230)과;
    상기 좌측 측판(L)과 우측 측판(R)의 외측에서 결합되며, 각각 인접 배치된 상기 메인 열교환관(230)의 개방 단부를 서로 연결시키는 스테인레스 타원형 U자관(231); 및
    상기 열교환기 몸체(210) 내부의 연소가스 유동 경로 상에 직접 노출되어 연소가스의 고체상 복사가 일어나는 것을 방지하도록 상기 전방 측판(F) 및 후방 측판(B)의 내측면에 고정되며, 열교환율을 높이도록 단면이 타원형(oval)인 스테인레스 재질로 이루어진 전후면 스테인레스 타원형관(240);을 포함하는 것을 특징으로 하는 고효율 친환경 현열 열교환기.
  2. 제1항에 있어서,
    상기 전방 측판(F) 및 후방 측판(B)에는 상기 전후면 스테인레스 타원형관(240)이 안착되는 조립홈이 각각 형성되어 있고,
    상기 전후면 스테인레스 타원형관(240)은 상기 조립홈에 안착된 후 브레이징 용접되어 상기 전방 측판(F) 및 후방 측판(B)에 고정된 것을 특징으로 하는 고효율 친환경 현열 열교환기.
  3. 제2항에 있어서,
    상기 전후면 스테인레스 타원형관(240)은 상기 전방 측판(F) 및 후방 측판(B)에 각각 2개씩 구비되되,
    상대적으로 낮은 위치에 있는 제1 전후면 스테인레스 타원형관(241)은 상기 CO 저감 파이프(220)보다 낮고 상기 메인 열교환관(230) 보다는 높은 위치에 배치되고,
    상대적으로 높은 위치에 있는 제2 전후면 스테인레스 타원형관(242)은 상기 CO 저감 파이프(220)보다 높은 위치에 배치되는 것을 특징으로 하는 고효율 친환경 현열 열교환기.
  4. 제3항에 있어서,
    저온의 직수가 유입되는 입수구(IN)는 상기 열교환기 몸체(210)의 하부에 배치된 상기 복수개의 메인 열교환관(230)들 중 유입측에 해당하는 메인 열교환관(230)에 설치되고,
    열교환을 통해 온도가 올라간 고온의 물이 배출되는 출수구(OUT)는 상기 열교환기 몸체(210)의 상부에 배치된 복수개의 제2 전후면 스테인레스 타원형관(242)들 중 배출측에 해당하는 제2 전후면 스테인레스 타원형관(242)에 설치되는 것을 특징으로 하는 고효율 친환경 현열 열교환기.
  5. 제1항 내지 제4항 중 어느 하나의 항에 있어서,
    상기 메인 열교환관(230)은 단면이 타원형인 관이고,
    상기 스테인레스 타원형 U자관(231)은 단면이 타원형인 관을 U자형으로 굽힌 연결관인 것을 특징으로 하는 고효율 친환경 현열 열교환기.
  6. 제1항 내지 제4항 중 어느 하나의 항에 있어서,
    상기 복수개의 CO 저감 파이프(220)들은 상기 열교환기 몸체(210)의 수평 방향에 서로 평행하게 이격 배치되고,
    상기 CO 저감 파이프(220)들이 설치되는 상기 열교환기 몸체(210)의 중간 부분은 상기 열교환기 몸체(210)의 높이 방향에 대한 중심을 기준으로 상측으로 전체 높이에 대한 20% 및 하측으로 전체 높이에 대한 20%까지의 범위인 것을 특징으로 하는 고효율 친환경 현열 열교환기.
PCT/KR2014/011579 2014-08-01 2014-11-28 고효율 친환경 현열 열교환기 WO2016017864A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0098970 2014-08-01
KR1020140098970A KR20160015945A (ko) 2014-08-01 2014-08-01 고효율 친환경 현열 열교환기

Publications (1)

Publication Number Publication Date
WO2016017864A1 true WO2016017864A1 (ko) 2016-02-04

Family

ID=55217743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011579 WO2016017864A1 (ko) 2014-08-01 2014-11-28 고효율 친환경 현열 열교환기

Country Status (2)

Country Link
KR (1) KR20160015945A (ko)
WO (1) WO2016017864A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3236175A1 (en) * 2016-04-18 2017-10-25 Daesung Celtic Enersys Co., Ltd. Heat exchanger
CN109737773A (zh) * 2019-01-09 2019-05-10 西安交通大学 一种多管组合类椭圆型换热管固体散料换热器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101676993B1 (ko) * 2016-05-03 2016-11-16 (주)귀뚜라미 U-벤드 열교환관 타입 열교환기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050000127A (ko) * 2003-06-23 2005-01-03 주식회사 경동보일러 콘덴싱 가스보일러의 열교환기 구조
KR20090067760A (ko) * 2007-12-21 2009-06-25 주식회사 경동나비엔 상향 연소식 콘덴싱 보일러의 열교환기
KR20120015627A (ko) * 2010-08-12 2012-02-22 주식회사 경동나비엔 콘덴싱 보일러의 잠열 열교환기
KR20140051760A (ko) * 2012-10-23 2014-05-02 (주)귀뚜라미 친환경 열교환기
KR20140051525A (ko) * 2012-10-23 2014-05-02 (주)귀뚜라미 더미 관을 갖는 응축 열교환기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050000127A (ko) * 2003-06-23 2005-01-03 주식회사 경동보일러 콘덴싱 가스보일러의 열교환기 구조
KR20090067760A (ko) * 2007-12-21 2009-06-25 주식회사 경동나비엔 상향 연소식 콘덴싱 보일러의 열교환기
KR20120015627A (ko) * 2010-08-12 2012-02-22 주식회사 경동나비엔 콘덴싱 보일러의 잠열 열교환기
KR20140051760A (ko) * 2012-10-23 2014-05-02 (주)귀뚜라미 친환경 열교환기
KR20140051525A (ko) * 2012-10-23 2014-05-02 (주)귀뚜라미 더미 관을 갖는 응축 열교환기

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3236175A1 (en) * 2016-04-18 2017-10-25 Daesung Celtic Enersys Co., Ltd. Heat exchanger
CN109737773A (zh) * 2019-01-09 2019-05-10 西安交通大学 一种多管组合类椭圆型换热管固体散料换热器

Also Published As

Publication number Publication date
KR20160015945A (ko) 2016-02-15

Similar Documents

Publication Publication Date Title
KR102546693B1 (ko) 연소열에 의한 열교환기 부품의 소손 방지 구조
WO2017171276A1 (ko) 관체형 열교환기
JP7135325B2 (ja) 熱交換装置および熱源機
WO2016017864A1 (ko) 고효율 친환경 현열 열교환기
US3908628A (en) Jet impingement recuperator
CZ283100B6 (cs) Výměník tepla
CN101660765A (zh) 一种组合式高温空气预热装置
JPS634113B2 (ko)
KR102506012B1 (ko) 열교환기의 연소열 손실 방지 구조
CN112902450A (zh) 一种高效水套加热炉
WO2010147288A1 (ko) 열교환기
KR100473083B1 (ko) 콘덴싱보일러의 열교환기
JPH07167585A (ja) 熱交換器の低温腐食防止構造
CN210069808U (zh) 一种蒸汽发生单元机组
WO2014065478A1 (ko) 물집 열교환기
CN214891854U (zh) 原油水套加热炉
CN216245730U (zh) 一种快装式翅片管碳化硅换热器
JP3883735B2 (ja) 液体の加熱装置
CN216448666U (zh) 一种快装式碳化硅换热器
RU2168121C1 (ru) Технологический нагреватель
CN215062369U (zh) 一种热交换器及燃气取暖器
CN216080391U (zh) 一种全预混冷凝壁挂炉燃烧换热系统
SU1015194A1 (ru) Рекуператор
SU1755011A1 (ru) Рекуператор
RU2265160C1 (ru) Технологический нагреватель

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898528

Country of ref document: EP

Kind code of ref document: A1