WO2013089241A1 - Fmoc基の除去方法 - Google Patents

Fmoc基の除去方法 Download PDF

Info

Publication number
WO2013089241A1
WO2013089241A1 PCT/JP2012/082554 JP2012082554W WO2013089241A1 WO 2013089241 A1 WO2013089241 A1 WO 2013089241A1 JP 2012082554 W JP2012082554 W JP 2012082554W WO 2013089241 A1 WO2013089241 A1 WO 2013089241A1
Authority
WO
WIPO (PCT)
Prior art keywords
fmoc
group
protected
peptide
amino acid
Prior art date
Application number
PCT/JP2012/082554
Other languages
English (en)
French (fr)
Inventor
高橋 大輔
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2013549333A priority Critical patent/JP6136934B2/ja
Publication of WO2013089241A1 publication Critical patent/WO2013089241A1/ja
Priority to US14/305,841 priority patent/US9334302B2/en
Priority to IN5763DEN2014 priority patent/IN2014DN05763A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • C07K1/063General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for alpha-amino functions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/16Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions not involving the amino or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • C07K1/064General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for omega-amino or -guanidino functions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/08General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B43/00Formation or introduction of functional groups containing nitrogen
    • C07B43/04Formation or introduction of functional groups containing nitrogen of amino groups

Definitions

  • the present invention relates to a method for removing Fmoc (9-fluorenylmethoxycarbonyl) group and a method for producing a peptide using the method.
  • the Fmoc group is an important protecting group for amino acids and peptide amino groups in peptide synthesis. Removal of this Fmoc group produces dibenzofulvene (DBF) or a DBF derivative as a by-product.
  • the removal of the Fmoc group is generally performed using a base. For example, when an Fmoc group is removed using an amine, an adduct of DBF and an amine (hereinafter sometimes abbreviated as “DBF-amine adduct”) is by-produced as a DBF derivative. If peptide synthesis is continued with these DBFs or DBF derivatives remaining, side reactions such as 9-fluorenylmethylation occur. Therefore, it is desirable to efficiently remove DBFs or DBF derivatives. Also, if an amine is used to remove the Fmoc group and DBF in peptide synthesis, the amine must be removed by the next condensation step.
  • Non-Patent Document 1 in order to remove DBF-amine adducts in the liquid phase synthesis of peptides, the reaction extract is concentrated to dryness, and a hydrocarbon solvent such as hexane is added to the resulting residue and triturated. Describes a method in which a DBF-amine adduct is dissolved in a solvent and the deprotected peptide is isolated as crystals. However, this method is poor in operability and may not be reproducible on a large scale, and is not suitable for industrial production. Also, this method cannot be used when the target deprotected peptide is an oily substance. Furthermore, when the peptide chain is short, there is a problem that the peptide itself is dissolved in the hydrocarbon solvent and the recovery rate is lowered.
  • a hydrocarbon solvent such as hexane
  • Patent Document 1 stirs the reaction mixture after removal of the Fmoc group in a hydrocarbon solvent and a polar organic solvent, and then separates the hydrocarbon solvent layer and the polar organic solvent layer.
  • Patent Document 2 describes a method in which a reaction mixture containing a DBF-amine adduct is brought into contact with carbon dioxide to form a carbonate of the DBF-amine adduct, and this carbonate is removed.
  • neither of Patent Documents 1 and 2 describes using a sulfanyl group (SH) -containing fatty acid for removing the Fmoc group.
  • SH sulfanyl group
  • Non-Patent Document 2 describes a method in which 1-octanethiol or the like is used as a scavenger for DBF generated when the Fmoc group is removed.
  • an adduct of DBF and thiol (hereinafter sometimes abbreviated as “DBF-thiol adduct”) is generated.
  • DBF-thiol adduct an adduct of DBF and thiol
  • Patent Document 3 discloses that in peptide synthesis in which an excess amount of a carboxy component and an amino component are reacted, an amine containing a free anion or a latent anion, or a free anion or a latent anion is used as a scavenger for removing the remaining carboxy component. A method of using a thiol containing is described. Furthermore, Patent Document 3 describes that “the capture agent is also used for deprotection of a growing peptide”.
  • the capture agent (such as a thiol containing a free anion or a latent anion) is used for deprotection of the peptide by removing the temporary protecting group contained in the free anion of the capture agent and extending the peptide. This is because the N-terminal deprotection of the peptide inside is carried out by a single treatment.
  • Patent Document 3 does not describe the use of the scavenger for removing the Fmoc group or capturing DBF.
  • Patent Document 4 discloses a compound represented by HS—X—COOH (wherein X represents an alkylene chain having 1 to 5 carbon atoms), Fm—R 1 (where Fm is 9-full).
  • a method for producing a compound represented by Fm—S—X—COOH where Fm represents 9-fluorenylmethyl).
  • Patent Document 4 relates to a method for producing Fm—S—X—COOH, and does not relate to deprotection of an amino group-containing compound protected with an Fmoc group.
  • Patent Document 4 proposes the use of an inorganic base because HS—X—COOH can be obtained only in a low yield when the above reaction is carried out using an organic base.
  • the present invention has been made paying attention to the above situation, and an object of the present invention is to provide a method for removing an Fmoc group that can easily remove a DBF derivative as a by-product.
  • Non-Patent Document 2 suggests the use of thiosalicylic acid as a DBF scavenger, thiosalicylic acid has not been tested, and thiosalicylic acid is merely an example. Further, when the present inventor conducted an experiment using thiosalicylic acid, a DBF derivative (that is, DBF-thiosalicylic acid adduct) was not sufficiently formed (Comparative Example 1 below). The present invention based on these findings is as follows.
  • a method for removing the Fmoc group A method for removing the Fmoc group.
  • the base is an organic base.
  • the organic base is 1,8-diazabicyclo [5.4.0] -7-undecene.
  • the compound represented by the formula (I) is at least one selected from the group consisting of 3-mercaptopropionic acid, thiomalic acid and cysteine.
  • the basic aqueous solution is at least one aqueous solution selected from the group consisting of lithium carbonate, potassium carbonate, sodium carbonate, lithium hydrogen carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, lithium hydroxide, potassium hydroxide and sodium hydroxide.
  • the amino group-containing compound protected with an Fmoc group is an N-Fmoc-C-protected peptide, an N-Fmoc-C-protected amino acid or an N-Fmoc-C-protected amino acid amide, The method according to any one of [1] to [5] above, wherein the obtained amino group-containing compound is a C-protected peptide, C-protected amino acid or C-protected amino acid amide.
  • a method for producing a peptide by a liquid phase synthesis method comprising the method according to [6] above.
  • DBF can be captured by compound (I), and compound (II) as a by-product can be easily removed by washing with a basic aqueous solution.
  • the Fmoc group removal method of the present invention does not require complicated operations such as trituration, and can be easily applied to large-scale reactions.
  • the Fmoc group removal method of the present invention is used for peptide synthesis, the intermediate peptide obtained after de-Fmoc can be used in the next condensation step without being isolated as a solid. It becomes possible and is particularly suitable for industrial production.
  • HCl 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide hydrochloride
  • Et ethyl
  • Fm 9-fluorenylmethyl
  • Fmoc 9-fluorenylmethoxycarbonyl
  • HATU O- (7-azabenzotriazole- 1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate
  • HBTU O- (benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate
  • HCTU O- (6-Chlorobenzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate
  • HOAt 1-hydroxy-7-azabenzotriazole
  • HOBt 1-hydroxybenzotriazole
  • HONb N -Hydroxy-5-norbornene-2,3 Dicarbox
  • AA n amino acid residue (the subscript n is an integer of 1 or more, indicating the order of AA n from the peptide C-terminus)
  • PG 0 carboxy group or amide group protecting group at the C-terminal of the peptide
  • PG n amino group protecting group (the subscript n is an integer of 1 or more, and PG n is the amino group protecting group of AA n Indicates that.)
  • HOE activator E: active group
  • Ile isoleucine
  • Met methionine
  • Phe phenylalanine Tyr: tyrosine
  • Trp tryptophan His: histidine
  • Lys lysine Arg: arginine Ser: serine Thr Threonine Asp: Aspartic acid
  • Glu Glutamic acid
  • Asn Asparagine
  • Gln Glutamine Cys: Cy
  • Examples of the protecting group for the C-terminal carboxy group represented by PG 0 include alkyl groups such as Me, Et, iPr, and tBu, Z, Fm, Trt, Dpm, Bpr, 1,1-dimethylbenzyl, dimethylphenyl, and the like. Etc.
  • Examples of the protecting group for the C-terminal amide group represented by PG 0 include Dmb, bis (4-methoxyphenyl) methyl, trityl and the like.
  • the amide group may have a substituent such as an alkyl group. Note that the amide group is also referred to as a carbamoyl group.
  • a protecting group for the C-terminal carboxy group or amide group represented by PG 0 (1) a protecting group using the diphenylmethane compound described in WO2010 / 113939A1 as a protecting reagent, (2) a protecting group using the fluorene compound described in WO2010 / 104169A1 as a protecting reagent, (3) a protecting group using the benzyl compound described in WO2011 / 078295A1 as a protecting reagent, (4) A protecting group using the branched chain-containing aromatic compound described in WO2012 / 029794A1 as a protecting reagent can be used.
  • Protecting the C-terminal carboxy group or amide group with these protecting reagents can improve the fat solubility of N-Fmoc-C-protected peptide and the like and C-protected peptide, which will be described later.
  • impurities can be efficiently removed on the water layer side in the washing of the workup in the coupling step.
  • diphenylmethane compound described in WO2010 / 113939A1 for example, 2,3,4-trioctadecanoxybenzohydrol; [Phenyl (2,3,4-trioctadecanoxyphenyl) methyl] amine; 4,4'-didocosoxybenzohydrol; Di (4-docosoxyphenyl) methylamine; 4,4-di (12-docosoxidedodecyloxy) benzohydrol; Amino-bis [4- (12-docosoxidedodecyloxy) phenyl] methane; N-benzyl- [bis (4-docosyloxyphenyl)] methylamine; (4-methoxy-phenyl)-[4- (3,4,5-tris-octadecyloxy-cyclohexylmethoxy) -phenyl] -methanol; ⁇ (4-methoxy-phenyl)-[4- (3,4,5-
  • fluorene compound described in WO2010 / 104169A1 for example, 2-docosyloxy-9- (4-chlorophenyl) -9-fluorenol; 2-docosyloxy-9- (4-chlorophenyl) -9-bromofluorene; 2,7-didocosyloxy-9- (4-chlorophenyl) -9-bromofluorene; 2- (12-docosyloxy-dodecanoxy) -9- (3-fluorophenyl) -9-bromofluorene; 1,12-bis- [12- (2′-O-9- (4-chlorophenyl) -9-fluorenol) -dodecyloxy] -dodecane; 1,12-bis- [12- (2′-O-9- (4-chlorophenyl) -9-bromofluorene) -dodecyloxy] -dodecane; 2- (3-octade
  • Examples of the benzyl compound described in WO2011 / 078295A1 include: 4- (12′-docosyloxy-1′-dodecyloxy) benzyl alcohol; 4- (12′-docosyloxy-1′-dodecyloxy) -2-methoxybenzyl alcohol; 4- (12′-docosyloxy-1′-dodecyloxy) -2-methoxybenzylamine; 2- (12′-docosyloxy-1′-dodecyloxy) -4-methoxybenzyl alcohol; 2- (12′-docosyloxy-1′-dodecyloxy) -4-methoxybenzylamine; 4-methoxy-2- [3 ′, 4 ′, 5′-tris (octadecyloxy) benzyloxy] benzyl alcohol; 2- [3 ′, 5′-di (docosyloxy) benzyloxy] -4-methoxybenzyl alcohol; 2-methoxy
  • amino-protecting group represented by PG n for example, Boc, Z, Fmoc, Bsmoc , Alloc, Ac , and the like.
  • the active group represented by E means a group that can be easily eliminated as “EO ⁇ ” upon nucleophilic attack by an amino group to form an amide bond.
  • Bt, Ct, At, OBt, Su, Pht, Nb, pentafluorophenyl and the like can be mentioned.
  • amino group-containing compound means a compound having a primary amino group and / or a secondary amino group.
  • amino group-containing compound protected with an Fmoc group means a compound in which at least one of a primary amino group and / or a secondary amino group of the amino group-containing compound is protected with an Fmoc group.
  • an amino acid when an amino acid is represented as “H-AA-OH”, it means that the left side is an amino group and the right side is a carboxy group, and that the amino group and the carboxy group are not protected.
  • An amino acid in which the carboxy group is protected is indicated as “H-AA-OPG 0 ”, and an amino acid in which the amino group is protected is indicated as “PG n -AA-OH”.
  • An amino acid in which the amino group is protected and the carboxy group is active esterified is denoted as “PG n -AA-OE”.
  • the symmetric acid anhydride of PG n -AA-OH is denoted as “(PG n -AA) 2 —O”.
  • the amino acid amide when the amino acid amide is represented as “H-AA-NH 2 ”, it means that the left side is an amino group and the right side is an amide group, which means that the amino group and the amide group are not protected. To do.
  • the amino acid amide in which the amide group is protected is indicated as “H-AA-NHPG 0 ”, and the amino acid amide in which the amino group is protected is indicated as “PG n -AA-NH 2 ”.
  • H-AA (PG) — (OH or NH 2 ) An amino acid or amino acid amide having a protected side chain functional group is denoted as “H-AA (PG) — (OH or NH 2 )” (PG represents a protecting group for the side chain functional group).
  • peptides according to the present invention "H-AA n '-AA n'- 1 - ⁇ -AA 1 - (OH or NH 2) " (n subscript' represents an integer of 2 or more.) was designated In the case, it means that the left side is the N-terminus, the right side is the C-terminus, and the N-terminus and the C-terminus each have n ′ amino acid residues that are not protected.
  • the N-terminus is not limited to the ⁇ -position amino group of the amino acid residue.
  • peptide elongation is performed via a side chain amino group (eg, the ⁇ amino group of Lys), this side chain amino group is also Included at the N-terminus. The same applies hereinafter.
  • C-terminal peptides are protected "H-AA n '-AA n'- 1 - ⁇ -AA 1 - (OPG 0 or NHPG 0) " and to display, peptides are further N-terminally protected to view as "PG n '-AA n' -AA n' -1 - (OPG 0 or NHPG 0) - ⁇ -AA 1 ".
  • C-protected amino acid means an amino acid in which the carboxy group is protected and the amino group is not protected, and is represented as “H-AA-OPG 0 ”.
  • C-protected amino acid amide means an amino acid amide in which the amide group is protected and the amino group is not protected, and is denoted as “H-AA-NHPG 0 ”.
  • N-protected amino acid means an amino acid in which the amino group is protected and the carboxy group is not protected, and is denoted as “PG n -AA-OH”.
  • N-protected amino acid amide means an amino acid amide in which the amino group is protected and the amide group is not protected, and is denoted as “PG n -AA-NH 2 ”.
  • N-protected amino acid active ester means an amino acid in which the amino group is protected and the carboxy group is activated by E, which is denoted as “PG n -AA-OE”.
  • the “N-protected peptide active ester” means a peptide in which the N-terminal amino group is protected and the C-terminal carboxy group is activated by E.
  • N-protected amino acid active esters or N-protected peptide active esters are those in which E is pentafluorophenyl, Su or Nb.
  • Other N-protected amino acid active esters or N-protected peptide active esters are produced in the reaction system by reacting the N-protected amino acid with a condensing agent (eg, EDC) and an activator (eg, HOBt).
  • EDC condensing agent
  • HOBt activator
  • N-Fmoc amino acid means an amino acid in which the amino group is protected with Fmoc and the carboxy group is not protected.
  • N-Fmoc amino acid amide means an amino acid amide in which the amino group is protected with Fmoc and the amide group is not protected.
  • N-Fmoc amino acid active ester means an amino acid in which the amino group is protected with Fmoc and the carboxy group is active esterified with E.
  • N-Fmoc peptide active ester means a peptide in which the N-terminal amino group is protected with Fmoc and the C-terminal carboxy group is active esterified with E.
  • N-Fmoc amino acid active ester or N-Fmoc peptide active ester is one in which E is pentafluorophenyl, Su or Nb.
  • Other N-Fmoc amino acid active esters or N-Fmoc peptide active esters are produced in the reaction system by reacting the N-Fmoc amino acid with a condensing agent (eg, EDC) and an activator (eg, HOBt).
  • EDC condensing agent
  • HOBt activator
  • C-protected peptide means a peptide in which the C-terminal carboxy group or amide group is protected, and the N-terminal amino group is not protected, and this means “H-AA n ′ -AA n ′ -1 -... -AA 1- (OPG 0 or NHPG 0 ) ”(n ′ represents an integer of 2 or more).
  • the “N-protected-C-protected peptide” means a peptide in which both the N-terminal amino group and the C-terminal carboxy group or amide group are protected, and this means “PG n ′ -AA n ′ ⁇ AA n′-1 ⁇ ...
  • N-Fmoc-C-protected peptide means a peptide in which the N-terminal amino group is protected with Fmoc and the C-terminal carboxy group or amide group is protected.
  • the method for removing the Fmoc group of the present invention comprises: Compound (I) (ie, HS-L-COOH), an amino group-containing compound protected with an Fmoc group, and a base are mixed to give Compound (II) (ie, Fm-SL-COOH) and an amino group-containing compound.
  • L represents a substituent
  • An optionally substituted C 1-8 alkylene group, and Fm represents a 9-fluorenylmethyl group).
  • the amino group-containing compound is not particularly limited as long as it is a compound having a primary amino group and / or a secondary amino group as described above.
  • Examples of amino group-containing compounds include peptides, amino acids, amino acid amides, and the like.
  • the amino group-containing compound protected with the Fmoc group may be used alone or in combination of two or more.
  • the amino group-containing compound is a low molecular weight compound having a free carboxy group
  • the amino group-containing compound is dissolved in the basic aqueous solution together with the by-product compound (II) in the washing step with the basic aqueous solution.
  • the yield of the resulting amino group-containing compound may be reduced. Therefore, it is preferable that the amino group-containing compound does not have a free carboxy group.
  • the amino group-containing compound protected with an Fmoc group is preferably an N-Fmoc-C-protected peptide, an N-Fmoc-C-protected amino acid or an N-Fmoc-C-protected amino acid amide having no free carboxy group (
  • the amino group-containing compound obtained corresponding to the N-Fmoc-C-protected peptide or the like is sometimes referred to as “N-Fmoc-C-protected peptide”.
  • a C-protected peptide, a C-protected amino acid or a C-protected amino acid amide in this specification, sometimes abbreviated as “C-protected peptide etc.”.
  • N-Fmoc-C-protected peptide and the like, C-protected peptide and the like, as well as N-Fmoc amino acid, N-Fmoc amino acid active ester, N-Fmoc peptide and N-Fmoc peptide active ester described later are natural Either an amino acid or an unnatural amino acid may be used. Further, this amino acid may be either L-form or D-form. Racemic amino acid mixtures may also be used.
  • Natural amino acids include, for example, Gly, Ala, Val, Leu, Ile, Ser, Thr, Asn, Gln, Asp, Glu, Lys, Arg, Cys, Met, Phe, Tyr, Trp, His, Pro, Orn, Sar , ⁇ -Ala, GABA and the like.
  • non-natural amino acids include Dap and the like.
  • the N-Fmoc-C-protected peptide and the like and the C-protected peptide and the like may have a side chain functional group (amino group, carboxy group, sulfanyl group, hydroxy group, guanidyl group, etc.).
  • the amino group in the side chain may not be protected, but is preferably protected with a protecting group other than the Fmoc group (for example, Boc, Z, Bsmoc, Alloc, Ac, etc.).
  • a protecting group other than the Fmoc group for example, Boc, Z, Bsmoc, Alloc, Ac, etc.
  • the carboxy group of the side chain is protected with a protecting group similarly to the C-terminus.
  • Examples of the protecting group for the carboxy group include alkyl having 1 to 6 carbon atoms such as Me, Et, tBu, Bzl, p-nitrobenzyl, p-methoxybenzyl, Dpm, allyl, Bpr and the like.
  • Examples of the protecting group for the amide group include Dmb and bis (4-methoxyphenyl) methyl.
  • a protecting group for a carboxy group and an amide group those having a branched chain are preferred. If a protecting group having a branched chain is used, the fat solubility of N-Fmoc-C-protected peptide and the like and C-protected peptide can be improved.
  • the protecting group having a branched chain examples include Bzl (2,4-OPhy), Bzl (3,4,5-OPhy), Bzl (2-OBzl (3,4,5-OPhy) -4-OMe. ), Dpm (4,4′-OPhy) and the like.
  • Examples of the protecting group for the sulfanyl group include phenylcarbamoyl, Trt and the like.
  • Examples of the hydroxy-protecting group include Bzl, tBu and the like.
  • Examples of the protecting group for the side chain guanidyl group include Pbf.
  • L in the formula (I) represents a C 1-8 alkylene group which may have a substituent.
  • C 1-8 represents the number of carbon atoms contained in the alkylene group, and does not include the number of carbon atoms of the substituent that L has. If the carbon number of the alkylene group is too large, the solubility of the compound (II) as a by-product in the basic aqueous solution is lowered and cannot be sufficiently removed by the washing step. Therefore, the carbon number of the alkylene group is 8 or less, preferably 6 or less, more preferably 2 or less.
  • an alkyl group for example, Me, Et etc.
  • carboxy group for example, Me, Et etc.
  • Compound (I) is preferably at least one selected from the group consisting of 3-mercaptopropionic acid, thiomalic acid (also referred to as 2-mercaptosuccinic acid) and cysteine, and more preferably 3-mercaptopropionic acid.
  • the amount of compound (I) to be used is preferably 1.0 to 30 mol, more preferably 3 to 10 mol per 1 mol of Fmoc group contained in the amino group-containing compound protected with Fmoc group. If the amount of compound (I) used is too small, the Fmoc group cannot be removed sufficiently. On the other hand, if this amount is too large, removal of compound (I) itself becomes difficult, and the Fmoc group of the present invention When the removal method is used for the peptide production method, impurities may be easily generated by the peptide condensation reaction.
  • the reaction of the compound (I), the amino group-containing compound protected with the Fmoc group and the base is usually carried out in a solvent.
  • the solvent include chloroform, methylene chloride, CPME, DMF, NMP, ethyl acetate, acetonitrile, THF, or a mixed solvent thereof.
  • the amount of the solvent used is usually 3 to 100 times, preferably 5 to 30 times the weight of the amino group-containing compound protected with the Fmoc group.
  • the reaction temperature is usually 0 to 50 ° C., preferably 10 to 30 ° C., although it depends on the amino group-containing compound protected with the Fmoc group.
  • the reaction time is usually 0.1 to 24 hours, preferably 1 to 5 hours.
  • Examples of the base used for the Fmoc group removal reaction include DBU, DABCO, Et 3 N, Na 2 CO 3 , NaOtBu, KOtBu, iPr 2 EtN, and the like. This base may use only 1 type and may use 2 or more types together.
  • the base is preferably an organic base, more preferably DBU.
  • the amount of the base used is preferably 0.5 to 5 mol, more preferably 1 to 3 mol per 1 mol of the carboxy group of the compound (I) to be used. If the amount of base used is too small, the reaction rate of the Fmoc group removal reaction will not be sufficiently improved.
  • the method for removing the Fmoc group of the present invention is characterized in that the by-product compound (II) is removed by washing the reaction mixture obtained by the above reaction with a basic aqueous solution.
  • washing means removing contaminants by dissolving them in a liquid.
  • Washing in the present invention means that compound (II) is removed by dissolving in a basic aqueous solution.
  • the washing with the basic aqueous solution is performed, for example, by mixing and stirring the solution containing the reaction mixture and the basic aqueous solution, separating the organic layer and the aqueous layer, and removing the aqueous layer.
  • this basic aqueous solution not only the compound (II) as a by-product but also the remaining compound (I) can be easily removed.
  • the reaction solution needs to be washed with an acidic aqueous solution in order to remove the amine.
  • the reaction solution namely, organic layer
  • the reaction solution containing a peptide has the problem that separation with an acidic aqueous solution (namely, aqueous layer) is bad, and removal of an aqueous layer is difficult.
  • the method for removing Fmoc group according to the present invention which is washed with a basic aqueous solution avoids a decrease in peptide yield. And the separation between the organic layer and the aqueous layer is good.
  • the basic aqueous solution is preferably at least one aqueous solution selected from the group consisting of lithium carbonate, potassium carbonate, sodium carbonate, lithium hydrogen carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, lithium hydroxide, potassium hydroxide and sodium hydroxide. Yes, more preferably an aqueous sodium carbonate solution.
  • the concentration of the base in the basic aqueous solution is preferably 1 to 20% by weight, more preferably 5 to 15% by weight. If the concentration of the base is too low, the compound (II) cannot be removed sufficiently. On the other hand, if the concentration is too high, the base may remain undissolved in water or a side reaction may occur.
  • the basic aqueous solution is added to the reaction mixture until the pH of the basic aqueous solution after mixing with the reaction mixture is preferably 7 to 14, more preferably 8 to 12.
  • the washing temperature with the basic aqueous solution is preferably 0 to 50 ° C., more preferably 10 to 30 ° C. This washing with the basic aqueous solution may be repeated.
  • the basic aqueous solution may contain a polar solvent.
  • This polar solvent is preferably at least one selected from the group consisting of DMF, acetonitrile, methanol, ethanol, THF and NMP, more preferably DMF.
  • a polar solvent When a polar solvent is used, its content in the basic aqueous solution is preferably 1 to 50% by volume, more preferably 5 to 30% by volume.
  • the amino group-containing compound in which the Fmoc group is deprotected can be isolated by concentrating the solution obtained by the Fmoc group removal method of the present invention. If necessary, an acid (for example, hydrochloric acid, toluenesulfonic acid, methanesulfonic acid, hydrobromic acid, trifluoroacetic acid, etc.) is added to the solution to convert the amino group-containing compound into an acid addition salt (hydrochloric acid). Salt, toluenesulfonate, methanesulfonate, hydrobromide, trifluoroacetate, etc.). Furthermore, the obtained solution of the amino group-containing compound can be used as it is as a raw material for a method for producing a peptide by the liquid phase synthesis method described later.
  • an acid for example, hydrochloric acid, toluenesulfonic acid, methanesulfonic acid, hydrobromic acid, trifluoroacetic acid, etc.
  • an acid for example,
  • Method for Producing Peptide by Liquid Phase Synthesis Method An amino group-containing compound protected with Fmoc group is N-Fmoc-C-protected peptide or the like, and a corresponding amino group-containing compound obtained is C-protected peptide or the like.
  • the Fmoc group removal method of the present invention can be suitably used in a method for producing a peptide by a liquid phase synthesis method (hereinafter sometimes abbreviated as “peptide liquid phase synthesis method”).
  • liquid phase synthesis method means a synthesis method that is not a solid phase synthesis method, and in addition to a homogeneous reaction in which all reagents are dissolved in a solvent, all or part of the reagents are dissolved in the solvent. And also includes heterogeneous reactions that are dispersed or suspended.
  • peptide liquid phase synthesis method of the present invention including the above-described method for removing the Fmoc group will be described.
  • the peptide that is the final target of the peptide liquid phase synthesis method of the present invention is not particularly limited, but the number of amino acid residues of this peptide is preferably about 2 to 40 residues found in general synthetic peptides. .
  • the peptides obtained by the peptide liquid phase synthesis method of the present invention can be used for synthetic pharmaceutical peptides, cosmetics, electronic materials (organic EL, etc.), foods, and the like.
  • One aspect of the peptide liquid phase synthesis method of the present invention is: (1) C-protected peptide, C-protected amino acid or C-protected amino acid amide and N-Fmoc amino acid or N-Fmoc peptide are condensed in the presence of a condensing agent (preferably condensing agent and activator).
  • a condensing agent preferably condensing agent and activator.
  • N-Fmoc-C-protected peptide (hereinafter abbreviated as “coupling step (1)”), and / or (2) C-protected peptide, C-protected amino acid or C-protected amino acid amide , N-Fmoc amino acid active ester or N-Fmoc peptide active ester is condensed to obtain an N-Fmoc-C-protected peptide (hereinafter abbreviated as “coupling step (2)”).
  • the peptide liquid phase synthesis method of this invention can employ
  • N-terminal deprotection step the step of removing the Fmoc group from the obtained N-Fmoc-C-protected peptide.
  • final deprotecting step the step of removing the protecting group at the C-terminus of this C-protected peptide and, if necessary, the protecting group of the side chain functional group.
  • peptide extension reaction (n) the n-th peptide extension reaction
  • the subsequent N-terminus The deprotection steps are denoted as “coupling step (1-n)”, “coupling step (2-n)” and “N-terminal deprotection step (n)”, respectively.
  • a peptide liquid phase synthesis method in which N-Fmoc amino acid or N-Fmoc amino acid active ester in the following scheme is replaced with N-Fmoc peptide or N-Fmoc peptide active ester, respectively, is also included in the scope of the present invention.
  • a 1 represents a C-protected amino acid or a C-protected amino acid amide
  • PA 2 and PA n ′ + 1 each represent an N-Fmoc amino acid
  • PAE 2 and PAE n ′ + 1 each represent an N-Fmoc amino acid active ester
  • PP 2 and PP n ′ + 1 each represent an N-Fmoc-C-protected peptide
  • P 2 , P n ′ , P n ′ + 1 and P m each denote a C-protected peptide, and the subscripts 2, n ′, n ′ + 1 and m are the amino acid residues of each C-protected peptide.
  • N ′ represents an integer of 2 or more
  • m represents an integer of 3 or more, and represents the number of amino acid residues of the peptide that is the final target
  • P represents the peptide (number of amino acid residues m) which is the final target product.
  • the above-described method for removing the Fmoc group is performed before the start of the extension reaction (that is, before the above-described coupling step (1-1) and / or (2-2)).
  • a C-protected peptide, C-protected amino acid or C-protected amino acid amide used in these steps may be prepared.
  • a C-protected peptide may be prepared by performing the above-described method for removing the Fmoc group as at least one (preferably all) N-terminal deprotection step.
  • each process is demonstrated in order.
  • Coupling process (1) for example, in a solvent, a C-protected peptide, a C-protected amino acid or a C-protected amino acid amide, an N-Fmoc amino acid, a condensing agent (preferably a condensing agent and an activator) To obtain an N-Fmoc-C-protected peptide with one extended amino acid residue. Further, when an N-Fmoc peptide is used instead of the N-Fmoc amino acid, an N-Fmoc-C-protected peptide in which amino acid residues are extended by the number of amino acid residues of the N-Fmoc peptide can be obtained.
  • the number of amino acid residues of the N-Fmoc peptide to be used is preferably 2 to 20, more preferably 2 to 10.
  • the order of addition of the components is not particularly limited, but when the C-protected peptide is obtained by the previous peptide extension reaction (n-1), the solution of the C-protected peptide in the reaction vessel An N-Fmoc amino acid or N-Fmoc peptide, and a condensing agent (and preferably an activator) may be added.
  • the amount of N-Fmoc amino acid or N-Fmoc peptide used is usually 0.9 to 4.0 equivalents, preferably 1.0 to 1.5 equivalents, relative to the C-protected peptide and the like. When the amount is less than this range, unreacted C-protected peptide or the like is likely to remain, and when the amount is greater, excess N-Fmoc amino acid or N-Fmoc peptide is difficult to remove.
  • a base is added for neutralization.
  • this base include triethylamine, diisopropylethylamine, pyridine, N-methylmorpholine and the like.
  • the amount of the base used is usually 0.5 to 2.0 equivalents, preferably 1.0 to 1.5 equivalents, relative to the C-protected peptide and the like. If the amount of the base used is less than this range, neutralization may be insufficient and the reaction may not proceed easily.
  • Examples of the condensing agent include EDC (including hydrochloride and free form), DIPC, DCC, BOP, PyBOP, PyBroP, HBTU, HCTU, TBTU, HATU, CDI, DMT-MM, and the like.
  • EDC is preferable from the viewpoint of the remaining condensing agent and the decomposition product of the condensing agent.
  • the amount of the condensing agent to be used is generally 0.8 to 4.0 equivalents, preferably 1.0 to 1.5 equivalents, relative to N-Fmoc amino acid.
  • an activator is preferably added in order to accelerate the reaction and suppress side reactions such as racemization.
  • the activator is a reagent that facilitates the formation of a peptide bond (amide bond) by introducing an amino acid to a corresponding active ester, a symmetric acid anhydride or the like by coexistence with a condensing agent.
  • the activator include HOBt, HOCt, HOAt, HOOBt, HOSu, HOPht, HONb, pentafluorophenol, etc. Among these, HOBt, HOOBt, HOCt, HOAt, HOb, and HOSu are preferable.
  • the amount of the activator used is usually 0 to 4.0 equivalents, preferably 0.1 to 1.5 equivalents, relative to the N-Fmoc amino acid.
  • the solvent used in the coupling step (1) is not particularly limited as long as it does not inhibit the reaction.
  • the solvent include DMF, NMP, ethyl acetate, THF, acetonitrile, chloroform, methylene chloride, or a mixed solvent thereof. Of these, ethyl acetate and DMF are preferred.
  • the amount of the solvent used is usually 3 to 100 times the weight, preferably 5 to 20 times the weight of the C-protected peptide.
  • the reaction temperature is usually in the range of ⁇ 20 to 40 ° C., preferably 0 to 30 ° C.
  • the reaction time is usually 0.5 to 30 hours.
  • Coupling process (2) for example, by mixing a C-protected peptide, C-protected amino acid or C-protected amino acid amide with an N-Fmoc amino acid active ester in a solvent, one amino acid residue is added. An elongated N-Fmoc-C-protected peptide is obtained. Further, when N-Fmoc peptide active ester is used instead of N-Fmoc amino acid active ester, N-Fmoc-C-protected peptide in which amino acid residues are extended by the number of amino acid residues of N-Fmoc peptide active ester is obtained. can get.
  • the number of amino acid residues of the N-Fmoc peptide active ester used is preferably 2 to 10, more preferably 2 to 5.
  • the order of addition of the components is not particularly limited. However, when the C-protected peptide is obtained by the previous peptide extension reaction (n-1), N-solution is added to the C-protected peptide solution in the reaction vessel. -Fmoc amino acid active ester or N-Fmoc peptide active ester may be added.
  • the amount of N-Fmoc amino acid active ester or N-Fmoc peptide active ester used is the same as the amount of N-Fmoc amino acid or N-Fmoc peptide used in the coupling step (1).
  • the other reaction conditions such as the base, the solvent and the amount used, the reaction temperature, and the reaction time in the coupling step (2) are the same as in the coupling step (1).
  • N-Fmoc amino acid active ester N-Fmoc peptide active ester
  • an amine component such as a symmetric acid anhydride of N-Fmoc amino acid
  • a solid phase nucleophile removal reagent eg, SH Silica (manufactured by Fuji Silysia Co., Ltd.)
  • the active ester may be deactivated by washing with a weakly basic aqueous solution such as sodium carbonate.
  • washing with an acidic aqueous solution and / or washing with a basic aqueous solution is preferably performed.
  • an acidic aqueous solution By washing with an acidic aqueous solution, the C-protected peptide, the remaining condensing agent or a decomposition product thereof, a base and the like can be removed from the aqueous layer.
  • a basic aqueous solution By washing with a basic aqueous solution, additives, residual N-Fmoc amino acid, and the like can be removed from the aqueous layer.
  • Washing with an acidic aqueous solution is performed, for example, by mixing and stirring a reaction mixture and a dilute hydrochloric acid aqueous solution (for example, 1N hydrochloric acid aqueous solution), an aqueous solution of sulfuric acid, formic acid, citric acid, phosphoric acid, and the like, and then separating the organic layer and the aqueous layer. Then, it is performed by removing the aqueous layer.
  • a dilute hydrochloric acid aqueous solution for example, 1N hydrochloric acid aqueous solution
  • an aqueous solution of sulfuric acid formic acid, citric acid, phosphoric acid, and the like
  • Washing with a basic aqueous solution is performed, for example, by mixing and stirring the reaction mixture with an aqueous sodium hydrogen carbonate solution (for example, 5 wt% aqueous sodium hydrogen carbonate solution), an aqueous sodium carbonate solution, an aqueous potassium carbonate solution, and the like. This is done by separating the layers and removing the aqueous layer.
  • an aqueous sodium hydrogen carbonate solution for example, 5 wt% aqueous sodium hydrogen carbonate solution
  • an aqueous sodium carbonate solution for example, 5 wt% aqueous sodium hydrogen carbonate solution
  • an aqueous potassium carbonate solution an aqueous potassium carbonate solution
  • a protecting group for the C-terminal carboxy group or amide group (1) a protecting group using the diphenylmethane compound described in WO2010 / 113939A1 as a protecting reagent, and (2) a fluorene compound described in WO2010 / 104169A1 is protected.
  • Protecting group used as a activating reagent (3) Protecting group using a benzyl compound described in WO2011 / 078295A1 as a protecting reagent, or (4) Protecting using a branched chain-containing aromatic compound described in WO2012 / 029794A1 as a protecting reagent
  • impurities other than the target product can be efficiently removed to the aqueous layer side by washing with an acidic aqueous solution, washing with a basic aqueous solution and / or washing with water as necessary.
  • N-Fmoc-C-protected peptide can be obtained by concentrating the organic layer.
  • a non-concentrated N-Fmoc-C-protected peptide solution or a concentrated solution thereof may be used in the subsequent N-terminal deprotection step.
  • N-terminal deprotection step In the peptide liquid phase synthesis method of the present invention, the above Fmoc group removal method is used to prepare a C-protected peptide, C-protected amino acid or C-protected amino acid amide used at the start of the extension reaction. Or may be performed as at least one (preferably all) N-terminal deprotection step. In the following, the Fmoc group removal step for the preparation of the C-protected peptide, C-protected amino acid or C-protected amino acid amide used at the start of the extension reaction is also included in the N-terminal deprotection step.
  • the method for removing the Fmoc group of the present invention is performed as the N-terminal deprotection step, the compound (II) as a by-product can be sufficiently removed. Therefore, the C-protected peptide, C-protected amino acid or C-protected amino acid amide obtained after the N-terminal deprotection step is not isolated as a solid, but in the next step (ie, coupling step (1)). And / or (2), or the final deprotection step). The solution of C-protected peptide or the like may be used in the next step after being concentrated as necessary.
  • one-pot synthesis refers to a synthetic method in which the intermediate peptide obtained in each step (ie, synthetic intermediate) is produced from the reaction vessel to the final target peptide in the peptide liquid phase synthesis method. means.
  • N-Fmoc amino acid active ester which is a by-product generated in the coupling step (1) and / or (2), is converted into a compound. It can be captured by (I) and then removed by washing with a basic aqueous solution. Therefore, the work-up using the sulfanyl group-supporting silica gel after the coupling step (1) and / or (2) can be omitted.
  • the method for removing the C-terminal protecting group and the side chain functional group is not particularly limited, and a known deprotecting method may be used.
  • a known deprotecting method may be used.
  • the protecting group is a lower alkyl group such as Me or Et
  • a base such as sodium hydroxide or potassium hydroxide and a C-protected peptide are added to -20 to 40 in a solvent such as water or an aqueous organic solvent. It can be deprotected by reacting at 0 ° C. for 0.5 to 10 hours.
  • the protecting group is tBu, Pbf, Dmb, bis (4-methoxyphenyl) methyl, etc., in a solvent such as chloroform, methylene chloride, ethyl acetate, dioxane, trifluoroacetic acid, hydrochloric acid, methanesulfonic acid, tosylic acid
  • Deprotection can be achieved by reacting an acid such as formic acid with a C-protected peptide at ⁇ 20 to 40 ° C. for 0.5 to 10 hours.
  • the protecting group is a Z group
  • the C-protected peptide is hydrogenated at 0 to 40 ° C.
  • deprotection can be performed by reacting a strong acid such as hydrogen fluoride or trifluoromethanesulfonic acid with a C-protected peptide at ⁇ 20 to 40 ° C. for 0.5 to 10 hours.
  • the protecting group is an Alloc group
  • it can be deprotected by a decomposition reaction of the C-protected peptide using a zerovalent palladium homogeneous catalyst such as tetrakistriphenylphosphine palladium.
  • the amount of the zero-valent palladium homogeneous catalyst used is usually 0.01 to 1.0 equivalent, preferably 0.05 to 0.5 equivalent based on the protective group to be removed.
  • the obtained peptide, which is the final target product can be isolated and purified according to a method commonly used in peptide chemistry.
  • the peptide which is the final target product can be isolated and purified by extraction washing, crystallization, chromatography and the like.
  • Example 1 (I) Condensation of 3,4,5-tri (2 ′, 3′-dihydrophytyloxy) benzyl alcohol with N-Fmoc amino acid, followed by removal of the Fmoc group using 3-mercaptopropionic acid 4,5-tri (2 ′, 3′-dihydrophytyloxy) benzyl alcohol (2.0 g, 2.00 mmol) was dissolved in chloroform (20 mL), and Fmoc-Leu-OH (779 mg, 2.20 mmol) was added. Then, EDC. HCl (465 mg, 2.43 mmol) and DMAP (24 mg, 0.20 mmol) were added, and the mixture was stirred at room temperature overnight.
  • TOF-MS 1110.9 [MH + ]
  • Measuring equipment Waters LCT Premier XE Capillary voltage: 3000V Sample cone voltage: 86V Desolation temperature: 350 ° C Source temperature: 120 ° C Injection volume: 2 ⁇ L
  • Example 2 (I) Condensation of 4,4 ′-(2 ′, 3′-dihydrophytyloxy) diphenylmethylamine with N-Fmoc amino acid, followed by removal of the Fmoc group using 3-mercaptopropionic acid '-(2', 3'-Dihydrophytyloxy) diphenylmethylamine (2.0 g, 2.38 mmol) is dissolved in chloroform (20 mL), HOBt (32 mg, 0.24 mmol), Fmoc-Leu-OH (1 0.02 g, 2.89 mmol) and then EDC. HCl (607 mg, 3.17 mmol) was added and stirred at room temperature overnight.
  • the obtained organic layer was mixed once with a mixed solvent of 10% aqueous sodium carbonate (25 mL) and DMF (2.5 mL), twice with 10% aqueous sodium carbonate (25 mL), and 3% with 20% brine (25 mL). The organic layer and the aqueous layer were separated by washing with stirring twice. The obtained organic layer was dried over sodium sulfate and then filtered to obtain a CPME solution (35 mL) of H-Gly-OBzl (2,4-OPhy). This CPME solution was used in the next step as it was. TOF-MS: 758.6 [MH + ]
  • the obtained organic layer was treated once with a mixed solvent of 10% aqueous sodium carbonate (25 mL) and DMF (2.5 mL) at room temperature, twice with 10% aqueous sodium carbonate (25 mL), and 20% brine (25 mL). The mixture was stirred and washed 3 times, and the organic layer and the aqueous layer were separated. The obtained organic layer was dried over sodium sulfate and then filtered to obtain a CPME solution of H-Leu-Glu (OtBu) -Gly-OBzl (2,4-OPhy). This CPME solution was used in the next step as it was.
  • TOF-MS 1056.7 [MH + ]
  • N-Fmoc-C-protected peptide is 2- (3,4,5-tri (2 ′, 3′-dihydrophytyl) which is the starting material of Example 4 (i). Calculated from oxy) benzyloxy) -4-methoxybenzyl alcohol (1.76 mmol) and was 93%.
  • Example 5 (I) Condensation of C-protected amino acid salt with N-Fmoc amino acid, followed by removal of Fmoc group using thiomalic acid H-Leu-OBzl.TsOH salt (394 mg, 1.00 mmol) in chloroform (10 mL) After dissolution, triethylamine (0.14 mL, 1.00 mmol), HOBt (14 mg, 0.10 mmol), Fmoc-Tyr (tBu) -OH (506 mg, 1.10 mmol) were added, and then EDC. HCl (232 mg, 1.21 mmol) was added and stirred at room temperature overnight.
  • the obtained organic layer was stirred and washed three times with a 10% aqueous sodium carbonate solution (30 mL) and twice with 20% brine (30 mL) at room temperature, and the organic layer and the aqueous layer were separated.
  • the obtained organic layer was dried over sodium sulfate and then filtered, and the filtrate was collected.
  • the solvent of the collected filtrate was distilled off under reduced pressure. Hexane (10 mL) was added to the resulting residue, and the precipitate was collected by filtration.
  • the collected precipitate was dried to obtain H-Glu (OtBu) -Glu (OtBu) -Tyr (tBu) -Leu-OBzl (787 mg, 0.97 mmol).
  • DBF is quantitatively analyzed by HPLC using the synthesized DBF as a standard product to calculate the production rate of DBF, and then the production rate of compound 2 is (100-DBF). Production rate).
  • the following generation rate calculation method is the same.
  • the conditions of HPLC are as follows.
  • Measuring equipment Waters AQUITY UPLC BEH C18 50mm x 2.1mm ID, 1.7 ⁇ m Measurement temperature: 40 ° C Flow rate: 0.4 mL / min Injection volume: 2 ⁇ L Measurement wavelength: 220 nm Moving layer A: 0.05% by volume trifluoroacetic acid aqueous solution Moving layer B: 0.05% by volume trifluoroacetic acid acetonitrile solution Gradient time program: concentration of moving layer B from 20% to 90% by volume in 10 minutes Increased linearly.
  • Example 7 Removal of Fmoc group using cysteine Fmoc-Leu-OBzl (3,4,5-OPhy) (0.075 mmol) was dissolved in chloroform (1 mL), and cysteine (27 mg, 0. 23 mmol) and DBU (0.022 mL, 0.15 mmol) were added, and the mixture was stirred at room temperature for 3 hours.
  • reaction solution was concentrated, CPME (5 mL) was added to the concentrated reaction solution, this reaction solution was washed 3 times with 10% aqueous sodium carbonate solution (5 mL) at room temperature, and compound (II) was added. Removed.
  • the Fmoc group removal method of the present invention can be used for industrial production of peptides and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、式(I):HS-L-COOH(式中、Lは、置換基を有していてもよいC1-8アルキレン基を示す。)で表される化合物、Fmoc基で保護されたアミノ基含有化合物および塩基を混合して、式(II):Fm-S-L-COOH(式中、Fmは、9-フルオレニルメチル基を示し、Lは、前記の通りである。)で表される化合物およびアミノ基含有化合物を含む反応混合物を得る工程、および得られた反応混合物を塩基性水溶液で洗浄することによって、式(II)で表される化合物を除去する工程を含む、Fmoc基の除去方法に関する。本発明によれば、副生成物であるジベンゾフルベン誘導体を容易に取り除くことができるFmoc基の除去方法を提供することができる。

Description

Fmoc基の除去方法
 本発明は、Fmoc(9-フルオレニルメトキシカルボニル)基の除去方法、および該方法を用いるペプチドの製造方法に関する。
 Fmoc基は、ペプチド合成におけるアミノ酸およびペプチドのアミノ基の重要な保護基である。このFmoc基の除去では、ジベンゾフルベン(DBF)またはDBF誘導体が副生成物として生ずる。また、Fmoc基の除去は、一般的に、塩基を用いて行われる。例えば、アミンを用いてFmoc基を除去する場合、DBFとアミンとの付加体(以下「DBF-アミン付加体」と略称することがある。)がDBF誘導体として副生する。これらのDBFまたはDBF誘導体が残ったままペプチド合成を続けると、9-フルオレニルメチル化などの副反応が発生するため、DBFまたはDBF誘導体を効率的に除去することが望ましい。また、ペプチド合成においてFmoc基およびDBFの除去にアミンを使用すると、次の縮合工程までにアミンを除去しなければならない。
 非特許文献1には、ペプチドの液相合成においてDBF-アミン付加体を除去するために、反応抽出物を濃縮乾固し、得られた残渣にヘキサンなどの炭化水素溶媒を加えてトリチュレートすることによって、DBF-アミン付加体を溶媒に溶解させ、脱保護されたペプチドを結晶として単離する方法が記載されている。しかし、この方法は、操作性が悪く、大スケールでは再現性が得られない場合もあり、工業的生産に不向きである。また、目的の脱保護されたペプチドが油状物の場合には、この方法は用いることができない。さらに、ペプチド鎖が短い段階では、ペプチド自体が炭化水素溶媒に溶解してしまい、回収率が低下するなどの問題もある。
 上記のような問題を解決するために、特許文献1は、Fmoc基の除去後の反応混合物を炭化水素溶媒および極性有機溶媒中で撹拌した後、炭化水素溶媒層および極性有機溶媒層を分けて、DBFおよび/またはDBF-アミン付加体が溶解した炭化水素溶媒層を除去する方法を記載している。また、特許文献2は、DBF-アミン付加体を含む反応混合物を二酸化炭素と接触させて、DBF-アミン付加体の炭酸塩を形成し、この炭酸塩を除去する方法を記載している。しかし、特許文献1および2のいずれにも、Fmoc基の除去に、スルファニル基(SH)含有脂肪酸を用いることは記載していない。
 一方、非特許文献2は、Fmoc基の除去の際に生ずるDBFの捕捉剤として1-オクタンチオール等を使用する方法を記載している。この方法では、DBFとチオールとの付加体(以下「DBF-チオール付加体」と略称することがある。)が生ずる。非特許文献2の1-オクタンチオールを使用した実験では、副生成物であるDBF-チオール付加体を除去するため、非特許文献1の方法と同様に、(a)トリチュレーションまたは(b)トリチュレーションおよび再結晶を行っており(表1)、操作性が悪い。
 特許文献3は、過剰量のカルボキシ成分とアミノ成分とを反応させるペプチド合成において、残留するカルボキシ成分を除去するための捕捉剤として、遊離アニオンまたは潜在アニオンを含むアミン、或いは遊離アニオンまたは潜在アニオンを含むチオールを使用する方法を記載している。さらに、特許文献3では「前記捕捉剤が伸長中のペプチドの脱保護にも使用される」ことが記載されている。しかし、特許文献3の方法で、前記捕捉剤(遊離アニオンまたは潜在アニオンを含むチオール等)をペプチドの脱保護に使用するのは、捕捉剤の遊離アニオンに含まれる一時保護基の除去と、伸長中のペプチドのN末端の脱保護とを単一の処理で行うためである。特許文献3には、前記捕捉剤を、Fmoc基の除去またはDBFの捕捉に使用することは記載されていない。
 特許文献4は、HS-X-COOH(式中、Xは、炭素数1~5個のアルキレン鎖を示す。)で表される化合物を、Fm-R(式中、Fmは9-フルオレニルメチルを示し、Rは塩素原子等を示す)で表される化合物、またはFmoc-R(式中、Fmocは9-フルオレニルメトキシカルボニルを示し、Rはスクシンイミジルオキシ等を示す。)で表される化合物と反応させて、Fm-S-X-COOH(式中、Fmは9-フルオレニルメチルを示す)で表される化合物を製造する方法を記載している。しかし、特許文献4は、Fm-S-X-COOHの製造方法に関するものであり、Fmoc基で保護されたアミノ基含有化合物の脱保護に関するものではない。また、特許文献4では、有機塩基を用いて上記反応を行うとHS-X-COOHが低収率でしか得られないため、無機塩基を用いることを提案している。
国際公開第2009/014177号 国際公開第2010/016551号 特開2003-55396号公報 特開2008-303195号公報
実験化学講座第5版、丸善出版社、平成17年3月31日発行、第16巻、272頁 James E. Sheppeck II ら, "A convenient and scaleable procedure for removing the Fmoc group in solution", Tetrahedron Letter 41 (2000) 5329-5333
 本発明は上記のような事情に着目してなされたものであって、その目的は、副生成物であるDBF誘導体を容易に取り除くことができるFmoc基の除去方法を提供することにある。
 上述したように、保護アミノ基からのFmoc基の除去は塩基を用いて行われるので、当業者にとって、Fmoc基の除去反応に酸を存在させることは思いもよらないことである。それにもかかわらず、上記目的を達成するために本発明者が鋭意検討を重ねた結果、驚くべきことに、塩基を用いるFmoc基の除去の際に、スルファニル基含有脂肪酸を存在させても、Fmoc基の除去が進行し、且つその後の塩基性水溶液による洗浄によって、DBF誘導体(即ち、DBF-スルファニル基含有脂肪酸付加体)を良好に除去し得ることを見出した。
 なお、非特許文献2では、DBFの捕捉剤としてチオサリチル酸の使用を示唆しているが、チオサリチル酸の実験は行われておらず、チオサリチル酸は単なる例示に過ぎない。また、本発明者がチオサリチル酸を用いて実験したところ、DBF誘導体(即ち、DBF-チオサリチル酸付加体)が充分に生成しなかった(下記比較例1)。これらの知見に基づく本発明は、以下の通りである。
 [1] 式(I):
 HS-L-COOH   (I)
(式中、Lは、置換基を有していてもよいC1-8アルキレン基を示す。)
で表される化合物、Fmoc基で保護されたアミノ基含有化合物および塩基を混合して、式(II):
 Fm-S-L-COOH   (II)
(式中、Fmは、9-フルオレニルメチル基を示し、Lは、前記の通りである。)
で表される化合物およびアミノ基含有化合物を含む反応混合物を得る工程、および
 得られた反応混合物を塩基性水溶液で洗浄することによって、式(II)で表される化合物を除去する工程
を含む、Fmoc基の除去方法。
 [2] 塩基が、有機塩基である上記[1]に記載の方法。
 [3] 有機塩基が、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンである上記[2]に記載の方法。
 [4] 式(I)で表される化合物が、3-メルカプトプロピオン酸、チオリンゴ酸およびシステインからなる群から選ばれる少なくとも一つである、上記[1]~[3]のいずれか一つに記載の方法。
 [5] 塩基性水溶液が、炭酸リチウム、炭酸カリウム、炭酸ナトリウム、炭酸水素リチウム、炭酸水素カリウム、炭酸水素ナトリウム、水酸化リチウム、水酸化カリウムおよび水酸化ナトリウムからなる群から選ばれる少なくとも一つの水溶液である上記[1]~[4]のいずれか一つに記載の方法。
 [6] Fmoc基で保護されたアミノ基含有化合物が、N-Fmoc-C-保護ペプチド、N-Fmoc-C-保護アミノ酸またはN-Fmoc-C-保護アミノ酸アミドであり、
 得られたアミノ基含有化合物が、C-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドである、上記[1]~[5]のいずれか一つに記載の方法。
 [7] 上記[6]に記載の方法を含む、液相合成法によるペプチドの製造方法。
 [8] (1)縮合剤の存在下、C-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドと、N-Fmocアミノ酸またはN-Fmocペプチドとを縮合させて、N-Fmoc-C-保護ペプチドを得る工程、および/または
 (2)C-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドと、N-Fmocアミノ酸活性エステルまたはN-Fmocペプチド活性エステルとを縮合させて、N-Fmoc-C-保護ペプチドを得る工程
を含む、上記[7]に記載の製造方法。
 [9] 前記工程(1)において、さらに活性化剤を存在させる上記[8]に記載の製造方法。
 [10] 上記[6]に記載の方法で得られたC-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドを固体として単離せずに、前記工程(1)および/または前記工程(2)で使用する、上記[8]または[9]に記載の製造方法。
 [11] ワンポット合成でペプチドを製造する、上記[10]に記載の製造方法。
 なお以下では「式(I)で表される化合物」等を「化合物(I)」等と略称することがある。
 本発明のFmoc基の除去方法によれば、DBFを化合物(I)で捕捉し、副生成物である化合物(II)を塩基性水溶液による洗浄によって容易に取り除くことができる。本発明のFmoc基の除去方法は、トリチュレーションなどの煩雑な操作を要せず、大スケール反応にも容易に適用可能である。また、本発明のFmoc基の除去方法をペプチド合成に用いれば、脱Fmoc後に得られた中間体ペプチドを固体として単離せずに、次の縮合工程に用いることができるので、ペプチドのワンポット合成が可能となり、工業的生産に特に好適である。
1.記号
 本発明(即ち、明細書および請求の範囲)において使用する記号の意味を、以下に記載する。
 Ac:アセチル
 Alloc:アリルオキシカルボニル
 At:7-アザベンゾトリアゾール-1-イル
 Boc:tert-ブトキシカルボニル
 BOP:1-ベンゾトリアゾリルオキシ-トリス-ジメチルアミノ-ホスホニウム ヘキサフルオロホスフェート
 Bpr:1,1-ジメチル-2-フェニル-エチル
 Bsmoc:1,1-ジオキソベンゾ[b]チオフェン-2-イルメトキシカルボニル
 Bt:ベンゾトリアゾール-1-イル
 Bzl:ベンジル
 Bzl(2,4-OPhy):2,4-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジル
 Bzl(3,4,5-OPhy):3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジル
 Bzl(2-OBzl(3,4,5-OPhy)-4-OMe):2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジロキシベンジルオキシ]-4-メトキシベンジル
 CDI:カルボニルジイミダゾール
 6-Cl-HOBt(HOCt):6-クロロ-1-ヒドロキシベンゾトリアゾール
 CPME:シクロペンチルメチルエーテル
 Ct:6-クロロベンゾトリアゾール-1-イル
 DABCO:1,4-ジアザビシクロ[2.2.2]オクタン
 DBF:ジベンゾフルベン
 DBU:1,8-ジアザビシクロ[5.4.0]-7-ウンデセン
 DCC:ジシクロヘキシルカルボジイミド
 Dhbt:3,4-ジヒドロ-4-オキソ-1,2,3-ベンゾトリアジン-3-イル
 DIPC:ジイソプロピルカルボジイミド
 DMAP:N,N-ジメチル-4-アミノピリジン
 Dmb:2,4-ジメトキシベンジル
 DMF:N,N-ジメチルホルムアミド
 DMT-MM:4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホニウム クロリド
 Dpm:ジフェニルメチル
 Dpm(4,4’-OPhy):4,4’-(2’,3’-ジヒドロフィチルオキシ)ジフェニルメチル
 EDC:1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド
 EDC.HCl:1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド塩酸塩
 Et:エチル
 Fm:9-フルオレニルメチル
 Fmoc:9-フルオレニルメトキシカルボニル
 HATU:O-(7-アザベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロホスフェート
 HBTU:O-(ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロホスフェート
 HCTU:O-(6-クロロベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロホスフェート
 HOAt:1-ヒドロキシ-7-アザベンゾトリアゾール
 HOBt:1-ヒドロキシベンゾトリアゾール
 HONb:N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミド
 HOOBt(HODhbt):3-ヒドロキシ-3,4-ジヒドロ-4-オキソ-1,2,3-ベンゾトリアジン
 HOPht:N-ヒドロキシフタルイミド
 HOSu:N-ヒドロキシスクシンイミド
 iPr:イソプロピル
 Me:メチル
 MsOH:メタンスルホン酸
 Nb:5-ノルボルネン-2,3-ジカルボキシイミドイル
 NMP:N-メチルピロリドン
 Pbf:2,2,4,6,7-ペンタメチルジヒドロベンゾフラン-5-スルホニル
 Pht:フタルイミドイル
 PyBOP:1-ベンゾトリアゾリルオキシ-トリス-ピロリジノ-ホスホニウム ヘキサフルオロホスフェート
 PyBroP:ブロモ-トリス-ピロリジノ-ホスホニウム ヘキサフルオロホスフェート
 Su:スクシンイミドイル
 TBTU:O-ベンゾトリアゾール-1-イル-1,1,3,3-テトラメチルウロニウム テトラフルオロボレート
 tBu:tert-ブチル
 Trt:トリチル
 THF:テトラヒドロフラン
 TsOH:p-トルエンスルホン酸
 Z:ベンジルオキシカルボニル
 AA:アミノ酸残基(添え字のnは1以上の整数であり、ペプチドC末端からのAAの順番を示す。)
 PG:ペプチドのC末端のカルボキシ基またはアミド基の保護基
 PG:アミノ基の保護基(添え字のnは1以上の整数であり、PGはAAのアミノ基の保護基であることを示す。)
 HOE:活性化剤
 E:活性基
 Gly:グリシン
 Ala:アラニン
 Val:バリン
 Leu:ロイシン
 Ile:イソロイシン
 Met:メチオニン
 Phe:フェニルアラニン
 Tyr:チロシン
 Trp:トリプトファン
 His:ヒスチジン
 Lys:リジン
 Arg:アルギニン
 Ser:セリン
 Thr:トレオニン
 Asp:アスパラギン酸
 Glu:グルタミン酸
 Asn:アスパラギン
 Gln:グルタミン
 Cys:システイン
 Pro:プロリン
 Orn:オルニチン
 Sar:サルコシン
 β-Ala:β-アラニン
 GABA:γ-アミノ酪酸
 Dap:2,3-ジアミノプロパン酸
 PGで表されるC末端のカルボキシ基の保護基としては、例えば、Me、Et、iPr、tBuなどのアルキル基、Z、Fm、Trt、Dpm、Bpr、1,1-ジメチルベンジル、ジメチルフェニル等が挙げられる。
 PGで表されるC末端のアミド基の保護基としては、例えば、Dmb、ビス(4-メトキシフェニル)メチル、トリチル等が挙げられる。アミド基は、アルキル基等の置換基を有していてもよい。なお、アミド基はカルバモイル基ともいう。
 また、PGで表されるC末端のカルボキシ基またはアミド基の保護基としては、
(1)WO2010/113939A1に記載のジフェニルメタン化合物を保護化試薬として用いる保護基、
(2)WO2010/104169A1に記載のフルオレン化合物を保護化試薬として用いる保護基、
(3)WO2011/078295A1に記載のベンジル化合物を保護化試薬として用いる保護基、
(4)WO2012/029794A1に記載の分岐鎖含有芳香族化合物を保護化試薬として用いる保護基
等を用いることができる。
 これらの保護化試薬を用いてC末端のカルボキシ基またはアミド基を保護すれば、後述のN-Fmoc-C-保護ペプチド等およびC-保護ペプチド等の脂溶性を向上させることができ、後述する液相合成法によるペプチドの製造方法において、例えば、カップリング工程のワークアップの水洗において、水層側に不純物を効率的に除去することができる。
 WO2010/113939A1に記載のジフェニルメタン化合物としては、例えば、
2,3,4-トリオクタデカノキシベンゾヒドロール;
[フェニル(2,3,4-トリオクタデカノキシフェニル)メチル]アミン;
4,4’-ジドコソキシベンゾヒドロール;
ジ(4-ドコソキシフェニル)メチルアミン;
4,4-ジ(12-ドコソキシドデシルオキシ)ベンゾヒドロール;
アミノ-ビス[4-(12-ドコソキシドデシルオキシ)フェニル]メタン;
N-ベンジル-[ビス(4-ドコシルオキシフェニル)]メチルアミン;
(4-メトキシ-フェニル)-[4-(3,4,5-トリス-オクタデシロキシ-シクロヘキシルメトキシ)-フェニル]-メタノール;
{(4-メトキシ-フェニル)-[4-(3,4,5-トリス-オクタデシロキシ-シクロヘキシルメトキシ)-フェニル]-メチル}-アミン;
[ビス-(4-ドコソキシ-フェニル)-メチル]-アミン
等が挙げられる。
 WO2010/104169A1に記載のフルオレン化合物としては、例えば、
 2-ドコシロキシ-9-(4-クロロフェニル)-9-フルオレノール;
2-ドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2,7-ジドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2-(12-ドコシロキシ-ドデカノキシ)-9-(3-フルオロフェニル)-9-ブロモフルオレン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-フルオレノール)-ドデシロキシ]-ドデカン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-ブロモフルオレン)-ドデシロキシ]-ドデカン;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-フルオレノール;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-ブロモフルオレン;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-フルオレノール; 
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-ブロモフルオレン
等が挙げられる。
 WO2011/078295A1に記載のベンジル化合物としては、例えば、
4-(12’-ドコシルオキシ-1’-ドデシルオキシ)ベンジルアルコール;
4-(12’-ドコシルオキシ-1’-ドデシルオキシ)-2-メトキシベンジルアルコール;
4-(12’-ドコシルオキシ-1’-ドデシルオキシ)-2-メトキシベンジルアミン;
2-(12’-ドコシルオキシ-1’-ドデシルオキシ)-4-メトキシベンジルアルコール;
2-(12’-ドコシルオキシ-1’-ドデシルオキシ)-4-メトキシベンジルアミン;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)ベンジルオキシ]ベンジルアルコール;
2-[3’,5’-ジ(ドコシルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール;
2-メトキシ-4-[2’,2’,2’-トリス(オクタデシルオキシメチル)エトキシ]ベンジルアルコール;
2-メトキシ-4-[2’,2’,2’-トリス(オクタデシルオキシメチル)エトキシ]ベンジルアミン;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
4-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
1,22-ビス[12-(4-ヒドロキシメチル-3-メトキシフェノキシ)ドデシルオキシ]ドコサン;
1,22-ビス[12-(2-ヒドロキシメチル-5-メトキシフェノキシ)ドデシルオキシ]ドコサン;
2-ドコシルオキシ-4-メトキシベンジルアルコール;
2-メトキシ-4-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
3,5-ジメトキシ-4-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
N-(4-ヒドロキシメチル-3-メトキシフェニル)-3,4,5-トリス(オクタデシルオキシ)シクロヘキシルカルボキサミド;
N-(5-ヒドロキシメチル-2-メトキシフェニル)-3,4,5-トリス(オクタデシルオキシ)シクロヘキシルカルボキサミド;
N-(4-ヒドロキシメチルフェニル)-3,4,5-トリス(オクタデシルオキシ)シクロヘキシルカルボキサミド
等が挙げられる。
 WO2012/029794A1に記載の分岐鎖含有芳香族化合物としては、例えば、
2,4-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
3,5-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
1-[(2-クロロ-5-(2’,3’-ジヒドロフィチルオキシ)フェニル)]-1-フェニルメタンアミン;
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアミン;
4-(2’,3’-ジヒドロフィチルオキシ)ベンジルアミン;
2-[3’,4’,5’-トリ(2’’,3’’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メトキシベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メトキシベンジルアミン;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メチルベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メチルベンジルアミン;
2,2,4,8,10,10-ヘキサメチル-5-ドデカン酸(4-ヒドロキシメチル)フェニルアミド;
4-(3,7,11-トリメチルドデシルオキシ)ベンジルアルコール;
2-(3,7,11-トリメチルドデシルオキシ)-9-フェニルフルオレン-9-オール
等が挙げられる。
 PGで表されるアミノ基の保護基としては、例えば、Boc、Z、Fmoc、Bsmoc、Alloc、Ac等が挙げられる。
 Eで表される活性基とは、アミノ基による求核攻撃を受けて「EO」として容易に脱離し、アミド結合を生成させ得る基を意味し、例えば、Bt、Ct、At、OBt、Su、Pht、Nb、ペンタフルオロフェニル等が挙げられる。
2.用語
 本発明において使用する用語を、以下、順に説明する。
 本発明において「アミノ基含有化合物」とは、第1級アミノ基および/または第2級アミノ基を有する化合物を意味する。
 「Fmoc基で保護されたアミノ基含有化合物」とは、アミノ基含有化合物が有する第1級アミノ基および/または第2級アミノ基の少なくとも一つが、Fmoc基で保護された化合物を意味する。
 本発明においてアミノ酸を「H-AA-OH」と表示した場合は、左側がアミノ基、右側がカルボキシ基であることを意味し、アミノ基およびカルボキシ基がそれぞれ保護されていないことを意味する。
 カルボキシ基が保護されているアミノ酸は「H-AA-OPG」と表示され、アミノ基が保護されているアミノ酸は「PG-AA-OH」と表示される。
 アミノ基が保護され、且つカルボキシ基が活性エステル化されているアミノ酸は「PG-AA-OE」と表示される。
 PG-AA-OHの対称酸無水物は「(PG-AA)-O」と表示される。
 本発明においてアミノ酸アミドを「H-AA-NH」と表示した場合は、左側がアミノ基、右側がアミド基であることを意味し、アミノ基およびアミド基がそれぞれ保護されていないことを意味する。
 アミド基が保護されているアミノ酸アミドは「H-AA-NHPG」と表示され、アミノ基が保護されているアミノ酸アミドは「PG-AA-NH」と表示される。
 保護された側鎖官能基を有するアミノ酸またはアミノ酸アミドは「H-AA(PG)-(OH or NH)」(PGは側鎖官能基の保護基を示す)と表示される。
 本発明においてペプチドを「H-AAn’-AAn’-1-・・・-AA-(OH or NH)」(添え字のn’は2以上の整数を示す。)と表示した場合は、左側がN末端、右側がC末端であり、N末端およびC末端がそれぞれ保護されていないアミノ酸残基をn’個有するペプチドであること意味する。ここで、N末端とはアミノ酸残基のα位アミノ基に限定されず、ペプチド伸長が側鎖アミノ基(例えば、Lysのεアミノ基)を介して行われる場合は、この側鎖アミノ基もN末端に含まれる。以下、同様である。
 C末端が保護されているペプチドを「H-AAn’-AAn’-1-・・・-AA-(OPG or NHPG)」と表示し、さらにN末端が保護されているペプチドを「PGn’-AAn’-AAn’-1-・・・-AA-(OPG or NHPG)」と表示する。
 「C-保護アミノ酸」とは、カルボキシ基が保護されており、アミノ基が保護されていないアミノ酸を意味し、これは「H-AA-OPG」と表示される。
 「C-保護アミノ酸アミド」とは、アミド基が保護されており、アミノ基が保護されていないアミノ酸アミドを意味し、これは「H-AA-NHPG」と表示される。
 「N-保護アミノ酸」とは、アミノ基が保護されており、カルボキシ基が保護されていないアミノ酸を意味し、これは「PG-AA-OH」と表示される。
 「N-保護アミノ酸アミド」とは、アミノ基が保護されており、アミド基が保護されていないアミノ酸アミドを意味し、これは「PG-AA-NH」と表示される。
 「N-保護アミノ酸活性エステル」とは、アミノ基が保護されており、カルボキシ基がEにより活性化されたアミノ酸を意味し、これは「PG-AA-OE」と表示される。
 「N-保護ペプチド活性エステル」とは、N末端のアミノ基が保護されており、C末端のカルボキシ基がEにより活性化されたペプチドを意味する。
 なお、N-保護アミノ酸活性エステルまたはN-保護ペプチド活性エステルとして単離可能なものは、Eがペンタフルオロフェニル、SuまたはNbであるものである。その他のN-保護アミノ酸活性エステルまたはN-保護ペプチド活性エステルは、N-保護アミノ酸を縮合剤(例えば、EDC)および活性化剤(例えば、HOBt)と反応させることにより、反応系中で生成される。
 「N-Fmocアミノ酸」とは、アミノ基がFmocで保護されており、カルボキシ基が保護されていないアミノ酸を意味する。
 「N-Fmocアミノ酸アミド」とは、アミノ基がFmocで保護されており、アミド基が保護されていないアミノ酸アミドを意味する。
 「N-Fmocアミノ酸活性エステル」とは、アミノ基がFmocで保護されており、カルボキシ基がEにより活性エステル化されたアミノ酸を意味する。
 「N-Fmocペプチド活性エステル」とは、N末端のアミノ基がFmocで保護されており、C末端のカルボキシ基がEにより活性エステル化されたペプチドを意味する。
 なお、N-Fmocアミノ酸活性エステルまたはN-Fmocペプチド活性エステルとして単離可能なものは、Eがペンタフルオロフェニル、SuまたはNbであるものである。その他のN-Fmocアミノ酸活性エステルまたはN-Fmocペプチド活性エステルは、N-Fmocアミノ酸を縮合剤(例えば、EDC)および活性化剤(例えば、HOBt)と反応させることにより、反応系中で生成される。
 「C-保護ペプチド」とは、C末端のカルボキシ基またはアミド基が保護されており、N末端のアミノ基が保護されていないペプチドを意味し、これは「H-AAn’-AAn’-1-・・・-AA-(OPG or NHPG)」(n’は2以上の整数を示す)と表示される。
 「N-保護-C-保護ペプチド」とは、N末端のアミノ基およびC末端のカルボキシ基またはアミド基のいずれもが保護されているペプチド意味し、これは「PGn’-AAn’-AAn’-1-・・・-AA-(OPG or NHPG)」(n’は2以上の整数を示す)と表示される。
 「N-Fmoc-C-保護ペプチド」とは、N末端のアミノ基がFmocで保護され、C末端のカルボキシ基またはアミド基が保護されているペプチドを意味する。
3.Fmoc基の除去方法
 本発明のFmoc基の除去方法は、
 化合物(I)(即ち、HS-L-COOH)、Fmoc基で保護されたアミノ基含有化合物および塩基を混合して、化合物(II)(即ち、Fm-S-L-COOH)およびアミノ基含有化合物を含む反応混合物を得る工程、および
 得られた反応混合物を塩基性水溶液で洗浄することによって、化合物(II)を除去する工程
を含むことを特徴とする(前記式中、Lは置換基を有していてもよいC1-8アルキレン基を示し、Fmは、9-フルオレニルメチル基を示す)。
 アミノ基含有化合物は、上述したように第1級アミノ基および/または第2級アミノ基を有する化合物である限り、特に限定は無い。アミノ基含有化合物としては、例えば、ペプチド、アミノ酸、アミノ酸アミドなどが挙げられる。本発明のFmoc基の除去方法では、Fmoc基で保護されたアミノ基含有化合物は、1種のみを使用してもよく、2種以上を併用してもよい。
 アミノ基含有化合物が、遊離カルボキシ基を有する低分子量化合物である場合、前記の塩基性水溶液による洗浄工程で、副生成物である化合物(II)と共にアミノ基含有化合物が塩基性水溶液中に溶解し、得られるアミノ基含有化合物の収率が低下するおそれがある。そのため、アミノ基含有化合物は、遊離カルボキシ基を有さないことが好ましい。Fmoc基で保護されたアミノ基含有化合物は、好ましくは、遊離カルボキシ基を有さないN-Fmoc-C-保護ペプチド、N-Fmoc-C-保護アミノ酸またはN-Fmoc-C-保護アミノ酸アミド(本明細書中、「N-Fmoc-C-保護ペプチド等」と略称することがある。)であり、N-Fmoc-C-保護ペプチド等に対応して得られるアミノ基含有化合物は、好ましくは、C-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミド(本明細書中、「C-保護ペプチド等」と略称することがある。)である。
 N-Fmoc-C-保護ペプチド等およびC-保護ペプチド等、並びに後述するN-Fmocアミノ酸、N-Fmocアミノ酸活性エステル、N-FmocペプチドおよびN-Fmocペプチド活性エステルの基本となるアミノ酸は、天然アミノ酸または非天然アミノ酸のいずれでもよい。また、このアミノ酸は、L体またはD体のいずれでもよい。また、ラセミ体のアミノ酸混合物を使用してもよい。天然アミノ酸としては、例えば、Gly、Ala、Val、Leu、Ile、Ser、Thr、Asn、Gln、Asp、Glu、Lys、Arg、Cys、Met、Phe、Tyr、Trp、His、Pro、Orn、Sar、β-Ala、GABA等が挙げられる。非天然アミノ酸としては、例えば、Dap等が挙げられる。
 N-Fmoc-C-保護ペプチド等およびC-保護ペプチド等は、側鎖官能基(アミノ基、カルボキシ基、スルファニル基、ヒドロキシ基、グアニジル基等)を有していてもよい。側鎖のアミノ基は、保護されていなくてもよいが、Fmoc基以外の保護基(例えば、Boc、Z、Bsmoc、Alloc、Ac等)で保護されていることが好ましい。また、側鎖のカルボキシ基は、C末端と同様に保護基で保護されていることが好ましい。
 カルボキシ基の保護基としては、例えば、Me、Et、tBu等の炭素数1~6のアルキル、Bzl、p-ニトロベンジル、p-メトキシベンジル、Dpm、アリル、Bpr等が挙げられる。アミド基の保護基としては、例えば、Dmb、ビス(4-メトキシフェニル)メチル等が挙げられる。また、カルボキシ基およびアミド基の保護基としては、分枝鎖を有するものが好ましい。分枝鎖を有する保護基を使用すれば、N-Fmoc-C-保護ペプチド等およびC-保護ペプチド等の脂溶性を向上させることができ、後述する液相合成法によるペプチドの製造方法において、アミノ酸残基数の多いペプチドを合成しやすくなる。分枝鎖を有する保護基としては、例えば、Bzl(2,4-OPhy)、Bzl(3,4,5-OPhy)、Bzl(2-OBzl(3,4,5-OPhy)-4-OMe)、Dpm(4,4’-OPhy)等が挙げられる。
 スルファニル基の保護基としては、例えば、フェニルカルバモイル、Trt等が挙げられる。ヒドロキシ基の保護基としては、例えば、Bzl、tBu等が挙げられる。側鎖のグアニジル基の保護基としては、例えばPbf等が挙げられる。
 式(I)中のLは、置換基を有していてもよいC1-8アルキレン基を示す。ここで「C1-8」は、アルキレン基中に含まれる炭素数を表し、Lが有する置換基の炭素数は含まれない。このアルキレン基の炭素数が大きすぎると、副生成物である化合物(II)の塩基性水溶液への溶解度が低下し、前記の洗浄工程で充分に除去することができない。そこで、このアルキレン基の炭素数は、8以下、好ましくは6以下、より好ましくは2以下である。また、Lが有し得る置換基としては、例えばアルキル基(例えば、Me、Et等)、カルボキシ基、アミノ基等が挙げられる。化合物(I)は、好ましくは3-メルカプトプロピオン酸、チオリンゴ酸(2-メルカプトコハク酸ともいう)およびシステインからなる群から選ばれる少なくとも一つであり、より好ましくは3-メルカプトプロピオン酸である。
 化合物(I)の使用量は、Fmoc基で保護されたアミノ基含有化合物に含まれるFmoc基1molあたり、好ましくは1.0~30mol、より好ましくは3~10molである。化合物(I)の使用量が少なすぎると、Fmoc基を充分に除去することができず、一方、この量が多すぎると、化合物(I)自体の除去が困難になり、本発明のFmoc基の除去方法をペプチドの製造方法に利用する場合、ペプチドの縮合反応で不純物が生成しやすくなる場合がある。
 化合物(I)、Fmoc基で保護されたアミノ基含有化合物および塩基の反応は、通常、溶媒中で行われる。溶媒としては、例えば、クロロホルム、塩化メチレン、CPME、DMF、NMP、酢酸エチル、アセトニトリル、THFまたはこれらの混合溶媒等が挙げられる。溶媒の使用量は、Fmoc基で保護されたアミノ基含有化合物に対して、通常3~100倍重量であり、好ましくは5~30倍重量である。反応温度は、Fmoc基で保護されたアミノ基含有化合物にもよるが、通常0~50℃、好ましくは10~30℃である。反応時間は、通常0.1~24時間、好ましくは1~5時間である。
 Fmoc基の除去反応に用いる塩基としては、例えば、DBU、DABCO、EtN、NaCO、NaOtBu、KOtBu、iPrEtN等が挙げられる。この塩基は、1種のみを使用してもよく、2種以上を併用してもよい。塩基は、好ましくは有機塩基であり、より好ましくはDBUである。塩基の使用量は、使用する化合物(I)のカルボキシ基1molあたり、好ましくは0.5~5mol、より好ましくは1~3molである。塩基の使用量が少なすぎると、Fmoc基の除去反応の反応速度が充分に向上せず、一方、この量が多すぎると、塩基の除去が困難となり、また、本発明のFmoc基の除去方法をペプチドの製造方法に使用する場合、ペプチドのラセミ化等の副反応が生じ得る。
 本発明のFmoc基の除去方法は、上述の反応によって得られた反応混合物を塩基性水溶液で洗浄することによって、副生成物である化合物(II)を除去することを特徴の一つとする。一般的に洗浄とは、汚染物質を、液体で溶かして除去することを意味する。本発明における洗浄とは、化合物(II)を、塩基性水溶液で溶かして除去することを意味する。塩基性水溶液での洗浄は、例えば、反応混合物を含む溶液と塩基性水溶液とを混合および攪拌した後、有機層および水層を分液して、水層を除去することにより行われる。また、この塩基性水溶液での洗浄によって、副生成物である化合物(II)だけでなく、残留した化合物(I)を容易に除去することができる。
 従来のアミン等を用いるFmoc基の除去方法では、アミンを除去するために、反応溶液を酸性水溶液で洗浄する必要がある。この点、ペプチド合成で、Fmoc基の除去後に反応溶液を酸性水溶液で洗浄すると、ペプチドはアミノ基を有するため、得られたペプチドが酸性水溶液に移行し、ペプチドの収率が低下するという問題がある。また、ペプチドを含む反応溶液(即ち、有機層)は、酸性水溶液(即ち、水層)との分離性が悪く、水層の除去が困難であるという問題がある。このようなアミンを使用した後、酸性水溶液で洗浄を行う従来のFmoc基の除去方法に対して、塩基性水溶液で洗浄を行う本発明のFmoc基の除去方法では、ペプチドの収率低下を回避することができ、且つ有機層と水層との分離性が良好である。
 塩基性水溶液は、好ましくは炭酸リチウム、炭酸カリウム、炭酸ナトリウム、炭酸水素リチウム、炭酸水素カリウム、炭酸水素ナトリウム、水酸化リチウム、水酸化カリウムおよび水酸化ナトリウムからなる群から選ばれる少なくとも一つの水溶液であり、より好ましくは炭酸ナトリウム水溶液である。塩基性水溶液中の塩基の濃度は、好ましくは1~20重量%、より好ましくは5~15重量%である。塩基の濃度が低すぎると、化合物(II)を充分に除去することができず、一方、この濃度が高すぎると、塩基が水に溶け残ったり、副反応が起こることがある。
 反応混合物と混合した後の塩基性水溶液のpHが、好ましくは7~14、より好ましくは8~12となるまで、反応混合物に塩基性水溶液が添加される。また、塩基性水溶液での洗浄温度は、好ましくは0~50℃、より好ましくは10~30℃である。この塩基性水溶液での洗浄は、繰り返し行ってもよい。
 塩基性水溶液は、極性溶媒を含有していてもよい。この極性溶媒は、好ましくは、DMF、アセトニトリル、メタノール、エタノール、THF、NMPからなる群から選ばれる少なくとも一つであり、より好ましくはDMFである。極性溶媒を使用する場合、塩基性水溶液中におけるその含有量は、好ましくは1~50体積%であり、より好ましくは5~30体積%である。
 本発明のFmoc基の除去方法によって得られた溶液を濃縮することにより、Fmoc基が脱保護されたアミノ基含有化合物を単離することができる。また、必要に応じて、該溶液に酸(例えば、塩酸、トルエンスルホン酸、メタンスルホン酸、臭化水素酸、トリフルオロ酢酸等)を添加することにより、アミノ基含有化合物を酸付加塩(塩酸塩、トルエンスルホン酸塩、メタンスルホン酸塩、臭化水素酸塩、トリフルオロ酢酸塩等)として単離してもよい。さらに、得られたアミノ基含有化合物の溶液をそのまま、後述の液相合成法によるペプチドの製造方法の原料として用いることもできる。
4.液相合成法によるペプチドの製造方法
 Fmoc基で保護されたアミノ基含有化合物が、N-Fmoc-C-保護ペプチド等であり、対応して得られるアミノ基含有化合物が、C-保護ペプチド等である場合、本発明のFmoc基の除去方法を、液相合成法によるペプチドの製造方法(以下「ペプチド液相合成法」と略称することがある。)で好適に使用することができる。本発明において「液相合成法」とは、固相合成法ではない合成法を意味し、全ての試薬が溶媒に溶解している均一反応に加えて、試薬の全部または一部が溶媒に溶解せず、分散または懸濁している不均一反応も包含する。
 以下、上述したFmoc基の除去方法を含む、本発明のペプチド液相合成法について説明する。
 本発明のペプチド液相合成法の最終目的物であるペプチドに特に限定はないが、このペプチドのアミノ酸残基数が、一般的な合成ペプチドにみられる2~40残基程度であることが好ましい。本発明のペプチド液相合成法によって得られるペプチドは、例えば、合成医薬ペプチド、化粧品、電子材料(有機ELなど)、食品などに利用することができる。
 本発明のペプチド液相合成法の一態様は、
 (1)縮合剤(好ましくは縮合剤および活性化剤)の存在下、C-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドと、N-Fmocアミノ酸またはN-Fmocペプチドとを縮合させて、N-Fmoc-C-保護ペプチドを得る工程(以下「カップリング工程(1)」と略称する。)、および/または
 (2)C-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドと、N-Fmocアミノ酸活性エステルまたはN-Fmocペプチド活性エステルとを縮合させて、N-Fmoc-C-保護ペプチドを得る工程(以下「カップリング工程(2)」と略称する。)
を含む。なお、本発明のペプチド液相合成法は、ペプチド合成化学で常用される一般的な方法を特に制限なく採用することができる。
 上述のカップリング工程(1)および/または(2)、次いで得られたN-Fmoc-C-保護ペプチドからFmoc基を除去する工程(以下「N末端脱保護工程」と略称することがある。)を繰り返すことによって、所望のアミノ酸残基数を有するC-保護ペプチドが得られる。最終的に、このC-保護ペプチドのC末端の保護基、必要に応じてその側鎖官能基の保護基を除去する工程(以下「最終脱保護工程」と略称することがある。)を経て、最終目的物であるペプチドが得られる。
 N-Fmocアミノ酸またはN-Fmocアミノ酸活性エステルを使用する上述のペプチド液相合成法の一態様は、下記スキームで表すことができる。下記スキームでは、n番目のペプチド伸長反応を「ペプチド伸長反応(n)」と表示し、このペプチド伸長反応(n)を構成するカップリング工程(1)および/または(2)、その後のN末端脱保護工程を、それぞれ「カップリング工程(1-n)」、「カップリング工程(2-n)」および「N末端脱保護工程(n)」と表示する。なお、下記スキームのN-Fmocアミノ酸またはN-Fmocアミノ酸活性エステルを、それぞれ、N-FmocペプチドまたはN-Fmocペプチド活性エステルに替えたペプチド液相合成法も、本発明の範囲に含まれる。
Figure JPOXMLDOC01-appb-C000001
 上記スキーム中、
 Aは、C-保護アミノ酸またはC-保護アミノ酸アミドを示す;
 PAおよびPAn’+1は、それぞれ、N-Fmocアミノ酸を示す;
 PAEおよびPAEn’+1は、それぞれ、N-Fmocアミノ酸活性エステルを示す;
 PPおよびPPn’+1は、それぞれ、N-Fmoc-C-保護ペプチドを示す;
 P、Pn’、Pn’+1およびPは、それぞれ、C-保護ペプチドを示し、添え字の2、n’、n’+1およびmは、各C-保護ペプチドのアミノ酸残基の数を示し、n’は2以上の整数を示し、mは3以上の整数であって、最終目的物であるペプチドのアミノ酸残基数を示す;
 Pは、最終目的物であるペプチド(アミノ酸残基数m)を示す。
 本発明のペプチド液相合成法では、上述のFmoc基の除去方法を、伸長反応の開始前(即ち、上述のカップリング工程(1-1)および/または(2-2)の前)に行って、これらの工程で使用するC-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドを調製してもよい。また、本発明のペプチド液相合成法では、上述のFmoc基の除去方法を、N末端脱保護工程の少なくとも一つ(好ましくは全部)として行って、C-保護ペプチドを調製してもよい。
 以下、各工程について順に説明する。
4-1.カップリング工程(1)
 カップリング工程(1)では、例えば、溶媒中において、C-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドと、N-Fmocアミノ酸と、縮合剤(好ましくは縮合剤および活性化剤)とを混合することによって、アミノ酸残基が一つ伸長したN-Fmoc-C-保護ペプチドが得られる。また、N-Fmocアミノ酸に替えてN-Fmocペプチドを使用すれば、N-Fmocペプチドのアミノ酸残基の数だけアミノ酸残基が伸長したN-Fmoc-C-保護ペプチドが得られる。ここで、使用するN-Fmocペプチドのアミノ酸残基数は、好ましくは2~20、より好ましくは2~10である。
 成分の添加順序に特に限定はないが、C-保護ペプチドが一つ前のペプチド伸長反応(n-1)によって得られたものである場合は、反応容器中のC-保護ペプチドの溶液に、N-Fmocアミノ酸またはN-Fmocペプチド、および縮合剤(並びに好ましくは活性化剤)を添加すればよい。
 N-Fmocアミノ酸またはN-Fmocペプチドの使用量は、C-保護ペプチド等に対して、通常0.9~4.0当量、好ましくは1.0~1.5当量である。この範囲より少ないと、未反応のC-保護ペプチド等が残りやすく、多いと過剰のN-Fmocアミノ酸またはN-Fmocペプチドを除去しにくくなる。
 C-保護ペプチド等を酸付加塩として使用した場合には、中和のため、塩基が添加される。この塩基としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、N-メチルモルホリンなどが挙げられる。この塩基の使用量は、C-保護ペプチド等に対して、通常0.5~2.0当量、好ましくは1.0~1.5当量である。塩基の使用量がこの範囲より少ないと、中和が不充分となって、反応が進行しにくくなることがある。
 縮合剤としては、例えば、EDC(塩酸塩およびフリー体を含む。)、DIPC、DCC、BOP、PyBOP、PyBroP、HBTU、HCTU、TBTU、HATU、CDI、DMT-MM等が挙げられる。これらの中で、残留した縮合剤や縮合剤の分解物の観点から、EDCが好ましい。縮合剤の使用量は、N-Fmocアミノ酸に対して、通常0.8~4.0当量、好ましくは1.0~1.5当量である。
 カップリング工程(1)において、反応を促進し、ラセミ化などの副反応を抑制するために、好ましくは、活性化剤が添加される。ここで活性化剤とは、縮合剤との共存化で、アミノ酸を、対応する活性エステル、対称酸無水物などに導いて、ペプチド結合(アミド結合)を形成させやすくする試薬である。活性化剤としては、例えば、HOBt、HOCt、HOAt、HOOBt、HOSu、HOPht、HONb、ペンタフルオロフェノール等が挙げられ、これらの中でHOBt、HOOBt、HOCt、HOAt、HONb、HOSuが好ましい。活性化剤の使用量は、N-Fmocアミノ酸に対して、通常0~4.0当量、好ましくは0.1~1.5当量である。
 カップリング工程(1)で使用する溶媒としては、反応を阻害しない溶媒であれば特に限定は無い。この溶媒としては、例えばDMF、NMP、酢酸エチル、THF、アセトニトリル、クロロホルム、塩化メチレンまたはこれらの混合溶媒等が挙げられる。これらの中で、酢酸エチル、DMFが好ましい。溶媒の使用量は、C-保護ペプチド等に対して、通常3~100倍重量であり、好ましくは5~20倍重量である。
 反応温度は、通常-20~40℃、好ましくは0~30℃の範囲内である。反応時間は、通常0.5~30時間である。
 カップリング工程(1)の反応終了後にワークアップを行ってもよい。このワークアップは、カップリング工程(2)の反応終了後のものと同様であるので、「4-2.カップリング工程(2)」の後の「4-3.カップリング工程(1)および(2)のワークアップ」でまとめて説明する。
4-2.カップリング工程(2)
 カップリング工程(2)では、例えば、溶媒中において、C-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドと、N-Fmocアミノ酸活性エステルとを混合することによって、アミノ酸残基が一つ伸長したN-Fmoc-C-保護ペプチドが得られる。また、N-Fmocアミノ酸活性エステルに替えてN-Fmocペプチド活性エステルを使用すれば、N-Fmocペプチド活性エステルのアミノ酸残基の数だけアミノ酸残基が伸長したN-Fmoc-C-保護ペプチドが得られる。ここで、使用するN-Fmocペプチド活性エステルのアミノ酸残基数は、好ましくは2~10、より好ましくは2~5である
 成分の添加順序に特に限定はないが、C-保護ペプチドが一つ前のペプチド伸長反応(n-1)によって得られたものである場合は、反応容器中のC-保護ペプチドの溶液にN-Fmocアミノ酸活性エステルまたはN-Fmocペプチド活性エステルを添加すればよい。
 N-Fmocアミノ酸活性エステルまたはN-Fmocペプチド活性エステルの使用量は、カップリング工程(1)におけるN-Fmocアミノ酸またはN-Fmocペプチドの使用量と同様である。また、カップリング工程(2)における塩基、溶媒およびその使用量、反応温度、反応時間等のその他の反応条件も、カップリング工程(1)と同様である。また、カップリング工程(2)の反応終了後にワークアップを行ってもよい。
4-3.カップリング工程(1)および(2)のワークアップ
 カップリング工程(1)および(2)の反応終了後、N-Fmocアミノ酸活性エステル、N-Fmocペプチド活性エステル、N-Fmocアミノ酸のイソウレアエステル、N-Fmocアミノ酸の対称酸無水物などのアミン成分と縮合し得る反応混合物中の残留物および副生成物を除去するため、スルファニル基担持シリカゲル等の固相求核剤除去試薬(例えば、SHシリカ(富士シリシア社製)など)を加え、攪拌後、濾去してもよい。また、洗浄工程にて、炭酸ナトリウムなど弱塩基性水溶液で洗浄して、活性エステルを失活させてもよい。
 カップリング工程(1)および(2)のワークアップでは、好ましくは、酸性水溶液での洗浄および/または塩基性水溶液での洗浄が行われる。酸性水溶液での洗浄により、C-保護ペプチド、残留した縮合剤またはその分解物、塩基などを水層に除去することができる。塩基性水溶液での洗浄により、添加剤、残留したN-Fmocアミノ酸などを水層に除去することができる。
 酸性水溶液での洗浄は、例えば、反応混合物と希塩酸水溶液(例えば、1N塩酸水溶液)、硫酸、ギ酸、クエン酸、リン酸などの水溶液とを混合および攪拌した後、有機層および水層を分液して、水層を除去することにより行われる。
 塩基性水溶液での洗浄は、例えば、反応混合物と、炭酸水素ナトリウム水溶液(例えば、5重量%炭酸水素ナトリウム水溶液)、炭酸ナトリウム水溶液、炭酸カリウム水溶液などとを混合および攪拌した後、有機層および水層を分液して、水層を除去することにより行われる。
 必要に応じてさらに水洗してもよい。
 特に、C末端のカルボキシ基またはアミド基の保護基として、上述の(1)WO2010/113939A1に記載のジフェニルメタン化合物を保護化試薬として用いる保護基、(2)WO2010/104169A1に記載のフルオレン化合物を保護化試薬として用いる保護基、(3)WO2011/078295A1に記載のベンジル化合物を保護化試薬として用いる保護基、又は(4)WO2012/029794A1に記載の分岐鎖含有芳香族化合物を保護化試薬として用いる保護基を用いた場合、酸性水溶液での洗浄、塩基性水溶液での洗浄および/または必要に応じて行う水洗により、目的物以外の不純物を水層側に効率的に除去することができる。
 有機層を濃縮することにより、N-Fmoc-C-保護ペプチドを得ることができる。また、濃縮しないN-Fmoc-C-保護ペプチドの溶液またはその濃縮液を、その後のN末端脱保護工程に用いてもよい。
4-4.N末端脱保護工程
 本発明のペプチド液相合成法では、上述のFmoc基の除去方法を、伸長反応開始時に使用するC-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドを調製するために行ってもよく、N末端脱保護工程の少なくとも一つ(好ましくは全部)として行ってもよい。なお、以下では、伸長反応開始時に使用するC-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドの調製のためのFmoc基の除去工程も、N末端脱保護工程に含めて説明する。
 N末端脱保護工程として本発明のFmoc基の除去方法を行えば、副生成物である化合物(II)を充分に除くことができる。そのため、N末端脱保護工程の後に得られたC-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドを固体として単離せずに、溶液のまま次の工程(即ち、カップリング工程(1)および/または(2)、或いは最終脱保護工程)で使用することができる。C-保護ペプチド等の溶液は、必要に応じて濃縮してから、次の工程に用いてもよい。
 以上のように、N末端脱保護工程として本発明のFmoc基の除去方法を用いれば、得られるC-保護ペプチド等を固体として単離する必要が無いので、最終目的物であるペプチドをワンポット合成で製造することができる。ここで、ワンポット合成とは、ペプチド液相合成法において、各工程で得られる中間体ペプチド(即ち、合成中間体)を反応容器から取り出さずに、最終目的物であるペプチドまで製造する合成法を意味する。
 また、N末端脱保護工程として本発明のFmoc基の除去方法を用いれば、カップリング工程(1)および/または(2)で生じた副生成物であるN-Fmocアミノ酸活性エステル等を、化合物(I)で捕捉して、その後の塩基性水溶液の洗浄で除去することができる。そのため、カップリング工程(1)および/または(2)後のスルファニル基担持シリカゲル等を用いるワークアップを省略することができる。
4-5.最終脱保護工程
 最終脱保護工程で、所望のアミノ酸残基数を有するC-保護ペプチドのC末端の保護基、必要に応じてその側鎖官能基の保護基を除去することによって、最終目的物であるペプチドを得ることができる。
 C末端の保護基および側鎖官能基の除去の方法には特に限定は無く、自体公知の脱保護法を使用すればよい。
 例えば、保護基がMe、Et等の低級アルキル基である場合は、水または水性有機溶媒などの溶媒中、水酸化ナトリウム、水酸化カリウムなどの塩基とC-保護ペプチドとを、-20~40℃で0.5~10時間反応させることによって、脱保護することができる。
 保護基がtBu、Pbf、Dmb、ビス(4-メトキシフェニル)メチル等である場合は、クロロホルム、塩化メチレン、酢酸エチル、ジオキサンなどの溶媒中、トリフルオロ酢酸、塩酸、メタンスルホン酸、トシル酸、ギ酸などの酸とC-保護ペプチドとを、-20~40℃で0.5~10時間反応させることによって、脱保護することができる。
 保護基がZ基である場合は、メタノール、DMF、酢酸などの溶媒中、パラジウム炭素などの触媒を用いて、0~40℃で0.5~100時間、C-保護ペプチドを水素化反応させるか、或いはフッ化水素、トリフルオロメタンスルホン酸などの強酸とC-保護ペプチドとを、-20~40℃で0.5~10時間反応させることによって、脱保護することができる。
 保護基がAlloc基である場合は、テトラキストリフェニルホスフィンパラジウム等の0価パラジウム均一系触媒を用いたC-保護ペプチドの分解反応によって、脱保護することができる。0価パラジウム均一系触媒の使用量は、除去する保護基に対して、通常0.01~1.0当量、好ましくは0.05~0.5当量である。
 得られた最終目的物であるペプチドは、ペプチド化学で常用される方法に従って、単離精製することができる。例えば、最終脱保護工程後のワークアップにおいて、反応混合物を抽出洗浄、晶析、クロマトグラフィーなどによって、最終目的物であるペプチドを単離精製することができる。
 以下、本発明を、実施例を挙げてさらに具体的に説明するが、本発明は、これらにより限定されるものではない。なお、以下で濃度を示す「%」は、特段の記載が無い限り、「重量%」を意味する。
 実施例1
 (i)3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコールとN-Fmocアミノ酸との縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール(2.0g,2.00mmol)をクロロホルム(20mL)に溶かし、Fmoc-Leu-OH(779mg,2.20mmol)を加えた後、氷冷下にてEDC.HCl(465mg,2.43mmol)、DMAP(24mg,0.20mmol)を加え、室温で終夜攪拌した。反応終了後、溶媒を減圧留去し、残渣をCPME(20mL)に溶解させた。この溶液に、氷冷下にて3-メルカプトプロピオン酸(0.87mL,10.02mmol)、DBU(1.70mL,11.39mmol)を加え、室温で3時間撹拌した。反応終了後、氷冷下にて1N塩酸/CPME(1.40mL,1.40mmol)、CPME(10mL)、20%食塩水(20mL)を加えて、有機層および水層を得た。室温でこれらを撹拌しながら、水層のpHが9.0になるまで、10%炭酸ナトリウム水溶液を滴下した後、有機層および水層を分液した(以下、この操作を「pH=9.0洗浄」と略称することがある)。pH=9.0洗浄をもう一度繰り返した。得られた有機層を、室温にて、10%炭酸ナトリウム水溶液(20mL)で2回、20%食塩水(20mL)で1回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、H-Leu-OBzl(3,4,5-OPhy)を含むCPME溶液(30mL)を得た。このCPME溶液を、そのまま次工程で用いた。
 得られたCPME溶液から少量をサンプリングし、TOF-MSを測定した。測定結果およびその測定条件を以下に記載する。なお、後述する実施例1(ii)以降でも同様にして、TOF-MSを測定した。
 TOF-MS:1110.9[MH
 測定機器:Waters LCT Premier XE
 キャピラリー電圧:3000V
 サンプルコーン電圧:86V
 ディソルレーション温度:350℃
 ソース部温度:120℃
 注入量:2μL
 (ii)C-保護アミノ酸とN-Fmocアミノ酸との縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 上記の実施例1(i)で得られたH-Leu-OBzl(3,4,5-OPhy)のCPME溶液(30mL)に、HOBt(81mg,0.60mmol)、Fmoc-Tyr(tBu)-OH(1.01g,2.20mmol)を加えた後、氷冷下にてEDC.HCl(465mg,2.43mmol)を加え、室温で終夜攪拌した。反応終了後、溶媒を20mLまで減圧留去し、濃縮した反応溶液に氷冷下にて、3-メルカプトプロピオン酸(0.85mL,9.81mmol)、DBU(1.66mL,11.18mmol)を加え、室温で3時間攪拌した。反応終了後、反応溶液に氷冷下にて、1N塩酸/CPME(1.30mL,1.30mmol)、CPME(15mL)、20%食塩水(25mL)を加えて、有機層および水層を得た。次いで、上述のpH=9.0洗浄を2回行った。得られた有機層を、室温にて、10%炭酸ナトリウム水溶液で2回、20%食塩水で1回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、H-Tyr(tBu)-Leu-OBzl(3,4,5-OPhy)のCPME溶液を得た。このCPME溶液を、そのまま次工程で用いた。
 TOF-MS:1329.9[MH
 (iii)C-保護ペプチドとN-Fmocアミノ酸またはN-Fmocペプチドとの縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 上記の実施例1(ii)と同様にして、前工程で得られたC-保護ペプチドと下記のN-Fmocアミノ酸またはN-Fmocペプチド(下記表1にて「N-Fmocアミノ酸等」と記載する)とを縮合し、次いでFmoc基を除去することによって、順次ペプチド鎖を伸張させた。
Figure JPOXMLDOC01-appb-T000002
 (iv)C-保護ペプチドとN-Fmocアミノ酸との縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 上記の実施例1(iii)で得られたH-Gly-Gly-Asn(Trt)-Gly-Asp(OtBu)-Phe-Glu(OtBu)-Glu(OtBu)-Ile-Pro-Glu(OtBu)-Glu(OtBu)-Tyr(tBu)-Leu-OBzl(3,4,5-OPhy)のCPME溶液(65mL)に、HOBt(81mg,0.60mmol)、Fmoc-Gly-Gly-OH(765mg,2.16mmol)、EDC.HCl(465mg,2.43mmol)を加え、室温で終夜攪拌した。反応溶液に氷冷下にて、3-メルカプトプロピオン酸(0.85mL,9.81mmol)、DBU(2.34mL,15.68mmol)を添加し、室温で3時間攪拌した。反応終了後、反応溶液を1N塩酸/CPME(5mL,5.00mmol)で中和し、溶媒を減圧留去した。得られた残渣に80体積%アセトニトリル水溶液(60mL)を加え、その沈殿物をろ過で回収した。回収した沈殿物をアセトリトリル(50mL)でスラリー洗浄し、次いで乾燥させることによって、H-Gly-Gly-Gly-Gly-Asn(Trt)-Gly-Asp(OtBu)-Phe-Glu(OtBu)-Glu(OtBu)-Ile-Pro-Glu(OtBu)-Glu(OtBu)-Tyr(tBu)-Leu-OBzl(3,4,5-OPhy)(4.60g,1.42mmol)を得た。最終的に得られたC-保護ペプチドの収率は、実施例1(i)の出発原料である3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール(2.00mmol)から計算して、71%であった。
 TOF-MS:3239.2[MH
 実施例2
 (i)4,4’-(2’,3’-ジヒドロフィチルオキシ)ジフェニルメチルアミンとN-Fmocアミノ酸との縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 4,4’-(2’,3’-ジヒドロフィチルオキシ)ジフェニルメチルアミン(2.0g,2.38mmol)をクロロホルム(20mL)に溶かし、HOBt(32mg,0.24mmol)、Fmoc-Leu-OH(1.02g,2.89mmol)を加えた後、氷冷下にてEDC.HCl(607mg,3.17mmol)を加え、室温で終夜攪拌した。反応終了後、溶媒を減圧留去し、残渣をCPME(20mL)に溶解させた。この溶液に、氷冷下にて3-メルカプトプロピオン酸(1.03mL,11.89mmol)、DBU(2.02mL,13.55mmol)を加え、室温で3時間時間撹拌した。反応終了後、反応溶液に氷冷下にて、1N塩酸/CPME(1.50mL,1.50mmol)、CPME(10mL)、20%食塩水(20mL)を加えて、有機層および水層を得た。次いで、上述のpH=9.0洗浄を2回行った。得られた有機層を、室温にて10%炭酸ナトリウム水溶液(20mL)およびDMF(4mL)の混合溶媒で1回、10%炭酸ナトリウム水溶液(20mL)で1回、20%食塩水(20mL)で2回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、H-Leu-NHDpm(4,4’-OPhy)のCPME溶液(30mL)を得た。このCPME溶液を、そのまま次工程で用いた。
 TOF-MS:889.6[MH
 (ii)C-保護アミノ酸アミドとN-Fmocアミノ酸との縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 H-Leu-NHDpm(4,4’-OPhy)のCPME溶液(30mL)に、HOBt(192mg,1.43mmol)、Fmoc-Tyr(tBu)-OH(1.26g,2.74mmol)を加えた後、氷冷下にてEDC.HCl(607mg,3.17mmol)を加え、室温で終夜攪拌した。反応終了後、溶媒を25mLまで減圧留去し、濃縮した反応溶液に氷冷下にて、3-メルカプトプロピオン酸(1.03mL,11.89mmol)、DBU(2.02mL,13.55mmol)を加え、室温で3時間撹拌した。反応終了後、反応溶液に氷冷下にて、1N塩酸/CPME(1.50mL,1.50mmol)、CPME(5mL)、20%食塩水(25mL)を加えて、有機層および水層を得た。次いで、上述のpH=9.0洗浄を2回行った。得られた有機層を、10%炭酸ナトリウム水溶液で2回、20%食塩水で2回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、H-Tyr(tBu)-Leu-NHDpm(4,4’-OPhy)のCPME溶液を得た。このCPME溶液を、そのまま次工程で用いた。
 TOF-MS:1108.7[MH
 (iii)C-保護ペプチドとN-Fmocアミノ酸との縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 H-Tyr(tBu)-Leu-NHDpm(4,4’-OPhy)のCPME溶液(30mL)に、HOBt(96mg,0.71mmol)、Fmoc-Glu(OtBu)-OH(1.11g,2.61mmol)を加えた後、氷冷下にてEDC.HCl(552mg,2.88mmol)を加え、室温で終夜攪拌した。反応終了後、溶媒を25mLまで減圧留去し、濃縮した反応溶液に氷冷下にて、3-メルカプトプロピオン酸(0.62mL,7.13mmol)、DBU(1.60mL,10.70mmol)を加え、室温で3時間撹拌した。反応終了後、反応溶液に氷冷下にて、1N塩酸/CPME(3.21mL,3.21mmol)、CPME(10mL)、20%食塩水(25mL)を加えて、有機層および水層を得た。次いで、上述のpH=9.0洗浄を3回行った。得られた有機層を、室温にて10%炭酸ナトリウム水溶液(25mL)およびDMF(5mL)の混合溶媒で1回、10%炭酸ナトリウム水溶液(25mL)で2回、20%食塩水(25mL)で2回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、H-Glu(OtBu)-Tyr(tBu)-Leu-NHDpm(4,4’-OPhy)のCPME溶液を得た。このCPME溶液を、そのまま次工程で用いた。
 TOF-MS:1293.8[MH
 (iv)C-保護ペプチドとN-Fmocアミノ酸との縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 上記の実施例2(iii)と同様にして、前工程で得られたC-保護ペプチドと下記のN-Fmocアミノ酸とを縮合し、次いでFmoc基を除去することによって、順次ペプチド鎖を伸張させた。
Figure JPOXMLDOC01-appb-T000003
 (v)C-保護ペプチドとN-Fmocアミノ酸との縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 上記の実施例2(iv)で得られたH-Gly-Pro-Lys(Boc)-Glu(OtBu)-Glu(OtBu)-Leu-Pro-Glu(OtBu)-Glu(OtBu)-Tyr(tBu)-Leu-NHDpm(4,4’-OPhy)のCPME溶液(45mL)に、HOBt(192mg,1.43mmol)、Fmoc-Gly-Gly-OH(765mg,2.62mmol)、EDC.HCl(552mg,2.88mmol)を加え、室温で終夜撹拌した。反応終了後、氷冷下で3-メルカプトプロピオン酸(0.62mL,7.13mmol)、DBU(1.78mL,11.89mmol)を添加し、室温で3時間攪拌した。反応終了後、反応溶液を1N塩酸/CPME(4.28mL,4.28mmol)で中和し、溶媒を減圧留去した。得られた残渣に80体積%アセトニトリル水溶液(70mL)を加え、その沈殿物をろ過で回収した。回収した沈殿物をアセトリトリル(50mL)でスラリー洗浄し、次いで乾燥させることによって、H-Gly-Pro-Lys(Boc)-Glu(OtBu)-Glu(OtBu)-Leu-Pro-Glu(OtBu)-Glu(OtBu)-Tyr(tBu)-Leu-NHDpm(4,4’-OPhy)(4.40g,1.72mmol)を得た。最終的に得られたC-保護ペプチドの収率は、実施例2(i)の出発原料である4,4’-(2’,3’-ジヒドロフィチルオキシ)ジフェニルメチルアミン(2.38mmol)から計算して、72%であった。
 TOF-MS:2555.1[MH
 実施例3
 (i)2,4-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコールとN-Fmocアミノ酸との縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 2,4-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール(2.0g,2.85mmol)をクロロホルム(20mL)に溶かし、Fmoc-Gly-OH(1.12g,3.77mmol)を加えた後、氷冷下にてEDC.HCl(794mg,4.14mmol)、DMAP(42mg,0.34mmol)を加え、室温で終夜攪拌した。反応終了後、溶媒を減圧留去し、残渣をCPME(20mL)に溶解させた。この溶液に、氷冷下にて3-メルカプトプロピオン酸(0.74mL,8.56mmol)、DBU(1.91mL,12.83mmol)を加え、室温で3時間撹拌した。反応終了後、反応溶液に氷冷下にて、1N塩酸/CPME(3.85mL,3.85mmol)、CPME(15mL)、20%食塩水(25mL)を加えて、有機層および水層を得た。次いで、上述のpH=9.0洗浄を2回行った。得られた有機層を、10%炭酸ナトリウム水溶液(25mL)およびDMF(2.5mL)の混合溶媒で1回、10%炭酸ナトリウム水溶液(25mL)で2回、20%食塩水(25mL)で3回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、H-Gly-OBzl(2,4-OPhy)のCPME溶液(35mL)を得た。このCPME溶液を、そのまま次工程で用いた。
 TOF-MS:758.6[MH
 (ii)C-保護アミノ酸とN-Fmocアミノ酸との縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 H-Gly-OBzl(2,4-OPhy)のCPME溶液(35mL)に、HOBt(116mg,0.86mmol)、Fmoc-Glu(OtBu)-OH(1.60g,3.76mmol)を加えた後、氷冷下にてEDC.HCl(794mg,4.14mmol)を加え、室温で終夜攪拌した。反応終了後、溶媒を20mLまで減圧留去し、濃縮した反応溶液に氷冷下にて、DBU(1.02mL,6.84mmol)を加え、室温で3時間撹拌した。反応終了後、反応溶液に氷冷下にて、1N塩酸/CPME(5.48mL,5.48mmol)、CPME(20mL)、20%食塩水(30mL)を加えて、有機層および水層を得た。次いで、上述のpH=9.0洗浄を2回行った。得られた有機層を、室温にて10%炭酸ナトリウム水溶液(30mL)およびDMF(3mL)の混合溶媒で1回、10%炭酸ナトリウム水溶液(30mL)で1回、20%食塩水(30mL)で2回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、H-Glu(OtBu)-Gly-OBzl(2,4-OPhy)のCPME溶液(40mL)をそのまま次工程に移行させた。
 TOF-MS:943.5[MH
 (iii)C-保護ペプチドとN-Fmocアミノ酸との縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 H-Glu(OtBu)-Gly-OBzl(2,4-OPhy)のCPME溶液(40mL)に、HOBt(116mg,0.86mmol)、Fmoc-Leu-OH(1.11g,3.14mmol)を加えた後、氷冷下にてEDC.HCl(662mg,3.45mmol)を加え、室温で終夜攪拌した。反応終了後、溶媒を25mLまで減圧留去し、濃縮した反応溶液に氷冷下にて、3-メルカプトプロピオン酸(0.74mL,8.56mmol)、DBU(1.91mL,12.83mmol)を加え、室温で3時間撹拌した。反応終了後、反応溶液に氷冷下にて、1N塩酸/CPME(3.85mL,3.85mmol)、CPME(15mL)、20%食塩水(25mL)を加えて、有機層および水層を得た。次いで、上述のpH=9.0洗浄を3回行った。得られた有機層を、室温にて10%炭酸ナトリウム水溶液(25mL)およびDMF(2.5mL)の混合溶媒で1回、10%炭酸ナトリウム水溶液(25mL)で2回、20%食塩水(25mL)で3回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、H-Leu-Glu(OtBu)-Gly-OBzl(2,4-OPhy)のCPME溶液を得た。このCPME溶液を、そのまま次工程で用いた。
 TOF-MS:1056.7[MH
 (iv)C-保護ペプチドとN-Fmocアミノ酸との縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 上記の実施例3(iii)と同様にして、前工程で得られたC-保護ペプチドと下記のN-Fmocアミノ酸とを縮合し、次いでFmoc基を除去することによって、順次ペプチド鎖を伸張させた。
Figure JPOXMLDOC01-appb-T000004
 (v)C-保護ペプチドとN-Fmocアミノ酸との縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 上記の実施例3(iv)で得られたH-Val-Ser(tBu)-Ser(tBu)-Tyr(tBu)-Leu-Glu(OtBu)-Gly-OBzl(2,4-OPhy)のCPME溶液(80mL)に、HOBt(193mg,1.43mmol)、Fmoc-Asp(OtBu)-OH(1.29g,3.14mmol)とEDC.HCl(662mg,3.45mmol)を加え、室温で終夜撹拌した。反応終了後、氷冷下で3-メルカプトプロピオン酸(0.74mL,8.56mmol)、DBU(1.91mL,12.83mmol)を添加し室温で3時間攪拌した。反応終了後、MsOH(0.25mL,3.85mmol)およびクロロホルム(2.5mL)の混合液で中和し、溶媒を減圧留去した。得られた残渣に80体積%アセトニトリル水溶液(60mL)を加え、その沈殿物をろ過で回収した。回収した沈殿物をアセトリトリル(50mL)でスラリー洗浄し、次いで乾燥させることによって、H-Asp(OtBu)-Val-Ser(tBu)-Ser(tBu)-Tyr(tBu)-Leu-Glu(OtBu)-Gly-OBzl(2,4-OPhy)(3.62g,1.97mmol)を得た。最終的に得られたC-保護ペプチドの収率は、実施例3(i)の出発原料である2,4-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール(2.85mmol)から計算して、69%であった。
 TOF-MS:1832.0[MH
 実施例4
 (i)2-(3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ)-4-メトキシベンジルアルコールとN-Fmocアミノ酸との縮合、およびそれに続く3-メルカプトプロピオン酸を用いたFmoc基の除去
 2-(3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ)-4-メトキシベンジルアルコール(2.0g,1.76mmol)をクロロホルム(25mL)に溶かし、氷冷下にてFmoc-Ser(tBu)-OH(176mg,0.46mmol)、EDC.HCl(97mg,0.51mmol)、DMAP(2.2mg,0.018mmol)を30分おきに各6回加えた後、室温で終夜攪拌した。反応終了後、溶媒を減圧留去し、残渣をCPME(20mL)に溶解させた。この溶液に、氷冷下にて3-メルカプトプロピオン酸(0.46mL,5.27mmol)、DBU(1.34mL,9.00mmol)を加え、室温で3時間攪拌した。反応終了後、反応溶液に氷冷下にて、MsOH(0.22mL,3.33mmol)およびCPME(2.2mL)の混合液を滴下し、CPME(15mL)、20%食塩水(30mL)を加えて、有機層および水層を得た。次いで、上述のpH=9.0洗浄を3回行った。得られた有機層を、室温にて10%炭酸ナトリウム水溶液(30mL)およびDMF(3mL)の混合溶媒で1回、10%炭酸ナトリウム水溶液(30mL)で2回、20%食塩水(30mL)で3回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、H-Ser(tBu)-OBzl(2-OBzl(3,4,5-OPhy)-4-OMe)のCPME溶液(35mL)を得た。このCPME溶液を、そのまま次工程で用いた。
 TOF-MS:1276.8[MH
 (ii)C-保護アミノ酸とN-Fmocアミノ酸との縮合
 H-Ser(tBu)-OBzl(2-OBzl(3,4,5-OPhy)-4-OMe)のCPME溶液(35mL)に、HOBt(71mg,0.43mmol)を加えた後、氷冷下にてFmoc-Thr(tBu)-OH(1.00g,2.51mmol)、EDC.HCl(529mg,2.76mmol)、DMF(10mL)を加え、室温で終夜攪拌した。反応終了後、反応溶液に20%食塩水(30mL)を加えて、有機層および水層を得た。得られた有機層および水層を撹拌しながら、水層のpHが6.0になるまで、10%炭酸ナトリウム水溶液を滴下した後、有機層および水層を分液した(以下、この操作を「pH=6.0洗浄」と略称することがある)。pH=6.0洗浄を、さらに2回繰り返した。得られた有機層の溶媒を減圧留去し、シクロヘキサン(40mL)に溶解させ、80体積%アセトニトリル水溶液(30mL)で4回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、得られたろ液の溶媒を減圧留去し、Fmoc-Thr(tBu)-Ser(tBu)-OBzl(2-OBzl(3,4,5-OPhy)-4-OMe)を得た。
 TOF-MS:1655.9[MH
 (iii)Fmoc基の除去、およびそれに続くC-保護ペプチドとN-Fmocアミノ酸との縮合
 Fmoc-Thr(tBu)-Ser(tBu)-OBzl(2-OBzl(3,4,5-OPhy)-4-OMe)をCPME(25mL)に溶解させた。この溶液に、氷冷下にてDBU(0.26mL,1.76mmol)を加え、室温で3時間撹拌した。なお、このFmoc基の除去の際に、化合物(I)を使用しなかった。
 反応終了後、反応溶液に氷冷下にて、1N塩酸/CPME(1.67mL,1.67mmol)、HOBt(237mg,1.76mmol)、Fmoc-Phe-OH(1.16g,2.98mmol)、EDC.HCl(629mg,3.28mmol)、DMF(6mL)を加え、室温で終夜攪拌した。反応終了後、20%食塩水(30mL)を加えて、有機層および水層を得た。次いで、上述のpH=6.0洗浄を3回行った。得られた有機層の溶媒を減圧留去し、シクロヘキサン(40mL)に溶解させ、80体積%アセトニトリル水溶液(30mL)で4回、20%食塩水(30mL)で1回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、得られたろ液の溶媒を減圧留去し、Fmoc-Phe-Thr(tBu)-Ser(tBu)-OBzl(2-OBzl(3,4,5-OPhy)-4-OMe)を得た。
 TOF-MS:1802.9[MH
 (iv)Fmoc基の除去、およびそれに続くC-保護ペプチドとN-Fmocアミノ酸との縮合
 実施例4(iii)で得られたFmoc-Phe-Thr(tBu)-Ser(tBu)-OBzl(2-OBzl(3,4,5-OPhy)-4-OMe)の全量をCPME(25mL)に溶解させた。この溶液に、氷冷下にてDBU(0.26mL,1.76mmol)を加え、室温で3時間撹拌した。なお、このFmoc基の除去の際に、化合物(I)を使用しなかった。
 反応終了後、反応溶液に氷冷下にて、1N塩酸/CPME(1.67mL,1.67mmol)、HOBt(237mg,1.76mmol)、Fmoc-Thr(tBu)-OH(0.91g,2.29mmol)、EDC.HCl(629mg,3.28mmol)、DMF(6mL)を加え、室温で終夜攪拌した。反応終了後、20%食塩水(30mL)を加えて、有機層および水層を得た。次いで、上述のpH=6.0洗浄を3回行った。得られた有機層の溶媒を減圧留去し、シクロヘキサン(40mL)に溶解させ、20%食塩水(30mL)で1回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、得られたろ液の溶媒を減圧留去し、Fmoc-Thr(tBu)-Phe-Thr(tBu)-Ser(tBu)-OBzl(2-OBzl(3,4,5-OPhy)-4-OMe)を得た。
 TOF-MS:1959.9[MH
 (v)3-メルカプトプロピオン酸を用いたFmoc基の除去、およびそれに続くC-保護ペプチドとN-Fmocアミノ酸との縮合
 実施例4(iv)で得られたFmoc-Thr(tBu)-Phe-Thr(tBu)-Ser(tBu)-OBzl(2-OBzl(3,4,5-OPhy)-4-OMe)をCPMEに溶かし、そのCPME溶液(30mL)を得た。このCPME溶液に、氷冷下にて3-メルカプトプロピオン酸(0.46mL,5.27mmol)、DBU(1.18mL,7.90mmol)を加え、室温で3時間撹拌した。反応終了後、反応溶液に氷冷下にて、MsOH(0.15mL,2.37mmol)およびCPME(1.5mL)の混合液、CPME(20mL)、20%食塩水(30mL)を加えて、有機層および水層を得た。次いで、上述のpH=9.0洗浄を2回行った。得られた有機層を、室温にて10%炭酸ナトリウム水溶液で3回、20%食塩水で3回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、H-Thr(tBu)-Phe-Thr(tBu)-Ser(tBu)-OBzl(2-OBzl(3,4,5-OPhy)-4-OMe)のCPME溶液を得た。このCPME溶液に、氷冷下にてHOBt(71mg,0.53mmol)、Fmoc-Lys(Boc)-OH(994mg,2.12mmol)、EDC.HCl(402mg,2.01mmol)を加え、室温で終夜攪拌した。反応終了後、反応溶液の溶媒を減圧留去し、80体積%アセトニトリル水溶液(40mL)を加え、その沈殿物をろ過で回収した。回収した沈殿物を乾燥させることによって、Fmoc-Lys(Boc)-Thr(tBu)-Phe-Thr(tBu)-Ser(tBu)-OBzl(2-OBzl(3,4,5-OPhy)-4-OMe)(3.56g,1.63mmol)を得た。最終的に得られたN-Fmoc-C-保護ペプチドの収率は、実施例4(i)の出発原料である2-(3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ)-4-メトキシベンジルアルコール(1.76mmol)から計算して、93%であった。
 TOF-MS:2188.1[MH
 実施例5
 (i)C-保護アミノ酸塩とN-Fmocアミノ酸との縮合、およびそれに続くチオリンゴ酸を用いたFmoc基の除去
 H-Leu-OBzl・TsOH塩(394mg,1.00mmol)をクロロホルム(10mL)に溶かし、トリエチルアミン(0.14mL,1.00mmol)、HOBt(14mg,0.10mmol)、Fmoc-Tyr(tBu)-OH(506mg,1.10mmol)を加えた後、氷冷下にてEDC.HCl(232mg,1.21mmol)を加え、室温で終夜攪拌した。反応終了後、反応溶液に氷冷下にて、チオリンゴ酸(450mg,3.00mmol)、DBU(1.49mL,10.00mmol)を加え、室温で3時間撹拌した。反応終了後、反応溶液に氷冷下にて、MsOH(0.23mL,3.60mmol)およびクロロホルム(2.3mL)の混合液を滴下し、クロロホルム(10mL)、20%食塩水(20mL)を加えて、有機層および水層を得た。次いで、上述のpH=9.0洗浄を3回行った。得られた有機層を、室温にて10%炭酸ナトリウム水溶液(20mL)で3回、20%食塩水(20mL)で3回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、H-Tyr(tBu)-Leu-OBzlのクロロホルム溶液(20mL)を得た。このクロロホルム溶液を、そのまま次工程で用いた。
 TOF-MS:441.2[MH
 (ii)C-保護アミノ酸とN-Fmocアミノ酸との縮合、およびそれに続くチオリンゴ酸を用いたFmoc基の除去
 H-Tyr(tBu)-Leu-OBzlのクロロホルム溶液(20mL)に、HOBt(41mg,0.30mmol)を加えた後、氷冷下にてFmoc-Glu(OtBu)-OH(468mg,1.10mmol)、EDC.HCl(232mg,1.21mmol)を加え、室温で終夜攪拌した。反応終了後、反応溶液に氷冷下にて、チオリンゴ酸(450mg,3.00mmol)、DBU(1.49mL,10.00mmol)を加え、室温で3時間撹拌した。反応終了後、反応溶液に氷冷下にて、MsOH(0.23mL,3.60mmol)およびクロロホルム(2.3mL)の混合液を滴下し、クロロホルム(10mL)、20%食塩水(20mL)を加えて、有機層および水層を得た。次いで、上述のpH=9.0洗浄を3回行った。得られた有機層を、室温にて10%炭酸ナトリウム水溶液(20mL)で3回、20%食塩水(20mL)で2回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、H-Glu(OtBu)-Tyr(tBu)-Leu-OBzlのクロロホルム溶液(30mL)を得た。このクロロホルム溶液を、そのまま次工程で用いた。
 TOF-MS:626.2[MH
 (iii)C-保護ペプチドとN-Fmocアミノ酸との縮合、およびそれに続くチオリンゴ酸を用いたFmoc基の除去
 H-Glu(OtBu)-Tyr(tBu)-Leu-OBzlのクロロホルム溶液(30mL)に、HOBt(68mg,0.50mmol)を加えた後、氷冷下にてFmoc-Glu(OtBu)-OH(468mg,1.10mmol)、EDC.HCl(232mg,1.21mmol)を加え、室温で終夜攪拌した。反応終了後、溶媒を15mLまで減圧留去し、濃縮した反応溶液に氷冷下にて、チオリンゴ酸(450mg,3.00mmol)、DBU(1.34mL,9.00mmol)を加え、室温で3時間撹拌した。反応終了後、反応溶液に氷冷下にて、MsOH(0.17mL,2.70mmol)およびクロロホルム(1.7mL)の混合液を滴下し、クロロホルム(15mL)、20%食塩水(30mL)を加えて、有機層および水層を得た。次いで、上述のpH=9.0洗浄を3回行った。得られた有機層を、室温にて10%炭酸ナトリウム水溶液(30mL)で3回、20%食塩水(30mL)で2回攪拌洗浄し、有機層および水層を分液した。得られた有機層を、硫酸ナトリウムで乾燥させた後、ろ過して、そのろ液を回収し、回収したろ液の溶媒を減圧留去した。得られた残渣にヘキサン(10mL)を加え、その沈殿物をろ過で回収した。回収した沈殿物を乾燥させることによって、H-Glu(OtBu)-Glu(OtBu)-Tyr(tBu)-Leu-OBzl(787mg,0.97mmol)を得た。最終的に得られたC-保護ペプチドの収率は、実施例7(i)の出発原料であるH-Leu-OBzl・TsOH塩(1.00mmol)から計算して、97%であった。
 TOF-MS:811.2[MH
 実施例6:チオリンゴ酸を用いたFmoc基の除去
 Fmoc-Leu-OBzl(3,4,5-OPhy)(0.075mmol)をクロロホルム(1mL)に溶かし、氷冷下にてチオリンゴ酸(33.8mg,0.23mmol)、DBU(0.09mL,0.60mmol)を加え、室温で4時間攪拌した。反応終了時における化合物(II)(即ち、DBF-チオリンゴ酸付加体)の生成率は91%であった。なお、化合物(II)の生成率は、まず、合成したDBFを標準品として使用するHPLCでDBFを定量分析して、DBFの生成率を算出し、次いで化合物2の生成率を(100-DBFの生成率)として算出した。以下の生成率の算出法も同様である。
 HPLCの条件は、以下の通りである。
 測定機器:Waters AQUITY UPLC BEH C18 50mm x 2.1mm I.D., 1.7μm
 測定温度:40℃
 フローレート:0.4mL/min
 注入量:2μL
 測定波長:220nm
 移動層A:0.05体積%トリフルオロ酢酸水溶液
 移動層B:0.05体積%トリフルオロ酢酸アセトニトリル溶液
 グラジェントタイムプログラム:移動層Bの濃度を、10分間で20体積%から90体積%まで直線的に増加させた。
 反応終了後、反応溶液に氷冷下にて、1N塩酸/CPME(0.05mL,0.05mmol)、クロロホルム(5mL)、20%食塩水(5mL)を加え、室温で攪拌しつつpH=9.0になるまで10%炭酸ナトリウム水溶液を滴下した後、有機層および水層を分液した。得られた有機層を、室温にて10%炭酸ナトリウム水溶液(20mL)で3回洗浄し、有機層および水層を分液した。HPLCにて、化合物(II)が有機層中に存在しないこと(即ち、化合物(II)が全て水層へ除かれたこと)を確認した。
 実施例7:システインを用いたFmoc基の除去
 Fmoc-Leu-OBzl(3,4,5-OPhy)(0.075mmol)をクロロホルム(1mL)に溶かし、氷冷下にてシステイン(27mg,0.23mmol)、DBU(0.022mL,0.15mmol)を加え、室温で3時間攪拌した。反応終了時における化合物(II)(即ち、DBF-システイン付加体)の生成率は95%であった。反応終了後、反応溶液を濃縮し、濃縮した反応溶液にCPMEを(5mL)を加え、この反応溶液を、室温にて10%炭酸ナトリウム水溶液(5mL)で3回洗浄し、化合物(II)を除去した。
 比較例1:チオサリチル酸を用いたFmoc基の除去
 Fmoc-Leu-OBzl(3,4,5-OPhy)(0.075mmol)をCPME(1mL)に溶かし、氷冷下にてチオサリチル酸(35mg,0.23mmol)、DBU(0.041mL,0.28mmol)を加え、室温で3.5時間攪拌した。反応終了時におけるDBF-チオサリチル酸付加体の生成率は21%であった。
 本発明のFmoc基の除去方法は、ペプチドなどの工業的製造に利用することができる。
 本出願は、日本で出願された特願2011-274901を基礎としており、その内容は本明細書にすべて包含されるものである。
 本発明がその好ましい態様を参照して提示又は記載される一方、本明細書中において、添付の請求の範囲で包含される発明の範囲を逸脱することなく、形態や詳細の様々な変更をなし得ることは当業者に理解されるであろう。本明細書中に示され又は参照されたすべての特許、特許公報及びその他の刊行物は、参照によりその全体が取り込まれる。

Claims (11)

  1.  式(I):
     HS-L-COOH   (I)
    (式中、Lは、置換基を有していてもよいC1-8アルキレン基を示す。)
    で表される化合物、Fmoc基で保護されたアミノ基含有化合物および塩基を混合して、式(II):
     Fm-S-L-COOH   (II)
    (式中、Fmは、9-フルオレニルメチル基を示し、Lは、前記の通りである。)
    で表される化合物およびアミノ基含有化合物を含む反応混合物を得る工程、および
     得られた反応混合物を塩基性水溶液で洗浄することによって、式(II)で表される化合物を除去する工程
    を含む、Fmoc基の除去方法。
  2.  塩基が、有機塩基である請求項1に記載の方法。
  3.  有機塩基が、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンである請求項2に記載の方法。
  4.  式(I)で表される化合物が、3-メルカプトプロピオン酸、チオリンゴ酸およびシステインからなる群から選ばれる少なくとも一つである、請求項1~3のいずれか一項に記載の方法。
  5.  塩基性水溶液が、炭酸リチウム、炭酸カリウム、炭酸ナトリウム、炭酸水素リチウム、炭酸水素カリウム、炭酸水素ナトリウム、水酸化リチウム、水酸化カリウムおよび水酸化ナトリウムからなる群から選ばれる少なくとも一つの水溶液である請求項1~4のいずれか一項に記載の方法。
  6.  Fmoc基で保護されたアミノ基含有化合物が、N-Fmoc-C-保護ペプチド、N-Fmoc-C-保護アミノ酸またはN-Fmoc-C-保護アミノ酸アミドであり、
     得られたアミノ基含有化合物が、C-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドである、請求項1~5のいずれか一項に記載の方法。
  7.  請求項6に記載の方法を含む、液相合成法によるペプチドの製造方法。
  8.  (1)縮合剤の存在下、C-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドと、N-Fmocアミノ酸またはN-Fmocペプチドとを縮合させて、N-Fmoc-C-保護ペプチドを得る工程、および/または
     (2)C-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドと、N-Fmocアミノ酸活性エステルまたはN-Fmocペプチド活性エステルとを縮合させて、N-Fmoc-C-保護ペプチドを得る工程
    を含む、請求項7に記載の製造方法。
  9.  前記工程(1)において、さらに活性化剤を存在させる請求項8に記載の製造方法。
  10.  請求項6に記載の方法で得られたC-保護ペプチド、C-保護アミノ酸またはC-保護アミノ酸アミドを固体として単離せずに、前記工程(1)および/または前記工程(2)で使用する、請求項8または9に記載の製造方法。
  11.  ワンポット合成でペプチドを製造する、請求項10に記載の製造方法。
PCT/JP2012/082554 2011-12-15 2012-12-14 Fmoc基の除去方法 WO2013089241A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013549333A JP6136934B2 (ja) 2011-12-15 2012-12-14 Fmoc基の除去方法
US14/305,841 US9334302B2 (en) 2011-12-15 2014-06-16 Method for removing FMOC group
IN5763DEN2014 IN2014DN05763A (ja) 2011-12-15 2014-07-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011274901 2011-12-15
JP2011-274901 2011-12-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/305,841 Continuation US9334302B2 (en) 2011-12-15 2014-06-16 Method for removing FMOC group

Publications (1)

Publication Number Publication Date
WO2013089241A1 true WO2013089241A1 (ja) 2013-06-20

Family

ID=48612680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082554 WO2013089241A1 (ja) 2011-12-15 2012-12-14 Fmoc基の除去方法

Country Status (4)

Country Link
US (1) US9334302B2 (ja)
JP (1) JP6136934B2 (ja)
IN (1) IN2014DN05763A (ja)
WO (1) WO2013089241A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532302A (ja) * 2014-09-05 2017-11-02 ノバルティス アーゲー 活性物質の送達用の脂質および脂質組成物
WO2019198833A1 (ja) 2018-04-13 2019-10-17 Jitsubo株式会社 ペプチド合成方法
US10464966B2 (en) 2015-01-21 2019-11-05 Ajinomoto Co., Inc. Precipitation promoter and precipitation method in which same is used

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3090636B1 (fr) 2018-12-24 2021-01-01 Strainchem Procédé de synthèse de peptides
CN109970609B (zh) * 2019-03-20 2021-05-11 广州同隽医药科技有限公司 一种组合物及其应用
FR3095646B1 (fr) 2019-05-02 2024-02-23 Strainchem Methode de production de peptides ou proteines ou peptidomimetiques
TW202342493A (zh) 2022-02-14 2023-11-01 瑞士商赫孚孟拉羅股份公司 製造大環肽之方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303195A (ja) * 2007-06-11 2008-12-18 Ajinomoto Co Inc (9−フルオレニルメチルチオ)脂肪酸の製造方法
WO2009014177A1 (ja) * 2007-07-25 2009-01-29 Ajinomoto Co., Inc. ジベンゾフルベン誘導体の淘汰方法
WO2010016551A1 (ja) * 2008-08-06 2010-02-11 味の素株式会社 ジベンゾフルベンの除去方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020058788A1 (en) * 2000-08-25 2002-05-16 Sheppeck James E. Facile deprotection of Fmoc protected amino groups
IL150601A (en) 2001-07-19 2010-06-30 Organon Nv Process for rapid synthesis of peptides within a solution using the back of an activated carboxyl component and destruction of the residual activated carboxyl component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303195A (ja) * 2007-06-11 2008-12-18 Ajinomoto Co Inc (9−フルオレニルメチルチオ)脂肪酸の製造方法
WO2009014177A1 (ja) * 2007-07-25 2009-01-29 Ajinomoto Co., Inc. ジベンゾフルベン誘導体の淘汰方法
WO2010016551A1 (ja) * 2008-08-06 2010-02-11 味の素株式会社 ジベンゾフルベンの除去方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532302A (ja) * 2014-09-05 2017-11-02 ノバルティス アーゲー 活性物質の送達用の脂質および脂質組成物
US10844002B2 (en) 2014-09-05 2020-11-24 Novartis Ag Lipids and lipid compositions for the delivery of active agents
US10464966B2 (en) 2015-01-21 2019-11-05 Ajinomoto Co., Inc. Precipitation promoter and precipitation method in which same is used
WO2019198833A1 (ja) 2018-04-13 2019-10-17 Jitsubo株式会社 ペプチド合成方法

Also Published As

Publication number Publication date
JP6136934B2 (ja) 2017-05-31
US20140296483A1 (en) 2014-10-02
IN2014DN05763A (ja) 2015-04-10
US9334302B2 (en) 2016-05-10
JPWO2013089241A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6136934B2 (ja) Fmoc基の除去方法
Guichard et al. Preparation of N‐Fmoc‐protected β2‐and β3‐amino acids and their use as building blocks for the solid‐phase synthesis of β‐peptides
JP6767459B2 (ja) アミノ二酸含有ペプチド修飾剤
JP6350632B2 (ja) ペプチドの製造方法
JP5515738B2 (ja) ジベンゾフルベン誘導体の淘汰方法
AU2017204332A1 (en) Peptidomimetic macrocyles
KR20070015537A (ko) 엡티피바타이드 및 관련 중간체 화합물의 제조 방법
US10112976B2 (en) Process for the production of D-arginyl-2,6-dimethyl-L-tyrosyl-L-lysyl-L-phenylalaninamide
JP5212371B2 (ja) ペプチドの製造方法
Ruczyński et al. Problem of aspartimide formation in Fmoc‐based solid‐phase peptide synthesis using Dmab group to protect side chain of aspartic acid
US8703912B2 (en) Processes for removal of dibenzofulvene
US10125164B2 (en) Process for preparing D-arginyl-2,6-dimethyl-L-tyrosyl-L-lysyl-L-phenylalaninamide
US20160137689A1 (en) Peptide-resin conjugate and use thereof
JP2018535946A (ja) バルシバン及びその中間体を作製する新規の方法
US20190309014A1 (en) Process for preparation of icatibant acetate
JP2017203014A (ja) アスパラギン酸残基を含むペプチドの製造方法
Demin et al. Synthesis of glutaryl-containing derivatives of GRGD and KRGD peptides
CA3238634A1 (en) Synthetic process for production of modified gcc receptor agonists
WO2021148594A1 (en) Chemical synthesis of the peptidic part of bioactive natural products
WO2022149612A1 (ja) ペプチドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857140

Country of ref document: EP

Kind code of ref document: A1