WO2013089096A1 - 画像処理装置、輪郭線形成方法、及びコンピュータープログラム - Google Patents

画像処理装置、輪郭線形成方法、及びコンピュータープログラム Download PDF

Info

Publication number
WO2013089096A1
WO2013089096A1 PCT/JP2012/082060 JP2012082060W WO2013089096A1 WO 2013089096 A1 WO2013089096 A1 WO 2013089096A1 JP 2012082060 W JP2012082060 W JP 2012082060W WO 2013089096 A1 WO2013089096 A1 WO 2013089096A1
Authority
WO
WIPO (PCT)
Prior art keywords
contour line
pattern
predetermined pattern
contour
image
Prior art date
Application number
PCT/JP2012/082060
Other languages
English (en)
French (fr)
Inventor
浩之 齊藤
敬模 梁
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2013089096A1 publication Critical patent/WO2013089096A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24578Spatial variables, e.g. position, distance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2809Scanning microscopes characterised by the imaging problems involved
    • H01J2237/2811Large objects

Definitions

  • the present invention relates to an image processing apparatus and a computer program for performing image processing, and more particularly to an image processing apparatus, an outline forming method, and a computer program for extracting an outline from edge information of an image.
  • a charged particle beam apparatus represented by a scanning electron microscope (SEM) forms an image based on signals (secondary electrons and backscattered electrons) obtained by scanning a charged particle beam on a sample.
  • SEM scanning electron microscope
  • the edge of the pattern of the semiconductor device has a relatively higher luminance on the electron microscope image than the other region due to the edge effect. This high luminance part is called a white band.
  • Patent Documents 1 to 5 disclose techniques for extracting an accurate contour line of a pattern from such a white band. In these documents, an approximate contour line is extracted based on the luminance distribution in the image, and an accurate contour line is formed by detecting the peak position of the luminance distribution in a direction perpendicular to the rough contour line. Has been explained.
  • Patent Documents 6 and 7 disclose a technique for forming a panoramic image in order to acquire a wide range of sample images with high accuracy.
  • a panoramic image is an image formed based on a technique for forming a high-resolution image over a wide area by connecting a plurality of images acquired at a high magnification.
  • JP 2001-91231 A (corresponding US Pat. No. 6,480,807) Japanese Unexamined Patent Publication No. 60-169977 JP-A-6-325175 JP-A-8-161508 JP-A-9-204529 JP2011-076296 (corresponding US publication US2011 / 0074817) JP 2009-043937 A (corresponding US Pat. No. 7,732,792)
  • Patent Documents 1 to 5 are excellent in that an accurate pattern shape can be obtained.
  • a high-precision contour line is further created.
  • the processing information becomes enormous and requires a certain amount of time.
  • Patent Documents 6 and 7 disclose a method for forming a highly accurate contour line or SEM image over a wide range, there is no description about a method for realizing a reduction in processing amount.
  • the first contour line is extracted from the image of the first region on the sample, and the part or shape is extracted for each part or shape of the contour line.
  • This invention proposes an image processing apparatus, a contour line forming method, and a computer program for creating a corrected contour line using correction data according to the above.
  • the correction data extracts a second contour line with higher accuracy than the first contour line from a second image whose second field is a narrower field than the first region.
  • the present invention proposes an image processing apparatus, a contour line forming method, and a computer program that are obtained based on the distance between the second contour line and the first contour line.
  • the correction data is obtained based on an image acquired in an area narrower than the image area to be acquired, so that the entire image to be acquired is suppressed while suppressing the effort of creating a highly accurate contour line. It is possible to form a highly accurate contour line over the entire area.
  • the flowchart which shows the process of correct
  • the flowchart which shows the process of forming a high precision outline based on formation of a low precision outline.
  • summary of the formation method of a highly accurate outline The flowchart which shows the registration method of the correction data in the case of specifying the correction object of an outline by template matching.
  • the flowchart which shows the process of adding the identification information of a pattern line segment to contour line data based on design data, and correlating the said identification information and the correction data of a contour line in a database.
  • amendment object The flowchart which shows the extraction process of a defect candidate.
  • the white band method is a method of extracting an image region having a luminance distribution by edge detection processing and detecting the peak position as an outline, and is used for the purpose of extracting a linear pattern from an image.
  • the white band method can be realized with relatively simple calculation processing, it is difficult to recognize the continuous direction of the pattern using only the local image area information used for edge detection. Is difficult to reduce. In addition, it is difficult to recognize the inside and outside of the pattern with respect to the peak of the white band with only the information of the SEM (Scanning / Electron / Microscope) image. For these reasons, the accuracy and reproducibility of the extracted contour lines are low, so it cannot be said that it is an effective means for the purpose of high-precision measurement.
  • the following is a method for extracting a highly accurate edge from an edge based on a relatively low-accuracy edge extraction method such as the white band method, and the edge detected by the low-accuracy edge detection method and the high-accuracy edge detection method.
  • An outline extraction method (contour line formation method) using information on the distance to the detected edge as correction data of the outline extracted by the low-accuracy edge detection method, an apparatus for executing the outline extraction, and A computer program for causing a computer to execute the contour line extraction will be described. Further, as one of more specific modes, a contour line extraction method using correction data corresponding to the shape of the pattern part will be described.
  • FIG. 1 is a flowchart showing a high-accuracy contour extraction process.
  • an SEM image is acquired at a somewhat low magnification (about 30000 times with an electron microscope (for example, CD-SEM)) (step S101). This is to acquire a relatively wide range of SEM images including a plurality of pattern shapes.
  • contour detection is performed on the acquired low-magnification image (first acquired image) using an edge detection method with a relatively short processing time such as a white band method (S102).
  • the contour line extracted in step S102 is a correction target using the correction data.
  • the white band method is described as a low-accuracy edge detection method.
  • the low-accuracy edge detection method is not limited to this, and is relatively less than the edge detection method having a larger number of processes. If the edge detection method has a small number of processes, the method described below can be applied. This example is for creating a contour line close to the contour line obtained by the edge detection method having a relatively large number of processes even if the edge detection method has a relatively small number of processes.
  • the accuracy edge detection method can be applied if the number of processes is relatively small.
  • a field of view including a characteristic pattern is selected (S103), and a high-magnification image (second acquired image) is acquired by performing beam scanning on the region (S104).
  • a high-magnification image is acquired by performing beam scanning on the region (S104).
  • the pattern of a semiconductor device is mainly composed of a line pattern extending in the X direction and a line pattern extending in the Y direction, and substantially all patterns are formed by these shapes. Can be mentioned.
  • the L-shaped pattern includes an approximate shape that forms the pattern, such as a line end and a pattern bent portion (inner corner, outer corner). Can be mentioned. If the region to be contoured includes other shapes (for example, a hole pattern, an isolated pattern, or a corner other than 90 °, etc.), the region or portion including these is defined as a high-magnification image acquisition region. You may make it do.
  • a template for recognizing a characteristic pattern may be prepared in advance, and the field of view may be automatically selected by template matching. At this time, it is preferable to set a certain threshold value for pattern recognition, list patterns that are equal to or higher than the threshold value, and automatically select the pattern with the highest score, or select manually from the list.
  • a high-magnification image is acquired at a magnification (field size) of about 250,000 times, for example.
  • a high-accuracy contour line is formed based on the high-magnification image acquired in this way (S105).
  • the high-accuracy contour line forming method will be described with reference to FIGS.
  • FIG. 7 is a flowchart showing a high-accuracy contour line forming process
  • FIG. 8 is a diagram showing an outline thereof.
  • an SEM image is acquired (S701). This step is the same as step S104.
  • the acquired SEM image corresponds to a second acquired image.
  • a first contour line is formed based on the luminance distribution of the white band (S702).
  • edge detection is performed using a white band method or the like.
  • a luminance distribution is obtained in a predetermined direction with respect to the formed first contour line, and a portion having a predetermined luminance value is extracted (S703).
  • the predetermined direction here is preferably a direction perpendicular to the first contour line.
  • the first contour line 803 is formed based on the white band 802 of the line pattern 801, and the luminance distribution over the entire length (entire area) of the first contour line 803.
  • the luminance distribution (807 to 809) in the direction perpendicular to the first contour line 803 is acquired.
  • the first contour line 803 is a rough contour line, it indicates the approximate shape of the pattern. Therefore, in order to form a more accurate contour line based on the first contour line 803, the first contour line 803 has an overall length.
  • the luminance distribution is detected with the contour line 803 as a reference.
  • the peak width of the profile can be narrowed by detecting the luminance distribution in the direction perpendicular to the first contour line 803, and as a result, an accurate peak position and the like can be detected.
  • a highly accurate contour line (second contour line) can be formed (S705).
  • the second contour line may be formed by connecting predetermined brightness portions (S705). Further, in order to create the second contour line, a profile is formed by scanning the electron beam in a direction perpendicular to the first contour line 803 over the entire length of the first contour line 803. (S704) It is also possible to form a second contour line based on the profile (S705).
  • step S703 and step S704 By performing the processing in step S703 and step S704, a more accurate contour line can be formed as the second contour line in step S705.
  • the total length of the first contour line 803 since it is necessary to perform new image processing, scanning with an electron microscope, and the like, the time required for data processing and the like increases.
  • This correction value may be the distance value itself, or may be a value including the error when the error from the actual measurement value is known in advance. Further, when creating correction data, it is preferable to categorize correction values according to the pattern shape (S107), and to apply correction values according to the category when forming an actual contour line. This is because the measurement error (correction amount) varies depending on the type of pattern shape.
  • the size of the field of view of both is sufficient. Since they are different, a process of matching the fields of view of both is performed (the size of the field of view is adjusted by enlarging or reducing one image).
  • the first contour line is corrected (S109), so that an advanced image processing algorithm or the like is not used over the entire sample region where the contour line is to be formed. It is possible to form a highly accurate contour line.
  • FIG. 2 is a schematic configuration diagram of a measurement and inspection system for forming a contour line such as a pattern based on information obtained by SEM.
  • the measurement and inspection system includes an SEM main body 201, a control device 204 of the SEM main body 201, and an arithmetic processing device 205.
  • the arithmetic processing device 205 functions as an image processing device that forms a contour line from the obtained image.
  • the control device 204 supplies a deflection signal for setting the scanning position to a desired position to the deflector 202 based on a signal given from the scanning location setting unit 217 included in the control signal generation unit 206.
  • the deflector 202 changes the size (magnification) of the visual field to a desired size in accordance with the supplied signal.
  • the control device 204 generates an image detection signal obtained by arranging the detection signals obtained by the detector 203 in synchronization with the scanning of the deflector 202 and supplies the image detection signal to the arithmetic processing device 205.
  • the arithmetic processing unit 205 includes an image processing unit 207 that performs image processing of the image detection signal. Further, the arithmetic processing unit 205 includes a correction database creation unit 208 that creates correction data, which will be described later, an inter-contour measurement unit 209, and a memory 210 that stores measurement recipes and necessary information.
  • the measurement recipe is an operation program for automatically operating the SEM, and is stored in the memory 210 or an external storage medium for each type of sample to be measured, and is read out as necessary.
  • Electrons emitted from the sample 230 are captured by the detector 203 and converted into a digital signal by an A / D converter built in the control device 204.
  • image processing hardware such as a CPU, ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array) or the like built in the image processing unit 207 Image processing is performed.
  • the image processing unit 207 also has a function of creating a line profile based on the image detection signal.
  • the arithmetic processing unit 205 is connected to an input device 219 provided with an input means, and displays a graphic (User Interface) on a display device provided in the input device 219 for displaying an image, an inspection result, and the like to the operator. Etc.
  • control and processing in the arithmetic processing unit 205 can be assigned to a CPU or an electronic computer equipped with a memory capable of storing images and processed and controlled.
  • the input device 219 manually captures an imaging recipe including coordinates of an electronic device required for measurement, inspection, etc., a template for pattern matching used for positioning, imaging conditions, or the design data storage medium 215 of the electronic device. It also functions as an imaging recipe creation device that creates the design data stored in the table.
  • the input device 219 includes a template creation unit that cuts out a part of a diagram image formed based on design data and uses it as a template.
  • the created template is a matching processing unit built in the image processing unit 207.
  • a template matching template 214 is registered in the memory 210.
  • Template matching is a technique for specifying a location where a captured image to be aligned and a template match based on matching degree determination using a normalized correlation method or the like, and the matching processing unit 214 performs matching degree determination. Based on the above, a desired position of the captured image is specified.
  • the degree of matching between the template and the image is expressed in terms of the degree of matching and the degree of similarity, but the same is true in terms of an index indicating the degree of matching between the two. Further, the degree of dissimilarity and the degree of dissimilarity are one aspect of the degree of coincidence and similarity.
  • the embodiment described below mainly relates to a device for performing contour line formation and a computer program, and the image processing unit 207 includes a contour line forming unit 218.
  • a low-accuracy contour line forming unit 211 for forming a low-accuracy contour line such as a white band method, a high-accuracy contour based on a low-accuracy contour line or an advanced algorithm.
  • a high-precision contour forming unit 212 that forms lines, a correction contour forming unit 213 that corrects low-precision contours, and a matching processing unit 214 are provided.
  • correction data for performing contour correction is created by the correction database creation unit 208.
  • the distance between contour lines that is the basis of the correction data is measured by the contour distance measuring unit 209.
  • the contour-to-contour measurement unit 209 measures the distance between the two based on a measurement algorithm that measures between corresponding points between a plurality of contours.
  • FIG. 9 is a flowchart showing a process of creating a correction database.
  • the correction data is obtained based on the dimension between the high-precision contour line and the low-precision contour line, and the high-precision contour line considered to be an accurate contour line and the low-precision contour line. It is related to the error.
  • a low-magnification SEM image (first acquired image) is acquired (S901).
  • a low-precision contour line (first contour line) is formed by the white band method or the like (S902). Note that if only correction data is created, it is not always necessary to form a low-magnification image. However, in this embodiment, a template is created based on a low-magnification image or a low-precision contour line. Alternatively, a low-precision contour line is formed.
  • FIG. 3 is a diagram for explaining an example of a sample region to be contoured.
  • step S901 the control signal generator 206 causes the control device 204 to perform beam scanning of the region 301 by the SEM body 201 by setting a scanning range in the region 301.
  • the image processing unit 207 acquires an image (first acquired image) of the region 301 based on the image detection signal of the region 301 supplied from the control device 204 (S901), and the low-precision contour of the contour line forming unit 218 is acquired.
  • the line forming unit 211 converts the acquired image into a low-accuracy outline (S902).
  • the control signal generation unit 206 performs beam scanning of the region 302 by the SEM main body 201.
  • the image processing unit 207 acquires a high-magnification image (second acquired image) of the region 302 based on the image detection signal of the region 302 supplied from the control device 204 (S903), and the height of the contour line forming unit 218 is high.
  • the accuracy contour forming unit 212 converts the acquired image into a high accuracy contour (S904).
  • the high-accuracy contour line (second contour line) is performed based on an algorithm that is at least more advanced than the contouring process performed in step S902. It is formed using a technique that can realize the above.
  • the feature part of the pattern is selected from the high-precision contour line thus formed (S905).
  • the characteristic part is the pattern characteristic part 303.
  • This portion is a bent portion of the pattern, and is a pattern that is considered to include many patterns having the same shape in the region 301.
  • a target pattern for constructing a correction database is selected.
  • FIG. 3 a state in which a line end portion 303a, an inner corner portion 303b, an outer corner portion 303c, and a straight portion 303d in the Y direction are selected as the pattern feature portion 303 is illustrated.
  • FIG. 4 is a diagram showing types of contour correction data.
  • the feature portion of the pattern can be selected in various units as exemplified in FIG.
  • the entire line end portion is selected as a part of the bent portion of the pattern
  • the inner corner portion is selected as a part of the bent portion of the pattern.
  • the outer corner portion is selected as a part of the bent portion of the pattern
  • the straight portion in the Y direction is selected as the region including the linear pattern.
  • the selection of the feature part is not limited to these illustrated examples, and a predetermined complex such as one closed figure as a selection range or an area including two bent parts and two linear patterns in the X and Y directions, for example.
  • the shape can be selected.
  • the template creation unit provided in the input device 219 extracts a diagram image of the selected region from the low-precision contour created in step S902 (S906).
  • a template for template matching is set based on the extracted image (S908). The reason for preparing such a template will be described later.
  • the inter-contour measurement unit 209 measures the dimension between the high-precision contour line and the low-precision contour line (S907).
  • FIG. 5 shows an example of measuring the dimension between the low-precision contour line and the high-precision contour line.
  • This dimension measurement is performed by measuring a dimension between corresponding points between the high-precision contour line 502 and the low-precision contour line 503 in the region 501 as exemplified in FIG.
  • Such a method for measuring the distance between a plurality of edges is called EPE (Edge (Placement Error) measurement, and a known method can be applied.
  • the correction database creation unit 208 creates correction data based on the dimension value and dimension measurement direction obtained by EPE measurement (S909).
  • the correction data may be the dimension value and the direction itself, or if the deviation amount of the dimension value is known in advance, a value obtained by adding the deviation amount may be used as the correction value.
  • the correction database creation unit 208 associates the correction data obtained as described above and the template and stores them as a database in the memory 210, for example (S910).
  • FIG. 6 is a diagram showing an overview of the database.
  • the correction amount (Correction amount) for each part of the pattern for example, the outer (outer) corner, inner (inner) corner, line end, etc.) and / or the pattern type (line, corner, etc.).
  • a correction direction (Direction) and a template (Template) are stored in association with each other.
  • the dimension measurement results of the EPE measurement points (EPE) points) 504, 505, 506,... Shown in FIG. 5 are 'Corner (outer) 1''EPE1', 'EPE2' ,... Are stored as correction amounts xxx, yyy, zzz,. Coordinate information that is a correction start point is also registered in the template, and contour correction is executed based on the coordinate information.
  • FIG. 10 illustrates a process for performing contour correction based on the correction database created as described above.
  • FIG. 10 is a flowchart showing a process of performing contour correction after specifying a correction target by template matching.
  • FIG. 10 shows an example in which a low-magnification image is formed once a correction database is created. However, as illustrated in FIG. 1, low-magnification image formation and high-magnification image formation are continuously performed. In this way, correction data creation and contour correction may be performed together.
  • the image processing unit 207 acquires a low-magnification SEM image (S1001), and the low-accuracy contour forming unit 211 of the contour-line forming unit 218 forms a low-accuracy contour line (S1002).
  • the matching processing unit 214 performs pattern matching using a template registered in the database (S1003). Since it can be determined that the contour line to be corrected is located by the registered correction data at the position specified by the matching (for example, the position 304 in FIG. 3), the correction contour is determined at the pattern or pattern portion specified by the matching.
  • the line forming unit 213 executes contour correction using the correction amount registered in the database (S1004). For example, in the case of the database shown in FIG.
  • the correction of the contour line is performed with respect to a predetermined point (EPE point) of the low-precision contour line toward the correction direction (Direction) registered in the database. This is done by shifting the point.
  • the correction data may be registered for each EPE measurement point, or a statistical amount of an EPE measurement result in a certain area may be used as the correction amount for the area.
  • the contour information of the line part is selectively corrected after the shape information is stored in the database in advance, and the line width changes. Accordingly, processing such as connecting between the corner and the line edge may be performed without changing the curvature of the line end or the corner.
  • the contour line forming unit 218 of the image processing unit 207 executes the contour correction as described above using a plurality of templates registered in the database, and when the correction processing using a predetermined number of templates is completed (S1005). )
  • the arithmetic processing unit 205 including the image processing unit 207 proceeds to the next step, for example, the next processing such as measurement using the corrected contour line, inspection processing (S1007), and the like.
  • the contour forming unit 218 complements the uncorrected portion.
  • the contour correction processing is completed (S1006). Note that the complementing process (S1006) is not necessarily performed for all patterns, and may be left as a low-precision contour line as long as it is a portion not directly related to the measurement location.
  • template matching by the matching processing unit 214 may fail and the part may not be identified.
  • location where such matching fails is likely to have a defect.
  • FIG. 14 is a flowchart showing the defect candidate extraction process
  • FIG. 15 is a diagram showing a display example of the uncorrected portion of the contour line.
  • the contour line forming unit 218 includes an uncorrected portion in the low-precision contour line. It is determined whether or not to perform (S1401). If it is determined that there is an uncorrected location, the portion is registered, or as shown in FIG. 15, the uncorrected location 1502 is displayed on the first acquired image 1501 (S1402), thereby defect candidates. It becomes easy to specify. Even if the patterns have the same shape, there is a possibility that the pattern may be deformed or shifted due to the effect of optical proximity effect (Optical Proximity Effect: OPE) depending on the arrangement condition of the pattern. By including such a determination step, it becomes easy to detect pattern deformation or the like derived from pattern arrangement conditions.
  • OPE optical Proximity Effect
  • FIG. 16 is a flowchart showing a determination process for determining whether or not an uncorrected part is an original correction target.
  • the uncorrected part is a part where the template is not registered, and therefore a determination step (S1601) for determining whether the uncorrected part is the original correction target is provided. You may do it.
  • the correspondence between the design data and the low-accuracy contour line is detected in advance for each line segment of the pattern or for each pattern, and the pattern possessed by the design data is determined based on the correspondence detection. Information is added to the low-precision contour information. Then, it is possible to narrow down defect candidates by determining whether or not the pattern information of the registered template matches the pattern information of the uncorrected portion.
  • FIG. 17 is a flowchart showing the process.
  • FIG. 18 is a diagram illustrating a state in which the low-precision contour line and the template are matched.
  • corresponding points on the low-precision contour line 1805 are detected (S1701).
  • There are various methods for detecting the corresponding points and one of them is a method for detecting the points (corresponding points 1806 to 1808) on the low-precision contour line 1805 closest to the correction start point 1802 and the like.
  • the distance between each correction start point and the corresponding point is measured (S1702), and it is determined whether each measurement result exceeds a predetermined threshold (S1703). Then, the corresponding points exceeding the threshold value are assumed to be defective, and the coordinate information or identification information is registered or displayed on the display device (S1704).
  • the measurement and inspection (S1007) using the corrected contour line can ensure high accuracy.
  • the corrected contour creation method described in the present embodiment it is possible to form a contour with high accuracy over a wide range without acquiring a large number of high-magnification images and performing a process of joining the images. Can be done.
  • charging is generated by irradiating a sample with a beam. When this charging scans the beam in the adjacent area, there is a possibility that the beam trajectory is deflected, etc., but according to the method described in the present embodiment, while suppressing the influence of charging, A wide range of high resolution images can be formed.
  • Example 2 Next, an example in which design data is used to specify a correction target when performing contour correction using correction data will be described.
  • edge information is created based on design data and a correction target is specified using the edge information.
  • the edge information obtained based on the design data is approximated to the actual pattern by the line segment image information indicating the ideal shape of the pattern formed based on the design data stored in the design data storage medium 215 and the simulator 216.
  • This is line segment image information subjected to various deformation processes.
  • the design data is expressed in, for example, a GDS (Graphic Design Standard) format or an OASIS (Organization for the Advancement of Structured Information Standards) format, and is stored in a predetermined format.
  • the design data can be of any type as long as the software that displays the design data can display the format and can handle the data as graphic data.
  • matching processing and measurement processing are executed by the control device mounted on the SEM or the arithmetic processing device 205 connected to the SEM via a communication line or the like.
  • the present invention is not limited to this, and a computer program may be used to perform processing as described later using a general-purpose arithmetic device that executes image processing.
  • FIG. 12 is a diagram showing an example in which identification information is added to the line segment of the contour line data based on the design data.
  • FIG. 13 by detecting the correspondence between pattern edges formed based on design data and low-precision contour lines, identification information is added to a plurality of types of contour lines and registered in association with the identification information. It is a flowchart which shows the process of making a contour line highly accurate using the correction amount which has been set.
  • the image processing unit 207 acquires a low-magnification SEM image (S1301), and the low-accuracy contour forming unit 211 of the contour-line forming unit 218 forms a low-accuracy contour line (S1302).
  • the matching processing unit 214 performs pattern matching between the formed low-precision contour line and the pattern edge based on the design data (S1303).
  • a pattern edge based on design data uses vector data registered in the GDS format or the like as line segment information. Further, instead of the line segment information, the line segment information formed through simulation by the simulator 216 may be used.
  • FIG. 12 is a diagram showing an example of this, and shows an example of detecting corresponding points between the edge 1201 based on the design data and the contour 1202 by performing pattern matching.
  • identification information line segment information L1 to L6 in FIG. 12
  • identification information L2 is added to the corresponding point of the contour line 1202 included in the region 1203
  • identification information L5 is added to the corresponding point of the contour line 1202 included in the region 1204.
  • the identification information may be identification information in units of line segments, or may be information such as position information to which line segments such as Top, Right, Left, and Bottom belong.
  • the contour line forming unit 218 adds identification information to each line segment of the contour line 1202 (S1304).
  • the contour line forming unit 218 reads correction data based on the added identification information (S1305).
  • the correction data for example, a database as illustrated in FIG. 6 is prepared in advance so as to correspond to the identification information of the pattern line segment of the design data.
  • the correction direction may be read out, or after creating a low-accuracy contour line, a high-accuracy contour line is created, and the distance between the corresponding point of the high-accuracy contour line and the corresponding point of the low-accuracy contour line is obtained.
  • the correction amount and the correction direction may be obtained.
  • FIG. 11 is a flowchart showing a process of adding pattern line segment identification information to contour line data based on design data, associating the identification information with contour line correction data, and storing them in a database in advance. is there.
  • the correction data is stored in the database in association with the low magnification image or the template created based on the low precision contour line.
  • it in the process of creating this correction database, it is stored in the database in association with the identification information of the pattern line segment of the design data.
  • the matching processing unit 214 extracts a high-accuracy contour line of the feature portion of the pattern selected in step S1103 from the high-accuracy contour line created in step S1102, and each of the extracted high-luminance contour line and each of the extracted high-luminance contour lines. Pattern matching with the pattern line segment of the design data to which the identification information is added is also performed (S1104).
  • the contour line forming unit 218 uses the identification information added to the pattern line segment of the pattern-matched design data obtained by the processing in step S1104 by the matching processing unit 214, as the high-precision contour of the feature portion of this pattern. It is added to the line (S1106).
  • the correction data obtained by the processing in steps S1105 and S1107 and the identification information or the high-accuracy contour to which the identification information is added are associated with each other and stored in the memory 210, for example, as a database ( S1108).
  • the corrected contour line forming unit 213 next corrects the low-accuracy contour line using the correction data (S1306), and there is an uncorrected portion. Performs a complementing process on the portion (S1307) to form a corrected contour line.
  • the measurement and inspection (S1308) using the corrected contour line can ensure high accuracy.

Landscapes

  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Processing (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

ホワイトバンド法は、比較的簡単な演算処理で実現できる反面、エッジ検出の精度や再現性に対する課題がある。一方、より高度なアルゴリズムを用いた輪郭線抽出機能はエッジ検出の精度や再現性に対して高い信頼性はあるものの、広範囲を高精度に輪郭線化するためには処理時間が長く掛かる。そこで、任意のパターンに対して、ホワイトバンド法と高精度輪郭線形成法によるエッジ検出の計測誤差を算出し、その値をパターン形状に応じて重畳させることで、広範囲をより高精度に輪郭線化する手法を提供する。

Description

画像処理装置、輪郭線形成方法、及びコンピュータープログラム
 本発明は、画像処理装置、及び画像処理を行うためのコンピュータープログラムに係り、特に画像のエッジ情報から輪郭線を抽出する画像処理装置、輪郭線形成方法、及びコンピュータープログラムに関する。
 走査電子顕微鏡(Scanning Electron Microscope:SEM)に代表される荷電粒子線装置は、荷電粒子ビームを試料上で走査することによって得られる信号(二次電子や後方散乱電子)に基づいて画像を形成する装置である。このようなSEM等による検査、測定対象として半導体デバイスがある。半導体デバイスのパターンのエッジは、電子顕微鏡画像上では、エッジ効果により他領域と比較して相対的に輝度が高くなる。この輝度の高い部分はホワイトバンドと呼ばれている。一方、半導体デバイスの二次元形状を正確に評価したいという要求があるが、ホワイトバンドはある程度の幅を持って形成されているため、形状が正確に表現されないことがある。このようなホワイトバンドからパターンの正確な輪郭線を抽出する技術が特許文献1乃至5に開示されている。これら文献には、画像中の輝度分布に基づいておおよその輪郭線を抽出し、当該粗い輪郭線に対し垂直な方向の輝度分布のピーク位置を検出することによって、正確な輪郭線を形成することが説明されている。
 正確な輪郭線を抽出したいという要求がある一方で、半導体デバイス上の広範囲領域の画像を取得したいという要求もある。特許文献6、7には、広範囲の試料像を高精度に取得するためにパノラマ画像を形成する手法が開示されている。パノラマ画像とは、高倍率で取得した複数の画像を繋ぎ合わせることで、広い領域に亘って高分解能の画像を形成する手法に基づいて形成される画像である。
特開2001-91231号公報(対応米国特許USP6,480,807) 特開昭60-169977号公報 特開平6-325175号公報 特開平8-161508号公報 特開平9-204529号公報 特開2011-076296号公報(対応米国公開公報US2011/0074817) 特開2009-043937号公報(対応米国特許USP7,732,792)
 特許文献1乃至5に開示の輪郭線化技術は、正確なパターン形状を得ることが可能であるという点で優れているが、一旦輪郭線を作成した上で更に、高精度輪郭線を作成するための処理が必要となるため、処理情報が膨大になり相応の時間を要する。特に、試料上の広範囲の領域に亘って正確な輪郭線を形成しようとすると、その課題は一層顕著になる。特許文献6、7には、広範囲に亘って高精度な輪郭線やSEM画像を形成する手法は開示されているものの、処理量の抑制を実現する手法については何ら説明がない。
 以下、画像処理に要する処理量を抑制しつつ、広範囲に亘って高精度な輪郭線を形成することを目的とする画像処理装置、輪郭線形成方法、及びコンピュータープログラムについて説明する。
 上記目的を達成するための一態様として、以下に、試料上の第1の領域の画像から、第1の輪郭線を抽出し、当該輪郭線の部位、或いは形状毎に、当該部位、或いは形状に応じた補正データを用いて、補正輪郭線を作成する画像処理装置、輪郭線形成方法、及びコンピュータープログラムを提案する。
 更なる一態様として、当該補正データは、上記第1の領域より狭い第2の領域を視野とする第2の画像から、上記第1の輪郭線より高精度な第2の輪郭線を抽出し、当該第2の輪郭線と第1の輪郭線間の距離に基づいて求められるものである画像処理装置、輪郭線形成方法、及びコンピュータープログラムを提案する。
 本明細書は本願の優先権の基礎である日本国特許出願2011-275613号の明細書および/または図面に記載される内容を包含する。
 上記構成或いは手順によれば、予め求められた補正データを用いた補正に基づいて高精度な輪郭線を形成することができ、高精度な輪郭線を、画像処理量を抑制しつつ実現することができる。また、具体的な態様として、補正データは取得したい画像領域より狭い領域で取得した画像に基づいて得られるものであるため、高精度な輪郭線を作成する手間を抑制しつつ、取得したい画像全体に亘って高精度な輪郭線を形成することが可能となる。
輪郭線の補正データの作成と、作成された補正データに基づいて、輪郭線を補正する工程を示すフローチャート。 走査電子顕微鏡と画像処理装置となる演算処理装置を含む測定、或いは検査システムの概要を示す図。 補正データを作成する高倍率領域と、補正データによる輪郭線の補正が施される低倍率領域との関係を示す図。 輪郭線補正データの類型を示す図。 低精度輪郭線と高精度輪郭線との間の寸法を測定する例を示す図。 輪郭線補正データベースの一例を示す図。 低精度輪郭線の形成に基づいて、高精度輪郭線を形成する工程を示すフローチャート。 高精度輪郭線の形成法の概要を示す図。 テンプレートマッチングによって輪郭線の補正対象を特定する場合の補正データの登録法を示すフローチャート。 テンプレートマッチングによって補正対象を特定した上で輪郭線補正を行う工程を示すフローチャート。 設計データに基づいて輪郭線データにパターン線分の識別情報を付加し、当該識別情報と輪郭線の補正データを関連付けてデータベースに記憶する工程を示すフローチャート。 設計データに基づいて、輪郭線データの線分に識別情報を付加する例を示す図。 輪郭線データに線分の識別情報を付加した上で、輪郭線の補正を行う工程を示すフローチャート。 欠陥候補抽出工程を示すフローチャート。 輪郭線の未補正個所の表示例を示す図。 未補正個所が本来の補正対象か否かを判定するための判断工程を示すフローチャート。 欠陥候補の抽出工程を示すフローチャート。 低精度輪郭線とテンプレートがマッチングした状態を示す図。
 パターン形状を輪郭線化する手法の一つとして、例えば画像内の輝度分布に基づいて、細線抽出をする手法(以下、ホワイトバンド法と称する)がある。ホワイトバンド法は、輝度分布を持つ画像領域をエッジ検出処理により抽出し、そのピーク位置を輪郭線として検出する手法であり、画像から線状のパターンを抽出する目的で利用される。
 ホワイトバンド法は、比較的簡単な演算処理で実現できる反面、エッジ検出に利用する局所的な画像領域のみの情報ではパターンの連続方向を認識することが困難であるため、パターン方向の積算によるノイズを低減することが困難となる。また、SEM(Scanning Electron Microscope)画像のみの情報では、ホワイトバンドのピークに対するパターンの内外を認識することが困難である。このような理由から、抽出された輪郭線の精密さや再現性が低いため、高精度な計測という目的に対しては有効な手段であるとは言えない。
 2次元形状を忠実に再現した輪郭線化の要求に対応するためには、従来から実績があり、信頼性の面で優れている電子顕微鏡(例えばCD(Critical Dimension)-SEM)と同等の計測精度が必要である。そのため、ホワイトバンド法より精度の高いエッジ検出法を適用することが望ましい。しかしながら、高精度なエッジ検出法は、ホワイトバンド法と比較すると画像処理時間が増大することになり、特に広い領域に亘って高精度な輪郭線を抽出しようとすると、情報処理量が著しく増大する。
 以下に、ホワイトバンド法のような比較的低精度なエッジ抽出法に基づくエッジから、高精度なエッジを抽出する手法に関し、低精度エッジ検出法によって検出されたエッジと、高精度エッジ検出法によって検出されたエッジとの間の距離に関する情報を、低精度エッジ検出法によって抽出された輪郭線の補正データとする輪郭線抽出法(輪郭線形成法)、当該輪郭線抽出を実行する装置、及び当該輪郭線抽出をコンピューターに実行させるコンピュータープログラムについて説明する。また、より具体的な態様の1つとして、パターン部位の形状に応じた補正データを用いた輪郭線抽出法を説明する。
 上述のような手法を適用することにより、低精度エッジ検出法と同等の処理速度で、広範囲をより高精度に輪郭線化することが可能となる。
 図1は、高精度輪郭線の抽出工程を示すフローチャートである。
 本例では、まず、ある程度低い倍率(電子顕微鏡(例えばCD-SEM)で30000倍程度)でSEM画像を取得する(ステップS101)。これは、複数のパターン形状を含む比較的広い範囲のSEM画像を取得するためである。
 次に、取得された低倍率画像(第1の取得画像)について、ホワイトバンド法等の比較的処理時間の短いエッジ検出法を用いて、輪郭線検出を行う(S102)。以下の説明では、このステップS102で抽出された輪郭線が補正データを用いた補正対象となるが、輪郭線化はこの段階で行う必要はなく、補正データを用いた補正前に行うようにすると良い。また、以下の説明では、ホワイトバンド法を低精度エッジ検出法として説明するが、低精度エッジ検出法はこれに限られることはなく、より処理数の多いエッジ検出法に対して、相対的に処理数の少ないエッジ検出法であれば、以下に説明する手法の適用は可能である。本例は、相対的に処理数の少ないエッジ検出法であっても、相対的に処理数の多いエッジ検出法で得られる輪郭線に近い輪郭線を作成するためのものであり、後述する高精度エッジ検出法に対し、相対的に処理数が少ない状態にあれば、その適用が可能である。
 次に、特徴的なパターンを含む視野の選択を行い(S103)、当該領域に対するビーム走査を行うことによって、高倍率画像(第2の取得画像)を取得する(S104)。ステップS103にて選択される領域には、特徴的なパターンとして、例えば、X方向とY方向のラインエンドを含むL字型のパターン等を選択することが望ましい。
 この理由として、一般的に半導体デバイスのパターンは、主にX方向に延びるラインパターン、及びY方向に延びるラインパターンより構成されており、実質的にこれらの形状によって全てのパターンが形成されていることが挙げられる。また、L字型のパターンを選択する理由として、L字型のパターンには、ラインエンド、パターン屈曲部(インナーコーナー、アウターコーナー)等、パターンを形成するおおよその形状が含まれていることが挙げられる。なお、輪郭線化したい領域に他の形状(例えば、ホールパターン、孤立パターン、或いは90°以外のコーナー等)が含まれているのであれば、それらを含む領域や部分を高倍率画像取得領域とするようにしても良い。なお、第2の取得画像を選択する場合には、予め、特徴的なパターンを認識するためのテンプレートを用意しておき、テンプレートマッチングによって、自動的に視野を選択するようにしても良い。このとき、パターン認識には一定の閾値を設定し、閾値以上のパターンをリストアップし、最もスコアの高いものを自動で選択させる、或いは、リストの中から手動で選択できるようにすると良い。
 なお、高倍率画像は、例えば250000倍程度の倍率(視野の大きさ)で取得する。このようにして取得された高倍率画像に基づいて、高精度輪郭線を形成する(S105)。ここで、高精度輪郭線形成法について、図7、図8を例にとって説明する。
 図7は、高精度輪郭線形成工程を示すフローチャートであり、図8は、その概要を示す図である。
 高精度輪郭線を形成するためにまず、SEM画像を取得する(S701)。このステップは、ステップS104と同じものである。その取得したSEM画像は、第2の取得画像に該当する。
 次に、ホワイトバンドの輝度分布に基づいて、第1の輪郭線を形成する(S702)。ここではホワイトバンド法等を用いてエッジ検出を行う。次に、形成された第1の輪郭線に対して所定の方向に輝度分布を求め、所定の輝度値を持つ部分を抽出する(S703)。ここで言うところの所定の方向とは、第1の輪郭線に対して垂直な方向であることが望ましい。図8に例示するように、ラインパターン801のホワイトバンド802に基づいて、第1の輪郭線803を形成し、当該第1の輪郭線803に対し、その全長(全域)に亘って、輝度分布取得領域(804~806)を設定することによって、第1の輪郭線803に対し垂直な方向の輝度分布(807~809)を取得する。
 第1の輪郭線803は粗い輪郭線であるが、パターンのおおよその形状を示しているため、この第1の輪郭線803を基準としてより高精度な輪郭線を形成するために、その全長に亘って、当該輪郭線803を基準として輝度分布を検出する。この輝度分布の検出は、第1の輪郭線803に対し垂直方向に輝度分布を検出することによって、プロファイルのピーク幅を狭めることができ、結果として正確なピーク位置等を検出することが可能となる。これにより、例えばピークトップの位置を繋ぎ合わせるようにすれば、高精度な輪郭線(第2の輪郭線)を形成する(S705)ことが可能となる。また、ピークトップを検出するのではなく、所定の明るさ部分を繋ぎ合わせるようにして、第2の輪郭線を形成する(S705)ようにしても良い。更に、第2の輪郭線を作成するために、第1の輪郭線803の全長に亘って、第1の輪郭線803に対して、垂直な方向に電子ビームを走査することによってプロファイルを形成し(S704)、当該プロファイルに基づいて、第2の輪郭線を形成する(S705)ことも可能である。
 ステップS703やステップS704の処理を行うことによって、ステップS705で第2の輪郭線としてより高精度な輪郭線を形成することができるが、ホワイトバンド法と比べると、第1の輪郭線803の全長に亘って、新たな画像処理や電子顕微鏡による走査等を行う必要があるため、データ処理等に要する時間が増大する。
 そこで、図1に戻り、本例では、特徴的なパターンについてのみ、第1の輪郭線(低精度輪郭線)と、第2の輪郭線(高精度輪郭線)との距離を求め(S106)、当該距離情報から補正値を作成する(S108)ことで、高精度輪郭線を形成していない他のパターン部分についても、この補正値を用いて新たな画像処理や電子顕微鏡による走査等を行うことなしに、低精度輪郭線から高精度輪郭線を作成する。
 この補正値は、上記距離値自体でも良いし、実際の測定値との誤差が予め判っているような場合は、その誤差分を含めた値でも良い。また、補正用のデータを作成する場合には、補正値をパターン形状に応じてカテゴライズ(S107)しておき、実際の輪郭線形成に際しては、そのカテゴリに応じた補正値を適用すると良い。これは、パターン形状の種類によって、計測誤差(補正量)が異なるためである。
 なお、第1の輪郭線と第2の輪郭線との距離を測定する場合、第2の取得画像上の第1の輪郭線と第2の輪郭線との間の距離を測定する場合には、各対応点の寸法を求めれば良く、第1の取得画像の第1の輪郭線と第2の取得画像の第2の輪郭線間の寸法を求める場合には、両者の視野の大きさが異なるため、両者の視野を一致させる(一方の画像を拡大、或いは縮小することによって視野の大きさを合わせる)処理を行う。
 以上のようにして得られた補正データを用いて、第1の輪郭線を補正する(S109)ことによって、輪郭線を形成したい試料領域全体に亘って、高度な画像処理アルゴリズム等を用いることなく、高精度な輪郭線を形成することが可能となる。
 本例によれば、広範囲の高精度な輪郭線化と、処理量の抑制の両立を実現することが可能となる。
[実施例1]
 以下、より具体的な実施態様について、図面を用いて説明する。
 図2は、SEMによって得られた情報に基づいて、パターン等の輪郭線を形成する計測、検査システムの概略構成図である。
 本実施の形態に係る計測、検査システムには、SEM本体201、当該SEM本体201の制御装置204、及び演算処理装置205が含まれている。演算処理装置205は、得られた画像から輪郭線を形成する画像処理装置として機能する。制御装置204は、制御信号発生部206に含まれる走査個所設定部217から与えられる信号に基づいて、所望の位置に走査位置を設定するための偏向信号を偏向器202に供給する。偏向器202は、供給される信号に応じて、所望の大きさに視野の大きさ(倍率)を変化させる。制御装置204は、偏向器202の走査と同期して検出器203によって得られた検出信号を配列することによって得られる画像検出信号を生成して、演算処理装置205に供給する。演算処理装置205は、この画像検出信号の画像処理を行う画像処理部207を備えている。また、演算処理装置205には、後述する補正データを作成する補正データベース作成部208、輪郭線間測定部209、及び測定レシピや必要な情報を記憶するメモリ210が内蔵されている。測定レシピは、SEMを自動的に動作させるための動作プログラムであり、測定対象となる試料の種類毎に、上記メモリ210や外部の記憶媒体に記憶され、必要に応じて読み出される。
 試料230から放出された電子は、検出器203にて捕捉され、制御装置204に内蔵されたA/D変換器でデジタル信号に変換される。画像処理部207に内蔵されるCPU、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等の画像処理ハードウェアによって、制御装置204から供給される画像検出信号に対して、目的に応じた画像処理が行われる。また、画像処理部207は、画像検出信号に基づいて、ラインプロファイルを作成する機能をも備えている。
 更に演算処理装置205は、入力手段を備えた入力装置219と接続され、当該入力装置219に設けられた表示装置に、操作者に対して画像や検査結果等を表示するGUI(Graphical User Interface)等の機能を有する。
 なお、演算処理装置205における制御や処理の一部又は全てを、CPUや画像の蓄積が可能なメモリを搭載した電子計算機等に割り振って処理・制御することも可能である。また、入力装置219は、測定,検査等に必要とされる電子デバイスの座標、位置決めに利用するパターンマッチング用のテンプレート、撮影条件等を含む撮像レシピを手動、もしくは電子デバイスの設計データ記憶媒体215に記憶された設計データを活用して作成する撮像レシピ作成装置としても機能する。
 入力装置219は、設計データに基づいて形成される線図画像の一部を切り出して、テンプレートとするテンプレート作成部を備えており、作成されたテンプレートは画像処理部207に内蔵されるマッチング処理部214におけるテンプレートマッチングのテンプレートとして、メモリ210に登録される。テンプレートマッチングは、位置合わせの対象となる撮像画像と、テンプレートが一致する個所を、正規化相関法等を用いた一致度判定に基づいて特定する手法であり、マッチング処理部214は、一致度判定に基づいて、撮像画像の所望の位置を特定する。なお、本実施例では、テンプレートと画像との一致の度合いを一致度や類似度という言葉で表現するが、両者の一致の程度を示す指標という意味では同じものである。また、不一致度や非類似度も一致度や類似度の一態様である。
 以下に説明する実施例は、主に輪郭線形成を行うための装置、及びコンピュータープログラムに関連するものであり、画像処理部207には、輪郭線形成部218が内蔵されている。輪郭線形成部218内には、ホワイトバンド法等の低精度輪郭線を形成するための低精度輪郭線形成部211、低精度輪郭線に基づいて、或いは高度なアルゴリズムに基づいて高精度な輪郭線を形成する高精度輪郭線形成部212、低精度輪郭線を補正する補正輪郭線形成部213、及びマッチング処理部214が備えられている。
 また、輪郭線補正を行うための補正データは、補正データベース作成部208にて作成される。更に補正データのもととなる輪郭線間距離は、輪郭線間測定部209によって測定される。輪郭線間測定部209では、複数の輪郭線間の対応点間を測定する測定アルゴリズムに基づいて両者間距離の測定を行う。
 更に、本実施例では画像取得装置として、SEMを用いた例について説明するが、集束イオンビーム(Focused Ion beam:FIB)装置等、他の荷電粒子線装置に対しても、後述する手法の適用が可能である。
 図9は、補正データベースを作成する工程を示すフローチャートである。
 補正データとは、上述するように、高精度輪郭線と低精度輪郭線との間の寸法に基づいて求められるものであり、正確な輪郭線と考えられる高精度輪郭線と、低精度輪郭線との誤差に関するものである。
 まず、低倍率のSEM画像(第1の取得画像)を取得する(S901)。そのSEM画像に基づいて、ホワイトバンド法等により、低精度輪郭線(第1の輪郭線)を形成する(S902)。なお、補正データを作成するだけであれば、必ずしも低倍率画像を形成する必要はないが、本実施例では、低倍率画像、或いは低精度輪郭線に基づいてテンプレートを作成するため、低倍率画像、或いは低精度輪郭線を形成する。
 図3は、輪郭線化の対象となる試料領域の例を説明する図である。
 ステップS901では、領域301に走査範囲を設定することで、制御信号発生部206は、SEM本体201による領域301のビーム走査を、制御装置204に行わせる。画像処理部207は、制御装置204から供給される領域301の画像検出信号を基に、領域301の画像(第1の取得画像)を取得し(S901)、輪郭線形成部218の低精度輪郭線形成部211が当該取得画像を低精度輪郭線化する(S902)。
 次に、領域301より狭い範囲であって、特徴的なパターンを含む領域302に走査範囲を設定することで、制御信号発生部206は、SEM本体201による領域302のビーム走査を、制御装置204に行わせる。画像処理部207は、制御装置204から供給される領域302の画像検出信号を基に、領域302の高倍率像(第2の取得画像)を取得し(S903)、輪郭線形成部218の高精度輪郭線形成部212が当該取得画像を高精度輪郭線化する(S904)。高精度輪郭線(第2の輪郭線)とは、少なくともステップS902にて行われる輪郭線化処理より高度なアルゴリズムに基づいて行われるものであり、処理量が多い分、高精度に輪郭線化を実現できる手法を用いて形成されるものである。
 このように形成された高精度輪郭線から、パターンの特徴部位を選択する(S905)。例えば特徴部位とはパターン特徴部303のことである。この部位は、パターンの屈曲部であり、同じ形状をなすパターンが領域301に多数含まれていると考えられるパターンである。このステップでは、パターンの特徴的な形状(例えばラインエンド部、コーナー部(インナーコーナー部、アウターコーナー部)、X方向の直線部、Y方向の直線部等)を複数選択することによって、後の補正データベースを構築するための対象パターンを選択する。図3の例では、パターン特徴部303として、ラインエンド部303a、インナーコーナー部303b、アウターコーナー部303c、Y方向の直線部303dが選択されている状態が示されている。
 図4は、輪郭線補正データの類型を示す図である。
 パターンの特徴部は、例えば図4に例示するように、種々の単位で選択することが可能である。例えば図4(a)では、パターンの屈曲部の一部としてラインエンド部全体を選択範囲としているのに対し、図4(b)では、パターンの屈曲部の一部としてインナーコーナー部を選択範囲としている。また、図4(c)では、パターンの屈曲部の一部としてアウターコーナー部を選択範囲としており、図4(d)では、直線パターンを含む領域としてY方向の直線部を選択範囲としている。なお、特徴部の選択は、これら図示の例に限るものではなく、1つの閉図形を選択範囲としたり、例えば2つの屈曲部とXとY方向の2つの直線パターンを含む領域といった所定の複合形状を選択範囲とすることも可能である。
 次にステップS905にて選択した選択領域について、入力装置219に備えられたテンプレート作成部は、ステップS902にて作成した低精度輪郭線から、選択領域の線図画像を抽出し(S906)、当該抽出画像に基づいてテンプレートマッチング用のテンプレートを設定する(S908)。このようなテンプレートを用意する理由については後述する。
 このテンプレート作成部によるステップS906、S908のテンプレート作成工程と並行して、輪郭線間測定部209は、高精度輪郭線と低精度輪郭線との間の寸法を計測する(S907)。
 図5は、低精度輪郭線と高精度輪郭線との間の寸法を測定する例を示す。
 この寸法計測は、例えば図5に例示するように、領域501の中で、高精度輪郭線502と低精度輪郭線503との間の対応点間の寸法を測定することで行われる。このように複数のエッジ間の距離を測定する手法はEPE(Edge Placement Error)計測と呼ばれ、公知の手法の適用が可能である。
 EPE計測によって得られた寸法値、寸法計測方向に基づいて、補正データベース作成部208は、補正データを作成する(S909)。補正データは、寸法値と方向そのものでも良いし、予め寸法値のずれ量が判っているのであれば、そのずれ量を加算した値を補正値とするようにしても良い。
 補正データベース作成部208は、以上のようにして得られた補正データとテンプレートとを関連付けて、例えばメモリ210に、データベースとして記憶する(S910)。
 図6は、データベースの概要を示す図である。
 このデータベースでは、パターンの部位(例えばパターンの外側(アウター)のコーナーや内側(インナー)のコーナー、ラインエンド等)、及び/又はパターンの種類(ライン、コーナー等)毎に、補正量(Correction amount)、補正方向(Direction)、及びテンプレート(Template)が関連付けて記憶されている。図6の例では、図5に示したEPE計測点(EPE point)504,505,506,…の寸法測定結果が、'Corner (outer) 1’の'EPE1','EPE2','EPE3',…の補正量xxx, yyy, zzz,…として記憶されている。テンプレート(Template)には、補正始点となる座標情報が併せて登録されており、当該座標情報を基準に、輪郭線補正を実行する。
 以上のようにして作成された補正データベースに基づいて、輪郭線補正を行う工程を図10に例示する。
 図10は、テンプレートマッチングによって補正対象を特定した上で輪郭線補正を行う工程を示すフローチャートである。なお、図10は、一旦、補正データベースを作成した上で、低倍率画像を形成する例を示しているが、図1に例示するように、低倍率画像形成、及び高倍率画像形成を連続的に行うことによって、補正データの作成と、輪郭線補正を併せて行うようにしても良い。
 まず、画像処理部207は、低倍率のSEM画像を取得し(S1001)、輪郭線形成部218の低精度輪郭線形成部211は、低精度輪郭線を形成する(S1002)。次にマッチング処理部214は、データベースに登録されているテンプレートを用いてパターンマッチングを行う(S1003)。マッチングによって特定された位置(例えば図3の位置304)には、登録された補正データによって補正すべき輪郭線が位置すると判断できることから、マッチングによって特定されたパターン、或いはパターン部位にて、補正輪郭線形成部213は、データベースに登録された補正量を用いた輪郭線補正を実行する(S1004)。輪郭線の補正は、例えば図6に示したデータベースの場合では、低精度輪郭線の所定点(EPE point)について、データベースに登録された補正方向(Direction)に向かって、補正量(Correction amount)分、当該点をずらすことで行われる。なお、補正データはEPE計測点毎に登録しておいても良いし、或る領域のEPE計測結果の統計量等を、当該領域の補正量とするようにしても良い。
 また、コーナー形状やラインエンドの形状がある程度決まっているような場合は、その形状情報を予めデータベースに保存しておいた上で、ライン部の輪郭線を選択的に補正し、ライン幅の変化に応じて、ラインエンドやコーナーの曲率を変えることなく、コーナー等とラインエッジ間を接続するような処理を行うようにしても良い。
 以上のような輪郭線補正を、画像処理部207の輪郭線形成部218は、データベースに登録された複数のテンプレートを用いて実行し、所定数のテンプレートによる補正処理が終了できた場合に(S1005)、画像処理部207を含む演算処理装置205は、次のステップ、例えば、この補正輪郭線を用いた測定、検査処理(S1007)等といった次の処理に移行する。
 また、図示の例では、輪郭線補正処理が終了した段階(S1005)で、まだ、補正処理が行われていない部分が存在する場合には、輪郭線形成部218は、未補正部分について、補完処理等を実行することで、輪郭線補正処理を完成する(S1006)。なお、補完処理(S1006)は必ずしも全てのパターンに対して行う必要はなく、測定個所とは直接関係のない部分であれば、低精度輪郭線のままの状態にしておいても良い。
 ところで、低精度輪郭線が適正に形成されていない場合、マッチング処理部214によるテンプレートマッチングが失敗し、当該部分を同定することができない場合がある。加えて、このようなマッチングが失敗する位置は、欠陥を有する可能性が高い。
 図14は、欠陥候補抽出工程を示すフローチャートであり、図15は、輪郭線の未補正個所の表示例を示す図である。
 このような場合は、図14に例示するように、図10に示したステップS1005によって、補正が終了したと判断された後、輪郭線形成部218は、低精度輪郭線において未補正個所が存在するか否かを判定する(S1401)。未補正個所が存在すると判断された場合に、当該部分を登録、或いは図15に例示するように、第1の取得画像1501上に、未補正個所1502を表示する(S1402)ことによって、欠陥候補を特定することが容易になる。同じ形状のパターンであっても、パターンの配置条件等によって、光近接効果(Optical Proximity Effect: OPE)の影響によりパターンが変形したり、シフトしたりする可能性があるが、図14に例示するような判断ステップを含めることで、パターンの配置条件に由来するパターン変形等を検出することが容易になる。
 図16は、未補正個所が本来の補正対象か否かを判定するための判断工程を示すフローチャートである。
 更に、図16に例示するように、未補正個所がテンプレート登録されていない個所である場合もあるため、未補正個所が本来の補正対象か否かを判定するための判断ステップ(S1601)を設けるようにしても良い。この判定を行うためには、予め設計データと低精度輪郭線との間で、パターンの線分毎、或いはパターン毎に、その対応を検出し、その対応検出に基づいて、設計データが持つパターン情報を、低精度輪郭線情報に付加しておく。そして、登録されているテンプレートのパターン情報と、未補正個所のパターン情報が一致するか否かの判定を行うことによって、欠陥候補の絞り込みを行うことが可能となる。
 また、マッチングは成功したとしても、パターンが部分的に変形している場合があるため、テンプレートに登録された各補正始点と、低精度輪郭線との間で対応を検出し、対応点間の距離が所定値以上となるような場合に、当該部分を欠陥候補として判定するようなアルゴリズムを採用することも可能である。
 図17は、その工程を示すフローチャートである。図18は、低精度輪郭線とテンプレートがマッチングした状態を示す図である。
 まず、テンプレートのエッジ1801(実線)に対し複数登録された補正始点(テンプレートエッジ側の対応点)1802~1804等について、低精度輪郭線1805(点線)上での対応点を検出する(S1701)。対応点の検出法は種々の方法があるが、その中の1つとして、補正始点1802等に最も近い低精度輪郭線1805上の点(対応点1806~1808)を検出する手法がある。次に各補正始点と対応点との間の距離を測定し(S1702)、各測定結果が所定の閾値を超えるか否かの判定を行う(S1703)。そして、閾値を超える対応点は、欠陥の疑いがあるものとして、その座標情報、或いは識別情報等を登録、或いは表示装置に表示させる(S1704)。
 以上のような処理を行うことによって、パターンの部分的な変形の同定が容易になる。
 ステップS1004にて補正された輪郭線は、高精度輪郭線と同等の精度を有するため、この補正輪郭線を用いた測定や検査(S1007)は、高い精度を確保することが可能となる。
 以上、本実施例で説明した補正輪郭線作成方法によれば、高倍率画像を多数取得し、その画像を繋ぎ合わせるような処理を行わなくても、広範囲に亘って高精度な輪郭線形成を行うことが可能となる。特に荷電粒子線装置では、試料にビームを照射することによって帯電が発生する。この帯電が、近接する領域にビームを走査するときに、ビーム軌道を偏向させる等の影響を与える可能性があるが、本実施例に記載の手法によれば、帯電の影響を抑制しつつ、広い範囲の高分解能像を形成することが可能となる。
[実施例2]
 次に、補正データを用いた輪郭線補正を行う際に、補正対象を特定するために、設計データを用いる例について説明する。本実施例では、設計データに基づいてエッジ情報を作成し、当該エッジ情報を用いて、補正対象を特定する例について説明する。設計データに基づいて得られるエッジ情報は、設計データ記憶媒体215に記憶された設計データに基づいて形成されるパターンの理想形状を示す線分画像情報や、シミュレーター216によって、実パターンに近くなるような変形処理が施された線分画像情報である。また、設計データは例えばGDS(Graphic Design Standard)フォーマットやOASIS(Organization for the Advancement of Structured Information Standards)フォーマットなどで表現されており、所定の形式にて記憶されている。なお、設計データは、設計データを表示するソフトウェアがそのフォーマット形式を表示でき、図形データとして取り扱うことができれば、その種類は問わない。
 なお、以下に説明する実施例では、SEMに搭載された制御装置、或いはSEMに通信回線等を経由して接続される演算処理装置205にてマッチング処理や測定処理を実行する例を説明するが、これに限られることはなく、コンピュータープログラムによって、画像処理を実行する汎用の演算装置を用いて、後述するような処理を行うようにしても良い。
 図12は、設計データに基づいて、輪郭線データの線分に識別情報を付加する例を示す図である。
 図13は、設計データに基づいて形成されるパターンエッジと、低精度輪郭線との対応を検出することによって、複数種の輪郭線について、識別情報を付加し、当該識別情報に関連付けて登録されている補正量を用いて、輪郭線を高精度化する工程を示すフローチャートである。
 まず、画像処理部207は、低倍率のSEM画像を取得し(S1301)、輪郭線形成部218の低精度輪郭線形成部211は、低精度輪郭線を形成する(S1302)。次に、マッチング処理部214は、形成された低精度輪郭線と、設計データに基づくパターンエッジとの間でパターンマッチングを実行する(S1303)。設計データに基づくパターンエッジは、GDSフォーマット等で登録されたベクトルデータを線分情報としたものである。また、線分情報に変えて、シミュレーター216によるシミュレーションを経て形成された線分情報であっても良い。設計データは、例えば閉図形を形成する線分毎に識別情報を持っているため、輪郭線との対応を検出することによって、輪郭線の線分に識別情報を付加することができる。図12はその一例を示す図であり、設計データに基づくエッジ1201と、輪郭線1202との間で、パターンマッチングを行うことによって、両者の対応点を検出する例を示している。このように対応点を検出することによって、設計データに基づくエッジ1201が持つ識別情報(図12では、線分情報L1~L6)を輪郭線1202に付加する。例えば、領域1203に含まれる輪郭線1202の対応点には、L2という識別情報が付加され、領域1204に含まれる輪郭線1202の対応点にはL5という識別情報が付加される。なお、識別情報は線分単位の識別情報であっても良いし、Top, Right, Left, Bottomのような線分が属する位置情報のようなものであっても良い。
 以上のようにして、輪郭線形成部218では、輪郭線1202の各線分に識別情報を付加する(S1304)。次に、輪郭線形成部218では、付加された識別情報に基づいて、補正データを読み出す(S1305)。補正データは、例えば図6に例示するようなデータベースを予め設計データのパターン線分の識別情報にも対応するようにして作成しておき、輪郭線1202の識別情報に基づいてデータベースから補正量と補正方向を読み出すようにしても良いし、低精度輪郭線を作成の後、高精度輪郭線を作成し、高精度輪郭線の対応点と低精度輪郭線の対応点との距離を求めることによって、補正量と補正方向を求めるようにしても良い。
 図11は、設計データに基づいて輪郭線データにパターン線分の識別情報を付加し、当該識別情報と輪郭線の補正データを関連付けて、データベースに事前に記憶しておく工程を示したフローチャートである。
 [実施例1]では、図9に示した補正データベースを作成する工程で、補正データを、低倍率画像、或いは低精度輪郭線に基づいて作成したテンプレートに関連付けてデータベースに記憶していたが、本実施例では、この補正データベースを作成する工程で、設計データのパターン線分の識別情報に関連付けてデータベースに記憶するようになっている。
 そのため、図11においては、そのステップS1101~S1103及びステップS1105,S1107の処理は、図9に示したステップS903~S905及びステップS907,S909の処理と同様である。本実施例では、マッチング処理部214は、ステップS1102にて作成した高精度輪郭線からステップS1103にて選択したパターンの特徴部位の高精度輪郭線を抽出し、この抽出した高輝度輪郭線とそれぞれ識別情報が付加された設計データのパターン線分との間のパターンマッチングも行うようになっている(S1104)。そして、輪郭線形成部218では、マッチング処理部214によるステップS1104の処理によって得られた、パターンマッチングした設計データのパターン線分に付加されている識別情報を、このパターンの特徴部位の高精度輪郭線に付加する(S1106)。その上で、ステップS1105,S1107の処理により得られた補正データと、識別情報又は識別情報が付加された高精度輪郭線と関連付けて、例えばメモリ210に、データベースとして記憶するようになっている(S1108)。
 このような補正データベースを基に、輪郭線形成部218では、次に補正輪郭線形成部213が補正データを用いた低精度輪郭線の補正を実施し(S1306)、未補正部分がある場合には、その部分について、補完処理を実施(S1307)することによって補正輪郭線を形成する。
 補正された輪郭線は、高精度輪郭線と同等の精度を有するため、この補正輪郭線を用いた測定や検査(S1308)は、高い精度を確保することが可能となる。
 201 SEM本体、 202 偏向器、 203 検出器、 204 制御装置、
 205 演算処理装置、 206 制御信号発生部、 207 画像処理部、
 208 補正データベース作成部、 209 輪郭線間測定部、 210 メモリ、
 211 低精度輪郭線形成部、 212 高精度輪郭線形成部、
 213 補正輪郭線形成部、 214 マッチング処理部、
 215 設計データ記憶媒体、 216 シミュレーター、
 217 走査個所設定部、 218 輪郭線形成部、 219 入力装置、
 230 試料、
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (5)

  1.  荷電粒子線装置から取得した観察領域の試料画像から、観察領域の試料上に形成されたパターンに係る第1の輪郭線を形成する輪郭線形成部と、
     所定パターン又は所定パターン部位それぞれのテンプレートと、当該テンプレートそれぞれの所定パターン又は所定パターン部位に対応した輪郭線部分の補正データとが対応付けられて記憶されているメモリと、
     前記輪郭線形成部によって形成された第1の輪郭線と、該メモリに記憶されている所定パターン又は所定パターン部位のテンプレートとのパターンマッチングを行うマッチング処理部と、
     該マッチング処理部によって特定されたパターン又はパターン部位に該当する前記輪郭線形成部によって形成された第1の輪郭線の輪郭線部分を、前記メモリに当該マッチングしたテンプレートに対応して記憶されている輪郭線部分の補正データを用いて補正して、前記輪郭線形成部によって形成された第1の輪郭線よりも高精度な第2の輪郭線を形成する補正輪郭線形成部と
    を備えていることを特徴とする画像処理装置。
  2.  前記所定パターン又は所定パターン部位に係る輪郭線部分の補正データは、前記試料画像取得部によって取得された当該所定パターン又は所定パターン部位を含む観察領域の試料画像から第1のエッジ検出部によって検出された当該所定パターン又は所定パターン部位の第1のエッジと、前記試料画像取得部によって取得された当該所定パターン又は所定パターン部位を含む観察領域の試料画像から第1のエッジ検出部よりも高精度な第2のエッジ検出部によって検出された当該所定パターン又はパターン部位の第2のエッジとの間の距離に関する情報を基に作成された補正データである
    ことを特徴とする請求項1記載の画像処理装置。
  3.  観察領域の試料画像を取得する画像取得工程、
     当該取得した試料画像から、観察領域の試料上に形成されたパターンに係る第1の輪郭線を形成する第1の輪郭線形成工程、
     当該形成された第1の輪郭線と、予め記憶されている所定パターン又は所定パターン部位に応じたテンプレートとの間でパターンマッチングを行うマッチング処理工程、
     パターンマッチングによって特定されたパターン又はパターン部位に該当する第1の輪郭線の輪郭線部分を、当該マッチングしたテンプレートに対応して定められている輪郭線の補正データを用いて補正して、第1の輪郭線よりも高精度な第2の輪郭線を形成する第2の輪郭線形成工程、
    を有することを特徴とする輪郭線形成方法。
  4.  前記所定パターン又は所定パターン部位に係る第1の輪郭線の輪郭線部分の補正データには、当該所定パターン又はパターン部位を含む観察領域の試料画像から得た、当該所定パターン又はパターン部位の第1のエッジと、当該所定パターン又はパターン部位の第1のエッジよりも高精度な第2のエッジとの間の距離に関する情報を基に作成された補正データを用いる
    ことを特徴とする請求項3記載の輪郭線形成方法。 
  5.  コンピューターに、画像処理装置として、
     観察領域の試料画像を取得する画像取得工程、
     当該取得した試料画像から、観察領域の試料上に形成されたパターンに係る第1の輪郭線を形成する第1の輪郭線形成工程、
     当該形成された第1の輪郭線と、予め記憶されている所定パターン又は所定パターン部位に応じたテンプレートとの間でパターンマッチングを行うマッチング処理工程、
     パターンマッチングによって特定されたパターン又はパターン部位に該当する第1の輪郭線の輪郭線部分を、当該マッチングしたテンプレートに対応して定められている輪郭線の補正データを用いて補正して、第1の輪郭線よりも高精度な第2の輪郭線を形成する第2の輪郭線形成工程、
    を実行させるためのプログラム。
PCT/JP2012/082060 2011-12-16 2012-12-11 画像処理装置、輪郭線形成方法、及びコンピュータープログラム WO2013089096A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011275613A JP2013125511A (ja) 2011-12-16 2011-12-16 画像処理装置、輪郭線形成方法、及びコンピュータープログラム
JP2011-275613 2011-12-16

Publications (1)

Publication Number Publication Date
WO2013089096A1 true WO2013089096A1 (ja) 2013-06-20

Family

ID=48612543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082060 WO2013089096A1 (ja) 2011-12-16 2012-12-11 画像処理装置、輪郭線形成方法、及びコンピュータープログラム

Country Status (2)

Country Link
JP (1) JP2013125511A (ja)
WO (1) WO2013089096A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187343A1 (ja) * 2012-06-15 2013-12-19 株式会社 日立ハイテクノロジーズ オーバーレイ誤差測定装置、及びコンピュータープログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091231A (ja) * 1999-09-22 2001-04-06 Toshiba Corp 微細パターン測定方法、微細パターン測定装置及び微細パターン測定プログラムを記録した記録媒体
WO2007094439A1 (ja) * 2006-02-17 2007-08-23 Hitachi High-Technologies Corporation 試料寸法検査・測定方法、及び試料寸法検査・測定装置
JP2009043937A (ja) * 2007-08-09 2009-02-26 Hitachi High-Technologies Corp パターン測定装置
JP2009194051A (ja) * 2008-02-13 2009-08-27 Hitachi High-Technologies Corp パターン生成装置およびパターン形状評価装置
WO2010073360A1 (ja) * 2008-12-26 2010-07-01 株式会社アドバンテスト パターン測定装置及びパターン測定方法
JP2011180066A (ja) * 2010-03-03 2011-09-15 Horon:Kk 画像比較方法および画像比較プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091231A (ja) * 1999-09-22 2001-04-06 Toshiba Corp 微細パターン測定方法、微細パターン測定装置及び微細パターン測定プログラムを記録した記録媒体
WO2007094439A1 (ja) * 2006-02-17 2007-08-23 Hitachi High-Technologies Corporation 試料寸法検査・測定方法、及び試料寸法検査・測定装置
JP2009043937A (ja) * 2007-08-09 2009-02-26 Hitachi High-Technologies Corp パターン測定装置
JP2009194051A (ja) * 2008-02-13 2009-08-27 Hitachi High-Technologies Corp パターン生成装置およびパターン形状評価装置
WO2010073360A1 (ja) * 2008-12-26 2010-07-01 株式会社アドバンテスト パターン測定装置及びパターン測定方法
JP2011180066A (ja) * 2010-03-03 2011-09-15 Horon:Kk 画像比較方法および画像比較プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187343A1 (ja) * 2012-06-15 2013-12-19 株式会社 日立ハイテクノロジーズ オーバーレイ誤差測定装置、及びコンピュータープログラム
US9696150B2 (en) 2012-06-15 2017-07-04 Hitachi High-Technologies Corporation Overlay error measuring device and computer program

Also Published As

Publication number Publication date
JP2013125511A (ja) 2013-06-24

Similar Documents

Publication Publication Date Title
JP5988615B2 (ja) 半導体評価装置、及びコンピュータープログラム
US9141879B2 (en) Pattern matching method, image processing device, and computer program
JP5568277B2 (ja) パターンマッチング方法、及びパターンマッチング装置
JP4262592B2 (ja) パターン計測方法
JP4262690B2 (ja) 形状測定装置および形状測定方法
US8867818B2 (en) Method of creating template for matching, as well as device for creating template
JP5639925B2 (ja) パターンマッチング装置、及びコンピュータープログラム
JP5937878B2 (ja) パターンマッチング方法及び装置
US8994815B2 (en) Method of extracting contour lines of image data obtained by means of charged particle beam device, and contour line extraction device
WO2013168487A1 (ja) 欠陥解析支援装置、欠陥解析支援装置で実行されるプログラム、および欠陥解析システム
US20090202137A1 (en) Method and apparatus for image generation
JP2009043937A (ja) パターン測定装置
JP6063630B2 (ja) パターン計測装置、及び半導体計測システム
US10255519B2 (en) Inspection apparatus and method using pattern matching
JP7001494B2 (ja) ウェハ観察装置
WO2017130365A1 (ja) オーバーレイ誤差計測装置、及びコンピュータープログラム
WO2012029220A1 (ja) 半導体製造装置の管理装置、及びコンピュータプログラム
WO2013089096A1 (ja) 画像処理装置、輪郭線形成方法、及びコンピュータープログラム
US10937628B2 (en) Charged particle beam device
JP6018802B2 (ja) 寸法測定装置、及びコンピュータープログラム
JP6207893B2 (ja) 試料観察装置用のテンプレート作成装置
US20230194253A1 (en) Pattern Inspection/Measurement Device, and Pattern Inspection/Measurement Program
WO2013122020A1 (ja) 荷電粒子線装置、及び荷電粒子線装置の動作条件設定装置
US20240046445A1 (en) Shape localization for examining a semiconductor specimen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858664

Country of ref document: EP

Kind code of ref document: A1