WO2013088951A1 - 位置測定装置 - Google Patents

位置測定装置 Download PDF

Info

Publication number
WO2013088951A1
WO2013088951A1 PCT/JP2012/080678 JP2012080678W WO2013088951A1 WO 2013088951 A1 WO2013088951 A1 WO 2013088951A1 JP 2012080678 W JP2012080678 W JP 2012080678W WO 2013088951 A1 WO2013088951 A1 WO 2013088951A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrival time
candidates
specified
coordinate
wave
Prior art date
Application number
PCT/JP2012/080678
Other languages
English (en)
French (fr)
Inventor
将之 本田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to EP12858300.2A priority Critical patent/EP2793044B1/en
Priority to JP2013549195A priority patent/JP6032211B2/ja
Priority to CN201280061059.0A priority patent/CN103988092B/zh
Publication of WO2013088951A1 publication Critical patent/WO2013088951A1/ja
Priority to US14/301,052 priority patent/US9494684B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/30Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/42Simultaneous measurement of distance and other co-ordinates

Definitions

  • the present invention relates to a position measuring device that measures the position of an object using ultrasonic waves.
  • Non-Patent Document 1 described below describes a position measurement device that measures a distance from an object using ultrasonic waves and calculates a three-dimensional coordinate of the object based on the measured distance.
  • the position measurement apparatus described in Non-Patent Document 1 below transmits ultrasonic waves upward from the ground, and receives reflected waves reflected by the model airplane in flight upward by three receivers.
  • this position measuring device specifies the timing at which the reflected wave is received by each receiver based on the received wave of each receiver. Subsequently, based on the specified timing, the propagation distance until the transmitted ultrasonic wave is reflected by the model airplane and received by each receiver is calculated. And this position measuring device calculates the three-dimensional coordinate of a model airplane based on three propagation distances obtained by each receiver.
  • the received wave contains various noises.
  • ultrasonic waves reflected from objects other than the measurement target object may be included in the received wave as noise.
  • the timing at which the reflected wave is received may be erroneously specified. Therefore, an error occurs when the arrival time from when the ultrasonic wave is transmitted to when it is reflected by the object and reaches the receiver is determined, and the propagation distance calculated using the arrival time includes the error. Further, since the three-dimensional coordinates are calculated using the propagation distances for each of the three receivers, errors of the three propagation distances are superimposed on the calculation result. Therefore, the accuracy of the three-dimensional coordinates obtained as a calculation result is lowered.
  • the present invention has been made to solve the above problems, and in a position measurement device that measures the three-dimensional coordinates of an object using ultrasonic waves, it is possible to reduce the influence of noise and increase measurement accuracy.
  • An object is to provide a possible position measuring device.
  • a position measuring apparatus is a position measuring apparatus that measures the position of an object using ultrasonic waves, a transmitter that transmits ultrasonic waves, at least three receivers that receive ultrasonic waves, and a receiver.
  • a time specifying unit that specifies, for each receiver, arrival time candidates from when an ultrasonic wave is transmitted to when it is reflected by an object and reaches a receiver based on the received wave received by at least one reception
  • a plurality of three-dimensional data indicating a position of an object based on a time specifying unit that specifies a plurality of arrival time candidates for a device, a arrival time candidate specified by the time specifying unit, and a relative position of a transmitter and a receiver
  • a coordinate calculation unit that calculates a coordinate candidate, and a coordinate specification unit that specifies a three-dimensional coordinate of the object based on a plurality of three-dimensional coordinate candidates calculated by the coordinate calculation unit.
  • a plurality of arrival time candidates from when an ultrasonic wave is transmitted to when it is reflected by an object and reaches the receiver are specified based on the received wave.
  • noise is included in the received wave, so if one arrival time is specified from the received wave, there is a high possibility that an incorrect arrival time is specified due to the influence of noise. That is, there is a high possibility that the arrival time with high accuracy cannot be specified.
  • this invention since several arrival time candidates are specified, possibility that an arrival time with high precision will be specified can be raised.
  • the probability of obtaining a highly accurate three-dimensional coordinate candidate increases. Further, since the three-dimensional coordinates of the object are specified based on the plurality of three-dimensional coordinate candidates, it is possible to improve the possibility of obtaining highly accurate three-dimensional coordinates. Therefore, in the position measurement device that measures the three-dimensional coordinates of an object using ultrasonic waves, it is possible to reduce the influence of noise and increase the measurement accuracy.
  • a storage unit that stores in advance a direct wave that is transmitted from the transmitter, directly reaches the receiver without being reflected by an object and is received by the receiver, and received by the receiver.
  • the time specifying unit specifies the arrival time candidate based on the timing when the peak in the envelope of the reflected wave acquired by the reflected wave acquiring unit occurs.
  • the time specifying unit is based on the timing of a predetermined number of reflected wave peaks generated immediately before and / or immediately after the peak in the reflected wave envelope among the reflected wave peaks. It is preferable to specify arrival time candidates.
  • arrival time candidates are specified for a predetermined number of reflected wave peaks generated immediately before and / or immediately after the envelope peak.
  • the surrounding peak where the envelope peak occurs among the reflected wave peaks may actually indicate the timing when the ultrasonic wave reaches the receiver. ing. Therefore, by specifying arrival time candidates for a predetermined number of reflected wave peaks that occurred immediately before and / or immediately after the peak of the envelope, the influence of noise is reduced, and more accurate arrival time candidates are specified. can do. As a result, the measurement accuracy can be further increased.
  • the transmitter transmits the modulated ultrasonic wave
  • the time specifying unit is configured to obtain a mutual relationship between the reflected wave acquired by the reflected wave acquiring unit and the direct wave stored in the storage unit. It is preferable to calculate a correlation function and identify arrival time candidates based on the cross-correlation function.
  • the time resolution can be improved in specifying the arrival time candidate in the above case. Moreover, the influence of noise can be reduced. Accordingly, it is possible to specify arrival time candidates with higher accuracy and further increase measurement accuracy.
  • the transmitter transmits an ultrasonic wave according to the modulated drive signal
  • the time specifying unit is a cross-correlation function between the reflected wave acquired by the reflected wave acquisition unit and the drive signal. It is preferable to determine arrival time candidates based on the cross-correlation function.
  • the time resolution can be improved in specifying the arrival time candidate in the above case. Moreover, the influence of noise can be reduced. Accordingly, it is possible to specify arrival time candidates with higher accuracy and further increase measurement accuracy.
  • the time specifying unit is used for calculating the propagation distance calculated for each of the specified plurality of arrival time candidates and the three-dimensional coordinates specified by the coordinate specifying unit during the previous processing. It is preferable to determine whether to exclude each of the plurality of arrival time candidates based on the propagation distance.
  • each arrival time candidate is selected based on the propagation distance obtained during the previous processing. For example, if the difference between the propagation distance obtained during the previous processing and the propagation distance of each arrival time candidate specified this time is equal to or greater than a threshold value, the arrival time candidate is excluded. As a result, a propagation distance far from the previous propagation distance can be excluded. Therefore, the measurement accuracy can be further increased.
  • the coordinate calculation unit is configured to use three-dimensional coordinates for all combinations of arrival time candidates selected one by one for each receiver from the plurality of arrival time candidates specified by the time specifying unit. It is preferable to calculate candidates.
  • the coordinate specifying unit selects the coordinate having the closest distance from the three-dimensional coordinate specified at the previous processing among the plurality of three-dimensional coordinate candidates calculated by the coordinate calculating unit. It is preferable to specify it as a dimensional coordinate.
  • the coordinate having the closest distance among the plurality of three-dimensional coordinate candidates is specified as the three-dimensional coordinate of the object.
  • the coordinates closer to the coordinates than the previous three-dimensional coordinates are more likely to be closer to the actual coordinates. Therefore, the most probable coordinates can be specified based on the three-dimensional coordinates obtained at the previous processing. That is, the measurement accuracy can be further increased.
  • the coordinate specifying unit determines the three-dimensional coordinates specified by the current process based on the distance between the three-dimensional coordinates specified by the previous process and the three-dimensional coordinates specified by the current process. It is preferable to determine whether or not to allow.
  • the position measurement device includes a determination unit that determines whether or not the measurement target object exists within the measurement range, and the storage unit determines that the measurement target object does not exist within the measurement range.
  • the received wave received by the receiver when determined is stored as a direct wave.
  • the direct wave can be automatically acquired and stored. Since the sound speed changes depending on the external environment such as the air temperature and the flow velocity of the medium, the timing at which the direct wave reaches the receiver varies depending on the external environment.
  • the direct wave obtained in the environment where a position is actually measured can be memorize
  • the transmitter and the three receivers are arranged on the same plane and are arranged at the positions of the respective vertices of the rectangle.
  • the three-dimensional coordinates can be specified if arrival time candidates in the three receivers are obtained. That is, three or more receivers are not required, and three-dimensional coordinates can be specified by three receivers.
  • the transmitter and the three receivers are respectively arranged at the positions of the respective vertices of the rectangle, the three-dimensional coordinates of the object located in the area including the front and the periphery of the area surrounded by the rectangle are specified. Can do.
  • the position measuring device of the present invention is mounted on a device in which a display is arranged in a region surrounded by a rectangle, the three-dimensional coordinates of the finger moved by the user according to the display on the display can be measured without contact.
  • the position measuring device of the present invention can function as an input device.
  • the present invention in a position measurement device that measures the three-dimensional coordinates of an object using ultrasonic waves, it is possible to reduce the influence of noise and increase measurement accuracy.
  • FIG. 1 is a block diagram showing a configuration of the position measuring apparatus 1.
  • the position measuring device 1 is a device that measures the three-dimensional coordinates of an object using ultrasonic waves. More specifically, the position measurement apparatus 1 includes a transmitter 10 that transmits ultrasonic waves and three receivers 11 to 13 that receive ultrasonic waves. The arrival time until reaching the receivers 11 to 13 is obtained.
  • the position measurement device 1 obtains a plurality of arrival time candidates in consideration of the influence of noise of the received wave.
  • the position measuring apparatus 1 calculates a plurality of three-dimensional coordinate candidates of the object based on a plurality of arrival time candidates of the three receivers 11 to 13, and specifies one coordinate as the three-dimensional coordinate of the object.
  • FIG. 2 is a diagram illustrating an example of a usage pattern of the position measurement apparatus 1.
  • the position measurement device 1 measures the three-dimensional coordinates of the fingertip in a non-contact manner.
  • the position measuring device 1 can measure the finger movement by continuously measuring the three-dimensional coordinates of the fingertip.
  • the transmitter 10 and the three receivers 11 to 13 are arranged on the same plane, and the area including the front of the plane is the measurement range. In the example of FIG. 2, the transmitter 10 and the three receivers 11 to 13 are respectively arranged at the positions of the vertices of the square.
  • the transmitter 10 and the three receivers 11 to 13 are arranged at the positions of the vertices of a square having a side length of about 6 cm, the distance from the plane is within about 10 cm and the side is about 12 cm.
  • the area is the measurement range.
  • the position measuring device 1 can be mounted on a device 100 having a rectangular display 101 so that the position measuring device 1 functions as an input device.
  • a smartphone is shown as an example of the device 100.
  • the smartphone is a portable phone having a display that displays not only characters but also various information such as images.
  • the transmitter 10 and the three receivers 11 to 13 are arranged outside the four corners of the rectangular display 101, respectively.
  • the position measurement apparatus 1 can continuously measure the three-dimensional coordinates of the fingertip of the index finger located within the measurement range in front of the display 101 without contact.
  • the position measuring device 1 functions as a non-contact input device.
  • the signal processing unit 20 includes a transmission signal generation unit 21 and a drive circuit 22 in order to drive the transmitter 10.
  • the transmission signal generation unit 21 generates a drive signal having an ultrasonic frequency and outputs the drive signal to the drive circuit 22.
  • the drive circuit 22 amplifies the input drive signal and supplies it to the transmitter 10.
  • the transmitter 10 includes, for example, a resonator configured using piezoelectric ceramics, and the resonator resonates due to an input drive signal. Thereby, an ultrasonic wave is transmitted.
  • the transmission signal generator 21 outputs a drive signal in a burst manner, and the ultrasonic waves are transmitted in a burst manner by the transmitter 10.
  • the burst cycle is about 10 ms, and after the ultrasonic waves are transmitted for about 0.3 ms, the ultrasonic waves reflected back to the object and received by the receivers 11 to 13 are received until the next cycle.
  • the In FIG. 2, the transmission wave S transmitted from the transmitter 10 is schematically drawn, but the waveform of the transmission wave S actually transmitted from the transmitter 10 has a small amplitude at the start portion and the end portion. . This is because the vibration of the resonator is small immediately after the driving of the transmitter 10 is started. The end portion is due to the reverberation of the resonator remaining after the output of the drive signal is completed.
  • the signal processing unit 20 includes amplifiers / filters 31 to 33 and A / D converters 34 to 36 that function as input interfaces for received signals (received waves) received by the receivers 11 to 13, respectively.
  • Value acquisition units 37 to 39 are provided.
  • the amplifier / filters 31 to 33 are configured by an amplifier circuit, a filter circuit, and the like.
  • the amplifiers / filters 31 to 33 amplify the reception signals received by the receivers 11 to 13, remove signals other than the desired frequency, and output the signals to the A / D converters 34 to 36.
  • a / D converters 34 to 36 convert input analog signals into digital data.
  • the A / D value acquisition units 37 to 39 control the operations of the A / D converters 34 to 36, respectively, and acquire the reception signals converted into digital data by the A / D converters 34 to 36. That is, reception signals indicating reception waves received by the receivers 11 to 13 are acquired by the A / D value acquisition units 37 to 39.
  • the signal processing unit 20 includes an arithmetic processing unit 40 that processes the obtained received wave (reception signal) and calculates the three-dimensional coordinates of the object.
  • the arithmetic processing unit 40, the transmission signal generation unit 21, and the A / D value acquisition units 37 to 39 described above are configured by a CPU, a ROM, a RAM, and the like.
  • the program stored in the ROM is executed by the CPU, the functions of the arithmetic processing unit 40, the transmission signal generation unit 21, and the A / D value acquisition units 37 to 39 are realized.
  • an ASIC, FPGA, DSP, or the like may be used.
  • the arithmetic processing unit 40 functionally includes a storage unit 41, a reflected wave acquisition unit 42, a time specifying unit 43, a coordinate calculating unit 44, and a coordinate specifying unit 45.
  • the storage unit 41 stores a waveform of a direct wave.
  • the direct wave is not reflected by the object but directly reaches the receivers 11 to 13 from the transmitter 10 and is received by the receivers 11 to 13.
  • the storage unit 41 stores direct waves in association with the respective receivers 11 to 13. These three direct waves are stored in the storage unit 41 in advance prior to actual three-dimensional measurement.
  • the reflected wave acquisition unit 42 inputs the reception signals (reception waves) acquired by the A / D value acquisition units 37 to 39. A direct wave and a reflected wave are superimposed on this received wave.
  • the reflected wave is an ultrasonic wave that is transmitted by the transmitter 10, reflected by an object, reaches the receivers 11 to 13, and is received.
  • the reflected wave acquisition unit 42 subtracts the waveform of the direct wave stored in the storage unit 41 from the waveform of each received wave in order to acquire the reflected wave.
  • FIG. 4 is a diagram showing waveforms of a direct wave, a received wave, and a reflected wave obtained in the position measuring apparatus 1.
  • the waveform (a) indicates a direct wave, which is a waveform received by the receiver 11 when there is no reflecting object in the measurement range.
  • the waveform of (b) is a waveform received by the receiver 11 when there is a reflective object to be measured within the measurement range.
  • the waveform of (c) shows the reflected wave of the receiver 11, and is a waveform obtained by subtracting the waveform of (a) from the waveform of (b).
  • the reflected waves from the receivers 12 and 13 are acquired in the same manner.
  • the reflected wave is obtained by subtracting the direct wave from the received wave, the propagation time of the ultrasonic wave reaching the receivers 11 to 13 without being reflected by the object is prevented from being erroneously specified as the arrival time candidate. it can.
  • the time specifying unit 43 specifies arrival time candidates for each of the receivers 11 to 13 based on each reflected wave obtained by the reflected wave acquiring unit 42.
  • the arrival time candidate is a propagation time candidate from when the ultrasonic wave is transmitted by the transmitter 10 until it reaches the receivers 11 to 13 after being reflected by the object.
  • the time specifying unit 43 specifies a plurality of arrival time candidates for each of the three receivers 11 to 13.
  • the arrival time candidates include a candidate identified based on the timing at which the peak of the reflected wave envelope occurs, and a predetermined number of reflected wave peaks generated immediately before and immediately after the envelope peak of the reflected wave peaks. And candidates identified based on the timing of.
  • the specifying method by the time specifying unit 43 will be described.
  • 5A to 5C show reflected waves obtained by the three receivers 11 to 13, respectively.
  • a method for specifying arrival time candidates for the receiver 11 will be specifically described with reference to the waveform of (a).
  • the time specifying unit 43 specifies i peaks (peak1 [i]) that are equal to or higher than a predetermined threshold among the peaks of the envelope of the reflected wave in order from the top.
  • the parameter i 2. That is, peak1 [0] and peak1 [1] are specified. In this way, the peak of the envelope of the reflected wave is specified, and processing is not performed for every peak of the reflected wave, so that the processing load can be reduced.
  • the time specifying unit 43 includes the j reflected wave peaks (peak1m [i] [j]) generated immediately before the envelope peak (peak1 [i]) and the envelope peak (peak1 [i] ]) J peaks of reflected waves (peak1p [i] [j]) generated immediately after.
  • the parameter j 1. That is, peak1m [0] [0], peak1p [0] [0], peak1m [1] [0], and peak1p [1] [0] are specified. This is because the peak around the envelope peak among the reflected wave peaks may actually indicate the timing at which the ultrasonic waves reach the receivers 11-13.
  • the time specifying unit 43 calculates the time from when the ultrasonic wave is transmitted to when the specified peak occurs. This time is the arrival time candidate t 1 for the receiver 11.
  • the arrival time candidate t 1 for the receiver 11.
  • six arrival time candidate t 1 is identified.
  • six arrival time candidates t 2 and t 3 are specified based on the reflected waves in FIGS. 5B and 5C, respectively.
  • Parameters i and j can be set arbitrarily.
  • the arrival time candidates t 1 to t 3 specified by the above processing include those due to the influence of noise. Therefore, the time specifying unit 43 performs a plurality of arrival times for each of the receivers 11 to 13 on the basis of the propagation distance used for the calculation of the three-dimensional coordinates specified at the time of processing before one burst, that is, the previous processing. It is determined whether to exclude each candidate.
  • the receiver 11 will be described in detail.
  • the time specifying unit 43 determines the propagation speed of the receiver 11 used for the calculation of the three-dimensional coordinates specified during the previous process and the sound speeds for the six arrival time candidates t 1. The difference from the propagation distance v ⁇ t 1 obtained by multiplying v is obtained. Then, the time specifying unit 43 excludes the arrival time candidate t 1 the difference is equal to or larger than the threshold d from the candidates.
  • the threshold value d is set depending on the maximum moving speed of the object allowed in the position measuring device 1.
  • the allowable maximum moving speed is set to about 1 m / s and the threshold value d is set to about 10 mm.
  • the time specifying unit 43 determines whether to exclude the six arrival time candidates t 2 and t 3 of the receivers 12 and 13, respectively.
  • the candidates can be narrowed down only to a relatively high arrival time.
  • arrival time candidates are selected at this stage, the amount of subsequent coordinate calculation can be reduced.
  • the coordinate calculation unit 44 uses the arrival time candidates t 1 to t 3 whose difference from the propagation distance at the previous processing is less than the threshold d, that is, based on the selected arrival time candidates t 1 to t 3 .
  • a plurality of three-dimensional coordinate candidates indicating positions are calculated.
  • the three-dimensional coordinates of the transmitter 10 are (0, 0, 0)
  • the receiver 11 is (x 1 , y 1 , 0)
  • the receiver 12 is (x 2 , y 2 , 0)
  • the receiver 13 Is (x 3 , y 3 , 0)
  • the speed of sound is v, the following simultaneous equations (1) hold.
  • the coordinate calculation unit 44 solves the simultaneous equations (1) for all combinations of arrival time candidates selected for each of the receivers 11 to 13 from the plurality of arrival time candidates t 1 to t 3. 3D coordinate candidates are calculated. Thereby, a plurality of three-dimensional coordinate candidates are calculated. The number of all combinations, that is, the number of calculated three-dimensional coordinate candidates is the maximum number when none of the above-described selection processing is excluded. In this case, ((2j + 1) i) three three-dimensional coordinate candidates are calculated.
  • the coordinate specification unit 45 specifies the three-dimensional coordinates of the object based on the plurality of three-dimensional coordinate candidates calculated by the coordinate calculation unit 44.
  • the coordinate specifying unit 45 specifies, as a three-dimensional coordinate of the object, a coordinate having the closest distance to the three-dimensional coordinate specified during the previous processing (one burst before) among a plurality of three-dimensional coordinate candidates. .
  • the plurality of three-dimensional coordinate candidates it is considered that a coordinate closer to the actual coordinate is closer to a coordinate closer to the previous three-dimensional coordinate. Therefore, highly accurate three-dimensional coordinates can be obtained by adopting the above-mentioned standard when continuously measuring the three-dimensional coordinates of an object.
  • the coordinate specifying unit 45 determines whether or not to allow the 3D coordinates specified by the current process based on the distance between the 3D coordinates specified during the previous process and the 3D coordinates specified by the current process. judge. Specifically, the coordinate specifying unit 45 does not allow the measurement result when the distance between the three-dimensional coordinate specified in the previous process and the three-dimensional coordinate specified by the current process is equal to or greater than the threshold value D. , Do not output.
  • the threshold value D the same value as the threshold value d described above can be used. Thereby, when the three-dimensional coordinate which shows the position far from the position of the three-dimensional coordinate obtained at the time of the last process is specified, it can exclude. Therefore, errors in measurement results can be prevented.
  • FIG. 6 is a flowchart showing a processing procedure of arrival time candidate specifying processing. The process of FIG. 6 is repeatedly executed for each burst cycle in which ultrasonic waves are transmitted.
  • the drive signal is output to the drive circuit 22 by the transmission signal generator 21, and the ultrasonic wave is transmitted by the transmitter 10.
  • the transmitted ultrasonic waves are received by the receivers 11 to 13, respectively.
  • the reflected wave is acquired by the reflected wave acquisition unit 42 by subtracting the direct wave stored in the storage unit 41 from the received wave.
  • step S102 for each of the receivers 11 to 13, i peaks of the envelope of the reflected wave are specified, and arrival time candidates are specified based on the peaks.
  • step S103 the peaks before and after the envelope of the reflected wave are also specified, and the arrival time specified based on the peak is added to the candidate.
  • the propagation distance is calculated by multiplying each arrival time candidate by the speed of sound.
  • step S105 it is determined whether or not the propagation distance used for the calculation of the three-dimensional coordinates finally specified in the process before one burst is held.
  • step S106 the propagation distances calculated in step S104 that have a difference from the propagation distance of one burst before the threshold d are excluded.
  • step S106 the arrival time candidates obtained in steps S102 and S103 are selected. In this case, the next three-dimensional coordinate specifying process is performed using the selected arrival time candidates. When all the arrival time candidates are excluded from at least one of the three receivers 11 to 13, a signal indicating that no object is present in the measurement range is output.
  • the arrival time candidate specifying process ends. In this case, the next three-dimensional coordinate specifying process is performed using all arrival time candidates obtained in steps S102 and S103.
  • FIG. 7 is a flowchart showing a processing procedure for specifying the three-dimensional coordinates.
  • the process of FIG. 7 is repeatedly executed by the coordinate calculation unit 44 and the coordinate specification unit 45 for each burst cycle in which arrival time candidates are specified.
  • step S111 three-dimensional coordinate candidates for all combinations of arrival time candidates t 1 to t 3 selected one by one for each of the receivers 11 to 13 from the plurality of arrival time candidates t 1 to t 3. Is calculated.
  • step S112 it is determined whether or not the three-dimensional coordinates finally specified in the process before one burst are held. If not, the process proceeds to step S113.
  • step S113 it is determined whether or not the plurality of three-dimensional coordinate candidates calculated in step S111 have coordinates within the measurement range.
  • step S114 the three-dimensional coordinate data calculated in step S111 is discarded. In this case, a signal indicating that the object does not exist within the measurement range is output.
  • step S115 the 3D coordinate candidate within the measurement range is specified as the 3D coordinate of the object.
  • one coordinate is specified as the three-dimensional coordinate of the object based on a predetermined reference. For example, the coordinate closest to the center coordinate of the measurement range is specified as the three-dimensional coordinate of the object.
  • step S112 when the three-dimensional coordinates finally specified in the process before one burst are held, the process proceeds to step S116.
  • step S116 the coordinate closest to the one-burst previous coordinate among the plurality of three-dimensional coordinate candidates calculated in step S111 is specified as the three-dimensional coordinate of the object.
  • step S117 it is determined whether or not the distance between the coordinates one burst before and the coordinates specified in S116 is equal to or less than a threshold value d. If the distance is greater than the threshold value d, the process proceeds to step S114.
  • step S114 the three-dimensional coordinate data calculated in step S111 is discarded, and a signal indicating that the object does not exist within the measurement range is output.
  • step S117 when the distance between the coordinates one burst before and the coordinates specified in S116 is equal to or less than the threshold value d, the process proceeds to step S118.
  • step S118 the coordinates specified in S116 are finally specified and output as the three-dimensional coordinates of the object.
  • a plurality of arrival time candidates are specified, so that the possibility that the arrival time with high accuracy is included in the candidates can be increased. Since a plurality of three-dimensional coordinate candidates are calculated based on the plurality of specified arrival time candidates, the probability of obtaining a highly accurate three-dimensional coordinate candidate increases. Since the three-dimensional coordinates of the object are specified based on the plurality of three-dimensional coordinate candidates, the possibility of obtaining highly accurate three-dimensional coordinates can be improved. Therefore, in the position measurement device that measures the three-dimensional coordinates of an object using ultrasonic waves, it is possible to reduce the influence of noise and increase the measurement accuracy.
  • arrival time candidates are also specified for a predetermined number of reflected wave peaks generated immediately before and immediately after the envelope peak among the reflected wave peaks. Therefore, the influence of noise can be reduced and a more accurate arrival time candidate can be specified. As a result, the measurement accuracy can be further increased.
  • the arrival time candidate when the difference between the propagation distance obtained during the previous processing and the propagation distance of each arrival time candidate specified this time is equal to or greater than the threshold, the arrival time candidate is excluded.
  • each arrival time candidate is selected based on the propagation distance obtained during the previous process. Therefore, arrival time candidates with a high probability of being erroneous can be excluded. Therefore, the measurement accuracy can be further increased.
  • three-dimensional coordinate candidates are calculated for all combinations of arrival time candidates selected one by one for each of the receivers 11 to 13 from the plurality of arrival time candidates t 1 to t 3. .
  • three-dimensional coordinate candidates are calculated for the number of combinations.
  • the three-dimensional coordinates of the object are specified based on the calculated three-dimensional coordinate candidates. As described above, since the coordinates of the object are specified after listing the three-dimensional coordinate candidates obtained by all combinations of arrival time candidates, it is possible to further improve the measurement accuracy.
  • the coordinate closest to the 3D coordinate specified during the previous process is specified as the 3D coordinate of the object.
  • the coordinate closer to the previous three-dimensional coordinate than the coordinate far from the previous three-dimensional coordinate is considered high. Therefore, the most probable coordinate can be specified from a plurality of three-dimensional coordinate candidates, and the measurement accuracy can be further improved.
  • whether or not the three-dimensional coordinate specified by the current process is acceptable based on the distance between the three-dimensional coordinate specified by the previous process and the three-dimensional coordinate specified by the current process is determined. Determined. Thereby, when the three-dimensional coordinate which shows the position far from the position of the three-dimensional coordinate obtained at the time of the last process is specified, it can exclude. Since the validity of the coordinates obtained in this way is determined, errors in measurement results can be prevented.
  • the fingertip of the index finger is taken as an example of the measurement target.
  • the object other than the measurement target there is a possibility that the ultrasonic wave reflected from the light is included in the received wave (reflected wave) as noise.
  • the propagation distance of the reflected wave with respect to the distance between the transmitter 10 and the receivers 11 to 13 is relatively short, so that the direct wave and the reflected wave are included in the received wave. overlapping.
  • FIG. 8 is a block diagram showing a configuration of the position measuring device 2.
  • the position measurement apparatus 1 according to the first embodiment described above identifies a plurality of arrival time candidates from the peak of the reflected wave.
  • the position measuring device 2 according to the second embodiment transmits an ultrasonic wave modulated by modulating the drive signal, and a plurality of arrival times based on the cross-correlation function between the reflected wave and the drive signal. Identify candidates.
  • the description of the position measuring device 2 that is the same as the position measuring device 1 described above will be omitted, and different points will be mainly described.
  • the position measuring device 2 includes a frequency modulation unit 51 that modulates the drive signal.
  • the frequency modulation unit 51 modulates so that the drive signal included in one burst gradually becomes a high frequency.
  • the transmission signal generation unit 21 outputs the modulated drive signal to the drive circuit 22.
  • the transmitter 10 transmits an ultrasonic wave in which the frequency of the ultrasonic wave included in one burst is modulated according to the drive signal.
  • the arithmetic processing unit 40 included in the position measuring device 2 replaces the time specifying unit 43 included in the position measuring device 1 of the first embodiment described above with a time specifying unit 52 that specifies arrival time candidates based on the cross-correlation function.
  • the time specifying unit 52 calculates a cross-correlation function between the reflected wave and the drive signal, and specifies a plurality of arrival time candidates based on the cross-correlation function.
  • the cross-correlation function R xy ( ⁇ ) is described by the following equation (2).
  • the function x (t) indicates the waveform of the drive signal
  • the function y (t) indicates the waveform of the reflected wave of each of the receivers 11 to 13.
  • FIG. 9 is a diagram for explaining a method for specifying the arrival time candidate, and the waveform indicates the cross-correlation function Rxy ( ⁇ ) between the reflected wave of the receiver 11 and the drive signal, that is, the correlation result.
  • the time specifying unit 52 specifies i peaks (peak1 [i]) that are equal to or higher than a predetermined threshold among the peaks of the envelope of the cross-correlation function Rxy ( ⁇ ) in order from the top.
  • the parameter i 1. That is, peak1 [0] is specified.
  • the time specifying unit 52 determines the peak (peak1m [i] [j]) of the j cross-correlation functions Rxy ( ⁇ ) generated immediately before the peak of the envelope (peak1 [i]) and the envelope A peak (peak1p [i] [j]) of j cross-correlation functions Rxy ( ⁇ ) generated immediately after the peak (peak1 [i]) is specified.
  • the parameter j 1. That is, peak1m [0] [0] and peak1p [0] [0] are specified.
  • the time specifying unit 52 specifies the arrival time candidate t 1 based on the peak of the specified cross correlation function Rxy ( ⁇ ).
  • the time specifying unit 52 specifies the arrival time candidate t 1 based on the peak of the specified cross correlation function Rxy ( ⁇ ).
  • the cross correlation function Rxy ( ⁇ ) since three peaks of the cross-correlation function Rxy ( ⁇ ) are specified, three arrival time candidates t 1 are specified for the receiver 11. Similarly, three arrival time candidates t 2 and t 3 are specified for the receivers 12 and 13, respectively.
  • FIG. 10 is a flowchart illustrating a processing procedure of arrival time candidate specifying processing. The process of FIG. 10 is repeatedly executed for each burst cycle in which ultrasonic waves are transmitted.
  • step S201 After the reflected wave is acquired in step S201, the cross-correlation function R xy ( ⁇ ) between the reflected wave and the drive signal is calculated for each of the receivers 11 to 13 in step S202.
  • step S203 for each of the receivers 11 to 13, i peaks in the envelope of the cross-correlation function R xy ( ⁇ ) are specified, and arrival time candidates are specified based on the peaks.
  • step S204 among the peaks of the cross-correlation function Rxy ( ⁇ ), the peaks before and after the envelope peak are also specified, and the arrival times specified based on the peaks are added to the candidates. With the above processing, in the example of FIG. 9 described above, three arrival time candidates are obtained for each of the receivers 11 to 13.
  • steps S205 to S207 processing similar to that in steps S104 to S106 in FIG. 6 of the first embodiment is performed on the arrival time candidates t 1 , t 2 , and t 3 specified in steps S203 and S204.
  • the arrival time candidates are selected.
  • a plurality of arrival time candidates are specified.
  • a plurality of three-dimensional coordinate candidates are calculated using a plurality of arrival time candidates t 1 , t 2 , t 3 specified for each of the receivers 11 to 13, and one coordinate is obtained. It is specified as the three-dimensional coordinates of the object.
  • the waveform indicated by the cross-correlation function between the reflected wave and the drive signal has a steeper peak than the reflected wave. Therefore, in specifying the arrival time candidate, the time resolution Can be improved. Moreover, the influence of noise can be reduced. Accordingly, it is possible to specify arrival time candidates with higher accuracy and further increase measurement accuracy.
  • the cross-correlation function between the reflected wave and the drive signal is used.
  • a direct wave may be used instead of the drive signal. That is, the time specifying unit 52 calculates the cross-correlation function R xy ( ⁇ ) between the reflected wave and the direct wave stored in the storage unit 41, and based on the cross-correlation function R xy ( ⁇ ), the arrival time Candidates may be specified.
  • the function x (t) is a function indicating the waveform of the direct wave. In this way, since the waveform of the direct wave actually received by the receivers 11 to 13 is used, a waveform having a steeper peak (cross-correlation function) can be obtained, and the time resolution can be further improved. . In addition, the influence of noise can be further reduced. Therefore, it is possible to specify the arrival time candidate with higher accuracy and further increase the measurement accuracy.
  • FIG. 11 is a block diagram showing a configuration of the position measuring device 3.
  • the arithmetic processing unit 40 included in the position measurement device 3 includes a determination unit 61 in addition to the components included in the position measurement device 1 described above.
  • description of the position measuring device 3 that is the same as that of the position measuring device 1 described above will be omitted, and different points will be mainly described.
  • the reflected wave is obtained by subtracting the direct wave from the received wave.
  • the timing at which the direct wave reaches the receiver varies depending on the external environment due to the fact that the sound speed varies depending on the external environment such as the air temperature and the flow velocity of the medium. Therefore, in order to obtain a direct wave in the measurement environment, the position measuring device 3 stores a received wave received as a direct wave in a state where the object to be measured does not exist within the measurement range.
  • the determination unit 61 first determines whether or not an object to be measured exists within the measurement range.
  • the determination unit 61 causes the transmitter 10 to transmit ultrasonic waves in a burst manner a plurality of times.
  • the received wave changes, so that it can be determined that the object to be measured exists within the measurement range.
  • the received wave does not change, it can be seen that there is no moving object within the measurement range.
  • the measurement target is a finger that operates the device, it is unlikely that the user stops the finger with respect to the position measurement device 3. Therefore, when the moving object does not exist within the measurement range, it can be determined that the object to be measured does not exist within the measurement range.
  • the determination unit 61 analyzes the reception waves for a plurality of times acquired by the A / D value acquisition units 37 to 39, and if the waveform of the reception wave has not changed more than a predetermined value, the object to be measured is within the measurement range. Is determined not to exist.
  • the same drive signal as that at the time of measurement is used so that the waveform of the transmitted ultrasonic wave has the same waveform as the transmission wave used at the time of position measurement.
  • the determination unit 61 determines that the measurement target object does not exist within the measurement range, the received wave used for the determination does not include the reflected wave reflected by the measurement target object. Therefore, the received wave used for the determination can be used as a direct wave. Therefore, the storage unit 41 of the present embodiment stores the received waves received by the receivers 11 to 13 as direct waves when the determination unit 61 determines that the object to be measured does not exist within the measurement range. Note that, when it is determined that the object to be measured exists within the measurement range, the storage unit 41 does not newly store the direct wave but holds the already-stored direct wave.
  • the determination unit 61 determines whether or not an object to be measured exists at the timing when the power of the display 101 is turned on. And when it determines with not existing, a direct wave is memorize
  • a process for measuring the position of the object is started.
  • the received waves acquired by the A / D value acquisition units 37 to 39 are input to the reflected wave acquisition unit 42 as in the above-described processing. Then, the reflected wave is specified by subtracting the direct wave stored in the storage unit 41 from the received wave.
  • the position measuring device 3 of the present embodiment described above it is possible to automatically acquire and store a direct wave. Therefore, it is not necessary to manually perform processing (calibration) for storing the direct wave. Further, although the waveform of the direct wave varies depending on the external environment, the direct wave obtained in the environment where the position is actually measured can be stored. Therefore, a reflected wave can be obtained from a direct wave that reflects the actual measurement environment, so that the influence of the external environment can be reduced and the measurement accuracy can be further improved.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made.
  • the peak immediately before and immediately after the envelope peak among the peaks of the reflected wave or the cross-correlation function is specified when the peak is specified, but the present invention is not limited to this. It may be just before the peak of the envelope or just after it. Further, it is also possible to specify only a plurality of envelope peaks without specifying the peaks immediately before and immediately after the envelope peaks.
  • the ultrasonic frequency is modulated, but the modulation method is not limited to this. The amplitude may be modulated or digital modulation may be performed.
  • a plurality of arrival time candidates are specified for all the three receivers 11 to 13, but a plurality of arrival time candidates may be specified for one or two receivers. If a plurality of arrival time candidates are specified for at least one receiver, a plurality of three-dimensional coordinate candidates can be obtained, and the measurement accuracy can be improved.
  • the arrival time candidate when the arrival time candidate is specified based on the received wave, the arrival time candidate is specified based on the reflected wave after obtaining the reflected wave from the received wave.
  • the arrival time candidate may be specified from the received wave without performing processing such as subtracting the direct wave from the received wave.
  • the reflected wave and the direct wave overlap it is possible to provide a configuration for preventing the ultrasonic wave transmitted from the transmitter 10 from directly reaching the receivers 11 to 13 without being reflected by the object.
  • a member that blocks the transmitter 10 side may be provided in each of the receivers 11 to 13 so that the receivers 11 to 13 do not receive ultrasonic waves from the transmitter 10 side.
  • the transmitter 10 and the receivers 11 to 13 are arranged at the vertices of the rectangle.
  • the present invention is not limited to this.
  • the receivers 11 to 13 may be arranged at the vertices of the equilateral triangle, and the transmitter 10 may be arranged at the center of gravity of the equilateral triangle. In this case, since the distances between the receivers 11 to 13 and the transmitter 10 are equal, the accuracy can be further improved.
  • the propagation speed calculated by multiplying the arrival time candidate by the speed of sound if the speed of sound changes depending on the external environment such as the temperature and the flow velocity of the medium, is an error if the speed of sound changes if a constant value is used as the speed of sound. Occurs.
  • the first peak appearing in the received wave represents the timing at which the direct wave arrives, and the propagation distance of this direct wave is constant. Therefore, it is also preferable to correct the sound speed value based on the timing at which the first peak appearing in the received wave occurs.
  • the three-dimensional coordinate candidate closest to the previously specified three-dimensional coordinate is set as the three-dimensional coordinate of the object.
  • One three-dimensional coordinate may be selected from a plurality of three-dimensional coordinate candidates based on an arbitrary criterion according to the object to be measured. Moreover, you may correct
  • the object to be measured is the fingertip, but any object that reflects ultrasonic waves can be the object to be measured.
  • the position measuring devices 1 to 3 according to the present invention are used as the input device of the smartphone 100.
  • the present invention is not limited to this.
  • the position measuring devices 1 to 3 can be used as non-contact input devices such as home appliances such as televisions, personal computers, game machines, and vending machines such as tickets.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

 超音波を利用して物体の3次元座標を測定する位置測定装置において、ノイズの影響を低減して測定精度を高めることが可能な位置測定装置を提供する。 位置測定装置(1)は、超音波を送信する送信器(10)と、超音波を受信する3つの受信器(11~13)と、受信波に基づいて、超音波が送信されてから物体に反射して受信器(11~13)に到達するまでの到達時間候補を受信器(11~13)毎に特定する時間特定部(43)であって、少なくとも1つの受信器について到達時間候補を複数特定する時間特定部(43)と、時間特定部(43)によって特定された到達時間候補、及び、送信器(10)並びに受信器(11~13)の相対的な位置に基づいて、物体の位置を示す複数の3次元座標候補を算出する座標算出部(44)と、複数の3次元座標候補に基づいて物体の3次元座標を特定する座標特定部(45)とを備える。

Description

位置測定装置
 本発明は、超音波を利用して物体の位置を測定する位置測定装置に関する。
 従来から、超音波を利用して物体の位置を測定する位置測定装置が知られている。下記非特許文献1には、超音波によって物体との距離を測定し、測定した距離に基づいて物体の3次元座標を計算する位置測定装置が記載されている。下記非特許文献1に記載された位置測定装置は、地上から上方に向けて超音波を送信し、上方を飛行中の模型飛行機に反射された反射波を3台の受信器で受信する。次に、この位置測定装置は、各受信器の受信波に基づいて、各受信器において反射波が受信されたタイミングを特定する。続いて、特定したタイミングに基づいて、送信された超音波が模型飛行機に反射して各受信器に受信されるまでの伝搬距離を算出する。そして、この位置測定装置は、各受信器によって得られた3つの伝搬距離に基づいて、模型飛行機の3次元座標を計算する。
今井、他4名、「超音波センサを用いた高速移動体の3次元位置測定装置の構築」、研究報告、関東学院大学工学会、2007年3月、第50巻、第2号、p.67-73
 ところで、受信波には、様々なノイズが含まれている。また、測定対象の物体以外に反射した超音波もノイズとして受信波に含まれる場合もある。このため、受信波のレベルが閾値を超えたときに反射波が受信されたと特定すると、反射波が受信されたタイミングを誤って特定する可能性がある。よって、超音波が送信されてから物体に反射して受信器に到達するまでの到達時間を特定する際に誤差が生じ、到達時間を用いて算出される伝搬距離に誤差が含まれる。更に、3つの受信器それぞれについての伝搬距離を用いて3次元座標を算出するので、算出結果には3つの伝搬距離の誤差が重畳される。従って、算出結果として得られる3次元座標の精度が低くなる。
 本発明は、上記問題点を解消する為になされたものであり、超音波を利用して物体の3次元座標を測定する位置測定装置において、ノイズの影響を低減して測定精度を高めることが可能な位置測定装置を提供することを目的とする。
 本発明に係る位置測定装置は、超音波を利用して物体の位置を測定する位置測定装置において、超音波を送信する送信器と、超音波を受信する少なくとも3つの受信器と、受信器それぞれによって受信された受信波に基づいて、超音波が送信されてから物体に反射して受信器に到達するまでの到達時間候補を受信器毎に特定する時間特定部であって、少なくとも1つの受信器について到達時間候補を複数特定する時間特定部と、時間特定部によって特定された到達時間候補、及び、送信器並びに受信器の相対的な位置に基づいて、物体の位置を示す複数の3次元座標候補を算出する座標算出部と、座標算出部によって算出された複数の3次元座標候補に基づいて、物体の3次元座標を特定する座標特定部とを備えることを特徴とする。
 本発明に係る位置測定装置によれば、超音波が送信されてから物体に反射して受信器に到達するまでの到達時間候補が、受信波に基づいて複数特定される。一般的には受信波にノイズが含まれているので、受信波から1つの到達時間を特定しようとすると、ノイズの影響により誤った到達時間を特定してしまう可能性が高い。すなわち、精度の高い到達時間を特定できない可能性が高い。これに対して、本発明では、複数の到達時間候補を特定するので、精度の高い到達時間が特定される可能性を高めることができる。そして、本発明では、特定した複数の到達時間候補に基づいて、複数の3次元座標候補が算出されるので、精度の高い3次元座標候補を得る確率が高まる。また、この複数の3次元座標候補に基づいて、物体の3次元座標が特定されるので、高い精度の3次元座標が得られる可能性を向上させることができる。従って、超音波を利用して物体の3次元座標を測定する位置測定装置において、ノイズの影響を低減して測定精度を高めることが可能となる。
 本発明に係る位置測定装置では、送信器から送信され、物体に反射せず受信器に直接到達して該受信器によって受信された直達波を予め記憶する記憶部と、受信器によって受信された受信波から記憶部に記憶された直達波を減算することにより、物体に反射して受信器に到達した反射波を取得する反射波取得部とを備え、時間特定部は、反射波取得部によって取得された反射波に基づいて、複数の到達時間候補を特定することが好ましい。
 この場合、受信波から直達波が除かれるので、物体に反射して戻ってきた反射波を得ることができる。よって、物体に反射せずに受信器に到達した超音波の伝搬時間を到達時間候補として誤って特定することを防止できる。従って、測定結果の誤りを防止することが可能となる。
 本発明に係る位置測定装置では、時間特定部が、反射波取得部によって取得された反射波の包絡線におけるピークが発生したタイミングに基づいて、到達時間候補を特定することが好ましい。
 この場合、反射波の包絡線のピークを特定するので、反射波の全てのピークについて逐一処理することなく、到達時間候補を特定することができる。従って、処理負荷を低減することが可能となる。
 本発明に係る位置測定装置では、時間特定部が、反射波のピークのうち、反射波の包絡線におけるピークの直前及び/又は直後に発生した所定数の反射波のピークのタイミングに基づいて、到達時間候補を特定することが好ましい。
 この場合、反射波のピークのうち、包絡線のピークの直前及び/又は直後に発生した所定数の反射波のピークについて到達時間候補が特定される。発明者の研究によれば、反射波のピークのうち包絡線のピークが発生した周辺のピークが、実際に超音波が受信器に到達したタイミングを示している場合があるという実験結果が得られている。従って、包絡線のピークの直前及び/又は直後に発生した所定数の反射波のピークについて到達時間候補が特定されることにより、ノイズの影響を低減して、より精度の高い到達時間候補を特定することができる。これにより、測定精度をより高めることが可能となる。
 本発明に係る位置測定装置では、送信器が、変調された超音波を送信し、時間特定部は、反射波取得部によって取得された反射波と記憶部によって記憶されている直達波との相互相関関数を計算し、該相互相関関数に基づいて到達時間候補を特定することが好ましい。
 反射波と直達波との相互相関関数によって示される波形は反射波より急峻なピークを有するので、上記の場合、到達時間候補を特定するに当たり、時間分解能を向上させることができる。また、ノイズの影響を低減することができる。従って、より精度の高い到達時間候補を特定し、測定精度をより高めることが可能となる。
 本発明に係る位置測定装置では、送信器が、変調された駆動信号に応じて超音波を送信し、時間特定部は、反射波取得部によって取得された反射波と駆動信号との相互相関関数を計算し、該相互相関関数に基づいて到達時間候補を特定することが好ましい。
 反射波と駆動信号との相互相関関数によって示される波形は反射波より急峻なピークを有するので、上記の場合、到達時間候補を特定するに当たり、時間分解能を向上させることができる。また、ノイズの影響を低減することができる。従って、より精度の高い到達時間候補を特定し、測定精度をより高めることが可能となる。
 本発明に係る位置測定装置では、時間特定部が、特定した複数の到達時間候補についてそれぞれ算出された伝搬距離、及び、前回の処理時に座標特定部によって特定された3次元座標の計算に用いられた伝搬距離に基づいて、複数の到達時間候補についてそれぞれ除外するか否かを判定することが好ましい。
 この場合、複数の到達時間候補を挙げた上で、前回の処理時に得られた伝搬距離に基づいて、各到達時間候補の選別が行われる。例えば、前回の処理時に得られた伝搬距離と今回特定した各到達時間候補の伝搬距離との差が閾値以上である場合、該到達時間候補が除外される。これにより、前回の伝搬距離とはかけ離れた伝搬距離については、除外することができる。従って、測定精度を更に高めることが可能となる。
 本発明に係る位置測定装置では、座標算出部は、時間特定部によって特定された複数の到達時間候補の中から受信器毎に1つずつ選択される到達時間候補の全ての組み合わせについて3次元座標候補を算出することが好ましい。
 この場合、複数の到達時間候補の中から受信器毎に到達時間候補を1つずつ選択して3次元座標候補を算出するに当たり、受信器毎に1つずつ選択される到達時間候補の全ての組み合わせについて3次元座標候補が算出される。その結果、組み合わせの数だけ3次元座標候補が算出される。そして、算出された3次元座標候補に基づいて、物体の3次元座標が特定される。このように、到達時間候補の全ての組み合わせにより得られる3次元座標候補を挙げた上で物体の座標が特定されるので、測定精度をより高めることが可能となる。
 本発明に係る位置測定装置では、座標特定部が、座標算出部によって算出された複数の3次元座標候補のうち、前回の処理時に特定した3次元座標との距離が最も近い座標を物体の3次元座標として特定することが好ましい。
 この場合、複数の3次元座標候補のうち上記距離が最も近い座標が物体の3次元座標として特定される。ここで、複数の3次元座標候補のうち、前回の3次元座標と距離が離れている座標より距離が近い座標の方が、実際の座標に近い確率が高いと考えられる。従って、前回の処理時に得られた3次元座標に基づいて、最も確からしい座標を特定することが可能となる。すなわち、測定精度をより高めることが可能となる。
 本発明に係る位置測定装置では、座標特定部が、前回の処理時に特定した3次元座標と今回の処理によって特定した3次元座標との距離に基づいて、今回の処理によって特定した3次元座標を許容するか否かを判定することが好ましい。
 この場合、前回の処理時に特定した3次元座標と今回の処理によって特定した3次元座標との距離とに基づいて、今回の処理によって特定した3次元座標を許容できるか否かが判定される。これにより、前回の処理時に得られた3次元座標の位置とはかけ離れた位置を示す3次元座標が特定された場合には、除外することができる。このように得られた座標の妥当性を判定するので、測定結果の誤りを防止することができる。
 本発明に係る位置測定装置では、測定対象の物体が測定範囲内に存在するか否かを判定する判定部を備え、記憶部は、測定対象の物体が測定範囲内に存在しないと判定部によって判定された場合に受信器によって受信された受信波を直達波として記憶することが好ましい。
 この場合、自動的に直達波を取得し、記憶することが可能となる。なお、音速が気温、媒体の流速等の外部環境により変化するので、直達波が受信器に到達するタイミングは外部環境により変化する。ここで、上記の好ましい形態によれば、実際に位置を測定する環境において得られた直達波を記憶することができる。従って、実際の測定環境を反映した直達波から反射波を得ることができるので、外部環境による影響を低減して、測定精度をより向上させることが可能となる。
 本発明に係る位置測定装置では、送信器及び3つの受信器が、同一の平面上に配置され、長方形の各頂点の位置にそれぞれ配置されていることが好ましい。
 この場合、送信器及び3つの受信器が同一の平面上に配置されているので、3つの受信器における到達時間候補が得られれば、3次元座標を特定することができる。すなわち、4つ以上の受信器を必要とせず、3つの受信器により、3次元座標を特定することができる。また、送信器及び3つの受信器が長方形の各頂点の位置にそれぞれ配置されているので、長方形に囲まれた領域の正面及びその周囲を含む領域に位置する物体の3次元座標を特定することができる。例えば、長方形に囲まれた領域にディスプレイが配置された機器に本発明の位置測定装置を搭載すれば、そのディスプレイの表示に従ってユーザが動かした指の3次元座標を非接触で計測できる。この場合、本発明の位置測定装置を入力装置として機能させることができる。
 本発明によれば、超音波を利用して物体の3次元座標を測定する位置測定装置において、ノイズの影響を低減して測定精度を高めることが可能となる。
第1実施形態に係る位置測定装置の構成を示すブロック図である。 第1実施形態に係る位置測定装置の使用形態の一例を示す図である。 第1実施形態に係る位置測定装置を入力装置として他の機器に搭載した場合の一例を示す図である。 第1実施形態に係る位置測定装置において得られる直達波、受信波、及び反射波の波形を示す図である。 第1実施形態に係る位置測定装置による反射波に基づく到達時間候補の特定方法について説明するための図である。 第1実施形態に係る位置測定装置による反射波に基づく到達時間候補の特定処理の処理手順を示すフローチャートである。 第1実施形態に係る位置測定装置による3次元座標の特定処理の処理手順を示すフローチャートである。 第2実施形態に係る位置測定装置の構成を示すブロック図である。 第2実施形態に係る位置測定装置による到達時間候補の特定方法について説明するための図である。 第2実施形態に係る位置測定装置による相互相関関数に基づく到達時間候補の特定処理の処理手順を示すフローチャートである。 第3実施形態に係る位置測定装置の構成を示すブロック図である。
 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図において、同一要素には同一符号を付して重複する説明を省略する。
 [第1実施形態]
 まず、図1を参照して、第1実施形態に係る位置測定装置1の構成について説明する。図1は、位置測定装置1の構成を示すブロック図である。位置測定装置1は、超音波を利用して物体の3次元座標を測定する装置である。より具体的には、位置測定装置1は、超音波を送信する送信器10と、超音波を受信する3つの受信器11~13を備え、超音波を送信してから物体に反射して各受信器11~13に到達するまでの到達時間を求める。ここで、位置測定装置1は、受信波のノイズの影響を考慮して、到達時間の候補を複数求める。そして、位置測定装置1は、3つの受信器11~13の複数の到達時間候補に基づいて物体の3次元座標候補を複数算出した上で、1つの座標を物体の3次元座標として特定する。
 図2は、位置測定装置1の使用形態の一例を示す図である。図2のように、例えば、位置測定装置1は、指先の3次元座標を非接触で測定する。位置測定装置1が指先の3次元座標を連続的に測定することにより、指の動きを測定することができる。送信器10及び3つの受信器11~13は同一平面上に配置され、その平面の正面を含むエリアが測定範囲となる。図2の例では、送信器10及び3つの受信器11~13が、正方形の各頂点の位置にそれぞれ配置されている。例えば、送信器10及び3つの受信器11~13が、一辺の長さが6cm程度の正方形の各頂点の位置に配置された場合、平面からの距離10cm程度以内、一辺が12cm程度の正方形内のエリアが測定範囲となる。
 また、図3に示すように、長方形のディスプレイ101を有する機器100に位置測定装置1を搭載し、位置測定装置1を入力装置として機能させることができる。図3では、機器100の例としてスマートフォンを示している。ここで、スマートフォンとは、文字だけでなく画像等の各種の情報を表示するディスプレイを有する携帯型の電話機である。送信器10及び3つの受信器11~13は、長方形のディスプレイ101の4つの角の外側にそれぞれ配置されている。位置測定装置1は、ディスプレイ101正面の測定範囲内に位置する人差し指の指先の3次元座標を連続的に非接触で計測することができる。これにより、ユーザがディスプレイ101の表示に従ってディスプレイ101正面の空間で指を動かせば、位置測定装置1によって指の動きが検出され、機器100に情報を入力することができる。すなわち、位置測定装置1が非接触の入力装置として機能する。
 引き続き、図1を参照して、位置測定装置1が備える信号処理部20について説明する。信号処理部20は、送信機10を駆動するために、送信信号生成部21及び駆動回路22を備えている。送信信号生成部21は、超音波周波数の駆動信号を生成し、駆動回路22へ出力する。駆動回路22は、入力された駆動信号を増幅して送信器10へ供給する。送信器10は、例えば、圧電セラミックスを用いて構成された共振子を有し、入力された駆動信号により共振子が共振する。これにより、超音波が送信される。
 送信信号生成部21は、バースト的に駆動信号を出力し、超音波は、送信器10によってバースト的に送信される。例えば、バーストサイクルは10ms程度であり、超音波が0.3ms間程度送信された後、次の周期までの間に、物体に反射して戻って来る超音波が受信器11~13によって受信される。図2には、送信器10から送信された送信波Sが模式的に描かれているが、実際に送信器10から送信される送信波Sの波形は、開始部分及び終了部分の振幅が小さい。開始部分については、送信器10の駆動が開始された直後は、共振子の振動が小さいためである。終了部分については、駆動信号の出力が終了した後に残る共振子の残響によるものである。
 信号処理部20は、受信器11~13によって受信された受信信号(受信波)の入力インターフェースとしてそれぞれ機能するアンプ/フィルタ31~33及びA/D変換器34~36を備え、更にA/D値取得部37~39を備えている。アンプ/フィルタ31~33は、増幅回路及びフィルタ回路等によって構成されている。このアンプ/フィルタ31~33は、各受信器11~13により受信された受信信号を増幅して、所望の周波数以外の信号を除去し、A/D変換器34~36へ出力する。
 A/D変換器34~36は、入力されたアナログ信号をディジタルデータに変換する。A/D値取得部37~39は、A/D変換器34~36の動作をそれぞれ制御し、A/D変換器34~36によりディジタルデータに変換された受信信号を取得する。すなわち、各受信器11~13によって受信された受信波を示す受信信号が、各A/D値取得部37~39によって取得される。
 信号処理部20は、得られた受信波(受信信号)を処理して物体の3次元座標を演算する演算処理部40を備えている。なお、演算処理部40、上述した送信信号生成部21及びA/D値取得部37~39は、CPU、ROM、及びRAM等により構成されている。ROMに記憶されているプログラムが、CPUによって実行されることにより、演算処理部40、送信信号生成部21及びA/D値取得部37~39の各機能が実現される。なお、CPUに代えて、例えばASICや、FPGA、DSPなどを用いてもよい。
 演算処理部40は、機能的には、記憶部41、反射波取得部42、時間特定部43、座標算出部44、及び座標特定部45を備えている。記憶部41には、直達波の波形が記憶されている。直達波は、物体に反射せず、送信器10から各受信器11~13に直接到達して各受信器11~13によって受信されたものである。記憶部41は、直達波をそれぞれの受信器11~13と関連付けて記憶している。これらの3つの直達波は、実際の3次元測定に先立って、予め記憶部41に記憶されている。
 測定が開始され、送信された超音波が受信されると、反射波取得部42は、各A/D値取得部37~39によって取得された受信信号(受信波)を入力する。この受信波には、直達波と反射波とが重畳されている。反射波は、送信器10によって送信され、物体に反射して受信器11~13に到達して受信された超音波である。反射波取得部42は、反射波を取得するために、各受信波の波形から記憶部41に記憶された直達波の波形を減算する。
 図4は、位置測定装置1において得られる直達波、受信波、及び反射波の波形を示す図である。(a)の波形は直達波を示しており、測定範囲内に反射物体が無いときに受信器11によって受信された波形である。(b)の波形は、測定範囲内に測定対象である反射物体が有るときに受信器11によって受信された波形である。(c)の波形は受信器11の反射波を示しており、(b)の波形から(a)の波形を減算して得られた波形である。受信器12,13の反射波も同様にして取得される。このように、受信波から直達波を減算して反射波を得るので、物体に反射せずに受信器11~13に到達した超音波の伝搬時間を到達時間候補として誤って特定することを防止できる。
 時間特定部43は、反射波取得部42によって得られた各反射波に基づいて、受信器11~13毎に到達時間候補を特定する。到達時間候補は、超音波が送信器10によって送信されてから物体に反射して受信器11~13に到達するまでの伝搬時間の候補である。時間特定部43は、3つの受信器11~13についてそれぞれ複数の到達時間候補を特定する。到達時間候補には、反射波の包絡線におけるピークが発生したタイミングに基づいて特定された候補と、反射波のピークのうち包絡線のピークの直前及び直後に発生した所定数の反射波のピークのタイミングに基づいて特定された候補とが含まれる。
 図5を参照して、時間特定部43による特定方法について説明する。図5の(a)~(c)は、3つの受信器11~13によってそれぞれ得られた反射波を示している。(a)の波形を参照して、受信器11についての到達時間候補を特定する方法について具体的に説明する。まず、時間特定部43は、反射波の包絡線のピークのうち、予め定められた閾値以上のピーク(peak1[i])を先頭から順にi個特定する。図5に示す例では、パラメータi=2である。すなわち、peak1[0]及びpeak1[1]が特定される。このように、反射波の包絡線のピークを特定し、反射波の全てのピークについて逐一処理を行わないので、処理負荷を低減することができる。
 次に、時間特定部43は、包絡線のピーク(peak1[i])の直前に発生したj個の反射波のピーク(peak1m[i][j])と、包絡線のピーク(peak1[i])の直後に発生したj個の反射波のピーク(peak1p[i][j])を特定する。図5(a)に示す例では、パラメータj=1である。すなわち、peak1m[0][0]、peak1p[0][0]、peak1m[1][0]、及びpeak1p[1][0]が特定される。これは、反射波のピークのうち包絡線のピーク周囲のピークが、実際に超音波が受信器11~13に到達したタイミングを示している場合があるためである。
 次に、時間特定部43は、超音波が送信されてから、特定した各ピークが発生したタイミングまでの時間を算出する。この時間が受信器11についての到達時間候補tである。図5(a)に示す例では、受信器11について合計で6つのピークが特定されているので、6つの到達時間候補tが特定される。同様にして、受信器12,13についても図5の(b)及び(c)の反射波に基づいてそれぞれ6つの到達時間候補t,tが特定される。なお、パラメータi及びjは、任意に設定することができる。
 以上の処理により特定された到達時間候補t~tには、ノイズの影響によるものが含まれている。そこで、時間特定部43は、1バースト前の処理時、すなわち、前回の処理時に特定された3次元座標の計算に用いられた伝搬距離に基づいて、受信器11~13毎に複数の到達時間候補についてそれぞれ除外するか否かを判定する。受信器11について具体的に説明すると、時間特定部43は、前回の処理時に特定された3次元座標の計算に用いられた受信器11の伝搬距離と、6つの到達時間候補tにそれぞれ音速vを乗算して得られた伝搬距離v・tとの差を求める。そして、時間特定部43は、その差が閾値d以上である到達時間候補tを候補から除外する。
 閾値dは、位置測定装置1において許容される物体の最大移動速度に依存して設定される。測定対象の物体が、スマートフォンの操作を行う指であり、バーストサイクルが10msである場合、例えば、許容される最大移動速度が1m/s程度、閾値dが10mm程度に設定される。時間特定部43は、受信器12,13のそれぞれ6つの到達時間候補t、tについても除外するか否かの判定を行う。このように、前回の処理時に得られた伝搬距離に基づいて各到達時間候補の選別を行うので、比較的精度の高い到達時間のみに候補を絞ることができる。また、この段階で到達時間候補の選別を行うので、後の座標計算量を少なくすることができる。
 座標算出部44は、前回の処理時の伝搬距離との差が閾値d未満である到達時間候補t~t、すなわち、選別された到達時間候補t~tに基づいて、物体の位置を示す複数の3次元座標候補を算出する。ここで、送信器10の3次元座標を(0,0,0)、受信器11を(x,y,0)、受信器12を(x,y,0)、受信器13を(x,y,0)、音速vとすると、次の連立方程式(1)が成り立つ。
Figure JPOXMLDOC01-appb-M000001
 座標算出部44は、複数の到達時間候補t~tの中から受信器11~13毎に1つずつ選択された到達時間候補の全ての組み合わせについて、上記の連立方程式(1)を解いて3次元座標候補を算出する。これにより、複数の3次元座標候補が算出される。全ての組み合わせの数、すなわち、算出される3次元座標候補の数は、上記の選別処理で1つも除外されなかった場合に最大の数となる。この場合、((2j+1)i)個の3次元座標候補が算出される。
 座標特定部45は、座標算出部44によって算出された複数の3次元座標候補に基づいて物体の3次元座標を特定する。本実施形態では、座標特定部45は、複数の3次元座標候補のうち、前回(1バースト前)の処理時に特定した3次元座標との距離が最も近い座標を物体の3次元座標として特定する。複数の3次元座標候補のうち、前回の3次元座標と距離が離れている座標より距離が近い座標の方が、実際の座標に近い確率が高いと考えられる。従って、物体の3次元座標を連続的に測定するに当たって上記の基準を採用することにより、精度の高い3次元座標を得ることができる。
 更に、座標特定部45は、前回の処理時に特定した3次元座標と今回の処理によって特定した3次元座標との距離に基づいて、今回の処理によって特定した3次元座標を許容するか否かを判定する。具体的には、座標特定部45は、前回の処理時に特定した3次元座標と今回の処理によって特定した3次元座標との距離が、閾値D以上である場合には、測定結果として許容せず、出力を行わない。閾値Dとしては、上述した閾値dと同じ値を用いることができる。これにより、前回の処理時に得られた3次元座標の位置とはかけ離れた位置を示す3次元座標が特定された場合には、除外することができる。従って、測定結果の誤りを防止することができる。
 引き続いて、位置測定装置1の動作について説明する。まず、図6を参照して、到達時間候補の特定を行う動作について説明する。図6は、到達時間候補の特定処理の処理手順を示すフローチャートである。図6の処理は、超音波が送信されるバーストサイクル毎に繰り返し実行される。
 まず、駆動信号が送信信号生成部21によって駆動回路22へ出力され、超音波が送信器10によって送信される。送信された超音波は、受信器11~13によってそれぞれ受信される。続いて、ステップS101では、受信波から記憶部41に記憶された直達波が減算されることにより、反射波が反射波取得部42によって取得される。ステップS102では、各受信器11~13について、反射波の包絡線のピークがi個ずつ特定され、該ピークに基づいて到達時間候補が特定される。
 そして、ステップS103では、反射波のピークのうち、包絡線のピーク前後のピークも特定され、該ピークに基づいて特定された到達時間が候補に加えられる。以上の処理により、上述した図5の例では、受信器11~13毎に6個の到達時間候補が得られる。続いて、ステップS104では、各到達時間候補に音速を乗算することにより、伝搬距離が算出される。次に、ステップS105では、1バースト前の処理で最終的に特定された3次元座標の計算に用いられた伝搬距離を保持しているか否かが判定される。
 1バースト前の伝搬距離を保持している場合は、処理がステップS106へ移行する。ステップS106では、ステップS104で算出した各伝搬距離のうち、1バースト前の伝搬距離との差が閾値d以上のものが、除外される。このステップS106の処理により、ステップS102及びステップS103で得られた到達時間候補の選別が行われる。この場合、次の3次元座標の特定処理は、選別された到達時間候補を用いて行われる。なお、3つの受信器11~13のうち少なくとも1つの受信器について到達時間候補が全て除外されてしまった場合、物体が測定範囲内に存在しない旨の信号が出力される。
 一方、ステップS105において、1バースト前の伝搬距離を保持していない場合は、到達時間候補の特定処理が終了する。この場合、次の3次元座標の特定処理は、ステップS102及びステップS103で得られた全ての到達時間候補を用いて行われる。
 次に、図7を参照して、3次元座標の特定を行う動作について説明する。図7は、3次元座標の特定処理の処理手順を示すフローチャートである。図7の処理は、到達時間候補が特定されるバーストサイクル毎に座標算出部44及び座標特定部45によって繰り返し実行される。
 まず、ステップS111において、複数の到達時間候補t~tの中から受信器11~13毎に1つずつ選択される到達時間候補t~tの全ての組み合わせについて、3次元座標候補が算出される。次に、ステップS112では、1バースト前の処理で最終的に特定された3次元座標が保持されているか否かが判定される。保持されていない場合は、処理がステップS113へ移行する。ステップS113では、ステップS111で算出された複数の3次元座標候補に測定範囲内の座標があるか否かが判定される。
 ステップS113で測定範囲内の座標がない場合、ステップS114へ処理が移行する。ステップS114では、ステップS111で算出した3次元座標のデータが破棄される。この場合、物体が測定範囲内に存在しない旨の信号が出力される。一方、ステップS113において、ステップS111で算出された複数の3次元座標候補に測定範囲内の座標があると判定された場合、処理がステップS115へ移行する。ステップS115では、測定範囲内の3次元座標候補を物体の3次元座標として特定する。測定範囲内の3次元座標候補が複数あった場合、予め定められた基準に基づいて、1つの座標が物体の3次元座標として特定される。例えば、測定範囲の中央の座標に最も近い座標が、物体の3次元座標として特定される。
 一方、ステップS112において、1バースト前の処理で最終的に特定された3次元座標が保持されている場合、処理がステップS116へ移行する。ステップS116では、ステップS111において算出された複数の3次元座標候補のうち、1バースト前の座標と最も近い座標が、物体の3次元座標として特定される。続いて、ステップS117では、1バースト前の座標とS116で特定した座標との距離が閾値d以下か否かが判定される。上記の距離が閾値dより大きい場合、処理がステップS114へ移行する。ステップS114では、ステップS111で算出した3次元座標のデータが破棄され、物体が測定範囲内に存在しない旨の信号が出力される。
 一方、ステップS117において、1バースト前の座標とS116で特定した座標との距離が閾値d以下である場合、処理がステップS118へ移行する。ステップS118では、S116で特定した座標が物体の3次元座標として最終的に特定され、出力される。以上の処理をバーストサイクル毎に行うことにより、物体の動きを検出することができる。例えば、10ms程度のバーストサイクルで測定することにより、物体の動きをなめらかに測定することができる。
 以上説明した本実施形態の位置測定装置1によれば、複数の到達時間候補を特定するので、精度の高い到達時間が候補に含まれる可能性を高めることができる。そして、特定した複数の到達時間候補に基づいて、複数の3次元座標候補が算出されるので、精度の高い3次元座標候補を得る確率が高まる。この複数の3次元座標候補に基づいて、物体の3次元座標が特定されるので、高い精度の3次元座標が得られる可能性を向上させることができる。従って、超音波を利用して物体の3次元座標を測定する位置測定装置において、ノイズの影響を低減して測定精度を高めることが可能となる。
 また、本実施形態では、反射波のピークのうち、包絡線のピークの直前及び直後に発生した所定数の反射波のピークについても到達時間候補が特定される。従って、ノイズの影響を低減して、より精度の高い到達時間候補を特定することができる。これにより、測定精度をより高めることが可能となる。
 また、本実施形態では、前回の処理時に得られた伝搬距離と今回特定した各到達時間候補の伝搬距離との差が閾値以上である場合、該到達時間候補が除外される。このように、複数の到達時間候補を挙げた上で、前回の処理時に得られた伝搬距離に基づいて、各到達時間候補の選別が行われる。よって、誤っている確率の高い到達時間候補を除外することができる。従って、測定精度を更に高めることが可能となる。
 また、本実施形態では、複数の到達時間候補t~tの中から受信器11~13毎に1つずつ選択された到達時間候補の全ての組み合わせについて、3次元座標候補が算出される。その結果、組み合わせの数だけ3次元座標候補が算出される。そして、算出された3次元座標候補に基づいて物体の3次元座標が特定される。このように、到達時間候補の全ての組み合わせにより得られる3次元座標候補を挙げた上で物体の座標が特定されるので、測定精度をより高めることが可能となる。
 また、本実施形態では、座標算出部44によって算出された複数の3次元座標候補のうち、前回の処理時に特定した3次元座標との距離が最も近い座標が、物体の3次元座標として特定される。ここで、指先の位置を連続的に測定して指先の動きを検出する場合、複数の3次元座標候補のうち、前回の3次元座標と距離が離れている座標より距離が近い座標の方が、実際の座標に近い確率が高いと考えられる。よって、複数の3次元座標候補の中から最も確からしい座標を特定することが可能となり、測定精度をより高めることが可能となる。
 また、本実施形態では、前回の処理時に特定した3次元座標と今回の処理によって特定した3次元座標との距離とに基づいて、今回の処理によって特定した3次元座標を許容できるか否かが判定される。これにより、前回の処理時に得られた3次元座標の位置とはかけ離れた位置を示す3次元座標が特定された場合には、除外することができる。このように得られた座標の妥当性を判定するので、測定結果の誤りを防止することができる。
 本実施形態では測定対象として人差し指の指先を例に挙げたが、測定対象の周囲に超音波を反射する他の物体(例えば、親指、手の一部等)が有る場合、測定対象以外の物体から反射した超音波がノイズとして受信波(反射波)に含まれている可能性がある。また、本実施形態をスマートフォンに適用した例では、送信器10と受信器11~13との間の距離に対する反射波の伝搬距離が比較的近いので、受信波には直達波と反射波とが重なっている。このため、受信波から反射波を減算した場合であっても、完全には受信波から直達波を除くことはできないので、反射波には直達波の一部がノイズとして残っている可能性がある。このように、本実施形態の適用例では、ノイズの影響が比較的大きいが、図5に示す反射波を用いてパラメータi=2,j=1で上記の測定処理を行ったところ、物体の3次元座標(x、y、z)として(0cm、0.5cm、3cm)が得られた。これは、測定誤差が2,3mm以内であり、良好な測定精度が得られた。
 [第2実施形態]
 図8を参照して、第2実施形態に係る位置測定装置2の構成について説明する。図8は、位置測定装置2の構成を示すブロック図である。上述した第1実施形態に係る位置測定装置1は、反射波のピークから複数の到達時間候補を特定した。これに対して、第2実施形態に係る位置測定装置2は、駆動信号を変調することにより変調された超音波を送信し、反射波と駆動信号との相互相関関数に基づいて複数の到達時間候補を特定する。以下、位置測定装置2について上述した位置測定装置1と同様な点は説明を省略し、異なる点を主に説明する。
 位置測定装置2は、駆動信号を変調する周波数変調部51を備える。周波数変調部51は、例えば、1バーストに含まれる駆動信号が徐々に高周波となるように変調する。送信信号生成部21は、変調された駆動信号を駆動回路22へ出力する。その結果、送信器10は、駆動信号に応じて、1バーストに含まれる超音波の周波数が変調された超音波を送信する。
 位置測定装置2が備える演算処理部40は、上述した第1実施形態の位置測定装置1が備える時間特定部43に替えて、相互相関関数に基づいて到達時間候補を特定する時間特定部52を有する。時間特定部52は、反射波と駆動信号との相互相関関数を計算し、該相互相関関数に基づいて複数の到達時間候補を特定する。相互相関関数Rxy(τ)は、次の式(2)によって記述される。
Figure JPOXMLDOC01-appb-M000002
ここで、関数x(t)は駆動信号の波形を示し、関数y(t)は各受信器11~13の反射波の波形を示している。
 図9は、到達時間候補の特定方法について説明するための図であり、波形は受信器11の反射波と駆動信号との相互相関関数Rxy(τ)、すなわち相関結果を示している。まず、時間特定部52は、相互相関関数Rxy(τ)の包絡線のピークのうち、予め定められた閾値以上のピーク(peak1[i])を先頭から順にi個特定する。図9に示す例では、パラメータi=1である。すなわち、peak1[0]が特定される。
 次に、時間特定部52は、包絡線のピーク(peak1[i])の直前に発生したj個の相互相関関数Rxy(τ)のピーク(peak1m[i][j])と、包絡線のピーク(peak1[i])の直後に発生したj個の相互相関関数Rxy(τ)のピーク(peak1p[i][j])を特定する。図9に示す例では、パラメータj=1である。すなわち、peak1m[0][0]及びpeak1p[0][0]が特定される。
 次に、時間特定部52は、特定された相互相関関数Rxy(τ)のピークに基づいて、到達時間候補tを特定する。図9に示す例では、相互相関関数Rxy(τ)のピークが3つ特定されているので、受信器11について3つの到達時間候補tが特定される。同様にして、受信器12,13についてもそれぞれ3つの到達時間候補t,tが特定される。
 引き続いて、位置測定装置2の動作について説明する。図10を参照して、到達時間候補の特定を行う動作について説明する。図10は、到達時間候補の特定処理の処理手順を示すフローチャートである。図10の処理は、超音波が送信されるバーストサイクル毎に繰り返し実行される。
 ステップS201で反射波が取得された後、ステップS202では、各受信器11~13について反射波と駆動信号との相互相関関数Rxy(τ)が計算される。次に、ステップS203では、各受信器11~13について、相互相関関数Rxy(τ)の包絡線のピークがi個ずつ特定され、該ピークに基づいて到達時間候補が特定される。そして、ステップS204では、相互相関関数Rxy(τ)のピークのうち、包絡線のピーク前後のピークも特定され、該ピークに基づいて特定された到達時間が候補に加えられる。以上の処理により、上述した図9の例では、受信器11~13毎に3個の到達時間候補が得られる。
 ステップS205~S207では、上記のステップS203,S204において特定された到達時間候補t,t,tについて、第1実施形態の図6のステップS104~S106と同様な処理が行われることにより、到達時間候補が選別される。以上の処理により、複数の到達時間候補が特定される。その後、第1実施形態と同様に、各受信器11~13について特定された複数の到達時間候補t,t,tを用いて複数の3次元座標候補が算出され、1つの座標が物体の3次元座標として特定される。
 以上説明した本実施形態の位置測定装置2によれば、反射波と駆動信号との相互相関関数によって示される波形は反射波より急峻なピークを有するので、到達時間候補を特定するに当たり、時間分解能を向上させることができる。また、ノイズの影響を低減することができる。従って、より精度の高い到達時間候補を特定し、測定精度をより高めることが可能となる。
 なお、上記では、反射波と駆動信号との相互相関関数を用いることとしたが、駆動信号に替えて直達波を採用してもよい。すなわち、時間特定部52は、反射波と記憶部41に記憶されている直達波との相互相関関数Rxy(τ)を算出し、該相互相関関数Rxy(τ)に基づいて、到達時間候補を特定してもよい。この場合、関数x(t)は、直達波の波形を示す関数となる。このように、受信器11~13において実際に受信された直達波の波形を用いるので、更に急峻なピークを持つ波形(相互相関関数)を得ることができ、時間分解能をより向上させることができる。また、ノイズの影響をより低減することができる。従って、更に精度の高い到達時間候補を特定し、測定精度を更に高めることが可能となる。
 [第3実施形態]
 図11を参照して、第3実施形態に係る位置測定装置3の構成について説明する。図11は、位置測定装置3の構成を示すブロック図である。位置測定装置3が備える演算処理部40は、上述した位置測定装置1が備える構成要素に加えて判定部61を有する。以下、位置測定装置3について上述した位置測定装置1と同様な点は説明を省略し、異なる点を主に説明する。
 上述したように反射波は、受信波から直達波を減算することにより得られる。ただし、音速が気温、媒体の流速等の外部環境により変化することに起因して、直達波が受信器に到達するタイミングは外部環境により変化する。そこで、測定する環境において直達波を得るために、位置測定装置3は、測定対象の物体が測定範囲内に存在しない状態で受信された受信波を直達波として記憶する。このために、まず、判定部61が、測定対象の物体が測定範囲内に存在するか否かを判定する。
 判定部61は、超音波を送信器10によって複数回バースト的に送信させる。測定対象の物体が動いた場合、受信波が変化するので、測定範囲内に測定対象の物体が存在すると判定することができる。一方、受信波が変化しない場合は、動く物体が測定範囲内に存在しないことが分かる。測定対象が機器を操作する指である場合、ユーザが位置測定装置3に対して指を静止することは考え難い。よって、動く物体が測定範囲内に存在しない場合、測定対象の物体が測定範囲内に存在しないと判定することができる。従って、判定部61は、A/D値取得部37~39によって取得された複数回分の受信波を解析し、受信波の波形が所定以上変化していない場合、測定範囲内に測定対象の物体が存在しないと判定する。
 物体の存在の有無を判定する際には、送信される超音波の波形が位置測定時に使用される送信波と同様な波形となるように、測定時と同じ駆動信号が用いられる。そして、測定対象の物体が測定範囲内に存在しないと判定部61によって判定された場合、判定に用いられた受信波には、測定対象の物体によって反射された反射波が含まれていない。よって、判定に用いられた受信波は、直達波として利用することができる。そこで、本実施形態の記憶部41は、測定対象の物体が測定範囲内に存在しないと判定部61によって判定された場合に受信器11~13によって受信された受信波を直達波として記憶する。なお、記憶部41は、測定対象の物体が測定範囲内に存在すると判定された場合、新たに直達波を記憶せず、既に記憶している直達波を保持する。
 例えば、位置測定装置3がスマートフォン100に搭載されている場合、ディスプレイ101の電源がONになったタイミングで、判定部61が、測定対象の物体が存在するか否かを判定する。そして、存在しないと判定された場合に、直達波が記憶部41に記憶される。その後、物体の位置を測定する処理が開始される。測定処理については、上述した処理と同様に、A/D値取得部37~39によって取得された受信波が反射波取得部42に入力される。そして、記憶部41に記憶されている直達波を受信波から減算して反射波が特定される。
 以上説明した本実施形態の位置測定装置3によれば、自動的に直達波を取得し、記憶することが可能となる。よって、手動で直達波を記憶する処理(キャリブレーション)を行う必要がなくなる。また、直達波の波形は外部環境により変化するが、実際に位置を測定する環境において得られた直達波を記憶することができる。従って、実際の測定環境を反映した直達波から反射波を得ることができるので、外部環境による影響を低減して、測定精度をより向上させることが可能となる。
 以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、上記実施形態では、ピークを特定する際に反射波又は相互相関関数のピークのうち、包絡線のピークの直前及び直後のピークについても特定したが、これに限られない。包絡線のピークの直前だけであってもよいし、直後だけであってもよい。また、包絡線のピークの直前及び直後のピークは特定せずに、包絡線のピークを複数特定するだけであってもよい。なお、上記第2実施形態では、超音波の周波数を変調したが、変調方法はこれに限られない。振幅を変調してもよいし、デジタル変調をおこなってもよい。
 また、上記実施形態では、3つの受信器11~13の全てについて複数の到達時間候補を特定することとしたが、1つ又は2つの受信器について複数の到達時間候補を特定してもよい。少なくとも1つの受信器について複数の到達時間候補を特定すれば、複数の3次元座標候補を得ることができ、測定精度を高めることができる。
 また、上記実施形態では、受信波に基づいて到達時間候補を特定するに当たって、受信波から反射波を取得してから、反射波に基づいて到達時間候補を特定したが、これに限られない。受信波から直達波を減算する等の処理をせずに、受信波から到達時間候補を特定してもよい。ただし、反射波と直達波とが重なる場合は、送信器10から送信された超音波が、物体に反射せずに直接受信器11~13へ到達することを防止するための構成を設けることが好ましい。例えば、各受信器11~13が送信器10側から超音波を受信しないように、各受信器11~13に送信器10側を遮る部材を設けてもよい。
 また、上記実施形態では、受信器を3つとしたが、4つ以上あってもよい。4つ以上ある場合、全ての受信器及び送信器が同一平面上に配置されていなくてもよい。また、受信器が3つの場合であっても、他の情報により物体の3次元座標を特定できる場合には、同一平面上に配置されていなくてもよい。また、上記実施形態では、送信器10及び受信器11~13が、長方形の頂点に配置されていることとしたが、これに限られない。用途によっては、例えば、受信器11~13を正三角形の各頂点に配置し、送信器10を正三角形の重心の位置に配置することとしてもよい。この場合、各受信器11~13と送信器10との間の距離が等しくなるので、より精度を高めることができる。
 なお、音速が気温、媒体の流速等の外部環境により変化するので、到達時間候補に音速を乗じて算出される伝搬距離は、音速として一定値を用いていると、音速が変化した場合に誤差が生じる。一方、受信波に現れる最初のピークは、直達波が到達したタイミングを表しており、この直達波の伝搬距離は一定である。よって、受信波に現れる最初のピークが発生したタイミングに基づいて、音速の値を補正することも好ましい。
 また、上記実施形態では、算出した複数の3次元座標候補に基づいて物体の3次元座標を特定する際に、前回特定された3次元座標と最も近い3次元座標候補を物体の3次元座標としたが、これに限られない。測定対象の物体に応じた任意の基準に基づいて、複数の3次元座標候補の中から1つの3次元座標を選択してもよい。また、選択した1つの3次元座標に対して、更に補正をしてもよい。
 また、上記の例では、測定対象の物体を指先としたが、超音波を反射する任意の物体を測定対象とすることができる。また、上記の例では、スマートフォン100の入力装置として本発明に係る位置測定装置1~3を用いることとしたが、これに限られない。例えば、テレビ、パーソナルコンピュータ、ゲーム機等の家電製品や、切符等の自動販売機等の非接触入力装置として位置測定装置1~3を用いることができる。
 1,2,3 位置測定装置
 10 送信器
 11,12,13 受信器
 41 記憶部
 42 反射波取得部
 43,52 時間特定部
 44 座標算出部
 45 座標特定部
 51 周波数変調部
 61 判定部

Claims (12)

  1.  超音波を利用して物体の位置を測定する位置測定装置において、
     超音波を送信する送信器と、
     超音波を受信する少なくとも3つの受信器と、
     前記受信器それぞれによって受信された受信波に基づいて、超音波が送信されてから物体に反射して前記受信器に到達するまでの到達時間候補を前記受信器毎に特定する時間特定部であって、少なくとも1つの前記受信器について到達時間候補を複数特定する時間特定部と、
     前記時間特定部によって特定された到達時間候補、及び、前記送信器並びに前記受信器の相対的な位置に基づいて、前記物体の位置を示す複数の3次元座標候補を算出する座標算出部と、
     前記座標算出部によって算出された複数の3次元座標候補に基づいて、物体の3次元座標を特定する座標特定部と、
     を備えることを特徴とする位置測定装置。
  2.  前記送信器から送信され、物体に反射せず前記受信器に直接到達して該受信器によって受信された直達波を予め記憶する記憶部と、
     前記受信器によって受信された受信波から前記記憶部に記憶された直達波を減算することにより、物体に反射して前記受信器に到達した反射波を取得する反射波取得部と、
     を備え、
     前記時間特定部は、前記反射波取得部によって取得された反射波に基づいて、複数の前記到達時間候補を特定することを特徴とする請求項1に記載の位置測定装置。
  3.  前記時間特定部は、前記反射波取得部によって取得された反射波の包絡線におけるピークが発生したタイミングに基づいて、前記到達時間候補を特定することを特徴とする請求項2に記載の位置測定装置。
  4.  前記時間特定部は、前記反射波のピークのうち、前記反射波の包絡線におけるピークの直前及び/又は直後に発生した所定数の前記反射波のピークのタイミングに基づいて、前記到達時間候補を特定することを特徴とする請求項2又は3に記載の位置測定装置。
  5.  前記送信器は、変調された超音波を送信し、
     前記時間特定部は、前記反射波取得部によって取得された反射波と前記記憶部によって記憶されている直達波との相互相関関数を計算し、該相互相関関数に基づいて前記到達時間候補を特定することを特徴とする請求項2に記載の位置測定装置。
  6.  前記送信器は、変調された駆動信号に応じて超音波を送信し、
     前記時間特定部は、前記反射波取得部によって取得された反射波と前記駆動信号との相互相関関数を計算し、該相互相関関数に基づいて前記到達時間候補を特定することを特徴とする請求項2に記載の位置測定装置。
  7.  前記時間特定部は、特定した前記複数の到達時間候補についてそれぞれ算出された伝搬距離、及び、前回の処理時に前記座標特定部によって特定された3次元座標の計算に用いられた伝搬距離に基づいて、前記複数の到達時間候補についてそれぞれ除外するか否かを判定することを特徴とする請求項1~6のいずれか1項に記載の位置測定装置。
  8.  前記座標算出部は、前記時間特定部によって特定された複数の到達時間候補の中から前記受信器毎に1つずつ選択される到達時間候補の全ての組み合わせについて前記3次元座標候補を算出することを特徴とする請求項1~7のいずれか1項に記載の位置測定装置。
  9.  前記座標特定部は、前記座標算出部によって算出された複数の3次元座標候補のうち、前回の処理時に特定した3次元座標との距離が最も近い座標を物体の3次元座標として特定することを特徴とする請求項1~8のいずれか1項に記載の位置測定装置。
  10.  前記座標特定部は、前回の処理時に特定した3次元座標と今回の処理によって特定した3次元座標との前記距離に基づいて、今回の処理によって特定した3次元座標を許容するか否かを判定することを特徴とする請求項1~9のいずれか1項に記載の位置測定装置。
  11.  測定対象の物体が測定範囲内に存在するか否かを判定する判定部を備え、
     前記記憶部は、前記測定対象の物体が測定範囲内に存在しないと前記判定部によって判定された場合に前記受信器によって受信された受信波を前記直達波として記憶することを特徴とする請求項2~10のいずれか1項に記載の位置測定装置。
  12.  前記送信器及び前記3つの受信器は、同一の平面上に配置され、長方形の各頂点の位置にそれぞれ配置されていることを特徴とする請求項1~11のいずれか1項に記載の位置測定装置。
PCT/JP2012/080678 2011-12-12 2012-11-28 位置測定装置 WO2013088951A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12858300.2A EP2793044B1 (en) 2011-12-12 2012-11-28 Position measurement device
JP2013549195A JP6032211B2 (ja) 2011-12-12 2012-11-28 位置測定装置
CN201280061059.0A CN103988092B (zh) 2011-12-12 2012-11-28 位置测量装置
US14/301,052 US9494684B2 (en) 2011-12-12 2014-06-10 Position measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011271105 2011-12-12
JP2011-271105 2011-12-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/301,052 Continuation US9494684B2 (en) 2011-12-12 2014-06-10 Position measurement device

Publications (1)

Publication Number Publication Date
WO2013088951A1 true WO2013088951A1 (ja) 2013-06-20

Family

ID=48612406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080678 WO2013088951A1 (ja) 2011-12-12 2012-11-28 位置測定装置

Country Status (5)

Country Link
US (1) US9494684B2 (ja)
EP (1) EP2793044B1 (ja)
JP (1) JP6032211B2 (ja)
CN (1) CN103988092B (ja)
WO (1) WO2013088951A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140340993A1 (en) * 2011-12-12 2014-11-20 Murata Manufacturing Co., Ltd. Position measurement device
JP2015068826A (ja) * 2013-09-27 2015-04-13 現代自動車株式会社 超音波システムのノイズ除去装置及び方法
JP2016080641A (ja) * 2014-10-22 2016-05-16 株式会社デンソー 物体検知装置
JP2017166880A (ja) * 2016-03-15 2017-09-21 フュージョン有限会社 音響測定装置、音響測定方法、マルチビーム音響測定装置及び開口合成ソナー
JP2017528683A (ja) * 2015-07-09 2017-09-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 超音波距離検出のためのシステムおよび方法
JP2018009853A (ja) * 2016-07-13 2018-01-18 株式会社AquaFusion 音響測深装置、音響測深方法及びマルチビーム音響測深装置
JP2018010006A (ja) * 2017-09-11 2018-01-18 株式会社AquaFusion 音響測深装置、音響測深方法及びマルチビーム音響測深装置
JP2018513981A (ja) * 2015-03-19 2018-05-31 トポゼンス ゲゼルシャフト ミット ベシュレンクテル ハフツング 3d位置決定方法および装置
WO2018173148A1 (ja) * 2017-03-22 2018-09-27 株式会社AquaFusion 音響測深装置及び音響測深方法
JP2018159696A (ja) * 2017-07-26 2018-10-11 株式会社AquaFusion 音響測深装置及び音響測深方法
JP2019124703A (ja) * 2019-04-05 2019-07-25 株式会社AquaFusion 音響測深装置及びマルチビーム音響測深装置
JP2020085506A (ja) * 2018-11-16 2020-06-04 アイシン精機株式会社 距離検出装置および物体検出装置
CN114375038A (zh) * 2022-01-12 2022-04-19 网络通信与安全紫金山实验室 定位方法、装置、基站、存储介质和计算机程序产品

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6430777B2 (ja) 2014-10-22 2018-11-28 株式会社デンソー 物体検知装置
JP6462308B2 (ja) 2014-10-22 2019-01-30 株式会社デンソー 物体検知装置
JP6404679B2 (ja) 2014-10-22 2018-10-10 株式会社デンソー 物体検知装置
JP6474228B2 (ja) 2014-10-22 2019-02-27 株式会社デンソー 物体検知装置
JP6442225B2 (ja) 2014-10-22 2018-12-19 株式会社デンソー 物体検知装置
JP6484000B2 (ja) 2014-10-22 2019-03-13 株式会社デンソー 物体検知装置
JP6430778B2 (ja) 2014-10-22 2018-11-28 株式会社デンソー 物体検知装置
US20180128897A1 (en) * 2016-11-08 2018-05-10 BreqLabs Inc. System and method for tracking the position of an object
CN107402387A (zh) * 2017-08-31 2017-11-28 努比亚技术有限公司 基于超声波的运动趋势确定方法、装置及可读存储介质
JP6893863B2 (ja) * 2017-12-04 2021-06-23 新日本無線株式会社 超音波センサおよび車両制御システム
CN111638522B (zh) * 2020-04-30 2022-11-18 维沃移动通信有限公司 接近检测方法及电子设备
LU500348B1 (de) * 2021-06-29 2022-12-29 Toposens Gmbh Verfahren beim Ermitteln eines Sendesignals in wenigstens einem empfangenen Signal
CN114047479A (zh) * 2021-11-03 2022-02-15 北京道大丰长科技有限公司 一种基于声波的振动定位方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237483A (ja) * 1988-03-18 1989-09-21 Matsushita Electric Ind Co Ltd 超音波式侵入者検知器
JPH0514962U (ja) * 1991-08-10 1993-02-26 日本電気ホームエレクトロニクス株式会社 超音波センサ
JP2006349608A (ja) * 2005-06-20 2006-12-28 Toto Ltd 超音波人体センサ及びそれを有するトイレ装置
JP2007139570A (ja) * 2005-11-17 2007-06-07 Aisin Seiki Co Ltd 超音波センサシステムおよびセンサユニット
JP2011522271A (ja) * 2008-06-04 2011-07-28 エリプティック・ラボラトリーズ・アクシェルスカブ 物体の位置決定

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371007U (ja) 1989-11-16 1991-07-17
JPH06188330A (ja) 1992-12-17 1994-07-08 Toshiba Chem Corp 低膨張金属箔およびプリント回路用積層板
JPH06186330A (ja) * 1992-12-21 1994-07-08 Nippon Telegr & Teleph Corp <Ntt> 非接触型3次元位置測定装置
JPH06188328A (ja) 1992-12-21 1994-07-08 Matsushita Electric Ind Co Ltd 半導体装置及び半導体装置の組立方法
JPH06186328A (ja) * 1992-12-21 1994-07-08 Fujitsu Ltd 超音波距離測定装置
JPH09274077A (ja) * 1996-04-04 1997-10-21 Maruyasu Kogyo Kk 物体移動感知装置
JP4396801B2 (ja) * 2001-02-27 2010-01-13 パイオニア株式会社 測位装置と測位方法及び測位システム
WO2005106530A1 (ja) 2004-04-28 2005-11-10 Matsushita Electric Industrial Co., Ltd. 超音波測距装置
JP2006317356A (ja) 2005-05-13 2006-11-24 Toto Ltd 超音波人体センサ及びそれを有するトイレ装置、並びに人体検出方法
US7414705B2 (en) * 2005-11-29 2008-08-19 Navisense Method and system for range measurement
US7724355B1 (en) * 2005-11-29 2010-05-25 Navisense Method and device for enhancing accuracy in ultrasonic range measurement
JP5103794B2 (ja) * 2006-05-31 2012-12-19 アイシン精機株式会社 障害物検出装置および位置特定方法
JP5103793B2 (ja) * 2006-05-31 2012-12-19 アイシン精機株式会社 障害物検出装置および位置特定方法
US8090547B2 (en) * 2007-10-01 2012-01-03 Panasonic Corporation Ultrasonic measuring device and ultrasonic measuring method
WO2010010832A1 (ja) * 2008-07-25 2010-01-28 日本電気株式会社 位置検出システム、送信装置、受信装置、位置検出方法、位置検出プログラム
CN102253367A (zh) * 2011-04-01 2011-11-23 长春理工大学 一种基于超声波的室内三维定位系统及方法
EP2793044B1 (en) * 2011-12-12 2016-11-02 Murata Manufacturing Co., Ltd. Position measurement device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237483A (ja) * 1988-03-18 1989-09-21 Matsushita Electric Ind Co Ltd 超音波式侵入者検知器
JPH0514962U (ja) * 1991-08-10 1993-02-26 日本電気ホームエレクトロニクス株式会社 超音波センサ
JP2006349608A (ja) * 2005-06-20 2006-12-28 Toto Ltd 超音波人体センサ及びそれを有するトイレ装置
JP2007139570A (ja) * 2005-11-17 2007-06-07 Aisin Seiki Co Ltd 超音波センサシステムおよびセンサユニット
JP2011522271A (ja) * 2008-06-04 2011-07-28 エリプティック・ラボラトリーズ・アクシェルスカブ 物体の位置決定

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IMAI KENSUKE: "Construction of Three-dimension Measurement Systems of the High-speed Moving Object Using Ultrasonic Sensor", RESEARCH REPORT, vol. 50, March 2007 (2007-03-01), pages 67 - 73
See also references of EP2793044A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9494684B2 (en) * 2011-12-12 2016-11-15 Murata Manufacturing Co., Inc. Position measurement device
US20140340993A1 (en) * 2011-12-12 2014-11-20 Murata Manufacturing Co., Ltd. Position measurement device
JP2015068826A (ja) * 2013-09-27 2015-04-13 現代自動車株式会社 超音波システムのノイズ除去装置及び方法
JP2016080641A (ja) * 2014-10-22 2016-05-16 株式会社デンソー 物体検知装置
JP2018513981A (ja) * 2015-03-19 2018-05-31 トポゼンス ゲゼルシャフト ミット ベシュレンクテル ハフツング 3d位置決定方法および装置
US10698094B2 (en) 2015-03-19 2020-06-30 Toposens Gmbh 3D-position determination method and device
US10310081B2 (en) 2015-07-09 2019-06-04 SZ DJI Technology Co., Ltd. System and method for ultrasound distance detection
JP2017528683A (ja) * 2015-07-09 2017-09-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 超音波距離検出のためのシステムおよび方法
JP2017166880A (ja) * 2016-03-15 2017-09-21 フュージョン有限会社 音響測定装置、音響測定方法、マルチビーム音響測定装置及び開口合成ソナー
JP2018009853A (ja) * 2016-07-13 2018-01-18 株式会社AquaFusion 音響測深装置、音響測深方法及びマルチビーム音響測深装置
WO2018173148A1 (ja) * 2017-03-22 2018-09-27 株式会社AquaFusion 音響測深装置及び音響測深方法
JPWO2018173148A1 (ja) * 2017-03-22 2019-03-28 株式会社AquaFusion 音響測深装置
JP2018159696A (ja) * 2017-07-26 2018-10-11 株式会社AquaFusion 音響測深装置及び音響測深方法
JP2018010006A (ja) * 2017-09-11 2018-01-18 株式会社AquaFusion 音響測深装置、音響測深方法及びマルチビーム音響測深装置
JP2020085506A (ja) * 2018-11-16 2020-06-04 アイシン精機株式会社 距離検出装置および物体検出装置
JP2019124703A (ja) * 2019-04-05 2019-07-25 株式会社AquaFusion 音響測深装置及びマルチビーム音響測深装置
CN114375038A (zh) * 2022-01-12 2022-04-19 网络通信与安全紫金山实验室 定位方法、装置、基站、存储介质和计算机程序产品
CN114375038B (zh) * 2022-01-12 2024-04-26 网络通信与安全紫金山实验室 定位方法、装置、基站、存储介质和计算机程序产品

Also Published As

Publication number Publication date
CN103988092B (zh) 2016-07-06
EP2793044A1 (en) 2014-10-22
US9494684B2 (en) 2016-11-15
EP2793044B1 (en) 2016-11-02
CN103988092A (zh) 2014-08-13
JP6032211B2 (ja) 2016-11-24
EP2793044A4 (en) 2015-06-24
JPWO2013088951A1 (ja) 2015-04-27
US20140340993A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP6032211B2 (ja) 位置測定装置
US6414673B1 (en) Transmitter pen location system
US8427905B2 (en) Optimum pseudo random sequence determining method, position detection system, position detection method, transmission device and reception device
EP2137547B1 (en) System and method for positioning
US8750076B2 (en) Position detection system, transmission device, reception device, position detection method and position detection program
JP2007500348A (ja) 超音波を用いる距離の測定方法と装置
CN109642949A (zh) 用于窄带测距系统的方法和装置
CN109073740A (zh) 测距和对象定位系统及其使用方法
JP2009139264A (ja) 3次元位置確定システムおよび3次元位置確定方法
CN108027424B (zh) 用于hyperion lidar系统的焦平面2d apd阵列的实施方案
KR101868691B1 (ko) 음원계측장치 및 이를 포함하는 음원 거리 계측 시스템
KR101454827B1 (ko) 초음파 신호의 위상천이 검출에 의한 정밀 거리측정방법
JP2014032191A (ja) 姿勢の識別方法及び装置
JP4741937B2 (ja) 距離測定システムおよび距離測定方法
KR102263722B1 (ko) 차량 초음파센서의 노이즈 감지장치 및 이의 노이즈 감지방법
KR101985498B1 (ko) 위치 검출 장치 및 그 방법
JP2022051800A (ja) レーダ装置、及びトランスポンダの反射波の検出方法
JP4337421B2 (ja) 移動する物体の位置計測方法及び位置計測システム
RU2468388C2 (ru) Гидроакустическая синхронная дальномерная навигационная система
WO2016017580A1 (ja) 三次元空間座標測定装置
CN111050661B (zh) 一种剪切波弹性测量方法及剪切波弹性成像系统
KR102020647B1 (ko) 3차원 위치측정장치, 시스템 및 그 방법
KR100457048B1 (ko) 초음파 위치좌표 측정방법
JP2002116248A (ja) 位置特定装置及びその方法、データ演算装置及びその方法、速度測定装置及びその方法、並びに、記録媒体
KR20230087823A (ko) 초음파 신호를 이용한 거리 측정 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012858300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012858300

Country of ref document: EP