WO2013088871A1 - 干渉色のモデル適合による膜厚測定方法およびその装置 - Google Patents

干渉色のモデル適合による膜厚測定方法およびその装置 Download PDF

Info

Publication number
WO2013088871A1
WO2013088871A1 PCT/JP2012/079082 JP2012079082W WO2013088871A1 WO 2013088871 A1 WO2013088871 A1 WO 2013088871A1 JP 2012079082 W JP2012079082 W JP 2012079082W WO 2013088871 A1 WO2013088871 A1 WO 2013088871A1
Authority
WO
WIPO (PCT)
Prior art keywords
film thickness
point
wavelength
interference
wavelengths
Prior art date
Application number
PCT/JP2012/079082
Other languages
English (en)
French (fr)
Inventor
克一 北川
真左文 大槻
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Publication of WO2013088871A1 publication Critical patent/WO2013088871A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection

Definitions

  • the present invention relates to a film thickness measuring method and apparatus for obtaining a film thickness of a transparent thin film using interference color information.
  • the transparent thin film includes a substrate film formed on a wafer or glass, and an independent film such as a plastic film or a soap film.
  • Patent Document 1 discloses a method of obtaining a film thickness by irradiating white light and analyzing a spectral spectrum of reflected light as a spectroscopic method.
  • a conventional film thickness measurement method using a spectroscopic method or an ellipsometer method the transparent film is irradiated with light and the reflected light is analyzed to obtain the film thickness.
  • this method has the following problems. First, since the measurement spot size cannot be reduced, the horizontal resolution is lowered.
  • in another method of spectroscopy in order to convert the spectral intensity data of a sample into a spectral reflectance, it is necessary to measure a sample with a known spectral reflectance as a reference prior to measurement of the sample.
  • the present invention does not measure the film thickness basically by analyzing the reflected light at one point as described above, but uses the reflected light information at a plurality of points to obtain the film thicknesses at a plurality of points collectively.
  • the present invention relates to a film thickness measuring method and apparatus different from the background art. Hereinafter, a method and means for measuring the film thickness of the transparent thin film using the present invention will be described.
  • the transparent film to be measured is irradiated with m pieces of monochromatic light having a plurality of wavelengths, and interference generated by reflected light on the surface of the transparent film and reflected light on the back surface.
  • m pieces of monochromatic light having a plurality of wavelengths
  • interference generated by reflected light on the surface of the transparent film and reflected light on the back surface Select one or more selected points from the image, and the wavelength ⁇ (j) of the wavelength number j is known to the interference luminance signal of the wavelength number j corresponding to the i point out of the n selected points.
  • the average luminance a (j) of the wavelength number j, the interferometric modulation factor b (j), and the film thickness t (i) of the point i are all or part of the unknown parameters, and the rest are the known parameters,
  • the film thickness measuring method is characterized in that the unknown parameter is obtained by adapting the interference fringe model represented by: and the film thickness measuring apparatus using the method.
  • g (i, j) luminance of wavelength number j at point i.
  • a (j) average luminance of wavelength number j.
  • b (j) interference modulation degree of wavelength number j.
  • t (i) film thickness at point i.
  • ⁇ (j) wavelength of wavelength number j.
  • the present invention relates to a method for obtaining thickness or waveform parameters all at once, and an apparatus capable of measuring using the method.
  • the film thickness measuring method and the film thickness measuring apparatus using the method are characterized in that the film thickness t (k) at the point k is obtained from the obtained plurality of phases.
  • the film thickness at each point of the transparent thin film to be measured is efficiently measured by automatically and continuously using the first and second inventions of the present application. can do.
  • the number of wavelengths of the monochromatic light to be irradiated is m
  • the number of selection points n is n ⁇ 2 m / (m ⁇ 1) Set so that the average brightness a of the wavelength No. j (j), the film thickness measuring method and the unknown parameters all interference modulation b (j), and the point i of the thickness t (i) and This is a film thickness measuring apparatus using the method.
  • the film thickness measurement method uses the average luminance a (j) of the wavelength number j, the film thickness t (i) of the point i, and a part of the interference modulation degree b (j) as unknown parameters. It is.
  • the present invention there are cases where only two points with different film thicknesses can be obtained as targets to which the present invention is applied. For example, a part of the transparent thick film formed in the semiconductor IC is etched to be thinned. In such a case, two measurement points, that is, a thick film part and a thin film part are selected and matched. Since there are two selection points, when the number of wavelengths is three (R wavelength, G wavelength, and B wavelength), the observation data is a total of six luminance values for each of the two wavelengths. Since only six unknown variables are allowed, the film thickness t (1), t (2) at the selected point and a (1), a (2), a (3) and b (3) of the waveform parameters. Are matched as unknown variables, and the remaining waveform parameters are calculated by the following equation.
  • ⁇ (1) and ⁇ (2) are ratios between wavelengths of the interference modulation degree, and can be considered as sample constants depending on the spectral refractive index of the transparent film and the spectral refractive index of the substrate. Therefore, it can be obtained in advance by means such as using another measurement object of the same film structure.
  • the film thickness t ( This is a film thickness measurement method in which all of i), average luminance a (j) of wavelength number j, and part of interferometric modulation factor b (j) are unknown parameters.
  • the present invention when the present invention is applied using three wavelengths, only one point with different film thickness may be obtained. For example, this is a case where a resist having a substantially constant film thickness is applied to the entire surface of the wafer. In such a case, one point is selected and matched as a significant measurement point.
  • the number of wavelengths is three
  • the number of observation data is three (R luminance, G luminance, and B luminance) since there is one selection point. Since only three unknown variables are permitted, the film thickness t (1) at the selected point and a total of three of the waveform parameters a (3) and b (3) are matched as unknown variables.
  • the remaining waveform parameters are calculated from a (3) or b (3) by the following formula.
  • ⁇ (1) and ⁇ (2) are the ratios between the wavelengths of the average luminance, but this is not dependent on the brightness of the illumination, but is considered to be a device constant that depends on the spectral characteristics of the illumination and the camera. Can do. Therefore, it can be obtained in advance by means such as using another measurement object.
  • ⁇ (1) and ⁇ (2) are ratios between wavelengths of the above-described interference modulation degree. In the case of the present invention, it is also possible to select two or more matching points, and the least-squares matching in which the number of observation data is larger than the number of unknown parameters is achieved.
  • the film thickness t (1) of the point 1 and the average luminance a (j) of the wavelength number j This is a film thickness measurement method using one part and all of the interferometric modulation degree b (j) as unknown parameters.
  • a (1) ⁇ (1) ⁇ a (2)
  • b (1) and b (2) are sample constants, and are obtained by theoretical calculation from experimental values and physical property values of other samples having the same film structure.
  • a seventh invention in the first invention, all film thicknesses t (i) at two or more points i are known, an average luminance a (j) of a wavelength number j, and an interference modulation degree b (j). Is a film thickness measurement method using all of the above as unknown parameters.
  • the present invention when the present invention is applied, there may be two or more samples with known film thicknesses.
  • many standard film thickness samples are commercially available for calibration of film thickness meters.
  • waveform parameters referred to as “recipe” as appropriate
  • the observation data is six or more when the number of wavelengths is three.
  • the unknown variable fits as six, a (1), a (2), a (3), b (1), b (2) and b (3).
  • waveform parameters (recipe) are obtained. This means that calibration was performed using a sample with a known film thickness.
  • the eighth invention is a film thickness measurement method in which, in the first invention, the film thickness t (1) at one point is known and the average luminance a (j) of the wavelength number j is an unknown parameter.
  • the present invention when the present invention is applied, there may be only one sample with a known film thickness. For example, it is a case where the result of having measured the sample of the same film structure as a measuring object with another film thickness meter is obtained. If the known film thickness is one point, that point is selected and matched. Since there is one selection point, there are three observation data of R luminance, G luminance and B luminance. The unknown variables are matched as three, a (1), a (2), and a (3).
  • the remaining waveform parameter b (j) is a sample constant, and is theoretically calculated from the refractive indexes of the film and the substrate, or obtained in advance by other means.
  • the average luminance a (j) of the wavelength number j or a part of the interference modulation degree b (j) is a known parameter.
  • the parameter is a film thickness measurement method that is obtained by setting the ratios between wavelengths of the average luminance a (j) and the interferometric modulation factor b (j) as known.
  • any one of the third to eighth inventions as a modification of the invention, the case where the number of wavelengths is three has been described, but the same idea can be applied to the case where the number of wavelengths is two or four or more. It can be deformed. That is, adaptation is possible if the number of significant observation data is greater than or equal to the number of unknown parameters.
  • the following effects can be obtained as compared with the conventional spectroscopic method and ellipsometer method.
  • the measurement spot size is one pixel of the camera, the horizontal resolution is high.
  • film thickness values and film thickness distributions at multiple points can be obtained in a short time. For example, a large area such as a semiconductor wafer can be collectively measured.
  • a complicated optical system such as a spectroscope or a polarizing optical system is not required, and the size can be reduced and the cost can be reduced. And it is not necessary to calibrate the apparatus using a sample having a known film thickness in advance. Further, it is possible to obtain an effect that a complicated measurement algorithm is unnecessary and software is simple.
  • the film thickness is obtained from the luminance at the measurement location, so that measurement is possible even when there is a sharp change in film thickness.
  • Flowchart of the entire second embodiment of the present invention. 10 is a graph showing the luminance at each of the 50 points in Example 3.
  • 10 is a graph showing the phase at each of 50 positions in Example 3.
  • 6 is a graph showing the film thickness at each of 50 positions in Example 3.
  • FIG. 1 is a diagram showing a schematic configuration of a film thickness measuring apparatus according to an embodiment of the present invention.
  • the film thickness measuring apparatus of the present application is an optical system unit 1 that irradiates a transparent film of a measurement object 30 formed on the surface of a semiconductor wafer, a film, a glass substrate, a metal film or the like with monochromatic light in a plurality of specific wavelength bands and images it
  • a data processing unit 2 for obtaining a film thickness from an image obtained from the optical system unit 1.
  • the optical system unit 1 is mounted on an illumination device 10 that outputs monochromatic light having a plurality of different wavelengths as illumination light, a collimator lens 11 that converts each monochromatic light into parallel light, and the illumination light on a holding table 40.
  • the half mirror 13 that reflects in the direction of the measurement target 30 and allows the reflected light from the direction of the measurement target 30 to pass through, and the objective that passes the illumination light from the half mirror 13 and expands the reflected light from the surface 30A of the measurement target.
  • a lens 14, an imaging lens 18 that forms an interference image generated on the transparent film, and an imaging device 19 that captures the interference image are provided.
  • the lighting device 10 of the present invention is a device that can output monochromatic light of two or more different wavelengths, and for example, an LED (Light Emitting Diode) is used.
  • the half mirror 13 reflects the parallel light from the collimating lens 11 toward the measurement target 30 and allows the reflected light returned from the measurement target 30 to pass therethrough.
  • the objective lens 14 is a lens for condensing incident light on the surface of the measurement object 30 and enlarging the reflected image.
  • the imaging device 19 captures a spatial variation in luminance due to interference as an image.
  • the captured image data is stored in the memory 21 via the CPU 20 of the data processing system unit 2.
  • the imaging device 19 may have any configuration that can individually convert two-dimensional luminance images of a plurality of monochromatic lights having different wavelengths into image data, such as a CCD solid-state imaging device, a MOS image sensor, and a CMOS image sensor. Is used.
  • the data processing system unit 2 includes a CPU 20 for performing predetermined calculation processing, a memory 21 for storing various data and programs such as image data and calculation results sequentially collected by the CPU 20, a sampling timing, an imaging area, and the like.
  • An input unit 22 including a mouse and a keyboard for inputting the setting information, and a monitor 23 for displaying an image of the measurement object 30, a measurement result, and the like.
  • the measurement object 30 is irradiated using two or more wavelengths, and an interference image formed by reflected light from the front surface 30A of the measurement target and reflected light from the back surface 30B of the measurement target is acquired. Subsequently, from the interference image, when there are two types of wavelengths, select four or more points, and when there are three types of wavelengths, select three or more points, and the interference fringe model is added to the least squares of the luminance signal. By fitting (fitting), the film thickness of each point is calculated at once. Note that the least square fit described here means obtaining an unknown parameter that minimizes the error between the interference fringe model shown in Expression (1) and the observed luminance data.
  • the two parameters of the average luminance a (j) and the interference modulation degree b (j) of the wavelength number j are not changed at each point. It is obtained by assuming that it depends only on the wavelength number j. This assumption is almost valid if the material of the measuring object 30 that is a transparent thin film is constant.
  • Equation (1) g (i, j) is the interference fringe model function value shown in Equation (1)
  • g ij is the value of observation luminance data
  • is the sum of the wavelength number j and the observation point i.
  • the number of significant observed luminance data needs to be equal to or greater than the number of unknown parameters.
  • “significant” means data having a sufficiently large luminance difference compared to the noise level, and hereinafter, the number of data or the number of points means the number of significant data.
  • the number of unknown parameters is m for a (j) and b (j), respectively, and n for the film thickness t (i) of the point i.
  • the above least-squares fit is a nonlinear simultaneous equation or nonlinear least-squares problem.
  • This solution includes the steepest descent method, which is a software built in many commercial software packages [for example, manufactured by Microsoft Corporation. Solver (registered trademark) in Excel (registered trademark)] can be used.
  • the calculation load increases as the number of unknown parameters increases. Therefore, it is practical to limit the number of points to be selected from the screen to several to several tens for use in the least square fit.
  • the phase ⁇ can be obtained from the luminance and can be obtained by performing multi-wavelength unwrapping.
  • the film thickness t (i, j) of the wavelength number j at the point i is expressed by the general solution expression of the equation (5) and the inverse cosine function.
  • t (i, j) [ ⁇ ⁇ (i, j) / 4 ⁇ + N (i, j) / 2] ⁇ ⁇ (j) (7) Is required.
  • N (i, j) is a stripe order (integer).
  • the fringe order N (i, j) is determined from the film thickness candidates obtained above by a technique called a matching method, and the film thickness candidates t (i, j) for each wavelength are obtained.
  • T (i) ⁇ t (i, j) / m (8)
  • the method described in the present application is applied to the first interference image, and the obtained waveform parameters (recipe) are used for the second and subsequent interference images. Can also be applied to determine the film thickness. This can speed up the film thickness measurement. Therefore, the waveform parameter obtained by the least square fitting is appropriately referred to as “recipe”.
  • the initial value setting in the case of least squares conformance is described.
  • local minimums there are a large number of local minimum values (hereinafter referred to as local minimums), so the initial value must be set appropriately.
  • the initial values of the average luminance a (j) and the interferometric modulation factor b (j) of the wavelength number j as the parameters, the following method was used in the examples described in the present application.
  • the average luminance a (j) is an average of luminance values
  • the interferometric modulation degree b (j) is a value obtained by dividing the maximum and minimum difference in luminance values by 2a (j).
  • the expected film thickness at each point was set as an initial value.
  • a blue wavelength ⁇ B 470 nm
  • a green wavelength ⁇ G 560 nm
  • Example 1 As Example 1 of multi-wavelength image acquisition, an example is shown in which three types of wavelengths are used and three points are selected as measurement points.
  • the interference image of the measurement object 30 was calculated from the interference theory equation (1) assuming the measurement object 30 having a spherical film thickness distribution as shown in FIG.
  • This virtual measurement object 30 has a size of 50 ⁇ 50 pixels, a pixel size of 1 ⁇ m, a minimum film thickness of 4 ⁇ m at 0 corners, a film thickness radius of curvature of 1 mm, a central film thickness projection size of 4 ⁇ m ⁇ 4 ⁇ m, and a film thickness.
  • the amount of protrusion is 50 nm.
  • An interference image having three types of wavelengths was picked up by the image pickup device 19 of the optical system unit 1, sent to the CPU 20 of the data processing system unit 2, and stored in the memory 21.
  • the interference images of the three types of wavelengths are shown in FIG.
  • the observed values of the selected points P1 to P3 were extracted from the memory 21 from the interference fringe image of the wavelength.
  • Table 1 shows the film thickness true value and the observed value (luminance) at each selected point.
  • the average luminance a (j) is the average of the values of the observed luminance data
  • the interferometric modulation factor b ( j) is a value obtained by dividing the difference between the maximum and minimum values of the observed luminance data by 2 ⁇ a (j), and is set as shown in Table 2-b.
  • Table 2-a Initial film thickness Table 2-b Initial parameter values ⁇ Step S4> As the next step of the adaptation calculation, the set initial value is input from the input unit 22 of the data processing system unit 2, and the CPU 20 performs the adaptation calculation using the least squares adaptation software. The film thickness and interference fringe parameters were estimated from the observed luminance values.
  • Example 2 In order to obtain the film thickness at points (k points) other than the points selected for matching, the recipe obtained by matching in Example 1, that is, the wavelength parameter j, which is the waveform parameter of the interference fringe model, is used. The film thickness was obtained using the average brightness a (j) and the degree of interference modulation b (j).
  • steps S1 to S4 in FIG. 5 are as described in the first embodiment.
  • it demonstrates from step S55.
  • Table 5 shows the calculation results of the film thickness candidate values with the interference order changed as described above.
  • Table 5 Thickness candidate values ⁇ Step S88> Estimation of Film Thickness Next, a combination with the smallest matching error between wavelengths is searched for from the film thickness candidate value calculation results with different interference orders. In this case, using [(maximum value) ⁇ (minimum value)] as an index of the matching error, the interference order having the minimum value was searched. According to Table 5, since the matching error is “0” when the interference order + 1, the film thickness at this time is 300 nm. As a result, this value matches the true value.
  • the luminance data for each wavelength at each point is shown in FIG. 6, the phase data for each wavelength at each point is shown in FIG. 7, and the film thickness at each point is shown in FIG. In this case as well, correct estimation is made at all points.
  • the film thickness level difference of the sharp protrusion at the edge of the spherical apex is measured without dullness.
  • the measurement object 30 is a film thickness standard in which a silicon oxide film having a nominal film thickness (physical film thickness) of 0, 100, 200, 300, 400, and 500 nm is formed on a silicon wafer.
  • the obtained image is shown in FIG. As shown on this image, one point was selected from each film thickness region, and the luminance of a total of six points was obtained.
  • the interference fringe model was adapted to this, and the film thickness was obtained.
  • Table 6 shows the coordinates, luminance, initial value, estimated value, nominal value, and estimated error of the six points.
  • the estimation error is 10 nm or less, and a substantially correct film thickness is obtained.
  • Table 7 shows the recipe obtained by this adaptation.
  • FIG. 10 shows the result of obtaining the phase and the film thickness from the luminance of all points in the image using this recipe. The film thickness difference is calculated almost correctly.
  • Table 6 Selected 6 points coordinates, brightness, initial height, estimated height Note:
  • the film thickness is the optical film thickness, calculated as physical film thickness x refractive index (1.46).
  • Table 7 Recipes obtained by conformance [Example 5] Corresponding to claim 4 [t unknown, 2 points; mode: m-2 and 2-3])
  • the average luminance a of the wavelength number j An embodiment will be described with respect to a film thickness measurement method in which all of the film thickness t (i) at (j) and the point i and a part of the interference modulation degree b (j) are unknown parameters.
  • ⁇ (1) and ⁇ (2) are ratios between wavelengths of the interference modulation degree, and can be considered as sample constants depending on the spectral refractive index of the transparent film and the spectral refractive index of the substrate. Therefore, it can be obtained in advance by means such as using another measurement object of the same film structure.
  • Example 6 Corresponding to claim 5 [t unknown, 1 point; mode: m-1 and 2-2])
  • the number of wavelengths is three or more and the number of selection points is one point or the number of wavelengths. Are two and the number of selection points is two, all of the film thickness t (i) at point i and a part of the average luminance a (j) and interferometric modulation factor b (j) of wavelength number j are unknown parameters.
  • An example is shown about the film thickness measuring method made into.
  • the present invention there may be a case where only one point with different film thickness is obtained. For example, this is a case where a resist having a substantially constant film thickness is applied to the entire surface of the wafer. In such a case, one point is selected and matched as a significant measurement point.
  • the observation data is three luminance meters for each wavelength ⁇ R, ⁇ G, and ⁇ B. Since only three unknown variables are permitted, the film thickness t (1) at the selected point and a total of three of the waveform parameters a (3) and b (3) are matched as unknown variables. The remaining waveform parameters are calculated from a (3) or b (3) by the following formula.
  • ⁇ (1) and ⁇ (2) are the ratios between the wavelengths of the average luminance, but this is not dependent on the brightness of the illumination, but is considered to be a device constant that depends on the spectral characteristics of the illumination and the camera. Can do. Therefore, it can be obtained in advance by means such as using another measurement object 30.
  • ⁇ (1) and ⁇ (2) are ratios between wavelengths of the above-described interference modulation degree. In the case of the present invention, it is also possible to select two or more matching points, and the least squares matching with the number of observation data larger than the number of unknown parameters is achieved.
  • Example 7 Corresponding to claim 6 [t unknown, 1 point; mode: 2-1]) Further, as in [Embodiment 5] and [Embodiment 6], as another modification example of the embodiment described in [Embodiment 1] to [Embodiment 4], the number of wavelengths is two and the number of selection points is one point. In this case, a film thickness measurement method using all of the film thickness t (1) at point 1, part of the average luminance a (j) of the wavelength number j and the degree of interference modulation b (j) as an unknown parameter is carried out. An example is shown.
  • the observation data is Two. Since only two unknown variables are allowed, a total of two of the film thickness t (1) at the selected point and the waveform parameter a (2) are matched as unknown variables. The remaining waveform parameter a (1) is calculated by the following equation.
  • a (1) ⁇ (1) ⁇ a (2)
  • b (1) and b (2) are sample constants, and are obtained by theoretical calculation from experimental values and physical property values of other samples having the same film structure.
  • the waveform parameter (recipe) can be easily created by effectively using the known information. Since there are two or more selected points, the observation data is six or more when the number of wavelengths is three. The unknown variable fits as six, a (1), a (2), a (3), b (1), b (2) and b (3). As a result, waveform parameters (recipe) are obtained. This means that calibration was performed using a sample with a known film thickness.
  • Example 9 Corresponding to claim 8 [t known, 1 point; mode: 1f]) Further, similarly to [Example 5] to [Example 8], the film thickness t (1) at one point is known as another modification example of the example described in [Example 1] to [Example 4]. An embodiment of the film thickness measuring method using the average luminance a (j) of the wavelength number j as an unknown parameter will be described.
  • the present invention there may be only one sample with a known film thickness. For example, it is a case where the result of having measured the sample of the same film structure as the measuring object 30 with another film thickness meter is obtained. If the known film thickness is one point, that point is selected and matched. Since there is one selection point, when the number of wavelengths is three, the observation data has a total of three luminances for each wavelength ⁇ R, ⁇ G, and ⁇ B. The unknown variables are matched as three, a (1), a (2), and a (3).
  • the remaining waveform parameter b (j) is a sample constant, and is theoretically calculated from the refractive indexes of the film and the substrate, or obtained in advance by other means.
  • ⁇ and ⁇ may be given as the set values.
  • the interference fringe model can be expressed as the following equation (1A) and the equation (2) as the following equation (2A).
  • Equation (1) and Equation (2) can also be used.
  • This method can also be applied to a transparent film on a substrate where the refractive index of the substrate is smaller than the refractive index of the transparent film.
  • a microscope is used as the optical system in the present embodiment, but an optical system without a microscope may be used.
  • the illumination is not limited to the coaxial epi-illumination, and vertical epi-illumination can also be used approximately.
  • the wavelength of illumination light and the wavelength ⁇ R, ⁇ G, and ⁇ B of the camera correspond to 1: 1, and an optical system without crosstalk is configured.
  • crosstalk correction may be performed. References regarding crosstalk correction include Industrial Papers of the Society of Instrument and Control Engineers Vol. 8 (14), pp. 113/116 (2009).
  • the unknown parameter is obtained by using the least square method for adaptation.
  • the adaptation may be performed by other methods such as a robust estimation method.
  • the film thickness measurement of the present invention calculates the film thickness at multiple points by fitting the interference fringe model, and calculates the film thickness at any point in the screen using the obtained waveform parameters (recipe). Therefore, many advantages can be obtained as compared with the conventional spectroscopic method and ellipsometer method.
  • the film thickness distribution of the measurement object can be measured at high speed.
  • the device only needs to have a lighting, a color camera, and a personal computer, and can be made small and inexpensive.
  • a plurality of points can be used for calibration.
  • waveform parameters (recipe) are automatically obtained by calibration, and this is used to calibrate the device. No calibration is necessary.
  • the waveform parameters (recipe) obtained by the adaptation can be applied to other measurement objects as long as the illumination intensity of the apparatus and the film structure of the measurement object do not change.
  • the calibration is not necessary for other measurement objects, and the film thickness of the other measurement object is also obtained by the equation (2).
  • the film thickness calculation time can be greatly shortened. This is applicable to the case of measuring the film thickness of a continuously running film sheet in a film manufacturing process.
  • Optical system unit 30 DESCRIPTION OF SYMBOLS 1 ...
  • Optical system unit 30 .. Measuring object 30A. Measuring object surface 30B. Measuring object back surface 40. Holding table 10. Illumination device 11. Collimating lens 13. Half mirror 14. Objective lens 18. ..Image forming lens 19 ..Imaging device 2... Data processing system unit 20 ..CPU 21..Memory 22..Input unit 23..Monitor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

従来の分光法やエリプソメータ法では、測定スポットサイズを小さくできないため、水平方向の分解能が低くなるなどの問題点があった。本願では、反射光情報を利用して、複数点の膜厚を一括して膜厚を測定する。具体的には、複数の波長の単色光を測定対象である透明膜に照射し、その表面反射光と裏面反射光により生成される干渉画像から1点以上の点を選択し、前記選択点iにおける波長番号jの干渉輝度信号に、波長番号jの波長λ(j)を既知とし、波長番号jの平均輝度a(j)干渉変調度b(j)および点iの膜厚t(i)のすべて、あるいは、1部を未知パラメータとし、残りを既知パラメータとして、点iにおける波長番号jの輝度が g(i,j)=a(j)[1+b(j)×cos{4πt(i)/λ(j)}] で表される干渉縞モデルを適合することにより、前記未知パラメータを求める。

Description

干渉色のモデル適合による膜厚測定方法およびその装置
 本発明は、干渉色情報を利用して、透明薄膜の膜厚を得る膜厚測定方法およびその装置に関する。また、前記透明薄膜には、ウエーハやガラス上に形成されている基板膜のほか、プラスチック・フィルムや石けん膜などの独立膜も含む。
 従来の代表的な膜厚測定法に、分光法とエリプソメータ法がある。例えば、分光法として、白色光を照射し、反射光の分光スペクトルを解析して、膜厚を求める方法が、特許文献1に開示されている。
特開平01-308930号
 従来の分光法やエリプソメータ法による膜厚測定法では、透明膜に光線を照射し、その反射光を解析して、膜厚を求めていた。しかし、この方法には以下の問題点があった。
まず、測定スポットサイズを小さくできないため、水平方向の分解能が低くなる。次に、基本的に点測定のため、多数点の膜厚値や膜厚分布を得るためには、試料または測定器を機械的に走査する必要があり、時間がかかる。特に、例えば、半導体ウエーハのような広い面積を測定するには膨大な時間がかかっていた。
分光器や偏光光学系など、複雑な光学系を必要とし、コスト高となっていた。
さらに、他の方法の分光法では、試料の分光強度データを分光反射率に換算するために、試料の測定に先立って、分光反射率が既知の試料をリファレンスとして測定する必要があった。
 本願発明は、上記の様に基本的に1点の反射光の解析により膜厚測定するのではなく、複数点の反射光情報を利用して、複数点の膜厚を一括して求める点で、背景技術とは異なる膜厚測定方法および装置に関するものである。以下に当該発明を用いて、透明薄膜の膜厚を測定する方法と手段について記述する。
 本願の第1および第10の発明は、m個からなる複数の波長の単色光を測定対象である透明膜に照射し、前記透明膜の表面の反射光と裏面の反射光により生成される干渉画像から1点以上の選択点をn点選択し、前記n点の選択点の内のi点に対応する波長番号jの干渉輝度信号に、前記波長番号jの波長λ(j)を既知とし、前記波長番号jの平均輝度a(j)、干渉変調度b(j)、および前記点iの膜厚t(i)のすべて、あるいは、1部を未知パラメータとし、残りを既知パラメータとして、前記点iに対応する波長番号jの輝度g(i,j)が
  g(i,j)=a(j)[1+b(j)×cos{4πt(i)/λ(j)}]・・(1)
で表される干渉縞モデルを適合することにより、前記未知パラメータを求めることを特徴とする膜厚測定方法、および当該方法を用いる膜厚測定装置である。
ただし、g(i,j)=点iにおける波長番号jの輝度。                  a(j)=波長番号jの平均輝度。                        b(j)=波長番号jの干渉変調度。                       t(i)=点iの膜厚。                             λ(j)=波長番号jの波長
である。
 すなわち、2種類以上の波長を用いて撮像した干渉画像から、1点以上の点を選択し、前記選択点の干渉輝度信号に、干渉縞モデルを最小二乗適合(フィッティング)して各点の膜厚、ないし波形パラメータを一括して求める方法、及び当該方法を用いて測定できる装置に関する発明である。
 第2および第11の発明は、前記干渉画像内の任意の点kに関し、請求項1で得られた、あるいは、前記既知の波長番号jの平均輝度a(j)および干渉変調度b(j)と、前記点kの各波長の輝度g(k,j)とから、前記点kにおける波長番号jの位相φ(k,j)を
  φ(k,j)=cos-1[{g(k,j)/a(j)-1}/b(j)]
により求め、得られた複数の位相から前記点kの膜厚t(k)を求めることを特徴とする膜厚測定方法および当該方法を用いる膜厚測定装置である。
 すなわち、第1および第10の発明に示す方法により得られた情報と既知の情報から、干渉画像の各点の位相を求め、複数波長の位相から膜厚を求める方法及びその方法を用いた装置に関する発明である。
 また、測定対象の膜厚を求めるに際し、本願の第1の発明および第2の発明を自動的に、かつ連続して用いることにより、測定対象の透明薄膜の各点の膜厚を効率良く測定することができる。
 第3および第12の発明は、前記請求項1において、照射する単色光の複数の波長数がm個、選択点数nが、
   n≧2m/(m-1)
となるように設定し、前記波長番号jの平均輝度a(j)、干渉変調度b(j)、および前記点iの膜厚t(i)のすべてを未知パラメータとする膜厚測定方法および当該方法を用いる膜厚測定装置である。
 第4の発明は、前記第1の発明において、波長数がm個の場合、選択点数nが、
   n≧2
となるように設定し、波長番号jの平均輝度a(j)、点iの膜厚t(i)のすべてと、干渉変調度b(j)の1部を未知パラメータとする膜厚測定方法である。
 すなわち、本願発明を適用する対象に膜厚の異なる点が2点しか得られない場合がある。例えば、半導体ICに形成された透明厚膜の1部がエッチングされて薄膜化されている場合である。このような場合、測定点として2点、すなわち、厚膜部と薄膜部を選択して適合する。選択点が2点なので、波長数がR波長、G波長およびB波長の3個の場合、観測データは、2点の各波長ごとの輝度の計6個である。未知変数は6個しか許されないので、選択点の膜厚t(1)、t(2)と、波形パラメータのうちのa(1)、a(2)、a(3)とb(3)の合計4個を未知変数として適合し、残りの波形パラメータは、以下の式により計算する。
   b(1)=β(1)×b(3)
   b(2)=β(2)×b(3)
ここでβ(1)、β(2)は、干渉変調度の波長間の比率であり、透明膜の分光屈折率と基板の分光屈折率に依存する試料定数と考えることができる。よって、同一の膜構造の他の測定対象を利用するなどの手段で、予め求めておくことができる。
 第5の発明は、前記第1の発明において、波長数が3個以上で選択点数が1点、あるいは、波長数が2個で選択点数が2点の場合に、点iの膜厚t(i)のすべてと波長番号jの平均輝度a(j)と干渉変調度b(j)の1部を未知パラメータとする膜厚測定方法である。
 すなわち、3波長を用いて本願発明を適用する場合に、膜厚の異なる点が1点しか得られない場合がある。例えば、ウエーハ全面にほぼ一定の膜厚のレジストが塗布されている場合である。このような場合、有意な測定点として1点を選択して適合する。波長数が3個の場合、選択点が1点なので、観測データは、R輝度、G輝度およびB輝度の3個である。未知変数は3個しか許されないので、選択点の膜厚t(1)と、波形パラメータのうちのa(3)とb(3)の合計3個を未知変数として適合する。残りの波形パラメータは、a(3)あるいはb(3)から、以下の式により計算する。
   a(1)=α(1)×a(3)
   a(2)=α(2)×a(3)
   b(1)=β(1)×b(3)
   b(2)=β(2)×b(3)
ここで、α(1)、α(2)は平均輝度の波長間の比率であるが、これは照明の明るさには依存せず、照明とカメラの分光特性に依存する装置定数と考えることができる。よって、他の測定対象を利用するなどの手段で、予め求めておくことができる。β(1)、β(2)は、前記した干渉変調度の波長間の比率である。なお、本発明の場合、適合点を2個以上選択することもできて、観測データ数が未知パラメータ数より多い最小二乗適合になる。
 第6の発明は、前記第1の発明において、波長数が2個で選択点数が1点の場合に、点1の膜厚t(1)と、波長番号jの平均輝度a(j)の1部と、干渉変調度b(j)のすべてを未知パラメータとする膜厚測定方法である。
 すなわち、波長数が2個で、膜厚の異なる点が1点しか得られない場合には、1点を選択して適合するが、波長数が2個、選択点が1点なので、観測データは、2個である。未知変数は2個しか許されないので、選択点の膜厚t(1)と、波形パラメータa(2)の合計2個を未知変数として適合する。残りの波形パラメータa(1)は、以下の式により計算する。
   a(1)=α(1)×a(2)
また、b(1)、b(2)は、試料定数であり、同一膜構造の他の試料の実験値や、物性値からの理論計算で求めておく。
 第7の発明は、前記第1の発明において、2点以上の点iの膜厚t(i)のすべてを既知とし、波長番号jの平均輝度a(j)、干渉変調度b(j)のすべてを未知パラメータとする膜厚測定方法である。
 すなわち、本願発明を適用する場合、膜厚既知の試料が2個以上存在する場合がある。例えば、ウエーハ上のシリコン酸化膜を測定対象とする場合、多くの標準膜厚試料が膜厚計の校正用に市販されている。このような場合、その既知情報を有効活用すると、波形パラメータ(適宜「レシピ」と呼ぶ)作成が容易になる。選択点が2点以上なので、波長数が3個の場合、観測データは、6個以上になる。未知変数は、a(1)、a(2)、a(3)、b(1)、b(2)およびb(3)の6個として適合する。その結果、波形パラメータ(レシピ)が求められる。これは、膜厚既知試料を用いて、校正を実施したことを意味している。
 第8の発明は、前記第1の発明において、1点の膜厚t(1)を既知とし、波長番号jの平均輝度a(j)を未知パラメータとする膜厚測定方法である。
 すなわち、本願発明を適用する場合、膜厚既知の試料が1個だけ存在する場合がある。例えば、測定対象と同一膜構造の試料を他の膜厚計で測定した結果が得られている場合である。既知膜厚の点数が1点の場合、その1点を選択して適合する。選択点が1点なので、観測データは、R輝度、G輝度およびB輝度の3個である。未知変数は、a(1)、a(2)、a(3)の3個として適合する。残りの波形パラメータb(j)は、試料定数であり、膜と基板の屈折率から理論計算するか、他の手段で予め求めておく。
 第9の発明は、前記第3ないし第8のいずれか一つの発明において、波長番号jの平均輝度a(j)、あるいは、干渉変調度b(j)の1部を既知パラメータとする場合に、当該パラメータは、平均輝度a(j)、干渉変調度b(j)のそれぞれの波長間比率を既知として設定することにより求める膜厚測定方法である。
 すなわち、前記第3ないし第8のいずれか一つの発明において、発明の変形としては、波長数が3個の場合を記載したが、波長数が2個、あるいは4個以上の場合も、同じ考え方で変形が可能である。すなわち、有意な観測データ数が未知パラメータ数以上になるようにすれば、適合が可能である。
 本願発明の方法およびその方法を用いた装置によれば、従来の分光法やエリプソメータ法に比較して、以下の効果がある。
まず、測定スポットサイズがカメラの1画素となるため、水平方向の分解能が高い。また、面一括測定のため、多数点の膜厚値や膜厚分布を短時間に得ることができる。たとえば、半導体ウエーハのような広い面積を一括測定できる。
 さらに、分光器や偏光光学系など複雑な光学系を必要とせず、小型、かつ、コストが廉価にできる。そして、予め既知膜厚の試料などを用いて装置の校正をする必要がない。および、複雑な測定アルゴリズムが不要であり、ソフトウエアが簡単である、という効果が得られる。
 さらに、本願の方法およびその方法を用いた装置では、測定個所の輝度から膜厚を求めるので、急峻な膜厚変化があっても、測定が可能である。
本願発明に係る膜厚測定装置の概略構成を示す図。 本願発明の計算手順のフローチャート。 本願発明の実施例1の膜厚測定対象。 本願発明の実施例1の各波長の干渉画像。 本願発明の実施例2の全体のフローチャート. 実施例3の50点の各位置の輝度を示すグラフ。 実施例3の50点の各位置の位相を示すグラフ。 実施例3の50点の各位置の膜厚を示すグラフ。 膜厚標準試料の干渉色画像。 画面内全点の膜厚測定結果(三次元表示)
 以下、図面を参照して、本発明の実施例を説明する。図1は、本発明の実施例に係る膜厚測定装置の概略構成を示す図である。本願の膜厚測定装置は、半導体ウエーハ、フィルム、ガラス基板または金属膜などの表面に形成された測定対象30の透明膜に、複数の特定波長帯域の単色光を照射し撮像する光学系ユニット1と、光学系ユニット1から得られた画像から膜厚を求めるデータ処理ユニット2から構成される。
 光学系ユニット1は、複数の異なる波長からなる単色光を照明光として出力する照明装置10と、各単色光を平行光にするコリメートレンズ11と、照明光を保持テーブル40上に載置された測定対象30の方向に反射するとともに測定対象30の方向からの反射光を通過させるハーフミラー13と、ハーフミラー13からの照明光を通過させ、測定対象の表面30Aからの反射光を拡大する対物レンズ14と、透明膜で発生する干渉画像を結像する結像レンズ18と、干渉画像を撮像する撮像装置19とを備えている。
 本願発明の照明装置10は、異なる2種類以上の波長の単色光が出力できる装置であり、例えばLED(Light Emitting Diode)が利用される。使用される波長は、例えば3種類の波長の場合、光源波長番号1は、「青」の単色光である波長λB=470nm、光源波長番号2は、「緑」の単色光である波長λG=560nmおよび光源波長番号3は、「赤」の単色光である波長λR=600nmである。
 ハーフミラー13は、コリメートレンズ11からの平行光を測定対象30に向けて反射する一方、測定対象30から戻ってきた反射光を通過させたものである。対物レンズ14は、入射してきた光を測定対象30の面に集光し、その反射像を拡大するためのレンズである。
 撮像装置19は、干渉による輝度の空間的な変動を画像として撮像する。該撮像した画像データは、データ処理系ユニット2のCPU20を介してメモリ21に格納される。
 本願発明における撮像装置19としては、波長の異なる複数の単色光の2次元の輝度画像を個々に画像データ化できる構成であれば良く、例えば、CCD固体撮像素子、MOSイメージセンサおよびCMOSイメージセンサなどが用いられる。
 データ処理系ユニット2は、所定の演算処理をおこなうためのCPU20と、CPU20によって逐次収集された画像データや演算結果などの各種のデータおよびプログラムなどを記憶するメモリ21と、サンプリングタイミングや撮像エリアその他の設定情報を入力するマウスやキーボードなどからなる入力部22と、測定対象30の画像や測定結果などを表示するモニタ23とを備える。
 以下、本願発明のデータ処理内容を図2に示すフローチャートに沿って説明する。図2のフローチャートには、ステップ1において、多波長の単色光を照射し画像を取得する工程から、ステップ2からステップ6の工程を経て、全ての画素単位の膜厚を算出するまでを繰り返す工程を示しておいる。
 具体的には、測定対象30を2種類以上の波長を用いて照射し、その測定対象の表面30Aからの反射光と測定対象の裏面30Bからの反射光により形成される干渉画像を取得する。続いて、該干渉画像から、波長の種類が2種類の場合は4点以上、また、波長の種類が3種類の場合は、3点以上を選択し、その輝度信号に干渉縞モデルを最小二乗適合する(フィッティングする)ことにより、各点の膜厚を一括して計算する。尚、ここに記載の最小二乗適合とは、式(1)に示した干渉縞モデルと観測輝度データの誤差が最小になるような未知パラメータを求めることを意味する。
 上記の干渉縞モデルは、波長番号jの平均輝度a(j)と干渉変調度b(j)の2つのパラメータ(これらを、適宜、「波形パラメータ」と呼ぶ)が、各点で変わらず、波長番号jのみに依存すると仮定することで得られる。尚、当該仮定は透明薄膜である測定対象30の材質が一定ならば、ほぼ成立する。
 また、最小二乗適合の誤差二乗和fは、式(3)で定義される。
   f=ΣΣ[g(i,j)-gij]          ・・・・・・・(3)
       ただし、g(i,j)は、式(1)で示す干渉縞モデル関数値、               gijは、観測輝度データの値、                         ΣΣは、波長番号jと観測点iに関する総和を示す。
 ここで、上記最小二乗適合問題が解けるためには、有意な観測輝度データの数が未知パラメータ数以上である必要がある。ここで、「有意な」とは、雑音レベルに比べて十分大きな輝度差のあるデータを意味し、以下、データ数、ないし点数とは、有意なデータ数を意味する。
 波長の数をm個、点の数をn個とすると、未知パラメータ数は、a(j)とb(j)がそれぞれm個、点iの膜厚t(i)がn個であり、合計(2m+n)個となる。1点からm個の輝度信号が得られるから、観測データ数は、m×n個であり、最小二乗適合により未知パラメータが求められる条件は、
Figure JPOXMLDOC01-appb-I000001
となる。
よって、必要な点nは、
Figure JPOXMLDOC01-appb-I000002
となる。すなわち、必要条件として、m=2の場合は、n≧4、m=3の場合は、n≧3が成り立つ。
 ここで、上記式(4)の等号が成立する場合、すなわちm=2,n=4またはm=3,n=3の場合は、厳密には最小二乗問題ではなく、(2m+n)元の非線形連立方程式となる。また、不等号の場合は、非線形最小二乗問題となる。
 上記の最小二乗適合は、非線形連立方程式あるいは非線形最小二乗問題となるが、この解法には、最急降下法などがあり、多くの市販ソフトウエアパッケージに内蔵されているソフトウエア[例えば、マイクロソフト社製エクセル(登録商標)内のソルバー(登録商標)]を利用して解くことができる。
 上記の最小二乗適合では、未知パラメータ数が大きくなると計算負荷が大きくなる。従い、最小二乗適合に使用するために画面内から選択する点を数個から数十個に制限することが実際的である。
 次に、最小二乗適合に使用したn点以外の点(k点)の膜厚を求める場合は、最小二乗適合で得られた干渉縞モデルのパラメータである平均輝度a(j)と干渉変調度b(j)を用いて、輝度から位相φを求め、多波長アンラッピングをおこなうことにより求めることができる。
 以下に具体的な計算方法について述べる。
干渉縞のモデルである式(1)の余弦関数内は、点iにおける波長番号jの位相φ(i,j)を表し、
   φ(i,j)=4πt(i)/λ(j)・・・・・・・・・・・・・・・(5)
と表される。
すると、式(1)より、
   φ(i,j)=cos-1[{g(i,j)/a(j)-1}/b(j)]・・(6)ここで、式(6)の逆余弦関数cos-1の値域は、[0,π]とする。
点iにおける波長番号jの膜厚t(i,j)は、式(5)と逆余弦関数の一般解表現から、
   t(i,j)=[±φ(i,j)/4π+N(i,j)/2]×λ(j)・・(7)
で求められる。ただし、N(i,j)は縞次数(整数)である。
 上記で得られた膜厚候補から合致法と呼ばれる手法により、縞次数N(i,j)を決定して、各波長の膜厚候補t(i,j)を求め、以下の式から最終的な膜厚を求める
   t(i)=Σt(i,j)/m                 ・・(8)
ただし、Σは、波長番号j=1~mに関する総和であり、右辺は膜厚候補値の平均値に相当する。
 また、同一材質からなる別の測定対象30の膜厚を測定する場合には、最初の干渉画像に本願記載の手法を適用し、得られた波形パラメータ(レシピ)を2回目以降の干渉画像にも適用して膜厚を求めることもできる。これにより膜厚測定の高速化が図れる。よって、当該最小二乗適合により得られる波形パラメータを適宜「レシピ」と呼ぶ。
 次に、最小二乗適合の場合の初期値の設定について記述する。最小二乗適合の場合、局所的極小値(以下ローカルミニマムと記載する)が多数存在するため、初期値を適正に設定する必要がある。前記パラメータとしての波長番号jの平均輝度a(j)と干渉変調度b(j)の初期値設定に関しては、本願記載の実施例において、下記の方法を用いた。
 すなわち、平均輝度a(j)は、輝度値の平均とし、干渉変調度b(j)は、輝度値の最大と最小の差を2a(j)で除した値とした。また、各点の膜厚については、各点の予想膜厚を初期値として設定した。
 前記設定した予想膜厚の初期値が真の値から離れている場合は、いわゆるローカルミニマムに陥り正しい膜厚が得られなくなる現象を生じる。当該現象時の対策として、複数の膜厚の初期値を準備して最小二乗適合をおこない、それらの結果から最小二乗適合の誤差が最小の値を推定値として採用するようにした。
 以下、本発明の膜厚測定処理内容を、実施例として、図2に示すフローチャートに沿って説明する。尚、本願の実施例においては、共通の条件として、カラーカメラの3色(RGB)に合わせて、青色波長λB=470nm、緑色波長λG=560nm、および赤色波長λR=600nmを用いている。
 [実施例1]
 <ステップS1> 多波長画像取得
実施例1として、3種類の波長を使用し、測定点として3点を選択して 適合した例を示す。測定対象30の干渉画像は、図3に示すような球面状の膜厚分布を持つ測定対象30を仮定して、干渉理論式(1)から計算した。この仮想的な測定対象30は、サイズが50×50画素、画素サイズが1μm、最小膜厚が4隅の0μm、膜厚曲率半径が1mm、中央の膜厚突起サイズが4μm×4μm、膜厚突起量が50nmである。
また、干渉理論式(1)において、各波長の平均輝度a=100、干渉変調度b=1とした。
 3種類の波長からなる干渉画像を光学系ユニット1の撮像装置19にて撮像し、データ処理系ユニット2のCPU20に送付しメモリ21に格納した。当該3種類の波長の干渉画像を図4に示す。
 <ステップS2> 使用データ選択
図4に示した3種類の波長の干渉画像について、干渉画像の縦軸をY軸、横軸をX軸として、座標が、P1(X1,Y1)=(5,25)、P2(X2,Y2)=(15,25)およびP3(X3,Y3)=(25,25)の3点を選択した。波長の干渉縞画像から、選択した各点P1~P3の観測値をメモリ21から抽出した。各選択点の膜厚真値と観測値(輝度)を表1に示した。

表1
Figure JPOXMLDOC01-appb-I000003

 <ステップS3> 初期値設定
次に、各点(この場合3点)の膜厚初期値を設定する。ただ、初期値が真値から離れている場合、ローカルミニマムに陥って、正しい膜厚が得られなくなる恐れがある。従い、初期値設定においては、できるだけ正しい膜厚を推定し設定する。当実施例では、真値から約5%低く推定された場合を想定し、下記表2-aの様に設定した。
 また、各波長番号jの平均輝度a(j)と干渉変調度b(j)の初期値設定に関しては、平均輝度a(j)は、観測輝度データの値の平均とし、干渉変調度b(j)は、観測輝度データの値の最大と最小の差を2×a(j)で除した値とし、表2-bのように設定した。

表2-a 膜厚初期値
Figure JPOXMLDOC01-appb-I000004

表2-b  パラメータ初期値
Figure JPOXMLDOC01-appb-I000005
 <ステップS4> 適合計算
次ステップとして、設定した初期値をデータ処理系ユニット2の入力部22から入力し、CPU20にて、最小二乗適合ソフトウエアを用いて適合計算をおこなうことにより、表1に示した輝度観測値から、膜厚と干渉縞パラメータを推定した。その結果、表3に示すように、推定誤差は非常に小さく、正しい膜厚推定値が得られた。

表3 3点適合結果
Figure JPOXMLDOC01-appb-I000006

 [実施例2]
次に、適合するために選択した点以外の点(k点)の膜厚を求めるに、実施例1にて適合によって得られたレシピ、すなわち、干渉縞モデルの波形パラメータである波長番号jの時の平均輝度a(j)及び干渉変調度b(j)を用いて、膜厚を求めた。
 例として、適合で得られたレシピを用いて、各点の輝度から位相を求め、合致法によるアンラッピングにより膜厚を計算した実施例を図5に示すフローチャートに従って説明する。この場合、図5のステップS1から、ステップS4までは、実施例1にて説明したとおりである。以下ステップS55から説明する。
 <ステップS55> 選択点以外の点の抽出
実施例1と同一の干渉画像から、選択点以外の点として、点P4(X4,Y4)=(1,25)を抽出して例示する。
[規則26に基づく補充 19.12.2012] 
 <ステップS66> 位相計算
 点P4(X4,Y4)=(1,25)における各波長に対応した位相(単位:ラジアン)を前記式(2)により求める。該結果を表4に示す。

表4 位相計算結果
Figure JPOXMLDOC01-appb-I000007
 <ステップS77> アンラッピング
さらに、上記で得られた各波長の位相値から、前記式(6)および式(7)を用いて膜厚計算をおこなう。この時、前記計算結果の位相から干渉次数を変えて膜厚候補値を計算する。この場合の次数の計算範囲は、予想膜厚に基づき決定する。本実施例では、膜厚範囲が0~800nmと仮定した。上記のように干渉次数を変えた膜厚候補値計算結果を表5に示す。





表5 膜厚候補値
Figure WO-DOC-TABLE-5

 <ステップS88> 膜厚の推定
次に、干渉次数を変えた膜厚候補値計算結果から、波長間の合致誤差が最も小さい組み合わせを探索する。この場合、合致誤差の指標として、[(最大値)-(最小値)]を用いて、値が最小にある干渉次数を探索した。表5によれば、干渉次数=+1の場合、合致誤差が「0」であるので、この時の膜厚300nmを採用した。結果として、この値は、真値に一致する。以上が、適合に使用した点以外の点P4(X4,Y4)=(1,25)の膜厚を求めた事例である。
 [実施例3]
次に、実施例2と同様に、実施例1で得られた干渉縞モデルのパラメータを用いて、50点の膜厚を推定した実施例を示す。実施例2と同様に、座標(X=1~50,Y=25)の50点について合致法を用いて膜厚を求めた。
 各点の波長ごとの輝度データを図6、各点の波長ごとの位相データを図7および各点の膜厚を図8に示す。この場合も全点で正しい推定ができている。特に、球面の頂点の部分(図の水平軸中央)のエッジ部の急峻な突起部分の膜厚段差が、鈍り無く測定されている。
[規則26に基づく補充 19.12.2012] 
 [実施例4]
次に、本願発明により、実試料の膜厚を測定した例を示す。測定対象30は、シリコンウエーハ上に、0,100,200,300,400および500nmの公称膜厚(物理膜厚)のシリコン酸化膜を形成した膜厚標準である。この試料に青色波長λB=470nm、緑色波長λG=560nmおよび赤色波長λR=600nmから構成される3波長照明光を照射し、3板式カラーカメラ(日立国際電気、HV-F22CL、1360×1024画素)で撮像した。得られた画像を図9に示す。この画像上に示すように、各膜厚領域から、1点を選択し、計6点の輝度を求めた。これに、干渉縞モデルを適合し、膜厚を求めた。6点の座標、輝度、膜厚の初期値、推定値、公称値、推定誤差を表6に示す。推定誤差が10nm以下であり、ほぼ正しい膜厚が得られている。
また、この適合で得られたレシピを表7に示す。このレシピを用いて、画像内の全点の輝度から位相、さらに膜厚を求めた結果を図10に示す。膜厚段差がほぼ正しく求められている。





表6 選択した6点の座標、輝度、高さ初期値、高さ推定値
Figure WO-DOC-TABLE-6
注:膜厚は光学膜厚で、物理膜厚×屈折率(1.46)で計算している。

表7 適合により得られたレシピ
Figure WO-DOC-TABLE-7

 [実施例5]  ・(請求項4[t未知、2点;モード:m-2と2-3]に対応)
 前記実施例1ないし実施例4の変形例として、波長数が3個以上で選択点数が2点、あるいは、波長数が2個で選択点数が3点の場合に、波長番号jの平均輝度a(j)と点iの膜厚t(i)のすべてと、干渉変調度b(j)の1部を未知パラメータとする膜厚測定方法について実施例を示す。
 本願発明を適用する対象に膜厚の異なる点が2点しか得られない場合である。例えば、半導体ICに形成された透明厚膜の1部がエッチングされて薄膜化されている場合である。このような場合、測定点として2点、すなわち、厚膜部と薄膜部を選択して適合する。選択点が2点なので、波長数がR波長、G波長およびB波長の3個の場合、観測データは、2点の各波長ごとの輝度の計6個である。未知変数は6個しか許されないので、選択点の膜厚t(1)、t(2)と、波形パラメータのうちのa(1)、a(2)、a(3)およびb(3)の合計4個を未知変数として適合し、残りの波形パラメータは、以下の式により計算する。
   b(1)=β(1)×b(3)
   b(2)=β(2)×b(3)
ここで、β(1)、β(2)は、干渉変調度の波長間の比率であり、透明膜の分光屈折率と基板の分光屈折率に依存する試料定数と考えることができる。よって、同一の膜構造の他の測定対象を利用するなどの手段で、予め求めておくことができる。
 [実施例6]  ・(請求項5[t未知、1点;モード:m-1と2-2]に対応)
 さらに[実施例5]と同様に、[実施例1]ないし[実施例4]に記載した実施例に対する他の変形例として、波長数が3個以上で選択点数が1点、あるいは、波長数が2個で選択点数が2点の場合に、点iの膜厚t(i)のすべてと、波長番号jの平均輝度a(j)と干渉変調度b(j)の1部を未知パラメータとする膜厚測定方法について実施例を示す。
 本願発明を適用する場合に、膜厚の異なる点が1点しか得られない場合がある。例えば、ウエーハ全面にほぼ一定の膜厚のレジストが塗布されている場合である。このような場合、有意な測定点として1点を選択して適合する。波長数が3個の場合、選択点が1点なので、観測データは、1点の各波長λR、λG、λBごとの輝度計3個である。未知変数は3個しか許されないので、選択点の膜厚t(1)と、波形パラメータのうちのa(3)とb(3)の合計3個を未知変数として適合する。残りの波形パラメータは、a(3)、あるいはb(3)から、以下の式により計算する。
   a(1)=α(1)×a(3)
   a(2)=α(2)×a(3)
   b(1)=β(1)×b(3)
   b(2)=β(2)×b(3)
ここで、α(1)、α(2)は平均輝度の波長間の比率であるが、これは照明の明るさには依存せず、照明とカメラの分光特性に依存する装置定数と考えることができる。よって、他の測定対象30を利用するなどの手段で、予め求めておくことができる。β(1)、β(2)は、前記した干渉変調度の波長間の比率である。なお、本発明の場合、適合点を2個以上選択することもできて、観測データ数が未知パラメータ数より多い最小二乗適合になる。
 [実施例7]  ・(請求項6[t未知、1点;モード:2-1]に対応)
 さらに[実施例5]および[実施例6]と同様に、[実施例1]ないし[実施例4]に記載した実施例に対する他の変形例として、波長数が2個で選択点数が1点の場合に、点1の膜厚t(1)と、波長番号jの平均輝度a(j)の1部と、干渉変調度b(j)のすべてを未知パラメータとする膜厚測定方法について実施例を示す。
 波長数が2個で、膜厚の異なる選択点が1点しか得られない場合には、1点を選択して適合するが、波長数が2個、選択点が1点なので、観測データは、2個である。未知変数は2個しか許されないので、選択点の膜厚t(1)と、波形パラメータa(2)の合計2個を未知変数として適合する。残りの波形パラメータa(1)は、以下の式により計算する。
   a(1)=α(1)×a(2)
また、b(1)、b(2)は、試料定数であり、同一膜構造の他の試料の実験値や、物性値からの理論計算で求めておく。
 [実施例8]  ・(請求項7[t既知、2点以上;モード:2f以上]に対応)
 さらに[実施例5]ないし[実施例7]と同様に、[実施例1]ないし[実施例4]に記載した実施例に対する他の変形例として、2点以上の点iの膜厚t(i)のすべてを既知とし、波長番号jの平均輝度a(j)、干渉変調度b(j)のすべてを未知パラメータとする膜厚測定方法について実施例を示す。
 本願発明を適用する場合、膜厚既知の試料が2個以上存在する場合がある。例えば、ウエーハ上のシリコン酸化膜を測定対象30とする場合、多くの標準膜厚試料が膜厚計の校正用に市販されている。このような場合、その既知情報を有効活用すると、波形パラメータ(レシピ)の作成が容易になる。選択点が2点以上なので、波長数が3個の場合、観測データは、6個以上になる。未知変数は、a(1)、a(2)、a(3)、b(1)、b(2)およびb(3)の6個として適合する。その結果、波形パラメータ(レシピ)が求められる。これは、膜厚既知試料を用いて、校正を実施したことを意味している。
 [実施例9]  ・(請求項8[t既知、1点;モード:1f]に対応)
 さらに[実施例5]ないし[実施例8]と同様に、[実施例1]ないし[実施例4]に記載した実施例に対する他の変形例として、1点の膜厚t(1)を既知とし、波長番号jの平均輝度a(j)を未知パラメータとする膜厚測定方法について実施例を示す。
 本願発明を適用する場合、膜厚既知の試料が1個だけ存在する場合がある。例えば、測定対象30と同一膜構造の試料を他の膜厚計で測定した結果が得られている場合である。既知膜厚の点数が1点の場合、その1点を選択して適合する。選択点が1点なので、波長数が3個の場合、観測データは、1点の各波長λR、λG、λBごとの輝度は計3個である。未知変数は、a(1)、a(2)、a(3)の3個として適合する。残りの波形パラメータb(j)は、試料定数であり、膜と基板の屈折率から理論計算するか、他の手段で予め求めておく。
 以上の[実施例5]ないし[実施例9]に記載の発明の変形である実施例は、波長数が3個の場合を記載したが、波長数が2個、あるいは4個以上の場合も、同じ考え方で変形が可能である。すなわち、有意な観測データ数が未知パラメータ数以上になるようにすれば、適合が可能である。
 すなわち、上記[実施例5]ないし[実施例9]に対する実施例を基に、波長数と有意点数の組み合わせについて考察する。
波長数mがm=2の場合とm>=3の場合のがあり、さらに、膜厚が既知の場合と未知の場合で分類すれば、下記のケースがある。それぞれのケースにおいて、有意な点数に応じた測定モードが考えられる。
1)波長数mが2個で、膜厚が未知のケース(下記表8に示す)
 ・有意点数=1(モード名2-1):設定値は、α、b(j)を与えれば良い。
 ・有意点数=2(モード名2-2):設定値は、α、βを与えれば良い。
 ・有意点数=3(モード名2-3):設定値は、βを与えれば良い。
 ・有意点数=4以上(モード名2-n):設定値は不要。
2)波長数mが2個で膜厚既知のケース(下記表8に示す。)
 ・有意点数=1(モード名2-1f):設定値は、b(j)を与えれば良い。
[規則26に基づく補充 19.12.2012] 
 ・有意点数=2(モード名2-2f):設定値は不要
 ・有意点数=3(モード名2-nf):設定値は不要

表8 各種測定モード(波長数m=2個のケース)
Figure WO-DOC-TABLE-8
3)波長数mが3個で、膜厚が未知のケース(下記表9に示す)
 ・有意点数=1(モード名3-1):設定値は、α、b(j)を与えれば良い。
 ・有意点数=2(モード名3-2):設定値は、βを与えれば良い。
 ・有意点数=3以上(モード名3-n):設定値は不要。
4)波長数mが3個で膜厚既知のケース(下記表9に示す)
 ・有意点数=1(モード名3-1f):設定値は、b(j)を与えれば良い。
[規則26に基づく補充 19.12.2012] 
 ・有意点数=2(モード名3-2f):設定値は不要。 ・有意点数=3以上(モード名3-nf):設定値は不要。

表9 各種測定モード(波長数m=3個)
Figure WO-DOC-TABLE-9
 尚、次に同様にして、m>=4の場合を表10に示す。

表10 各種測定モード(波長数m>=4個)
Figure WO-DOC-TABLE-10
 ところで、本明細書では、基板上の透明膜を測定対象30として説明したが、プラスチックフィルムのような基板のない独立透明膜を測定することもできる。この場合は、空気が基板の替わりとなり、膜の屈折率より基板屈折率が大きくなるので、その界面における反射光の位相が反転する。このため、膜厚0の干渉色が暗環となり、干渉縞モデルの式(1)は、下記の式(1A)、式(2)は、下記の式(2A)と示すことができる。

g(i,j)=a(j)[1-b(j)×cos{4πt(i)/λ(j)}]  (1A)

φ(k,j)=cos-1[-{g(k,j)/a(j)-1}/b(j)]   (2A)

となる。
 これは、b(j)が正とした場合であり、b(j)が負になったと考えて、式(1)式(2)を使用することもできる。
また、この方法は、基板上の透明膜の場合で、基板の屈折率が透明膜の屈折率よりも小さい場合にも適用できる。
 その他、本願発明の変形例として、本願実施例では、光学系として顕微鏡を用いたが、顕微鏡がない光学系でも良い。また、照明は同軸落射照明に限らず、近似的に垂直落射照明を用いることもできる。
 また、カメラにより撮像した画像を対象に、ノイズ除去、シェーディング補正など、様々な前処理を施すことも有効である。
 本願記載の実施例では、照明光の波長とカメラの波長λR、λG、λB帯域とが1:1に対応し、クロストークのない光学系を構成して実施したが、クロストークが無視できない場合には、クロストーク補正を実施しても良い。クロストーク補正に関しての参考文献としては、計測自動制御学会産業論文集Vol.8(14),pp.113/116(2009)がある。
 本願記載の実施例では、適合に最小二乗法を用いて未知パラメータを求めたが、その他、例えばロバスト推定方法などの他の方法で適合を行っても良い。
 本願発明の膜厚測定は、干渉縞モデルを適合することにより複数点の膜厚を一括して求め、さらに得られた波形パラメータ(レシピ)を利用して画面内の任意点の膜厚を計算するので、従来の分光法やエリプソメータ法に比較して多くの利点が得られる。まず、点測定ではなく、画測定であるので、高速に測定対象の膜厚分布が測定できる。装置も照明とカラーカメラとパソコンがあれば良く、小型で安価に構成できる。また、一般には適合に複数の点が使用できるが、この場合、適合により波形パラメータ(レシピ)が自動的に得られ、これが装置の校正になっているので、既知の測定対象の膜厚試料による校正は不要である。
 さらに、適合により得られる波形パラメータ(レシピ)は、装置の照明強度と測定対象の膜構造が変わらない限り、他の測定対象にも適用可能である。この場合には、一旦、適合を実施して波形パラメータ(レシピ)を得たら、他の測定対象に対しては、適合は不要で、式(2)により他の測定対象の膜厚も求めることができ、膜厚計算時間を大幅に短縮できる。これは、フィルム製造プロセスにおいて、連続走行するフィルムシートの膜厚をオンライン計測する場合などに適用可能である。
1・・・光学系ユニット
30・・測定対象
30A・測定対象の表面
30B・測定対象の裏面
40・・保持テーブル
10・・照明装置
11・・コリメートレンズ
13・・ハーフミラー
14・・対物レンズ
18・・結像レンズ
19・・撮像装置
2・・・データ処理系ユニット
20・・CPU
21・・メモリ
22・・入力部
23・・モニタ

Claims (12)

  1.  m個からなる複数の波長の単色光を測定対象である透明膜に照射し、前記透明膜の表面
    の反射光と裏面の反射光により生成される干渉画像から1点以上の選択点をn点選択し、
    前記n点の選択点の内のi点に対応する波長番号jの干渉輝度信号に、前記波長番号jの
    波長λ(j)を既知とし、前記波長番号jの平均輝度a(j)、干渉変調度b(j)、お
    よび前記点iの膜厚t(i)のすべて、あるいは、1部を未知パラメータとし、残りを既
    知パラメータとして、前記点iに対応する波長番号jの輝度g(i,j)が
      g(i,j)=a(j)[1+b(j)×cos{4πt(i)/λ(j)}]
    で表される干渉縞モデルを適合することにより、前記未知パラメータを求めることを特徴
    とする膜厚測定方法。
  2.  前記干渉画像内の任意の点kに関し、請求項1で得られた、あるいは、前記既知の波長
    番号jの平均輝度a(j)および干渉変調度b(j)と、前記点kの各波長の輝度g(k
    ,j)とから、前記点kにおける波長番号jの位相φ(k,j)を
      φ(k,j)=cos-1[{g(k,j)/a(j)-1}/b(j)]
    により求め、得られた複数の位相から前記点kの膜厚t(k)を求めることを特徴とする
    請求項1に記載の膜厚測定方法。
  3.  前記請求項1において、照射する単色光の複数の波長数がm個、選択点数nが、   
     n≧2m/(m-1)
    となるように設定し、前記波長番号jの平均輝度a(j)、干渉変調度b(j)および前
    記点iの膜厚t(i)のすべてを未知パラメータとする膜厚測定方法。
  4.  前記請求項1において、照射する単色光の複数の波長数が3個以上で選択点数が2点、
    あるいは、波長数が2個で選択点数が3点の場合に、前記波長番号jの平均輝度a(j)
    、前記点iの膜厚t(i)のすべてと、干渉変調度b(j)の1部を未知パラメータとす
    る膜厚測定方法。
  5.  前記請求項1において、照射する単色光の複数の波長数が3個以上で選択点数が1点、
    あるいは、波長数が2個で選択点数が2点の場合に、前記点iの膜厚t(i)のすべてと
    、前記波長番号jの平均輝度a(j)と干渉変調度b(j)の1部を未知パラメータとす
    る膜厚測定方法。
  6.  前記請求項1において、波長数が2個で選択点数が1点の場合に、点1の膜厚t(1)
    と、波長番号jの平均輝度a(j)の1部と、干渉変調度b(j)のすべてを未知パラメ
    ータとする膜厚測定方法。
  7.  前記請求項1において、2点以上の前記点iの膜厚t(i)のすべてを既知とし、前記
    波長番号jの平均輝度a(j)、干渉変調度b(j)のすべてを未知パラメータとする膜
    厚測定方法。
  8.  前記請求項1において、1点の膜厚t(1)を既知とし、前記波長番号jの平均輝度a
    (j)を未知パラメータとする膜厚測定方法。
  9.  前記請求項3~8のいずれか一つの請求項において、前記波長番号jの平均輝度a(j
    )、あるいは、干渉変調度b(j)の1部を既知パラメータする場合に、当該パラメータ
    は、平均輝度a(j)、干渉変調度b(j)のそれぞれの波長間比率を既知として設定す
    ることにより求める膜厚測定方法。
  10.  m個からなる複数の波長の単色光を測定対象である透明膜に照射し、前記透明膜の表面
    の反射光と裏面の反射光により生成される干渉画像から1点以上の選択点をn点選択し、
    前記n点の選択点の内のi点に対応する波長番号jの干渉輝度信号に、前記波長番号jの
    波長λ(j)を既知とし、前記波長番号jの平均輝度a(j)、干渉変調度b(j)、お
    よび前記点iの膜厚t(i)のすべて、あるいは、1部を未知パラメータとし、残りを既
    知パラメータとして、前記点iに対応する波長番号jの輝度g(i,j)が
      g(i,j)=a(j)[1+b(j)×cos{4πt(i)/λ(j)}]
    で表される干渉縞モデルを適合し、前記未知パラメータを求めることにより膜厚を測定で
    きることを特徴とする膜厚測定装置。
  11.  前記干渉画像内の任意の点kに関し、請求項10で得られた、あるいは、既知の波長番
    号jの平均輝度a(j)および干渉変調度b(j)と、前記点kの各波長の輝度g(k,
    j)とから、前記点kにおける波長番号jの位相φ(k,j)を
      φ(k,j)=cos-1[{g(k,j)/a(j)-1}/b(j)]
    により求め、得られた複数の位相から前記点kの膜厚t(k)が測定出来ることを特徴と
    する請求項10に記載の膜厚測定装置。
  12.  前記請求項10において、照射する単色光の複数の波長数がm個、選択点数nが、  
     n≧2m/(m-1)
    となるように設定し、前記波長番号jの平均輝度a(j)、干渉変調度b(j)および点
    iの膜厚t(i)のすべてを未知パラメータとして膜厚測定ができることを特徴とする膜
    厚測定装置。
PCT/JP2012/079082 2011-12-16 2012-11-09 干渉色のモデル適合による膜厚測定方法およびその装置 WO2013088871A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-275509 2011-12-16
JP2011275509 2011-12-16

Publications (1)

Publication Number Publication Date
WO2013088871A1 true WO2013088871A1 (ja) 2013-06-20

Family

ID=48612326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079082 WO2013088871A1 (ja) 2011-12-16 2012-11-09 干渉色のモデル適合による膜厚測定方法およびその装置

Country Status (2)

Country Link
JP (1) JP6284705B2 (ja)
WO (1) WO2013088871A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210356254A1 (en) * 2018-11-09 2021-11-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Device and method for measuring oxide film thickness

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6035279B2 (ja) * 2014-05-08 2016-11-30 東京エレクトロン株式会社 膜厚測定装置、膜厚測定方法、プログラム及びコンピュータ記憶媒体
WO2016147782A1 (ja) * 2015-03-17 2016-09-22 東レエンジニアリング株式会社 膜厚測定装置および膜厚測定方法
JP2017044587A (ja) * 2015-08-27 2017-03-02 東レエンジニアリング株式会社 膜厚分布測定装置
JP6750813B2 (ja) * 2016-07-01 2020-09-02 株式会社溝尻光学工業所 透明板の形状測定方法および形状測定装置
WO2022244309A1 (ja) 2021-05-21 2022-11-24 浜松ホトニクス株式会社 膜厚測定装置及び膜厚測定方法
JP7121222B1 (ja) 2021-05-21 2022-08-17 浜松ホトニクス株式会社 膜厚測定装置及び膜厚測定方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081916A (ja) * 2000-09-08 2002-03-22 Omron Corp 膜厚測定方法およびその方法を用いた膜厚センサ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311708A (ja) * 1997-05-13 1998-11-24 Tokyo Seimitsu Co Ltd 干渉式膜厚計
JP4183089B2 (ja) * 2004-09-16 2008-11-19 東レエンジニアリング株式会社 表面形状および/または膜厚測定方法およびその装置
JP4885154B2 (ja) * 2007-01-31 2012-02-29 国立大学法人東京工業大学 複数波長による表面形状の測定方法およびこれを用いた装置
JP4939304B2 (ja) * 2007-05-24 2012-05-23 東レエンジニアリング株式会社 透明膜の膜厚測定方法およびその装置
JP2010060420A (ja) * 2008-09-03 2010-03-18 Tokyo Institute Of Technology 表面形状および/または膜厚測定方法およびその装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081916A (ja) * 2000-09-08 2002-03-22 Omron Corp 膜厚測定方法およびその方法を用いた膜厚センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATSUICHI KITAGAWA: "FAST SURFACE PROFILING BY MULTI-WAVELENGTH SINGLE-SHOT INTERFEROMETRY", INTERNATIONAL JOURNAL OF OPTOMECHATRONICS, vol. 4, no. 2, 2 June 2010 (2010-06-02), pages 136 - 156 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210356254A1 (en) * 2018-11-09 2021-11-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Device and method for measuring oxide film thickness
US11761752B2 (en) * 2018-11-09 2023-09-19 Kobe Steel, Ltd. Device and method for measuring oxide film thickness

Also Published As

Publication number Publication date
JP2013145229A (ja) 2013-07-25
JP6284705B2 (ja) 2018-02-28

Similar Documents

Publication Publication Date Title
JP6284705B2 (ja) 干渉色のモデル適合による膜厚測定方法およびその装置
JP6384183B2 (ja) 試料測定装置および試料測定プログラム
Leon et al. Color measurement in L∗ a∗ b∗ units from RGB digital images
CN109791896B (zh) 加快在半导体装置制作中的光谱测量
TWI509220B (zh) 採用表面顏色之表面形貌干涉儀
US20080117438A1 (en) System and method for object inspection using relief determination
US11614363B2 (en) Digital pathology color calibration and validation
Gao et al. High-throughput fast full-color digital pathology based on Fourier ptychographic microscopy via color transfer
Kim et al. High-speed color three-dimensional measurement based on parallel confocal detection with a focus tunable lens
JP2014132256A (ja) 撮像システム及び色検査システム
JP6068375B2 (ja) 分光放射輝度計
JP2015230264A (ja) 膜厚測定方法および膜厚測定装置
JP5701159B2 (ja) 干渉縞モデル適合による表面形状測定方法およびその装置
JP2012189406A (ja) 膜厚測定方法及び膜厚測定装置
Guo et al. Multispectral photometric stereo for spatially-varying spectral reflectances: A well posed problem?
JP5997578B2 (ja) クロストーク補正係数算出方法およびクロストーク補正係数算出機能を備えた透明膜の膜厚測定装置
US10274307B2 (en) Film thickness measurement device using interference of light and film thickness measurement method using interference of light
JP2006071316A (ja) 膜厚取得方法
Picollo et al. Application of hyper-spectral imaging technique for colorimetric analysis of paintings
Stamm et al. Dynamic interferometric imaging of the thickness distribution of evaporating thin liquid films
US9282304B1 (en) Full-color images produced by white-light interferometry
JP2003156314A (ja) 膜厚測定方法及びその装置
JP2017106860A (ja) 画像生成方法及び画像生成装置
JP3811728B2 (ja) 膜厚取得方法
JP2018132390A (ja) 膜厚測定方法および膜厚測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858136

Country of ref document: EP

Kind code of ref document: A1