WO2013088529A1 - Gnss信号処理方法、測位方法、gnss信号処理プログラム、測位プログラム、gnss信号処理装置、測位装置、および、移動端末 - Google Patents

Gnss信号処理方法、測位方法、gnss信号処理プログラム、測位プログラム、gnss信号処理装置、測位装置、および、移動端末 Download PDF

Info

Publication number
WO2013088529A1
WO2013088529A1 PCT/JP2011/078921 JP2011078921W WO2013088529A1 WO 2013088529 A1 WO2013088529 A1 WO 2013088529A1 JP 2011078921 W JP2011078921 W JP 2011078921W WO 2013088529 A1 WO2013088529 A1 WO 2013088529A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
early
late
signal
code phase
Prior art date
Application number
PCT/JP2011/078921
Other languages
English (en)
French (fr)
Inventor
長野健史
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to PCT/JP2011/078921 priority Critical patent/WO2013088529A1/ja
Priority to EP11877299.5A priority patent/EP2793050B1/en
Priority to JP2013549002A priority patent/JP5923112B2/ja
Priority to US14/365,606 priority patent/US9891324B2/en
Publication of WO2013088529A1 publication Critical patent/WO2013088529A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/22Multipath-related issues
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7085Synchronisation aspects using a code tracking loop, e.g. a delay-locked loop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain

Definitions

  • the present invention relates to a GNSS signal processing method for performing tracking by locking the code phase of a GNSS signal code-modulated with a spreading code.
  • the GNSS signal is a signal obtained by code-modulating a carrier wave having a predetermined frequency with a spreading code.
  • the spreading code is set individually for each GNSS satellite (GNSS signal).
  • the positioning device generally tracks the GNSS signal by the following method.
  • the positioning device generates a replica signal including a replica code of a spreading code set for a target GNSS satellite.
  • the positioning device correlates the received GNSS signal with the replica signal.
  • the positioning device calculates an error detection value from the correlation value.
  • the positioning device tracks the target GNSS signal by controlling the code phase of the replica signal using the error detection value and locking the code phase of the target GNSS signal.
  • tracking can be performed easily and accurately. If the multipath signal received by the positioning device after the GNSS signal is reflected on a high-rise building or the like is included, tracking accuracy may be lowered.
  • Non-Patent Document 1 and Patent Document 1 an error detection value calculation formula is set so that the correlation value becomes “0” in a specific code phase range. Yes. Specifically, with the code phase of the target GNSS signal as a reference phase, a dead region where the correlation value is “0” is set in a predetermined code phase range between the reference phase and a predetermined code phase separation. ing. If the code phase of the multipath signal enters this insensitive area, the code phase of the target GNSS signal is locked without being affected by the multipath signal.
  • the reception state deteriorates while tracking the target GNSS signal, and the code phase difference of the prompt replica signal with respect to the target GNSS signal becomes large.
  • the code phase of the GNSS signal enters the insensitive area, and the code phase cannot be locked.
  • the reception sensitivity of the target GNSS signal direct wave signal
  • the signal strength of the target GNSS signal direct wave signal
  • the process of shifting the tracking target from the multipath signal to the target GNSS signal (direct wave signal) cannot be performed.
  • an object of the present invention is to provide a GNSS signal processing method that is less susceptible to changes in the reception environment and can continuously track a target GNSS signal (direct wave signal).
  • the present invention relates to a GNSS signal processing method for tracking the code phase of a received GNSS signal.
  • the GNSS signal processing method includes a correlation processing step, a difference value calculation step, an error detection value calculation step, and a code phase control step.
  • a first early replica signal advanced by a first code phase with respect to the prompt replica signal, a first late replica signal delayed by the first code phase with respect to the prompt replica signal, and the prompt replica signal are correlated.
  • the first late correlation value is subtracted from the first early correlation value to calculate an early late difference value.
  • the first early correlation value is a correlation value between the GNSS signal and the first early replica signal.
  • the first late correlation value is a correlation value between the GNSS signal and the first late replica signal.
  • the early difference value is calculated by subtracting the second early correlation value from the first early correlation value.
  • the second early correlation value is a correlation value between the GNSS signal and the second early replica signal.
  • the late difference value is calculated by subtracting the second late correlation value from the first late correlation value.
  • the second late correlation value is a correlation value between the GNSS signal and the second late replica signal.
  • an error calculation method is set based on the early late difference value and the early difference value or the late difference value, and the error detection value is calculated using the set error calculation method.
  • the code phase of the prompt replica signal is controlled based on the error detection value, and the code phase of the GNSS signal is tracked.
  • This method utilizes the fact that the early late differential value, the early differential value, and the late differential value change according to the phase difference between the code phase of the received GNSS signal and the code phase of the prompt replica signal.
  • Appropriate code phase control according to the code phase difference can be performed by appropriately setting the error detection method according to the early late difference value and the early differential value or the early late difference value and the late differential value. This improves the tracking performance of the GNSS signal.
  • the early late differential value, the early differential value, and the late differential value are divided by the correlation value between the prompt replica signal and the GNSS signal in the differential value calculation step.
  • the early late difference value, the early differential value, and the late differential value are normalized.
  • a positive first threshold value and a negative second threshold value are set for the early late difference value, and a negative third value threshold value for the early differential value is set. And a fourth negative threshold value for the late difference value is set.
  • the early late difference value is larger than the first threshold value and the early differential value is smaller than the third threshold value, or the early late differential value is smaller than the second threshold value and the late differential value is the fourth threshold value. Is smaller than the first error detection method.
  • the first error detection method is a method of calculating the error detection value using the first calculation formula in which the code phase range where the error detection value takes a value other than 0 is widened.
  • the second error detection method is used when the early late difference value, the early differential value, and the late differential value do not satisfy the threshold condition.
  • the second error detection method is a method of calculating the error detection value using the second calculation formula having a narrow code phase range in which the error detection value takes a value other than 0.
  • This method shows a specific example of the error detection method to be selected.
  • the code phase difference between the GNSS signal and the prompt replica signal is large. Therefore, by using the first error detection method having a wide code phase range in which the error detection value does not become 0, it is difficult to lose the GNSS signal and reliable tracking is possible.
  • the code phase difference between the GNSS signal and the prompt replica signal is small as shown in an embodiment described later.
  • the code phase of the GNSS signal can be kept locked with high accuracy without being affected by multipath. Even if multipath exists, continuous tracking can be realized.
  • the first calculation formula uses the first early correlation value and the first late correlation value, or uses the second early correlation value and the second late correlation value.
  • the second calculation formula uses the first and second early correlation values and the first and second late correlation values.
  • This method shows a combination of correlation values used in the first calculation formula and the second calculation formula.
  • a specific calculation formula will be described in an embodiment described later.
  • the positioning method of the present invention includes a step of acquiring a navigation message from the correlation result between the GNSS signal tracked by the GNSS signal processing method described above and the prompt replica signal.
  • This positioning method includes a step of calculating a pseudo distance from an error detection value with respect to the GNSS signal being tracked.
  • This positioning method includes a step of performing a positioning calculation using the navigation message and the pseudorange.
  • the navigation message can be reliably demodulated and the pseudorange can be calculated with high accuracy. Thereby, highly accurate positioning calculation becomes possible.
  • the present invention it is possible to suppress the influence of a change in the reception environment and continuously track the target GNSS signal (direct wave signal).
  • Prompt replica signal S RP is a diagram showing a second situation in which the code phase is delayed for the purposes of the GNSS signals.
  • Prompt replica signal S RP is a diagram illustrating a third situation in which the code phase is delayed for the purposes of the GNSS signals.
  • Prompt replica signal S RP is a diagram showing a fourth situation is progressing code phase for the purposes of the GNSS signals.
  • Prompt replica signal S RP is a diagram showing a fifth situation of that progressed code phase for the purposes of the GNSS signals.
  • Prompt replica signal S RP is a diagram showing a sixth situation of that progressed code phase for the purposes of the GNSS signals.
  • the GNSS signals prompt replica signal S RP purpose during tracking is a diagram showing a correlation characteristic of the situations received multipath signal. It is a figure which shows the transition of the tracking of the code phase during transition from the state which received only the target GNSS signal (direct wave signal) to the state which receives a multipath signal in addition to the target GNSS signal. It is a figure which shows the correlation value characteristic of the condition which received the target GNSS signal when the prompt replica signal SRP substantially corresponds to the code phase of a multipath signal.
  • the code phase of the prompt replica signal S RP is a diagram showing a correlation characteristic of conditions close to the GNSS signal of interest.
  • FIG. 1 is a flowchart of a GNSS signal processing method according to an embodiment of the present invention.
  • the target GNSS signal is continuously tracked by repeating the flow shown in FIG.
  • a replica signal is a signal having a replica code of a spread code signal of a target GNSS signal.
  • a prompt replica signal S RP a first early replica signal S RE , a second early replica signal S RVE , a first late replica signal S RL , and a second late replica signal S RVL are used.
  • the code phases of these replica signals are set as shown in FIG.
  • FIG. 2 is a diagram showing the relationship of the code phase timing of each replica signal in the GNSS signal processing method according to the embodiment of the present invention.
  • the prompt replica signal SRP is a signal in which the code phase of the replica code is set so that the received GNSS signal matches the code phase based on the previously calculated error detection value ⁇ . is there.
  • the prompt replica signal SRP is a signal in which the code phase is set so that the correlation value with the GNSS signal is maximized.
  • the first early replica signal S RE is a signal whose code phase is advanced by the code phase difference ⁇ 1/2 with respect to the prompt replica signal S RP .
  • Second early replica signal S RVE is the prompt replica signal S RP, only the code phase difference tau 2/2, a signal advanced code phase.
  • Code phase difference tau 2/2 is set to be larger than the code phase difference ⁇ 1/2.
  • the code phase difference tau 1/2 is 0.05 chips
  • the code phase difference tau 2/2 is 0.075 chips.
  • the first late replica signal S RL is a signal whose code phase is delayed by the code phase difference ⁇ 1/2 with respect to the prompt replica signal S RP .
  • the second late replica signals S RVL is the prompt replica signal S RP, only the code phase difference tau 2/2, a signal delayed code phases.
  • the code phase difference (spacing) between the first early replica signal SRE and the first late replica signal SRL becomes ⁇ 1 .
  • the spacing is 0.1 chip.
  • the code phase difference (spacing) between the second early replica signal S RVE and the second late replica signal S RVL is ⁇ 2 .
  • the spacing is 0.15 chip.
  • GNSS signal and the prompt replica signal S RP calculates the prompt correlation value CV P.
  • a second early correlation value CV VE is calculated.
  • GNSS signals and by the first late replica signals S RL correlated process calculates a first rate correlation value CV L.
  • a second late correlation value CV VL is calculated.
  • an early late differential value ⁇ CV EL an early differential value ⁇ CV E, and a late differential value ⁇ CV L are calculated (S102).
  • Early difference DerutaCV E is calculated by the first early correlation value CV E by subtracting the second early correlation value CV VE, dividing (normalized) prompt correlation value CV P.
  • Late difference DerutaCV L is calculated by the first late correlation value CV L is subtracted by the second late correlation value CV VL, dividing (normalized) prompt correlation value CV P.
  • the early rate difference value ⁇ CV EL is compared with the first threshold value C1
  • the early difference value ⁇ CV E is compared with the third threshold value C3 (S103). This corresponds to processing for determining whether or not the GNSS signal has entered the dead-side insensitive area.
  • the first threshold C1 is a positive value.
  • the third threshold C3 is a negative value.
  • the early selection differential value ⁇ CV EL which is the first selection condition is larger than the first threshold C1 and the early difference value ⁇ CV E is smaller than the third threshold C3 (S103: YES)
  • the first error detection method The error detection value ⁇ ( ⁇ A ) is calculated by (S105).
  • the process proceeds to the selection process (S104) based on the second selection condition.
  • This process satisfies a first selection condition, apart code phases of the GNSS signal and the replica signal S RP, the prompt signal is in the dead region of the late side or has a confining, in this case the 1 shows that an error detection method is used.
  • the first selection condition code phase Near the GNSS signal and the replica signal S RP in this case shows that using the second error detection method.
  • the early late differential value ⁇ CV EL is compared with the second threshold C2, and the late differential value ⁇ CV L is compared with the fourth threshold C4 (S104). This corresponds to the process of determining whether the GNSS signal has entered the dead area on the early side.
  • the second threshold C2 is a negative value.
  • the fourth threshold C4 is a negative value.
  • the first error detection method If an early late differential value ⁇ CV EL that is the second selection condition is smaller than the second threshold C2 and the late differential value ⁇ CV L is smaller than the fourth threshold C4 (S104: YES), the first error detection method.
  • the error detection value ⁇ ( ⁇ A ) is calculated by (S105).
  • the second selection condition is not satisfied (S103: No)
  • the error detection value ⁇ ( ⁇ B ) is calculated by the second error detection method (S106).
  • This processing satisfies a second selection condition, apart code phases of the GNSS signal and the replica signal S RP, the prompt signal is in the dead region of the early side, or has a confining, in this case the 1 shows that an error detection method is used.
  • second selection condition code phase Near the GNSS signal and the replica signal S RP in this case shows that using the second error detection method.
  • the first early correlation value CV E and the first late correlation value CV L and prompt correlation value CV P it is assigned to the first calculation formula of the following, error detection value .DELTA..tau (.DELTA..tau A ) Is calculated.
  • Equation 2 ⁇ 1 is the spacing between the first early replica signal S RE and the first late replica signal S RL as described above, and ⁇ 2 is the second early replica signal S RVE as described above. Spacing with the second late replica signal S RVL .
  • the code phase control of the replica signal is performed using the calculated error detection value ⁇ ( ⁇ A or ⁇ B ).
  • the error detection value ⁇ is 0, or to advance the code phase of the prompt replica signal S RP, or delay.
  • the code phase of the prompt replica signal S RP is also set.
  • the code phase of the GNSS signal is locked, and the GNSS signal is tracked.
  • locking the code phase indicates that the code phase control is performed so that the code phase of the prompt replica signal SRP and the code phase of the GNSS signal substantially coincide with each other continuously.
  • the error detection value is calculated by selecting two types of calculation formulas according to the situation. Next, the function and effect obtained by selecting the calculation formula for the error detection value ⁇ will be described.
  • FIG. 3 is a diagram showing a characteristic (900 NW) with respect to the code phase difference of the error detection value ⁇ A calculated by the first error detection method.
  • FIG. 4 is a diagram showing a characteristic (900 ELS) with respect to the code phase difference of the error detection value ⁇ B calculated by the second error detection method. 3 and 4 are schematically shown for easy understanding of the characteristics.
  • the code phase difference is increased until the absolute value of the code phase difference reaches 1.0 chip. Except for the case of 0, the error detection value ⁇ ( ⁇ A ) does not become zero. Therefore, a non-zero error detection value ⁇ can be obtained in a wide range of code phase differences. Thereby, even if the code phase difference between the target GNSS signal and the prompt replica signal RP is relatively large, the code phase control of the prompt replica signal SRP can be reliably performed so that these code phases match. .
  • the first error detection method is effective when the reception environment deteriorates during tracking and the code phase difference between the prompt replica signal and the GNSS signal becomes large. This is because the first error detection method has a wide range in which the error detection value is not zero. Therefore, in the first error detection method, the error detection value does not become zero even if the code phase difference between the prompt replica signal and the GNSS signal increases due to deterioration of the reception environment or the like. As a result, the code phase of the replica signal can be controlled so that the code phase of the prompt replica signal matches the code phase of the GNSS signal.
  • the second error detection method to be described later as shown in FIG.
  • the first error detection method is particularly effective when shifting from capture to tracking.
  • a plurality of replica signals are generated at a predetermined code phase interval and correlated with the GNSS signal.
  • the code phase of the replica signal having the highest correlation value is used as the initial code phase for tracking the GNSS signal.
  • the code phase at the beginning of tracking may be away from the true code phase of the GNSS signal depending on the code phase interval used at the time of acquisition and the reception status.
  • the code phase difference is increased until the absolute value of the code phase difference reaches 1.0 chip.
  • the error detection value ⁇ ( ⁇ B ) is 0.
  • the code phase difference is +1.0 chip from a predetermined chip (negative value) whose code phase difference is 0.0 side than the -1.0 chip.
  • the error detection value ⁇ ( ⁇ B ) does not become zero except for the case where the code phase difference is 0 until the predetermined phase (positive value) on the 0.0 side of the code phase difference.
  • the error detection value ⁇ ( ⁇ B ) is 0 over the predetermined code phase range in the code phase difference where the code phase difference is farther from 0.0 than the range where the error detection value ⁇ is not 0.
  • An insensitive area is provided. As a result, even if a multipath signal is received, the code phase of the multipath signal is likely to be related to the dead area. When the code phase of the multipath signal enters the insensitive region, accurate code phase control can be performed without being affected by the multipath signal.
  • the second error detection method is particularly effective when the code phase of the prompt replica signal SRP and the GNSS signal are substantially coincident, that is, when the code phase can be locked.
  • the code phase is controlled so that the code phase difference between the prompt replica signal SRP and the GNSS signal becomes 0 and the multipath signal is received, the error detection value ⁇ ( ⁇ B ) There is no signal effect. Therefore, the code phase can be accurately controlled.
  • the error detection value ⁇ is calculated using the second error detection method, and the code phase difference between the GNSS signal and the prompt replica signal is calculated. If it has increased, the error detection value ⁇ is calculated using the first error detection method.
  • Figure 5 is a diagram showing a first status prompt replica signal S RP is delayed code phases for the purposes of the GNSS signals.
  • 6 is a diagram showing a second situation which prompted the replica signal S RP is delayed code phases for the purposes of the GNSS signals.
  • Figure 7 is a diagram showing a third situation which prompted the replica signal S RP is delayed code phases for the purposes of the GNSS signals.
  • the code phase difference between the prompt replica signal SRP and the target GNSS signal is smaller than in the second situation.
  • the code phase difference between the prompt replica signal SRP and the target GNSS signal is smaller than in the third situation.
  • Figure 8 is a diagram showing a fourth situation prompt replica signal S RP is advanced code phase for the purposes of the GNSS signals.
  • Figure 9 is a diagram showing a fifth status of the prompt replica signal S RP is advanced code phase for the purposes of the GNSS signals.
  • Figure 10 is a diagram showing a sixth situation of the prompt replica signal S RP is advanced code phase for the purposes of the GNSS signals.
  • the code phase difference between the prompt replica signal SRP and the target GNSS signal is smaller than in the fifth situation.
  • the code phase difference between the prompt replica signal SRP and the target GNSS signal is smaller than in the sixth situation.
  • (A) shows the correlation value characteristic according to the code phase difference between the replica signal and the GNSS signal, and 900P shows the correlation curve.
  • (B) shows a code phase difference characteristic of an error detection value when the second error detection method is used, and 900 ELS shows a second error detection value characteristic curve.
  • (C) shows the code phase difference characteristic of the error detection value when the first error detection method is used, and 900 NW shows the second error detection value characteristic curve.
  • prompt replica signal S RP cases this case the code phase is delayed for the purposes of the GNSS signals, the code phase of the object of the GNSS signals, that is ahead code phase of the prompt replica signal S RP become.
  • the second late correlation value CV L, CV VL and prompt correlation value CV P is the code phase difference appears side by side on the correlation curve 900P in the region of positive values (late side).
  • the first and second early correlation values CV E and CV VE appear on the correlation curve 900P in the range where the code phase difference is negative (early side).
  • DerutaCV EL is the code phase difference between the GNSS signal and the prompt replica signal S RP, whether greater than the first threshold C1 is a positive value, the GNSS signal and the prompt replica signal S RP It depends on the code phase difference and is unknown.
  • the second error detection method is selected.
  • the position of the code phase of the prompt replica signal SRP is A1
  • the error detection value ⁇ B obtained by the second error detection method and the first error are obtained.
  • Both error detection values ⁇ A obtained by the detection method are positive values. Therefore, the code phase control can be performed by either the second error detection method or the first error detection method.
  • the first error detection method is susceptible to multipath signals, so it is effective to use the second error detection method.
  • the second error detection method can be used.
  • the code phase can be accurately controlled so that the code phase of the target GNSS signal can be continuously locked without being affected by the multipath signal.
  • the code phase between the prompt replica signal SRP and the target GNSS signal is within a certain code phase difference range (actually, a dead area in the second error detection method). spaced apart in the code phase difference range) degree that does not enter the, if the code phase of the prompt replica signal S RP is a bit late, first, second late correlation value CV L, CV VL and prompt correlation value CV P
  • the first early correlation value CV E appears side by side on the correlation curve 900P in the range where the code phase difference is a positive value (rate side).
  • the second early correlation value CV VE appears on the correlation curve 900P in the range where the code phase difference is negative (early side).
  • the code phase of the GNSS signal exists between the code phase of the first early correlation value CV E and the code phase of the second early correlation value CV VE .
  • the early difference value ⁇ CV E becomes a positive value if the code phase of the first early correlation value CV E is closer to the code phase of the GNSS signal than the code phase of the second early correlation value CV VE , and the second early correlation value.
  • code phase of CV VE is a negative value the closer to the code phase of the GNSS signal than the code phase of the first early correlation value CV E.
  • the second early correlation value CV VE code phase it is certain code phase difference or more in the near range on the code phase of the GNSS signal and the prompt replica signal CV P is delayed from the GNSS signals, the early difference value DerutaCV E 3 It becomes less than the threshold value C3, Early difference DerutaCV E until late is the certain code phase difference is the third threshold value C3 or higher.
  • the range difference DerutaCV E early in the range difference DerutaCV E is the third threshold value C3 or more, because it does not meet the first selection criterion second error detecting method is selected, the range early difference DerutaCV E below the third threshold value C3 Then, the first selection criterion is satisfied and the first error detection method is selected.
  • the code phase position of the prompt replica signal SRP is a positive value (late side) peak and a dead zone as shown at point A2 in FIGS. 6B and 6C. Appears between the edges. More specifically, the point A2 appears on the peak side when the early difference value ⁇ CV E is greater than or equal to the third threshold value C3, and the point A2 appears on the dead region side when the early difference value ⁇ CV E is less than the third threshold value C3. .
  • the peak side means a region close to the peak between the peak of the error detection value on the positive value side (rate side) of the code phase difference and the end portion that becomes the insensitive region.
  • both the error detection value ⁇ B obtained by the second error detection method and the error detection value ⁇ A obtained by the first error detection method are positive values. Therefore, the code phase control can be performed by either the second error detection method or the first error detection method. As described above, since the first error detection method is easily affected by the multipath signal, it is better to use the second error detection method. That is, it is better to use the second error detection method in a range that does not satisfy the first selection criterion.
  • the code phase difference range close to the dead region side the code phase of the prompt replica signal S RP it is contemplated that accidentally get dead region.
  • the code phase of the GNSS signal is considered that will fall within the dead region. Therefore, it is better to use the first error detection method in the range where the early difference value ⁇ CV E is less than the third threshold C3, and the problem of the insensitive area does not occur. That is, it is better to use the first error detection method in a range that satisfies the first selection criterion.
  • the influence of the multipath signal can be reduced by using the second error detection method. Without being received, the code phase control can be accurately performed so that the code phase of the target GNSS signal can be continuously locked.
  • the first error detection method is used without departing from the tracking of the GNSS signal. Can continue.
  • the code phase of the GNSS signal advances from the code phase of the first and second late correlation values CV L and CV VL , the prompt correlation value CV P , and the first and second early correlation values CV E and CV VE. It is out.
  • the first early correlation value CV E is larger than the first late correlation value CV L
  • the early late difference value ⁇ CV EL is surely equal to or greater than the first threshold value C1.
  • the first early correlation value CV E is smaller than the second early correlation value CV VE
  • the early difference value ⁇ CV E is surely less than the third threshold value C3. That is, the first error detection method is selected by satisfying the first selection criterion.
  • the position of the code phase of the prompt replica signal S RP as shown in point A3 of FIG. 7 (B), (C), the code phase difference appears in the dead region of the positive value side (late side).
  • the code phase of the GNSS signal will fall within the dead region.
  • the error detection value ⁇ B obtained by the second error detection method is 0, and the error detection value ⁇ A obtained by the first error detection method is a positive value. Therefore, code phase control is impossible with the second error detection method, and code phase control is possible with the first error detection method. Therefore, code tracking cannot be continued unless the first error detection method is selected.
  • second early correlation value CV E, CV VE and prompt correlation value CV P is the code phase difference appears on the correlation curve 900P in the range of negative values (Early side).
  • the first and second late correlation values CV L and CV VL appear side by side on the correlation curve 900P in the range where the code phase difference is a positive value (rate side).
  • early-late difference value DerutaCV EL is the code phase difference between the GNSS signal and the prompt replica signal S RP, whether smaller than the second threshold value C2 is a negative value, GNSS signals and prompt replica signal S RP It depends on the code phase difference and is unknown.
  • the second error detection method is selected.
  • the code phase position of the prompt replica signal SRP is B1
  • the error detection value ⁇ B obtained by the second error detection method and the first error are obtained.
  • Both error detection values ⁇ A obtained by the detection method are negative values. Therefore, the code phase control can be performed by either the second error detection method or the first error detection method.
  • the first error detection method is susceptible to multipath signals, so it is effective to use the second error detection method.
  • the second error detection method can be used.
  • the code phase can be accurately controlled so that the code phase of the target GNSS signal can be continuously locked without being affected by the multipath signal.
  • the code phase between the prompt replica signal SRP and the target GNSS signal is within a certain code phase difference range (actually, a dead area in the second error detection method). spaced apart on the order of the code phase difference range) does not enter into, if the code phase of the prompt replica signal S RP is a little proceeded, first, second early correlation value CV E, CV VE and prompt correlation value CV P And the first late correlation value CV L appear side by side on the correlation curve 900P in the range where the code phase difference is a negative value (early side). The second late correlation value CV VL appears on the correlation curve 900P in the range where the code phase difference is a positive value (late side).
  • the code phase of the GNSS signal exists between the code phase of the first late correlation value CV L and the code phase of the second late correlation value CV VL .
  • the late differential value ⁇ CV L becomes a positive value if the code phase of the first late correlation value CV L is closer to the code phase of the GNSS signal than the code phase of the second late correlation value CV VL
  • the second late correlation value if the code phase of the CV VL is close to the code phase of the GNSS signal than the code phase of the first late correlation value CV L becomes negative.
  • the second towards the code phase of the late correlation value CV VL is certain code phase difference or more in the near range on the code phase of the GNSS signal and the prompt replica signal CV P is delayed from the GNSS signals, the rate difference DerutaCV L 4 becomes less than the threshold value C4, rate difference DerutaCV L until late is the certain code phase difference becomes the fourth threshold value C4 or higher.
  • the second selection method is selected because the second selection criterion is not satisfied, and the late difference value ⁇ CV L is less than the fourth threshold value C4. Then, the third selection criterion is satisfied, and the first error detection method is selected.
  • the code phase position of the prompt replica signal SRP is in a negative region (early side) peak and insensitive region as shown by point B2 in FIGS. 9B and 9C. Appears between the edges. More specifically, the point B2 appears on the peak side when the late difference value ⁇ CV L is greater than or equal to the fourth threshold value C4, and the point B2 appears on the dead region side when the rate difference value ⁇ CV L is less than the fourth threshold value C4. .
  • both the error detection value ⁇ B obtained by the second error detection method and the error detection value ⁇ A obtained by the first error detection method are negative values. Therefore, the code phase control can be performed by either the second error detection method or the first error detection method. As described above, since the first error detection method is easily affected by the multipath signal, it is better to use the second error detection method. That is, it is better to use the second error detection method in a range that does not satisfy the second selection criterion.
  • the code phase difference range close to the dead region side the code phase of the prompt replica signal S RP it is contemplated that accidentally get dead region.
  • the code phase of the GNSS signal is considered that will fall within the dead region. Therefore, it is better to use the first error detection method in the range where the late difference value ⁇ CV L is less than the fourth threshold value C4, and the problem of the insensitive area does not occur. That is, it is better to use the first error detection method in a range that satisfies the second selection criterion.
  • the influence of the multipath signal can be reduced by using the second error detection method.
  • the code phase control can be accurately performed so that the code phase of the target GNSS signal can be continuously locked.
  • the first error detection method is used without departing from the tracking of the GNSS signal. Can continue.
  • the code phase of the GNSS signal is delayed from the code phases of the first and second early correlation values CV E and CV VE , the prompt correlation value CV P , and the first and second late correlation values CV L and CV VL.
  • the first early correlation value CV E is smaller than the first late correlation value CV L
  • the early late difference value ⁇ CV EL is surely less than the second threshold value C2.
  • the first late correlation value CV L is smaller than the second late correlation value CV VL
  • the late differential value ⁇ CV L is surely less than the fourth threshold value C4. That is, the second selection criterion is satisfied and the first error detection method is selected.
  • the position of the code phase of the prompt replica signal S RP as shown in point B3 in FIG. 10 (B), (C), the code phase difference appears in the dead region of the negative value side (Early side).
  • the code phase of the GNSS signal will fall within the dead region.
  • the error detection value ⁇ B obtained by the second error detection method is 0, and the error detection value ⁇ A obtained by the first error detection method is a negative value. Therefore, code phase control is impossible with the second error detection method, and code phase control is possible with the first error detection method. Therefore, code tracking cannot be continued unless the first error detection method is selected.
  • the tracking of the GNSS signal is deviated by using the first error detection method. But can continue.
  • a tracking operation in the case where a multipath signal having a higher reception intensity than the target GNSS signal is received while tracking the target GNSS signal will be described.
  • S RP purpose is a diagram showing a correlation characteristic of the situations received multipath signal.
  • 900D is the correlation curve of the target GNSS signal
  • 900MP is the correlation curve of the multipath signal
  • 900CN1 is a correlation curve obtained by synthesizing a target GNSS signal and a multipath signal.
  • the multipath signal is usually received later than the target GNSS signal. This is because the multipath signal is not directly received from the signal broadcast by the GNSS satellite, but is received after being reflected by a high-rise building or the like. Therefore, the correlation curve 900MP of the multipath signal is present on the late side by a predetermined code phase from the correlation curve 900D of the GNSS signal. Therefore, the combined correlation curve 900CN1 has extreme points on both the correlation peak of the GNSS signal and the correlation peak of the multipath signal. In the combined correlation curve 900CN1, the correlation peak of the multipath signal is higher than the correlation peak of the GNSS signal. Therefore, in the combined correlation curve 900CN1, the correlation peak of the multipath signal becomes the correlation peak of the combined correlation curve 900CN1.
  • the second error detection method When tracking is performed by locking the code of the GNSS signal, that is, when the prompt replica signal SRP and the code phase of the GNSS signal match, the second error detection method is used as described above. In this case, since the second error detection method is used, the influence of the multipath signal existing in the insensitive area does not appear in the error detection value, but the correlation curve is affected, and the second error detection method is not easily changed from the second error detection method. If the method shifts to the one error detection method, the tracking may shift to the multipath signal due to the influence of the multipath signal. Hereinafter, such a case will be described.
  • the combined correlation curve 900CN1 has a shape as shown in FIG. Therefore, the first and second early correlation values CV EA and CV VEA , the prompt correlation value CV PA , and the first and second late correlation values CV LA and CV VLA are more than the code phase of the correlation peak of the composite correlation curve 900CN1. Appears side by side on the combined correlation curve 900CN1 on the early side.
  • the first early correlation value CV EA is smaller than the first late correlation value CV LA
  • the rate of change of the correlation curve between the code phase of the GNSS signal in which the first late correlation value CV LA exists and the code phase of the multipath signal is the code of the GNSS signal in which the first early correlation value CV EA exists. It is lower than the rate of change of the correlation curve on the early side of the phase. Therefore, the early late differential value ⁇ CV ELA in this case is closer to 0 than the early late differential value ⁇ CV EL in the sixth situation described above.
  • the first late correlation value CV LA is smaller than the second late correlation value CV VLA
  • the rate of change of the correlation curve between the code phase of the GNSS signal in which the first and second late correlation values CV LA and CV VLA exist and the code phase of the multipath signal is the prompt correlation value CV PA or the first
  • the second early correlation values CV EA and CV VEA are lower than the change rate of the early correlation curve than the code phase of the GNSS signal. Therefore, the late difference value ⁇ CV LA in this case is closer to 0 than the late difference value ⁇ CV L in the sixth situation described above.
  • the absolute values of the second threshold C2 and the fourth threshold C4 are set large.
  • the first and second early correlation values CV E and CV VE , the prompt correlation value CV P , and the first and second late correlation values CV L and CV VL shown in FIG. 10 have a negative code phase difference.
  • the absolute late differential value ⁇ CV EL and the late differential value ⁇ CV L in a state where they appear side by side on the correlation curve 900P are set close to the absolute value.
  • the early late difference value ⁇ CV ELA is less likely to be less than the second threshold value C2
  • the late differential value ⁇ CV LA Becomes less than the fourth threshold value C4. Therefore, it is difficult to switch from the second error detection method to the first error detection method, and the second error detection method can be used continuously. Thereby, even if a multipath signal is received while tracking the target GNSS signal, the target GNSS signal can be continuously tracked without shifting to the multipath signal.
  • FIG. 12 is a diagram illustrating a code phase tracking transition during a transition from a state in which only a target GNSS signal (direct wave signal) is received to a state in which a multipath signal is received in addition to the target GNSS signal.
  • FIG. 12A shows a state where only the target GNSS signal is received and the reception strength is high
  • FIG. 12B shows a state where only the target GNSS signal is received and the reception strength is low
  • FIG. The state at the timing when the multipath signal is added is shown.
  • 12D and 12E show the state after a predetermined time has elapsed since the addition of the multipath signal
  • FIGS. 12D and 12E show the states of different elapsed times.
  • the tracking of the code is performed by the second error detection method.
  • the second error detection method is continuously used.
  • the correlation curve changes and the peak of the correlation curve changes as shown in FIG. 12C. It becomes.
  • the code tracking point code phase of the prompt replica signal S RP
  • the code tracking point is, GNSS purposes It remains substantially coincident with the code phase of the signal (direct wave signal).
  • the shape of the composite correlation curve hardly changes even when the time elapses, so that the second selection is performed as in the state of FIG. The standard is not met. Therefore, the code tracking point (prompt replica signal S RP code phase) is and remains substantially matches the code phase of the GNSS signal of interest (direct wave signal).
  • the multipath signal can be tracked.
  • the target GNSS signal can be continuously tracked without shifting.
  • FIG. 13 is a diagram illustrating a correlation value characteristic in a situation where the target GNSS signal is received when the prompt replica signal SRP substantially matches the code phase of the multipath signal.
  • 900D is the correlation curve of the target GNSS signal
  • 900MP is the correlation curve of the multipath signal.
  • 900CN2 is a correlation curve obtained by synthesizing a target GNSS signal and a multipath signal.
  • the multipath signal is received later than the target GNSS signal as described above. Therefore, the correlation curve 900D of the GNSS signal is present on the early side by a predetermined code phase from the correlation curve 900MP of the multipath signal. Therefore, the combined correlation curve 900CN2 has pole points at both the correlation peak of the GNSS signal and the correlation peak of the multipath signal. In the combined correlation curve 900CN2, the correlation peak of the GNSS signal is higher than the correlation peak of the multipath signal. Therefore, in the combined correlation curve 900CN2, the correlation peak of the GNSS signal becomes the correlation peak of the combined correlation curve 900CN2.
  • the second error detection method is used as described above.
  • the influence of the target GNSS signal that appears in the dead area does not appear directly in the error detection value, but is affected on the correlation curve.
  • the combined correlation curve 900CN2 has a shape as shown in FIG. Therefore, the first and second early correlation values CV EB and CV VEB , the prompt correlation value CV PB , and the first and second late correlation values CV LB and CV VLB are more than the code phase of the correlation peak of the composite correlation curve 900CN2. On the late side, they appear side by side on the composite correlation curve 900CN2.
  • the first early correlation value CV EB is smaller than the second early correlation value CV VEB , and the early difference value ⁇ CV EB is a negative value.
  • the absolute values of the first threshold value C1 and the third threshold value C3 are set small.
  • the absolute value is set to be very close to 0.
  • the absolute value of the first threshold C1 is made smaller than the absolute value of the second threshold C2.
  • the absolute value of the third threshold C3 is made smaller than the absolute value of the fourth threshold C4.
  • the early late difference value ⁇ CV ELB is likely to be larger than the second threshold value C1
  • the early difference value ⁇ CV EB is It tends to be less than the third threshold C3. Therefore, the first selection criterion can be easily satisfied, and the second error detection method can be easily switched to the first error detection method. Accordingly, the code phase of the prompt replica signal S RP is be separated with GNSS signals, it is possible to perform the code phase control so as to track the GNSS signals. As a result, when the target GNSS signal is received in a situation where only the multipath signal can be received, tracking can be shifted to the GNSS signal.
  • the code phase of the prompt replica signal S RP is a diagram showing a correlation characteristic of conditions close to the GNSS signal of interest.
  • the correlation curves in FIG. 14 are the same as the correlation curves in FIG.
  • the first early correlation value CV ET , the prompt correlation value CV PT , the first and second late correlation values CV LT , and CV VLT are combined on the late side of the code phase of the correlation peak of the combined correlation curve 900CN2. It appears side by side on the curve 900CN2.
  • the second early correlation value CV VET appears on the combined correlation curve 900CN2 on the early side of the code phase of the correlation peak of the combined correlation curve 900CN2.
  • the first early correlation value CV ET is closer to the code phase of the correlation peak of the combined correlation curve 900CN2 than the second early correlation value CV VET . Accordingly, the first early correlation value CV ET is larger than the second early correlation value CV VET , and the early difference value ⁇ CV ET is a positive value.
  • the first selection criterion cannot be satisfied, and the first error detection method is switched to the second error detection method. Thereafter, the code phase of the prompt replica signal S RP by the second error detection method is to code phase control so that substantially matches the code phase of the GNSS signal. That is, even if there is a multipath signal, the code phase of the GNSS signal is accurately locked, and the GNSS signal can be tracked to the continuation center.
  • FIG. 15 is a diagram illustrating a transition of code phase tracking during a transition from a state in which only a multipath signal can be received to a state in which a target GNSS signal can be received separately from the multipath signal.
  • FIG. 15A shows a situation where only a multipath signal is received.
  • FIGS. 15B, 15C, 15D, and 15E show the situation in which the target GNSS signal is received in addition to the multipath signal.
  • Time elapses in the order of FIG. 15B, FIG. 15C, FIG. 15D, and FIG. FIG. 15F shows a situation in which there is no multipath signal and only the GNSS signal is received.
  • the code phase of the prompt replica signal SRP is locked to the code phase of the multipath signal by the second error detection method.
  • the correlation curve changes and the peak of the correlation curve becomes the code phase of the GNSS signal as shown in FIG. Become.
  • the first and second early correlation values CV E and CV VE the prompt correlation value CV P
  • the first and second late correlation values CV L and CV VL are the slopes on the late side of the correlation curve. Appears on top. Accordingly, the early late differential value ⁇ CV EL is a positive value, and the early differential value ⁇ CV E is a negative value.
  • the early late difference value ⁇ CV EL is larger than the first threshold value C1
  • the early difference value ⁇ CV E is less than the third threshold value C3. It becomes. Therefore, the first selection criterion is satisfied, and the second error detection method is switched to the first error detection method.
  • the code tracking point shifts to the code phase of the GNSS signal as shown in FIGS. 15 (C) and 15 (D).
  • the first and second early correlation values CV E and CV VE appear on the early slope of the correlation curve, and the first and second late correlation values CV L and CV VL are obtained. Appears on the late slope of the correlation curve. Therefore, the first selection criterion is not satisfied and the first error detection method is switched to the second error detection method. Further, as shown in FIG. 15 (E), the first and second selection criteria are not satisfied even when time elapses with the shape of the correlation curve hardly changing, so that the code tracking point is the GNSS signal. Is maintained at the code phase. Further, when the multipath signal disappears from the situation of FIG. 15E and the situation of FIG. 15F is reached, the first and second selection criteria are more difficult to be satisfied, and the code tracking point is the code of the GNSS signal. Precisely maintained in phase.
  • the tracking to the GNSS signal is performed. After the shift and the movement of the code tracking point, the GNSS signal can be continuously tracked.
  • the influence of a change in reception environment caused by reception of a multipath signal or the like is suppressed, and the target GNSS signal (direct wave signal) is continuously tracked. be able to.
  • the above-described processing can be specifically used by the following method.
  • code phase of the GNSS signal and the prompt replica signal S RP is not necessarily close. Therefore, at the time of start of tracking the GNSS signals, using the first error detection method, as to match the code phase of the GNSS signal and the prompt replica signal S RP, performs code phase control. Then, for example, based on the sign of the aforementioned Early difference DerutaCV E and late difference DerutaCV L, the code phase of the GNSS signal and the prompt replica signal S RP detects that close, switch to the second error detection method , Tracking of the GNSS signal is continued.
  • the code phase difference between the GNSS signal and the prompt replica signal SRP is monitored using the first selection criterion and the second selection criterion described above.
  • the first error detection method Switch to continue tracking the GNSS signal.
  • FIG. 16 is a block diagram showing a configuration of the positioning device 1 according to the embodiment of the present invention.
  • FIG. 17 is a block diagram showing the configuration of the demodulator 13.
  • the positioning device 1 includes a GNSS receiving antenna 11, an RF processing unit 12, a demodulation unit 13 corresponding to the GNSS signal processing device of the present invention, a navigation message analysis unit 14, and a positioning calculation unit 15.
  • the GNSS receiving antenna 11 receives a GNSS signal transmitted from a GNSS satellite (GPS satellite or the like) and outputs it to the down converter 12.
  • the down converter 12 converts the GNSS signal into a predetermined intermediate frequency signal (hereinafter referred to as IF signal) and outputs the signal to the demodulator 13.
  • the demodulator 13 captures the IF signal and performs code phase control of the replica signal based on the error detection value ⁇ as described above to form the IF signal.
  • GNSS signal tracking is performed.
  • Demodulator 13 locks the code phase of the GNSS signal, a successful tracking, and outputs a correlation value between the GNSS signal and the prompt replica signal S RP (the prompt correlation value CV P) to the navigation message analysis unit 14.
  • the demodulation unit 13 calculates a pseudo distance by integrating the error detection value ⁇ for a predetermined time, and outputs the pseudo distance to the positioning calculation unit 15.
  • Navigation message analysis unit 14 analyzes demodulates the navigation message from the prompt correlation value CV P from demodulator 13, and supplies the contents to the positioning calculating section 15.
  • the positioning calculation unit 15 performs a positioning calculation based on the content of the navigation message from the navigation message analysis unit 14 and the pseudo distance from the demodulation unit 13 and estimates the position of the positioning device 1.
  • the demodulation unit 13 includes a replica signal generation unit 31, correlation units 32 ⁇ / b> P, 32 ⁇ / b> VE, 32 ⁇ / b> E, 32 ⁇ / b> L, 32 ⁇ / b> VL, and a calculation unit 33.
  • the replica code generation unit 31 Based on the code phase control signal given from the operation unit 33, the replica code generation unit 31 performs the above-described prompt replica signal S RP , first early replica signal S RE , second early replica signal S RVE , and first late replica. A signal S RL and a second late replica signal S RVL are generated.
  • the replica code generation unit 31 outputs the prompt replica signal SRP to the correlation unit 32P.
  • Replica code generator 31, the first early replica signal S RE output to the correlation unit 32E.
  • the replica code generation unit 31 outputs the second early replica signal S RVE to the correlation unit 32VE.
  • the replica code generation unit 31 outputs the first late replica signal SRL to the correlation unit 32L.
  • the replica code generation unit 31 outputs the second late replica signal S RVL to the correlation unit 32VL.
  • Correlation unit 32P includes a GNSS signal and a prompt replica signal S RP Correlates, outputs the prompt correlation value CV P.
  • Prompt correlation value CV P is output to the arithmetic unit 33, is outputted to the navigation message analysis unit 14.
  • the correlator 32E correlates the GNSS signal and the first early replica signal SRE, and outputs a first early correlation value CV E.
  • the first early correlation value CV E is output to the calculation unit 33.
  • the correlation unit 32VE correlates the GNSS signal with the second early replica signal S RVE and outputs a second early correlation value CV VE .
  • the second early correlation value CV VE is output to the calculation unit 33.
  • Correlation unit 32L includes a GNSS signal and a first late replica signals S RL Correlates, and outputs a first late correlation value CV L.
  • First late correlation value CV L is output to the arithmetic unit 33.
  • the correlation unit 32VL performs a correlation process on the GNSS signal and the second late replica signal S RVL and outputs a second late correlation value CV VL .
  • the second late correlation value CV VL is output to the calculation unit 33.
  • the calculation unit 33 is configured by a CPU or the like.
  • the calculation unit 33 stores a program that realizes the above-described error detection value calculation calculation and code phase control, and reads and executes the program.
  • the calculation unit 33 uses the prompt correlation value CV P , the first early correlation value CV E , the second early correlation value CV VE , the first late correlation value CV L , and the second late correlation value CV VL as described above. Select the error detection method.
  • the calculation unit 33 calculates the error detection value ⁇ by the selected error detection method.
  • the computing unit 33 generates a code phase control signal based on the calculated error detection value ⁇ so that the code phase difference between the prompt replica signal and the GNSS signal approaches zero.
  • the calculation unit 33 provides the code phase control signal to the replica signal generation unit 31.
  • the GNSS signal can be tracked reliably and accurately as described above. Since the tracking can be performed accurately, the code phase of the GNSS signal can be acquired with high accuracy, and the navigation message can be demodulated and the pseudorange can be calculated with high accuracy. Thereby, highly accurate positioning can be performed.
  • the positioning device 1 is divided into the functional units and the positioning process is performed.
  • the RF processing unit 12, the demodulation unit 13, the navigation message analysis unit 14, and the positioning calculation unit 15 are You may integrate with information processing apparatuses, such as a computer.
  • the flowchart of the positioning process shown in FIG. 18 including the above-described processes is programmed and stored. Then, the positioning program is read and executed by the information processing apparatus.
  • FIG. 18 is a flowchart of the positioning method according to the embodiment of the present invention.
  • the GNSS signal is received and captured (S201).
  • a plurality of replica signals are generated at predetermined code phase intervals. Correlation processing is performed between each of the plurality of replica signals and the GNSS signal.
  • the code phase of the replica signal having the highest correlation value is set as the code phase of the GNSS signal.
  • Tracking is started using the code phase set by acquisition as the initial phase (S202).
  • a first selection criterion in which the early late differential value ⁇ CV EL is larger than the first threshold C1 (positive value) and the early differential value ⁇ CV E is smaller than the third threshold C3 (negative value), and the early late differential value While selecting the calculation method of the error detection value ⁇ according to the second selection criterion in which ⁇ CV EL is less than the second threshold C2 (negative value) and the late difference value ⁇ CV L is less than the fourth threshold C4 (negative value).
  • the GNSS signal is tracked.
  • the error detection value ⁇ is integrated every predetermined time to calculate the pseudo distance (S203). By integrating the prompt correlation value CV P, it is obtained by demodulating the navigation message (S204). Note that the pseudo distance calculation process and the navigation message demodulation and acquisition process are not particularly limited in this order, and may be performed in parallel.
  • the positioning calculation is performed using the obtained pseudo distance and the navigation message (S205).
  • FIG. 19 is a block diagram illustrating a main configuration of the mobile terminal 100 including the positioning device 1 according to the embodiment of the present invention.
  • a mobile terminal 100 as shown in FIG. 19 is, for example, a mobile phone, a car navigation device, a PND, a camera, a watch, etc., and a GNSS reception antenna 11, an RF processing unit 12, a demodulation unit 13, a navigation message analysis unit 14, a positioning calculation. Unit 15 and application processing unit 120.
  • the GNSS receiving antenna 11, the RF processing unit 12, the demodulation unit 13, the navigation message analysis unit 14, and the positioning calculation unit 15 have the above-described configuration, and the positioning device 1 is configured as described above.
  • the application processing unit 120 displays the own device position and the own device speed based on the positioning result output from the positioning device 1, and executes processing for use in navigation and the like.
  • the error detection value ⁇ A is calculated from the first early correlation value CV E and the first late correlation value CV L.
  • the error detection value ⁇ AA may be calculated from the second early correlation value CV VE and the first late correlation value CV VL .
  • the spacing for calculating the early difference value ⁇ CV E and the late difference value ⁇ CV L may be different from the spacing for calculating the error detection value.
  • the first threshold value C1, the second threshold value C2, the third threshold value C3, and the fourth threshold value C4 may be appropriately set according to specifications such as whether to easily switch the error detection method.
  • the absolute value of the first threshold C1 is set to be smaller than the absolute value of the second threshold C2
  • the absolute value of the third threshold C3 is set to be smaller than the absolute value of the fourth threshold C4. That's fine.
  • the magnitude relation, Early difference DerutaCV E and the third threshold value C3 of (A) and early-late difference DerutaCV EL and the first threshold value C1 And (B) the magnitude relationship between the early rate difference value ⁇ CV EL and the second threshold C2, and the magnitude relationship between the rate difference value ⁇ CV L and the fourth threshold C4 ((A) or (B) It is also possible to switch between the first error detection method and the second error detection method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

 GNSS信号処理装置に対応する復調部(13)は、演算部(33)を備える。演算部(33)は、アーリーレイト差分値ΔCVELが第1閾値C1(正値)よりも大きい且つアーリー差分値ΔCVが第3閾値C3(負値)未満である第1の選択基準と、アーリーレイト差分値ΔCVELが第2閾値C2(負値)未満且つレイト差分値ΔCVが第4閾値C4(負値)未満である第2の選択基準とのいずれかを満たせば第1誤差検出方法を用い、満たさなければ第2誤差検出方法を用いる。第1誤差検出方法は誤差検出値が0でないコード位相範囲が広く、第2誤差検出方法は誤差検出値が0でないコード位相範囲が狭い。

Description

GNSS信号処理方法、測位方法、GNSS信号処理プログラム、測位プログラム、GNSS信号処理装置、測位装置、および、移動端末
 本発明は、拡散コードでコード変調されたGNSS信号のコード位相をロックして追尾を行うGNSS信号処理方法に関する。
 従来、GPS(Global Positioning System)信号等のGNSS(Global Navigation Satellite System)信号を捕捉、追尾して、測位を行う装置が各種考案されている。GNSS信号は、所定周波数の搬送波を拡散コードでコード変調した信号である。拡散コードは、GNSS衛星(GNSS信号)毎に個別に設定されている。
 測位装置は、一般的に、次の方法でGNSS信号の追尾を行う。測位装置は、目的とするGNSS衛星に設定された拡散コードのレプリカコードを備えるレプリカ信号を生成する。測位装置は、受信したGNSS信号とレプリカ信号とを相関処理する。測位装置は、相関値から誤差検出値を算出する。測位装置は、誤差検出値を用いてレプリカ信号のコード位相を制御し、目的のGNSS信号のコード位相をロックすることで、当該目的のGNSS信号を追尾する。
 ところで、GNSS衛星からのGNSS信号を測位装置で直接受信した直接波信号のみであれば、追尾が容易且つ正確に行える。GNSS信号が高層建築物等に反射してから測位装置で受信するマルチパス信号が含まれると、追尾精度が低下してしまうことがある。
 このマルチパス信号の影響を回避する方法として、非特許文献1および特許文献1では、特定のコード位相範囲で、相関値が「0」になるように、誤差検出値の算出式を設定している。具体的には、目的のGNSS信号のコード位相を基準の位相として、当該基準の位相から所定のコード位相分離間した所定のコード位相範囲で、相関値が「0」になる不感領域を設定している。この不感領域にマルチパス信号のコード位相が入れば、当該マルチパス信号の影響を受けずに、目的のGNSS信号のコード位相がロックされる。
特開平11-142502号公報
"A Practical Approach to the Reduction of Pseudorange MultipathErrors in a L1 GPS Receiver"、Bryan R. Townsend and Patrick C. Fenton、NovAtel CommunicationSLtd.、IONGPS-94、SaltLake City、September20-23、1994
 しかしながら、上述の特許文献1および非特許文献1に記載の方法では、目的とする直接波信号のGNSS信号のコード位相が不感領域に入ってしまうと、コード位相をロックできない。この場合、目的のGNSS信号を追尾できなくなり、擬似距離誤差や測位誤差が大きくなってしまう。
 例えば、目的のGNSS信号を追尾中に受信状態が悪化して、目的のGNSS信号に対するプロンプトレプリカ信号のコード位相差が大きくなることも考えられる。この場合、GNSS信号のコード位相が不感領域に入ってしまい、コード位相をロックすることができなくなってしまう。また、例えば目的のGNSS信号(直接波信号)の受信感度が低くマルチパス信号のみを捕捉追尾している時に、目的のGNSS信号(直接波信号)の信号強度が高くなる場合もある。この場合に、当該目的のGNSS信号(直接波信号)のコード位相が不感領域に入っていれば、マルチパス信号から目的のGNSS信号(直接波信号)へ追尾対象を移行する処理ができない。
 したがって、本発明の目的は、受信環境の変化の影響を受けにくく、目的のGNSS信号(直接波信号)を継続的に追尾することができるGNSS信号処理方法を提供することにある。
 この発明は、受信したGNSS信号のコード位相を追尾するGNSS信号処理方法に関する。GNSS信号処理方法は、相関処理工程と、差分値算出工程と、誤差検出値算出工程と、コード位相制御工程とを有する。
 相関処理工程では、プロンプトレプリカ信号に対して第1コード位相進んだ第1アーリーレプリカ信号、前記プロンプトレプリカ信号に対して前記第1コード位相遅れた第1レイトレプリカ信号、前記プロンプトレプリカ信号に対して第2コード位相進んだ第2アーリーレプリカ信号、前記プロンプトレプリカ信号に対して第2コード位相遅れた第2レイトレプリカ信号のそれぞれと、GNSS信号とを相関処理する。
 差分値算出工程では、第1アーリー相関値から第1レイト相関値を減算してアーリーレイト差分値を算出する。第1アーリー相関値は、GNSS信号と第1アーリーレプリカ信号との相関値である。第1レイト相関値は、GNSS信号と第1レイトレプリカ信号との相関値である。差分値算出工程では、第1アーリー相関値から第2アーリー相関値を減算してアーリー差分値を算出する。第2アーリー相関値は、GNSS信号と第2アーリーレプリカ信号との相関値である。差分値算出工程では、第1レイト相関値から第2レイト相関値を減算してレイト差分値を算出する。第2レイト相関値は、GNSS信号と第2レイトレプリカ信号との相関値である。
 誤差検出値算出工程は、アーリーレイト差分値とアーリー差分値またはレイト差分値とに基づいて誤差算出方法を設定し、設定した誤差算出方法を用いて誤差検出値を算出する。
 コード位相制御工程では、誤差検出値に基づいてプロンプトレプリカ信号のコード位相を制御し、GNSS信号のコード位相を追尾する。
 この方法では、アーリーレイト差分値、アーリー差分値およびレイト差分値が、受信したGNSS信号のコード位相とプロンプトレプリカ信号のコード位相との位相差に応じて変化することを利用している。アーリーレイト差分値とアーリー差分値もしくはアーリーレイト差分値とレイト差分値に応じて誤差検出方法を適切に設定することで、コード位相差に応じた適切なコード位相制御が可能になる。これにより、GNSS信号の追尾性能が向上する。
 また、この発明のGNSS信号処理方法では、差分値算出工程で、プロンプトレプリカ信号とGNSS信号との相関値で、アーリーレイト差分値、アーリー差分値およびレイト差分値を除算している。
 この方法では、アーリーレイト差分値、アーリー差分値およびレイト差分値が規格化される。
 また、この発明のGNSS信号処理方法の誤差検出値算出工程では、アーリーレイト差分値に対する正値の第1閾値および、負値の第2閾値を設定し、アーリー差分値に対する負値の第3閾値を設定し、レイト差分値に対する負値の第4閾値を設定する。誤差検出値算出工程では、アーリーレイト差分値が第1閾値よりも大きくアーリー差分値が第3閾値よりも小さい場合、または、アーリーレイト差分値が第2閾値よりも小さくレイト差分値が第4閾値よりも小さい場合に、第1誤差検出方法を用いる。第1誤差検出方法は、誤差検出値が0でない値を取るコード位相範囲が広くなる第1算出式を用いて誤差検出値を算出する方法である。誤差検出値算出工程では、アーリーレイト差分値、アーリー差分値、レイト差分値が上記の閾値条件を満たさない場合に、第2誤差検出方法を用いる。第2誤差検出方法は、誤差検出値が0でない値を取るコード位相範囲が狭い第2算出式を用いて誤差検出値を算出する方法である。
 この方法では、選択する誤差検出方法の具体例を示している。アーリーレイト差分値が第1閾値よりも大きくアーリー差分値が第3閾値よりも小さい場合、または、アーリーレイト差分値が第2閾値よりも小さくレイト差分値が第4閾値よりも小さい場合には、後述する実施の形態に示すように、GNSS信号とプロンプトレプリカ信号とのコード位相差が大きい。したがって、誤差検出値が0にならないコード位相範囲が広い第1誤差検出方法を用いることで、GNSS信号をロストしにくく、確実な追尾が可能になる。アーリーレイト差分値、アーリー差分値、レイト差分値が上記の閾値条件を満たさない場合には、後述する実施の形態に示すように、GNSS信号とプロンプトレプリカ信号とのコード位相差は小さい。したがって、誤差検出値が0でない値を取るコード位相範囲が狭い第2誤差検出方法を用いることで、マルチパスの影響を受けにくく、GNSS信号のコード位相を高精度にロックし続けることができ、マルチパスが存在しても継続的な追尾を実現することができる。
 また、この発明のGNSS信号処理方法では、第1算出式は、第1アーリー相関値と第1レイト相関値とを用いるか、第2アーリー相関値と前記第2レイト相関値を用いる。第2算出式は、第1、第2アーリー相関値と第1、第2レイト相関値を用いる。
 この方法では、第1算出式と第2算出式に用いる相関値の組合せを示している。具体的な算出式は後述の実施の形態に示すが、このような相関値の組合せを用いることで、上述のような誤差検出値の特性を容易に実現することができる。
 また、この発明の測位方法は、上述のいずれかに記載のGNSS信号処理方法で追尾しているGNSS信号とプロンプトレプリカ信号との相関結果から航法メッセージを取得する工程を有する。この測位方法は、追尾しているGNSS信号に対する誤差検出値から擬似距離を算出する工程を有する。この測位方法は、航法メッセージと擬似距離とを用いて測位演算を行う工程を有する。
 この方法では、上述のように確実且つ高精度に追尾されているGNSS信号を用いることで、航法メッセージの復調を確実に行え、且つ擬似距離を高精度に算出することができる。これにより、高精度な測位演算が可能になる。
 この発明によれば、受信環境の変化の影響を抑制し、目的のGNSS信号(直接波信号)を継続的に追尾することができる。
本発明の実施形態に係るGNSS信号処理方法のフローチャートである。 本発明の実施形態に係るGNSS信号処理方法における各レプリカ信号のコード位相タイミングの関係を示す図である。 第1誤差検出方法で算出した誤差検出値ΔτAのコード位相差に対する特性(900NW)を示す図である。 第2誤差検出方法で算出した誤差検出値ΔτBのコード位相差に対する特性(900ELS)を示す図である。 プロンプトレプリカ信号SRPが目的のGNSS信号に対してコード位相が遅れている第1の状況を示す図である。 プロンプトレプリカ信号SRPが目的のGNSS信号に対してコード位相が遅れている第2の状況を示す図である。 プロンプトレプリカ信号SRPが目的のGNSS信号に対してコード位相が遅れている第3の状況を示す図である。 プロンプトレプリカ信号SRPが目的のGNSS信号に対してコード位相が進んでいる第4の状況を示す図である。 プロンプトレプリカ信号SRPが目的のGNSS信号に対してコード位相が進んでいる第5の状況を示す図である。 プロンプトレプリカ信号SRPが目的のGNSS信号に対してコード位相が進んでいる第6の状況を示す図である。 プロンプトレプリカ信号SRPが目的のGNSS信号を追尾中に、マルチパス信号を受信した状況の相関値特性を示す図である。 目的のGNSS信号(直接波信号)のみを受信した状態から、目的のGNSS信号に加えてマルチパス信号を受信する状態に移行する間のコード位相の追尾の遷移を示す図である。 プロンプトレプリカ信号SRPがマルチパス信号のコード位相に略一致している時に、目的のGNSS信号を受信した状況の相関値特性を示す図である。 マルチパス信号のある環境下で、プロンプトレプリカ信号SRPのコード位相が目的のGNSS信号に近接した状況の相関値特性を示す図である。 マルチパス信号しか受信できない状況から、マルチパス信号とは別に目的のGNSS信号を受信できる状況に移行する間のコード位相の追尾の遷移を示す図である。 本発明の実施形態に係る測位装置1の構成を示すブロック図である。 本発明の実施形態に係る測位装置1の復調部13の構成を示すブロック図である。 本発明の実施形態に係る測位方法のフローチャートである。 本発明の実施形態に係る測位装置1を備えた移動端末100の主要構成を示すブロック図である。
 本発明の実施形態に係るGNSS信号処理方法について、図を参照して説明する。図1は、本発明の実施形態に係るGNSS信号処理方法のフローチャートである。
 本実施形態のGNSS信号処理方法では、図1に示すフローを繰り返すことにより、目的のGNSS信号の追尾を継続する。
 GNSS信号と各レプリカ信号との相関処理を行い、各相関値を算出する(S101)。レプリカ信号とは、目的とするGNSS信号の拡散コード信号のレプリカコードを有する信号である。レプリカ信号としては、プロンプトレプリカ信号SRP、第1アーリーレプリカ信号SRE、第2アーリーレプリカ信号SRVE、第1レイトレプリカ信号SRL、第2レイトレプリカ信号SRVLを用いる。これらのレプリカ信号のコード位相は、図2に示すように設定されている。図2は本発明の実施形態に係るGNSS信号処理方法における各レプリカ信号のコード位相タイミングの関係を示す図である。
 図2に示すように、プロンプトレプリカ信号SRPは、前回算出された誤差検出値Δτに基づいて、受信したGNSS信号とコード位相が一致するように、レプリカコードのコード位相が設定された信号である。言い換えれば、プロンプトレプリカ信号SRPは、GNSS信号との相関値が最大となるようにコード位相が設定された信号である。
 図2に示すように、第1アーリーレプリカ信号SREは、プロンプトレプリカ信号SRPに対して、コード位相差τ/2だけ、コード位相が進んだ信号である。第2アーリーレプリカ信号SRVEは、プロンプトレプリカ信号SRPに対して、コード位相差τ/2だけ、コード位相が進んだ信号である。コード位相差τ/2は、コード位相差τ/2よりも大きく設定されている。例えば、コード位相差τ/2は0.05チップであり、コード位相差τ/2は0.075チップである。
 図2に示すように、第1レイトレプリカ信号SRLは、プロンプトレプリカ信号SRPに対して、コード位相差τ/2だけ、コード位相が遅れた信号である。第2レイトレプリカ信号SRVLは、プロンプトレプリカ信号SRPに対して、コード位相差τ/2だけ、コード位相が遅れた信号である。
 このようなコード位相の設定をすることで、第1アーリーレプリカ信号SREと第1レイトレプリカ信号SRLとのコード位相差(スペーシング)は、τとなる。例えば、上述の例であれば、スペーシングは、0.1チップである。また、第2アーリーレプリカ信号SRVEと第2レイトレプリカ信号SRVLとのコード位相差(スペーシング)は、τとなる。例えば、上述の例であれば、スペーシングは、0.15チップである。
 GNSS信号とプロンプトレプリカ信号SRPとを相関処理することで、プロンプト相関値CVを算出する。GNSS信号と第1アーリーレプリカ信号SREとを相関処理することで、第1アーリー相関値CVを算出する。GNSS信号と第2アーリーレプリカ信号SRVEとを相関処理することで、第2アーリー相関値CVVEを算出する。GNSS信号と第1レイトレプリカ信号SRLとを相関処理することで、第1レイト相関値CVを算出する。GNSS信号と第2レイトレプリカ信号SRVLとを相関処理することで、第2レイト相関値CVVLを算出する。
 次に、アーリーレイト差分値ΔCVEL、アーリー差分値ΔCVおよびレイト差分値ΔCVを算出する(S102)。アーリーレイト差分値ΔCVELは、第1アーリー相関値CVを第1レイト相関値CVで減算し、プロンプト相関値CVで除算(規格化)することによって算出される。具体的には、アーリーレイト差分値ΔCVEL=(CV-CV)/CVの計算式を用いて算出される。アーリー差分値ΔCVは、第1アーリー相関値CVを第2アーリー相関値CVVEで減算し、プロンプト相関値CVで除算(規格化)することによって算出される。具体的には、アーリー差分値ΔCVは、(ΔCV=CV-CVVE)/CVの計算式を用いて算出される。レイト差分値ΔCVは、第1レイト相関値CVを第2レイト相関値CVVLで減算し、プロンプト相関値CVで除算(規格化)することによって算出される。具体的には、レイト差分値ΔCVは、(ΔCV=CV-CVVL)/CVの計算式を用いて算出される。
 次に、アーリーレイト差分値ΔCVELと第1閾値C1とを比較し、アーリー差分値ΔCVと第3閾値C3とを比較する(S103)。これは、GNSS信号がレイト側の不感領域に入ったかどうかを判断する処理に対応する。
 第1閾値C1は正値である。第1閾値C1の絶対値は、GNSS信号がレイト側の不感領域に入るタイミングでのアーリーレイト差分値ΔCVEL=(CV-CV)/CVの絶対値に近く、当該アーリーレイト差分値ΔCVELの絶対値よりも小さく設定されている。
 第3閾値C3は負値である。第3閾値C3の絶対値は、GNSS信号がレイト側の不感領域に入るタイミングでのアーリー差分値ΔCV=(CV-CVVE)/CVの絶対値に近く、当該アーリー差分値ΔCVの絶対値よりも小さく設定されている。言い換えれば、第3閾値C3は、GNSS信号がレイト側の不感領域に入るタイミングでのアーリー差分値ΔCV=(CV-CVVE)/CVに近く、当該アーリー差分値ΔCVのよりも大きく設定されている。
 第1の選択条件であるアーリーレイト差分値ΔCVELが第1閾値C1よりも大きく且つアーリー差分値ΔCVが第3閾値C3よりも小さい条件を満たせば(S103:YES)、第1誤差検出方法によって誤差検出値Δτ(Δτ)を算出する(S105)。一方、第1の選択条件を満たさなければ(S103:No)、第2の選択条件による選択処理(S104)に移行する。この処理は、第1の選択条件を満たせば、GNSS信号とレプリカ信号SRPとのコード位相が離れ、プロンプト信号がレイト側の不感領域に入っている、もしくは入ろうとしており、この場合には第1誤差検出方法を用いることを示している。そして、第1の選択条件を満たさなければ、GNSS信号とレプリカ信号SRPとのコード位相が近く、この場合には第2誤差検出方法を用いることを示している。
 次に、アーリーレイト差分値ΔCVELと第2閾値C2とを比較し、レイト差分値ΔCVと第4閾値C4とを比較する(S104)。これは、GNSS信号がアーリー側の不感領域に入ったかどうかを判断する処理に対応する。
 第2閾値C2は負値である。第2閾値C2の絶対値は、GNSS信号がアーリー側の不感領域に入るタイミングでのアーリーレイト差分値ΔCVEL=(CV-CV)/CVの絶対値に近く、当該アーリーレイト差分値ΔCVELの絶対値よりも小さく設定されている。言い換えれば、第2閾値C2は、GNSS信号がアーリー側の不感領域に入るタイミングでのアーリーレイト差分値ΔCVEL=(CV-CV)/CVに近く、当該アーリーレイト差分値ΔCVELよりも大きく設定されている。
 第4閾値C4は負値である。第4閾値C4の絶対値は、GNSS信号がアーリー側の不感領域に入るタイミングでのレイト差分値ΔCV=(CV-CVVL)/CVの絶対値に近く、当該レイト差分値の絶対値よりも小さく設定されている。言い換えれば、第4閾値C4は、GNSS信号がアーリー側の不感領域に入るタイミングでのレイト差分値ΔCV=(CV-CVVL)/CVに近く、当該レイト差分値ΔCVのよりも大きく設定されている。
 第2の選択条件であるアーリーレイト差分値ΔCVELが第2閾値C2よりも小さく且つレイト差分値ΔCVが第4閾値C4よりも小さい条件を満たせば(S104:YES)、第1誤差検出方法によって誤差検出値Δτ(Δτ)を算出する(S105)。一方、第2の選択条件を満たさなければ(S103:No)、第2誤差検出方法によって誤差検出値Δτ(Δτ)を算出する(S106)。この処理は、第2の選択条件を満たせば、GNSS信号とレプリカ信号SRPとのコード位相が離れ、プロンプト信号がアーリー側の不感領域に入っている、もしくは入ろうとしており、この場合には第1誤差検出方法を用いることを示している。そして、第2の選択条件を満たさなければ、GNSS信号とレプリカ信号SRPとのコード位相が近く、この場合には第2誤差検出方法を用いることを示している。
 第1誤差検出方法では、第1アーリー相関値CVと第1レイト相関値CVとプロンプト相関値CVとを、次の第1算出式に代入することで、誤差検出値Δτ(Δτ)を算出する。
Figure JPOXMLDOC01-appb-M000001
 第2誤差検出方法では、第1、第2アーリー相関値CV,CVVE、第1、第2レイト相関値CV,CVVLとプロンプト相関値CVとを、次の第2算出式に代入することで、誤差検出値Δτ(Δτ)を算出する。
Figure JPOXMLDOC01-appb-M000002
 なお、式2において、τは上述のように第1アーリーレプリカ信号SREと第1レイトレプリカ信号SRLとのスペーシングであり、τは上述のように第2アーリーレプリカ信号SRVEと第2レイトレプリカ信号SRVLとのスペーシングである。
 次に、算出された誤差検出値Δτ(ΔτもしくはΔτ)を用いて、レプリカ信号のコード位相制御を行う。この際、誤差検出値Δτが0になるように、プロンプトレプリカ信号SRPのコード位相を進ませたり、遅らせたりする。そして、このようにプロンプトレプリカ信号SRPのコード位相が設定されることで、上述のように、第1、第2アーリーレプリカ信号SRE,SRVE、第1、第2レイトレプリカ信号SRL,SRVLのコード位相も設定される。
 このような誤差検出値Δτの算出およびコード位相制御を繰り返すことで、GNSS信号のコード位相をロックし、当該GNSS信号の追尾を行う。ここで、コード位相をロックするとは、プロンプトレプリカ信号SRPのコード位相とGNSS信号のコード位相とが継続的に略一致するようにコード位相制御を行うことを示している。
 そして、本発明では、上述のように、状況に応じて二種類の算出式を選択して、誤差検出値を算出している。次に、このような誤差検出値Δτの算出式の選択による作用効果を説明する。
 まず、第1誤差検出方法(式1)および第2誤差検出方法(式2)を用いた場合の、誤差検出値Δτのコード位相差特性について説明する。図3は第1誤差検出方法で算出した誤差検出値Δτのコード位相差に対する特性(900NW)を示す図である。図4は第2誤差検出方法で算出した誤差検出値Δτのコード位相差に対する特性(900ELS)を示す図である。なお、図3、図4は特性を分かりやすくするため、概略的に示している。
 第1誤差検出方法の第1算出式(式1)を用いた場合(図3のような特性の場合)、コード位相差の絶対値が1.0チップ分になるまでは、コード位相差が0の場合を除き、誤差検出値Δτ(Δτ)は0にはならない。したがって、コード位相差の広い範囲において、0でない誤差検出値Δτを得ることができる。これにより、目的のGNSS信号とプロンプトレプリカ信号RPとのコード位相差が比較的大きくても、これらのコード位相が一致するように、確実にプロンプトレプリカ信号SRPのコード位相制御を行うことができる。
 このような特性から、第1誤差検出方法は、追尾中に受信環境が悪化し、プロンプトレプリカ信号とGNSS信号とのコード位相差が大きくなってしまった場合に有効である。これは、第1誤差検出方法は誤差検出値が0でなくなる範囲が広いからである。したがって、第1誤差検出方法では、受信環境の悪化等によって、プロンプトレプリカ信号とGNSS信号のコード位相差が大きくなっても誤差検出値が0にならない。これにより、GNSS信号のコード位相にプロンプトレプリカ信号のコード位相が一致するように、レプリカ信号のコード位相制御を行える。一方、後述する第2誤差検出方法では、図4に示すように、コード位相差が±1.0チップの範囲内に、誤差検出値が0となる不感領域が存在する。したがって、当該不感領域にGNSS信号のコード位相が入ってしまうと、真の追尾点、すなわちGNSS信号とプロンプトレプリカ信号とのコード位相が一致する点へコード位相制御することができなくなってしまう。
 なお、第1誤差検出方法は、捕捉から追尾に移行する場合に特に有効である。これは、通常、GNSS信号の捕捉処理では、所定のコード位相間隔で、複数のレプリカ信号を生成し、GNSS信号と相関処理している。そして、例えば、最も相関値が高いレプリカ信号のコード位相を、GNSS信号の追尾の初期コード位相としている。このため、捕捉時に利用するコード位相間隔や受信状況によって、追尾初期のコード位相がGNSS信号の真のコード位相から離れていることがあるからである。
 第2誤差検出方法の第2算出式(式2)を用いた場合(図4のような特性の場合)、コード位相差の絶対値が1.0チップ分になるまでに、コード位相差が0の場合以外に、誤差検出値Δτ(Δτ)が0になるコード位相範囲が存在する。この特性を、より具体的に表現すれば、図4に示すように、コード位相差が-1.0チップよりもコード位相差が0.0側の所定チップ(負値)から+1.0チップよりもコード位相差が0.0側の所定チップ(正値)まで、コード位相差が0の場合を除き、誤差検出値Δτ(Δτ)は0にはならない。そして、このような誤差検出値Δτが0にならない範囲よりもコード位相差が0.0から離れる側のコード位相差において、所定のコード位相範囲に亘り、誤差検出値Δτ(Δτ)が0になる不感領域が設けられる。これにより、マルチパス信号を受信したとしても、マルチパス信号のコード位相が不感領域に係りやすくなる。マルチパス信号のコード位相が不感領域に入ることで、当該マルチパス信号による影響を受けず、正確なコード位相制御を行うことができる。
 このような特性から、第2誤差検出方法は、プロンプトレプリカ信号SRPとGNSS信号とのコード位相が略一致している状態、すなわちコード位相をロックできている場合に、特に有効である。この場合、プロンプトレプリカ信号SRPとGNSS信号とのコード位相差が0になるようにコード位相を制御していて、マルチパス信号を受信したとしても、誤差検出値Δτ(Δτ)にマルチパス信号の影響が現れない。したがって、コード位相を正確に制御することができる。
 このように、目的のGNSS信号のコード位相を継続的にロックできている場合には、第2誤差検出方法を用いて誤差検出値Δτを算出し、GNSS信号とプロンプトレプリカ信号のコード位相差が大きくなってしまった場合には第1誤差検出方法を用いて誤差検出値Δτを算出する。これにより、コード位相のロック時にはマルチパス信号の影響を受けることなく高精度にGNSS信号を追尾し続け、何らかの理由によってGNSS信号とプロンプトレプリカ信号のコード位相差が大きくなってもGNSS信号とプロンプトレプリカ信号とコード位相が一致するようにコード位相制御を行うことができる。
 次に、第1誤差検出方法と第2誤差検出方法とを選択するための判断方法について、より具体的に説明する。
 図5はプロンプトレプリカ信号SRPが目的のGNSS信号に対してコード位相が遅れている第1の状況を示す図である。図6はプロンプトレプリカ信号SRPが目的のGNSS信号に対してコード位相が遅れている第2の状況を示す図である。図7はプロンプトレプリカ信号SRPが目的のGNSS信号に対してコード位相が遅れている第3の状況を示す図である。
 第1の状況は、第2の状況よりもプロンプトレプリカ信号SRPと目的のGNSS信号とのコード位相差が小さい。第2の状況は、第3の状況よりもプロンプトレプリカ信号SRPと目的のGNSS信号とのコード位相差が小さい。コード位相差(第1の状況)<コード位相差(第2の状況)<コード位相差(第3の状況)の関係となる。
 図8はプロンプトレプリカ信号SRPが目的のGNSS信号に対してコード位相が進んでいる第4の状況を示す図である。図9はプロンプトレプリカ信号SRPが目的のGNSS信号に対してコード位相が進んでいる第5の状況を示す図である。図10はプロンプトレプリカ信号SRPが目的のGNSS信号に対してコード位相が進んでいる第6の状況を示す図である。
 第4の状況は、第5の状況よりもプロンプトレプリカ信号SRPと目的のGNSS信号とのコード位相差が小さい。第5の状況は、第6の状況よりもプロンプトレプリカ信号SRPと目的のGNSS信号とのコード位相差が小さい。コード位相差(第4の状況)<コード位相差(第5の状況)<コード位相差(第6の状況)の関係となる。
 図5-図10において、(A)はレプリカ信号とGNSS信号とのコード位相差に応じた相関値特性を示し、900Pは相関カーブを示す。(B)は第2誤差検出方法を用いた場合の誤差検出値のコード位相差特性を示し、900ELSは、第2誤差検出値特性カーブを示す。(C)は第1誤差検出方法を用いた場合の誤差検出値のコード位相差特性を示し、900NWは、第2誤差検出値特性カーブを示す。
 (1)プロンプトレプリカ信号SRPが目的のGNSS信号に対してコード位相が遅れている場合
 この場合、目的のGNSS信号のコード位相は、プロンプトレプリカ信号SRPのコード位相よりも進んでいることになる。
 第1の状況として、図5に示すように、プロンプトレプリカ信号SRPと目的のGNSS信号とのコード位相が略同じであり、プロンプトレプリカ信号SRPのコード位相が少し遅れている場合、第1、第2レイト相関値CV,CVVLとプロンプト相関値CVは、コード位相差が正値の範囲(レイト側)において相関カーブ900P上に並んで現れる。第1、第2アーリー相関値CV,CVVEは、コード位相差が負値の範囲(アーリー側)において相関カーブ900P上に現れる。
 この状況では、第1アーリー相関値CVのコード位相は、第1レイト相関値CVのコード位相よりも、GNSS信号のコード位相に近くなる。したがって、第1アーリー相関値CVは第1レイト相関値CVよりも大きくなる。このため、アーリーレイト差分値ΔCVEL=(CV-CV)/CVは正値になるが、GNSS信号とプロンプトレプリカ信号SRPとのコード位相差によって決まる0以上となる。また、アーリーレイト差分値ΔCVELは、第1アーリーレプリカ信号SREとGNSS信号のコード位相が一致した時のアーリーレイト差分値ΔCVELよりも小さくなる。すなわち、アーリーレイト差分値ΔCVELは、0に近い正値となる。したがって、アーリーレイト差分値ΔCVELは、GNSS信号とプロンプトレプリカ信号SRPとのコード位相差によって、正値である第1閾値C1よりも大きくなるかどうかは、GNSS信号とプロンプトレプリカ信号SRPとのコード位相差によって異なり、不明である。
 しかしながら、この状況では、第1アーリー相関値CVのコード位相は、第2アーリー相関値CVVEのコード位相よりも、GNSS信号のコード位相に近くなる。したがって、第1アーリー相関値CVは第2アーリー相関値CVVEよりも大きくなる。このため、アーリー差分値ΔCV=(CV-CVVE)/CVは正値になり、負値である第3閾値C3よりも必ず大きくなる。
 以上のように、第1の状況では第1の選択基準を満たしていないので、第2誤差検出方法が選択される。
 この状況では、プロンプトレプリカ信号SRPのコード位相の位置はA1点となり、図5(B),(C)に示すように、第2誤差検出方法で得られる誤差検出値Δτおよび第1誤差検出方法で得られる誤差検出値Δτの双方が正値となる。したがって、第2誤差検出方法でも第1誤差検出方法でもコード位相制御が可能である。しかしながら、上述のように第1誤差検出方法ではマルチパス信号の影響を受けやすいので、第2誤差検出方法を用いることが有効である。
 したがって、上述のように第1の選択基準にしたがって、プロンプトレプリカ信号SRPとGNSS信号とのコード位相差が極小さく、コード位相をロックできている状況では、第2誤差検出方法を用いることで、マルチパス信号の影響を受けることなく、目的のGNSS信号のコード位相を継続的にロックできるように、正確にコード位相制御を行うことができる。
 第2の状況として、図6に示すように、プロンプトレプリカ信号SRPと目的のGNSS信号とのコード位相が、或程度のコード位相差範囲内(実際には第2誤差検出方法での不感領域に入らない程度のコード位相差範囲)で離間しており、プロンプトレプリカ信号SRPのコード位相が少し遅れている場合、第1、第2レイト相関値CV,CVVLとプロンプト相関値CV、第1アーリー相関値CVは、コード位相差が正値の範囲(レイト側)において相関カーブ900P上に並んで現れる。第2アーリー相関値CVVEは、コード位相差が負値の範囲(アーリー側)において相関カーブ900P上に現れる。
 この状況では、第1アーリー相関値CVのコード位相と第2アーリー相関値CVVEのコード位相との間に、GNSS信号のコード位相が存在する。この場合、アーリー差分値ΔCVは、第1アーリー相関値CVのコード位相が第2アーリー相関値CVVEのコード位相よりもGNSS信号のコード位相に近ければ正値となり、第2アーリー相関値CVVEのコード位相が第1アーリー相関値CVのコード位相よりもGNSS信号のコード位相に近ければ負値となる。したがって、第2アーリー相関値CVVEのコード位相の方がGNSS信号のコード位相に近い範囲において或コード位相差以上、プロンプトレプリカ信号CVがGNSS信号から遅れると、アーリー差分値ΔCVは第3閾値C3未満になり、遅れがこの或コード位相差になるまではアーリー差分値ΔCVは第3閾値C3以上となる。
 したがって、アーリー差分値ΔCVが第3閾値C3以上の範囲では、第1の選択基準を満たしていないので第2誤差検出方法が選択され、アーリー差分値ΔCVが第3閾値C3未満の範囲になると、第1の選択基準が満たされて、第1誤差検出方法が選択される。
 この状況では、プロンプトレプリカ信号SRPのコード位相の位置は図6(B),(C)のA2点に示すように、コード位相差が正値側(レイト側)のピークと不感領域になる端部との間に現れる。より具体的には、アーリー差分値ΔCVが第3閾値C3以上の範囲ではピーク側にA2点が現れ、アーリー差分値ΔCVが第3閾値C3未満の範囲では不感領域側にA2点が現れる。ピーク側とは、コード位相差の正値側(レイト側)における誤差検出値のピークと不感領域になる端部との間におけるピークに近い側の領域を意味する。この場合、第2誤差検出方法で得られる誤差検出値Δτおよび第1誤差検出方法で得られる誤差検出値Δτの双方が正値となる。したがって、第2誤差検出方法でも第1誤差検出方法でもコード位相制御が可能である。上述のように第1誤差検出方法ではマルチパス信号の影響を受けやすいので、第2誤差検出方法を用いる方がよい。すなわち、第1の選択基準を満たしていない範囲では、第2誤差検出方法を用いる方がよい。
 しかしながら、受信環境による誤差等を考慮すると、不感領域に近い側のコード位相差範囲では、プロンプトレプリカ信号SRPとのコード位相が、不感領域内に入ってしまうことが考えられる。逆に、プロンプトレプリカ信号SRPのコード位相を基準として、GNSS信号のコード位相が不感領域内に入ってしまうことが考えられる。したがって、このアーリー差分値ΔCVが第3閾値C3未満の範囲では第1誤差検出方法を用いる方がよく、不感領域の問題も生じることがない。すなわち、第1の選択基準を満たしている範囲では、第1誤差検出方法を用いる方がよい。
 このように、プロンプトレプリカ信号SRPとGNSS信号のコード位相差が或程度あっても第1の選択基準を満たしていない範囲では、第2誤差検出方法を用いることで、マルチパス信号の影響を受けることなく、目的のGNSS信号のコード位相を継続的にロックできるように正確にコード位相制御を行うことができる。一方、プロンプトレプリカ信号SRPとGNSS信号のコード位相差が大きくなり、第1の選択基準を満たした場合には、第1誤差検出方法を用いることで、GNSS信号の追尾を逸脱することなく、継続することができる。
 第3の状況として、図7に示すように、プロンプトレプリカ信号SRPと目的のGNSS信号とのコード位相差が大きく、プロンプトレプリカ信号SRPのコード位相が大きく遅れている場合、第1、第2レイト相関値CV,CVVLとプロンプト相関値CV、第1、第2アーリー相関値CV,CVVEは、コード位相差が正値の範囲(レイト側)において相関カーブ900P上に並んで現れる。
 この状況では、第1、第2レイト相関値CV,CVVL、プロンプト相関値CV、第1、第2アーリー相関値CV,CVVEのコード位相よりも、GNSS信号のコード位相が進んでいる。この場合、第1アーリー相関値CVは第1レイト相関値CVよりも大きく、アーリーレイト差分値ΔCVELは確実に第1閾値C1以上となる。第1アーリー相関値CVは第2アーリー相関値CVVEよりも小さく、アーリー差分値ΔCVは確実に第3閾値C3未満となる。すなわち、第1の選択基準を満たし、第1誤差検出方法が選択される。
 この状況では、プロンプトレプリカ信号SRPのコード位相の位置は図7(B),(C)のA3点に示すように、コード位相差が正値側(レイト側)の不感領域内に現れる。逆に、プロンプトレプリカ信号SRPのコード位相を基準として、GNSS信号のコード位相が不感領域内に入ってしまう。この場合、第2誤差検出方法で得られる誤差検出値Δτは0になり、第1誤差検出方法で得られる誤差検出値Δτは正値となる。したがって、第2誤差検出方法ではコード位相制御が不可能であり、第1誤差検出方法ではコード位相制御が可能である。したがって、第1誤差検出方法を選択しなければ、コード追尾を継続することができない。
 このように、プロンプトレプリカ信号SRPとGNSS信号のコード位相差が大きくなり、第1の選択基準を満たした場合には、第1誤差検出方法を用いることで、GNSS信号の追尾を逸脱することなく、継続することができる。
 (2)プロンプトレプリカ信号SRPが目的のGNSS信号に対してコード位相が進んでいる場合
 この場合、目的のGNSS信号のコード位相は、プロンプトレプリカ信号SRPのコード位相よりも遅れていることになる。
 第4の状況として、図8に示すように、プロンプトレプリカ信号SRPと目的のGNSS信号とのコード位相が略同じであり、プロンプトレプリカ信号SRPのコード位相が少し進んでいる場合、第1、第2アーリー相関値CV,CVVEとプロンプト相関値CVは、コード位相差が負値の範囲(アーリー側)において相関カーブ900P上に現れる。第1、第2レイト相関値CV,CVVLは、コード位相差が正値の範囲(レイト側)において相関カーブ900P上に並んで現れる。
 この状況では、第1レイト相関値CVのコード位相は、第1アーリー相関値CVのコード位相よりも、GNSS信号のコード位相に近くなる。したがって、第1アーリー相関値CVは第1レイト相関値CVよりも小さくなる。このため、アーリーレイト差分値ΔCVEL=(CV-CV)/CVは負値になるが、GNSS信号とプロンプトレプリカ信号SRPとのコード位相差によって決まる0以下となる。また、アーリーレイト差分値ΔCVELは、第1レイトレプリカ信号SRLとGNSS信号のコード位相が一致した時のアーリーレイト差分値ΔCVELよりも大きくなる。すなわち、アーリーレイト差分値ΔCVELは、0に近い負値となる。したがって、アーリーレイト差分値ΔCVELは、GNSS信号とプロンプトレプリカ信号SRPとのコード位相差によって、負値である第2閾値C2よりも小さくなるかどうかは、GNSS信号とプロンプトレプリカ信号SRPのコード位相差によって異なり、不明である。
 しかしながら、この状況では、第1レイト相関値CVのコード位相は、第2レイト相関値CVVLのコード位相よりも、GNSS信号のコード位相に近くなる。したがって、第1レイト相関値CVは第2レイト相関値CVVLよりも大きくなる。このため、レイト差分値ΔCV=(CV-CVVL)/CVは正値になり、負値である第4閾値C4よりも必ず大きくなる。
 以上のように、第4の状況では第2の選択基準を満たしていないので、第2誤差検出方法が選択される。
 この状況では、プロンプトレプリカ信号SRPのコード位相の位置はB1点となり、図8(B),(C)に示すように、第2誤差検出方法で得られる誤差検出値Δτおよび第1誤差検出方法で得られる誤差検出値Δτの双方が負値となる。したがって、第2誤差検出方法でも第1誤差検出方法でもコード位相制御が可能である。しかしながら、上述のように第1誤差検出方法ではマルチパス信号の影響を受けやすいので、第2誤差検出方法を用いることが有効である。
 したがって、上述のように第2の選択基準にしたがって、プロンプトレプリカ信号SRPとGNSS信号とのコード位相差が極小さく、コード位相をロックできている状況では、第2誤差検出方法を用いることで、マルチパス信号の影響を受けることなく、目的のGNSS信号のコード位相を継続的にロックできるように、正確にコード位相制御を行うことができる。
 第5の状況として、図9に示すように、プロンプトレプリカ信号SRPと目的のGNSS信号とのコード位相が、或程度のコード位相差範囲内(実際には第2誤差検出方法での不感領域に入らない程度のコード位相差範囲)で離間しており、プロンプトレプリカ信号SRPのコード位相が少し進んでいる場合、第1、第2アーリー相関値CV,CVVEとプロンプト相関値CVと第1レイト相関値CVは、コード位相差が負値の範囲(アーリー側)において相関カーブ900P上に並んで現れる。第2レイト相関値CVVLは、コード位相差が正値の範囲(レイト側)において相関カーブ900P上に現れる。
 この状況では、第1レイト相関値CVのコード位相と第2レイト相関値CVVLのコード位相との間に、GNSS信号のコード位相が存在する。この場合、レイト差分値ΔCVは、第1レイト相関値CVのコード位相が第2レイト相関値CVVLのコード位相よりもGNSS信号のコード位相に近ければ正値となり、第2レイト相関値CVVLのコード位相が第1レイト相関値CVのコード位相よりもGNSS信号のコード位相に近ければ負値となる。したがって、第2レイト相関値CVVLのコード位相の方がGNSS信号のコード位相に近い範囲において或コード位相差以上、プロンプトレプリカ信号CVがGNSS信号から遅れると、レイト差分値ΔCVは第4閾値C4未満になり、遅れがこの或コード位相差になるまではレイト差分値ΔCVは第4閾値C4以上となる。
 したがって、レイト差分値ΔCVが第4閾値C4以上の範囲では、第2の選択基準を満たしていないので第2誤差検出方法が選択され、レイト差分値ΔCVが第4閾値C4未満の範囲になると、第3の選択基準が満たされて、第1誤差検出方法が選択される。
 この状況では、プロンプトレプリカ信号SRPのコード位相の位置は図9(B),(C)のB2点に示すように、コード位相差が負値側(アーリー側)のピークと不感領域になる端部との間に現れる。より具体的には、レイト差分値ΔCVが第4閾値C4以上の範囲ではピーク側にB2点が現れ、レイト差分値ΔCVが第4閾値C4未満の範囲では不感領域側にB2点が現れる。この場合、第2誤差検出方法で得られる誤差検出値Δτおよび第1誤差検出方法で得られる誤差検出値Δτの双方が負値となる。したがって、第2誤差検出方法でも第1誤差検出方法でもコード位相制御が可能である。上述のように第1誤差検出方法ではマルチパス信号の影響を受けやすいので、第2誤差検出方法を用いる方がよい。すなわち、第2の選択基準を満たしていない範囲では、第2誤差検出方法を用いる方がよい。
 しかしながら、受信環境による誤差等を考慮すると、不感領域に近い側のコード位相差範囲では、プロンプトレプリカ信号SRPとのコード位相が、不感領域内に入ってしまうことが考えられる。逆に、プロンプトレプリカ信号SRPのコード位相を基準として、GNSS信号のコード位相が不感領域内に入ってしまうことが考えられる。したがって、このレイト差分値ΔCVが第4閾値C4未満の範囲では第1誤差検出方法を用いる方がよく、不感領域の問題も生じることがない。すなわち、第2の選択基準を満たしている範囲では、第1誤差検出方法を用いる方がよい。
 このように、プロンプトレプリカ信号SRPとGNSS信号のコード位相差が或程度あっても第2の選択基準を満たしていない範囲では、第2誤差検出方法を用いることで、マルチパス信号の影響を受けることなく、目的のGNSS信号のコード位相を継続的にロックできるように正確にコード位相制御を行うことができる。一方、プロンプトレプリカ信号SRPとGNSS信号のコード位相差が大きくなり、第2の選択基準を満たした場合には、第1誤差検出方法を用いることで、GNSS信号の追尾を逸脱することなく、継続することができる。
 第6の状況として、図10に示すように、プロンプトレプリカ信号SRPと目的のGNSS信号とのコード位相差が大きく、プロンプトレプリカ信号SRPのコード位相が大きく進んでいる場合、第1、第2アーリー相関値CV,CVVE、プロンプト相関値CV、第1、第2レイト相関値CV,CVVLは、コード位相差が負値の範囲(アーリー側)において相関カーブ900P上に並んで現れる。
 この状況では、第1、第2アーリー相関値CV,CVVE、プロンプト相関値CV、第1、第2レイト相関値CV,CVVLのコード位相よりも、GNSS信号のコード位相が遅れる。この場合、第1アーリー相関値CVは第1レイト相関値CVよりも小さく、アーリーレイト差分値ΔCVELは確実に第2閾値C2未満となる。第1レイト相関値CVは第2レイト相関値CVVLよりも小さく、レイト差分値ΔCVは確実に第4閾値C4未満となる。すなわち、第2の選択基準を満たし、第1誤差検出方法が選択される。
 この状況では、プロンプトレプリカ信号SRPのコード位相の位置は図10(B),(C)のB3点に示すように、コード位相差が負値側(アーリー側)の不感領域内に現れる。逆に、プロンプトレプリカ信号SRPのコード位相を基準として、GNSS信号のコード位相が不感領域内に入ってしまう。この場合、第2誤差検出方法で得られる誤差検出値Δτは0になり、第1誤差検出方法で得られる誤差検出値Δτは負値となる。したがって、第2誤差検出方法ではコード位相制御が不可能であり、第1誤差検出方法ではコード位相制御が可能である。したがって、第1誤差検出方法を選択しなければ、コード追尾を継続することができない。
 このように、プロンプトレプリカ信号SRPとGNSS信号のコード位相差が大きくなり、第2の選択基準を満たした場合には、第1誤差検出方法を用いることで、GNSS信号の追尾を逸脱することなく、継続することができる。
 次に、目的のGNSS信号を追尾中に、当該目的のGNSS信号よりも受信強度の強いマルチパス信号を受信した場合の追尾動作を説明する。図11は、プロンプトレプリカ信号SRPが目的のGNSS信号を追尾中に、マルチパス信号を受信した状況の相関値特性を示す図である。図11において、900Dが目的のGNSS信号の相関カーブであり、900MPがマルチパス信号の相関カーブである。900CN1が目的のGNSS信号とマルチパス信号を合成した相関カーブである。
 マルチパス信号は、通常、目的のGNSS信号よりも遅れて受信される。これは、マルチパス信号が、GNSS衛星で放送された信号を直接受信したものではなく、一旦高層建築物等に反射してから受信したものだからである。このため、マルチパス信号の相関カーブ900MPは、GNSS信号の相関カーブ900Dよりも所定コード位相分、レイト側に存在する。したがって、合成相関カーブ900CN1は、GNSS信号の相関ピークとマルチパス信号の相関ピークの双方に極点を有する。合成相関カーブ900CN1においては、マルチパス信号の相関ピークはGNSS信号の相関ピークよりも高い。したがって、合成相関カーブ900CN1では、マルチパス信号の相関ピークが、当該合成相関カーブ900CN1の相関ピークとなる。
 GNSS信号のコードをロックして追尾中、すなわちプロンプトレプリカ信号SRPとGNSS信号のコード位相が一致している場合、上述のように第2誤差検出方法が用いられている。この場合、第2誤差検出方法を用いるため、不感領域に存在するマルチパス信号の影響が誤差検出値には現れないが、相関カーブ上は影響を受け、不容易に第2誤差検出方法から第1誤差検出方法へ移行すると、当該マルチパス信号の影響を受け、当該マルチパス信号へ追尾が移行してしまう可能性がある。以下では、このような場合について説明する。
 目的のGNSS信号を受信中に、当該GNSS信号よりも受信強度が強いマルチパス信号を受信すると、合成相関カーブ900CN1は、上述のように図13のような形状となる。このため、第1、第2アーリー相関値CVEA,CVVEA、プロンプト相関値CVPA、第1、第2レイト相関値CVLA,CVVLAは、合成相関カーブ900CN1の相関ピークのコード位相よりもアーリー側において合成相関カーブ900CN1上に並んで現れる。
 この場合、第1アーリー相関値CVEAは第1レイト相関値CVLAよりも小さく、アーリーレイト差分値ΔCVELA=(CVEA-CVLA)/CVPAは負値となる。ここで、第1レイト相関値CVLAが存在するGNSS信号のコード位相とマルチパス信号のコード位相との間の相関カーブの変化率は、第1アーリー相関値CVEAが存在するGNSS信号のコード位相よりもアーリー側の相関カーブの変化率よりも低い。したがって、この場合のアーリーレイト差分値ΔCVELAは、上述の第6の状況におけるアーリーレイト差分値ΔCVELよりも0に近くなる。
 また、第1レイト相関値CVLAは、第2レイト相関値CVVLAよりも小さく、レイト差分値ΔCV=(CVLA-CVVLA)/CVPAも負値となる。ここで、第1、第2レイト相関値CVLA,CVVLAが存在するGNSS信号のコード位相とマルチパス信号のコード位相との間の相関カーブの変化率は、プロンプト相関値CVPAや第1、第2アーリー相関値CVEA,CVVEAが存在するGNSS信号のコード位相よりもアーリー側の相関カーブの変化率よりも低い。したがって、この場合のレイト差分値ΔCVLAは、上述の第6の状況におけるレイト差分値ΔCVよりも0に近くなる。
 このような特性を利用し、第2閾値C2および第4閾値C4の絶対値を大きく設定する。例えば、図10に示した、第1、第2アーリー相関値CV,CVVE、プロンプト相関値CV、第1、第2レイト相関値CV,CVVLは、コード位相差が負値の範囲(アーリー側)において相関カーブ900P上に並んで現れるような状態におけるアーリーレイト差分値ΔCVELやレイト差分値ΔCVの絶対値に近くなるように設定する。
 このように、第2閾値C2および第4閾値C4を設定することで、図11に示すような状況では、アーリーレイト差分値ΔCVELAが第2閾値C2未満になりにくくなり、レイト差分値ΔCVLAが第4閾値C4未満になりにくくなる。したがって、第2誤差検出方法から第1誤差検出方法に切り替わりにくく、第2誤差検出方法を継続的に用いることができる。これにより、目的のGNSS信号を追尾中にマルチパス信号を受信しても、当該マルチパス信号へ追尾が移行することなく、目的のGNSS信号を継続して追尾することができる。
 図12は、目的のGNSS信号(直接波信号)のみを受信した状態から、目的のGNSS信号に加えてマルチパス信号を受信する状態に移行する間のコード位相の追尾の遷移を示す図である。図12(A)は目的のGNSS信号のみを受信し受信強度が高い状態を示し、図12(B)は目的のGNSS信号のみを受信し受信強度が低い状態を示し、図12(C)はマルチパス信号が追加されたタイミングでの状態を示す。図12(D),(E)はマルチパス信号が追加されてから所定時間経過後の状態を示し、図12(D),(E)では異なる経過時間の状態を示している。
 図12(A)に示すように、目的のGNSS信号(直接波信号)のみを受信している状況では、第2誤差検出方法によってコードの追尾が行われている。ここで、図12(B)に示すように、GNSS信号(直接波信号)の受信強度が低下しても、当該GNSS信号(直接波信号)のみを受信していれば、第1、第2の選択基準を満たすことはなく、継続的に第2誤差検出方法が用いられる。
 次に、GNSS信号(直接波信号)よりも受信強度が強いマルチパス信号を受信すると、図12(C)に示すように、相関カーブが変化して相関カーブのピークがマルチパス信号のコード位相となる。しかしながら、上述のように第2閾値C2と第4閾値C4を設定しておくことで、第2の選択基準は満たされず、コード追尾点(プロンプトレプリカ信号SRPのコード位相)は、目的のGNSS信号(直接波信号)のコード位相に略一致したままとなる。さらに、図12(D),図12(E)に示すように時刻が経過しても、合成相関カーブの形状は殆ど変化しないので、図12(C)の状態と同様に、第2の選択基準は満たされない。したがって、コード追尾点(プロンプトレプリカ信号SRPのコード位相)は、目的のGNSS信号(直接波信号)のコード位相に略一致したままとなる。
 以上のように、第2閾値C2および第4閾値C4を適宜設定することで、目的のGNSS信号(直接波信号)を追尾中にマルチパス信号を受信しても、当該マルチパス信号へ追尾が移行することなく、目的のGNSS信号を継続して追尾することができる。
 次に、マルチパス信号しか受信できていない時に、より受信強度が強い目的のGNSS信号(直接波信号)を受信した場合の追尾動作を説明する。図13は、プロンプトレプリカ信号SRPがマルチパス信号のコード位相に略一致している時に、目的のGNSS信号を受信した状況の相関値特性を示す図である。図13において、900Dが目的のGNSS信号の相関カーブであり、900MPがマルチパス信号の相関カーブである。900CN2が目的のGNSS信号とマルチパス信号を合成した相関カーブである。
 マルチパス信号は、上述のように、目的のGNSS信号よりも遅れて受信される。このため、GNSS信号の相関カーブ900Dは、マルチパス信号の相関カーブ900MPよりも所定コード位相分、アーリー側に存在する。したがって、合成相関カーブ900CN2は、GNSS信号の相関ピークとマルチパス信号の相関ピークの双方に極点を有する。合成相関カーブ900CN2においては、GNSS信号の相関ピークはマルチパス信号の相関ピークよりも高い。したがって、合成相関カーブ900CN2では、GNSS信号の相関ピークが、当該合成相関カーブ900CN2の相関ピークとなる。
 マルチパス信号しか受信できず、当該マルチパス信号のコード位相とプロンプトレプリカ信号SRPのコード位相が略一致している場合、上述のように第2誤差検出方法が用いられている。この場合、第2誤差検出方法を用いるため、不感領域に現れる目的のGNSS信号の影響は、直接誤差検出値には現れないが、相関カーブ上は影響を受ける。この場合には、マルチパス信号から目的のGNSS信号へ追尾が移行することが望ましい。以下では、このような場合について説明する。
 マルチパス信号のみを受信中に、当該マルチパス信号よりも受信強度が強いGNSS信号を受信すると、合成相関カーブ900CN2は、上述のように、図13のような形状となる。このため、第1、第2アーリー相関値CVEB,CVVEB、プロンプト相関値CVPB、第1、第2レイト相関値CVLB,CVVLBは、合成相関カーブ900CN2の相関ピークのコード位相よりもレイト側において合成相関カーブ900CN2上に並んで現れる。
 この場合、上述の第3の状況と同様に、第1アーリー相関値CVEBは第1レイト相関値CVLBよりも大きく、アーリーレイト差分値ΔCVELB=(CVEB-CVLB)/CVPBは正値となる。また、第1アーリー相関値CVEBは、第2アーリー相関値CVVEBよりも小さく、アーリー差分値ΔCVEBは負値となる。
 このような特性を利用し、第1閾値C1および第3閾値C3の絶対値を小さく設定する。例えば、絶対値が0に極近接するように設定する。いいかえれば、第1閾値C1の絶対値を第2閾値C2の絶対値よりも小さくする。第3閾値C3の絶対値を第4閾値C4の絶対値よりも小さくする。
 このように、第1閾値C1および第3閾値C3を設定することで、図13に示すような状況では、アーリーレイト差分値ΔCVELBが第2閾値C1より大きくなりやすく、アーリー差分値ΔCVEBが第3閾値C3未満になりやすくなる。したがって、第1の選択基準を満たしやすく、第2誤差検出方法から第1誤差検出方法に切り替わり易くすることができる。これにより、プロンプトレプリカ信号SRPのコード位相がGNSS信号と離れていても、当該GNSS信号を追尾するようにコード位相制御を行うことができる。この結果、マルチパス信号しか受信できなかった状況で、目的のGNSS信号を受信した場合に、当該GNSS信号へ追尾を移行することができる。
 次に、図13の状況からレプリカ信号のコード位相を制御していき、プロンプトレプリカ信号SRPのコード位相がGNSS信号のコード位相に近接した場合について説明する。図14は、マルチパス信号のある環境下で、プロンプトレプリカ信号SRPのコード位相が目的のGNSS信号に近接した状況の相関値特性を示す図である。なお、図14の各相関カーブは、図13の各相関カーブと同じであるので説明は省略する。
 この状況では、第1アーリー相関値CVET、プロンプト相関値CVPT、第1、第2レイト相関値CVLT,CVVLTは、合成相関カーブ900CN2の相関ピークのコード位相よりもレイト側において合成相関カーブ900CN2上に並んで現れる。第2アーリー相関値CVVETは、合成相関カーブ900CN2の相関ピークのコード位相よりもアーリー側において合成相関カーブ900CN2上に現れる。
 この場合、第1アーリー相関値CVETは第1レイト相関値CVLTよりも大きく、アーリーレイト差分値ΔCVELT=(CVET-CVLT)/CVPTは正値となる。また、第1アーリー相関値CVETは、第2アーリー相関値CVVETよりも合成相関カーブ900CN2の相関ピークのコード位相に近い。したがって、第1アーリー相関値CVETは、第2アーリー相関値CVVETよりも大きく、アーリー差分値ΔCVETは正値となる。
 これにより、第1の選択基準を満たせなくなり、第1誤差検出方法から第2誤差検出方法へ切り替わる。以降は、第2誤差検出方法によってプロンプトレプリカ信号SRPのコード位相がGNSS信号のコード位相に略一致するようにコード位相制御される。すなわち、マルチパス信号があっても、GNSS信号のコード位相が正確にロックされ、継続亭にGNSS信号を追尾することができる。
 図15は、マルチパス信号しか受信できない状況から、マルチパス信号とは別に目的のGNSS信号を受信できる状況に移行する間のコード位相の追尾の遷移を示す図である。図15(A)はマルチパス信号のみを受信した状況を示す。図15(B)、(C)、(D)、(E)は、マルチパス信号に加えて目的のGNSS信号の受信した状況を示す。図15(B)、図15(C)、図15(D)、図15(E)の順で、時間が経過している。図15(F)はマルチパス信号がなくなり、GNSS信号のみを受信した状況を示す。
 図15(A)に示すように、マルチパス信号のみしか受信できない状況では、第2誤差検出方法によってマルチパス信号のコード位相にプロンプトレプリカ信号SRPのコード位相がロックされる。
 次に、マルチ波信号よりも受信強度が強いGNSS信号(直接波信号)を受信すると、図15(B)に示すように、相関カーブが変化して相関カーブのピークがGNSS信号のコード位相となる。これにより、上述のように、第1、第2アーリー相関値CV,CVVE、プロンプト相関値CV、第1、第2レイト相関値CV,CVVLは、相関カーブのレイト側の傾斜上に現れる。したがって、アーリーレイト差分値ΔCVELは正値となり、アーリー差分値ΔCVは負値となる。ここで、第1閾値C1と第3閾値C3の絶対値が小さく設定されているので、アーリーレイト差分値ΔCVELは第1閾値C1よりも大きくなり、アーリー差分値ΔCVは第3閾値C3未満となる。したがって、第1の選択基準が満たされ、第2誤差検出方法から第1誤差検出方法へ切り替わる。
 このように第1誤差検出方法が用いられることで、図15(C),(D)に示すように、コード追尾点がGNSS信号のコード位相に移る。
 そして、図15(D)に示す状態では、第1、第2アーリー相関値CV,CVVEが相関カーブのアーリー側の傾斜上に現れ、第1、第2レイト相関値CV,CVVLは、相関カーブのレイト側の傾斜上に現れる。したがって、第1の選択基準は満たされず、第1誤差検出方法から第2誤差検出方法に切り替わる。さらに、図15(E)に示すように、相関カーブの形状は殆ど変化しないままで時間が経過しても、第1、第2の選択基準は満たされないままなので、コード追尾点は、GNSS信号のコード位相に維持される。さらに、図15(E)の状況からマルチパス信号がなくなり、図15(F)の状況になると、第1、第2の選択基準はさらに満たされ難くなり、コード追尾点は、GNSS信号のコード位相に正確に維持される。
 このように、第1閾値C1および第3閾値C3を適宜設定することで、マルチパス信号しか受信できない状況から目的のGNSS信号(直接波信号)の受信が復帰した場合に、GNSS信号へ追尾が移行し、コード追尾点の移動後はGNSS信号を継続して追尾することができる。
 以上のように、本実施形態のGNSS信号処理方法を用いれば、マルチパス信号の受信等から生じる受信環境の変化の影響を抑制し、目的のGNSS信号(直接波信号)を継続的に追尾することができる。
 なお、GNSS信号の追尾の際には、具体的に上述の処理を、次に示すような方法で利用することができる。GNSS信号の追尾を開始する時、GNSS信号とプロンプトレプリカ信号SRPとのコード位相が近いとは限らない。したがって、GNSS信号の追尾開始の時点では、第1誤差検出方法を用いて、GNSS信号とプロンプトレプリカ信号SRPとのコード位相を一致させるように、コード位相制御を行う。そして、例えば、上述アーリー差分値ΔCVやレイト差分値ΔCVの符号に基づいて、GNSS信号とプロンプトレプリカ信号SRPとのコード位相が近接したことを検出すると、第2誤差検出方法に切り替えて、GNSS信号の追尾を継続する。
 第2誤差検出方法にてGNSS信号を追尾中は、上述の第1の選択基準および第2の選択基準を用いて、GNSS信号とプロンプトレプリカ信号SRPとのコード位相差を監視する。第1の選択基準および第2の選択基準を満たしたことを検出すると、すなわちGNSS信号とプロンプトレプリカ信号SRPとのコード位相差が所定値よりも大きくなったと判断すると、第1誤差検出方法に切り替えてGNSS信号の追尾を継続する。
 このような本実施形態のGNSS信号処理方法は、次に示す機能部の構成によって実現することが可能である。図16は本発明の実施形態に係る測位装置1の構成を示すブロック図である。図17は復調部13の構成を示すブロック図である。
 測位装置1は、GNSS受信アンテナ11、RF処理部12、本発明のGNSS信号処理装置に相当する復調部13、航法メッセージ解析部14、および測位演算部15を備える。
 GNSS受信アンテナ11は、GNSS衛星(GPS衛星等)から送信されるGNSS信号を受信し、ダウンコンバータ12へ出力する。ダウンコンバータ12は、GNSS信号を所定の中間周波数信号(以下、IF信号と称する)に変換し、復調部13へ出力する。
 復調部13は、具体的な構成は図17を用いて後述するが、IF信号の捕捉を行うとともに、上述のような誤差検出値Δτによるレプリカ信号のコード位相制御を行って、IF信号からなるGNSS信号の追尾を行う。復調部13は、GNSS信号のコード位相をロックし、追尾に成功すると、GNSS信号とプロンプトレプリカ信号SRPとの相関値(プロンプト相関値CV)を航法メッセージ解析部14へ出力する。また、復調部13は、追尾状態において、誤差検出値Δτを所定時間積算することで擬似距離を算出し、測位演算部15へ出力する。
 航法メッセージ解析部14は、復調部13からのプロンプト相関値CVから航法メッセージを復調して解析し、その内容を測位演算部15に与える。測位演算部15は、航法メッセージ解析部14からの航法メッセージの内容と、復調部13からの擬似距離に基づいて測位演算を行い、測位装置1の位置を推定演算する。
 復調部13は、図11に示すように、レプリカ信号発生部31、相関部32P,32VE,32E,32L,32VL、演算部33を備える。
 レプリカコード生成部31は、演算部33から与えられたコード位相制御信号に基づいて、上述のプロンプトレプリカ信号SRP、第1アーリーレプリカ信号SRE、第2アーリーレプリカ信号SRVE、第1レイトレプリカ信号SRL、第2レイトレプリカ信号SRVLを生成する。レプリカコード生成部31は、プロンプトレプリカ信号SRPを相関部32Pへ出力する。レプリカコード生成部31は、第1アーリーレプリカ信号SREを相関部32Eへ出力する。レプリカコード生成部31は、第2アーリーレプリカ信号SRVEを相関部32VEへ出力する。レプリカコード生成部31は、第1レイトレプリカ信号SRLを相関部32Lへ出力する。レプリカコード生成部31は、第2レイトレプリカ信号SRVLを相関部32VLへ出力する。
 相関部32Pは、GNSS信号とプロンプトレプリカ信号SRPとを相関処理し、プロンプト相関値CVを出力する。プロンプト相関値CVは、演算部33に出力されるとともに、航法メッセージ解析部14にも出力される。相関部32Eは、GNSS信号と第1アーリーレプリカ信号SREとを相関処理し、第1アーリー相関値CVを出力する。第1アーリー相関値CVは、演算部33に出力される。相関部32VEは、GNSS信号と第2アーリーレプリカ信号SRVEとを相関処理し、第2アーリー相関値CVVEを出力する。第2アーリー相関値CVVEは、演算部33に出力される。相関部32Lは、GNSS信号と第1レイトレプリカ信号SRLとを相関処理し、第1レイト相関値CVを出力する。第1レイト相関値CVは、演算部33に出力される。相関部32VLは、GNSS信号と第2レイトレプリカ信号SRVLとを相関処理し、第2レイト相関値CVVLを出力する。第2レイト相関値CVVLは、演算部33に出力される。
 演算部33は、CPU等によって構成される。演算部33には、上述の誤差検出値算出演算およびコード位相制御を実現するプログラムが記憶されており、当該プログラムを読み出して、実行する。
 演算部33は、プロンプト相関値CV、第1アーリー相関値CV、第2アーリー相関値CVVE、第1レイト相関値CV、第2レイト相関値CVVLを用いて、上述のように誤差検出方法を選択する。演算部33は、選択した誤差検出方法によって誤差検出値Δτを算出する。演算部33は、算出した誤差検出値Δτに基づいて、プロンプトレプリカ信号とGNSS信号のコード位相差が0に近づくようにコード位相制御信号を生成する。演算部33は、コード位相制御信号をレプリカ信号生成部31に与える。
 このような構成を用いることで、上述のように、GNSS信号を確実且つ正確に追尾することができる。そして、正確な追尾が行えることで、GNSS信号のコード位相を高精度に取得でき、航法メッセージの復調および擬似距離の算出を高精度に行うことができる。これにより、高精度な測位を行うことができる。
 なお、上述の説明では、測位装置1を、各機能部に分けて測位処理を行う例を示したが、RF処理部12、復調部13、航法メッセージ解析部14、および測位演算部15を、コンピュータ等の情報処理装置で一体化してもよい。この場合、具体的には上述の各処理を含む図18に示す測位処理のフローチャートをプログラム化して記憶しておく。そして、当該測位のプログラムを情報処理装置で読み出して実行する。図18は、本発明の実施形態に係る測位方法のフローチャートである。
 GNSS信号を受信して、捕捉を行う(S201)。捕捉方法としては、上述のように、所定のコード位相間隔で、複数のレプリカ信号を生成する。複数のレプリカ信号のそれぞれとGNSS信号とを相関処理する。最も相関値の高いレプリカ信号のコード位相を、GNSS信号のコード位相として設定する。
 捕捉によって設定したコード位相を初期位相として、追尾を開始する(S202)。この際、アーリーレイト差分値ΔCVELが第1閾値C1(正値)よりも大きい且つアーリー差分値ΔCVが第3閾値C3(負値)未満である第1の選択基準と、アーリーレイト差分値ΔCVELが第2閾値C2(負値)未満且つレイト差分値ΔCVが第4閾値C4(負値)未満である第2の選択基準とにしたがって、誤差検出値Δτの算出方法を選択しながら、GNSS信号の追尾を行う。
 誤差検出値Δτを所定時間毎に積算して、擬似距離を算出する(S203)。プロンプト相関値CVを積算することで、航法メッセージを復調して取得する(S204)。なお、擬似距離の算出処理と航法メッセージを復調、取得処理とは、特に順序をこれに限るものではなく、同時並行に行ってもよい。
 取得した擬似距離と航法メッセージとを用いて測位演算を行う(S205)。
 このような測位装置1や測位機能は、図19に示すような移動端末100に利用される。図19は、本発明の実施形態に係る測位装置1を備えた移動端末100の主要構成を示すブロック図である。
 図19に示すような移動端末100は、例えば携帯電話機、カーナビゲーション装置、PND、カメラ、時計等であり、GNSS受信アンテナ11、RF処理部12、復調部13、航法メッセージ解析部14、測位演算部15、アプリケーション処理部120を備える。GNSS受信アンテナ11、RF処理部12、復調部13、航法メッセージ解析部14、測位演算部15は、上述の構成のものであり、これらにより上述のように測位装置1が構成されている。
 アプリケーション処理部120は、測位装置1から出力された測位結果に基づいて、自装置位置や自装置速度を表示したり、ナビゲーション等に利用するための処理を実行する。
 このような構成において、上述の高精度な測位結果を得られることで、高精度な位置表示やナビゲーション等を実現することができる。
 なお、上述の説明では、第1誤差検出方法として、第1アーリー相関値CVと第1レイト相関値CVから誤差検出値Δτを算出した。第1誤差検出方法として、第2アーリー相関値CVVEと第1レイト相関値CVVLから誤差検出値ΔτAAを算出してもよい。
 この場合には、次式を用いればよい。
Figure JPOXMLDOC01-appb-M000003
 また、アーリー差分値ΔCVやレイト差分値ΔCVの算出用のスペーシングと、誤差検出値の算出用のスペーシングを異ならせてもよい。
 また、第1閾値C1、第2閾値C2、第3閾値C3、第4閾値C4は、誤差検出方法を切り替えやすくするかどうか等の仕様に応じて、適宜設定すればよい。この際、上述のように、第1閾値C1の絶対値が第2閾値C2の絶対値よりも小さく、第3閾値C3の絶対値が第4閾値C4の絶対値よりも小さくなるように設定すればよい。
 また、上述の説明では、(A)アーリーレイト差分値ΔCVELと第1閾値C1との大小関係、アーリー差分値ΔCVと第3閾値C3との大小関係と、(B)アーリーレイト差分値ΔCVELと第2閾値C2との大小関係、レイト差分値ΔCVと第4閾値C4との大小関係の双方((A)and(B))で、第1誤差検出方法と第2誤差検出方法を切り替える例を示した。ここで、レイト方向のみもしくはアーリー方向のみの誤差検出方法の切り替えであれば、(A)アーリーレイト差分値ΔCVELと第1閾値C1との大小関係、アーリー差分値ΔCVと第3閾値C3との大小関係と、(B)アーリーレイト差分値ΔCVELと第2閾値C2との大小関係、レイト差分値ΔCVと第4閾値C4との大小関係のいずれかのみ((A)or(B))で、第1誤差検出方法と第2誤差検出方法を切り替えるようにすることも可能である。
1:測位装置、
11:GNSS受信アンテナ11、
12:RF処理部、
13:復調部、
14:航法メッセージ解析部、
15:測位演算部、
31:レプリカ信号発生部、
32P,32VE,32E,32L,32VL:相関部、
33:演算部
100:移動端末、
120:アプリケーション処理部

Claims (14)

  1.  プロンプトレプリカ信号に対して第1コード位相進んだ第1アーリーレプリカ信号、前記プロンプトレプリカ信号に対して前記第1コード位相遅れた第1レイトレプリカ信号、前記プロンプトレプリカ信号に対して第2コード位相進んだ第2アーリーレプリカ信号、前記プロンプトレプリカ信号に対して第2コード位相遅れた第2レイトレプリカ信号のそれぞれと、前記GNSS信号とを相関処理する相関処理工程と、
     前記GNSS信号と前記第1アーリーレプリカ信号との相関結果による第1アーリー相関値から前記GNSS信号と前記第1レイトレプリカ信号との相関結果による第1レイト相関値を減算してアーリーレイト差分値を算出し、前記第1アーリー相関値から前記GNSS信号と前記第2アーリーレプリカ信号との相関結果による第2アーリー相関値を減算してアーリー差分値を算出し、前記第1レイト相関値から前記GNSS信号と前記第2レイトレプリカ信号との相関結果による第2レイト相関値を減算してレイト差分値を算出する差分値算出工程と、
     前記アーリーレイト差分値と前記アーリー差分値、または、前記アーリーレイト差分値と前記レイト差分値とに基づいて誤差算出方法を設定し、設定した誤差算出方法を用いて誤差検出値を算出する誤差検出値算出工程と、
     前記誤差検出値に基づいて前記プロンプトレプリカ信号のコード位相を制御するコード位相制御工程と、を有するGNSS信号処理方法。
  2.  請求項1に記載のGNSS信号処理方法であって、
     前記差分値算出工程は、
     前記プロンプトレプリカ信号と前記GNSS信号との相関値で、前記アーリーレイト差分値、前記アーリー差分値および前記レイト差分値を除算する、GNSS信号処理方法。
  3.  請求項2に記載のGNSS信号処理方法であって、
     前記誤差検出値算出工程は、
     前記アーリーレイト差分値に対する正値の第1閾値および、負値の第2閾値を設定し、前記アーリー差分値に対する負値の第3閾値を設定し、前記レイト差分値に対する負値の第4差分値を設定し、
     前記アーリーレイト差分値が前記第1閾値よりも大きく前記アーリー差分値が前記第3閾値よりも小さい場合、または、前記アーリーレイト差分値が前記第2閾値よりも小さく前記レイト差分値が前記第4閾値よりも小さい場合に、前記誤差検出値が0でない値を取るコード位相範囲が広くなる第1算出式を用いた前記第1誤差検出方法で前記誤差検出値を算出し、
     前記アーリーレイト差分値、前記アーリー差分値、前記レイト差分値が上記の閾値条件を満たさない場合に、前記誤差検出値が0でない値を取るコード位相範囲が狭い第2算出式を用いた第2誤差検出方法で前記誤差検出値を算出する、GNSS信号処理方法。
  4.  請求項3に記載のGNSS信号処理方法であって、
     前記第1算出式は、前記第1アーリー相関値と前記第1レイト相関値とを用いるか、前記第2アーリー相関値と前記第2レイト相関値を用い、
     前記第2算出式は、前記第1、第2アーリー相関値と前記第1、第2レイト相関値を用いる、GNSS信号処理方法。
  5.  請求項1乃至請求項4のいずれかに記載のGNSS信号処理方法で追尾している前記プロンプトレプリカ信号とGNSS信号との相関値から航法メッセージを取得する工程と、
     前記追尾しているGNSS信号に対する前記誤差検出値から擬似距離を算出する工程と、
     前記航法メッセージと前記擬似距離とを用いて測位演算を行う工程と、を有する測位方法。
  6.  受信したGNSS信号のコード位相を追尾する処理をコンピュータに実行させるGNSS信号処理プログラムであって、
     前記コンピュータは、
     プロンプトレプリカ信号に対して第1コード位相進んだ第1アーリーレプリカ信号、前記プロンプトレプリカ信号に対して前記第1コード位相遅れた第1レイトレプリカ信号、前記プロンプトレプリカ信号に対して第2コード位相進んだ第2アーリーレプリカ信号、前記プロンプトレプリカ信号に対して第2コード位相遅れた第2レイトレプリカ信号のそれぞれと、前記GNSS信号とを相関処理し、
     前記GNSS信号と前記第1アーリーレプリカ信号との相関結果による第1アーリー相関値から前記GNSS信号と前記第1レイトレプリカ信号との相関結果による第1レイト相関値を減算してアーリーレイト差分値を算出し、
     前記第1アーリー相関値から前記GNSS信号と前記第2アーリーレプリカ信号との相関結果による第2アーリー相関値を減算してアーリー差分値を算出し、
     前記第1レイト相関値から前記GNSS信号と前記第2レイトレプリカ信号との相関結果による第2レイト相関値を減算してレイト差分値を算出し、
     前記アーリーレイト差分値と前記アーリー差分値または前記レイト差分値とに基づいて誤差算出方法を設定し、設定した誤差算出方法を用いて誤差検出値を算出し、
     前記誤差検出値に基づいて前記プロンプトレプリカ信号のコード位相を制御する、GNSS信号処理プログラム。
  7.  請求項6に記載のGNSS信号処理プログラムであって、
     前記コンピュータは、
     前記プロンプトレプリカ信号と前記GNSS信号との相関値で、前記アーリーレイト差分値、前記アーリー差分値および前記レイト差分値を除算する、GNSS信号処理プログラム。
  8.  請求項7に記載のGNSS信号処理プログラムであって、
     前記コンピュータは、
     前記アーリーレイト差分値に対する正値の第1閾値および、負値の第2閾値を設定し、前記アーリー差分値に対する負値の第3閾値を設定し、前記レイト差分値に対する負値の第4差分値を設定し、
     前記アーリーレイト差分値が前記第1閾値よりも大きく前記アーリー差分値が前記第3閾値よりも小さい場合、または、前記アーリーレイト差分値が前記第2閾値よりも小さく前記レイト差分値が前記第4閾値よりも小さい場合に、前記誤差検出値が0でない値を取るコード位相範囲が広くなる第1算出式を用いた前記第1誤差検出方法で前記誤差検出値を算出し、
     前記アーリーレイト差分値、前記アーリー差分値、前記レイト差分値が上記の閾値条件を満たさない場合に、前記誤差検出値が0でない値を取るコード位相範囲が狭い第2算出式を用いた第2誤差検出方法で前記誤差検出値を算出する、GNSS信号処理プログラム。
  9.  請求項7または請求項8に記載のGNSS信号処理プログラムを含み、追尾結果に基づいて前記コンピュータが測位演算を行う測位プログラムであって、
     前記コンピュータは、
     追尾しているGNSS信号と前記プロンプトレプリカ信号との相関結果から航法メッセージを取得し、
     前記追尾しているGNSS信号に対する前記誤差検出値から擬似距離を算出し、
     前記航法メッセージと前記擬似距離とを用いて測位演算を行う、測位プログラム。
  10.  プロンプトレプリカ信号に対して第1コード位相進んだ第1アーリーレプリカ信号、前記プロンプトレプリカ信号に対して前記第1コード位相遅れた第1レイトレプリカ信号、前記プロンプトレプリカ信号に対して第2コード位相進んだ第2アーリーレプリカ信号、前記プロンプトレプリカ信号に対して第2コード位相遅れた第2レイトレプリカ信号のそれぞれと、前記GNSS信号との相関処理する相関処理部と、
     前記GNSS信号と前記第1アーリーレプリカ信号との相関結果による第1アーリー相関値から前記GNSS信号と前記第1レイトレプリカ信号との相関結果による第1レイト相関値を減算してアーリーレイト差分値を算出し、前記第1アーリー相関値から前記GNSS信号と前記第2アーリーレプリカ信号との相関結果による第2アーリー相関値を減算してアーリー差分値を算出し、前記第1レイト相関値から前記GNSS信号と前記第2レイトレプリカ信号との相関結果による第2レイト相関値を減算してレイト差分値を算出し、前記アーリーレイト差分値と前記アーリー差分値または前記レイト差分値とに基づいて誤差算出方法を設定し、設定した誤差算出方法を用いて誤差検出値を算出し、該誤差検出値に基づいて前記プロンプトレプリカ信号のコード位相を制御する演算部と、
     を備えたGNSS信号処理装置。
  11.  請求項10に記載のGNSS信号処理装置であって、
     前記演算部は、
     前記プロンプトレプリカ信号と前記GNSS信号との相関値で、前記アーリーレイト差分値、前記アーリー差分値および前記レイト差分値を除算する、GNSS信号処理装置。
  12.  請求項11に記載のGNSS信号処理装置であって、
     前記演算部は、
     前記アーリーレイト差分値に対する正値の第1閾値および、負値の第2閾値を設定し、前記アーリー差分値に対する負値の第3閾値を設定し、前記レイト差分値に対する負値の第4差分値を設定し、
     前記アーリーレイト差分値が前記第1閾値よりも大きく前記アーリー差分値が前記第3閾値よりも小さい場合、または、前記アーリーレイト差分値が前記第2閾値よりも小さく前記レイト差分値が前記第4閾値よりも小さい場合に、前記誤差検出値が0でない値を取るコード位相範囲が広くなる第1算出式を用いた前記第1誤差検出方法で前記誤差検出値を算出し、
     前記アーリーレイト差分値、前記アーリー差分値、前記レイト差分値が上記の閾値条件を満たさない場合に、前記誤差検出値が0でない値を取るコード位相範囲が狭い第2算出式を用いた第2誤差検出方法で前記誤差検出値を算出する、GNSS信号処理装置。
  13.  請求項10乃至請求項12のいずれかに記載のGNSS信号処理装置を備え、追尾結果に基づいて測位演算を行う測位装置であって、
     追尾しているGNSS信号と前記プロンプトレプリカ信号との相関結果から航法メッセージを取得する航法メッセージ解析部と、
     前記追尾しているGNSS信号に対する前記誤差検出値から算出される擬似距離と前記航法メッセージとを用いて測位演算を行う測位演算部と、を有する測位装置。
  14.  請求項13に記載の測位装置を備えるとともに、
     前記測位演算部の測位演算結果を用いて所定のアプリケーションを実行するアプリケーション処理部を、備える移動端末。
PCT/JP2011/078921 2011-12-14 2011-12-14 Gnss信号処理方法、測位方法、gnss信号処理プログラム、測位プログラム、gnss信号処理装置、測位装置、および、移動端末 WO2013088529A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/078921 WO2013088529A1 (ja) 2011-12-14 2011-12-14 Gnss信号処理方法、測位方法、gnss信号処理プログラム、測位プログラム、gnss信号処理装置、測位装置、および、移動端末
EP11877299.5A EP2793050B1 (en) 2011-12-14 2011-12-14 Gnss signal processing method, positioning method, gnss signal processing program, positioning program, gnss signal processing device, positioning device, and mobile terminal
JP2013549002A JP5923112B2 (ja) 2011-12-14 2011-12-14 Gnss信号処理方法、測位方法、gnss信号処理プログラム、測位プログラム、gnss信号処理装置、測位装置、および、移動端末
US14/365,606 US9891324B2 (en) 2011-12-14 2011-12-14 GNSS signal processing device and method for code phase tracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078921 WO2013088529A1 (ja) 2011-12-14 2011-12-14 Gnss信号処理方法、測位方法、gnss信号処理プログラム、測位プログラム、gnss信号処理装置、測位装置、および、移動端末

Publications (1)

Publication Number Publication Date
WO2013088529A1 true WO2013088529A1 (ja) 2013-06-20

Family

ID=48612016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078921 WO2013088529A1 (ja) 2011-12-14 2011-12-14 Gnss信号処理方法、測位方法、gnss信号処理プログラム、測位プログラム、gnss信号処理装置、測位装置、および、移動端末

Country Status (4)

Country Link
US (1) US9891324B2 (ja)
EP (1) EP2793050B1 (ja)
JP (1) JP5923112B2 (ja)
WO (1) WO2013088529A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105467405A (zh) * 2015-12-04 2016-04-06 航天恒星科技有限公司 星载gnss接收机的周跳探测与修复方法及装置
CN105549046A (zh) * 2015-12-04 2016-05-04 航天恒星科技有限公司 Gnss接收机周跳探测与修复处理方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11808865B2 (en) 2016-03-24 2023-11-07 Focal Point Positioning Limited Method and system for calibrating a system parameter
US10321430B2 (en) * 2016-03-24 2019-06-11 Focal Point Positioning Ltd. Method, apparatus, computer program, chip set, or data structure for correlating a digital signal and a correlation code
US9780829B1 (en) * 2016-03-24 2017-10-03 Focal Point Positioning Ltd. Method, apparatus, computer program, chip set, or data structure for correlating a digital signal and a correlation code
GB2566748B (en) 2017-09-26 2022-08-17 Focal Point Positioning Ltd A method and system for calibrating a system parameter
US20190382190A1 (en) * 2018-06-19 2019-12-19 Anthony J. Orler Biologically-mediated decomposition
GB2564406B (en) 2017-07-06 2022-09-07 Focal Point Positioning Ltd Method and system for correcting the frequency or phase of a local signal generated using a local oscillator
LT3438700T (lt) 2017-08-02 2021-02-25 Thales Management & Services Deutschland Gmbh Gnss imtuvo naudojimas su gnss signalo pasirinkimo panaikinimu
JP7112895B2 (ja) * 2018-06-20 2022-08-04 古野電気株式会社 エコー映像生成装置
US11585944B2 (en) 2020-11-05 2023-02-21 U-Blox Ag Method of and receiver for mitigating multipath interference in a global navigation satellite system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056402A (ja) * 1996-08-08 1998-02-24 Oki Electric Ind Co Ltd 同期追従装置
JPH11142502A (ja) 1997-07-15 1999-05-28 Novatel Inc 空白化されたprnコード相関を備えた地球航法衛星システムの受信機
JP2001036429A (ja) * 1999-07-19 2001-02-09 Furuno Electric Co Ltd 擬似雑音符号位相検出装置
JP2001326588A (ja) * 2000-04-07 2001-11-22 Nokia Mobile Phones Ltd 直接経路で受信した信号に伴う多重経路成分の影響を少なくする方法、システムおよび装置
JP2004513370A (ja) * 2000-10-18 2004-04-30 ハネウェル・インターナショナル・インコーポレーテッド ナビゲーション衛星信号品質監視用の装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854815A (en) * 1994-12-09 1998-12-29 Trimble Navigation Limited Code phase signal multipath compensation
US6160841A (en) * 1996-05-24 2000-12-12 Leica Geosystems Inc. Mitigation of multipath effects in global positioning system receivers
JP4169352B2 (ja) * 2002-11-15 2008-10-22 テレコム・イタリア・エッセ・ピー・アー デジタル電気通信受信器の精密同期化方法及びデバイス
US8170085B2 (en) * 2006-03-09 2012-05-01 CSR Technology Holdings Inc. Multipath error estimation in satellite navigation receivers
US7995683B2 (en) * 2007-10-24 2011-08-09 Sirf Technology Inc. Noise floor independent delay-locked loop discriminator
KR101073408B1 (ko) * 2008-03-07 2011-10-17 주식회사 코아로직 위성 신호 추적기의 상관 장치 및 그 방법
FR2939903B1 (fr) * 2008-12-16 2011-02-04 Groupe Ecoles Telecomm Systeme et procede de determination de la position d'un recepteur, et recepteur associe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1056402A (ja) * 1996-08-08 1998-02-24 Oki Electric Ind Co Ltd 同期追従装置
JPH11142502A (ja) 1997-07-15 1999-05-28 Novatel Inc 空白化されたprnコード相関を備えた地球航法衛星システムの受信機
JP2001036429A (ja) * 1999-07-19 2001-02-09 Furuno Electric Co Ltd 擬似雑音符号位相検出装置
JP2001326588A (ja) * 2000-04-07 2001-11-22 Nokia Mobile Phones Ltd 直接経路で受信した信号に伴う多重経路成分の影響を少なくする方法、システムおよび装置
JP2004513370A (ja) * 2000-10-18 2004-04-30 ハネウェル・インターナショナル・インコーポレーテッド ナビゲーション衛星信号品質監視用の装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRYAN R. TOWNSEND; PATRICK C. FENTON: "A Practical Approach to the Reduction of Pseudorange Multipath Errors in a L1 GPS Receiver", 20 September 1994, NOVATEL COMMUNICATIONS LTD.
See also references of EP2793050A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105467405A (zh) * 2015-12-04 2016-04-06 航天恒星科技有限公司 星载gnss接收机的周跳探测与修复方法及装置
CN105549046A (zh) * 2015-12-04 2016-05-04 航天恒星科技有限公司 Gnss接收机周跳探测与修复处理方法

Also Published As

Publication number Publication date
US9891324B2 (en) 2018-02-13
JP5923112B2 (ja) 2016-05-24
EP2793050A4 (en) 2015-08-26
US20140340258A1 (en) 2014-11-20
EP2793050B1 (en) 2017-02-15
EP2793050A1 (en) 2014-10-22
JPWO2013088529A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5923112B2 (ja) Gnss信号処理方法、測位方法、gnss信号処理プログラム、測位プログラム、gnss信号処理装置、測位装置、および、移動端末
US7570206B2 (en) Positioning device, positioning control method, positioning control program, and computer-readable recording medium having positioning control program recorded thereon
JP5923111B2 (ja) Gnss信号処理方法、測位方法、gnss信号処理プログラム、測位プログラム、gnss信号処理装置、測位装置、および、移動端末
WO2011105447A1 (ja) マルチパス検出方法、マルチパス検出プログラム、gnss受信装置、および移動端末
JP2010122069A (ja) 移動体位置測位装置
JP4424365B2 (ja) 移動体用測位装置及び移動体用測位方法
US10191158B2 (en) GNSS receiver calculating a non-ambiguous discriminator to resolve subcarrier tracking ambiguities
JP2012093134A (ja) 受信信号信頼度判定方法、コード位相誤差算出方法及び受信信号信頼度判定装置
JP2009229065A (ja) 移動体用測位装置
JP2010164340A (ja) Gnss受信装置及び測位方法
US9798009B2 (en) Method and apparatus for acquiring signal of global navigation satellite system
US20140241402A1 (en) Multi-path detection
JP2010249620A (ja) 測位装置
EP2816375B1 (en) Pedestrian positioning in high-reflection environments
JP4595855B2 (ja) 測位装置、測位装置の制御方法、測位装置の制御プログラム、測位装置の制御プログラムを記録したコンピュータ読み取り可能な記録媒体
JP2010276495A (ja) 受信機
KR101440692B1 (ko) Gnrss 대역확산 신호의 신속한 신호 획득 및 강건한 추적을 위한 2차원 압축 상관기
JP2011196807A (ja) 偽信号相互相関検出方法
JP2015152542A (ja) 測位信号受信装置、情報機器端末、測位信号受信方法、および測位信号受信プログラム
JP2013181802A (ja) 測位装置、信号処理装置、gnss受信機、同gnss受信機を備える情報端末機器、測位方法及びプログラム
JP2015152461A (ja) 測位装置、情報機器端末、測位方法、および測位プログラム
JP2012242107A (ja) マルチパス検出方法、マルチパス検出プログラム、マルチパス検出装置、およびgnss信号受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877299

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011877299

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011877299

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14365606

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013549002

Country of ref document: JP

Kind code of ref document: A