WO2013088495A1 - ヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法 - Google Patents

ヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法 Download PDF

Info

Publication number
WO2013088495A1
WO2013088495A1 PCT/JP2011/078693 JP2011078693W WO2013088495A1 WO 2013088495 A1 WO2013088495 A1 WO 2013088495A1 JP 2011078693 W JP2011078693 W JP 2011078693W WO 2013088495 A1 WO2013088495 A1 WO 2013088495A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
heater
power source
firing furnace
silicon
Prior art date
Application number
PCT/JP2011/078693
Other languages
English (en)
French (fr)
Inventor
貴満 西城
忠文 大橋
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to PCT/JP2011/078693 priority Critical patent/WO2013088495A1/ja
Priority to EP12192540.8A priority patent/EP2604961B1/en
Priority to US13/693,072 priority patent/US20130146580A1/en
Publication of WO2013088495A1 publication Critical patent/WO2013088495A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/062Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated electrically heated
    • F27B9/063Resistor heating, e.g. with resistors also emitting IR rays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0202Switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0202Switches
    • H05B1/0225Switches actuated by timers

Definitions

  • the present invention relates to a heater unit, a firing furnace, and a method for producing a silicon-containing porous ceramic fired body.
  • particulates such as soot in exhaust gas discharged from vehicles such as buses and trucks and internal combustion engines such as construction machines cause harm to the environment or the human body.
  • various particulate filters have been proposed that collect particulates in exhaust gas and purify the exhaust gas by using a honeycomb structure made of porous ceramic.
  • a honeycomb structure a plurality of prism-shaped honeycomb fired bodies manufactured by subjecting a mixture containing a ceramic material such as silicon carbide to a process such as extrusion, degreasing, and firing are disposed via an adhesive layer. Individually bundled ones are used.
  • a honeycomb fired body is manufactured by firing a honeycomb formed body formed by forming a ceramic raw material in a firing furnace.
  • An example of a firing furnace is disclosed in Patent Document 1.
  • the firing furnace disclosed in Patent Document 1 includes a plurality of heating elements for heating a body to be fired in the firing furnace, the plurality of heating elements are connected in series to a power source, and the heating element Includes a plurality of heating resistance elements connected in parallel to the power source.
  • the surface of the heater is silicified by the reaction of the SiO gas ionized by the thermoelectrons (so-called Edison effect) emitted from the heater and reacting with the carbon of the heater. Guessed. The details will be described below.
  • the reaction mechanism between SiO gas and thermal electrons In the first mechanism, the SiO gas is ionized by the reaction between the SiO gas and the thermal electrons. Then, SiO ionized - ions that react with the heater of the carbon, the surface of the heater is silicified. In the second mechanism, SiO is dissociated into Si and O by thermoelectrons (e ⁇ ) (the following formula (I)), and Si + ions are generated by re-collision (the following formula (II)). Then, Si + ions react with the carbon of the heater, thereby silicifying the surface of the heater.
  • thermoelectrons are accelerated by the potential, the higher the potential, the higher the energy of the thermoelectrons, the closer to the heater power source. Therefore, since the thermoelectrons emitted from a portion close to the power source of the heater have sufficient energy to ionize the SiO gas, it is presumed that the reaction proceeds by the above mechanism and the surface of the heater is silicified.
  • the present invention has been made in order to solve the above-described problem.
  • a heater unit that can reduce breakage by making the consumption of the heater uniform over the entire length and can improve the life of the heater, and firing. It aims at providing the manufacturing method of a furnace and a silicon containing porous ceramic sintered compact.
  • a power source having a first terminal and a second terminal, a plurality of heaters connected in series to the power source, and a power feeding position
  • a heater unit including a switching device, wherein the first heater connected to the first terminal of the power source among the plurality of heaters has a first terminal and a second terminal, and the power source
  • the second heater connected to the second terminal has a third terminal and a fourth terminal
  • the power feeding position switching device includes a first terminal of the power source and a second terminal of the first heater.
  • One terminal is connected, a second terminal of the power source and a third terminal of the second heater are connected, and a second terminal of the first heater and a second terminal of the second heater A first state in which the fourth terminal is connected; a first terminal of the power source; and a second state of the first heater.
  • the heater unit includes a power feeding position switching device that switches between the first state and the second state, thereby switching the high potential portion of the heater, that is, the portion that is silicified on the heater surface, thereby reducing the consumption of the heater. It can be made uniform over the entire length. As a result, breakage due to local consumption of the heater is less likely to occur, and the life of the heater can be improved.
  • the heater includes a plurality of resistance heating elements connected in parallel to the power source.
  • the heater includes a plurality of resistance heating elements connected in parallel to the power source, even if some resistance heating elements are damaged and become unusable, the remaining resistance heating elements are supplied with current. Can generate heat. As a result, all the heaters receive heat and continue to generate heat, so that the temperature drop in the heater unit can be minimized.
  • the plurality of heaters are arranged adjacent to each other. Since the plurality of heaters are arranged adjacent to each other, the volume of the heater unit can be reduced.
  • the resistance heating element is made of carbon. If the resistance heating element is made of carbon, the heater unit is excellent in heat resistance, so that the heater unit can be used at a high temperature.
  • the heater unit further includes a transformer.
  • the temperature of the heater unit can be increased.
  • a power source having a first terminal and a second terminal, a casing, a firing chamber disposed in the casing, and a casing disposed in the casing,
  • a firing furnace including a plurality of heaters connected in series and a power feeding position switching device, wherein the first heater connected to the first terminal of the power source is the first of the plurality of heaters.
  • a second heater connected to the second terminal of the power source has a third terminal and a fourth terminal; and the power feeding position switching device includes the power source The first terminal of the first heater and the first terminal of the first heater, the second terminal of the power source and the third terminal of the second heater are connected, and the first terminal A first state in which the second terminal of the heater and the fourth terminal of the second heater are connected, and the first terminal of the power source A second terminal of the first heater is connected, a second terminal of the power supply and a fourth terminal of the second heater are connected, and a first terminal of the first heater A device that switches between a second state in which the third terminal of the second heater is connected.
  • the firing furnace includes a power feeding position switching device that switches between the first state and the second state, thereby switching a high-potential portion of the heater, that is, a portion to be silicified on the heater surface, thereby reducing the consumption of the heater. It can be made uniform over the entire length. As a result, breakage due to local consumption of the heater is less likely to occur, and the life of the heater can be improved.
  • the heater includes a plurality of resistance heating elements connected in parallel to the power source.
  • the heater includes a plurality of resistance heating elements connected in parallel to the power source, even if some resistance heating elements are damaged and become unusable, the remaining resistance heating elements are supplied with current. Can generate heat. As a result, all the heaters receive heat and continue to generate heat, so that the temperature drop in the firing furnace can be minimized.
  • the plurality of heaters are arranged adjacent to each other. Since the plurality of heaters are arranged adjacent to each other, the volume of the firing furnace can be reduced.
  • the resistance heating element is made of carbon. If the resistance heating element is made of carbon, it has excellent heat resistance and can be used at a high temperature in a firing furnace.
  • the firing furnace further includes a transformer. If the firing furnace further includes a transformer, the temperature of the firing furnace can be increased.
  • the firing furnace according to claim 11 is a continuous firing furnace in which a plurality of objects to be fired are continuously fired while being conveyed.
  • a power source having a first terminal and a second terminal, a housing, a firing chamber disposed in the housing, and a plurality of heaters disposed in the housing and connected in series to the power source;
  • a firing furnace including a power feeding position switching device, wherein the first heater connected to the first terminal of the power source among the plurality of heaters has a first terminal and a second terminal.
  • the second heater connected to the second terminal of the power source has a third terminal and a fourth terminal, and the feeding position switching device includes the first terminal of the power source and the first terminal.
  • a first terminal of the heater is connected, a second terminal of the power source and the second terminal A first state in which a third terminal of the heater is connected, and a second terminal of the first heater and a fourth terminal of the second heater are connected; And a second terminal of the first heater, a second terminal of the power source and a fourth terminal of the second heater are connected, and a second terminal of the first heater is connected.
  • a step of firing the object to be fired using the firing furnace which is a device for switching between one terminal and a second state in which the third terminal of the second heater is connected. To do.
  • the heater includes a plurality of resistance heating elements connected in parallel to the power source.
  • the heater includes a plurality of resistance heating elements connected in parallel to the power source, even if some resistance heating elements are damaged and become unusable, the remaining resistance heating elements are supplied with current. Can generate heat. As a result, all the heaters continue to generate heat when supplied with current, so that the temperature drop in the firing furnace can be minimized and the object to be fired can be fired.
  • the plurality of heaters are disposed adjacent to each other.
  • the object to be fired can be efficiently fired.
  • the resistance heating element is made of carbon. If the resistance heating element is made of carbon, since the heat resistance is excellent, the body to be fired can be fired at a higher temperature in the firing furnace.
  • the silicon-containing porous ceramic fired body is made of porous silicon carbide or porous silicon nitride. If the porous ceramic fired body is made of porous silicon carbide or porous silicon nitride, the ceramic fired body can be suitably produced using the production method of the present invention.
  • the method for producing a silicon-containing porous ceramic fired body according to claim 17 is a continuous firing furnace in which a plurality of fired bodies are continuously fired while being conveyed.
  • FIG.1 (a) is a schematic diagram which shows a 1st state in the heater unit which concerns on 1st embodiment of this invention
  • FIG.1 (b) is in the heater unit which concerns on 1st embodiment of this invention.
  • FIG. 3 is a schematic diagram showing a second state.
  • FIG. 2 is a cross-sectional view schematically showing the inside of a housing included in the firing furnace in the firing furnace according to the first embodiment of the present invention.
  • FIG. 3A is a schematic diagram showing a first state in the heater unit according to the second embodiment of the present invention
  • FIG. 3B is a diagram of the heater unit according to the second embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a second state.
  • FIG. 4 is a front view schematically showing an example of a continuous firing furnace.
  • FIG. 5 is a cross-sectional view taken along line AA of the high-temperature firing part H of the continuous firing furnace shown in FIG.
  • FIG. 6 is a perspective view schematically showing an example of the honeycomb structure manufactured in the present embodiment.
  • FIG. 7 (a) is a perspective view schematically showing an example of a honeycomb fired body, and
  • FIG. 7 (b) is a cross-sectional view taken along the line BB of FIG. 7 (a).
  • the heater unit according to this embodiment is a heater unit including a power source having a first terminal and a second terminal, a plurality of heaters connected in series to the power source, and a power feeding position switching device.
  • the first heater connected to the first terminal of the power source among the plurality of heaters has a first terminal and a second terminal, and is connected to the second terminal of the power source.
  • the second heater has a third terminal and a fourth terminal, and the power feeding position switching device is connected to the first terminal of the power source and the first terminal of the first heater, The second terminal of the power source and the third terminal of the second heater are connected, and the second terminal of the first heater and the fourth terminal of the second heater are connected.
  • a first state a first terminal of the power source; and a second terminal of the first heater;
  • the second terminal is connected to the fourth terminal of the second heater, and the second terminal is connected to the first terminal of the first heater and the third terminal of the second heater. It is a device that switches between these states.
  • FIG.1 (a) is a schematic diagram which shows a 1st state in the heater unit which concerns on 1st embodiment of this invention
  • FIG.1 (b) is in the heater unit which concerns on 1st embodiment of this invention
  • FIG. 3 is a schematic diagram showing a second state.
  • the heater unit according to this embodiment shown in FIGS. 1A and 1B includes a power supply 10 having a first terminal 101 and a second terminal 102.
  • the heater unit according to this embodiment shown in FIGS. 1A and 1B includes a first heater 11 and a second heater 12 connected in series to the power source 10, and includes a power source.
  • the first heater 11 connected to the tenth first terminal 101 has a first terminal 111 and a second terminal 112, and the second heater 12 connected to the second terminal 102 of the power source 10.
  • the first heater 11 and the second heater 12 include a plurality of resistance heating elements 13 connected in parallel.
  • the first heater 11 and the second heater 12 each include two resistance heating elements 13a and 13b connected in parallel.
  • the number of resistance heating elements 13 is not particularly limited, and may be three or more.
  • the resistance heating elements 13a and 13b are both resistance heating elements made of the same material and shape.
  • the resistance heating element 13 is preferably made of carbon having excellent heat resistance, and more preferably made of graphite.
  • the shape of the resistance heating element 13 is preferably cylindrical or prismatic, and more preferably cylindrical.
  • the longitudinal axis is extended in the direction of the 2nd terminal 112 from the 1st terminal 111 of the 1st heater 11, for example.
  • the first heater 11 and the second heater 12 are disposed adjacent to each other.
  • the first heater 11 and the second heater 12 are the first terminal 111 of the first heater 11 and the third of the second heater 12. Are adjacent to each other, and the second terminal 112 of the first heater 11 and the fourth terminal 122 of the second heater 12 are adjacent to each other.
  • the directions of the first heater 11 and the second heater 12 are not particularly limited, and the first terminal 111 of the first heater 11 and the fourth terminal 122 of the second heater 12 are adjacent to each other.
  • the second terminal 112 of the first heater 11 and the third terminal 121 of the second heater 12 may be adjacent to each other so that they are adjacent to each other.
  • the heater unit includes a power feeding position switching device 14 that switches between a first state shown in FIG. 1A and a second state shown in FIG.
  • the method for switching between the first state and the second state is not particularly limited, and a conventionally known magnet switch or the like can be used.
  • the method for switching between the first state and the second state is not particularly limited, and the switch may be switched manually or using an automatic timer.
  • the heater unit further includes a transformer 15.
  • the transformer 15 is connected between the first terminal 101 of the power source 10 and the connection point b on the circuit as shown by a dotted line in FIG. 1A and FIG. It arrange
  • the first terminal 101 of the power source 10 and the first terminal 111 of the first heater 11 are connected, and the power source 10
  • the second terminal 102 and the third terminal 121 of the second heater 12 are connected, and the second terminal 112 of the first heater 11 and the fourth terminal 122 of the second heater 12 are connected.
  • the potentials on the first terminal 111 side of the first heater 11 and the third terminal 121 side of the second heater 12 are increased, and silicidation of the surface of the resistance heating element 13 is likely to occur.
  • the shade of the color of the resistance heating element 13 shown in FIG. 1A represents the height of the potential, and the darker the color, the higher the potential.
  • the heater unit according to the present embodiment shown in FIG. 1B in the second state, the first terminal 101 of the power source 10 and the second terminal 112 of the first heater 11 are connected, and the power source 10 second terminal 102 and the fourth terminal 122 of the second heater 12 are connected, and the first terminal 111 of the first heater 11 and the third terminal 121 of the second heater 12 Is connected.
  • the potentials on the second terminal 112 side of the first heater 11 and the fourth terminal 122 side of the second heater 12 become high, and silicidation of the heater surface is likely to occur.
  • the shade of color of the resistance heating element 13 shown in FIG. 1B represents the height of the potential, and the darker the color, the higher the potential.
  • the power feeding position switching device 14 is a device that can switch the connection of the circuit including the connection points a to j as shown by two-dot chain lines in FIGS. 1 (a) and 1 (b). Specifically, in the first state shown in FIG. 1A, the connection points be, cf, and gh are connected, but the first point shown in FIG. In the second state, the connection points ab, cd, ef, gi, and hj can be switched to be connected.
  • the heater unit it is preferable to switch between the first state and the second state every time the operating time has elapsed from 168 to 336 hours. If the switching between the first state and the second state is performed before the operation time of 336 hours elapses, breakage due to local heater exhaustion is less likely to occur, so the life of the heater can be improved. . If switching between the first state and the second state after 336 hours of operation has elapsed, breakage due to local consumption of the heater is likely to occur, and the life of the heater may be shortened. If the switching between the first state and the second state is performed before the operation time has passed 168 hours, the number of switching operations increases, and workability may deteriorate.
  • the firing furnace according to the present embodiment includes a power source having a first terminal and a second terminal, a housing, a firing chamber disposed in the housing, and a housing disposed in the housing, with respect to the power source.
  • a firing furnace including a plurality of heaters connected in series and a power feeding position switching device, wherein the first heater connected to the first terminal of the power source among the plurality of heaters is a first terminal.
  • the second terminal, the second heater connected to the second terminal of the power source has a third terminal and a fourth terminal, and the power feeding position switching device
  • the first terminal and the first terminal of the first heater are connected, the second terminal of the power source and the third terminal of the second heater are connected, and the first heater A first state in which the second terminal of the second heater and the fourth terminal of the second heater are connected, and the first terminal of the power source and the above A second terminal of the first heater is connected, a second terminal of the power source and a fourth terminal of the second heater are connected, and the first terminal of the first heater and the second terminal It is a device that switches between a second state in which the third terminal of the second heater is connected.
  • FIG. 2 is a cross-sectional view schematically showing the inside of a housing included in the firing furnace in the firing furnace according to the first embodiment of the present invention.
  • the firing furnace 20 according to the present embodiment illustrated in FIG. 2 includes a housing 21, a firing chamber 22 disposed in the housing 21, and a plurality of heaters 23 disposed in the housing 21.
  • the firing furnace 20 includes the power supply 10 of the heater unit and the power feeding position switching device 14 according to the present embodiment illustrated in FIGS.
  • the arrangement of the power supply 10 and the feeding position switching device 14 with respect to the casing 21 is not particularly limited, but is preferably arranged outside the casing 21.
  • the detailed description of the power feeding position switching device 14 is omitted because it is the same as that of the heater unit according to the present embodiment.
  • the firing chamber 22 is partitioned by a furnace wall 24, and the furnace wall 24 is preferably formed from a high heat resistant material such as carbon.
  • a support base 26 on which the object to be fired is placed is placed on the bottom of the firing chamber 22. It is preferable that a heat insulating layer 25 made of carbon fiber or the like is provided between the casing 21 and the furnace wall 24. This is to prevent the metal parts of the casing 21 from being deteriorated and damaged by the heat of the firing chamber 22.
  • the plurality of heaters 23 correspond to the first heater 11 and the second heater 12 of the heater unit according to the present embodiment shown in FIGS. 1 (a) and 1 (b).
  • the plurality of heaters 23 are preferably arranged above and below the firing chamber 22, that is, so as to sandwich the body to be fired in the firing chamber 22.
  • the number of heaters 23 disposed above and below the firing chamber 22 is not particularly limited.
  • a pair of the first heater 11 and the second heater 12 (that is, the two heaters 23) shown in FIGS. 1A and 1B are disposed above and below the baking chamber 22, respectively. May be.
  • the first heater 11 may be disposed above the firing chamber 22 and the second heater 12 may be disposed below the firing chamber.
  • the plurality of heaters 23 are not particularly limited, but are preferably disposed outside the furnace wall 24. When the plurality of heaters 23 are disposed outside the furnace wall 24, the entire furnace wall 24 is first heated, so that the temperature in the firing chamber 22 can be increased uniformly.
  • the firing furnace preferably further includes a transformer 15.
  • the transformer 15 is connected between the first terminal 101 of the power source 10 and the connection point b on the circuit as shown by a dotted line in FIG. 1A and FIG. It arrange
  • the method for producing a silicon-containing porous ceramic fired body according to the present embodiment is a method for producing a silicon-containing porous ceramic fired body, the step of producing a fired body from a composition containing silicon-containing ceramic powder, A power source having one terminal and a second terminal, a housing, a firing chamber disposed in the housing, a plurality of heaters disposed in the housing and connected in series to the power source, A firing furnace including a feeding position switching device, wherein the first heater connected to the first terminal of the power source among the plurality of heaters has a first terminal and a second terminal, The second heater connected to the second terminal of the power source has a third terminal and a fourth terminal, and the feeding position switching device includes the first terminal of the power source and the first heater.
  • a step of firing the object to be fired using the firing furnace which is a device for switching between one terminal and a second state in which the third terminal of the second heater is connected. To do.
  • a fired body is produced from a composition containing silicon-containing ceramic powder.
  • a ceramic molded body is produced by molding a wet mixture prepared by mixing silicon-containing ceramic powders having different average particle sizes, an organic binder, a liquid plasticizer, a lubricant, and water.
  • the ceramic molded body is dried and then degreased at a predetermined temperature, and the organic matter in the molded body is removed by heating to produce a fired body.
  • the silicon-containing ceramic powder is a ceramic powder containing silicon such as silicon carbide or silicon nitride.
  • SiO gas is generated.
  • the produced fired body is put into a firing furnace, and the fired body is fired. Since the firing furnace is the same as the firing furnace according to the present embodiment, description thereof is omitted. Moreover, as conditions for baking, the conditions conventionally used when producing a ceramic fired body can be applied.
  • the object to be fired made of the silicon-containing porous ceramic powder is fired, for example, when it is fired at 2190 to 2210 ° C. for 0.1 to 5 hours, SiO gas is generated.
  • the first terminal 101 of the power source 10 and the first terminal 111 of the first heater 11 are connected, and the second terminal 102 of the power source 10 is connected.
  • the third terminal 121 of the second heater 12 are connected, and the second terminal 112 of the first heater 11 and the fourth terminal 122 of the second heater 12 are connected.
  • the first terminal 101 of the power source 10 and the second terminal 112 of the first heater 11 are connected, and the second state of the power source 10 is
  • the terminal 102 and the fourth terminal 122 of the second heater 12 are connected, and the first terminal 111 of the first heater 11 and the third terminal 121 of the second heater 12 are connected. .
  • the circuit can be switched to the second state where the connection points ab, cd, ef, gi, and hj are connected.
  • the method for switching between the first state and the second state is not particularly limited, and a conventionally known magnet switch or the like can be used.
  • the method for switching between the first state and the second state is not particularly limited, and the switch may be switched manually or using an automatic timer.
  • the silicon-containing porous ceramic fired body that can be produced using the method for producing a silicon-containing porous ceramic fired body according to the present embodiment is preferably made of porous silicon carbide or porous silicon nitride.
  • the heater unit and the firing furnace according to the present embodiment include a power feeding position switching device that switches between a first state and a second state.
  • the first state the potentials on the first terminal side of the first heater and the third terminal side of the second heater are high.
  • the potential of the first heater is The potentials on the second terminal side and the fourth terminal side of the second heater are increased.
  • the higher the potential of the heater the higher the energy of the thermoelectrons and the more easily the silicidation of the heater surface occurs.
  • the heater unit includes a power feeding position switching device that switches between the first state and the second state, thereby switching the high potential portion of the heater, that is, the portion that is silicified on the heater surface, thereby reducing the consumption of the heater. It can be made uniform over the entire length. As a result, breakage due to local consumption of the heater is less likely to occur, and the life of the heater can be improved.
  • the heater includes a plurality of resistance heating elements connected in parallel to the power source.
  • the heater includes a plurality of resistance heating elements connected in parallel to the power source, even if some resistance heating elements are damaged and become unusable, the remaining resistance heating elements are supplied with current. Can generate heat. As a result, all the heaters receive heat and continue to generate heat, so that the temperature drop in the heater unit can be minimized.
  • the plurality of heaters are arranged adjacent to each other. Since the plurality of heaters are arranged adjacent to each other, the volume of the heater unit can be reduced.
  • the resistance heating element is made of carbon. If the resistance heating element is made of carbon, the heater unit is excellent in heat resistance, so that the heater unit can be used at a high temperature.
  • the heater unit and the firing furnace further include a transformer.
  • the temperature of the heater unit and the firing furnace can be increased.
  • the fired body is fired using a firing furnace including a power feeding position switching device that switches between the first state and the second state. Process. Since the life of the heater can be improved in the step of firing the object to be fired, the replacement frequency of the heater can be reduced.
  • the silicon-containing porous ceramic fired body is made of porous silicon carbide or porous silicon nitride. If the porous ceramic fired body is made of porous silicon carbide or porous silicon nitride, the ceramic fired body can be suitably produced using the production method of the present embodiment.
  • FIG. 3A is a schematic diagram showing a first state in the heater unit according to the second embodiment of the present invention
  • FIG. 3B is a diagram of the heater unit according to the second embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a second state.
  • the heater unit according to this embodiment shown in FIGS. 3A and 3B includes a power supply 30 having a first terminal 301 and a second terminal 302.
  • the first heater 31 connected to the first terminal 301 of the power supply 30 has a first terminal 311 and a second terminal 312, and is connected to the second terminal 302 of the power supply 30.
  • the second heater 32 has a third terminal 321 and a fourth terminal 322, and the third heater 34 connected between the first heater 31 and the second heater 32 is a fifth heater 32.
  • a terminal 341 and a sixth terminal 342 are provided.
  • the first terminal 301 of the power supply 30 and the first terminal 311 of the first heater 31 are connected, and the first of the power supply 30 is connected.
  • the second terminal 302 and the third terminal 321 of the second heater 32 are connected, the second terminal 312 of the first heater 31 and the sixth terminal 342 of the third heater 34 are connected,
  • the fourth terminal 322 of the second heater 32 and the fifth terminal 341 of the third heater 34 are connected.
  • the potentials on the first terminal 311 side of the first heater 31 and the third terminal 321 side of the second heater 32 become high, and silicidation of the heater surface is likely to occur.
  • the potential cancels out and approaches zero, so that the heater surface is hardly silicified.
  • the shade of the color of the resistance heating element 33 shown in FIG. 3A represents the height of the potential, and the darker the color, the higher the potential.
  • the first terminal 301 of the power source 30 and the second terminal 312 of the first heater 31 are connected, and the power source 30
  • the second terminal 302 and the fourth terminal 322 of the second heater 32 are connected, and the first terminal 311 of the first heater 31 and the fifth terminal 341 of the third heater 34 are connected.
  • the third terminal 321 of the second heater 32 and the sixth terminal 342 of the third heater 34 are connected. In this case, the potentials on the second terminal 312 side of the first heater 31 and the fourth terminal 322 side of the second heater 32 become high, and silicidation of the heater surface is likely to occur.
  • the potential cancels out and approaches zero, so that the heater surface is hardly silicified.
  • the shade of the color of the resistance heating element 33 shown in FIG. 3B represents the height of the potential, and the darker the color, the higher the potential.
  • the firing furnace may be a continuous firing furnace.
  • the continuous firing furnace will be described.
  • FIG. 4 is a front view schematically showing an example of a continuous firing furnace.
  • a horizontally long body frame 42 constituting the continuous firing furnace 40 shown in FIG. 4 has a tubular firing chamber 43 made of a heat-resistant material supported laterally over most of the main body frame 42 excluding the carry-in portion 45 and the carry-out portion 47.
  • An inlet purge chamber 44 is provided in the vicinity of the inlet 43 a of the baking chamber 43.
  • the carry-in section 45 is provided on the upstream side of the inlet purge chamber 44, that is, on the left side in FIG.
  • a cooling jacket 49 serving as a cooling means is provided at the rear end portion 43 c of the baking chamber 43.
  • An outlet purge chamber 46 is provided in the vicinity of the outlet portion 43 b of the baking chamber 43.
  • the carry-out portion 47 is provided on the rear side of the outlet purge chamber 46, that is, on the right side in FIG.
  • a conveying mechanism for conveying the firing object is laid inside the firing chamber 43, and by driving the transport mechanism, the firing object is moved from the inlet portion 43a to the outlet portion 43b, that is, in FIG. It can be moved from the left side to the right side.
  • the region of the continuous firing furnace 40 where the firing chamber 43 is laid is divided into a preheating part P, a high temperature firing part H, and a cooling part C in order from the left in FIG.
  • the preheating part P is a part for performing a preheating step of raising the temperature of the ceramic degreased body from room temperature to a preheating temperature of 1500 to 2000 ° C.
  • the high-temperature fired part H is a part for performing a high-temperature firing process for raising the temperature of the ceramic degreased body from the preheating temperature to a firing temperature of 2000 to 2300 ° C. and further maintaining the temperature of the ceramic degreased body at the firing temperature.
  • the cooling part C is a part which performs the cooling process which cools the ceramic degreasing body which passed through the high temperature baking process to room temperature.
  • FIG. 5 is a cross-sectional view taken along line AA of the high-temperature firing part H of the continuous firing furnace shown in FIG.
  • the baking chamber 53 is provided in the center of the cross section, and the roller 58 which is a conveyance mechanism is provided in two rows in the bottom part in the baking chamber 53.
  • the support stand 56 which places a to-be-fired body is mounted.
  • a large number of rollers 58 are provided in the longitudinal direction of the continuous firing furnace (lateral direction shown in FIG. 4) so that the body to be fired and the support base 56 can be transported together in the firing chamber 53 by driving the rollers 58. It has become.
  • the plurality of heaters 54 shown in FIG. 5 correspond to the first heater 11 and the second heater 12 of the heater unit according to the first embodiment of the present invention shown in FIGS. 1 (a) and 1 (b).
  • the plurality of heaters 54 are preferably arranged above and below the firing chamber 53, that is, so as to sandwich the body to be fired in the firing chamber 53.
  • the number of heaters 54 disposed above and below the baking chamber 53 is not particularly limited.
  • a set of the first heater 11 and the second heater 12 that is, two heaters 23 shown in FIGS. 1A and 1B is provided above and below the baking chamber 22.
  • a set may be arranged.
  • a plurality of first heaters 11 may be disposed only above the firing chamber 22 and a plurality of second heaters 12 may be disposed only below the firing chamber.
  • the method for producing a firing furnace and a silicon-containing porous ceramic fired body according to the present embodiment is a continuous firing furnace in which a plurality of bodies to be fired are continuously fired.
  • a continuous firing furnace By adopting a continuous firing furnace, when mass production of ceramic products is performed, the productivity can be greatly improved when compared with that of a conventional batch firing furnace.
  • the first heater 11 and the second heater 12 include resistance heating elements 13a and 13b connected in parallel, respectively, but the resistance heating elements 13a and 13b are connected in series. It may be connected to.
  • the number of heaters included in the heater unit and firing furnace is not limited to two or three, and may be four or more. good.
  • the plurality of heaters may be disposed so as to sandwich the body to be fired in the firing chamber, and may be disposed on the left side and the right side of the firing chamber.
  • a plurality of heaters may be arranged above, below, on the left side, and / or on the right side of the baking chamber.
  • the ceramic fired body may be a honeycomb fired body.
  • the ceramic degreased body that is the fired body is a honeycomb-shaped honeycomb degreased body, and the honeycomb degreased body is fired to produce a honeycomb fired body. Then, a plurality of honeycomb fired bodies are joined to produce a honeycomb structure.
  • the honeycomb structure and honeycomb fired body manufactured in the present embodiment will be described below.
  • FIG. 6 is a perspective view schematically showing an example of the honeycomb structure manufactured in the present embodiment
  • FIG. 7A is a perspective view schematically showing an example of the honeycomb fired body
  • FIG. 7B is a sectional view taken along line BB in FIG.
  • a honeycomb fired body 710 made of porous silicon carbide and having a shape as shown in FIGS. 7A and 7B is interposed through a sealing material layer (adhesive layer) 601.
  • the ceramic block 603 is configured by being bundled together, and a sealing material layer (coat layer) 602 is formed on the outer periphery of the ceramic block 603.
  • a large number of cells 711 are arranged in parallel in the longitudinal direction (direction a in FIG. 7A) across the cell wall 713. Any one end of the cell 711 is sealed with a sealing material 712. Therefore, the exhaust gas G that has flowed into the cell 711 having one open end face always passes through the cell wall 713 separating the cell 711 and then flows out from the other cell 711 having the other open end face. Therefore, the cell wall 713 functions as a filter for collecting PM and the like.
  • the ceramic raw material is not limited to ceramic powders such as silicon carbide and silicon nitride. Or a ceramic raw material such as a ceramic bonded with a silicate compound.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Furnace Details (AREA)
  • Resistance Heating (AREA)
  • Tunnel Furnaces (AREA)

Abstract

本発明のヒータユニットは、第一の端子と第二の端子とを有する電源と、上記電源に対して直列に接続された複数のヒータと、給電位置切替装置とを含むヒータユニットであって、上記複数のヒータのうち、上記電源の第一の端子に接続された第一のヒータは第一の端子と第二の端子とを有し、上記電源の第二の端子に接続された第二のヒータは第三の端子と第四の端子とを有し、上記給電位置切替装置は、上記電源の第一の端子と上記第一のヒータの第一の端子とが接続され、上記電源の第二の端子と上記第二のヒータの第三の端子とが接続され、かつ、上記第一のヒータの第二の端子と上記第二のヒータの第四の端子とが接続された第一の状態と、上記電源の第一の端子と上記第一のヒータの第二の端子とが接続され、上記電源の第二の端子と上記第二のヒータの第四の端子とが接続され、かつ、上記第一のヒータの第一の端子と上記第二のヒータの第三の端子とが接続された第二の状態とを切り替える装置であることを特徴とする。

Description

ヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法
本発明は、ヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法に関する。
バス、トラック等の車両及び建設機械等の内燃機関から排出される排ガス中のスス等のパティキュレートが、環境又は人体に害を及ぼすことが近年問題となっている。そこで、多孔質セラミックからなるハニカム構造体を用いることにより、排ガス中のパティキュレートを捕集し、排ガスを浄化するパティキュレートフィルタが種々提案されている。
このようなハニカム構造体としては、炭化珪素等のセラミック材料等を含む混合物に押出成形、脱脂、焼成等の処理を行うことによって作製される角柱形状のハニカム焼成体が接着剤層を介して複数個結束されたものが用いられている。
一般に、ハニカム焼成体は、セラミック原料を成形して作製されたハニカム成形体を焼成炉内で焼成することにより製造される。焼成炉の一例が、特許文献1に開示されている。
特許文献1に開示された焼成炉では、焼成炉内に被焼成体を加熱する複数の発熱体を備え、上記複数の発熱体は電源に対して直列に接続されており、さらに、上記発熱体は電源に対して並列に接続された複数の発熱抵抗素子を含む。
国際公開第06/013932号パンフレット
しかしながら、特許文献1に開示された焼成炉内で珪素含有多孔質セラミックからなるハニカム成形体を焼成すると、焼成の際に発生したSiOガスによりヒータのカーボンが珪化するため、ヒータが消耗により折損する。特に、ヒータの電源に近い部位ほど消耗による折損が早いため、ヒータのライフが短いという問題があった。
ヒータの表面が珪化するメカニズムは不明であるものの、ヒータから放出された熱電子(いわゆるエジソン効果)によりSiOガスがイオン化され、ヒータのカーボンと反応することで、ヒータの表面が珪化していると推測される。以下に、その詳細を説明する。
まず、SiOガスと熱電子とが反応するメカニズムとしては、以下の二つが推測される。
一つ目のメカニズムでは、SiOガスと熱電子とが反応することにより、SiOガスがイオン化される。そして、イオン化されたSiOイオンがヒータのカーボンと反応することで、ヒータの表面が珪化する。
また、二つ目のメカニズムでは、熱電子(e)によりSiOがSiとOに解離し(下記式(I))、再衝突によりSiイオンが発生する(下記式(II))。そして、Siイオンがヒータのカーボンと反応することで、ヒータの表面が珪化する。
SiO+e→Si+O ・・・(I)
Si+e→Si ・・・(II)
ここで、上記二つのメカニズムにおいて、SiOガスをイオン化するために必要なエネルギーについて考える。
電源に対して直列に接続されたヒータの電位は、ヒータの電源に近い部位ほど振れ幅が大きく、ヒータの電源から遠い部位ほど打ち消し合ってゼロに近くなる。つまり、ヒータの電源に近い部位ほど、電位は高くなる。放出された熱電子は電位によって加速されるため、ヒータの電源に近い部位であって、高電位な部位ほど、熱電子の持つエネルギーが高くなる。
従って、ヒータの電源に近い部位から放出された熱電子は、SiOガスをイオン化するのに充分なエネルギーを持っているため、上記メカニズムによって反応が進行し、ヒータの表面が珪化すると推測される。
本発明は、上記問題を解決するためになされたものであり、ヒータの消耗を全長に渡って均一にすることで折損を起こりにくくし、ヒータのライフを向上させることが可能なヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法を提供することを目的とする。
上記目的を達成するために、請求項1に記載のヒータユニットでは、第一の端子と第二の端子とを有する電源と、上記電源に対して直列に接続された複数のヒータと、給電位置切替装置とを含むヒータユニットであって、上記複数のヒータのうち、上記電源の第一の端子に接続された第一のヒータは第一の端子と第二の端子とを有し、上記電源の第二の端子に接続された第二のヒータは第三の端子と第四の端子とを有し、上記給電位置切替装置は、上記電源の第一の端子と上記第一のヒータの第一の端子とが接続され、上記電源の第二の端子と上記第二のヒータの第三の端子とが接続され、かつ、上記第一のヒータの第二の端子と上記第二のヒータの第四の端子とが接続された第一の状態と、上記電源の第一の端子と上記第一のヒータの第二の端子とが接続され、上記電源の第二の端子と上記第二のヒータの第四の端子とが接続され、かつ、上記第一のヒータの第一の端子と上記第二のヒータの第三の端子とが接続された第二の状態とを切り替える装置であることを特徴とする。
上記第一の状態では、上記第一のヒータの第一の端子側及び上記第二のヒータの第三の端子側の電位が高くなるが、上記第二の状態では、上記第一のヒータの第二の端子側及び上記第二のヒータの第四の端子側の電位が高くなる。ヒータの高電位な部位ほど、熱電子の持つエネルギーは高く、ヒータ表面の珪化が起こりやすくなる。つまり、上記ヒータユニットが上記第一の状態と上記第二の状態とを切り替える給電位置切替装置を含むことにより、ヒータの高電位な部位、すなわちヒータ表面の珪化する部位を切り替え、ヒータの消耗を全長に渡って均一にすることができる。その結果、ヒータの局所的な消耗による折損が起こりにくくなり、ヒータのライフを向上させることができる。
請求項2に記載のヒータユニットでは、上記ヒータは、上記電源に並列に接続された複数の抵抗発熱素子を含む。
上記ヒータが上記電源に並列に接続された複数の抵抗発熱素子を含むことによって、一部の抵抗発熱素子が損傷し、使用不能となった場合でも、残りの抵抗発熱素子は電流の供給を受けて発熱することができる。その結果、全てのヒータは電流の供給を受けて発熱を継続するため、ヒータユニット内の温度低下を最小限に抑えることができる。
請求項3に記載のヒータユニットでは、上記複数のヒータは、互いに隣接して配置されている。
上記複数のヒータが互いに隣接して配置されているので、ヒータユニットの容積を小さくすることができる。
請求項4に記載のヒータユニットでは、上記抵抗発熱素子は、カーボン製である。
上記抵抗発熱素子がカーボン製であると、耐熱性に優れるため、ヒータユニットの高温での使用が可能となる。
請求項5に記載のヒータユニットでは、上記ヒータユニットは、さらに変圧器を含む。
上記ヒータユニットがさらに変圧器を含むと、ヒータユニットの温度をより高温にすることができる。
請求項6に記載の焼成炉では、第一の端子と第二の端子とを有する電源と、筺体と、上記筐体内に配置された焼成室と、上記筐体内に配置され、上記電源に対して直列に接続された複数のヒータと、給電位置切替装置とを含む焼成炉であって、上記複数のヒータのうち、上記電源の第一の端子に接続された第一のヒータは第一の端子と第二の端子とを有し、上記電源の第二の端子に接続された第二のヒータは第三の端子と第四の端子とを有し、上記給電位置切替装置は、上記電源の第一の端子と上記第一のヒータの第一の端子とが接続され、上記電源の第二の端子と上記第二のヒータの第三の端子とが接続され、かつ、上記第一のヒータの第二の端子と上記第二のヒータの第四の端子とが接続された第一の状態と、上記電源の第一の端子と上記第一のヒータの第二の端子とが接続され、上記電源の第二の端子と上記第二のヒータの第四の端子とが接続され、かつ、上記第一のヒータの第一の端子と上記第二のヒータの第三の端子とが接続された第二の状態とを切り替える装置であることを特徴とする。
上記第一の状態では、上記第一のヒータの第一の端子側及び上記第二のヒータの第三の端子側の電位が高くなるが、上記第二の状態では、上記第一のヒータの第二の端子側及び上記第二のヒータの第四の端子側の電位が高くなる。ヒータの高電位な部位ほど、熱電子の持つエネルギーは高く、ヒータ表面の珪化が起こりやすくなる。つまり、上記焼成炉が上記第一の状態と上記第二の状態とを切り替える給電位置切替装置を含むことにより、ヒータの高電位な部位、すなわちヒータ表面の珪化する部位を切り替え、ヒータの消耗を全長に渡って均一にすることができる。その結果、ヒータの局所的な消耗による折損が起こりにくくなり、ヒータのライフを向上させることができる。
請求項7に記載の焼成炉では、上記ヒータは、上記電源に並列に接続された複数の抵抗発熱素子を含む。
上記ヒータが上記電源に並列に接続された複数の抵抗発熱素子を含むことによって、一部の抵抗発熱素子が損傷し、使用不能となった場合でも、残りの抵抗発熱素子は電流の供給を受けて発熱することができる。その結果、全てのヒータは電流の供給を受けて発熱を継続するため、焼成炉内の温度低下を最小限に抑えることができる。
請求項8に記載の焼成炉では、上記複数のヒータは、互いに隣接して配置されている。
上記複数のヒータが互いに隣接して配置されているので、焼成炉の容積を小さくすることができる。
請求項9に記載の焼成炉では、上記抵抗発熱素子は、カーボン製である。
上記抵抗発熱素子がカーボン製であると、耐熱性に優れるため、焼成炉の高温での使用が可能となる。
請求項10に記載の焼成炉では、上記焼成炉は、さらに変圧器を含む。
上記焼成炉がさらに変圧器を含むと、焼成炉の温度をより高温にすることができる。
請求項11に記載の焼成炉では、複数の被焼成体を搬送しながら連続的に焼成する連続式焼成炉である。
連続式焼成炉を採用することによって、セラミック製品の大量生産を行う上で、従来のバッチ式焼成炉のものと比較した場合に、その生産性を大幅に向上させることができる。
請求項12に記載の珪素含有多孔質セラミック焼成体の製造方法では、珪素含有多孔質セラミック焼成体の製造方法であって、珪素含有セラミック粉末を含む組成物から被焼成体を作製する工程と、第一の端子と第二の端子とを有する電源と、筺体と、上記筐体内に配置された焼成室と、上記筐体内に配置され、上記電源に対して直列に接続された複数のヒータと、給電位置切替装置とを含む焼成炉であって、上記複数のヒータのうち、上記電源の第一の端子に接続された第一のヒータは第一の端子と第二の端子とを有し、上記電源の第二の端子に接続された第二のヒータは第三の端子と第四の端子とを有し、上記給電位置切替装置は、上記電源の第一の端子と上記第一のヒータの第一の端子とが接続され、上記電源の第二の端子と上記第二のヒータの第三の端子とが接続され、かつ、上記第一のヒータの第二の端子と上記第二のヒータの第四の端子とが接続された第一の状態と、上記電源の第一の端子と上記第一のヒータの第二の端子とが接続され、上記電源の第二の端子と上記第二のヒータの第四の端子とが接続され、かつ、上記第一のヒータの第一の端子と上記第二のヒータの第三の端子とが接続された第二の状態とを切り替える装置である上記焼成炉を用いて上記被焼成体を焼成する工程とを含むことを特徴とする。
請求項12に記載の珪素含有多孔質セラミック焼成体の製造方法では、上記被焼成体を焼成する工程において、ヒータのライフを向上させることができるため、ヒータの交換頻度を減らすことができる。
請求項13に記載の珪素含有多孔質セラミック焼成体の製造方法では、上記ヒータは、上記電源に並列に接続された複数の抵抗発熱素子を含む。
上記ヒータが上記電源に並列に接続された複数の抵抗発熱素子を含むことによって、一部の抵抗発熱素子が損傷し、使用不能となった場合でも、残りの抵抗発熱素子は電流の供給を受けて発熱することができる。その結果、全てのヒータは電流の供給を受けて発熱を継続するため、焼成炉内の温度低下を最小限に抑え、被焼成体を焼成することができる。
請求項14に記載の珪素含有多孔質セラミック焼成体の製造方法では、上記複数のヒータは、互いに隣接して配置されている。
上記複数のヒータが互いに隣接して配置されていると、被焼成体を効率良く焼成することができる。
請求項15に記載の珪素含有多孔質セラミック焼成体の製造方法では、上記抵抗発熱素子は、カーボン製である。
上記抵抗発熱素子がカーボン製であると、耐熱性に優れるため、焼成炉の温度をより高温にして、被焼成体を焼成することができる。
請求項16に記載の珪素含有多孔質セラミック焼成体の製造方法では、上記珪素含有多孔質セラミック焼成体は、多孔質炭化珪素又は多孔質窒化珪素からなる。
多孔質炭化珪素又は多孔質窒化珪素からなる多孔質セラミック焼成体であれば、本発明の製造方法を用いて、好適にセラミック焼成体を製造することができる。
請求項17に記載の珪素含有多孔質セラミック焼成体の製造方法では、複数の被焼成体を搬送しながら連続的に焼成する連続式焼成炉である。
連続式焼成炉を採用することによって、セラミック製品の大量生産を行う上で、従来のバッチ式焼成炉のものと比較した場合に、その生産性を大幅に向上させることができる。
図1(a)は、本発明の第一実施形態に係るヒータユニットにおいて、第一の状態を示す模式図であり、図1(b)は、本発明の第一実施形態に係るヒータユニットにおいて、第二の状態を示す模式図である。 図2は、本発明の第一実施形態に係る焼成炉において、焼成炉に含まれる筐体の内部を模式的に示す断面図である。 図3(a)は、本発明の第二実施形態に係るヒータユニットにおいて、第一の状態を示す模式図であり、図3(b)は、本発明の第二実施形態に係るヒータユニットにおいて、第二の状態を示す模式図である。 図4は、連続焼成炉の一例を模式的に示す正面図である。 図5は、図4に示した連続焼成炉の高温焼成部HのA-A線断面図である。 図6は、本実施形態で製造するハニカム構造体の一例を模式的に示す斜視図である。 図7(a)は、ハニカム焼成体の一例を模式的に示した斜視図であり、図7(b)は、図7(a)のB-B線断面図である。
以下、本発明の実施形態について具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
(第一実施形態)
以下、本発明のヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法の一実施形態である第一実施形態について説明する。
まず、本実施形態に係るヒータユニットについて説明する。
本実施形態に係るヒータユニットは、第一の端子と第二の端子とを有する電源と、上記電源に対して直列に接続された複数のヒータと、給電位置切替装置とを含むヒータユニットであって、上記複数のヒータのうち、上記電源の第一の端子に接続された第一のヒータは第一の端子と第二の端子とを有し、上記電源の第二の端子に接続された第二のヒータは第三の端子と第四の端子とを有し、上記給電位置切替装置は、上記電源の第一の端子と上記第一のヒータの第一の端子とが接続され、上記電源の第二の端子と上記第二のヒータの第三の端子とが接続され、かつ、上記第一のヒータの第二の端子と上記第二のヒータの第四の端子とが接続された第一の状態と、上記電源の第一の端子と上記第一のヒータの第二の端子とが接続され、上記電源の第二の端子と上記第二のヒータの第四の端子とが接続され、かつ、上記第一のヒータの第一の端子と上記第二のヒータの第三の端子とが接続された第二の状態とを切り替える装置であることを特徴とする。
図1(a)は、本発明の第一実施形態に係るヒータユニットにおいて、第一の状態を示す模式図であり、図1(b)は、本発明の第一実施形態に係るヒータユニットにおいて、第二の状態を示す模式図である。
図1(a)及び図1(b)に示す本実施形態に係るヒータユニットでは、第一の端子101と第二の端子102とを有する電源10を含む。
また、図1(a)及び図1(b)に示す本実施形態に係るヒータユニットでは、電源10に対して直列に接続された第一のヒータ11と第二のヒータ12とを含み、電源10の第一の端子101に接続された第一のヒータ11は第一の端子111と第二の端子112とを有し、電源10の第二の端子102に接続された第二のヒータ12は第三の端子121と第四の端子122とを有する。
本実施形態に係るヒータユニットでは、第一のヒータ11及び第二のヒータ12が、並列に接続された複数の抵抗発熱素子13を含むことが好ましい。図1(a)及び図1(b)に示すヒータユニットでは、第一のヒータ11及び第二のヒータ12が、それぞれ並列に接続された2つの抵抗発熱素子13a及び13bを含む。抵抗発熱素子13の数は特に限定されるものではなく、3つ以上であっても良い。なお、抵抗発熱素子13a及び13bは、どちらも同じ材質、形状からなる抵抗発熱素子である。
抵抗発熱素子13は、耐熱性に優れたカーボン製であることが好ましく、グラファイト製であることがより好ましい。
抵抗発熱素子13の形状は、円柱状又は角柱状であることが好ましく、円柱状であることがより好ましい。また、その長手軸は、例えば、第一のヒータ11の第一の端子111から第二の端子112の方向に延びていることが好ましい。
第一のヒータ11及び第二のヒータ12は、互いに隣接して配置されていることが好ましい。図1(a)及び図1(b)に示すヒータユニットでは、第一のヒータ11及び第二のヒータ12が、第一のヒータ11の第一の端子111と第二のヒータ12の第三の端子121とが隣り合い、第一のヒータ11の第二の端子112と第二のヒータ12の第四の端子122とが隣り合うように、互いに隣接している。第一のヒータ11及び第二のヒータ12の向きは特に限定されるものではなく、第一のヒータ11の第一の端子111と第二のヒータ12の第四の端子122とが隣り合い、第一のヒータ11の第二の端子112と第二のヒータ12の第三の端子121とが隣り合うように、互いに隣接していても良い。
さらに、本実施形態に係るヒータユニットでは、図1(a)に示す第一の状態と、図1(b)に示す第二の状態とを切り替える給電位置切替装置14を含む。
上記第一の状態と上記第二の状態とを切り替える方式は、特に限定されるものではなく、従来から知られているマグネットスイッチ等を使用することができる。
また、上記第一の状態と上記第二の状態とを切り替える方法は、特に限定されるものではなく、手動でスイッチを切り替えても良いし、自動タイマーを用いてスイッチを切り替えても良い。
ヒータユニットは、さらに変圧器15を含むことが好ましい。変圧器15は、図1(a)及び図1(b)に点線で示すように、電源10の第一の端子101と回路上の接続点bとの間、及び、電源10の第二の端子102と回路上の接続点cとの間に配置される。
図1(a)に示す本実施形態に係るヒータユニットにおいて、第一の状態では、電源10の第一の端子101と第一のヒータ11の第一の端子111とが接続され、電源10の第二の端子102と第二のヒータ12の第三の端子121とが接続され、かつ、第一のヒータ11の第二の端子112と第二のヒータ12の第四の端子122とが接続されている。
この場合、第一のヒータ11の第一の端子111側及び第二のヒータ12の第三の端子121側の電位が高くなり、抵抗発熱素子13表面の珪化が起こりやすくなる。ここで、図1(a)に示す抵抗発熱素子13の色の濃淡は電位の高さを表しており、色が濃いほど電位が高いことを示す。
一方、図1(b)に示す本実施形態に係るヒータユニットにおいて、第二の状態では、電源10の第一の端子101と第一のヒータ11の第二の端子112とが接続され、電源10の第二の端子102と第二のヒータ12の第四の端子122とが接続され、かつ、第一のヒータ11の第一の端子111と第二のヒータ12の第三の端子121とが接続されている。
この場合、第一のヒータ11の第二の端子112側及び第二のヒータ12の第四の端子122側の電位が高くなり、ヒータ表面の珪化が起こりやすくなる。ここで、図1(b)に示す抵抗発熱素子13の色の濃淡は電位の高さを表しており、色が濃いほど電位が高いことを示す。
給電位置切替装置14とは、図1(a)及び図1(b)に二点鎖線で囲って示すように、接続点a~jを含む回路の接続を切り替えることができる装置である。具体的には、図1(a)に示す上記第一の状態では、接続点b-e、c-f、及び、g-hが接続されているが、図1(b)に示す上記第二の状態では、接続点a-b、c-d、e-f、g-i、及び、h-jが接続されるように切り替えることができる。
本実施形態に係るヒータユニットにおいて、第一の状態と第二の状態とは、運転時間が168~336時間を経過するごとに切り替えることが好ましい。
運転時間が336時間を経過する前に、第一の状態と第二の状態との切替を行えば、局所的なヒータの消耗による折損が起こりにくくなるため、ヒータのライフを向上させることができる。
運転時間が336時間を経過した後に、第一の状態と第二の状態との切替を行うと、局所的なヒータの消耗による折損が起こりやすくなるため、ヒータのライフが短くなる場合がある。
運転時間が168時間を経過する前に、第一の状態と第二の状態との切替を行うと、切り替え作業の回数が増え、作業性が悪くなる場合がある。
次に、本実施形態に係る焼成炉について説明する。
本実施形態に係る焼成炉は、第一の端子と第二の端子とを有する電源と、筺体と、上記筐体内に配置された焼成室と、上記筐体内に配置され、上記電源に対して直列に接続された複数のヒータと、給電位置切替装置とを含む焼成炉であって、上記複数のヒータのうち、上記電源の第一の端子に接続された第一のヒータは第一の端子と第二の端子とを有し、上記電源の第二の端子に接続された第二のヒータは第三の端子と第四の端子とを有し、上記給電位置切替装置は、上記電源の第一の端子と上記第一のヒータの第一の端子とが接続され、上記電源の第二の端子と上記第二のヒータの第三の端子とが接続され、かつ、上記第一のヒータの第二の端子と上記第二のヒータの第四の端子とが接続された第一の状態と、上記電源の第一の端子と上記第一のヒータの第二の端子とが接続され、上記電源の第二の端子と上記第二のヒータの第四の端子とが接続され、かつ、上記第一のヒータの第一の端子と上記第二のヒータの第三の端子とが接続された第二の状態とを切り替える装置であることを特徴とする。
図2は、本発明の第一実施形態に係る焼成炉において、焼成炉に含まれる筐体の内部を模式的に示す断面図である。
図2に示す本実施形態に係る焼成炉20では、筐体21と、筐体21内に配置された焼成室22と、筐体21内に配置された複数のヒータ23とを有する。
さらに、本実施形態に係る焼成炉20では、図1(a)及び図1(b)に示す本実施形態に係るヒータユニットの電源10と、給電位置切替装置14とを有する。筐体21に対する電源10及び給電位置切替装置14の配置は特に限定されないが、筐体21の外に配置されていることが好ましい。
給電位置切替装置14の詳細な説明については、本実施形態に係るヒータユニットと同様であるため、省略する。
焼成室22は、炉壁24によって区画されており、炉壁24は、カーボン等の高耐熱性材料から形成されることが好ましい。
焼成室22内の底部には被焼成体を置く支持台26が載置されている。
筐体21と炉壁24との間には、カーボンファイバ等からなる断熱層25が設けられていることが好ましい。焼成室22の熱によって、筐体21の金属製部品が劣化し、損傷するのを防ぐためである。
複数のヒータ23は、図1(a)及び図1(b)に示す本実施形態に係るヒータユニットの第一のヒータ11及び第二のヒータ12に相当する。
複数のヒータ23は、焼成室22の上方及び下方に、すなわち、焼成室22内の被焼成体を挟むように配置されていることが好ましい。
焼成室22の上方及び下方に配置されるヒータ23の数は、特に限定されない。例えば、図1(a)及び図1(b)に示す第一のヒータ11及び第二のヒータ12(つまり、2つのヒータ23)の一組が、焼成室22の上方及び下方のそれぞれに配置されていても良い。また、例えば、第一のヒータ11が焼成室22の上方に、第二のヒータ12が焼成室の下方にそれぞれ配置されていても良い。
また、複数のヒータ23は、特に限定されないが、炉壁24の外側に配置されていることが好ましい。複数のヒータ23が炉壁24の外側に配置されていると、まず炉壁24全体が加熱されるため、焼成室22内の温度を均一に上げることができる。
焼成炉は、さらに変圧器15を含むことが好ましい。変圧器15は、図1(a)及び図1(b)に点線で示すように、電源10の第一の端子101と回路上の接続点bとの間、及び、電源10の第二の端子102と回路上の接続点cとの間に配置される。すなわち、変圧器15も、電源10及び給電位置切替装置14と同様に、筐体21の外に配置されていることが好ましい。
最後に、本実施形態に係る珪素含有多孔質セラミック焼成体の製造方法について説明する。
本実施形態に係る珪素含有多孔質セラミック焼成体の製造方法は、珪素含有多孔質セラミック焼成体の製造方法であって、珪素含有セラミック粉末を含む組成物から被焼成体を作製する工程と、第一の端子と第二の端子とを有する電源と、筺体と、上記筐体内に配置された焼成室と、上記筐体内に配置され、上記電源に対して直列に接続された複数のヒータと、給電位置切替装置とを含む焼成炉であって、上記複数のヒータのうち、上記電源の第一の端子に接続された第一のヒータは第一の端子と第二の端子とを有し、上記電源の第二の端子に接続された第二のヒータは第三の端子と第四の端子とを有し、上記給電位置切替装置は、上記電源の第一の端子と上記第一のヒータの第一の端子とが接続され、上記電源の第二の端子と上記第二のヒータの第三の端子とが接続され、かつ、上記第一のヒータの第二の端子と上記第二のヒータの第四の端子とが接続された第一の状態と、上記電源の第一の端子と上記第一のヒータの第二の端子とが接続され、上記電源の第二の端子と上記第二のヒータの第四の端子とが接続され、かつ、上記第一のヒータの第一の端子と上記第二のヒータの第三の端子とが接続された第二の状態とを切り替える装置である上記焼成炉を用いて上記被焼成体を焼成する工程とを含むことを特徴とする。
(1)本実施形態に係る珪素含有多孔質セラミック焼成体の製造方法では、まず、珪素含有セラミック粉末を含む組成物から被焼成体を作製する。
具体的には、平均粒子径の異なる珪素含有セラミック粉末と有機バインダと液状の可塑剤と潤滑剤と水とを混合することにより調製した湿潤混合物を成形することによってセラミック成形体を作製する。続いて、セラミック成形体を乾燥させた後に所定の温度で脱脂して成形体中の有機物を加熱除去することによって、被焼成体を作製する。
ここで、珪素含有セラミック粉末とは、炭化珪素、窒化珪素等の珪素を含むセラミック粉末である。後の焼成工程において、これらのセラミック粉末からなる被焼成体を焼成すると、SiOガスが発生する。
(2)次に、作製した被焼成体を焼成炉に投入して、被焼成体を焼成する。
上記焼成炉は、本実施形態に係る焼成炉と同様であるため、説明を省略する。また、焼成の条件としては、従来からセラミック焼成体を作製する際に用いられている条件を適用することができる。
ここで、珪素含有多孔質セラミック粉末からなる被焼成体を焼成する際、例えば、2190~2210℃で0.1~5時間焼成した場合にSiOガスが発生する。
本実施形態に係る珪素含有多孔質セラミック焼成体の製造方法では、複数の珪素含有多孔質セラミック焼成体を続けて製造する場合は、被焼成体を焼成する工程において、給電位置切替装置の第一の状態と第二の状態とを切り替える。
本実施形態に係る珪素含有多孔質セラミック焼成体の製造方法において用いられる焼成炉では、図1(a)に示す第一の状態と、図1(b)に示す第二の状態とを切り替える給電位置切替装置14を含む。
上記第一の状態は、図1(a)に示すように、電源10の第一の端子101と第一のヒータ11の第一の端子111とが接続され、電源10の第二の端子102と第二のヒータ12の第三の端子121とが接続され、かつ、第一のヒータ11の第二の端子112と第二のヒータ12の第四の端子122とが接続されている。
一方、上記第二の状態は、図1(b)に示すように、電源10の第一の端子101と第一のヒータ11の第二の端子112とが接続され、電源10の第二の端子102と第二のヒータ12の第四の端子122とが接続され、かつ、第一のヒータ11の第一の端子111と第二のヒータ12の第三の端子121とが接続されている。
上記第一の状態と上記第二の状態との切替について具体的に説明する。
給電位置切替装置14では、図1(a)に示すように、接続点b-e、c-f、及び、g-hが接続されている上記第一の状態から、図1(b)に示すように、接続点a-b、c-d、e-f、g-i、及び、h-jが接続される上記第二の状態に回路を切り替えることができる。
上記第一の状態と上記第二の状態とを切り替える方式は、特に限定されるものではなく、従来から知られているマグネットスイッチ等を使用することができる。
また、上記第一の状態と上記第二の状態とを切り替える方法は、特に限定されるものではなく、手動でスイッチを切り替えても良いし、自動タイマーを用いてスイッチを切り替えても良い。
給電位置切替装置の第一の状態と第二の状態とは、運転時間が168~336時間を経過するごとに切り替えることが好ましい。
運転時間が336時間を経過する前に、第一の状態と第二の状態との切替を行えば、局所的なヒータの消耗による折損が起こりにくくなるため、ヒータのライフを向上させることができる。
運転時間が336時間を経過した後に、第一の状態と第二の状態との切替を行うと、局所的なヒータの消耗による折損が起こりやすくなるため、ヒータのライフが短くなる場合がある。
運転時間が168時間を経過する前に、第一の状態と第二の状態との切替を行うと、切り替え作業の回数が増え、作業性が悪くなる場合がある。
本実施形態に係る珪素含有多孔質セラミック焼成体の製造方法を用いて製造することができる珪素含有多孔質セラミック焼成体は、多孔質炭化珪素又は多孔質窒化珪素からなることが好ましい。
以下、本発明の第一実施形態に係るヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法の作用効果について列挙する。
(1)本実施形態に係るヒータユニット及び焼成炉では、第一の状態と第二の状態とを切り替える給電位置切替装置を含む。
上記第一の状態では、上記第一のヒータの第一の端子側及び上記第二のヒータの第三の端子側の電位が高くなるが、上記第二の状態では、上記第一のヒータの第二の端子側及び上記第二のヒータの第四の端子側の電位が高くなる。ヒータの高電位な部位ほど、熱電子の持つエネルギーは高く、ヒータ表面の珪化が起こりやすくなる。つまり、上記ヒータユニットが上記第一の状態と上記第二の状態とを切り替える給電位置切替装置を含むことにより、ヒータの高電位な部位、すなわちヒータ表面の珪化する部位を切り替え、ヒータの消耗を全長に渡って均一にすることができる。その結果、ヒータの局所的な消耗による折損が起こりにくくなり、ヒータのライフを向上させることができる。
(2)本実施形態に係るヒータユニット及び焼成炉では、ヒータは、電源に並列に接続された複数の抵抗発熱素子を含む。
上記ヒータが上記電源に並列に接続された複数の抵抗発熱素子を含むことによって、一部の抵抗発熱素子が損傷し、使用不能となった場合でも、残りの抵抗発熱素子は電流の供給を受けて発熱することができる。その結果、全てのヒータは電流の供給を受けて発熱を継続するため、ヒータユニット内の温度低下を最小限に抑えることができる。
(3)本実施形態に係るヒータユニット及び焼成炉では、複数のヒータは、互いに隣接して配置されている。
上記複数のヒータが互いに隣接して配置されているので、ヒータユニットの容積を小さくすることができる。
(4)本実施形態に係るヒータユニット及び焼成炉では、抵抗発熱素子は、カーボン製である。
上記抵抗発熱素子がカーボン製であると、耐熱性に優れるため、ヒータユニットの高温での使用が可能となる。
(5)本実施形態に係るヒータユニット及び焼成炉では、ヒータユニット及び焼成炉は、さらに変圧器を含む。
上記ヒータユニット及び上記焼成炉がさらに変圧器を含むと、ヒータユニット及び焼成炉の温度をより高温にすることができる。
(6)本実施形態に係る珪素含有多孔質セラミック焼成体の製造方法では、第一の状態と第二の状態とを切り替える給電位置切替装置を含む焼成炉を用いて、被焼成体を焼成する工程を含む。
上記被焼成体を焼成する工程において、ヒータのライフを向上させることができるため、ヒータの交換頻度を減らすことができる。
(7)本実施形態に係る珪素含有多孔質セラミック焼成体の製造方法では、珪素含有多孔質セラミック焼成体は、多孔質炭化珪素又は多孔質窒化珪素からなる。
多孔質炭化珪素又は多孔質窒化珪素からなる多孔質セラミック焼成体であれば、本実施形態の製造方法を用いて、好適にセラミック焼成体を製造することができる。
(第二実施形態)
以下、本発明のヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法の一実施形態である第二実施形態について説明する。
本発明の第二実施形態では、電源に直列に接続されたヒータが3つであることを除いて、第一実施形態に係るヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法と同様である。そこで、電源に直列に接続されたヒータを3つ含むヒータユニットのみについて具体的に説明し、その他の部分の説明は省略する。
図3(a)は、本発明の第二実施形態に係るヒータユニットにおいて、第一の状態を示す模式図であり、図3(b)は、本発明の第二実施形態に係るヒータユニットにおいて、第二の状態を示す模式図である。
図3(a)及び図3(b)に示す本実施形態に係るヒータユニットでは、第一の端子301と第二の端子302とを有する電源30を含む。
また、図3(a)及び図3(b)に示す本実施形態に係るヒータユニットでは、電源30に対して直列に接続された第一のヒータ31と第二のヒータ32と第三のヒータ34とを含み、電源30の第一の端子301に接続された第一のヒータ31は第一の端子311と第二の端子312とを有し、電源30の第二の端子302に接続された第二のヒータ32は第三の端子321と第四の端子322とを有し、第一のヒータ31と第二のヒータ32との間に接続された第三のヒータ34は第五の端子341と第六の端子342とを有する。
図3(a)に示す本実施形態に係るヒータユニットの第一の状態では、電源30の第一の端子301と第一のヒータ31の第一の端子311とが接続され、電源30の第二の端子302と第二のヒータ32の第三の端子321とが接続され、第一のヒータ31の第二の端子312と第三のヒータ34の第六の端子342とが接続され、第二のヒータ32の第四の端子322と第三のヒータ34の第五の端子341とが接続されている。この場合、第一のヒータ31の第一の端子311側及び第二のヒータ32の第三の端子321側の電位が高くなり、ヒータ表面の珪化が起こりやすくなる。なお、第三のヒータ34では、電位が打ち消し合ってゼロに近くなるため、ヒータ表面の珪化は起こりにくい。ここで、図3(a)に示す抵抗発熱素子33の色の濃淡は電位の高さを表しており、色が濃いほど電位が高いことを示す。
一方、図3(b)に示す本実施形態に係るヒータユニットの第二の状態では、電源30の第一の端子301と第一のヒータ31の第二の端子312とが接続され、電源30の第二の端子302と第二のヒータ32の第四の端子322とが接続され、第一のヒータ31の第一の端子311と第三のヒータ34の第五の端子341とが接続され、第二のヒータ32の第三の端子321と第三のヒータ34の第六の端子342とが接続されている。この場合、第一のヒータ31の第二の端子312側及び第二のヒータ32の第四の端子322側の電位が高くなり、ヒータ表面の珪化が起こりやすくなる。なお、第三のヒータ34では、電位が打ち消し合ってゼロに近くなるため、ヒータ表面の珪化は起こりにくい。ここで、図3(b)に示す抵抗発熱素子33の色の濃淡は電位の高さを表しており、色が濃いほど電位が高いことを示す。
本実施形態においても、本発明の第一実施形態において説明した作用効果(1)~(7)と同様の作用効果を発揮することができる。
(その他の実施形態)
本発明の焼成炉及び珪素含有多孔質セラミック焼成体の製造方法では、焼成炉が連続焼成炉であっても良い。以下、連続焼成炉について説明する。
図4は、連続焼成炉の一例を模式的に示す正面図である。
図4に示す連続焼成炉40を構成する横長の本体フレーム42には、その搬入部45及び搬出部47を除く大部分に、管状であって耐熱材料からなる焼成室43が横向きに支持されており、焼成室43の入口部43a付近には入口パージ室44が設けられている。そして、搬入部45は、入口パージ室44よりも前段側、即ち図4における左側に設けられている。焼成室43の後端部43cには、冷却手段である冷却ジャケット49が設けられている。焼成室43の出口部43b付近には出口パージ室46が設けられている。そして、搬出部47は、出口パージ室46よりも後段側、即ち図4における右側に設けられている。
また、焼成室43の内部には、焼成対象物を搬送する搬送機構が敷設されており、搬送機構を駆動させることによって焼成対象物を入口部43aから出口部43bに向かって、即ち図4の左側から右側に向かって移動させることができるようになっている。
連続焼成炉40の、焼成室43が敷設されている領域は、図4の左から順に予備加熱部P、高温焼成部H、冷却部Cに区画されている。
予備加熱部Pは、セラミック脱脂体を室温から1500~2000℃の予備加熱温度まで昇温させる予備加熱工程を行う部位である。
高温焼成部Hは、セラミック脱脂体を予備加熱温度から2000~2300℃の焼成温度まで昇温させ、さらに、セラミック脱脂体の温度を焼成温度で維持する高温焼成工程を行う部位である。
冷却部Cは、高温焼成工程を経たセラミック脱脂体を室温まで冷却させる冷却工程を行う部位である。
図5は、図4に示した連続焼成炉の高温焼成部HのA-A線断面図である。
図5に示す高温焼成部Hでは、その断面の中央に焼成室53が設けられ、焼成室53内の底部には搬送機構であるローラー58が2列設けられている。
ローラー58の上には、被焼成体を置く支持台56が載置されている。
ローラー58は連続焼成炉の長手方向(図4に示す横方向)に多数設けられており、ローラー58を駆動させることによって被焼成体と支持台56とを焼成室53内でまとめて搬送できるようになっている。
図5に示す複数のヒータ54は、図1(a)及び図1(b)に示す本発明の第一実施形態に係るヒータユニットの第一のヒータ11及び第二のヒータ12に相当する。
複数のヒータ54は、焼成室53の上方及び下方に、すなわち、焼成室53内の被焼成体を挟むように配置されていることが好ましい。
焼成室53の上方及び下方に配置されるヒータ54の数は、特に限定されない。例えば、図1(a)及び図1(b)に示す第一のヒータ11及び第二のヒータ12(つまり、2つのヒータ23)の一組が、焼成室22の上方及び下方のそれぞれに複数組配置されていても良い。また、例えば、第一のヒータ11が焼成室22の上方のみに複数配置され、第二のヒータ12が焼成室の下方のみに複数配置されていても良い。
その他の構成については、本発明の第一実施形態に係る焼成炉と同様であるため、説明を省略する。
本実施形態においても、本発明の第一実施形態において説明した作用効果(1)~(7)に加え、以下の作用効果を発揮することができる。
(8)本実施形態に係る焼成炉及び珪素含有多孔質セラミック焼成体の製造方法では、複数の被焼成体を搬送しながら連続的に焼成する連続式焼成炉である。
連続式焼成炉を採用することによって、セラミック製品の大量生産を行う上で、従来のバッチ式焼成炉のものと比較した場合に、その生産性を大幅に向上させることができる。
本発明の第一実施形態に係るヒータユニットでは、第一のヒータ11及び第二のヒータ12が、それぞれ並列に接続された抵抗発熱素子13a及び13bを含むが、抵抗発熱素子13a及び13bは直列に接続されていても良い。
本発明のヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法では、ヒータユニット及び焼成炉に含まれるヒータの数が2つ又は3つに限定されず、4つ以上であっても良い。
本発明の焼成炉では、複数のヒータが、焼成室内の被焼成体を挟むように配置されていればよく、焼成室の左側及び右側に配置されていてもよい。また、複数のヒータが、焼成室の上方、下方、左側、及び/又は、右側に配置されていても良い。
本発明の珪素含有多孔質セラミック焼成体の製造方法では、セラミック焼成体がハニカム焼成体であっても良い。
被焼成体であるセラミック脱脂体が、ハニカム形状のハニカム脱脂体であり、ハニカム脱脂体を焼成することによってハニカム焼成体を作製する。そして、ハニカム焼成体を複数個接合させてハニカム構造体を製造する。
本実施形態で製造するハニカム構造体及びハニカム焼成体について以下に説明する。
図6は、本実施形態で製造するハニカム構造体の一例を模式的に示す斜視図であり、図7(a)は、ハニカム焼成体の一例を模式的に示した斜視図であり、図7(b)は、図7(a)のB-B線断面図である。
図6に示すハニカム構造体600では、多孔質炭化珪素からなる、図7(a)及び図7(b)に示すような形状のハニカム焼成体710がシール材層(接着剤層)601を介して複数個結束されてセラミックブロック603を構成し、さらに、このセラミックブロック603の外周にシール材層(コート層)602が形成されている。
図7(a)及び図7(b)に示すハニカム焼成体710には、多数のセル711がセル壁713を隔てて長手方向(図7(a)中、aの方向)に並設されており、セル711のいずれかの端部が封止材712で封止されている。従って、一方の端面が開口したセル711に流入した排ガスGは、必ずセル711を隔てるセル壁713を通過した後、他方の端面が開口した他のセル711から流出するようになっている。
従って、セル壁713がPM等を捕集するためのフィルタとして機能する。
本発明の珪素含有多孔質セラミック焼成体の製造方法では、セラミック原料は、炭化珪素、窒化珪素等のセラミック粉末に限定されるわけではなく、上述したセラミックに金属珪素を配合した珪素含有セラミック、珪素や珪酸塩化合物で結合されたセラミック等のセラミック原料であっても良い。
10、30 電源
11、31 第一のヒータ
12、32 第二のヒータ
13、33 抵抗発熱素子
14 給電位置切替装置
15 変圧器
20、40、50 焼成炉
21 筐体
22、43、53 焼成室
23、43、54 ヒータ
101、301 電源の第一の端子
102、302 電源の第二の端子
111、311 第一のヒータの第一の端子
112、312 第一のヒータの第二の端子
121、321 第二のヒータの第三の端子
122、322 第二のヒータの第四の端子

Claims (17)

  1. 第一の端子と第二の端子とを有する電源と、
    前記電源に対して直列に接続された複数のヒータと、
    給電位置切替装置とを含むヒータユニットであって、
    前記複数のヒータのうち、前記電源の第一の端子に接続された第一のヒータは第一の端子と第二の端子とを有し、前記電源の第二の端子に接続された第二のヒータは第三の端子と第四の端子とを有し、
    前記給電位置切替装置は、前記電源の第一の端子と前記第一のヒータの第一の端子とが接続され、前記電源の第二の端子と前記第二のヒータの第三の端子とが接続され、かつ、前記第一のヒータの第二の端子と前記第二のヒータの第四の端子とが接続された第一の状態と、
    前記電源の第一の端子と前記第一のヒータの第二の端子とが接続され、前記電源の第二の端子と前記第二のヒータの第四の端子とが接続され、かつ、前記第一のヒータの第一の端子と前記第二のヒータの第三の端子とが接続された第二の状態とを切り替える装置であることを特徴とするヒータユニット。
  2. 前記ヒータは、前記電源に並列に接続された複数の抵抗発熱素子を含む請求項1に記載のヒータユニット。
  3. 前記複数のヒータは、互いに隣接して配置されている請求項1又は2に記載のヒータユニット。
  4. 前記抵抗発熱素子は、カーボン製である請求項2又は3に記載のヒータユニット。
  5. 前記ヒータユニットは、さらに変圧器を含む請求項1~4のいずれかに記載のヒータユニット。
  6. 第一の端子と第二の端子とを有する電源と、
    筺体と、
    前記筐体内に配置された焼成室と、
    前記筐体内に配置され、前記電源に対して直列に接続された複数のヒータと、
    給電位置切替装置とを含む焼成炉であって、
    前記複数のヒータのうち、前記電源の第一の端子に接続された第一のヒータは第一の端子と第二の端子とを有し、前記電源の第二の端子に接続された第二のヒータは第三の端子と第四の端子とを有し、
    前記給電位置切替装置は、前記電源の第一の端子と前記第一のヒータの第一の端子とが接続され、前記電源の第二の端子と前記第二のヒータの第三の端子とが接続され、かつ、前記第一のヒータの第二の端子と前記第二のヒータの第四の端子とが接続された第一の状態と、
    前記電源の第一の端子と前記第一のヒータの第二の端子とが接続され、前記電源の第二の端子と前記第二のヒータの第四の端子とが接続され、かつ、前記第一のヒータの第一の端子と前記第二のヒータの第三の端子とが接続された第二の状態とを切り替える装置であることを特徴とする焼成炉。
  7. 前記ヒータは、前記電源に並列に接続された複数の抵抗発熱素子を含む請求項6に記載の焼成炉。
  8. 前記複数のヒータは、互いに隣接して配置されている請求項6又は7に記載の焼成炉。
  9. 前記抵抗発熱素子は、カーボン製である請求項7又は8に記載の焼成炉。
  10. 前記焼成炉は、さらに変圧器を含む請求項6~9のいずれかに記載の焼成炉。
  11. 前記焼成炉は、複数の被焼成体を搬送しながら連続的に焼成する連続式焼成炉である請求項6~10のいずれかに記載の焼成炉。
  12. 珪素含有多孔質セラミック焼成体の製造方法であって、
    珪素含有セラミック粉末を含む組成物から被焼成体を作製する工程と、
    第一の端子と第二の端子とを有する電源と、筺体と、前記筐体内に配置された焼成室と、前記筐体内に配置され、前記電源に対して直列に接続された複数のヒータと、
    給電位置切替装置とを含む焼成炉であって、前記複数のヒータのうち、前記電源の第一の端子に接続された第一のヒータは第一の端子と第二の端子とを有し、前記電源の第二の端子に接続された第二のヒータは第三の端子と第四の端子とを有し、前記給電位置切替装置は、前記電源の第一の端子と前記第一のヒータの第一の端子とが接続され、前記電源の第二の端子と前記第二のヒータの第三の端子とが接続され、かつ、前記第一のヒータの第二の端子と前記第二のヒータの第四の端子とが接続された第一の状態と、前記電源の第一の端子と前記第一のヒータの第二の端子とが接続され、前記電源の第二の端子と前記第二のヒータの第四の端子とが接続され、かつ、前記第一のヒータの第一の端子と前記第二のヒータの第三の端子とが接続された第二の状態とを切り替える装置である前記焼成炉を用いて前記被焼成体を焼成する工程とを含むことを特徴とする珪素含有多孔質セラミック焼成体の製造方法。
  13. 前記ヒータは、前記電源に並列に接続された複数の抵抗発熱素子を含む請求項12に記載の珪素含有多孔質セラミック焼成体の製造方法。
  14. 前記複数のヒータは、互いに隣接して配置されている請求項12又は13に記載の珪素含有多孔質セラミック焼成体の製造方法。
  15. 前記抵抗発熱素子は、カーボン製である請求項13又は14に記載の珪素含有多孔質セラミック焼成体の製造方法。
  16. 前記珪素含有多孔質セラミック焼成体は、多孔質炭化珪素又は多孔質窒化珪素からなる請求項12~15のいずれかに記載の珪素含有多孔質セラミック焼成体の製造方法。
  17. 前記焼成炉は、複数の被焼成体を搬送しながら連続的に焼成する連続式焼成炉である請求項12~16のいずれかに記載の珪素含有多孔質セラミック焼成体の製造方法。
PCT/JP2011/078693 2011-12-12 2011-12-12 ヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法 WO2013088495A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/078693 WO2013088495A1 (ja) 2011-12-12 2011-12-12 ヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法
EP12192540.8A EP2604961B1 (en) 2011-12-12 2012-11-14 Firing furnace, and method of manufacturing silicon-containing porous ceramic fired body
US13/693,072 US20130146580A1 (en) 2011-12-12 2012-12-04 Heater unit, firing furnace, and method of manufacturing silicon-containing porous ceramic fired body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078693 WO2013088495A1 (ja) 2011-12-12 2011-12-12 ヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法

Publications (1)

Publication Number Publication Date
WO2013088495A1 true WO2013088495A1 (ja) 2013-06-20

Family

ID=47351428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078693 WO2013088495A1 (ja) 2011-12-12 2011-12-12 ヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法

Country Status (3)

Country Link
US (1) US20130146580A1 (ja)
EP (1) EP2604961B1 (ja)
WO (1) WO2013088495A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150740A (ja) * 2016-02-24 2017-08-31 株式会社ノリタケカンパニーリミテド カーボンヒータを備える連続式超高温焼成炉

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6230324B2 (ja) * 2013-08-05 2017-11-15 キヤノン株式会社 受電装置、受電装置の制御方法及びプログラム
CN103759542B (zh) * 2014-02-18 2015-12-09 朱建新 组合式直热电阻炉
DE102015202600A1 (de) * 2015-02-12 2016-08-18 Sirona Dental Systems Gmbh Sinterofen für Bauteile aus Sinterwerkstoff, insbesondere Dentalbauteile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151237A (ja) * 1997-07-31 2002-05-24 Toshiba Ceramics Co Ltd カーボンヒータ
WO2006013932A1 (ja) * 2004-08-06 2006-02-09 Ibiden Co., Ltd. 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151237A (ja) * 1997-07-31 2002-05-24 Toshiba Ceramics Co Ltd カーボンヒータ
WO2006013932A1 (ja) * 2004-08-06 2006-02-09 Ibiden Co., Ltd. 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150740A (ja) * 2016-02-24 2017-08-31 株式会社ノリタケカンパニーリミテド カーボンヒータを備える連続式超高温焼成炉

Also Published As

Publication number Publication date
EP2604961A3 (en) 2015-12-09
EP2604961B1 (en) 2017-05-03
EP2604961A2 (en) 2013-06-19
US20130146580A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
JP6438939B2 (ja) ハニカム構造体
EP1832827B1 (en) Cooling apparatus for fired body, firing furnace, cooling method of ceramic fired body, and method for manufacturing honeycomb structured body
WO2006013932A1 (ja) 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法
WO2013088495A1 (ja) ヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法
WO2006022131A1 (ja) 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法
JP5749894B2 (ja) ハニカム構造体
WO2006013931A1 (ja) 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法
JP2011075132A (ja) 太陽電池用連続焼成炉
EP2327945B1 (en) Method for manufacturing ceramic fired body and method for manufacturing honeycomb structured body
JP2011504573A (ja) 製品の熱処理のためのトンネル炉
JP2017180231A (ja) ハニカム構造体、及びその製造方法
US7118441B2 (en) Method and apparatus for manufacturing plasma display panel
JP2009014227A (ja) 熱処理炉
JP6405122B2 (ja) カーボンヒータ、ヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法
JPWO2013088495A1 (ja) ヒータユニット、焼成炉及び珪素含有多孔質セラミック焼成体の製造方法
JP4661766B2 (ja) ハニカム構造体の焼成方法及び焼成装置
JP2008175517A (ja) 焼成体用冷却機、焼成炉、セラミック焼成体の冷却方法、及び、ハニカム構造体の製造方法
KR101485059B1 (ko) 허니콤 구조의 탄화규소(SiC) 세라믹 히터를 이용한 입자 제거 장치
JP2006046865A (ja) 焼成炉及びセラミックの焼成方法
KR101037990B1 (ko) 연속식 열처리로
JP5749473B2 (ja) セラミック焼成体の製造方法及びハニカム構造体の製造方法
JP3622854B2 (ja) 導電性セラミックス焼結体の製造方法
JP2001241849A (ja) Pdp基板焼成炉
JP4768044B2 (ja) Si結合SiCセラミックスの焼成方法
JP2008037736A (ja) セラミックの焼成装置及びセラミックの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877245

Country of ref document: EP

Kind code of ref document: A1