WO2013086884A1 - Engin de chantier rotatif et procédé et dispositif permettant de commander la rotation de celui-ci - Google Patents

Engin de chantier rotatif et procédé et dispositif permettant de commander la rotation de celui-ci Download PDF

Info

Publication number
WO2013086884A1
WO2013086884A1 PCT/CN2012/082123 CN2012082123W WO2013086884A1 WO 2013086884 A1 WO2013086884 A1 WO 2013086884A1 CN 2012082123 W CN2012082123 W CN 2012082123W WO 2013086884 A1 WO2013086884 A1 WO 2013086884A1
Authority
WO
WIPO (PCT)
Prior art keywords
tangential
rotation
target
setting information
construction machine
Prior art date
Application number
PCT/CN2012/082123
Other languages
English (en)
Chinese (zh)
Inventor
詹纯新
刘权
张建军
李义
Original Assignee
中联重科股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 中联重科股份有限公司
Publication of WO2013086884A1 publication Critical patent/WO2013086884A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • B66C13/30Circuits for braking, traversing, or slewing motors

Definitions

  • Fig. 1 is a schematic view of a hoisting and swinging structure of a crane according to the prior art.
  • the leg 11, the swivel platform 12, the boom 13, the boom head 14, the sling 15 connected between the boom head and the weight, and the sling 16 are shown in Fig. 1 .
  • the slewing platform rotates about a straight line L which is perpendicular to the plane of revolution and passes through the center of revolution 0 of the slewing platform.
  • the maximum swing speed of the boom is usually controlled.
  • the inventors have found that the change in the rotational speed also has a large influence on the smoothness of the crane.
  • the control effect of the control method in the related art is not good.
  • the stability of the crane when the speed of rotation changes is low, and an effective solution has not been proposed for this problem.
  • a primary object of the present invention is to provide a slewing engineering machine and a slewing control method and apparatus thereof, which solve the problem of low stability of a crane when a slewing speed changes in the prior art.
  • a method of controlling a swing of a swingable construction machine is provided.
  • the method for controlling the swing of the swingable construction machine of the present invention comprises: storing the swing setting information, wherein the swing setting information includes a target tangential tangential acceleration corresponding to each of the working radii of the construction machine; after receiving the swing start command And determining, according to the current working radius of the construction machine and the rotation setting information, a current target tangential tangential acceleration; and controlling the rotation of the construction machine according to the current target tangential acceleration.
  • the determining the current target tangential tangential acceleration comprises: determining whether the current working radius of the construction machine is included in the rotation setting information; and if so, the current working radius of the construction machine is in the slewing Corresponding target tangential tangential acceleration in the setting information is used as the current target tangential tangential acceleration; otherwise, in the interval formed by the two working radius values of the slewing setting information closest to the current working radius of the construction machine, A rotational tangential acceleration is determined using linear interpolation and used as the current target rotational tangential acceleration.
  • Step A represents the allowable maximum stress of the boom under a preset crane operating radius
  • The axial stress of the boom
  • B is the stress in the direction of the boom
  • M y represents the bending moment of the plane of rotation given in the national standard GB/T3811-2008
  • D represents the modulus of each section of the boom
  • f represents the boom In the deflection of the plane of revolution
  • ft represents the deflection of the center of mass of the boom in the plane of revolution
  • Q represents the mass of the weight, and represents the equivalent mass of the suspension point of the boom in addition to the weight of the crane at the predetermined working radius.
  • J m represents the rotational tangential acceleration
  • Q 2 represents the crane equivalent mass at the predetermined working radius
  • step B a maximum value of J m determined in step A is taken as the swing setting A value of the target tangential acceleration in the information is repeated
  • steps A and B are repeated to obtain a plurality of values of the plurality of target tangential accelerations.
  • the construction machine is a crane. According to another aspect of the invention, an apparatus for controlling the swing of a swingable construction machine is provided.
  • the device for controlling the swing of the swingable engineering machine of the present invention comprises: a storage module, configured to store the swing setting information, wherein the swing setting information includes a target rotary tangential acceleration corresponding to each of the working radiuses of the engineering machine; And determining, after receiving the swing start command, determining a current target tangential tangential acceleration according to the current working radius of the construction machine and the swing setting information; and a control module, configured to rotate the tangential acceleration pair according to the current target The rotation of the construction machine is controlled.
  • the determining module is further configured to: determine whether the current working radius of the construction machine is included in the rotation setting information; if yes, the current working radius of the construction machine is in a corresponding target rotation in the rotation setting information
  • the tangential acceleration is used as the current target tangential tangential acceleration; otherwise, within the interval formed by the two working radius values of the slewing setting information closest to the current working radius of the construction machine, a linear interpolation method is used to determine one Rotating the tangential acceleration and turning the tangential acceleration as the current target.
  • a calculation module is further configured to obtain a value of the target rotary tangential acceleration in the swing setting information according to the following manner: Step A, according to W A+B+C,
  • F a (Q+Qi) x Jm
  • Step B which is determined in step A
  • One of the maximum values is a value of the target rotary tangential acceleration in the swing setting information; steps A and B are repeated to obtain a plurality of values of the plurality of target rotary tangential accelerations.
  • a swingable construction machine comprising the apparatus for controlling the swing of a swingable construction machine of the present invention.
  • the swingable construction machine is a crane.
  • Figure 1 is a schematic view of a lifting and swiveling structure of a crane according to the prior art
  • Figure 2 is a schematic view showing the main steps of a method of controlling the turning of a swingable construction machine according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a basic structure of a device for controlling the swing of a swingable construction machine according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the main steps of a method for controlling the swing of a swingable construction machine according to an embodiment of the present invention.
  • the method mainly includes the following steps: Step S21: Saving the swing setting information.
  • the rotation setting information includes the target rotary tangential acceleration corresponding to each of the working radiuses of the plurality of construction machines.
  • Step S23 Receive a swing start command.
  • Step S25 determining the current target tangential tangential acceleration according to the current working radius of the construction machine and the rotation setting information.
  • Step S27 Control the rotation of the construction machine according to the current target rotary tangential acceleration determined in step S25.
  • step S21 for the plurality of working radii of the construction machine, one target tangential tangential acceleration is saved for each of the working radii.
  • a plurality of turning speeds corresponding to the time values may be saved for a set time value to form a graph as shown in FIG. 3 is a schematic illustration of multiple rotational tangential accelerations in accordance with an embodiment of the present invention.
  • Each of the graphs in Figure 3 corresponds to a tangential acceleration, and the acceleration J ML is shown in Figure 3.
  • a rotational tangential acceleration is determined using linear interpolation and used as the current target tangential acceleration. For example, setting the radius of gyration
  • Rl, R2, R3, and R4 correspond to the target rotary tangential accelerations Al, A2, A3, and A4, respectively.
  • the current radius of gyration R23 satisfies R2 ⁇ R23 ⁇ R3, and the target tangential tangential acceleration corresponding to the Bay U R23 is (A3 - A2) x(R23 - R2) / (R3 - R2) + A2.
  • the technical solution of this embodiment will be further described below by taking a crane as an example.
  • the setting of the target tangential acceleration takes into account the additional dynamic bending moment, which is explained below.
  • the calculation is carried out in conjunction with the national standard GB/T3811-2008.
  • the overall stability calculation formula of the boom is:
  • [ ⁇ ] indicates that the crane is allowed to have maximum stress at a preset working radius
  • indicates axial stress of the boom
  • B indicates stress in the direction of the boom
  • C represents the stress in the direction of rotation of the boom.
  • a and B can be calculated according to the formula in the national standard GB/T3811-2008.
  • C additional dynamic bending moments are added in this embodiment, namely:
  • M y represents the bending moment of the plane of rotation given in the national standard GB/T3811-2008
  • D represents the modulus of each section of the boom
  • M represents the present embodiment
  • M F a xf+F a ixfi where: f represents the deflection of the boom in the plane of revolution, and ft represents the deflection of the center of mass of the boom in the plane of revolution;
  • F a represents the tangential force formed by the weight and equivalent mass under the influence of the tangential acceleration of the revolution.
  • F al represents the tangential force formed by the crane under the influence of J m under the above-mentioned preset working radius.
  • the calculation formula is as follows:
  • Q 2 represents the equivalent mass of the boom at the preset operating radius of the crane.
  • the maximum tangential tangential acceleration corresponding to the preset working radius of the crane can be determined according to the formula (1), and the maximum tangential tangential acceleration can be used as the slewing setting information corresponding to the preset.
  • the corresponding target tangential tangential acceleration can be obtained according to the preset other working radius.
  • the above calculations can be carried out in the International System of Units or in other units.
  • the current output by the control handle operated by the crane driver for controlling the swing speed can be directly used to control the displacement of the oil pump, and the hydraulic motor uses a constant displacement motor.
  • the control is performed according to the rotary tangential acceleration in the swing setting information, otherwise the output current is still controlled.
  • the hydraulic motor can also be controlled according to the current.
  • the output current signal of the control handle is processed and used to control the displacement of the oil pump and the motor, and can be controlled by the existing volumetric speed control method.
  • the apparatus 40 for controlling the swing of the swingable construction machine mainly includes a storage module 41, a determination module 42, and a control module 43.
  • the storage module 41 is configured to store the rotation setting information, wherein the rotation setting information includes a target rotary tangential acceleration corresponding to each of the working radiuses of the plurality of construction machines; and the determining module 42 is configured to: after receiving the rotation starting instruction, according to the current engineering machinery The working radius and the turning setting information determine the current target turning tangential acceleration; the control module 43 is configured to control the turning of the construction machine according to the current target turning tangential acceleration.
  • the determining module 42 is further configured to determine whether the current working radius of the engineering machine is included in the swing setting information; if yes, the current target working radius of the engineering machine in the swing setting information is the current target turning tangential acceleration; Otherwise, in the interval formed by the two working radius values closest to the current working radius of the construction machine in the swing setting information, a rotary tangential acceleration is determined by linear interpolation and used as the current target tangential acceleration.
  • the construction machine in this embodiment is a swingable construction machine.
  • the device for controlling the rotation of the swingable engineering machine may be a crane.
  • the target tangential tangential acceleration corresponding to the working radius of the construction machine is set, thereby ensuring the operation process.
  • the medium tangential acceleration does not exceed the preset value, thereby helping to avoid the influence of the rotating dynamic bending moment on the stability of the whole vehicle, and improving the safety of the construction machinery operation.

Abstract

L'invention concerne un procédé et un dispositif permettant de commander la rotation d'un engin de chantier rotatif, en vue de résoudre le problème de faible stabilité quand il y a changement de la vitesse de rotation d'une grue dans l'état de la technique. Le procédé comporte : sauvegarder les informations établies de rotation comportant l'accélération tangentielle rotative cible (A1, A2, A3, A4) correspondant au rayon de levage (R1, R2, R3, R4) de l'engin de chantier respectivement ; après la réception d'une commande d'activation de rotation, déterminer l'accélération tangentielle rotative cible actuelle en fonction du rayon de levage de l'engin de chantier et des informations établies de rotation ; et commander la rotation de l'engin de chantier en fonction de l'accélération tangentielle rotative cible actuelle. Le procédé et le dispositif permettent d'empêcher l'influence du moment de flexion dynamique de rotation supplémentaire sur la stabilité de l'intégralité de l'engin, de manière à améliorer la sécurité de fonctionnement de l'engin de chantier.
PCT/CN2012/082123 2011-12-15 2012-09-27 Engin de chantier rotatif et procédé et dispositif permettant de commander la rotation de celui-ci WO2013086884A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110421369 CN102491177B (zh) 2011-12-15 2011-12-15 可回转工程机械及其回转控制方法与装置
CN201110421369.6 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013086884A1 true WO2013086884A1 (fr) 2013-06-20

Family

ID=46183048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082123 WO2013086884A1 (fr) 2011-12-15 2012-09-27 Engin de chantier rotatif et procédé et dispositif permettant de commander la rotation de celui-ci

Country Status (2)

Country Link
CN (1) CN102491177B (fr)
WO (1) WO2013086884A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491177B (zh) * 2011-12-15 2013-12-25 中联重科股份有限公司 可回转工程机械及其回转控制方法与装置
CN103264970B (zh) * 2013-06-04 2014-12-03 西安丰树电子科技发展有限公司 基于自学习的塔式起重机危险状态回转控制方法
CN106481080B (zh) * 2016-08-29 2018-11-20 北汽福田汽车股份有限公司 用于泵车转台回转的控制方法、控制装置及泵车
CN106429488A (zh) * 2016-09-30 2017-02-22 泰富海洋工程装备(天津)有限公司 一种臂架旋转控制方法及装置
CN110817691B (zh) * 2019-09-26 2021-06-01 济南大学 一种消摆控制器及塔式吊车系统
CN112811330B (zh) * 2019-11-15 2023-06-23 湖南沃森电气科技有限公司 一种塔式起重机回转机构控制方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014645A1 (fr) * 1990-03-23 1991-10-03 Kabushiki Kaisha Kobe Seiko Sho Methode et appareil pour commander l'arret de la rotation d'une partie tournante superieure d'un engin de chantier, et appareil de calcul de l'angle d'inclinaison
JPH05254784A (ja) * 1992-03-16 1993-10-05 Kobe Steel Ltd クレーンの旋回停止制御方法および装置
JP2004161460A (ja) * 2002-11-14 2004-06-10 Ishikawajima Transport Machinery Co Ltd 旋回クレーンの吊り荷の振れ止め制御方法
CN201165455Y (zh) * 2007-10-31 2008-12-17 三一重工股份有限公司 起重机回转速度控制系统
CN100572257C (zh) * 2007-12-20 2009-12-23 三一重工股份有限公司 一种可回转工程机械最大回转速度限制方法及其系统
CN102145857A (zh) * 2011-01-31 2011-08-10 徐州重型机械有限公司 一种起重机及其回转控制系统、回转控制方法
CN102491177A (zh) * 2011-12-15 2012-06-13 中联重科股份有限公司 可回转工程机械及其回转控制方法与装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085623B2 (ja) * 1989-09-27 1996-01-24 株式会社神戸製鋼所 クレーンの安全装置
JP3358768B2 (ja) * 1995-04-26 2002-12-24 株式会社安川電機 クレーン等のロープ振れ止め制御方法及び装置
FI114980B (fi) * 2003-07-17 2005-02-15 Kci Konecranes Oyj Menetelmä nosturin ohjaamiseksi
CN101780920A (zh) * 2009-09-24 2010-07-21 青岛立邦达工控技术有限公司 用于塔式起重机的回转机构控制系统
CN101792089A (zh) * 2010-03-23 2010-08-04 上海能港电气工程科技有限公司 起重机失控保护开关装置及相关控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014645A1 (fr) * 1990-03-23 1991-10-03 Kabushiki Kaisha Kobe Seiko Sho Methode et appareil pour commander l'arret de la rotation d'une partie tournante superieure d'un engin de chantier, et appareil de calcul de l'angle d'inclinaison
JPH05254784A (ja) * 1992-03-16 1993-10-05 Kobe Steel Ltd クレーンの旋回停止制御方法および装置
JP2004161460A (ja) * 2002-11-14 2004-06-10 Ishikawajima Transport Machinery Co Ltd 旋回クレーンの吊り荷の振れ止め制御方法
CN201165455Y (zh) * 2007-10-31 2008-12-17 三一重工股份有限公司 起重机回转速度控制系统
CN100572257C (zh) * 2007-12-20 2009-12-23 三一重工股份有限公司 一种可回转工程机械最大回转速度限制方法及其系统
CN102145857A (zh) * 2011-01-31 2011-08-10 徐州重型机械有限公司 一种起重机及其回转控制系统、回转控制方法
CN102491177A (zh) * 2011-12-15 2012-06-13 中联重科股份有限公司 可回转工程机械及其回转控制方法与装置

Also Published As

Publication number Publication date
CN102491177B (zh) 2013-12-25
CN102491177A (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
WO2013086884A1 (fr) Engin de chantier rotatif et procédé et dispositif permettant de commander la rotation de celui-ci
CN102491176B (zh) 起重机回转控制的方法、装置和系统以及起重机
CN101659379B (zh) 一种吊钩偏摆控制方法、系统及装置
WO2012121253A1 (fr) Pelle et procédé de commande de pelle
JP2564060B2 (ja) 建設機械の安全装置
CN103086286B (zh) 起重机
CN1832898A (zh) 起重机及其控制器
WO2012028032A1 (fr) Procédé de commande du suivi de mouvement de crochet de charge
WO2023179583A1 (fr) Procédé et appareil de commande permettant d'empêcher les oscillations d'un godet de préhension, et dispositif et support d'enregistrement
CN103382951A (zh) 作业机械的回转装置及该作业机械
CN206188254U (zh) 一种桥梁修建移动式吊装支架
CN103395698B (zh) 履带式起重机执行动作的安全控制方法、装置及系统
US10696166B2 (en) Electrically driven machine with reverse power storage
CN102491178B (zh) 起重机回转控制的方法与系统
WO2013143270A1 (fr) Procédé de commande de puissance constante de rotation de machine de travaux publics rotative, système et machine de travaux publics
CN114967454A (zh) 塔式起重机轨迹规划方法、系统、电子设备及存储介质
JP6679334B2 (ja) 動力発生装置およびそれを用いたショベル
JP3274051B2 (ja) クレーンの振れ止め・位置決め制御方法
JP2017214816A5 (fr)
JP2021038082A (ja) 積載形トラッククレーン
JP6292256B2 (ja) 旋回制御装置
CN114105015B (zh) 用于起重机的回转控制方法、处理器及起重机
CN109437019A (zh) 起重机吊钩高度控制方法、装置以及起重机
JP6282698B1 (ja) クレーン用ウインチの最大能力設定装置及び最大能力設定方法
JP2564061B2 (ja) 建設機械の安全装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857228

Country of ref document: EP

Kind code of ref document: A1