WO2013084987A1 - 衛星航法システムを用いた位置出力装置 - Google Patents

衛星航法システムを用いた位置出力装置 Download PDF

Info

Publication number
WO2013084987A1
WO2013084987A1 PCT/JP2012/081635 JP2012081635W WO2013084987A1 WO 2013084987 A1 WO2013084987 A1 WO 2013084987A1 JP 2012081635 W JP2012081635 W JP 2012081635W WO 2013084987 A1 WO2013084987 A1 WO 2013084987A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite navigation
predicted
jump
data
occurred
Prior art date
Application number
PCT/JP2012/081635
Other languages
English (en)
French (fr)
Inventor
岡村 信行
宏臣 荒金
孝夫 佐川
Original Assignee
東京計器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京計器株式会社 filed Critical 東京計器株式会社
Priority to EP12854590.2A priority Critical patent/EP2790036B1/en
Priority to US14/363,680 priority patent/US9121929B2/en
Publication of WO2013084987A1 publication Critical patent/WO2013084987A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • G01C21/188Compensation of inertial measurements, e.g. for temperature effects for accumulated errors, e.g. by coupling inertial systems with absolute positioning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/421Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • G01S19/426Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system by combining or switching between position solutions or signals derived from different modes of operation in a single system

Definitions

  • the present invention relates to a position output device that outputs current position data of a target such as a moving object using measurement position data obtained by a satellite navigation system.
  • a satellite navigation system for example, GPS
  • a satellite navigation system reinforcement system for example, MSAS Multipurpose Satellite Navigation Enhancement System
  • the position data obtained from the satellite navigation system may still have a “position jump” in which the data changes greatly due to radio wave blockage from GPS satellites by trees, buildings, etc., multipath, satellite switching, etc. There is a drawback.
  • an inertial navigation system (a self-contained navigation system) in which an independent position is obtained using a sensor such as an accelerometer, a gyroscope, or a magnetic azimuth sensor.
  • a sensor such as an accelerometer, a gyroscope, or a magnetic azimuth sensor.
  • sensor errors accumulate through integration.
  • it is expensive to increase the accuracy of the sensor in order to reduce such a sensor error.
  • Patent Document 1 it is determined whether or not positioning by a GPS receiver is possible, and if possible, data from GPS and data from an inertial navigation system are captured and compared with the previous measured values, respectively. If the measured value has changed beyond a certain amount, the measured value is determined to be false, and navigation is performed using the output data from the other system. If both measured values are within a certain value, Either one of the measured values is selected or the average of the two is calculated for navigation.
  • Patent Document 2 map matching by self-contained navigation is performed, and vehicle position data obtained by self-contained navigation is corrected using position data obtained by GPS when map matching by self-contained navigation becomes impossible. It is supposed to be.
  • Patent Document 3 it is determined whether or not the position jump has occurred.
  • the current positioning position is corrected using the predicted position to obtain the current output position. If a position jump occurs, the predicted position is set to the current output position or the current positioning position is set to the current output position. Or either.
  • the output position data may change abruptly due to the correction.
  • the position data obtained by the satellite navigation system is delayed with respect to instantaneous changes because the update period of the position data from the satellite navigation system is longer than the position data obtained by the inertial navigation system. There is also a problem of end.
  • the present invention has been made in view of such problems, and a first object is to provide a satellite navigation system capable of outputting an appropriate current position of a target when a position jump occurs in position data from the satellite navigation system.
  • the position output device used is to be provided.
  • a second object is to output a position using a satellite navigation system that can output an appropriate current position of an object using data obtained from the inertial navigation system for a position error caused by the satellite navigation system. Is to provide a device.
  • the present invention provides a position output device that outputs current position data of an object using data of a satellite navigation measurement position obtained by a satellite navigation system
  • a satellite navigation data capturing means for capturing data of a satellite navigation measurement position updated by the satellite navigation system
  • Current position calculation means for sequentially calculating the current position at the update timing and outputting it as current position data
  • Predicted position calculation means for obtaining the predicted position of the target from the current position at the previous update timing
  • Position jump determination means for determining whether a position jump has occurred from a position difference between the predicted position and the satellite navigation measurement position
  • Correction position calculating means for calculating a correction position vector for correcting the current position when it is determined that a position jump has occurred
  • a position return determination means for determining whether a distance between the predicted position and the satellite navigation measurement position is larger than a set distance when it is determined that a position jump has not occurred after a position jump has occurred
  • Second correction position calculation means for calculating a second correction position vector for correcting the current position when it is determined that the distance
  • the second correction position calculation means calculates the position difference between the predicted position and the satellite navigation measurement position for a time longer than the update cycle but shorter than the time used for the calculation in the correction position calculation means.
  • the second corrected position vector per update timing when it is resolved over time is calculated,
  • the current position calculation means sets the predicted position corrected by the corrected position vector as the current position, and the position jump has occurred after the position jump has occurred.
  • the current position is obtained by correcting the predicted position with the second corrected position vector. It is characterized by doing.
  • the magnitude of the correction position vector can be obtained by multiplying the distance between the predicted position and the satellite navigation measurement position by a value obtained by dividing the update period by the first time constant.
  • the magnitude of the second correction position vector is obtained by multiplying the distance between the predicted position and the satellite navigation measurement position by the value obtained by dividing the update period by the second time constant, and the second time constant ⁇ the first time constant. Can be.
  • An inertial navigation data capturing means for capturing data of an inertial navigation measurement speed updated by the inertial navigation system;
  • the predicted position calculation means can calculate a predicted position using the inertial navigation measurement speed.
  • the current position calculation means can set the predicted position as the current position.
  • the current position calculation means can set the satellite navigation measurement position as the current position.
  • the current position data output by the correction position vector gradually approaches the satellite navigation measurement position data over a longer time than the update cycle. Therefore, it is possible to prevent the output data from changing abruptly.
  • 1 is an overall block diagram of a position measurement system including a position output device according to a first embodiment of the present invention. It is a block diagram of the position output device by a 1st embodiment of the present invention. It is a flowchart showing the process by the position output device by 1st Embodiment. It is explanatory drawing showing the example of an output by the position output device by 1st Embodiment. It is a whole block diagram of the position measurement system containing the position output device by 2nd Embodiment of this invention. It is a block diagram of the position output device by a 2nd embodiment of the present invention. It is a block diagram of an inertial measurement device. It is a flowchart showing the process by the position output device by 2nd Embodiment.
  • the position measurement system using the position output apparatus according to the present embodiment is mounted on a target such as a moving body and outputs its current position data.
  • the moving range of the moving body is 2 Dimensional and three-dimensional.
  • the position measurement system 10 roughly includes a GPS antenna 20 and a GPS receiver 22, a position output device 26, and an output device 28 that constitute a satellite navigation system.
  • the output device 28 may be, for example, a display device, a recording device, or the like, but may be omitted, and may be another device that uses the output from the position measurement system 10. *
  • the GPS receiver 22 detects the position of the moving body (referred to as GPS position) at a constant update period (this period is T GPS , for example, about 200 ms) based on a signal from a GPS satellite received by the GPS antenna 20. GPS data such as the speed of the moving body (referred to as GPS speed V GPS ) is obtained and output.
  • the position output device 26 basically outputs the GPS position obtained from the GPS receiver 22 as the moving body position.
  • the GPS position data is obtained by blocking radio waves from the satellite, multipath, and satellite switching. There is a possibility that position jumps that change sharply may occur.
  • the position output device 26 includes a CPU and a memory, and a GPS data fetching means 44, a position jump determining means 46, a current position according to a program stored in the memory.
  • the calculation unit 48, the predicted position calculation unit 50, the correction position calculation unit 52, and the data storage unit 54 function.
  • the GPS data capturing means 44 captures GPS data including GPS velocity V GPS and GPS position (satellite navigation measurement position) data from the GPS receiver 22 updated at the update period T GPS from the GPS receiver 22, The data is stored in the data storage means 54 (steps S101 and S102).
  • the position jump determination means 46 determines whether or not a position jump has occurred.
  • the position jump can be regarded as occurring when the GPS position from the GPS receiver 22 is outside a predetermined range from a predicted position described later.
  • between the GPS position and the predicted position is obtained (step S103), and the distance
  • ⁇ th1 for example, several tens of centimeters.
  • step S104 When no position jump has occurred (no in step S104), the current position calculation means 48 sets the current position to the GPS position, and the GPS position becomes output position data (step S105).
  • the predicted position of the moving body for the next update timing is obtained by the predicted position calculation means 50 and stored in the data storage means 54.
  • the initial position is appropriately set at the initial stage, or the GPS position obtained from the GPS receiver 22.
  • the corrected position calculation means 52 obtains a corrected position vector (step S107).
  • the corrected position vector is not used as the output position data as it is, but gradually over a period T 1 (for example, 20 to 30 s) longer than the update period T GPS. It shall correct
  • the reason for this correction is that the GPS position data where the position jump occurred is not necessarily correct data, and it is not preferable to change the output position data suddenly, but the output is performed within an appropriate time. This is because the position data needs to converge to the GPS position.
  • the magnitude of the correction position vector is one time when it is assumed that the distance
  • Correction position vector ( ⁇ / T 1 ) ⁇ T GPS (3) It can be.
  • is a vector.
  • the current position is calculated from the predicted position and the corrected position vector by the current position calculation means 48. That is, the output position data is moved from the predicted position by the corrected position vector (step S108).
  • the current position is calculated by the current position calculation unit 48. Since it is the position, it can be converged to the GPS position.
  • FIG. 4 shows the transition of the output position data when the above processing is performed.
  • (n) represents the update timing. Since the position jump does not occur until the update timing n-1, the GPS position is the current position, that is, the output position. However, when the position jump occurs at the update timing n, the corrected position vector is detected from the predicted position. The position approaching the GPS position is regarded as the current position, and gradually approaches the GPS position (update timing n + 1). Since the position skip is eliminated at the update timing n + 2, the GPS position becomes the current position, that is, the output position. .
  • the position jump determination means 46 determines that the position jump is more careful when the formula (1) is continuously satisfied over two or more update timings, and the output position data is more careful. It is also possible to change it.
  • the predicted position is obtained using the GPS speed.
  • the present invention is not limited to this, and the predicted position can be obtained using a speed sensor such as another vehicle speed sensor instead of the GPS speed.
  • the update period of the data updated by the satellite navigation system is usually relatively long (for example, about 200 ms), if the current position data is output only with the data obtained by the satellite navigation system with respect to the instantaneous change of the moving body. There is a risk of delay.
  • the GPS position obtained from the GPS receiver 22 is interpolated using the inertial measurement device 24 having a shorter update cycle (for example, about 10 ms).
  • the position measurement system using the position output device includes the inertial measurement device 24 constituting the inertial navigation system.
  • the position output device 26 also functions as inertia data fetching means 42.
  • the inertial measurement device 24 includes gyroscopes 30X, 30Y, and 30Z that detect angular velocities around three axes, accelerometers 32X, 32Y, and 32Z that detect accelerations in three axes, respectively, and magnetic azimuth angles. And a calculation means 36.
  • Computing means 36 a constant update period (the period is T INS), a gyro 30X, 30Y, gyro signal output from 30Z, accelerometers 32X, 32Y, the acceleration signal output from 32Z, and magnetic azimuth
  • T INS constant update period
  • gyro 30X, 30Y, gyro signal output from 30Z accelerometers 32X, 32Y, the acceleration signal output from 32Z, and magnetic azimuth
  • the magnetic direction signal output from the sensor 34 is input, and the X-axis direction is the north direction and the Z-axis direction is the gravity direction from the coordinate system (referred to as the body coordinate system) of the moving body to which the sensor is attached.
  • a coordinate transformation matrix to be transformed into a coordinate system (referred to as a local coordinate system) is calculated, coordinate transformation is performed and acceleration is integrated to obtain a velocity (referred to as inertia velocity V INS ), and further, velocity is integrated to obtain a position ( (Referred to as inertial position).
  • a position jump occurrence flag Flg indicating whether or not a position jump has occurred is introduced, and the initial value of this flag is set to 0 (step S201).
  • the position jump generation flag Flg 1 represents that a position jump has occurred, and 0 represents that no position jump has occurred.
  • the inertia data fetching means 42 fetches the inertia data including the inertia velocity V INS updated at the data update cycle T INS from the inertia measuring device 24 and stores it in the data storage means 54 (steps S202 and S203). .
  • the GPS data capturing means 44 captures GPS data including the GPS speed V GPS , GPS azimuth, and GPS position from the GPS receiver 22 updated at the update period T GPS from the GPS receiver 22, and data storage means 54 (steps S204 and S205).
  • the captured GPS velocity V GPS is captured by the inertial measurement device 24 in order to be used for correcting the inertial measurement device 24 as described above (step S206).
  • step S208 the current position is calculated by the current position calculation means 48.
  • the predicted position already obtained by the predicted position calculation means 50 is used, and the predicted position becomes output position data (step S208).
  • the predicted position of the moving body for the next update timing is obtained by the predicted position calculation means 50 and stored in the data storage means 54.
  • the inertia velocity V INS in the equation (4) is a vector.
  • the predicted position calculation means 50 may fetch the inertia position obtained at each update timing by the calculation means 36 and use this inertia position as the predicted position or obtain the predicted position using the inertia position.
  • the current position is set to the GPS position (step S213), and the inertial data is not updated.
  • the predicted position is set (step S208). That is, in principle, the GPS position is output as the current position, but at other processing timings, the current position is interpolated based on the data obtained by the inertial measurement device 24.
  • a correction position (correction position vector) is obtained by the correction position calculation means 52 (step S215).
  • is a vector.
  • step S210 interpolation is performed.
  • the corrected position vector is constant until the GPS data is updated.
  • Fig. 9 shows the transition of the output position data when the above processing is performed.
  • (n) represents the update timing.
  • the update timings n-2 and n-1 no position jump has occurred and the GPS data has not been updated, so the predicted position is the current position, that is, the output position. If it is determined that a position jump has occurred based on GPS data, the position closer to the GPS position from the predicted position is gradually approached to the GPS position by the correction position vector (update timing n + 1), and When the position jump is eliminated at the update timing n + m, the GPS position becomes the current position, that is, the output position.
  • (Third embodiment) 10 to 12 show a third embodiment of the present invention.
  • the same / similar members as those of the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the current position can be output more smoothly than in the previous embodiment, and the position output device 26 further includes a position return determination means 56, a second corrected position calculation means 58, And function.
  • the position calculating means 48 outputs the GPS position as the current position, and the output position data may change suddenly at this time.
  • the correction is continued until the distance
  • the position return determination unit 56 It is determined whether the position jump occurrence flag flg is 1 and the distance
  • the corrected position vector takes the time of the second time constant T 2 ( ⁇ T 1 ) that is shorter than the first time constant T 1 although the distance
  • the current position calculation unit 48 causes the current position to be calculated. Is a GPS position, and the GPS position becomes output position data (step S213). Then, the position jump generation flag flg is returned to 0 (step S214).
  • FIG. 12 shows the transition of the output position data when the above processing is performed.
  • (n) represents the update timing. If the distance between the GPS position and the predicted position is smaller than
  • the position return determination means 56 and the second corrected position calculation means 58 can be similarly applied to the first embodiment that does not use inertia data.
  • Position output device 42 Inertial data capturing means (Inertial navigation data capturing means) 44 GPS data capture means (satellite navigation data capture means) 46 position skip determining means 48 the current position calculating means 50 calculated position calculating means 52 corrects the position calculating means 56 return position determination means 58 second correction position calculating section T 1 the first time constant T 2 second time constant T GPS, T INS update period

Abstract

 衛星航法システムによって得られる衛星航法測定位置データを用いて、対象の現在位置データを出力する位置出力装置であって、衛星航法システムからの位置データに位置飛びが発生した場合に、適切な現在位置を出力する。 前の更新タイミングにおける現在位置から対象の予測位置を算出し、予測位置と衛星航法システムで更新される衛星航法測定位置との位置差から位置飛びが発生したかを判定し、位置飛びが発生したと判定された場合に、現在位置を補正するための補正位置ベクトルを算出する。補正位置ベクトルは、前記予測位置と前記衛星航法測定位置との位置差を更新周期よりも長い時間をかけて解消するとした場合の1回の更新タイミング当たりの補正位置ベクトルとし、位置飛びが発生したと判定された場合に、前記予測位置を前記補正位置ベクトルによって補正したものを現在位置とする。

Description

衛星航法システムを用いた位置出力装置
 本発明は、衛星航法システムによって得られる測定位置データを用いて、移動体等の対象の現在位置データを出力する位置出力装置に関する。
 近年、衛星航法システム(例えばGPS)を用いて得られる位置データの精度が向上している。これは、そのGPS受信機単体の精度向上も含め、衛星航法システムの補強システム(例えばMSAS 運輸多目的衛星航法補強システム)等の運用による寄与も大きい。
 しかしながら、依然として衛星航法システムから得られる位置データは、樹木、ビル等によるGPS衛星からの電波遮断、マルチパス、衛星の切り替り等により、データが大きく変化する「位置飛び」が発生することがあるという欠点がある。
 一方、従来から加速度計、ジャイロ、磁気方位センサ等のセンサを用いて自立的に位置を求める慣性航法システム(自立航法システム)が知られている。このシステムの欠点は、センサの誤差が積分によって累積していくということである。また、このようなセンサの誤差を低減させるべくセンサの精度を高めるには、高価になるという問題がある。
 これらの各システムの欠点を補うために、従来、衛星航法システムと慣性航法システムとを組み合わせて位置の補正を行うものが種々、提案されている。
 例えば、特許文献1では、GPS受信装置による測位が可能であるかどうか判定し、可能である場合に、GPSからのデータと、慣性航法システムからのデータを取り込み、それぞれ直前の測定値と比較し、一定量を越えて変化している場合には、その測定値を偽と判断し、もう一方のシステムからの出力データを使用してナビゲーションを行い、両方の測定値とも一定値以内であれば、いずれかの測定値を選択するか、両者の平均を計算してナビゲーションを行うようにしている。
 また、特許文献2では、自立航法によるマップマッチングを行うと共に、自立航法によるマップマッチングが不可能になったときに、GPSにより得られる位置データを用いて、自立航法により得られる車両位置データを修正するようになっている。
 また、慣性航法システムを使用せずに、衛星航法システムにおける位置飛びを解決するためのものとして、特許文献3では、位置飛びが発生したかどうか判定し、位置飛びが発生していない場合には、予想位置を用いて今回測位位置を補正して今回出力位置とし、位置飛びが発生している場合には、予想位置を今回出力位置にするか、または、今回測位位置を今回出力位置にするか、のいずれかにしている。
特許第2812795号公報 特許第3984112号公報 特開2009-97898号公報
 しかしながら、従来の位置補正においては、衛星航行システムによる位置飛びが発生した場合に、その補正により出力位置データが急激に変化するおそれがある。
 また、慣性航法システムによって得られる位置データに比較して、衛星航法システムからの位置データの更新周期が長いため、瞬間的な変化に対して、衛星航法システムによって得られる位置データでは遅れが生じてしまうという問題もある。
 本発明はかかる課題に鑑みなされたもので、第1の目的は、衛星航法システムからの位置データに位置飛びが発生した場合に、対象の適切な現在位置を出力することができる衛星航法システムを用いた位置出力装置を提供することである。
 また、第2の目的は、衛星航法システムによって生じる位置誤差に対して、慣性航法システムから得られるデータを用いて、対象の適切な現在位置を出力することができる衛星航法システムを用いた位置出力装置を提供することである。
 上記目的を達成するために、本発明は、衛星航法システムによって得られる衛星航法測定位置のデータを用いて、対象の現在位置データを出力する位置出力装置であって、
 衛星航法システムで更新される衛星航法測定位置のデータを取り込む衛星航法データ取込手段と、
 現在位置を更新タイミングで順次算出して現在位置データとして出力する現在位置算出手段と、
 前の更新タイミングにおける現在位置から対象の予測位置を求める予測位置算出手段と、
 前記予測位置と前記衛星航法測定位置との位置差から位置飛びが発生したかを判定する位置飛び判定手段と、
 位置飛びが発生したと判定された場合に、現在位置を補正するための補正位置ベクトルを算出する補正位置算出手段と、
 位置飛びが発生した後に位置飛びが発生していないと判定された場合に、前記予測位置と前記衛星航法測定位置との間の距離が設定距離より大きいかを判定する位置戻り判定手段と、
 前記予測位置と前記衛星航法測定位置との間の距離が設定距離より大きいと判定された場合に、現在位置を補正するための第2補正位置ベクトルを算出する第2補正位置算出手段と、
を備え、
 前記補正位置算出手段は、前記予測位置と前記衛星航法測定位置との位置差を、更新周期よりも長い時間をかけて解消するとした場合の1回の更新タイミング当たりの補正位置ベクトルを算出しており、
 前記第2補正位置算出手段は、前記予測位置と前記衛星航法測定位置との位置差を、更新周期よりも長い時間であるが、前記補正位置算出手段における算出で用いられる時間よりも短い時間をかけて解消するとした場合の1回の更新タイミング当たりの第2補正位置ベクトルを算出しており、
 前記現在位置算出手段は、位置飛びが発生したと判定された場合に、前記予測位置を前記補正位置ベクトルによって補正したものを現在位置とするとともに、位置飛びが発生した後に位置飛びが発生していないと判定され、かつ前記予測位置と前記衛星航法測定位置との間の距離が設定距離より大きいと判定された場合に、前記予測位置を前記第2補正位置ベクトルによって補正したものを現在位置とすることを特徴とする。
 前記補正位置ベクトルの大きさは、前記予測位置と前記衛星航法測定位置との距離に更新周期を第1時定数で除算した値を乗算したものとすることができる。
 前記第2補正位置ベクトルの大きさは、前記予測位置と前記衛星航法測定位置との距離に更新周期を第2時定数で除算した値を乗算したものとし、第2時定数<第1時定数であることとすることができる。
 慣性航法システムで更新される慣性航法測定速度のデータを取り込む慣性航法データ取込手段と、をさらに備え、
 前記予測位置算出手段は、前記慣性航法測定速度を用いて予測位置を算出することができる。
 位置飛びが発生していないと判定され且つ前記衛星航法測定位置データが更新されていない間は、前記現在位置算出手段は、前記予測位置を前記現在位置とすることができる。
 位置飛びが発生していないと判定され且つ前記衛星航法測定位置データが更新された場合は、前記現在位置算出手段は、前記衛星航法測定位置を前記現在位置とすることができる。
 本発明によれば、位置飛びが発生したと判定された場合に、補正位置ベクトルによって、出力される現在位置データが、更新周期よりも長い時間をかけて漸次、衛星航法測定位置データに近づくように補正されるため、出力されるデータが急激に変化することを防ぐことができる。
本発明の第1実施形態による位置出力装置を含む位置測定システムの全体ブロック図である。 本発明の第1実施形態による位置出力装置のブロック図である。 第1実施形態による位置出力装置による処理を表すフローチャートである。 第1実施形態による位置出力装置による出力例を表す説明図である。 本発明の第2実施形態による位置出力装置を含む位置測定システムの全体ブロック図である。 本発明の第2実施形態による位置出力装置のブロック図である。 慣性計測装置のブロック図である。 第2実施形態による位置出力装置による処理を表すフローチャートである。 第2実施形態による位置出力装置による出力例を表す説明図である。 本発明の第3実施形態による位置出力装置のブロック図である。 第3実施形態による位置出力装置による処理を表すフローチャートである。 第3実施形態による位置出力装置による出力例を表す説明図である。
 以下、図面を参照しながら、本発明の実施形態について説明する。
(第1実施形態)
 図1に示すように、本実施形態による位置出力装置を用いた位置測定システムは、移動体といった対象に搭載されて、その現在位置データを出力するものであり、移動体の移動範囲は、2次元及び3次元とすることができる。
 位置測定システム10は、大まかに、衛星航法システムを構成するGPSアンテナ20及びGPS受信機22と、位置出力装置26と、出力装置28と、を備える。出力装置28は、例えば、表示装置、記録装置等とすることができるが、省略することも可能であり、この位置測定システム10からの出力を利用する他の装置とすることもできる。   
 GPS受信機22は、GPSアンテナ20で受信されたGPS衛星からの信号によって、一定の更新周期(この周期をTGPSとする、例えば、200ms程度)で、移動体の位置(GPS位置と称する)、移動体の速度(GPS速度VGPSと称する)といったGPSデータを求めて出力している。
 位置出力装置26は、基本的にGPS受信機22から得られるGPS位置を移動体位置として出力するのであるが、GPS位置は、衛星からの電波遮断、マルチパス、衛星の切り替りにより、データが急峻に変化する位置飛びが発生する可能性がある。
 そのような位置飛びの影響を回避するために、位置出力装置26は、CPU及びメモリを備え、メモリによって格納されるプログラムによって、GPSデータ取込手段44と、位置飛び判定手段46と、現在位置算出手段48と、予測位置算出手段50と、補正位置算出手段52と、データ記憶手段54として機能する。
 各手段による処理を図3を参照しながら、説明する。
 GPSデータ取込手段44は、GPS受信機22からの更新周期TGPSで更新されるGPS受信機22からのGPS速度VGPS及びGPS位置(衛星航法測定位置)のデータを含むGPSデータを取り込み、データ記憶手段54に格納する(ステップS101、S102)。
 GPS受信機22からのGPSデータが更新されると、位置飛び判定手段46により位置飛びが発生したか否かが判定される。位置飛びは、GPS受信機22からのGPS位置が後述の予測位置から所定範囲外にある場合に、発生したと看做すことができる。
 具体的には、例えば、GPS位置と予測位置との間の距離|Δ|を求め(ステップS103)、その距離|Δ|が規定の閾値Δth1(例えば、数十cm)を越えた場合に、位置飛びが発生したとする。即ち、
 |Δ|>Δth1          (1)
が成り立ったときに位置飛びが発生したものとし、それ以外は位置飛びが発生していないものとする。
 位置飛びが発生していないときには(ステップS104でno)、現在位置算出手段48によって、現在位置はGPS位置とされ、GPS位置が出力位置データとなる(ステップS105)。
 次いで、予測位置算出手段50によって、次の更新タイミングのための移動体の予測位置が求められ、データ記憶手段54に格納される。ここで、予測位置は、現在位置、GPS速度VGPSと周期TGPSから求めることができる。即ち、
 予測位置=現在位置+VGPS×TGPS          (2)
とすることができる(ステップS106)。尚、(2)式におけるGPS速度VGPSはベクトルとする。また、予測位置は、このように現在位置、GPS速度と更新周期から求めるため、初期時には適宜、初期設定されたもの、またはGPS受信機22から得られたGPS位置とするとよい。
 一方、位置飛びが発生した場合(ステップS104でyes)、補正位置算出手段52によって、補正位置ベクトルが求められる(ステップS107)。この補正位置ベクトルは、位置飛びが発生した状況において、GPS位置をそのまま出力位置データとするのではなく、更新周期TGPSに比較して長い時間T1(例えば、20~30s)をかけて漸次GPS位置に近づくように補正するものとする。このように補正する理由は、位置飛びを発生したGPS位置データが必ずしも正しいデータであるとは限らず、また、急激に出力位置データを変化させることは好ましくない一方で、適当な時間内で出力位置データをGPS位置に収束させる必要があるからである。
 具体的には、補正位置ベクトルの大きさは、予測位置とGPS位置との距離|Δ|を更新周期よりも長い第1時定数T1の時間をかけて0にすると想定した場合の1回の更新タイミング当たり分とし、
 補正位置ベクトル=(Δ/T1)×TGPS         (3)
とすることができる。尚、(3)式におけるΔはベクトルとする。
 次いで、現在位置算出手段48により、現在位置が予測位置と補正位置ベクトルとから求められる。即ち、予測位置から補正位置ベクトル分だけ移動させたものが、出力位置データとなる(ステップS108)。
 以降のいずれかの更新タイミングで、GPS位置と予測位置との距離|Δ|が規定の閾値Δth1以内になったときに(ステップS104でno)、現在位置算出手段48によって、現在位置はGPS位置とされるので、GPS位置に収束させることができる。
 以上のような処理を行った場合の出力位置データの変遷を図4に示す。図中において、(n)は、更新タイミングを表している。更新タイミングn-1までは位置飛びが発生していないために、GPS位置が現在位置即ち出力位置となっているが、更新タイミングnで位置飛びが発生すると、補正位置ベクトル分だけ、予測位置からGPS位置に近づいた位置を現在位置として、漸次、GPS位置に近づけており(更新タイミングn+1)、そして、更新タイミングn+2において、位置飛びが解消されたために、GPS位置が現在位置即ち出力位置となる。
 このように、位置飛びが発生したときに、更新周期TGPSよりも長い時間T1をかけて漸次補正していくために、突発的なGPS位置データの変化にすぐに追随することなく、一方で、除々にGPS位置データに出力位置データを近づけていくために、出力位置データを円滑に変化させることができ、システムを安定的に動作させることができる。また、任意には、位置飛び判定手段46は、(1)式が連続して2回以上の更新タイミングに亘って成り立ったときに、位置飛びと判定するようにして、出力位置データをより慎重に変化させるようにすることも可能である。
 尚、この例では、GPS速度を用いて予測位置を求めていたが、これに限らず、GPS速度の代わりにその他の車速センサといった速度センサを用いて予測位置を求めることも可能である。
(第2実施形態)
 図5~図9は、本発明の第2実施形態を表している。前実施形態と同一/同様の部材は同一の符号を付し、その詳細説明を省略する。
 衛星航法システムによって更新されるデータの更新周期は、通常比較的長いため(例えば、200ms程度)、移動体の瞬間的な変化に対して衛星航法システムによって得られるデータだけで現在位置データを出力すると、遅れが生じてしまうおそれがある。
 そこで、この実施形態ではより更新周期が短い(例えば、10ms程度)慣性計測装置24を用いて、GPS受信機22から得られるGPS位置を補間する。
 このため、本実施形態による位置出力装置を用いた位置測定システムは、慣性航法システムを構成する慣性計測装置24を備える。また、図6に示すように、位置出力装置26は、慣性データ取込手段42としても機能する。
 慣性計測装置24は、図7に示すように、3軸まわりの角速度をそれぞれ検出するジャイロ30X、30Y、30Z、3軸方向の加速度をそれぞれ検出する加速度計32X、32Y、32Z、及び磁気方位角を検出する磁気方位センサ34のセンサと、演算手段36とを備える。
 演算手段36は、一定の更新周期(この周期をTINSとする)で、ジャイロ30X、30Y、30Zから出力されるジャイロ信号、加速度計32X、32Y、32Zから出力される加速度信号、及び磁気方位センサ34から出力される磁気方位信号が入力されて、センサが取り付けられた移動体の座標系(ボディ座標系という)からX軸方向が北方向で且つZ軸方向が重力方向に一致している座標系(ローカル座標系という)へ変換する座標変換行列を演算し、座標変換を行って加速度を積分することで速度(慣性速度VINSと称する)を求め、さらに速度を積分することにより位置(慣性位置と称する)を求めて、出力している。
 この演算手段36において、座標変換行例を演算する際に、例えば、特許第4615287号に開示されるように、加速度計32により検出された重力加速度及びGPS受信機22からの移動体のGPS速度VGPSを用いて運動加速度の影響を除去してレベル誤差を修正し、且つ、GPS受信機22からのGPS方位及び磁気方位センサ34からの磁気方位を用いて方位誤差を修正することで、各誤差を除去することができる。
 次に、位置出力装置26の各手段による処理を、図8を参照しながら説明するが、主として図3と異なる点を説明する。
 この例では、位置飛びが発生したか否かを表す位置飛び発生フラグFlgを導入しており、このフラグの初期値が0に設定される(ステップS201)。ここで、位置飛び発生フラグFlgは1が位置飛び発生有り、0が位置飛び発生無し、をそれぞれ表すものとする。
 そして、慣性データ取込手段42は、慣性計測装置24からのデータの更新周期TINSで更新される慣性速度VINSを含む慣性データを取り込み、データ記憶手段54に格納する(ステップS202、S203)。
 また、GPSデータ取込手段44は、GPS受信機22からの更新周期TGPSで更新されるGPS受信機22からのGPS速度VGPS、GPS方位及びGPS位置を含むGPSデータを取り込み、データ記憶手段54に格納する(ステップS204、S205)。取り込まれたGPS速度VGPSは、前述の通り、慣性計測装置24の修正に用いられるために慣性計測装置24に取り込まれる(ステップS206)。
 GPS受信機22からのデータが更新されておらず、位置飛びが発生していない場合は(ステップS204及びステップS207がいずれもno)、ステップS208に進み、現在位置算出手段48によって、現在位置は予測位置算出手段50で既に求めていた予測位置とされ、予測位置が出力位置データとなる(ステップS208)。
 次いで、予測位置算出手段50によって、次の更新タイミングのための移動体の予測位置が求められ、データ記憶手段54に格納される。ここで、予測位置は、現在位置から慣性速度VINSと更新周期TINSから求めることができる。即ち、
 予測位置=現在位置+VINS×TINS          (4)
とすることができる(ステップS209)。尚、(4)式における慣性速度VINSはベクトルとする。
 但し、予測位置算出手段50は、演算手段36で各更新タイミングで得られる慣性位置を取り込み、この慣性位置を予測位置とするか、または慣性位置を用いて予測位置を求めることとしてもよい。
 GPS受信機22からのGPSデータが更新された場合には、位置飛び判定手段46により位置飛びが発生したか否かが判定され(ステップS211、S212)、位置飛びが発生しておらず、且つ、前回の更新タイミングで位置飛びが発生していない場合、即ち、位置飛び発生フラグがFlg=0である場合には、現在位置はGPS位置とされ、GPS位置が出力位置データとなり(ステップS213)、位置飛び発生フラグがFlg=0とされ(ステップS214)、予測位置が(4)式から求められる(ステップ209)。   
 以降の処理では、位置飛びが発生しない条件下で現在位置算出手段48によって現在位置は、GPSデータが更新されると、GPS位置にされ(ステップS213)、GPSデータが更新されておらず慣性データが更新されたタイミングにおいては、予測位置にされる(ステップS208)。即ち、原則的にはGPS位置が現在位置として出力されるが、それ以外の処理タイミングにおいては、慣性計測装置24で得られるデータに基づき、現在位置の補間がなされることとなる。
 一方、位置飛びが発生した場合には、補正位置算出手段52によって補正位置(補正位置ベクトル)が求められる(ステップS215)。
 具体的には、補正位置ベクトルは、
 補正位置ベクトル=(Δ/T1)×TINS         (5)
とすることができる。尚、(5)式におけるΔはベクトルとする。
 そして、位置飛び発生フラグFlg=1とされて(ステップS216)、現在位置算出手段48により、現在位置が補正位置ベクトルと予測位置から求められる(ステップS210)。
 また、位置飛びが発生した後、GPSデータが更新されておらず慣性データが更新されたタイミングにおいては、予測位置を上記(5)式で求めた補正位置ベクトルで補正した位置が現在位置として出力されて(ステップS210)、補間がなされる。補正位置ベクトルは、GPSデータが更新されるまでは一定である。
 以上のような処理を行った場合の出力位置データの変遷を図9に示す。図中において、(n)は、更新タイミングを表している。更新タイミングn-2、n-1までは位置飛びが発生されておらずGPSデータも更新されていないために、予測位置が現在位置即ち出力位置となっているが、更新タイミングnで更新されたGPSデータにより位置飛びが発生したと判定されると、補正位置ベクトル分だけ、予測位置からGPS位置に近づいた位置を現在位置として、漸次、GPS位置に近づけており(更新タイミングn+1)、そして、更新タイミングn+mにおいて、位置飛びが解消されると、GPS位置が現在位置即ち出力位置となる。
 この第2実施形態によれば、第1実施形態の作用・効果に加えて、GPSデータの補間を行うことができ、移動体の位置の急激な変化に追従することができる。
(第3実施形態)
 図10~図12は、本発明の第3実施形態を表している。前実施形態と同一/同様の部材は同一の符号を付し、その詳細説明を省略する。
 この実施形態では、前実施形態に対してさらに現在位置を円滑に出力できるようにしたものであり、位置出力装置26は、さらに、位置戻り判定手段56と、第2補正位置算出手段58と、して機能する。
 前実施形態では、位置飛びが発生した後、補正によりまたはGPS位置が元に戻り、位置飛びが解消され、GPS位置と予測位置との間の距離|Δ|が閾値Δth1以内となると、現在位置算出手段48はGPS位置を現在位置として出力するようにしており、この際に出力位置データが急に変化するおそれがある。
 そこで、第3実施形態では、位置飛びが発生した後に、位置飛びが解消された場合でも、GPS位置と予測位置との距離|Δ|がより小さくなるまでは、補正を継続することとする。このとき好ましくは、GPS位置により早く収束させるような補正を行うとよい。
 具体的には、位置飛び判定手段46が位置飛びが発生していないと判定した場合、即ち、(1)式が成立しないと判定した場合(ステップS212でno)、位置戻り判定手段56が、位置飛び発生フラグflgが1であり且つGPS位置と予測位置との間の距離|Δ|が、規定の第2閾値Δth2(<Δth1、例えば、数cm)より大きいか否かを判定し(ステップS220)、判定結果がyesである場合には、第2補正位置算出手段58が、補正位置ベクトル(第2補正位置ベクトル)を求める(ステップS222)。
 この場合の補正位置ベクトルは、予測位置とGPS位置との距離|Δ|を更新周期よりも長いけれども第1時定数T1よりも短い第2時定数T2(<T1)の時間をかけて0にすると想定した場合の1回の更新タイミング当たり分とし、具体的には、補正位置ベクトルは、
 補正位置ベクトル=(Δ/T2)×TINS            (6)
とすることができる。尚、(6)式におけるΔはベクトルとする。
 そして、以降の更新タイミングにおいて、GPS位置と予測位置との間の距離|Δ|が、第2閾値Δth2以内になったときに(ステップS220でno)、現在位置算出手段48によって、現在位置はGPS位置とされ、GPS位置が出力位置データとなる(ステップS213)。そして、位置飛び発生フラグflgを0に戻す(ステップS214)。   
 以上のような処理を行った場合の出力位置データの変遷を図12に示す。図中において、(n)は、更新タイミングを表している。位置飛び発生後に、更新タイミングn+mにおいて、GPS位置と予測位置との距離が|Δth1|より小さいが|Δth2|より大きい場合には、それまでの補正位置ベクトルよりも大きな補正位置ベクトルで補正することにより、出力位置データをより円滑にGPS位置へと収束させることができる。
 尚、この位置戻り判定手段56及び第2補正位置算出手段58は、慣性データを用いない第1実施形態においても同様に適用可能である。
26 位置出力装置
42 慣性データ取込手段(慣性航法データ取込手段)
44 GPSデータ取込手段(衛星航法データ取込手段)
46 位置飛び判定手段
48 現在位置算出手段
50 予測位置算出手段
52 補正位置算出手段
56 位置戻り判定手段
58 第2補正位置算出手段
1 第1時定数
2 第2時定数
GPS、TINS 更新周期

Claims (6)

  1.  衛星航法システムによって得られる衛星航法測定位置のデータを用いて、対象の現在位置データを出力する位置出力装置であって、
     衛星航法システムで更新される衛星航法測定位置のデータを取り込む衛星航法データ取込手段と、
     現在位置を更新タイミングで順次算出して現在位置データとして出力する現在位置算出手段と、
     前の更新タイミングにおける現在位置から対象の予測位置を求める予測位置算出手段と、
     前記予測位置と前記衛星航法測定位置との位置差から位置飛びが発生したかを判定する位置飛び判定手段と、
     位置飛びが発生したと判定された場合に、現在位置を補正するための補正位置ベクトルを算出する補正位置算出手段と、
     位置飛びが発生した後に位置飛びが発生していないと判定された場合に、前記予測位置と前記衛星航法測定位置との間の距離が設定距離より大きいかを判定する位置戻り判定手段と、
     前記予測位置と前記衛星航法測定位置との間の距離が設定距離より大きいと判定された場合に、現在位置を補正するための第2補正位置ベクトルを算出する第2補正位置算出手段と、
    を備え、
     前記補正位置算出手段は、前記予測位置と前記衛星航法測定位置との位置差を、更新周期よりも長い時間をかけて解消するとした場合の1回の更新タイミング当たりの補正位置ベクトルを算出しており、
     前記第2補正位置算出手段は、前記予測位置と前記衛星航法測定位置との位置差を、更新周期よりも長い時間であるが、前記補正位置算出手段における算出で用いられる時間よりも短い時間をかけて解消するとした場合の1回の更新タイミング当たりの第2補正位置ベクトルを算出しており、
     前記現在位置算出手段は、位置飛びが発生したと判定された場合に、前記予測位置を前記補正位置ベクトルによって補正したものを現在位置とするとともに、位置飛びが発生した後に位置飛びが発生していないと判定され、かつ前記予測位置と前記衛星航法測定位置との間の距離が設定距離より大きいと判定された場合に、前記予測位置を前記第2補正位置ベクトルによって補正したものを現在位置とすることを特徴とする衛星航法システムを用いた位置出力装置。
  2.  前記補正位置ベクトルの大きさは、前記予測位置と前記衛星航法測定位置との距離に更新周期を第1時定数で除算した値を乗算したものであることを特徴とする請求項1記載の衛星航法システムを用いた位置出力装置。
  3.  前記第2補正位置ベクトルの大きさは、前記予測位置と前記衛星航法測定位置との距離に更新周期を第2時定数で除算した値を乗算したものとし、第2時定数<第1時定数であることを特徴とする請求項2記載の衛星航法システムを用いた位置出力装置。
  4.  慣性航法システムで更新される慣性航法測定速度のデータを取り込む慣性航法データ取込手段と、をさらに備え、
     前記予測位置算出手段は、前記慣性航法測定速度を用いて予測位置を算出することを特徴とする請求項1ないし3のいずれか1項に記載の衛星航法システムを用いた位置出力装置。
  5.  位置飛びが発生していないと判定され且つ前記衛星航法測定位置データが更新されていない間は、前記現在位置算出手段は、前記予測位置を前記現在位置とすることを特徴とする請求項1ないし4のいずれか1項に記載の衛星航法システムを用いた位置出力装置。
  6.  位置飛びが発生していないと判定され且つ前記衛星航法測定位置データが更新された場合は、前記現在位置算出手段は、前記衛星航法測定位置を前記現在位置とすることを特徴とする請求項1ないし5のいずれか1項に記載の衛星航法システムを用いた位置出力装置。
PCT/JP2012/081635 2011-12-09 2012-12-06 衛星航法システムを用いた位置出力装置 WO2013084987A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12854590.2A EP2790036B1 (en) 2011-12-09 2012-12-06 Position output device using satellite navigation system
US14/363,680 US9121929B2 (en) 2011-12-09 2012-12-06 Position output device using satellite navigation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011270640A JP5122678B1 (ja) 2011-12-09 2011-12-09 衛星航法システムを用いた位置出力装置
JP2011-270640 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013084987A1 true WO2013084987A1 (ja) 2013-06-13

Family

ID=47692877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081635 WO2013084987A1 (ja) 2011-12-09 2012-12-06 衛星航法システムを用いた位置出力装置

Country Status (4)

Country Link
US (1) US9121929B2 (ja)
EP (1) EP2790036B1 (ja)
JP (1) JP5122678B1 (ja)
WO (1) WO2013084987A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058261A1 (ja) * 2021-10-08 2023-04-13 東京計器株式会社 位置補正装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150241220A1 (en) * 2014-02-27 2015-08-27 Honeywell International Inc. Filtering gnss-aided navigation data to help combine sensor and a priori data
JP6413946B2 (ja) * 2015-06-16 2018-10-31 株式会社デンソー 測位装置
DE102016213893A1 (de) * 2016-07-28 2018-02-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen der Absolutposition eines Kraftfahrzeugs, Ortsbestimmungssystem, Kraftfahrzeug
JP6395771B2 (ja) * 2016-08-04 2018-09-26 三菱電機株式会社 車両位置検出装置、自動操舵制御装置、車両位置検出方法および自動操舵制御方法
CN106813663B (zh) * 2017-02-24 2020-02-14 北京航天自动控制研究所 一种惯性导航数据与卫星导航数据同步方法
CN110678781B (zh) * 2017-06-09 2023-07-21 松下知识产权经营株式会社 定位方法和定位终端
JP6992352B2 (ja) * 2017-09-20 2022-01-13 セイコーエプソン株式会社 情報処理装置
JP6975948B2 (ja) * 2018-03-13 2021-12-01 パナソニックIpマネジメント株式会社 管理装置、管理システム、および位置補正方法
US11898850B2 (en) 2019-05-08 2024-02-13 Hitachi Astemo, Ltd. Vehicle position detection device and parameter set creation device for vehicle position detection
FR3102879A1 (fr) * 2019-10-30 2021-05-07 Renault S.A.S Système et procédé de gestion de la position d’un véhicule autonome.
CN113820658A (zh) * 2021-08-18 2021-12-21 上海闻泰电子科技有限公司 无线定位方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148984A (ja) * 1987-12-07 1989-06-12 Matsushita Electric Ind Co Ltd Gps受信機の測位計算方法
JPH08313278A (ja) * 1995-05-19 1996-11-29 Pioneer Electron Corp 測位データ補正装置及び測位データ補正方法
JP2812795B2 (ja) 1990-09-13 1998-10-22 株式会社日立製作所 移動体ナビゲーション装置
JP3984112B2 (ja) 2002-01-18 2007-10-03 アルパイン株式会社 車両位置修正装置および距離しきい値設定方法
JP2009097898A (ja) 2007-10-15 2009-05-07 Seiko Epson Corp 測位方法、プログラム、測位装置及び電子機器
JP4615287B2 (ja) 2004-11-01 2011-01-19 東京計器株式会社 方位姿勢検出装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4377284B2 (ja) * 2004-06-02 2009-12-02 株式会社ザナヴィ・インフォマティクス 車載ナビゲーション装置
JP2006162292A (ja) 2004-12-02 2006-06-22 Sakai Lng Kk 位置測定システムおよびそれを備えた操船支援システム
JP2010117148A (ja) * 2008-11-11 2010-05-27 Seiko Epson Corp 位置算出方法及び位置算出装置
US8447519B2 (en) * 2010-11-10 2013-05-21 GM Global Technology Operations LLC Method of augmenting GPS or GPS/sensor vehicle positioning using additional in-vehicle vision sensors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148984A (ja) * 1987-12-07 1989-06-12 Matsushita Electric Ind Co Ltd Gps受信機の測位計算方法
JP2812795B2 (ja) 1990-09-13 1998-10-22 株式会社日立製作所 移動体ナビゲーション装置
JPH08313278A (ja) * 1995-05-19 1996-11-29 Pioneer Electron Corp 測位データ補正装置及び測位データ補正方法
JP3984112B2 (ja) 2002-01-18 2007-10-03 アルパイン株式会社 車両位置修正装置および距離しきい値設定方法
JP4615287B2 (ja) 2004-11-01 2011-01-19 東京計器株式会社 方位姿勢検出装置
JP2009097898A (ja) 2007-10-15 2009-05-07 Seiko Epson Corp 測位方法、プログラム、測位装置及び電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2790036A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058261A1 (ja) * 2021-10-08 2023-04-13 東京計器株式会社 位置補正装置

Also Published As

Publication number Publication date
JP2013122406A (ja) 2013-06-20
EP2790036A1 (en) 2014-10-15
JP5122678B1 (ja) 2013-01-16
EP2790036B1 (en) 2020-01-22
EP2790036A4 (en) 2015-07-29
US20140365117A1 (en) 2014-12-11
US9121929B2 (en) 2015-09-01

Similar Documents

Publication Publication Date Title
JP5122678B1 (ja) 衛星航法システムを用いた位置出力装置
US9494428B2 (en) Attitude determination method, position calculation method, and attitude determination device
JP6077072B2 (ja) 進行方向および速度情報を提供するための方法、デバイス、モバイルデバイス、およびコンピュータ可読媒体
JP5270184B2 (ja) 衛星航法/推測航法統合測位装置
US8781776B2 (en) Position calculating method and position calculating device
JP6257865B2 (ja) 測位装置および測位方法
JP4615287B2 (ja) 方位姿勢検出装置
JP5639874B2 (ja) 運転支援装置
JP6083279B2 (ja) 移動状況情報算出方法及び移動状況情報算出装置
JP6255924B2 (ja) センサー用ic、センサーデバイス、電子機器及び移動体
JP2007240532A (ja) ナビゲーション・システム内での反復拡張カルマン・フィルタを実施する方法及び装置
EP2717014A1 (en) Position calculation method and position calculation device
JP2010112854A (ja) 歩行者用ナビゲーション装置および歩行者用ナビゲーション装置における移動方向検出方法
JP2012173190A (ja) 測位システム、測位方法
WO2012137415A1 (ja) 位置算出方法及び位置算出装置
CN113108791A (zh) 一种导航定位方法及导航定位设备
JP2012154769A (ja) 加速度検出方法、位置算出方法及び加速度検出装置
JP6701642B2 (ja) 位置推定システム、位置推定装置、位置推定方法及び位置推定プログラム
JP2012002678A (ja) 加速度算出方法、位置算出方法及び加速度算出装置
JP2019082328A (ja) 位置推定装置
JP2014219340A (ja) オフセット補正方法及びオフセット補正装置
JP2015094631A (ja) 位置算出装置及び位置算出方法
JP2013108930A (ja) 慣性航法演算方法及び慣性航法演算装置
WO2023058261A1 (ja) 位置補正装置
JP2016109608A (ja) 姿勢推定装置及び姿勢推定装置の制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854590

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14363680

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE