WO2013084696A1 - 車両のエンジン自動制御装置 - Google Patents

車両のエンジン自動制御装置 Download PDF

Info

Publication number
WO2013084696A1
WO2013084696A1 PCT/JP2012/079803 JP2012079803W WO2013084696A1 WO 2013084696 A1 WO2013084696 A1 WO 2013084696A1 JP 2012079803 W JP2012079803 W JP 2012079803W WO 2013084696 A1 WO2013084696 A1 WO 2013084696A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
threshold value
vehicle
limit threshold
operation amount
Prior art date
Application number
PCT/JP2012/079803
Other languages
English (en)
French (fr)
Inventor
森 浩一
元之 服部
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP12855046.4A priority Critical patent/EP2789833B1/en
Priority to CN201280059640.9A priority patent/CN103958863B/zh
Priority to US14/363,016 priority patent/US9470156B2/en
Publication of WO2013084696A1 publication Critical patent/WO2013084696A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0822Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to action of the driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0026Lookup tables or parameter maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0801Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/10Parameters used for control of starting apparatus said parameters being related to driver demands or status
    • F02N2200/102Brake pedal position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present invention relates to an engine automatic control device that automatically stops and restarts an engine during traveling.
  • JP4374805B As a vehicle engine automatic control device, a technique described in JP4374805B is disclosed. This device stops the engine to improve fuel efficiency when the brake operation amount is equal to or greater than the engine stop determination threshold even when the vehicle is running, and the brake operation amount is equal to or less than the engine start determination threshold. When the engine restarts.
  • the engine (re-) start determination threshold is fixed regardless of the deceleration at a vehicle speed higher than a predetermined vehicle speed at which it is determined that the vehicle is in a traveling state.
  • the engine was restarted against the intention and the fuel consumption could not be improved sufficiently.
  • the driver's brake operation amount fluctuates, and the brake operation amount tends to be small so that the vehicle can be stopped smoothly by reducing the deceleration immediately before stopping.
  • the brake operation amount may easily become equal to or less than the engine start determination threshold and the engine may restart.
  • the present invention has been made paying attention to the above problem, and an object thereof is to provide a vehicle engine automatic control device that can further improve fuel efficiency.
  • An automatic control device for a vehicle includes a brake operation amount detection unit that detects a driver's brake operation amount, and stops the engine when the detected brake operation amount exceeds a first threshold during coasting. And an engine stop / restart means for restarting the engine when the detected brake operation amount becomes equal to or less than the first threshold after the engine stops, and a threshold setting for setting the first threshold smaller as the deceleration decreases. Means.
  • FIG. 1 is a system diagram illustrating a configuration of a vehicle engine automatic control apparatus according to a first embodiment.
  • FIG. 2 is a flowchart illustrating an engine automatic stop / restart control process according to the first embodiment.
  • FIG. 3 is a time chart illustrating the operation of the coast stop permission threshold setting process during coasting according to the first embodiment.
  • FIG. 4 is a time chart illustrating the operation of the coast stop permission threshold value setting process during coasting according to the first embodiment.
  • FIG. 5 is a flowchart illustrating an engine automatic stop / restart control process according to the second embodiment.
  • FIG. 6 is a time chart illustrating the operation of the coast stop permission threshold value setting process during coasting according to the second embodiment.
  • FIG. 7 is a flowchart illustrating an engine automatic stop / restart control process according to the third embodiment.
  • FIG. 8 is a time chart illustrating the operation of the coast stop permission threshold value setting process during coasting according to the third embodiment.
  • FIG. 1 is a system diagram illustrating a configuration of a vehicle engine automatic control apparatus according to a first embodiment.
  • a torque converter 2 is provided on the output side of the engine 1 which is an internal combustion engine.
  • a belt type continuously variable transmission 3 is connected to the output side of the torque converter 2.
  • the rotational driving force output from the engine 1 is input to the belt-type continuously variable transmission 3 via the torque converter 2, and is transmitted to the drive wheels 4 after being shifted by a desired gear ratio.
  • the engine 1 is provided with a starter 1a for starting the engine and an alternator 1b for generating power.
  • the starter 1a is provided with a starter motor.
  • the starter 1a drives the starter motor using the power supplied from the in-vehicle battery 1c based on the engine start command, and performs engine cranking. Further, when the fuel is injected and then the engine 1 can rotate independently, the starter motor is stopped.
  • the alternator 1b generates electric power by being rotationally driven by the engine 1, and supplies the generated electric power to the in-vehicle battery 1c and the like.
  • Torque converter 2 performs torque amplification at low vehicle speeds.
  • the torque converter 2 also has a lock-up clutch.
  • CSVSP vehicle speed
  • the torque converter 2 is engaged, and the output shaft of the engine 1 and the belt-type continuously variable transmission 3 are engaged. Restricts relative rotation with the input shaft.
  • the belt type continuously variable transmission 3 is composed of a starting clutch, a primary pulley and a secondary pulley, and a belt stretched over these pulleys, and a desired gear ratio is achieved by changing the pulley groove width by hydraulic control. To do.
  • An oil pump 30 driven by the engine 1 is provided in the belt type continuously variable transmission 3. When the engine is operated, the oil pump 30 is used as a hydraulic pressure source to supply the converter pressure of the torque converter 2 and the lockup clutch pressure, and the pulley pressure and clutch engagement pressure of the belt type continuously variable transmission 3 are supplied.
  • the belt type continuously variable transmission (CVT) 3 is provided with an electric oil pump 31 in addition to the oil pump 30.
  • the electric oil pump 31 is actuated so that necessary hydraulic pressure can be supplied to each actuator. Therefore, even when the engine is stopped, the hydraulic oil leakage can be compensated and the clutch engagement pressure can be maintained.
  • the operating state of the engine 1 is controlled by the engine control unit 10.
  • the engine control unit 10 includes a brake signal from a brake switch 11 that outputs an ON signal by a driver's brake pedal operation, an accelerator signal from an accelerator pedal opening sensor 12 that detects a driver's accelerator pedal operation amount, A brake operation amount signal (master cylinder pressure) from a master cylinder pressure sensor 13 for detecting a master cylinder pressure generated based on a brake operation amount (brake pedal operation amount), and wheels from a wheel speed sensor 14 provided for each wheel.
  • a speed (synonymous with a vehicle speed signal when detecting the vehicle speed from the wheel speed), a CVT state signal from the CVT control unit 20 described later, and signals such as engine water temperature, crank angle, and engine speed are input.
  • the engine control unit 10 starts or automatically stops the engine 1 based on the various signals.
  • a brake operation amount is detected by detecting a brake operation amount using a sensor for detecting a brake pedal stroke amount or a brake pedal depression force, or a sensor for detecting a wheel cylinder pressure.
  • the intention may be detected and is not limited to the master cylinder pressure sensor 13.
  • the CVT control unit 20 transmits and receives engine operation state and CVT state signals to and from the engine control unit 10, and controls the gear ratio of the belt type continuously variable transmission 3 based on these signals.
  • the start clutch is engaged
  • the gear ratio is determined from the gear ratio map based on the accelerator pedal opening and the vehicle speed, and each pulley pressure is controlled.
  • the lockup clutch is released.
  • the lockup clutch is engaged and the engine 1 and the belt type continuously variable transmission 3 are directly connected. It is said.
  • the electric oil pump 31 is operated to ensure the necessary hydraulic pressure.
  • the vehicle automatic engine control apparatus (engine control unit 10) according to the first embodiment stops engine idling when predetermined conditions (various conditions such as the brake pedal being fully depressed) are satisfied when the vehicle is stopped.
  • the so-called idling stop control is performed.
  • idling stop control since a well-known structure should just be implemented suitably, detailed description is abbreviate
  • the engine 1 is stopped. Perform coast stop control. That is, when the driver is coasting without operating the accelerator pedal, the fuel injection is stopped in a so-called coasting state (including a state where the brake pedal is operated).
  • deceleration fuel cut control During the deceleration fuel cut control, the fuel injection is stopped, and the engine speed is maintained via the lock-up clutch by the coast torque transmitted from the drive wheel 4.
  • the lock-up clutch is released, and the engine 1 stops unless fuel is injected. Therefore, conventionally, deceleration fuel cut control is stopped at the timing when the lockup clutch is released, fuel injection is resumed to maintain engine self-sustained rotation, and then the engine is stopped after the vehicle is completely stopped. It was like that.
  • fuel consumption can be improved if the fuel at the time of restarting fuel injection can be further suppressed in the process of restarting fuel injection once and restarting the engine from the running state where fuel injection is stopped in this way. It becomes. Therefore, in the coast stop control according to the first embodiment, when a predetermined condition is satisfied, the engine 1 is kept stopped without restarting the fuel injection (no fuel injection or the like is performed). Shifting to idling stop control is possible.
  • One condition when performing coast stop control is that the driver's brake operation amount is within a predetermined range.
  • the reason for setting the brake operation amount as one of the conditions is that the start or end (stop) of the coast stop control should be performed based on the driver's braking intention.
  • the operating engine 1 is stopped and coast stop control is performed.
  • the coast stop control is started, if the brake operation amount decreases and falls below the lower threshold value, the driver's non-braking intention (intention to continue running) can be inferred. Therefore, the stopped engine 1 is restarted and the coast stop control is performed. End (cancel).
  • the lower limit threshold value is provided as the threshold value of the brake operation amount for stopping / restarting the engine (starting / ending coast stop control) during traveling, but an upper limit value that is larger than the lower limit threshold value.
  • a threshold was set. That is, even if the vehicle speed is less than the predetermined vehicle speed CSVSP, the coast stop control is stopped when the brake operation amount is equal to or greater than the upper limit threshold.
  • the stopped engine 1 is restarted and the coast stop control is ended (stopped).
  • the threshold value of the brake operation amount as a condition for stopping / restarting the engine 1 is separately provided on the large side and the small side of the brake operation amount, and the predetermined range in which the brake operation amount is sandwiched between the two threshold values. If it is within (between the upper limit threshold and the lower limit threshold), the engine 1 is stopped.
  • the upper threshold is set for the following reasons.
  • the transmission ratio of the transmission (belt-type continuously variable transmission 3) is set to the low speed stage at the time of start (the drive wheel is rotating and the transmission can be changed) until the vehicle stops. It is necessary to shift to the lowest level.
  • a vehicle provided with a transmission that changes speed using the discharge pressure of the oil pump 30 driven by the engine 1 in order to change speed quickly before the vehicle stops as described above, It is necessary to secure the discharge amount.
  • a relatively high pulley pressure needs to be supplied for shifting the belt type continuously variable transmission 3. Therefore, it is not preferable to stop the engine 1 that is the drive source of the oil pump 30.
  • an engine stop determination threshold value (the upper limit threshold value BRKIN of the brake operation amount that permits coast stop control) is set in consideration of the above circumstances (not limited to all), and the brake operation amount falls below the upper limit threshold value BRKIN. And the engine 1 is stopped, and the engine 1 is restarted when the brake operation amount becomes equal to or greater than the upper limit threshold value BRKIN.
  • the vehicle can be stopped as it is, or the brake pedal can be released again and the vehicle can restart.
  • the brake pedal When driving in a traffic jam, it is conceivable to operate the brake pedal gently to continue the driving state. In this case, if the engine 1 is stopped carelessly, the creep torque generated by the engine 1 cannot be used, and the engine stop and restart are repeated, which may cause the driver to feel uncomfortable.
  • the driver's brake operation amount fluctuates during deceleration traveling toward the stop, and the brake operation amount tends to decrease as the vehicle speed decreases. For example, when it is desired to stop slowly, such as when stopping at a red light, the brake fluid pressure required for deceleration decreases as the vehicle speed decreases, so the driver reduces the amount of brake operation.
  • the engine 1 is inadvertently restarted in response to a decrease in the brake operation amount, the engine 1 is restarted against the driver's intention to stop, and the fuel consumption may not be sufficiently improved. .
  • an engine start determination threshold value (a lower limit threshold value BRKOUT of a brake operation amount that permits coast stop control) is set in consideration of the above circumstances.
  • the brake operation amount exceeds the lower limit threshold value BRKOUT, the engine 1 is stopped and the brake operation amount is set.
  • the value falls below the lower threshold BRKOUT the engine 1 is restarted.
  • hysteresis may be provided for the upper limit threshold value BRKIN and the lower limit threshold value BRKOUT, respectively.
  • FIG. 2 is a flowchart showing an engine automatic stop / restart control process executed by the engine control unit 10 according to the first embodiment. This process is repeatedly executed at predetermined intervals during traveling. Whether or not the vehicle is traveling is determined, for example, based on whether or not the vehicle speed VSP is equal to or less than a predetermined value VSP0 representing the vehicle stop state.
  • the predetermined value VSP0 may be zero, may be an extremely low vehicle speed range of about 1 to 2 km / h, and may be any value as long as it can be determined that the vehicle is almost stopped. Note that other conditions that do not appear in this flowchart may be additionally set as appropriate.
  • step S101 it is determined whether or not the permission condition for engine automatic stop / restart control is satisfied, specifically, whether or not the vehicle is in a coasting state (the accelerator pedal operation amount is zero) and the brake pedal is operated. To do.
  • the process proceeds to step S102, and otherwise, the process proceeds to step S113 and the engine operation state is continued.
  • step S102 the vehicle speed VSP, the deceleration DVSP, the brake operation amount (master cylinder pressure) BRKP, the upper limit threshold value (idling stop permission upper limit threshold value) and the lower limit threshold value (idling stop permission lower limit threshold value) of the brake operation amount BRKP that permits idling stop control. ), And an upper limit threshold value (coast stop permission upper limit threshold value BRKIN) and a lower limit threshold value (coast stop permission lower limit threshold value BRKOUT) of the brake operation amount BRKP permitting the coast stop control are read, and the process proceeds to step S103.
  • an upper limit threshold value coast stop permission upper limit threshold value BRKIN
  • a lower limit threshold value coast stop permission lower limit threshold value BRKOUT
  • the vehicle speed VSP may be an average value of each wheel speed detected by the wheel speed sensor 14 or may be an average value of the driven wheel speed, and is not particularly limited.
  • the idling stop permission upper limit threshold is a value preset in the system, and is a fixed value in the first embodiment.
  • the coast stop permission upper limit threshold value BRKIN is set smaller as the deceleration DVSP is higher.
  • the coast stop permission upper limit threshold value BRKIN is used when the deceleration DVSP is high (DVSP> CSDSP) and the high deceleration zone coast stop permission upper limit threshold value BRKINL and the deceleration DVSP is low (DVSP ⁇ CSDSP).
  • the high deceleration zone coast stop permission upper limit threshold value BRKINL is set to a value smaller than the reduced speed zone coast stop permission upper limit threshold value BRKINH.
  • the coast stop permission lower limit threshold value BRKOUT is set larger as the deceleration DVSP is higher.
  • the coast stop permission lower limit threshold value BRKOUT is used when the deceleration DVSP is high (DVSP> CSDSP) and used when the deceleration DVSP is low (DVSP ⁇ CSDSP).
  • the low deceleration zone coast stop permission lower threshold BRKOUTL is set to a value smaller than the high deceleration zone coast stop permission lower threshold BRKOUTH.
  • the coast stop permission upper limit threshold value BRKIN is set larger than the coast stop permission lower limit threshold value BRKOUT, and the relationship between the threshold values is BRKINHKI> BRKINL> BRKOUTH> BRKOUTL.
  • the idling stop permission lower threshold is set to a value larger than the coast stop permission lower threshold BRKOUT.
  • the idling stop is performed when the vehicle is stopped.
  • the creep torque is output, but when the braking force by the brake is low, the vehicle is inadvertently caused by the creep torque. This is because it may move.
  • the coast stop state is during vehicle deceleration (that is, during travel). In this state, the aim is to improve fuel efficiency by stopping the engine as much as possible. This is because even if the engine 1 is restarted before the vehicle is stopped, it is difficult for the driver to feel a pop-out feeling due to creep torque while the vehicle is running.
  • step S103 it is determined whether or not the vehicle speed VSP is lower than a predetermined vehicle speed CSVSP that permits engine stop. When the vehicle speed falls below the predetermined vehicle speed CSVSP, the process proceeds to step S104. Otherwise, the process proceeds to step S113, and the engine operating state is continued.
  • step S104 it is determined whether or not the deceleration exceeds a predetermined deceleration CSDVSP. When it exceeds the predetermined deceleration CSDVSP, the process proceeds to step S105, and otherwise, the process proceeds to step S109.
  • step S105 it is determined whether or not the brake operation amount BRKP is below the high deceleration zone coast stop permission upper limit threshold BRKINL. When it falls below the upper limit threshold value BRKINL, the process proceeds to step S106, and otherwise, the process proceeds to step S108, and the engine start or operation state is continued.
  • step S106 it is determined whether or not the brake operation amount BRKP exceeds the high deceleration zone coast stop permission lower limit threshold value BRKOUTH. When it exceeds the lower limit threshold value BRKOUTH, the process proceeds to step S107 to stop the engine, and otherwise, the process proceeds to step S108 to continue the engine start or operation state.
  • step S109 it is determined whether or not the brake operation amount BRKP is below a reduction speed zone coast stop permission upper limit threshold BRKINH. When it falls below the upper limit threshold value BRKINH, the process proceeds to step S110, and otherwise, the process proceeds to step S112 to continue the engine start or operation state.
  • step S110 it is determined whether or not the brake operation amount BRKP exceeds the reduced speed zone coast stop permission lower limit threshold value BRKOUTL.
  • the routine proceeds to step S111 to stop the engine, and otherwise, the routine proceeds to step S112 to continue the engine start or operating state.
  • FIG. 3 is a time chart showing the operation of the setting process of the coast stop permission lower limit threshold value BRKOUT and the coast stop permission upper limit threshold value BRKIN during the coast running of the first embodiment.
  • FIG. 3 shows, in order from the top, changes in the brake operation amount BRKP, the deceleration DVSP, the engine speed Ne, and the vehicle speed VSP.
  • the driving state (precondition) at the first time in the time chart is a coasting driving state in which the driver releases his / her foot from the accelerator pedal during driving.
  • the vehicle speed VSP is equal to or higher than the predetermined vehicle speed CSVSP. Therefore, in the control process of FIG. 2, the flow proceeds from step S101 to S102 to S103 to S113, and the engine 1 continues to operate. Also, the brake operation amount BRKP of the driver is gradually decreasing.
  • the coast stop permission upper limit threshold value BRKIN is selected as the high deceleration zone coast stop permission upper limit threshold value BRKINL
  • the coast stop permission lower limit threshold value BRKOUT is set as the high deceleration zone.
  • the coast stop permission lower limit threshold value BRKOUTH is selected.
  • the vehicle speed VSP is less than the predetermined vehicle speed CSVSP, but the brake operation amount BRKP is equal to or greater than the high deceleration zone coast stop permission upper limit threshold BRKINL. Therefore, in the control process of FIG. 2, the flow proceeds from step S101 ⁇ S102 ⁇ S103 ⁇ S104 ⁇ S105 ⁇ S108, and the engine 1 continues to operate.
  • the brake operation amount BRKP is below the high deceleration zone coast stop permission upper limit threshold BRKINL, but is greater than or equal to the high deceleration zone coast stop permission lower threshold BRKOUTH. Therefore, in the control process of FIG. 2, the flow proceeds to steps S101 ⁇ S102 ⁇ S103 ⁇ S104 ⁇ S105 ⁇ S106 ⁇ S107, and the engine 1 is stopped. After time t12 when engine stop is started, the engine speed rapidly decreases toward zero.
  • the deceleration DVSP is equal to or less than the predetermined deceleration CSDVSP, so the coast stop permission upper limit threshold value BRKIN is selected as the reduction speed zone coast stop permission upper limit threshold value BRKINH, and the coast stop permission lower limit threshold value BRKOUT is the reduction speed zone coast value.
  • the stop permission lower threshold BRKOUTL is selected.
  • the brake operation amount BRKP falls below the reduced speed zone coast stop permission upper limit threshold value BRKINH and is greater than or equal to the reduced speed zone coast stop permission lower limit threshold value BRKOUTL. Therefore, in the control process of FIG. 2, the flow proceeds to steps S101 ⁇ S102 ⁇ S103 ⁇ S104 ⁇ S109 ⁇ S110 ⁇ S111, and the engine 1 is stopped.
  • Comparative Example 1 When the coast stop permission lower limit threshold is a fixed value regardless of deceleration: Comparative Example 1, the operation of Comparative Example 1 in which the coast stop permission lower limit threshold value BRKOUT is set to a fixed value (for example, BRKOUTH) without changing according to the deceleration DVSP will be described. Also in Comparative Example 1, the operation up to time t13 is the same as that of Example 1.
  • the coast stop permission lower limit threshold value BRKOUT is set to the high deceleration zone coast stop permission lower limit threshold value BRKOUTH after time t13 as well as time t13 (the dashed line in the brake operation amount diagram of FIG. 3).
  • the brake operation amount BRKP falls below the high deceleration zone coast stop permission lower limit threshold value BRKOUTH, so the engine 1 is restarted (dashed line in the engine speed diagram of FIG. 3). Therefore, in the comparative example, the driver intends to stop and the engine 1 is restarted even though the engine can be stopped. Therefore, fuel consumption can be sufficiently improved. Can not.
  • the coast stop permission lower limit threshold value BRKOUT is set smaller as the deceleration DVSP is lower as described above. Therefore, even if the amount of brake operation changes according to the deceleration DVSP, the engine 1 can be restarted at a more appropriate timing according to the driver's intention, so that the fuel consumption can be further improved.
  • FIG. 4 is a time chart showing the operation of the setting process of the coast stop permission lower limit threshold value BRKOUT and the coast stop permission upper limit threshold value BRKIN during the coast running of the first embodiment.
  • FIG. 4 shows, in order from the top, changes in the brake operation amount BRKP, the deceleration DVSP, the engine speed Ne, and the vehicle speed VSP.
  • the operation of the first embodiment shown in FIG. 4 is the same as that of FIG.
  • the brake operation amount BRKP falls below the reduction speed zone coast stop permission upper limit threshold BRKINH, so the engine 1 is stopped.
  • the engine speed rapidly decreases toward zero (the dashed line in the engine speed diagram in FIG. 4). Since the engine 1 is stopped and the negative pressure due to engine rotation cannot be used, the brake pedal reaction force increases and the brake operation amount decreases (the dashed line in the brake operation amount diagram of FIG. 4).
  • the deceleration DVSP decreases (the dashed line in the deceleration diagram of FIG. 4), and the braking force intended by the driver cannot be obtained sufficiently (the dashed line in the vehicle speed diagram of FIG. 4).
  • a master cylinder pressure sensor 13 that detects the brake operation amount (master cylinder pressure) of the driver, and the brake operation amount BRKP detected during coasting is a lower threshold BRKOUT (first The engine control unit 10 (engine stop / restart means for restarting the engine 1 when the detected brake operation amount BRKP becomes equal to or lower than the lower limit threshold value BRKOUT after the engine is stopped. , Threshold setting means).
  • the engine control unit 10 sets the lower limit threshold value BRKOUT smaller as the deceleration DVSP is lower. Therefore, even if the brake operation amount BRKP changes according to the deceleration DVSP, the engine 1 can be restarted at a more appropriate timing according to the driver's intention, so that the fuel consumption can be further improved. .
  • the engine control unit 10 stops and detects the engine 1 when the detected brake operation amount BRKP falls below the upper limit threshold value BRKIN (second threshold value) larger than the lower limit threshold value BROUT.
  • the brake operation amount BRKP is greater than or equal to the upper limit threshold value BRKIN, the engine 1 is operated, and the upper limit threshold value BRKIN is set smaller as the deceleration DVSP is higher. Therefore, when the deceleration DVSP is high, the brake operation amount BRKP is less likely to enter the engine stop permission range, and the braking force can be secured to continue the operation of the engine 1.
  • Example 2 Next, Example 2 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described.
  • FIG. 5 is a flowchart showing an engine automatic stop / restart control process executed by the engine control unit 10 of the second embodiment.
  • the coast stop permission upper limit threshold value BRKIN is set smaller as the deceleration DVSP is higher
  • the coast stop permission lower limit threshold value BRKOUT is set smaller as the deceleration DVSP is lower.
  • the engine control unit 10 has a map 1 indicating the relationship between the coast stop permission upper limit threshold value BRKIN and the deceleration DVSP, and a map 2 indicating the relationship between the coast stop permission lower limit threshold value BRKOUT and the deceleration DVSP.
  • the map 1 is configured so that the coast stop permission upper limit threshold value BRKIN decreases stepwise (stepwise) as the deceleration DVSP changes from the low side to the high side.
  • the border is drawn.
  • a region where the brake operation amount is smaller than the boundary line is classified as a coast stop permission (OK) region, and a region where the brake operation amount is larger than the boundary line is classified as a coast stop prohibition (NG) region.
  • NG coast stop prohibition
  • the map 2 is configured so that the coast stop permission lower limit threshold value BRKOUT increases stepwise (stepwise) as the deceleration DVSP changes from the low side to the high side.
  • the border is drawn.
  • a region where the brake operation amount is larger than the boundary line is classified as a coast stop permission (OK) region, and a region where the brake operation amount is smaller than the boundary line is classified as a coast stop prohibition (NG) region.
  • NG coast stop prohibition
  • the process shown in FIG. 5 is repeatedly executed at predetermined intervals during traveling. Whether or not the vehicle is traveling is determined based on, for example, whether or not the vehicle speed VSP is equal to or less than a predetermined value VSP0 representing the vehicle stop state.
  • the predetermined value VSP0 may be zero, may be an extremely low vehicle speed range of about 1 to 2 km / h, and may be any value as long as it can be determined that the vehicle is almost stopped. Note that other conditions that do not appear in this flowchart may be additionally set as appropriate.
  • step S201 it is determined whether or not a permission condition for engine automatic stop / restart control is satisfied, specifically, whether or not a condition such as a coasting driving state and a brake pedal being operated is satisfied. If the permission condition is satisfied, the process proceeds to step S302. Otherwise, the process proceeds to step S208, and the engine operating state is continued.
  • step S202 the vehicle speed VSP, the deceleration DVSP, the brake operation amount (master cylinder pressure) BRKP, the brake operation amount BRKP for which idling stop control is permitted, the upper and lower thresholds, and maps 1 and 2 are read. Proceed to
  • step S203 it is determined whether or not the vehicle speed VSP is lower than a predetermined vehicle speed CSVSP that permits engine stop.
  • the process proceeds to step S204. Otherwise, the process proceeds to step S208, and the engine operating state is continued.
  • step S204 it is determined whether the driving state (deceleration DVSP and brake operation amount BRKP) at that time belongs to the coast stop permission area or the coast stop prohibition area of map 1.
  • the process proceeds to step S205, and when it is determined that it belongs to the coast stop prohibition area, the process proceeds to step S207, and the engine start or operation state is continued.
  • step S205 it is determined whether the driving state (deceleration DVSP and brake operation amount BRKP) at that time belongs to the coast stop permission area or the coast stop prohibition area of map 2.
  • the routine proceeds to step S206 to stop the engine, and when it is determined that it belongs to the coast stop prohibition area, the routine proceeds to step S207, and the engine start or operation state is continued.
  • FIG. 6 is a time chart showing the operation of the setting process of the coast stop permission upper limit threshold value BRKIN and the lower limit threshold value BRKOUT during coasting according to the second embodiment.
  • FIG. 6 shows, in order from the top, changes in the brake operation amount BRKP, the deceleration DVSP, the engine speed Ne, and the vehicle speed VSP.
  • the vehicle speed VSP is equal to or higher than the predetermined vehicle speed CSVSP. Therefore, in the control process of FIG. 5, the flow proceeds from step S201 to S202 to S203 to S208, and the engine 1 continues to operate. Also, the brake operation amount BRKP of the driver is gradually decreasing.
  • the vehicle speed VSP becomes less than the predetermined vehicle speed CSVSP, and the permission condition for the engine automatic stop / restart control is satisfied.
  • the driving state (deceleration DVSP and brake operation amount BRKP) belongs to the coast stop prohibited area in the map 1. Therefore, in the control process of FIG. 5, the flow proceeds from step S201 ⁇ S202 ⁇ S203 ⁇ S204 ⁇ S207, and the engine 1 continues to operate.
  • the driving state (deceleration DVSP and brake operation amount BRKP) belongs to the coast stop permission area in map 1 and belongs to the coast stop permission area in map 2. Therefore, the flow proceeds from step S201 ⁇ S202 ⁇ S203 ⁇ S204 ⁇ S205 ⁇ S207, and the engine 1 (fuel injection) is stopped. After time t12 when engine stop is started, the engine speed rapidly decreases toward zero.
  • a plurality of coast stop permission lower limit threshold values BRKOUT are set so as to decrease as the deceleration DVSP decreases.
  • the coast stop permission lower limit threshold value BRKOUT is set to 3 or more unlike the first embodiment (two of the high deceleration zone coast stop permission lower limit threshold value BRKOUTH and the reduced speed zone coast stop permission lower limit threshold value BRKOUTL).
  • the coast stop permission lower limit threshold value BRKOUT is prevented from changing suddenly, and the engine 1 is restarted at a more appropriate timing. can do. Therefore, fuel consumption can be further improved.
  • coast stop permission lower threshold BRKOUT is set based on Map 2. Therefore, the degree of freedom for setting the coast stop permission lower limit threshold value BRKOUT can be improved. Further, for example, the calculation load of the engine control unit 10 can be reduced as compared with the case where the coast stop permission lower limit threshold value BRKOUT is set based on the calculation formula.
  • multiple coast stop permission upper limit threshold values BRKIN are set so as to increase as the deceleration DVSP decreases.
  • the coast stop permission upper limit threshold value BRKIN is set to 3 or more unlike the first embodiment (two of the high deceleration zone coast stop permission upper limit threshold value BRKINL and the reduced speed zone coast stop permission upper limit threshold value BRKINH).
  • the coast stop permission upper limit threshold value BRKIN is prevented from changing suddenly, and the engine 1 is restarted at a more appropriate timing. can do. Therefore, the braking performance of the vehicle and the shift controllability of the belt type continuously variable transmission 3 can be further improved.
  • the coast stop permission upper limit threshold value BRKIN based on the map 1, it is possible to improve the degree of freedom of setting the coast stop permission upper limit threshold value BRKIN while reducing the calculation load of the engine control unit 10.
  • the engine control unit 10 (sets a plurality of lower limit threshold values so that the lower limit threshold value BRKOUT becomes smaller as the deceleration DVSP is lower. Therefore, the engine 1 can be restarted at a more appropriate timing. Can be further improved.
  • the engine control unit 10 sets the lower limit threshold value BRKOUT based on a predetermined map. Therefore, the degree of freedom for setting the coast stop permission lower limit threshold value BRKOUT can be improved.
  • the engine control unit 10 sets a plurality of upper limit threshold values BRKIN so that the upper limit threshold value BRKIN decreases as the deceleration DVSP increases. Therefore, since the operation of the engine 1 is continued until a more appropriate timing, the braking force can be ensured.
  • the engine control unit 10 sets the upper threshold value BRKIN based on a predetermined map. Therefore, the degree of freedom for setting the coast stop permission upper limit threshold value BRKIN can be improved.
  • FIG. 7 is a flowchart showing an engine automatic stop / restart control process executed by the engine control unit 10 of the third embodiment.
  • the engine control unit 10 uses a calculation formula 1 for calculating the coast stop permission upper limit threshold value BRKIN larger as the deceleration DVSP becomes lower, and a calculation formula 2 for calculating the coast stop permission lower limit threshold value BRKOUT larger as the deceleration DVSP becomes higher.
  • the coast stop permission upper limit threshold value BRKIN and the lower limit threshold value BRKOUT are calculated based on the deceleration DVSP.
  • the calculation formulas 1 and 2 have characteristics in which the upper limit threshold value BRKIN or the lower limit threshold value BRKOUT changes linearly according to the change in the deceleration DVSP.
  • the process shown in FIG. 7 is repeatedly executed at predetermined intervals during traveling. Whether or not the vehicle is traveling is determined, for example, based on whether or not the vehicle speed VSP is equal to or less than a predetermined value VSP0 representing the vehicle stop state.
  • the predetermined value VSP0 may be zero, may be an extremely low vehicle speed range of about 1 to 2 km / h, and may be any value as long as it can be determined that the vehicle is almost stopped. Note that other conditions that do not appear in this flowchart may be additionally set as appropriate.
  • step S301 it is determined whether or not a permission condition for engine automatic stop / restart control is satisfied, specifically, whether or not a condition such as a coasting driving state and a brake pedal being operated is satisfied. If the permission condition is satisfied, the process proceeds to step S302. Otherwise, the process proceeds to step S310, and the engine operating state is continued.
  • step S302 the vehicle speed VSP, the brake operation amount (master cylinder pressure) BRKP, and the brake operation amount BRKP for which the idling stop control is permitted are read as the upper limit threshold value and the lower limit threshold value, and the process proceeds to step S303.
  • step S303 it is determined whether or not the vehicle speed VSP is lower than a predetermined vehicle speed CSVSP that permits engine stop. When the vehicle speed falls below the predetermined vehicle speed CSVSP, the process proceeds to step S304. Otherwise, the process proceeds to step S310, and the engine operation state is continued.
  • step 304 the coast stop permission upper limit threshold value BRKIN is calculated based on the deceleration DVSP and the calculation formula 1, and the process proceeds to step S305.
  • step S305 it is determined whether or not the brake operation amount BRKP is less than the calculated coast stop permission upper limit threshold value BRKIN.
  • the process proceeds to step S306. Or continue the driving state.
  • step 306 a coast stop permission lower limit threshold value BRKOUT is calculated based on the deceleration DVSP and calculation formula 2, and the process proceeds to step S307.
  • step S307 it is determined whether or not the brake operation amount BRKP exceeds the calculated coast stop permission lower limit threshold value BRKOUT.
  • the process proceeds to step S308.
  • the brake operation amount BRKP is determined to be less than the coast stop permission lower limit threshold BRKOUT, the process proceeds to step S309, and the engine is started. Or continue the driving state.
  • FIG. 8 is a time chart showing the operation of the setting process of the coast stop permission upper limit threshold value BRKIN and the lower limit threshold value BRKOUT during the coast running of the third embodiment.
  • FIG. 8 shows, in order from the top, changes in the brake operation amount BRKP, the deceleration DVSP, the engine speed Ne, and the vehicle speed VSP.
  • the vehicle speed VSP is equal to or higher than the predetermined vehicle speed CSVSP. Therefore, in the control process of FIG. 8, the flow proceeds from step S301 to step S302 to step S303 to step S310, and the engine 1 continues to operate. Also, the brake operation amount BRKP of the driver is gradually decreasing.
  • the vehicle speed VSP becomes less than the predetermined vehicle speed CSVSP, and the permission condition for the engine automatic stop / restart control is satisfied.
  • the brake operation amount BRKP exceeds the coast stop permission upper limit threshold value BRKIN calculated by the vehicle speed VSP and the calculation formula 1. Therefore, the flow proceeds to steps S301 ⁇ S302 ⁇ S303 ⁇ S304 ⁇ S305 ⁇ S309, and the engine 1 continues to operate. Thereafter, as the deceleration DVSP decreases, the coast stop permission upper limit threshold value BRKIN in Formula 1 increases linearly, and the lower limit threshold value BRKOUT in Formula 2 decreases linearly.
  • the brake operation amount BRKP is less than the coast stop permission upper limit threshold value BRKIN calculated by the deceleration DVSP and Formula 1, and the coast stop permission lower limit threshold value BRKOUT calculated by the deceleration DVSP and Formula 2 is set.
  • the flow proceeds to steps S301 ⁇ S302 ⁇ S303 ⁇ S304 ⁇ S305 ⁇ S306 ⁇ S307 ⁇ S308, and the engine is stopped. After the time t12 when the engine is stopped, the engine speed rapidly decreases toward zero.
  • Example 3 the coast stop permission upper limit threshold value BRKIN and the coast stop permission lower limit threshold value BRKOUT are set based on Formula 1 and Formula 2, respectively. Therefore, for example, the amount of data stored in the engine control unit 10 can be reduced as compared with the case where the upper limit threshold value BRKIN and the lower limit threshold value BRKOUT are set using a map. In other words, if the upper limit threshold value BRKIN and the lower limit threshold value BRKOUT are set more finely according to the deceleration DVSP, the amount of data increases when the map is used, but the increase in the amount of data is suppressed by using the calculation formula. be able to.
  • the engine control unit 10 sets the lower limit threshold value BRKOUT based on a predetermined calculation formula. Therefore, the data storage amount can be reduced.
  • the engine control unit 10 sets the upper threshold value BKRIN based on a predetermined calculation formula. Therefore, the data storage amount can be reduced.
  • or Example 3 it is not restricted to the said Example, It is contained in this invention even if it is another structure.
  • the example in which the belt-type continuously variable transmission is adopted is shown, but a configuration including other stepped automatic transmissions, manual transmissions, and the like may be used.
  • the example provided with the torque converter was shown, even if it is a vehicle which is not provided with the torque converter, it is applicable. In these cases, as a parameter for permitting coast stop control (automatic engine stop), not the predetermined vehicle speed CSVSP, but other parameters indicating whether or not the engine independent rotation can be maintained (combination of vehicle speed and speed ratio and engine speed) Can be used.
  • the deceleration DVSP that is a threshold value for changing the coast stop permission upper limit threshold value BRKIN is not necessarily the same as the deceleration DVSP that is a threshold value for changing the coast stop permission lower limit threshold value BRKOUT.
  • both deceleration DVSPs may be different.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 車両のエンジン自動制御装置は、運転者のブレーキ操作量(BRKP)を検出するブレーキ操作量検出手段と、コースト走行中、検出されたブレーキ操作量(BRKP)が第1の閾値を上回ったときにエンジンを停止し、エンジン停止後、検出されたブレーキ操作量(BRKP)が第1の閾値以下となったときにエンジンを再始動するエンジン停止再始動手段と、減速度(DVSP)が低いほど第1の閾値を小さく設定する閾値設定手段とを備える。

Description

車両のエンジン自動制御装置
 本発明は、走行中にエンジンを自動的に停止、再始動するエンジン自動制御装置に関する。
 車両のエンジン自動制御装置として、JP4374805Bに記載の技術が開示されている。この装置は、車両走行中であっても、ブレーキ操作量がエンジン停止判定閾値以上となったときはエンジンを停止して燃費の向上を図ると共に、ブレーキ操作量がエンジン始動判定閾値以下となったときはエンジンを再始動する。
 上記従来の装置では、車両が走行状態であると判定される所定車速以上では、減速度に関わらずエンジン(再)始動判定閾値が固定されているため、停車に向けた減速走行中、運転者の意図に反してエンジンが再始動され、燃費を十分に向上することができない可能性があった。例えば、停車に向けた減速走行中、運転者のブレーキ操作量は変動し、停車直前には減速度を小さくして、スムーズに停車できるようにブレーキ操作量は小さくなりがちである。しかし、減速度に関わりなくエンジン始動判定閾値が設定されていると、ブレーキ操作量が容易にエンジン始動判定閾値以下となってエンジンが再始動する可能性がある。
 本発明は、上記問題に着目してなされたもので、燃費をより向上できる車両のエンジン自動制御装置を提供することを目的とする。
 一実施形態における車両の自動制御装置は、運転者のブレーキ操作量を検出するブレーキ操作量検出手段と、コースト走行中、検出されたブレーキ操作量が第1の閾値を上回ったときにエンジンを停止し、エンジン停止後、検出されたブレーキ操作量が第1の閾値以下となったときにエンジンを再始動するエンジン停止再始動手段と、減速度が低いほど第1の閾値を小さく設定する閾値設定手段とを備える。
 本発明の実施形態、本発明の利点については、添付された図面とともに以下に詳細に説明される。
図1は、実施例1の車両のエンジン自動制御装置の構成を表すシステム図である。 図2は、実施例1のエンジン自動停止再始動制御処理を表すフローチャートである。 図3は、実施例1のコースト走行時におけるコーストストップ許可閾値の設定処理の作用を表すタイムチャートである。 図4は、実施例1のコースト走行時におけるコーストストップ許可閾値の設定処理の作用を表すタイムチャートである。 図5は、実施例2のエンジン自動停止再始動制御処理を表すフローチャートである。 図6は、実施例2のコースト走行時におけるコーストストップ許可閾値の設定処理の作用を表すタイムチャートである。 図7は、実施例3のエンジン自動停止再始動制御処理を表すフローチャートである。 図8は、実施例3のコースト走行時におけるコーストストップ許可閾値の設定処理の作用を表すタイムチャートである。
 〔実施例1〕
 [システム構成]
 図1は、実施例1の車両のエンジン自動制御装置の構成を表すシステム図である。内燃機関であるエンジン1の出力側には、トルクコンバータ2が設けられている。トルクコンバータ2の出力側には、ベルト式無段変速機3が接続されている。エンジン1から出力された回転駆動力は、トルクコンバータ2を介してベルト式無段変速機3に入力され、所望の変速比によって変速された後、駆動輪4に伝達される。
 エンジン1には、エンジン始動を行う始動装置1aと、発電を行うオルタネータ1bとが備えられている。始動装置1aには、スタータモータが備えられている。始動装置1aは、エンジン始動指令に基づき、車載バッテリ1cの供給する電力を用いてスタータモータを駆動し、エンジンクランキングを行う。また、燃料を噴射し、その後、エンジン1が自立回転可能となると、スタータモータを停止する。オルタネータ1bは、エンジン1により回転駆動されることで発電し、発電した電力を車載バッテリ1c等に供給する。
 トルクコンバータ2は、低車速時にトルク増幅を行う。トルクコンバータ2は、また、ロックアップクラッチを有しており、所定車速CSVSP(例えば14km/h程度)以上では、ロックアップクラッチを締結して、エンジン1の出力軸とベルト式無段変速機3の入力軸との相対回転を規制する。
 ベルト式無段変速機3は、発進クラッチと、プライマリプーリ及びセカンダリプーリと、これらプーリに掛け渡されたベルトから構成され、プーリ溝幅を油圧制御によって変更することで、所望の変速比を達成する。また、ベルト式無段変速機3内には、エンジン1によって駆動されるオイルポンプ30が設けられている。エンジン作動時には、このオイルポンプ30を油圧源として、トルクコンバータ2のコンバータ圧やロックアップクラッチ圧を供給し、また、ベルト式無段変速機3のプーリ圧やクラッチ締結圧を供給する。
 さらに、ベルト式無段変速機(CVT)3には、オイルポンプ30とは別に電動オイルポンプ31が設けられており、エンジン自動停止によってオイルポンプ30による油圧供給ができない場合には、電動オイルポンプ31が作動し、必要な油圧を各アクチュエータに供給可能に構成されている。よって、エンジン停止時であっても、作動油のリークを補償し、また、クラッチ締結圧を維持することができる。
 エンジン1は、エンジンコントロールユニット10によって作動状態が制御される。エンジンコントロールユニット10には、運転者のブレーキペダル操作によりオン信号を出力するブレーキスイッチ11からのブレーキ信号と、運転者のアクセルペダル操作量を検出するアクセルペダル開度センサ12からのアクセル信号と、ブレーキ操作量(ブレーキペダル操作量)に基づいて生じるマスタシリンダ圧を検出するマスタシリンダ圧センサ13からのブレーキ操作量信号(マスタシリンダ圧)と、各輪に備えられた車輪速センサ14からの車輪速(車輪速から車速を検出する場合には車速信号と同義)と、後述するCVTコントロールユニット20からのCVT状態信号と、エンジン水温、クランク角、エンジン回転数等の信号とを入力する。エンジンコントロールユニット10は、上記各種信号に基づいてエンジン1の始動または自動停止を実施する。
 なお、マスタシリンダ圧センサ13に代えて、ブレーキペダルストローク量やブレーキペダル踏力を検出するセンサ、またはホイルシリンダ圧を検出するセンサ等を用いて、ブレーキ操作量を検出することで運転者の制動操作意図を検出してもよく、マスタシリンダ圧センサ13に限定されることはない。
 CVTコントロールユニット20は、エンジンコントロールユニット10との間でエンジン作動状態とCVT状態の信号を送受信し、これら信号に基づいて、ベルト式無段変速機3の変速比等を制御する。具体的には、走行レンジが選択されているときは、発進クラッチの締結を行うと共に、アクセルペダル開度と車速とに基づいて変速比マップから変速比を決定し、各プーリ圧を制御する。また、車速が所定車速CSVSP未満のときはロックアップクラッチを解放しているが、所定車速CSVSP以上のときはロックアップクラッチを締結して、エンジン1とベルト式無段変速機3とを直結状態としている。さらに、走行レンジ選択中におけるエンジン自動停止時には、電動オイルポンプ31を作動させ、必要な油圧を確保する。
 [エンジン自動停止再始動制御]
 次に、エンジン自動停止制御処理について説明する。本実施例1の車両のエンジン自動制御装置(エンジンコントロールユニット10)は、車両停止時に、所定の条件(ブレーキペダルが十分に踏み込まれているといった各種条件)が成立した場合に、エンジンアイドリングを停止する、いわゆるアイドリングストップ制御を行う。なお、アイドリングストップ制御については周知の構成を適宜実施すればよいため、詳細な説明は省略する。加えて、車両走行中であっても、減速中であり、減速燃料カット制御を経て、このまま車両停止してアイドリングストップ制御に移行する可能性が高いと判断した場合には、エンジン1を停止するコーストストップ制御を行う。すなわち、運転者がアクセルペダルを操作することなく惰性走行している、いわゆるコースト走行状態(ブレーキペダル操作をしている状態を含む)の場合には、燃料噴射を停止する。
 減速燃料カット制御中は、燃料噴射を停止する一方、駆動輪4から伝達されるコーストトルクによって、ロックアップクラッチを介してエンジン回転数を維持する。しかし、所定車速CSVSPまで減速するとロックアップクラッチは解放されるため、燃料噴射しなければエンジン1は停止してしまう。そこで、従来は、ロックアップクラッチが解放されるタイミングで減速燃料カット制御を中止して燃料噴射を再開し、エンジン自立回転を維持すると共に、その後、車両が完全停止した後、エンジンアイドリングを停止するようにしていた。しかし、このように燃料噴射を停止した走行状態から、一旦燃料噴射を再開し、再度エンジン停止を行う過程において、燃料噴射再開時の燃料をさらに抑制することができれば、燃費を改善することが可能となる。そこで、本実施例1のコーストストップ制御では、所定の条件が成立すると、燃料噴射を再開することなく、エンジン1を停止したままとし(燃料噴射等を行わず)、車両停止後は、通常のアイドリングストップ制御にそのまま移行可能とした。
 コーストストップ制御を行う際の1つの条件は、運転者のブレーキ操作量が所定範囲内であることである。ブレーキ操作量を条件の1つとした理由は、コーストストップ制御の開始または終了(中止)は、運転者の制動意図に基づいて行うべきものだからである。
 すなわち、ブレーキ操作量が下限閾値を上回れば、運転者の制動意図を推認でき、このまま車両停止してアイドリングストップ制御に移行する可能性が高いため、作動中のエンジン1を停止してコーストストップ制御を開始する。コーストストップ制御開始後、ブレーキ操作量が減少して下限閾値以下となると、運転者の非制動意図(走行継続の意図)を推認できるため、停止中のエンジン1を再始動して、コーストストップ制御を終了(中止)する。
 さらに実施例1では、走行中にエンジン停止/再始動を行う(コーストストップ制御を開始/終了する)ためのブレーキ操作量の閾値として、下限閾値のみを設けるのではなく、下限閾値よりも大きな上限閾値を設けた。すなわち、車速が所定車速CSVSP未満であったとしてもブレーキ操作量が上限閾値以上であるときにはコーストストップ制御を中止する。また、エンジン1の停止後、ブレーキ操作量が増加して上限閾値以上になると、停止中のエンジン1を再始動してコーストストップ制御を終了(中止)する。
 このように、エンジン1を停止・再始動する条件としてのブレーキ操作量の閾値を、ブレーキ操作量の大きい側と小さい側とで別々に設け、ブレーキ操作量が上記2つの閾値に挟まれる所定範囲内(上限閾値と下限閾値との間)である場合に、エンジン1の停止を行うこととする。
 上限閾値を設けたのは以下の諸理由による。
 1.エンジン1の回転により発生する負圧を利用してブレーキペダルの操作力を倍力するブレーキマスターバックを備える車両においては、エンジン停止中にブレーキ操作量が増大した場合、エンジン停止を継続すると、エンジン回転による負圧を利用できないため、運転者が意図する制動力を十分に得られないおそれがある。
 2.ブレーキペダルを強く踏んでいるときは、急減速しているときであり、車両停止に至るまでの時間が短いと考えられる。このとき、車両が停止するまでの間(すなわち駆動輪が回転しており、変速機が変速可能な間)に変速機(ベルト式無段変速機3)の変速比を発進時の低速段(最Low側)まで変速する必要がある。エンジン1により駆動されるオイルポンプ30の吐出圧を利用して変速を行う変速機を備えた車両においては、上記のように車両が停止するまでの間に素早く変速するために、オイルポンプ30の吐出量を確保する必要がある。特に、ベルト式無段変速機3の変速には、比較的高いプーリ圧の供給を要する。したがって、オイルポンプ30の駆動源であるエンジン1の停止は好ましくない。なお、電動オイルポンプ31が供給する油圧により変速を行うことも考えられるが、変速を素早く行うためには、電動オイルポンプ31を大型化する必要があり、好ましくない。
 3. 急減速時には車両挙動を安定化するための各種の制御が介入することも考えられる。例えば、車輪ロックを回避するためのABS制御では、車輪に作用するブレーキ液圧を増減するにあたり、エンジン1側からのトルク入力も加味した上で種々のゲイン等が制御ロジックに設定される。また、スリップ量が多い場合には、エンジントルクを抑制するトラクションコントロールシステム等が作動するおそれもある。よって、不用意にエンジン停止を行うと、これら制御への影響も懸念される。
 従って、上記諸事情(全てに限らず一部でもよい)を考慮したエンジン停止判定閾値(コーストストップ制御を許可するブレーキ操作量の上限閾値BRKIN)が設定され、ブレーキ操作量が上限閾値BRKINを下回るとエンジン1を停止し、ブレーキ操作量が上限閾値BRKIN以上になるとエンジン1を再始動する。
 下限閾値について、以下で考察する。ブレーキペダルを緩やかに踏み込んでいる緩減速時には、そのまま車両停止する場合と、再度ブレーキペダルを解放し、再発進する場合とが考えられる。例えば、渋滞を走行しているときに、ブレーキペダルを緩やかに操作して走行状態を継続することなどが考えられる。この場合、不用意にエンジン1を停止すると、エンジン1が発生するクリープトルクを利用することができず、またエンジン停止と再始動とが繰り返され、運転者に違和感を与えるおそれがある。
 また、エンジン停止後、ブレーキペダルが緩やかに踏まれた状態でエンジン再始動すると、エンジントルクが駆動輪に出力されることで飛び出し感を与えるおそれもある。一方、上り勾配では、エンジン再始動するブレーキ操作量の閾値が低すぎると、ブレーキペダルによる制動力が小さくなってからエンジン再始動するため、車両が若干後退するおそれがある。
 さらに、停車に向けた減速走行中、運転者のブレーキ操作量は変動し、車速が低くなるほどブレーキ操作量は小さくなりがちである。例えば、赤信号で止まろうとするとき等、ゆっくり停車したい場合には、低車速になるほど減速に必要なブレーキ液圧は小さくなるため、運転者はブレーキ操作量を小さくする。ここで、ブレーキ操作量の減少に応じて不用意にエンジン1を再始動すると、運転者の停車意図に反してエンジン1を再始動することとなり、燃費を十分に向上することができないおそれがある。
 よって、上記諸事情を考慮したエンジン始動判定閾値(コーストストップ制御を許可するブレーキ操作量の下限閾値BRKOUT)が設定され、ブレーキ操作量が下限閾値BRKOUTを上回るとエンジン1を停止し、ブレーキ操作量が下限閾値BRKOUTを下回るとエンジン1を再始動する。
 なお、エンジン停止と再始動の切換えが頻繁に行われることを抑制するため、上限閾値BRKINと下限閾値BRKOUTにそれぞれヒステリシスを設けてもよい。
 [エンジン自動停止再始動制御処理]
 図2は、実施例1のエンジンコントロールユニット10にて実行されるエンジン自動停止再始動制御処理を表すフローチャートである。この処理は、走行中、所定周期毎に繰り返し実行される。車両が走行中であるか否かは、例えば、車速VSPが車両停止状態を表す所定値VSP0以下か否かにより判断する。所定値VSP0はゼロでもよいし、1~2km/h程度の極低車速領域であってもよく、ほぼ車両停止と判断できる値であればよい。なお、本フローチャートに表れない他の条件等を適宜追加設定してもよい。
 ステップS101では、エンジン自動停止再始動制御の許可条件を満たすか否か、具体的には、コースト走行状態(アクセルペダル操作量がゼロ)であり、かつブレーキペダルが操作されているか否かを判断する。アクセルペダル操作量がゼロであり、かつブレーキペダルが操作されているときはステップS102へ進み、それ以外のときはステップS113へ進んでエンジン運転状態を継続する。
 ステップS102では、車速VSP、減速度DVSP、ブレーキ操作量(マスタシリンダ圧)BRKP、アイドリングストップ制御を許可するブレーキ操作量BRKPの上限閾値(アイドリングストップ許可上限閾値)と下限閾値(アイドリングストップ許可下限閾値)、及びコーストストップ制御を許可するブレーキ操作量BRKPの上限閾値(コーストストップ許可上限閾値BRKIN)と下限閾値(コーストストップ許可下限閾値BRKOUT)の読み込みを行い、ステップS103へ進む。
 車速VSPは、車輪速センサ14により検出された各車輪速の平均値でもよいし、従動輪車輪速の平均値でもよく、特に限定しない。
 アイドリングストップ許可上限閾値は、システム内に予め設定した値であり、実施例1では固定値とする。
 コーストストップ許可上限閾値BRKINは、減速度DVSPが高いほど小さく設定する。実施例1では、コーストストップ許可上限閾値BRKINとして、減速度DVSPが高い(DVSP > CSDSP)ときに用いる高減速帯コーストストップ許可上限閾値BRKINLと、減速度DVSPが低い(DVSP≦ CSDSP)ときに用いる低減速帯コーストストップ許可上限閾値BRKINHがある。高減速帯コーストストップ許可上限閾値BRKINLは、低減速帯コーストストップ許可上限閾値BRKINHよりも小さい値に設定する。
 コーストストップ許可下限閾値BRKOUTは、減速度DVSPが高いほど大きく設定する。実施例1では、コーストストップ許可下限閾値BRKOUTとして、減速度DVSPが高い(DVSP > CSDSP)ときに用いる高減速帯コーストストップ許可下限閾値BRKOUTHと、減速度DVSPが低い(DVSP ≦ CSDSP)ときに用いる低減速帯コーストストップ許可下限閾値BRKOUTLがある。低減速帯コーストストップ許可下限閾値BRKOUTLは、高減速帯コーストストップ許可下限閾値BRKOUTHよりも小さい値に設定する。
 なお、コーストストップ許可上限閾値BRKINは、コーストストップ許可下限閾値BRKOUTよりも大きく設定されており、閾値の関係は、BRKINH > BRKINL > BRKOUTH > BRKOUTLである。
 アイドリングストップ許可下限閾値は、コーストストップ許可下限閾値BRKOUTよりも大きな値に設定する。これは、アイドリングストップが行われる状態は車両停止状態であり、この状態でエンジン始動をすると、クリープトルクが出力されるが、ブレーキによる制動力が低い状態では、このクリープトルクによって不用意に車両が移動するおそれがあるからである。また、コーストストップが行われる状態は車両減速中(すなわち走行中)であり、この状態では極力エンジン停止を行うことで燃費を改善することが狙いである。仮に、車両停止前にエンジン1が再始動したとしても、走行中であればクリープトルクによる飛び出し感を運転者が感じにくいからである。
 ステップS103では、車速VSPがエンジン停止を許可する所定車速CSVSPを下回るか否かを判断する。所定車速CSVSPを下回るときはステップS104へ進み、それ以外のときはステップS113へ進んで、エンジン運転状態を継続する。
 ステップS104では、減速度が所定減速度CSDVSPを上回るか否かを判断する。所定減速度CSDVSPを上回るときはステップS105へ進み、それ以外のときはステップS109へ進む。
 ステップS105では、ブレーキ操作量BRKPが高減速帯コーストストップ許可上限閾値BRKINLを下回るか否かを判断する。上限閾値BRKINLを下回るときはステップS106へ進み、それ以外のときはステップS108へ進んで、エンジン始動または運転状態を継続する。
 ステップS106では、ブレーキ操作量BRKPが高減速帯コーストストップ許可下限閾値BRKOUTHを上回るか否かを判断する。下限閾値BRKOUTHを上回るときはステップS107へ進んでエンジン停止を行い、それ以外のときはステップS108へ進んで、エンジン始動または運転状態を継続する。
 ステップS109では、ブレーキ操作量BRKPが低減速帯コーストストップ許可上限閾値BRKINHを下回るか否かを判断する。上限閾値BRKINHを下回るときはステップS110へ進み、それ以外のときはステップS112へ進んで、エンジン始動または運転状態を継続する。
 ステップS110では、ブレーキ操作量BRKPが低減速帯コーストストップ許可下限閾値BRKOUTLを上回るか否かを判断する。下限閾値BRKOUTLを上回るときはステップS111へ進んでエンジン停止を行い、それ以外のときはステップS112へ進んで、エンジン始動または運転状態を継続する。
 [作用]
 次に、上記制御処理に基づく作用について比較例を用いて説明する。
 (コーストストップ許可上限/下限閾値を減速度に応じて変化させた場合:実施例1)
 まず、実施例1の作用を説明する。
 図3は、実施例1のコースト走行時におけるコーストストップ許可下限閾値BRKOUTおよびコーストストップ許可上限閾値BRKINの設定処理の作用を表すタイムチャートである。図3では、上から順に、ブレーキ操作量BRKP、減速度DVSP、エンジン回転数Ne、車速VSPの変化を示す。このタイムチャートの最初の時刻における走行状態(前提条件)は、走行中に運転者がアクセルペダルから足を放したコースト走行状態であるものとする。
 時刻t11以前、車速VSPが所定車速CSVSP以上である。よって、図2の制御処理でステップS101→S102→S103→S113へ進む流れとなり、エンジン1は運転状態を継続する。また、運転者のブレーキ操作量BRKPは徐々に減少している。
 時刻t11において、減速度DVSPは所定減速度CSDVSPを上回っているため、コーストストップ許可上限閾値BRKINは、高減速帯コーストストップ許可上限閾値BRKINLが選択され、コーストストップ許可下限閾値BRKOUTは、高減速帯コーストストップ許可下限閾値BRKOUTHが選択される。このとき、車速VSPが所定車速CSVSP未満となるが、ブレーキ操作量BRKPは高減速帯コーストストップ許可上限閾値BRKINL以上である。よって、図2の制御処理でステップS101→S102→S103→S104→S105→S108へ進む流れとなり、エンジン1は運転状態を継続する。
 時刻t12において、ブレーキ操作量BRKPは高減速帯コーストストップ許可上限閾値BRKINLを下回るが、高減速帯コーストストップ許可下限閾値BRKOUTH以上である。よって、図2の制御処理でステップS101→S102→S103→S104→S105→S106→S107へ進む流れとなり、エンジン1を停止する。エンジン停止を開始する時刻t12後、エンジン回転数はゼロに向けて急速に減少する。
 時刻t13において、減速度DVSPは所定減速度CSDVSP以下となるため、コーストストップ許可上限閾値BRKINは、低減速帯コーストストップ許可上限閾値BRKINHが選択され、コーストストップ許可下限閾値BRKOUTは、低減速帯コーストストップ許可下限閾値BRKOUTLが選択される。この時刻t13以降、ブレーキ操作量BRKPは低減速帯コーストストップ許可上限閾値BRKINHを下回り、低減速帯コーストストップ許可下限閾値BRKOUTL以上である。よって、図2の制御処理でステップS101→S102→S103→S104→S109→S110→S111へ進む流れとなり、エンジン1の停止を継続する。
 (コーストストップ許可下限閾値を減速度に関わらず固定値とした場合:比較例1)
 次に、コーストストップ許可下限閾値BRKOUTを減速度DVSPに応じて変化させずに、固定値(例えばBRKOUTH)とした比較例1の作用を説明する。比較例1においても、時刻t13までの作用は実施例1と同様である。
 時刻t13において、減速度DVSPが所定減速度CSDVSPを下回る。しかし、コーストストップ許可下限閾値BRKOUTは、時刻t13後も、時刻t13までと同様、高減速帯コーストストップ許可下限閾値BRKOUTHに設定される(図3のブレーキ操作量の図の一点鎖線)。
 時刻t14において、ブレーキ操作量BRKPが高減速帯コーストストップ許可下限閾値BRKOUTHを下回るため、エンジン1を再始動する(図3のエンジン回転数の図の一点鎖線)。よって、比較例では、運転者が停車を意図しており、エンジン停止を継続することが可能であるにも関わらずエンジン1を再始動することとなるため、燃費の向上を十分に図ることができない。
 これに対し実施例1では、上記のように減速度DVSPが低いほどコーストストップ許可下限閾値BRKOUTを小さく設定する。よって、減速度DVSPに応じてブレーキ操作量が変化しても、運転者の意図に応じたより適切なタイミングでエンジン1を再始動することができるため、燃費をより向上することができる。
 (コーストストップ許可上限閾値を減速度に関わらず固定値とした場合:比較例2)
 次に、コーストストップ許可上限閾値BRKINを車速DVSPに応じて変化させずに、固定値(例えばBRKINH)とした比較例2の作用を説明する。
 図4は、実施例1のコースト走行時におけるコーストストップ許可下限閾値BRKOUTおよびコーストストップ許可上限閾値BRKINの設定処理の作用を表すタイムチャートである。図4では、上から順に、ブレーキ操作量BRKP、減速度DVSP、エンジン回転数Ne、車速VSPの変化を示す。図4で示す実施例1の作用は、図3のものと同一であるので説明を省略する。
 比較例2では、時刻t13までの減速度DVSPが所定減速度CSDVSP以上である範囲であっても、低減速帯コーストストップ許可下限閾値BRKOUTHに設定される(図4のブレーキ操作量の図の一点鎖線)。
 時刻t15において、ブレーキ操作量BRKPは低減速帯コーストストップ許可上限閾値BRKINHを下回るため、エンジン1を停止する。エンジン停止を開始する時刻t15後、エンジン回転数はゼロに向けて急速に減少する(図4のエンジン回転数の図の一点鎖線)。エンジン1が停止しエンジン回転による負圧が利用できないため、ブレーキペダル反力が増大し、ブレーキ操作量が低下する(図4のブレーキ操作量の図の一点鎖線)。そのため、減速度DVSPが低下して(図4の減速度の図の一点鎖線)、運転者が意図する制動力を十分に得られない(図4の車速の図の一点鎖線)。
 これに対し実施例1では、上記のように、減速度DVSPが高いほどコーストストップ許可上限閾値BRKINを小さく設定する。よって、減速度DVSPが高いときはブレーキ操作量がエンジン停止許可範囲に入りにくくして、エンジン1の運転を継続するため制動力を確保することができる。
 [効果]
 以上説明したように、実施例1では下記の効果を得ることができる。
 (1)運転者のブレーキ操作量(マスタシリンダ圧)を検出するマスタシリンダ圧センサ13(ブレーキ操作量検出手段)と、コースト走行中、検出されたブレーキ操作量BRKPが下限閾値BRKOUT(第1の閾値)を上回ったときにエンジン1を停止し、エンジン停止後、検出されたブレーキ操作量BRKPが下限閾値BRKOUT以下となったときにエンジン1を再始動するエンジンコントロールユニット10(エンジン停止再始動手段、閾値設定手段)を設けた。エンジンコントロールユニット10は、減速度DVSPが低いほど下限閾値BRKOUTを小さく設定する。よって、減速度DVSPに応じてブレーキ操作量BRKPが変化しても、運転者の意図に応じた、より適切なタイミングでエンジン1を再始動することができるため、燃費をより向上することができる。
 (2)エンジンコントロールユニット10は、コースト走行中、検出されたブレーキ操作量BRKPが下限閾値BROUTよりも大きい上限閾値BRKIN(第2の閾値)を下回ったときにエンジン1を停止し、検出されたブレーキ操作量BRKPが上限閾値BRKIN以上のときにはエンジン1を運転し、減速度DVSPが高いほど上限閾値BRKINを小さく設定するようにした。よって、減速度DVSPが高いときはブレーキ操作量BRKPがエンジン停止許可範囲に入りにくくして、エンジン1の運転を継続するため制動力を確保することができる。
 〔実施例2〕
 次に、実施例2について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。
 図5は、実施例2のエンジンコントロールユニット10にて実行されるエンジン自動停止再始動制御処理を表すフローチャートである。実施例2では、コーストストップ許可上限閾値BRKINを減速度DVSPが高いほど小さく設定し、コーストストップ許可下限閾値BRKOUTを減速度DVSPが低いほど小さく設定する。エンジンコントロールユニット10は、コーストストップ許可上限閾値BRKINと減速度DVSPとの関係を示すマップ1、およびコーストストップ許可下限閾値BRKOUTと減速度DVSPとの関係を示すマップ2を有する。
 マップ1は、図5のステップS204に示すように、減速度DVSPが低い側から高い側へ変化するのに応じて、コーストストップ許可上限閾値BRKINが段階的に(ステップ状に)減少するように境界線が引かれている。この境界線よりブレーキ操作量が小さい領域をコーストストップ許可(OK)領域とし、境界線よりブレーキ操作量が大きい領域をコーストストップ禁止(NG)領域として区分する。そのときの運転状態(減速度DVSP及びブレーキ操作量BRKP)がどちらの領域に属するかにより、コーストストップ(エンジン停止)の許否を判断する。
 マップ2は、図5のステップS205に示すように、減速度DVSPが低い側から高い側へ変化するのに応じて、コーストストップ許可下限閾値BRKOUTが段階的に(ステップ状に)増加するように境界線が引かれている。この境界線よりブレーキ操作量が大きい領域をコーストストップ許可(OK)領域とし、境界線よりブレーキ操作量が小さい領域をコーストストップ禁止(NG)領域として区分する。そのときの運転状態(減速度DVSP及びブレーキ操作量BRKP)がどちらの領域に属するかにより、コーストストップ(エンジン停止)の許否を判断する。
 [エンジン自動停止再始動制御処理]
 図5に示す処理は、走行中、所定周期毎に繰り返し実行される。車両が走行中であるか否かは、例えば、車速VSPが車両停止状態を表す所定値VSP0以下か否かに基づいて判断する。所定値VSP0はゼロでもよいし、1~2km/h程度の極低車速領域であってもよく、ほぼ車両停止と判断できる値であればよい。なお、本フローチャートに表れない他の条件等を適宜追加設定してもよい。
 ステップS201では、エンジン自動停止再始動制御の許可条件を満たすか否か、具体的には、コースト走行状態であり、かつブレーキペダルが操作されている等の条件を満たすか否かを判断する。許可条件を満たすときはステップS302へ進み、それ以外のときはステップS208へ進んで、エンジン運転状態を継続する。
 ステップS202では、車速VSP、減速度DVSP、ブレーキ操作量(マスタシリンダ圧)BRKP、アイドリングストップ制御を許可するブレーキ操作量BRKPの上限閾値・下限閾値、及びマップ1,2の読み込みを行い、ステップS203へ進む。
 ステップS203では、車速VSPがエンジン停止を許可する所定車速CSVSPを下回るか否かを判断する。所定車速CSVSPを下回るときはステップS204へ進み、それ以外のときはステップS208へ進んで、エンジン運転状態を継続する。
 ステップS204では、そのときの運転状態(減速度DVSP及びブレーキ操作量BRKP)がマップ1のコーストストップ許可領域とコーストストップ禁止領域のどちらに属するかを判断する。コーストストップ許可領域に属すると判断したときはステップS205へ進み、コーストストップ禁止領域に属すると判断したときはステップS207へ進んで、エンジン始動または運転状態を継続する。
 ステップS205では、そのときの運転状態(減速度DVSP及びブレーキ操作量BRKP)がマップ2のコーストストップ許可領域とコーストストップ禁止領域のどちらに属するかを判断する。コーストストップ許可領域に属すると判断したときはステップS206へ進んでエンジン停止を行い、コーストストップ禁止領域に属すると判断したときはステップS207へ進んで、エンジン始動または運転状態を継続する。
 [作用]
 次に、上記制御処理に基づく作用について説明する。図6は、実施例2のコースト走行時におけるコーストストップ許可上限閾値BRKIN及び下限閾値BRKOUTの設定処理の作用を表すタイムチャートである。図6では上から順に、ブレーキ操作量BRKP、減速度DVSP、エンジン回転数Ne、車速VSPの変化を示す。
 時刻t11以前、車速VSPは所定車速CSVSP以上である。よって、図5の制御処理でステップS201→S202→S203→S208へ進む流れとなり、エンジン1は運転状態を継続する。また、運転者のブレーキ操作量BRKPは徐々に減少している。
 時刻t11において、車速VSPが所定車速CSVSP未満となり、エンジン自動停止再始動制御の許可条件が満たされる。このとき、運転状態(減速度DVSP及びブレーキ操作量BRKP)は、マップ1におけるコーストストップ禁止領域に属する。よって、図5の制御処理でステップS201→S202→S203→S204→S207へ進む流れとなり、エンジン1は運転状態を継続する。
 以降、減速度DVSPの低下に応じて、マップ1におけるコーストストップ許可上限閾値BRKINは段階的に(ステップ状に)増加し、マップ2における下限閾値BRKOUTは段階的に(ステップ状に)減少する。
 時刻t12において、運転状態(減速度DVSP及びブレーキ操作量BRKP)はマップ1におけるコーストストップ許可領域に属し、またマップ2におけるコーストストップ許可領域に属する。よって、ステップS201→S202→S203→S204→S205→S207へ進む流れとなり、エンジン1(燃料噴射)を停止する。エンジン停止を開始する時刻t12後、エンジン回転数はゼロに向けて急速に減少する。
 実施例2では、減速度DVSPが低いほど小さくなるよう、コーストストップ許可下限閾値BRKOUTを複数設定する。具体的には、コーストストップ許可下限閾値BRKOUTを、実施例1(高減速帯コーストストップ許可下限閾値BRKOUTHと低減速帯コーストストップ許可下限閾値BRKOUTLの2つ)とは異なり、3以上設定する。このように、コーストストップ許可下限閾値BRKOUTを減速度DVSPに合わせてより細かく設定することで、コーストストップ許可下限閾値BRKOUTが急激に変化することを抑制し、より適切なタイミングでエンジン1を再始動することができる。したがって、燃費をより向上することができる。
 また、コーストストップ許可下限閾値BRKOUTをマップ2に基づき設定する。よって、コーストストップ許可下限閾値BRKOUTの設定自由度を向上することができる。また、例えば計算式に基づきコーストストップ許可下限閾値BRKOUTを設定する場合に比べ、エンジンコントロールユニット10の演算負荷を軽減することができる。
 また、減速度DVSPが低いほど大きくなるよう、コーストストップ許可上限閾値BRKINを複数設定する。具体的には、コーストストップ許可上限閾値BRKINを、実施例1(高減速帯コーストストップ許可上限閾値BRKINLと低減速帯コーストストップ許可上限閾値BRKINHの2つ)とは異なり、3以上設定する。このように、コーストストップ許可上限閾値BRKINを減速度DVSPに合わせてより細かく設定することで、コーストストップ許可上限閾値BRKINが急激に変化することを抑制し、より適切なタイミングでエンジン1を再始動することができる。したがって、車両の制動性能とベルト式無段変速機3の変速制御性をより向上することができる。また、マップ1に基づきコーストストップ許可上限閾値BRKINを設定することで、エンジンコントロールユニット10の演算負荷を軽減しつつ、コーストストップ許可上限閾値BRKINの設定自由度を向上することができる。
 [効果]
 以上説明したように、実施例2にあっては下記の効果を得ることができる。
 (3)エンジンコントロールユニット10(は、減速度DVSPが低いほど下限閾値BRKOUTが小さくなるように下限閾値を複数設定する。よって、より適切なタイミングでエンジン1を再始動することができるため、燃費をより向上することができる。
 (4)エンジンコントロールユニット10は、下限閾値BRKOUTを所定のマップに基づき設定する。よって、コーストストップ許可下限閾値BRKOUTの設定自由度を向上することができる。
 (5)エンジンコントロールユニット10は、減速度DVSPが高いほど上限閾値BRKINが小さくなるように上限閾値BRKINを複数設定する。よって、より適切なタイミングまでエンジン1の運転を継続するため、制動力を確保することができる。
 (6)エンジンコントロールユニット10は、上限閾値BRKINを所定のマップに基づき設定する。よって、コーストストップ許可上限閾値BRKINの設定自由度を向上することができる。
 〔実施例3〕
 次に、実施例3について説明する。基本的な構成は実施例1,2と同じであるため、異なる点についてのみ説明する。図7は、実施例3のエンジンコントロールユニット10にて実行されるエンジン自動停止再始動制御処理を表すフローチャートである。
 エンジンコントロールユニット10は、減速度DVSPが低くなるほどコーストストップ許可上限閾値BRKINを大きく算出する計算式1と、減速度DVSPが高くなるほどコーストストップ許可下限閾値BRKOUTを大きく算出する計算式2とを用いて、減速度DVSPに基づきコーストストップ許可上限閾値BRKIN及び下限閾値BRKOUTを演算する。計算式1,2は、例えば、減速度DVSPの変化に応じて上限閾値BRKINまたは下限閾値BRKOUTが線形的に変化する特性とする。
 [エンジン自動停止再始動制御処理]
 図7に示す処理は、走行中、所定周期毎に繰り返し実行される。車両が走行中であるか否かは、例えば、車速VSPが車両停止状態を表す所定値VSP0以下か否かにより判断する。所定値VSP0はゼロでもよいし、1~2km/h程度の極低車速領域であってもよく、ほぼ車両停止と判断できる値であればよい。なお、本フローチャートに表れない他の条件等を適宜追加設定してもよい。
 ステップS301では、エンジン自動停止再始動制御の許可条件を満たすか否か、具体的には、コースト走行状態であり、かつブレーキペダルが操作されている等の条件を満たすか否かを判断する。許可条件を満たすときはステップS302へ進み、それ以外のときはステップS310へ進んで、エンジン運転状態を継続する。
 ステップS302では、車速VSP、ブレーキ操作量(マスタシリンダ圧)BRKP、及びアイドリングストップ制御を許可するブレーキ操作量BRKPの上限閾値・下限閾値の読み込みを行い、ステップS303へ進む。
 ステップS303では、車速VSPがエンジン停止を許可する所定車速CSVSPを下回るか否かを判断する。所定車速CSVSPを下回るときはステップS304へ進み、それ以外のときはステップS310へ進んで、エンジン運転状態を継続する。
 ステップ304では、減速度DVSPと計算式1に基づきコーストストップ許可上限閾値BRKINを算出し、ステップS305へ移行する。
 ステップS305では、ブレーキ操作量BRKPが、算出したコーストストップ許可上限閾値BRKINを下回るか否かを判断する。ブレーキ操作量BRKPがコーストストップ許可上限閾値BRKINを下回ると判断したときはステップS306へ進み、ブレーキ操作量BRKPがコーストストップ許可上限閾値BRKIN以上であると判断したときはステップS309へ進んで、エンジン始動または運転状態を継続する。
 ステップ306では、減速度DVSPと計算式2に基づきコーストストップ許可下限閾値BRKOUTを算出し、ステップS307へ移行する。
 ステップS307では、ブレーキ操作量BRKPが、算出したコーストストップ許可下限閾値BRKOUTを上回るか否かを判断する。ブレーキ操作量BRKPがコーストストップ許可下限閾値BRKOUTを上回ると判断したときはステップS308へ進み、ブレーキ操作量BRKPがコーストストップ許可下限閾値BRKOUT以下であると判断したときはステップS309へ進んで、エンジン始動または運転状態を継続する。
 [作用]
 次に、上記制御処理に基づく作用について説明する。図8は、実施例3のコースト走行時におけるコーストストップ許可上限閾値BRKIN及び下限閾値BRKOUTの設定処理の作用を表すタイムチャートである。図8では上から順に、ブレーキ操作量BRKP、減速度DVSP、エンジン回転数Ne、車速VSPの変化を示す。
 時刻t11以前、車速VSPが所定車速CSVSP以上である。よって、図8の制御処理でステップS301→S302→S303→S310へ進む流れとなり、エンジン1は運転状態を継続する。また、運転者のブレーキ操作量BRKPは徐々に減少している。
 時刻t11において、車速VSPが所定車速CSVSP未満となり、エンジン自動停止再始動制御の許可条件が満たされる。このとき、ブレーキ操作量BRKPが、車速VSPと計算式1により算出されるコーストストップ許可上限閾値BRKINを上回っている。よって、ステップS301→S302→S303→S304→S305→S309へ進む流れとなり、エンジン1は運転状態を継続する。以降、減速度DVSPの低下に応じて、計算式1におけるコーストストップ許可上限閾値BRKINは線形的に増加し、計算式2における下限閾値BRKOUTは線形的に減少する。
 時刻t12において、ブレーキ操作量BRKPが、減速度DVSPと計算式1により算出されるコーストストップ許可上限閾値BRKINを下回り、かつ、減速度DVSPと計算式2により算出されるコーストストップ許可下限閾値BRKOUTを上回る。よって、ステップS301→S302→S303→S304→S305→S306→S307→S308へ進む流れとなり、エンジン停止を行う。エンジン停止をする時刻t12後、エンジン回転数はゼロに向けて急速に減少する。
 実施例3では、コーストストップ許可上限閾値BRKIN及びコーストストップ許可下限閾値BRKOUTをそれぞれ計算式1、計算式2に基づき設定する。よって、例えばマップを用いて上限閾値BRKIN及び下限閾値BRKOUTを設定する場合よりも、エンジンコントロールユニット10において記憶するデータ量を縮小することができる。すなわち、上限閾値BRKIN及び下限閾値BRKOUTを減速度DVSPに合わせてより細かく設定しようとすると、マップを用いた場合にはデータ量が増大するが、計算式を用いれば、データ量の増大を抑制することができる。
 [効果]
 以上説明したように、実施例3にあっては下記の効果を得ることができる。
 (7)エンジンコントロールユニット10は、下限閾値BRKOUTを所定の計算式に基づき設定する。よって、データの記憶量を節減することができる。
 (8)エンジンコントロールユニット10は、上限閾値BKRINを所定の計算式に基づき設定する。よって、データの記憶量を節減することができる。
 〔他の実施例〕
 以上、本願発明を実施例1ないし実施例3に基づいて説明してきたが、上記実施例に限らず、他の構成であっても本願発明に含まれる。例えば、実施例1ないし実施例3では、ベルト式無段変速機を採用した例を示したが、他の有段式自動変速機や手動変速機等を備えた構成であってもよい。また、トルクコンバータを備えた例を示したが、トルクコンバータを備えていない車両であっても適用できる。これらの場合、コーストストップ制御(エンジン自動停止)を許可する条件のパラメータとして、所定車速CSVSPではなく、エンジン自立回転の維持の可否を示す他のパラメータ(車速と変速比の組合せやエンジン回転数)を用いることができる。
 また、実施例1および実施例2で、コーストストップ許可上限閾値BRKINを変化させる閾値となる減速度DVSPは、コーストストップ許可下限閾値BRKOUTを変化させる閾値となる減速度DVSPと同じである必要はなく、両減速度DVSPを異ならせることとしてもよい。
 本願は、2011年12月6日に日本国特許庁に出願された特願2011-266601に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (8)

  1.  運転者のブレーキ操作量を検出するブレーキ操作量検出手段と、
     コースト走行中、検出されたブレーキ操作量が第1の閾値を上回ったときにエンジンを停止し、エンジン停止後、検出されたブレーキ操作量が前記第1の閾値以下となったときにエンジンを再始動するエンジン停止再始動手段と、
     減速度が低いほど前記第1の閾値を小さく設定する閾値設定手段と、
    を備える車両のエンジン自動制御装置。
  2.  請求項1に記載の車両のエンジン自動制御装置において、
     前記閾値設定手段は、前記減速度が低いほど前記第1の閾値が小さくなるように前記第1の閾値を複数設定する車両のエンジン自動制御装置。
  3.  請求項1または請求項2に記載の車両のエンジン自動制御装置において、
     前記閾値設定手段は、前記第1の閾値を所定のマップに基づき設定する車両のエンジン自動制御装置。
  4.  請求項1または請求項2に記載の車両のエンジン自動制御装置において、
     前記閾値設定手段は、前記第1の閾値を所定の計算式に基づき設定する車両のエンジン自動制御装置。
  5.  請求項1ないし請求項4のいずれか1項に記載の車両のエンジン自動制御装置において、
     前記エンジン停止再始動手段は、コースト走行中、検出されたブレーキ操作量が前記第1の閾値よりも大きい第2の閾値を下回ったときにエンジンを停止し、検出されたブレーキ操作量が前記第2の閾値以上のときにはエンジンを運転し、
     前記閾値設定手段は、前記減速度が高いほど前記第2の閾値を小さく設定する車両のエンジン自動制御装置。
  6.  請求項5に記載の車両のエンジン制御装置において、
     前記閾値設定手段は、前記減速度が高いほど前記第2の閾値が小さくなるように前記第2の閾値を複数設定する車両のエンジン自動制御装置。
  7.  請求項5または請求項6に記載の車両エンジン制御装置において、
     前記閾値設定手段は、前記第2の閾値を所定のマップに基づき設定する車両のエンジン自動制御装置。
  8.  請求項5または請求項6に記載の車両のエンジン制御装置において、
     前記閾値設定手段は、前記第2の閾値を所定の計算式に基づき設定する車両のエンジン自動制御装置。
PCT/JP2012/079803 2011-12-06 2012-11-16 車両のエンジン自動制御装置 WO2013084696A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12855046.4A EP2789833B1 (en) 2011-12-06 2012-11-16 Vehicle engine automatic control device and vehicle engine automatic control method
CN201280059640.9A CN103958863B (zh) 2011-12-06 2012-11-16 车辆的发动机自动控制装置
US14/363,016 US9470156B2 (en) 2011-12-06 2012-11-16 Vehicle engine automatic control device and vehicle engine automatic control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011266601A JP5834855B2 (ja) 2011-12-06 2011-12-06 車両のエンジン自動制御装置
JP2011-266601 2011-12-06

Publications (1)

Publication Number Publication Date
WO2013084696A1 true WO2013084696A1 (ja) 2013-06-13

Family

ID=48574074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079803 WO2013084696A1 (ja) 2011-12-06 2012-11-16 車両のエンジン自動制御装置

Country Status (5)

Country Link
US (1) US9470156B2 (ja)
EP (1) EP2789833B1 (ja)
JP (1) JP5834855B2 (ja)
CN (1) CN103958863B (ja)
WO (1) WO2013084696A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145093A1 (ja) * 2012-03-26 2013-10-03 トヨタ自動車株式会社 ハイブリッド車両の駆動制御装置
JP2014145330A (ja) * 2013-01-30 2014-08-14 Daihatsu Motor Co Ltd アイドルストップ制御装置
GB2519158A (en) * 2013-10-14 2015-04-15 Gm Global Tech Operations Inc Method of controlling an automatic engine stop during coasting phase
JP6350291B2 (ja) * 2015-01-13 2018-07-04 株式会社デンソー 電子制御装置
JP6407080B2 (ja) * 2015-03-26 2018-10-17 ジヤトコ株式会社 車両用発進制御装置
CN106800020B (zh) * 2015-11-24 2024-01-23 广州汽车集团股份有限公司 一种四驱混合动力系统及其控制方法
JP6485401B2 (ja) * 2016-04-19 2019-03-20 トヨタ自動車株式会社 ベルト式無段変速機を備えた車両
US10451022B2 (en) 2016-11-02 2019-10-22 Paccar Inc Intermittent restart for automatic engine stop start system
GB2559546B (en) 2017-02-01 2020-06-17 Jaguar Land Rover Ltd Apparatus, method and computer program for controlling a vehicle
CN110475701B (zh) * 2017-04-04 2022-08-09 日产自动车株式会社 车辆的控制方法以及车辆的控制装置
US10487762B2 (en) 2017-09-26 2019-11-26 Paccar Inc Systems and methods for predictive and automatic engine stop-start control
US10690103B2 (en) 2017-09-26 2020-06-23 Paccar Inc Systems and methods for using an electric motor in predictive and automatic engine stop-start systems
KR20190073182A (ko) * 2017-12-18 2019-06-26 현대자동차주식회사 Isg 기능을 포함하는 차량의 제어 방법 및 그 제어 장치
US10746255B2 (en) 2018-05-09 2020-08-18 Paccar Inc Systems and methods for reducing noise, vibration, and/or harshness during engine shutdown and restart
US10883566B2 (en) 2018-05-09 2021-01-05 Paccar Inc Systems and methods for reducing noise, vibration and/or harshness associated with cylinder deactivation in internal combustion engines
JP6936275B2 (ja) * 2019-04-22 2021-09-15 本田技研工業株式会社 車両
JP7068365B2 (ja) * 2020-03-05 2022-05-16 本田技研工業株式会社 車両制御装置、車両及び車両制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221059A (ja) * 2001-01-26 2002-08-09 Denso Corp エンジン制御装置
JP2003035175A (ja) * 2001-07-24 2003-02-07 Denso Corp エンジン自動車の停止再始動装置
JP2008045446A (ja) * 2006-08-11 2008-02-28 Toyota Motor Corp フューエルカット制御を実行する内燃機関と有段式の自動変速機とを搭載した車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2803145C2 (de) * 1978-01-25 1985-01-17 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und Einrichtung zum automatischen Abstellen und erneuten Starten eines Motors zur Kraftstoffeinsparung
DE19911736B4 (de) * 1998-03-17 2005-12-15 Honda Giken Kogyo K.K. Maschinenstopp-Steuersystem für ein Fahrzeug
JP4329268B2 (ja) * 2001-01-26 2009-09-09 株式会社デンソー エンジン制御装置
EP1666712B1 (en) 2001-01-26 2008-09-03 Denso Corporation Engine control apparatus
DE102008061790A1 (de) * 2008-12-11 2010-07-08 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum automatischen Abschalten und Starten einer Brennkraftmaschine
EP2469060B1 (en) * 2009-08-21 2018-03-21 Toyota Jidosha Kabushiki Kaisha Engine control device
US8401768B2 (en) * 2009-09-01 2013-03-19 Ford Global Technologies, Llc System and method for restarting an engine
US20110112740A1 (en) * 2009-11-11 2011-05-12 Denso Corporation Control device for internal combustion engine and method for controlling internal combustion engine
US8141534B2 (en) * 2010-02-03 2012-03-27 Ford Global Technologies, Llc Methods and systems for assisted direct start control
JP5477137B2 (ja) * 2010-04-15 2014-04-23 株式会社デンソー エンジン自動停止再始動制御装置
US9039571B2 (en) * 2011-02-11 2015-05-26 Ford Global Technologies, Llc Method and system for engine control
JP5834844B2 (ja) * 2011-11-30 2015-12-24 日産自動車株式会社 車両のエンジン自動制御装置
JP2013117216A (ja) 2011-12-05 2013-06-13 Nissan Motor Co Ltd 車両のエンジン自動制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221059A (ja) * 2001-01-26 2002-08-09 Denso Corp エンジン制御装置
JP2003035175A (ja) * 2001-07-24 2003-02-07 Denso Corp エンジン自動車の停止再始動装置
JP4374805B2 (ja) 2001-07-24 2009-12-02 株式会社デンソー エンジン自動車の停止再始動装置
JP2008045446A (ja) * 2006-08-11 2008-02-28 Toyota Motor Corp フューエルカット制御を実行する内燃機関と有段式の自動変速機とを搭載した車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2789833A4 *

Also Published As

Publication number Publication date
EP2789833A4 (en) 2016-03-30
US9470156B2 (en) 2016-10-18
JP5834855B2 (ja) 2015-12-24
US20140336908A1 (en) 2014-11-13
EP2789833A1 (en) 2014-10-15
JP2013119774A (ja) 2013-06-17
CN103958863B (zh) 2016-08-24
CN103958863A (zh) 2014-07-30
EP2789833B1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
JP5834855B2 (ja) 車両のエンジン自動制御装置
JP5834844B2 (ja) 車両のエンジン自動制御装置
JP5870660B2 (ja) 車両のエンジン自動制御装置
JP5853690B2 (ja) 車両のエンジン自動停止制御装置
JP4119613B2 (ja) 自動変速機のロックアップ制御装置
US9562480B2 (en) Automatic engine-stop control device for vehicle
WO2013031409A1 (ja) コーストストップ車両
WO2016021005A1 (ja) 車両の制御装置および車両の制御方法
JP5790670B2 (ja) 車両の制御装置
WO2013084690A1 (ja) 車両のエンジン自動制御装置
WO2013084689A1 (ja) 車両のエンジン自動制御装置
WO2013084691A1 (ja) 車両のエンジン自動制御装置
WO2012132119A1 (ja) 車両のエンジン自動停止制御装置
JP3945312B2 (ja) 車両の制御装置
JP2016047677A (ja) 車両のロックアップクラッチ制御装置
JP2019203527A (ja) 車両制御装置
JP6117084B2 (ja) コーストストップ制御装置及びコーストストップ制御方法
US11872986B2 (en) Vehicle control method and vehicle control device
JP5834608B2 (ja) 車両のエンジン自動停止制御装置
JP2013163994A (ja) 車両のエンジン自動制御装置
JP2013189869A (ja) 車両のエンジン自動停止制御装置
JP5935549B2 (ja) 車両のエンジン自動停止制御装置
JP2006105249A (ja) 自動変速機の変速制御装置
JP2019031999A (ja) 無段変速機の制御装置
JP2018119608A (ja) 車両のコーストストップ制御装置およびコーストストップ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14363016

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012855046

Country of ref document: EP