WO2013084689A1 - 車両のエンジン自動制御装置 - Google Patents

車両のエンジン自動制御装置 Download PDF

Info

Publication number
WO2013084689A1
WO2013084689A1 PCT/JP2012/079772 JP2012079772W WO2013084689A1 WO 2013084689 A1 WO2013084689 A1 WO 2013084689A1 JP 2012079772 W JP2012079772 W JP 2012079772W WO 2013084689 A1 WO2013084689 A1 WO 2013084689A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
limit value
vehicle speed
coast stop
vehicle
Prior art date
Application number
PCT/JP2012/079772
Other languages
English (en)
French (fr)
Inventor
森 浩一
元之 服部
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013084689A1 publication Critical patent/WO2013084689A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0822Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to action of the driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0801Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/10Parameters used for control of starting apparatus said parameters being related to driver demands or status
    • F02N2200/102Brake pedal position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine automatic control device that automatically stops and restarts an engine during traveling.
  • Patent Document 1 As a vehicle engine automatic control device, a technique described in Patent Document 1 is disclosed. This device stops the engine to improve fuel efficiency when the brake operation amount is equal to or greater than the engine stop determination threshold even when the vehicle is running, and the brake operation amount is equal to or less than the engine start determination threshold. When the engine restarts.
  • the above-described conventional device is configured such that the engine start determination threshold value is fixed regardless of the vehicle speed at a predetermined vehicle speed or higher at which it is determined that the vehicle is in a traveling state, and therefore the engine is stopped during deceleration traveling toward the stop. There was a possibility that the time was limited and the fuel consumption could not be improved sufficiently.
  • the present invention has been made paying attention to the above problem, and an object thereof is to provide a vehicle engine automatic control device that can improve fuel efficiency.
  • the engine start determination threshold is set to be smaller as the vehicle speed is higher.
  • 1 is a system diagram illustrating a configuration of a vehicle engine automatic control apparatus according to a first embodiment.
  • 3 is a flowchart illustrating an engine automatic stop / restart control process according to the first embodiment.
  • 6 is a time chart illustrating an operation of setting processing of a coast stop permission lower limit value during coasting according to the first embodiment.
  • 7 is a flowchart illustrating an engine automatic stop / restart control process according to a second embodiment. 6 is a time chart showing the operation of setting processing of a coast stop permission upper limit value and a lower limit value during coasting in Example 2;
  • 12 is a flowchart illustrating an engine automatic stop / restart control process according to a third embodiment.
  • 10 is a time chart showing the operation of a setting process of a coast stop permission upper limit value and a lower limit value during coasting in Example 3; 10 is a flowchart illustrating an engine automatic stop / restart control process according to a fourth embodiment. 10 is a time chart showing the operation of a coast stop permission upper limit value and lower limit value setting process during coasting in Example 4;
  • FIG. 1 is a system diagram illustrating the configuration of the vehicle engine automatic control apparatus according to the first embodiment.
  • a torque converter 2 is provided on the output side of the engine 1 which is an internal combustion engine.
  • a belt type continuously variable transmission 3 is connected to the output side of the torque converter 2.
  • the rotational driving force output from the engine 1 is input to the belt-type continuously variable transmission 3 via the torque converter 2, and is transmitted to the drive wheels 4 after being shifted by a desired gear ratio.
  • the engine 1 includes a starter 1a that starts the engine and an alternator 1b that generates power.
  • the starter 1a is provided with a starter motor.
  • the starter 1a drives the starter motor using the power supplied from the in-vehicle battery 1c based on the engine start command, and performs engine cranking. Further, when the fuel is injected and then the engine 1 can rotate independently, the starter motor is stopped.
  • the alternator 1b generates electric power by being rotationally driven by the engine 1, and supplies the generated electric power to the battery 1c and the like.
  • the torque converter 2 amplifies the torque at a low vehicle speed and has a lock-up clutch.
  • the lock-up clutch is engaged to connect the output shaft of the engine 1 and the belt.
  • the relative rotation with the input shaft of the continuously variable transmission 3 is restricted.
  • the belt-type continuously variable transmission 3 includes a starting clutch, a primary pulley and a secondary pulley, and a belt stretched over these pulleys, and achieves a desired gear ratio by changing the pulley groove width by hydraulic control. .
  • An oil pump 30 driven by the engine 1 is provided in the belt-type continuously variable transmission 3, and when the engine is operated, the oil pump 30 is used as a hydraulic source to convert the converter pressure of the torque converter 2 and the lockup clutch pressure. In addition, the pulley pressure and the clutch engagement pressure of the belt type continuously variable transmission 3 are supplied. Further, the belt-type continuously variable transmission 3 is provided with an electric oil pump 31. When the oil pump 30 cannot supply hydraulic pressure due to the automatic engine stop, the electric oil pump 31 is operated and the necessary hydraulic pressure is supplied. It can be supplied to each actuator. Therefore, even when the engine is stopped, the hydraulic oil leakage can be compensated and the clutch engagement pressure can be maintained.
  • the operating state of the engine 1 is controlled by the engine control unit 10.
  • the engine control unit 10 includes a brake signal from a brake switch 11 that outputs an ON signal by a driver's brake pedal operation, an accelerator signal from an accelerator pedal opening sensor 12 that detects a driver's accelerator pedal operation amount, A brake operation amount signal (master cylinder pressure) from the master cylinder pressure sensor 13 that detects the master cylinder pressure generated based on the brake pedal operation amount, and a wheel speed (from the wheel speed) from the wheel speed sensor 14 provided for each wheel.
  • a CVT state signal from the CVT control unit 20 to be described later, and signals such as engine water temperature, crank angle, and engine speed.
  • the engine control unit 10 starts or automatically stops the engine 1 based on the various signals.
  • a sensor for detecting a brake pedal stroke amount or a brake pedal depression force a sensor for detecting a wheel cylinder pressure, or the like is used, and thereby a brake pedal operation amount (brake operation amount) is detected.
  • the driver's intention to perform the braking operation may be detected and is not particularly limited.
  • the engine control unit 10 includes a road surface gradient detection unit 10a that detects a road surface gradient while the vehicle is traveling.
  • the road surface gradient detection unit 10a determines the road surface based on, for example, the difference between the torque transmitted to the drive wheels 4, the actual vehicle acceleration detected from the wheel speed, and the acceleration acting on the vehicle detected by the acceleration sensor. Estimate the slope.
  • the CVT control unit 20 transmits / receives an engine operation state signal and a CVT state signal to / from the engine control unit 10, and controls the gear ratio of the belt type continuously variable transmission 3 based on these signals.
  • the start clutch is engaged
  • the gear ratio is determined from the gear ratio map based on the accelerator pedal opening and the vehicle speed, and each pulley pressure is controlled.
  • the lockup clutch is released, and when the vehicle speed is equal to or higher than the predetermined vehicle speed CSVSP1, the lockup clutch is engaged, so that the engine 1 and the belt type continuously variable transmission 3 are directly connected.
  • the electric oil pump 31 is operated to ensure the necessary hydraulic pressure.
  • the vehicle automatic engine control apparatus (engine control unit 10) according to the first embodiment stops engine idling when a predetermined condition (various conditions such as the brake pedal being fully depressed) is satisfied when the vehicle is stopped.
  • the so-called idling stop control is performed.
  • idling stop control since a well-known structure should just be implemented suitably, detailed description is abbreviate
  • the coast to stop the engine 1 Perform stop control.
  • fuel consumption can be improved if the fuel at the time of resuming fuel injection can be further suppressed in the above-described process in which fuel injection is once resumed from the running state in which fuel injection has been stopped and the engine is stopped again. It becomes possible. Therefore, in the coast stop control of the first embodiment, when a predetermined condition is satisfied, the fuel injection is not restarted, the engine 1 is kept stopped (fuel injection or the like is not performed), and normal idling is performed after the vehicle stops. Transition to stop control is possible.
  • One condition for performing coast stop control is that the brake pedal operation amount of the driver is within a predetermined range.
  • the reason for setting the brake pedal operation amount as one of the conditions is that the start or end (stop) of the coast stop control should be performed based on the driver's braking intention. In other words, if the brake pedal operation amount is equal to or greater than a predetermined value, the driver's intention to brake can be inferred, and there is a high possibility that the vehicle will stop and shift to idling stop control.
  • Start stop control After the coast stop control is started, if the brake pedal operation amount decreases and falls below the predetermined value, the driver's non-braking intention (intention to continue running) can be inferred. End (stop) control.
  • the predetermined value is provided as the threshold value of the brake pedal operation amount for restarting the engine after stopping the engine (ending the coast stop control).
  • a second threshold value is provided. That is, after the coast stop control is started, the engine 1 is restarted when the brake pedal operation amount increases and becomes equal to or greater than the second threshold value.
  • the brake pedal operation amount threshold value as a condition for starting and ending the coast stop control is separately provided on the brake pedal operation amount decrease side and the increase side, and the brake pedal operation amount is sandwiched between the above two threshold values.
  • the second threshold (upper limit) is provided for the following reasons. (1) In a vehicle equipped with a brake master back that boosts the operating force of the brake pedal using the negative pressure generated by the rotation of the engine 1, the engine stops when the brake pedal operation amount increases during coast stop control. If the operation is continued, the negative pressure generated by the engine rotation cannot be used, so that the braking force intended by the driver may not be sufficiently obtained. (2) When the brake pedal is strongly depressed, it is when the vehicle is decelerating rapidly, and it is considered that the time until the vehicle stops is short. At this time, the speed ratio of the transmission (belt-type continuously variable transmission 3) is set to the low speed stage at the time of start until the vehicle stops (that is, while the drive wheels 4 are rotating and the transmission can change gears).
  • the engine stop determination threshold value (the upper limit value BRKIN of the brake pedal operation amount allowing the coast stop control) in consideration of the above circumstances (not limited to all) may be set, and the brake pedal operation amount may be set to the above threshold value ( When the value falls below the upper limit value BRKIN), the engine 1 is stopped, and when the brake pedal operation amount becomes equal to or greater than the threshold value (upper limit value BRKIN), the engine 1 is restarted.
  • the vehicle is stopped as it is when the brake pedal is slowly depressed, and when the brake pedal is released again and the vehicle restarts again.
  • the threshold value of the brake pedal operation amount for restarting the engine is too low (the braking force is insufficient when the engine is restarted), which affects the vehicle behavior and the driver's driving feeling.
  • an engine start determination threshold value (a lower limit value BRKOUT of the brake pedal operation amount that permits coast stop control) is set in consideration of the above circumstances, and the engine 1 is turned on when the brake pedal operation amount becomes equal to or greater than the threshold value (lower limit value BRKOUT). The engine 1 is restarted when the brake pedal operation amount falls below the threshold value (lower limit value BRKOUT).
  • hysteresis may be provided for the upper limit value BRKIN and the lower limit value BRKOUT.
  • FIG. 2 is a flowchart showing an engine automatic stop / restart control process executed by the engine control unit 10 according to the first embodiment. This process is repeatedly executed at predetermined intervals during traveling. Whether or not the vehicle is traveling is determined, for example, based on whether or not the vehicle speed VSP is equal to or less than a predetermined value VSP0 representing the vehicle stop state.
  • the predetermined value VSP0 may be zero, may be an extremely low vehicle speed range of about 1 to 2 km / h, and may be any value that can be determined as almost stopping the vehicle. Note that other conditions that do not appear in this flowchart may be additionally set as appropriate.
  • step S101 it is determined whether or not the permission condition for engine automatic stop / restart control is satisfied, specifically, whether or not the vehicle is in a coasting state (the accelerator pedal operation amount is zero) and the brake pedal is operated. To do.
  • the process proceeds to step S102, and otherwise, the process proceeds to step S112 and the engine operating state is continued.
  • step S102 the vehicle speed VSP, the brake pedal operation amount (master cylinder pressure) BRKP, the upper limit value (idling stop permission upper limit value) and lower limit value (idling stop permission lower limit value) of the brake pedal operation amount BRKP that permits idling stop control,
  • the upper limit value (coast stop permission upper limit value BRKIN) and lower limit value (coast stop permission lower limit value BRKOUT) of the brake pedal operation amount BRKP permitting the coast stop control are read, and the process proceeds to step S103.
  • the vehicle speed VSP may be an average value of wheel speeds detected by the wheel speed sensor 14 or an average value of driven wheel speeds, and is not particularly limited.
  • the idling stop permission upper limit value is a value preset in the system, and is a fixed value in the first embodiment.
  • the coast stop permission upper limit value BRKIN is a value preset in the system, and is set to a fixed value BRKINH in the first embodiment.
  • the coast stop permission lower limit BRKOUT is set to be smaller as the vehicle speed VSP is higher.
  • the coast stop permission lower limit value BRKOUT is the high vehicle speed zone coast stop permission lower limit value BRKOUTH used when the vehicle speed VSP is high (CSVSP2 ⁇ VSP ⁇ CSVSP1) and the vehicle speed VSP is low (VSP0 ⁇ VSP ⁇ CSVSP2).
  • the low vehicle speed range coast stop permission lower limit value BRKOUTL is used, and the high vehicle speed range coast stop permission lower limit value BRKOUTH is set to a value smaller than the low vehicle speed range coast stop permission lower limit value BRKOUTL (BRKOUTH ⁇ BRKOUTL ⁇ BRKINH). That is, as described above, when the vehicle speed VSP is low, if the threshold value of the brake pedal operation amount for restarting the engine 1 is too low, the vehicle behavior and driving feeling may be affected. Therefore, the low vehicle speed zone coast stop permission lower limit value BRKOUTL is set to a predetermined value sufficiently large to suppress the influence on the vehicle behavior and the like.
  • the vehicle is set to a value that generates a braking force that suppresses the reverse (rollback) of the vehicle when the vehicle is on an ascending slope, and suppresses the popping feeling when the vehicle is on a descending slope.
  • the degree of the influence may be estimated based on the road surface gradient detected by the road surface gradient detection unit 10a, and the lower limit value BRKOUTL may be set to be larger by determining that the degree of the influence is higher as the road surface gradient is larger.
  • the high vehicle speed zone coast stop permission lower limit value BRKOUTH is set to a value smaller than the low vehicle speed range coast stop permission lower limit value BRKOUTL.
  • the idling stop permission lower limit value is set to a value larger than the coast stop permission lower limit value BRKOUT (for example, BRKOUTL).
  • the idling stop is performed when the vehicle is stopped.
  • engine torque creep torque
  • the coast stop state is when the vehicle is decelerating (that is, during traveling). In this state, the aim is to improve the fuel consumption by stopping the engine as much as possible. Even if the vehicle is restarted, it is relatively difficult for the driver to feel a sense of popping out due to engine torque if the vehicle is running. Therefore, it sets as mentioned above.
  • step S103 it is determined whether or not the vehicle speed VSP is below an upper limit value CSVSP1 that permits coast stop control. When the value is lower than the upper limit value CSVSP1, the process proceeds to step S104. Otherwise, the process proceeds to step S112, and the engine operating state is continued.
  • step S104 it is determined whether or not the brake pedal operation amount BRKP is below the coast stop permission upper limit value BRKINH. When the value is below the upper limit value BRKINH, the process proceeds to step S105, and otherwise, the process proceeds to step S112 and the engine operating state is continued.
  • step S105 it is determined whether or not the vehicle speed VSP falls below a predetermined value CSVSP2 set to be smaller than the coast stop permission upper limit CSVSP1.
  • a predetermined value CSVSP2 determines whether the vehicle speed is high or low, and the vehicle speed VSP threshold value for switching between the high vehicle speed zone coast stop permission lower limit value BRKOUTH and the low vehicle speed range coast stop permission lower limit value BRKOUTL. It is.
  • step S106 it is determined whether or not the brake pedal operation amount BRKP is below the low vehicle speed zone coast stop permission lower limit value BRKOUTL.
  • the routine proceeds to step S109 and the engine is restarted. Otherwise, the routine proceeds to step S108 and the engine is stopped.
  • step S107 it is determined whether or not the brake pedal operation amount BRKP is below the high vehicle speed zone coast stop permission lower limit value BRKOUTH.
  • the routine proceeds to step S111 to restart the engine, and otherwise, the routine proceeds to step S110 to stop the engine.
  • FIG. 3 is a time chart showing the operation of the setting process of the coast stop permission lower limit value BRKOUT during the coast running of the first embodiment.
  • the driving state (precondition) at the first time in the time chart is a coasting driving state in which the driver releases his / her foot from the accelerator pedal during driving.
  • the engine speed is substantially zero.
  • the driver temporarily depresses the brake pedal.
  • the brake pedal operation amount BRKP starts to decrease, falls below the low vehicle speed zone coast stop permission lower limit value BRKOUTL at time t122, and becomes a predetermined value equal to or higher than the high vehicle speed zone coast stop permission lower limit value BRKOUTH at time t123 (BRKOUTH ⁇ BRKP ⁇ BRKOUTL).
  • the brake pedal operation amount BRKP starts to increase from the above-mentioned predetermined value.
  • the brake pedal operation amount BRKP becomes equal to or higher than the low vehicle speed zone coast stop permission lower limit value BRKOUTL.
  • BRKOUTL ⁇ BRKP ⁇ BRKINH
  • the vehicle speed VSP falls below a predetermined value CSVSP2 (VSP0 ⁇ VSP ⁇ CSVSP2). Therefore, the flow proceeds from step S101 ⁇ S102 ⁇ S103 ⁇ S104 ⁇ S105 ⁇ S106, and the coast stop permission lower limit value BRKOUT (the one-dot chain line in FIG. 3) is changed from the high vehicle speed range coast stop permission lower limit value BRKOUTH to the low vehicle speed range coast stop permission lower limit. Switch to value BRKOUTL.
  • step S106 Since the brake pedal operation amount BRKP is equal to or greater than the low vehicle speed zone coast stop permission lower limit value BRKOUTL (BRKOUTL ⁇ BRKP ⁇ BRKINH), the flow proceeds from step S106 to S108, and the engine is stopped. At time t14 just before stopping when the vehicle speed VSP is sufficiently low, the driver starts releasing the brake pedal, and thereafter, the brake pedal operation amount BRKP decreases. At time t15, since the brake pedal operation amount BRKP falls below the low vehicle speed zone coast stop permission lower limit value BRKOUTL (BRKP ⁇ BRKOUTL), the flow proceeds to steps S101 ⁇ S102 ⁇ S103 ⁇ S104 ⁇ S105 ⁇ S106 ⁇ S109. Restart.
  • the engine speed increases after time t15.
  • the brake pedal operation amount BRKP falls below the high vehicle speed zone coast stop permission lower limit value BRKOUTH (BRKP ⁇ BRKOUTL).
  • the brake pedal operation amount BRKP becomes almost zero, and the vehicle speed VSP becomes almost zero.
  • the coast stop permission lower limit value BRKOUT is the same high value as that after time t13, that is, the low vehicle speed zone coast stop permission lower limit value even at a high vehicle speed, that is, before time t13 when the vehicle speed VSP is equal to or greater than the predetermined value CSVSP2.
  • the brake pedal operation amount BRKP falls below the low vehicle speed zone coast stop permission lower limit value BRKOUTL, so the engine 1 is restarted.
  • the engine speed increases after time t122.
  • the operation of the engine 1 is continued until time t125 when the brake pedal operation amount BRKP becomes equal to or higher than the low vehicle speed range coast stop permission lower limit value BRKOUTL again.
  • the driver only restarts the brake pedal temporarily, and the engine 1 is restarted even though the driver does not really intend to restart. Therefore, the fuel consumption cannot be improved sufficiently.
  • the higher the vehicle speed VSP the smaller the coast stop permission lower limit BRKOUT is set (steps S103 to S107). Therefore, at high vehicle speeds, even if the driver slightly relaxes the brake pedal (between times t121 and t126), coast stop is permitted, and this makes the engine stop time as long as possible, thereby improving fuel efficiency. be able to. If the brake pedal starts being depressed after the vehicle speed VSP falls below the coast stop permission upper limit CSVSP1, the brake pedal operation amount is easily equal to or greater than the coast stop permission lower limit BRKOUT (high vehicle speed zone coast stop permission lower limit BRKOUTH). It becomes.
  • the coast stop permission condition is satisfied at an earlier time point than when the coast stop permission lower limit value BRKOUT is set to a large value (for example, to the low vehicle speed range coast stop permission lower limit value BRKOUTL), the engine is stopped earlier.
  • the fuel consumption can be further improved by making the time to perform as long as possible.
  • the coast stop permission lower limit value BRKOUT is kept at a small value (high vehicle speed range coast stop permission lower limit value BRKOUTH) even at low vehicle speeds, the brake pedal operation amount is relatively small (high vehicle speed range coast stop permission)
  • the engine is started at time t16 when the value decreases to (lower limit value BRKOUTH) (broken line in FIG. 3).
  • the coast stop permission lower limit value BRKOUT is set larger as the vehicle speed VSP is lower (steps S103 to S107). Therefore, when the vehicle is close to the stop state, the engine is started at time t15 when the brake pedal operation amount is still a relatively large value (low vehicle speed zone coast stop permission lower limit value BRKOUTL). The braking force can be secured and the influence on the vehicle behavior and the like can be suppressed. Therefore, for example, it is not necessary to provide a special function for suppressing the reverse movement (rollback) in the vehicle system, so that the cost can be reduced.
  • Brake operation amount detection means master cylinder pressure sensor 13 for detecting the brake operation amount (master cylinder pressure) of the driver, and during coasting, the engine 1 is stopped based on the detected brake operation amount.
  • the engine stop / restart means engine control unit 10
  • a first threshold value setting means for setting the threshold value of 1 to be small. Therefore, the fuel consumption can be improved by extending the time for stopping the engine.
  • the engine stop / restart means (engine control unit 10) is configured so that the detected brake operation amount (master cylinder pressure) is greater than or equal to a second threshold value (coast stop permission upper limit value BRKIN) after the engine is stopped during coasting. Then, the engine 1 is restarted. Therefore, when the brake pedal operation amount increases during the coast stop control (engine stop), the engine 1 is restarted to quickly secure the negative pressure generation of the engine 1 and the brake master back is used to The braking performance can be improved. Further, it is possible to improve the shift controllability of a transmission (belt type continuously variable transmission 3) that performs a shift using the discharge pressure of a pump (oil pump 30) driven by the engine 1. Even if various controls for stabilizing vehicle behavior are involved during sudden deceleration, the engine 1 can be operated to suppress the influence on these controls.
  • a second threshold value coast stop permission upper limit value BRKIN
  • FIG. 4 is a flowchart showing an engine automatic stop / restart control process executed by the engine control unit 10 of the second embodiment.
  • the coast stop permission upper limit value BRKIN is set larger as the vehicle speed VSP is lower.
  • the coast stop permission upper limit value BRKIN is a high vehicle speed zone coast stop permission upper limit value BRKINH used when the vehicle speed VSP is high (CSVSP2 ⁇ VSP ⁇ CSVSP1) and a low value used when the vehicle speed VSP is low (VSP0 ⁇ VSP ⁇ CSVSP2).
  • the vehicle speed zone coast stop permission upper limit value BRKINL is set, and the low vehicle speed zone coast stop permission upper limit value BRKINL is set to a value larger than the high vehicle speed zone coast stop permission upper limit value BRKINH (BRKOUTL ⁇ BRKINH ⁇ BRKINL).
  • Steps S201 to S205 are the same as steps S101 to S105 in FIG.
  • step S204 it is determined whether or not the brake pedal operation amount BRKP is below a high vehicle speed zone coast stop permission upper limit value BRKINH.
  • step S206 it is determined whether or not the brake pedal operation amount BRKP is below a low vehicle speed zone coast stop permission upper limit value BRKINL.
  • Step S208 is the same as step S106 in FIG.
  • Steps S207 and S209 to S213 are the same as steps S107 and S108 to S112 in FIG. 2, respectively.
  • FIG. 5 is a time chart similar to that of the first embodiment (FIG. 3) showing the operation of the setting process of the coast stop permission upper limit value BRKIN and the lower limit value BRKOUT during coast running of the second embodiment.
  • step S201 ⁇ S202 ⁇ S203 ⁇ S204 ⁇ S205 ⁇ S206
  • the coast stop permission lower limit value BRKOUT is switched to the low vehicle speed zone coast stop permission lower limit value BRKOUTL
  • the coast stop permission upper limit value BRKIN switches from the high vehicle speed zone coast stop permission upper limit value BRKINH to the low vehicle speed range coast stop permission upper limit value BRKINL.
  • the flow proceeds from step S206 to S208 to S209. Continue to stop the engine. From time t231 to t236, the driver temporarily increases the depression of the brake pedal.
  • the brake pedal operation amount BRKP starts to increase, becomes higher than the high vehicle speed zone coast stop permission upper limit value BRKINH at time t232, and becomes a predetermined value lower than the low vehicle speed range coast stop permission upper limit value BRKINL at time t233 (BRKINH ⁇ BRKP ⁇ BRKINL).
  • the brake pedal operation amount BRKP starts to decrease from the predetermined value, falls below the high vehicle speed zone coast stop permission upper limit value BRKINH at time t235, and at time t236, becomes a predetermined value equal to or higher than the low vehicle speed range coast stop permission lower limit value BRKOUTL. (BRKOUTL ⁇ BRKP ⁇ BRKINH).
  • Example 2 when the coast stop permission upper limit value BRKIN is set to a fixed value (for example, the high vehicle speed range coast stop permission upper limit value BRKINH) without changing according to the vehicle speed VSP, the brake pedal is operated at time t232. Since the amount BRKP is equal to or higher than the high vehicle speed zone coast stop permission upper limit value BRKINH, the engine 1 is restarted. As indicated by the broken line in FIG. 5, the engine speed increases after time t232. The operation of the engine 1 is continued until time t235 when the brake pedal operation amount BRKP falls below the high vehicle speed zone coast stop permission upper limit value BRKINH again. Therefore, since the driver only restarts the brake pedal and temporarily restarts the engine 1, the fuel consumption cannot be sufficiently improved.
  • a fixed value for example, the high vehicle speed range coast stop permission upper limit value BRKINH
  • the coast stop permission upper limit value BRKIN is not changed when the coast stop permission lower limit value BRKOUT is larger than that at high vehicle speeds at low vehicle speeds
  • the range between the lower limit value BRKOUT and the upper limit value BRKIN That is, the range of the brake pedal operation amount BRKP permitting the coast stop control becomes narrower than that at the high vehicle speed. Therefore, when the vehicle speed is low, the coast stop control is easily ended and the engine is restarted against the driver's feeling of operating the brake pedal at the high vehicle speed.
  • the upper limit value BRKIN is set so that the distance from the lower limit value BRKOUT is substantially constant regardless of the vehicle speed VSP. Therefore, it is possible to prevent the range (size) of the brake pedal operation amount BRKP for stopping the engine (performing coast stop control) from being different between the high vehicle speed and the low vehicle speed. Therefore, it is possible to suppress restarting of the engine against the driver's intention, thereby improving fuel consumption and driving feeling.
  • Example 2 in addition to the above (1) and (2), the following effects can be obtained.
  • step S203 to S206 second threshold setting means for setting the second threshold (coast stop permission upper limit BRKIN) larger as the vehicle speed VSP is lower. Therefore, it is possible to suppress the restarting of the engine against the driver's intention, and to improve the fuel consumption and driving feeling.
  • second threshold value setting means for setting the second threshold value so that the distance from the first threshold value (coast stop permission lower limit value BRKOUT) is constant regardless of the vehicle speed VSP (step S203- S206). Therefore, it is possible to suppress the restarting of the engine against the driver's intention, and to improve the fuel consumption and driving feeling.
  • FIG. 6 is a flowchart showing an engine automatic stop / restart control process executed by the engine control unit 10 of the third embodiment.
  • the coast stop permission upper limit value BRKIN and the coast stop permission lower limit value BRKOUT are set larger as the vehicle speed VSP is lower.
  • the engine control unit 10 has a map 1 indicating the relationship between the coast stop permission upper limit value BRKIN and the vehicle speed VSP, and a map 2 indicating the relationship between the coast stop permission lower limit value BRKOUT and the vehicle speed VSP.
  • the map 1 has a boundary line so that the coast stop permission upper limit value BRKIN increases stepwise (stepwise) as the vehicle speed VSP changes from the higher side to the lower side.
  • the boundary is divided into a coast stop permission (OK) area and a coast stop prohibition (NG) area. Whether the coast stop (engine stop) is permitted or not is determined according to which region the driving state (vehicle speed VSP and brake pedal operation amount BRKP) belongs to.
  • Map 2 has the same shape as Map 1, and a boundary line is drawn so that coast stop permission lower limit value BRKOUT increases stepwise (in steps) as vehicle speed VSP changes from a higher side to a lower side.
  • the boundary line separates a coast stop permission (OK) region and a coast stop prohibition (NG) region.
  • step S301 it is determined whether or not a permission condition for engine automatic stop / restart control is satisfied, specifically, whether or not a condition such as a coasting state and a brake pedal being operated is satisfied. If the permission condition is satisfied, the process proceeds to step S302; otherwise, the process proceeds to step S307 and the engine operating state is continued. In step S302, the vehicle speed VSP, the brake pedal operation amount (master cylinder pressure) BRKP, the upper and lower limits of the brake pedal operation amount BRKP permitting idling stop control, and maps 1 and 2 are read, and the process proceeds to step S303. .
  • step S303 it is determined whether the driving state at that time (vehicle speed VSP and brake pedal operation amount BRKP) belongs to the coast stop permission area or the coast stop prohibition area of map 1.
  • the process proceeds to step S304, and when it is determined that it belongs to the coast stop prohibition area, the process proceeds to step S307 and the engine operating state is continued.
  • step S304 it is determined whether the driving state (vehicle speed VSP and brake pedal operation amount BRKP) at that time belongs to the coast stop permission area or the coast stop prohibition area of map 2.
  • the routine proceeds to step S305 and the engine is stopped.
  • step S306 the engine is restarted.
  • FIG. 7 is a time chart similar to that of the first embodiment (FIG. 3) showing the operation of the setting process of the coast stop permission upper limit value BRKIN and the lower limit value BRKOUT during coast running of the third embodiment.
  • step S301 Before time t31, the driver has stepped on the brake pedal, but the conditions for permitting automatic engine stop / restart control are not satisfied. Therefore, the flow proceeds from step S301 to step S307 in the control process of FIG. To do.
  • the brake pedal operation amount BRKP of the driver is maintained at a predetermined value.
  • the permission condition for engine automatic stop / restart control is satisfied.
  • the driving state (vehicle speed VSP and brake pedal operation amount BRKP) belongs to the coast stop permission area in map 1 and the coast stop permission area in map 2. Therefore, the flow proceeds to steps S301 ⁇ S302 ⁇ S303 ⁇ S304 ⁇ S305, and the engine 1 (fuel injection) is stopped.
  • the engine speed decreases toward zero, and the engine speed becomes substantially zero at time t32.
  • the coast stop permission upper limit value BRKIN in the map 1 and the lower limit value BRKOUT in the map 2 increase stepwise (stepwise) in accordance with the decrease in the vehicle speed VSP.
  • the driver increases the depression of the brake pedal.
  • the coast stop permission upper limit value BRKIN and the lower limit value BRKOUT in the maps 1 and 2 increase stepwise (stepwise) as the vehicle speed VSP decreases.
  • the brake pedal operation amount BRKP decreases.
  • the operating state belongs to the coast stop permission region, so the engine is stopped.
  • the brake pedal operation amount BRKP falls below the coast stop permission lower limit value BRKOUT (BRKP ⁇ BRKOUT), and the driving state belongs to the coast stop prohibition region, so the flow proceeds to steps S301 ⁇ S302 ⁇ S303 ⁇ S304 ⁇ S306.
  • the engine 1 is restarted. Accordingly, the engine speed increases after time t36.
  • the brake pedal operation amount BRKP becomes almost zero, and the vehicle speed VSP becomes almost zero.
  • the driver's brake pedal operation amount BRKP increases before and after time t331 to time t332.
  • the brake pedal operation amount BRKP is suppressed from being equal to or greater than the coast stop permission upper limit value BRKIN.
  • the driving state (vehicle speed VSP and brake pedal operation amount BRKP) remains in the coast stop permission area in map 1. Therefore, the flow proceeds to steps S301 ⁇ S302 ⁇ S303 ⁇ S304 ⁇ S305, and the engine stop is continued.
  • the coast stop permission lower limit value BRKOUT in the map 2 increases. Therefore, when the driver releases the brake pedal, the brake pedal operation amount BRKP relatively thereafter becomes the coast stop permission lower limit value BRKOUT. It is easy to fall below. In other words, the driving state easily shifts from the coast stop permission area to the prohibited area in the map 2. Therefore, the engine restart is performed more promptly.
  • a plurality of coast stop permission lower limit values BRKOUT are set so as to increase as the vehicle speed VSP decreases.
  • the coast stop permission lower limit value BRKOUT is set to 3 or more unlike the first and second embodiments (two of the high vehicle speed zone coast stop permission lower limit value BRKOUTH and the low vehicle speed zone coast stop permission lower limit value BRKOUTL). .
  • the coast stop permission lower limit value BRKOUT is prevented from changing rapidly, and the engine 1 is restarted at a more appropriate timing. be able to.
  • the fuel consumption can be further improved, and the braking force at the time of restarting the engine can be ensured more appropriately, and the influence on the vehicle behavior and the like can be further suppressed.
  • the coast stop permission lower limit BRKOUT is set based on the map 2. Therefore, the degree of freedom in setting the coast stop permission lower limit value BRKOUT can be improved, and the calculation load of the engine control unit 10 can be reduced as compared with the case where the coast stop permission lower limit value BRKOUT is set based on, for example, the calculation formula. it can.
  • multiple coast stop permission upper limit values BRKIN are set so as to increase as vehicle speed VSP decreases.
  • the coast stop permission upper limit value BRKIN is set to 3 or more, unlike the second embodiment (two of the high vehicle speed zone coast stop permission upper limit value BRKINH and the low vehicle speed zone coast stop permission upper limit value BRKINL).
  • the coast stop permission upper limit value BRKIN more precisely according to the vehicle speed VSP, the range (size) of the brake pedal operation amount BRKP for stopping the engine (coast stop) is suppressed from changing suddenly.
  • the engine 1 can be restarted at a more appropriate timing. Therefore, fuel consumption and driving feeling can be further improved.
  • the coast stop permission upper limit value BRKIN based on the map 1, it is possible to improve the degree of freedom of setting the coast stop permission upper limit value BRKIN while reducing the calculation load of the engine control unit 10.
  • the first threshold value setting means sets a plurality of first threshold values (coast stop permission lower limit value BRKOUT) so as to decrease as the vehicle speed VSP increases. Therefore, since the engine 1 can be restarted at a more appropriate timing, fuel consumption and the like can be further improved.
  • the first threshold value setting means sets the first threshold value (coast stop permission lower limit value BRKOUT) based on a predetermined map (map 2). Therefore, the setting freedom degree of the 1st threshold value (coast stop permission lower limit BRKOUT) can be improved.
  • the second threshold value setting means sets a plurality of second threshold values (coast stop permission upper limit value BRKIN) so as to increase as the vehicle speed VSP decreases. Therefore, since the engine 1 can be restarted at a more appropriate timing, fuel consumption and the like can be further improved.
  • the second threshold value setting means sets the second threshold value (coast stop permission upper limit value BRKIN) based on a predetermined map (Map 1). Therefore, it is possible to improve the degree of freedom in setting the second threshold value (coast stop permission upper limit value BRKIN).
  • FIG. 8 is a flowchart illustrating an engine automatic stop / restart control process executed by the engine control unit 10 of the fourth embodiment.
  • the engine control unit 10 uses a calculation formula 1 for calculating the coast stop permission upper limit value BRKIN larger as the vehicle speed VSP becomes lower, and a calculation formula 2 for calculating the coast stop permission lower limit value BRKOUT larger as the vehicle speed VSP becomes lower.
  • the coast stop permission upper limit value BRKIN and the lower limit value BRKOUT are calculated based on VSP.
  • the calculation formulas 1 and 2 can have characteristics in which the upper limit value BRKIN or the lower limit value BRKOUT increases linearly as the vehicle speed VSP decreases.
  • Step S401 is the same as step S301 in FIG.
  • step S402 the vehicle speed VSP, the brake pedal operation amount (master cylinder pressure) BRKP, and the upper limit value / lower limit value of the brake pedal operation amount BRKP permitting idling stop control are read, and the process proceeds to step S403.
  • step S403 a coast stop permission upper limit value BRKIN is calculated based on the read vehicle speed VSP and Formula 1, and it is determined whether or not the read brake pedal operation amount BRKP is below the coast stop permission upper limit value BRKIN.
  • the coasting stop permission (OK) region in which the driving state at that time (vehicle speed VSP and brake pedal operation amount BRKP) is classified by the characteristics of the coast stop permission upper limit value BRKIN (expressed in Formula 1) It is determined which of the coast stop prohibition (NG) areas it belongs to. If it is determined that the brake pedal operation amount BRKP falls below the coast stop permission upper limit value BRKIN (belongs to the coast stop permission area), the process proceeds to step S404, and the brake pedal operation amount BRKP is greater than or equal to the coast stop permission upper limit value BRKIN (coast stop). If it is determined that it belongs to the prohibited area, the process proceeds to step S407 and the engine operating state is continued.
  • NG coast stop permission upper limit value
  • a coast stop permission lower limit value BRKOUT is calculated based on the read vehicle speed VSP and Formula 2, and it is determined whether or not the read brake pedal operation amount BRKP is below the coast stop permission lower limit value BRKOUT.
  • the coasting stop permission (OK) region in which the driving state at that time (vehicle speed VSP and brake pedal operation amount BRKP) is classified by the characteristics of the coast stop permission lower limit BRKOUT (expressed in Formula 2) It is determined which of the coast stop prohibition (NG) areas it belongs to.
  • step S406 When it is determined that the brake pedal operation amount BRKP is below the coast stop permission lower limit value BRKOUT (belonging to the coast stop prohibition region), the routine proceeds to step S406 and the engine is restarted, and the brake pedal operation amount BRKP is the coast stop permission lower limit value BRKOUT. If it is determined as above (belonging to the coast stop permission area), the process proceeds to step S405 to stop the engine.
  • FIG. 9 is a time chart similar to that of the first embodiment (FIG. 3) showing the operation of the setting process of the coast stop permission upper limit value BRKIN and the lower limit value BRKOUT during coast running of the fourth embodiment.
  • the flow proceeds to steps S401 ⁇ S407 in the control processing of FIG. continue.
  • the brake pedal operation amount BRKP of the driver is maintained at a predetermined value.
  • the permission condition for engine automatic stop / restart control is satisfied.
  • the brake pedal operation amount BRKP is less than the coast stop permission upper limit value BRKIN calculated by the vehicle speed VSP and the calculation formula 1, and is equal to or more than the coast stop permission lower limit value BRKOUT calculated by the vehicle speed VSP and the calculation formula 2.
  • the flow proceeds to steps S401 ⁇ S402 ⁇ S403 ⁇ S404 ⁇ S405, and the engine is stopped.
  • the engine speed decreases toward zero, and the engine speed becomes substantially zero at time t42.
  • the driver increases the depression of the brake pedal.
  • the brake pedal operation amount BRKP decreases.
  • the engine is stopped.
  • the brake pedal operation amount BRKP falls below the coast stop permission lower limit value BRKOUT (BRKP ⁇ BRKOUT), and the driving state belongs to the coast stop prohibition region, so the flow proceeds to steps S401 ⁇ S402 ⁇ S403 ⁇ S404 ⁇ S406.
  • the engine 1 is restarted. Accordingly, the engine speed increases after time t44.
  • the brake pedal operation amount BRKP becomes almost zero, and the vehicle speed VSP becomes almost zero.
  • the driver's brake pedal operation amount BRKP increases before and after time t421 to time t422.
  • the brake pedal operation amount BRKP is suppressed from being greater than or equal to the coast stop permission upper limit value BRKIN.
  • the driving state remains in the coast stop permission area. Therefore, the process proceeds to steps S401 ⁇ S402 ⁇ S403 ⁇ S404 ⁇ S405, and the engine is stopped.
  • the coast stop permission lower limit value BRKOUT increases, so when the driver releases the brake pedal, the brake pedal operation amount BRKP tends to fall below the coast stop permission lower limit value BRKOUT relatively quickly thereafter. . In other words, the driving state easily shifts from the coast stop permission area to the prohibition area. Therefore, the engine restart is performed more promptly.
  • the coast stop permission upper limit value BRKIN and the coast stop permission lower limit value BRKOUT are set based on the calculation formulas 1 and 2, respectively. Therefore, for example, the amount of data stored in the engine control unit 10 can be reduced as compared with the case where the upper limit value BRKIN and the lower limit value BRKOUT are set using a map. That is, if the upper limit value BRKIN and the lower limit value BRKOUT are set more finely according to the vehicle speed VSP, the amount of data increases when the map is used, but if the calculation formula is used, the increase in the amount of data is suppressed. Can do.
  • the first threshold value setting unit sets the first threshold value (coast stop permission lower limit value BRKOUT) based on a predetermined calculation formula (calculation formula 2). Therefore, the data storage amount can be reduced.
  • the second threshold value setting unit sets the second threshold value (coast stop permission upper limit value BRKIN) based on a predetermined calculation formula (calculation formula 1). Therefore, the data storage amount can be reduced.
  • the present invention has been described based on the first to fourth embodiments.
  • the present invention is not limited to the above-described embodiments, and other configurations are also included in the present invention.
  • the first to fourth embodiments an example in which a belt-type continuously variable transmission is employed is shown, but a configuration including other stepped automatic transmissions, manual transmissions, and the like may be employed.
  • the example provided with the torque converter was shown, even if it is a vehicle which is not provided with the torque converter, it is applicable.
  • the vehicle speed VSP that is a threshold value for changing the coast stop permission upper limit value BRKIN does not have to be exactly the same as the vehicle speed VSP that is the threshold value for changing the coast stop permission lower limit value BRKOUT. It is good also as making vehicle speed VSP different.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

運転者のブレーキ操作量(マスタシリンダ圧)を検出するブレーキ操作量検出手段(マスタシリンダ圧センサ(13))と、コースト走行中、検出されたブレーキ操作量に基づきエンジン(1)を停止し、エンジン(1)の停止後に、検出されたブレーキ操作量が第1の閾値(コーストストップ許可下限値BRKOUT)を下回るとエンジン(1)を再始動するエンジン停止再始動手段(エンジンコントロールユニット(10)) と、車速VSPが高いほど第1の閾値を小さく設定する第1の閾値設定手段(ステップS103~S107)と、を設けた。

Description

車両のエンジン自動制御装置
 本発明は、走行中にエンジンを自動的に停止、再始動するエンジン自動制御装置に関する。
 車両のエンジン自動制御装置として、特許文献1に記載の技術が開示されている。この装置は、車両走行中であっても、ブレーキ操作量がエンジン停止判定閾値以上となったときはエンジンを停止して燃費の向上を図ると共に、ブレーキ操作量がエンジン始動判定閾値以下となったときはエンジンを再始動する。
 上記従来の装置は、車両が走行状態であると判定される所定車速以上では、車速に関わらずエンジン始動判定閾値が固定される構成であるため、停車に向けた減速走行中、エンジン停止を行う時間が制限され、燃費を十分に向上することができないおそれがあった。
 本発明は、上記問題に着目してなされたもので、燃費を向上できる車両のエンジン自動制御装置を提供することを目的とする。
特許第4374805号公報
 上記目的を達成するため、本発明の車両のエンジン自動制御装置では、車速が高いほどエンジン始動判定閾値を小さく設定することとした
 よって、車速が高いときは、ブレーキ操作量が小さくてもエンジンを停止することで、エンジン停止を行う時間をより長くして、燃費を向上することができる。
実施例1の車両のエンジン自動制御装置の構成を表すシステム図である。 実施例1のエンジン自動停止再始動制御処理を表すフローチャートである。 実施例1のコースト走行時におけるコーストストップ許可下限値の設定処理の作用を表すタイムチャートである。 実施例2のエンジン自動停止再始動制御処理を表すフローチャートである。 実施例2のコースト走行時におけるコーストストップ許可上限値及び下限値の設定処理の作用を表すタイムチャートである。 実施例3のエンジン自動停止再始動制御処理を表すフローチャートである。 実施例3のコースト走行時におけるコーストストップ許可上限値及び下限値の設定処理の作用を表すタイムチャートである。 実施例4のエンジン自動停止再始動制御処理を表すフローチャートである。 実施例4のコースト走行時におけるコーストストップ許可上限値及び下限値の設定処理の作用を表すタイムチャートである。
 [実施例1] 
 図1は実施例1の車両のエンジン自動制御装置の構成を表すシステム図である。内燃機関であるエンジン1の出力側にはトルクコンバータ2が設けられている。トルクコンバータ2の出力側にはベルト式無段変速機3が接続されている。エンジン1から出力された回転駆動力は、トルクコンバータ2を介してベルト式無段変速機3に入力され、所望の変速比によって変速された後、駆動輪4に伝達される。
 エンジン1には、エンジン始動を行う始動装置1aと、発電を行うオルタネータ1bとが備えられている。始動装置1aにはスタータモータが備えられている。始動装置1aは、エンジン始動指令に基づき、車載バッテリ1cの供給する電力を用いてスタータモータを駆動し、エンジンクランキングを行う。また、燃料を噴射し、その後、エンジン1が自立回転可能となると、スタータモータを停止する。オルタネータ1bは、エンジン1により回転駆動されることで発電し、発電した電力をバッテリ1c等に供給する。
 トルクコンバータ2は、低車速時にトルク増幅を行うと共に、ロックアップクラッチを有しており、所定車速CSVSP1(例えば14km/h程度)以上では、ロックアップクラッチを締結してエンジン1の出力軸とベルト式無段変速機3の入力軸との相対回転を規制する。
 ベルト式無段変速機3は、発進クラッチと、プライマリプーリ及びセカンダリプーリと、これらプーリに掛け渡されたベルトから構成され、プーリ溝幅を油圧制御によって変更することで所望の変速比を達成する。また、ベルト式無段変速機3内には、エンジン1によって駆動されるオイルポンプ30が設けられ、エンジン作動時には、このオイルポンプ30を油圧源としてトルクコンバータ2のコンバータ圧やロックアップクラッチ圧を供給し、また、ベルト式無段変速機3のプーリ圧やクラッチ締結圧を供給する。
 更に、ベルト式無段変速機3には電動オイルポンプ31が設けられており、エンジン自動停止によって上記オイルポンプ30による油圧供給ができない場合には、電動オイルポンプ31が作動し、必要な油圧を各アクチュエータに供給可能に構成されている。よって、エンジン停止時であっても、作動油のリークを補償し、また、クラッチ締結圧を維持することができる。
 エンジン1は、エンジンコントロールユニット10によって作動状態が制御される。エンジンコントロールユニット10には、運転者のブレーキペダル操作によりオン信号を出力するブレーキスイッチ11からのブレーキ信号と、運転者のアクセルペダル操作量を検出するアクセルペダル開度センサ12からのアクセル信号と、ブレーキペダル操作量に基づいて生じるマスタシリンダ圧を検出するマスタシリンダ圧センサ13からのブレーキ操作量信号(マスタシリンダ圧)と、各輪に備えられた車輪速センサ14からの車輪速(車輪速から車速を検出する場合には車速信号と同義)と、後述するCVTコントロールユニット20からのCVT状態信号と、エンジン水温、クランク角、エンジン回転数等の信号とを入力する。エンジンコントロールユニット10は、上記各種信号に基づいてエンジン1の始動または自動停止を実施する。
 尚、マスタシリンダ圧センサ13に代えてブレーキペダルストローク量やブレーキペダル踏力を検出するセンサ、またはホイルシリンダ圧を検出するセンサ等を用い、これによりブレーキペダル操作量(ブレーキ操作量)を検出することで運転者の制動操作意図を検出してもよく、特に限定しない。
 また、エンジンコントロールユニット10は、車両が走行中の路面勾配を検知する路面勾配検出部10aを有する。路面勾配検出部10aは、例えば駆動輪4に伝達されるトルクと、車輪速等から検出される実際の車両加速度と、加速度センサにより検出される車両に作用している加速度との差等から路面勾配を推定する。
 CVTコントロールユニット20は、エンジンコントロールユニット10との間でエンジン作動状態とCVT状態の信号を送受信し、これら信号に基づいてベルト式無段変速機3の変速比等を制御する。具体的には、走行レンジが選択されているときは、発進クラッチの締結を行うと共に、アクセルペダル開度と車速とに基づいて変速比マップから変速比を決定し、各プーリ圧を制御する。また、車速が所定車速CSVSP1未満のときは、ロックアップクラッチを解放し、所定車速CSVSP1以上のときはロックアップクラッチを締結し、エンジン1とベルト式無段変速機3とを直結状態とする。更に、走行レンジ選択中におけるエンジン自動停止時には、電動オイルポンプ31を作動させ、必要な油圧を確保する。
 (エンジン自動制御処理)
 次に、エンジン自動制御処理について説明する。本実施例1の車両のエンジン自動制御装置(エンジンコントロールユニット10)は、車両停止時に、所定の条件(ブレーキペダルが十分に踏み込まれているといった各種条件)が成立したときは、エンジンアイドリングを停止する所謂アイドリングストップ制御を行う。尚、アイドリングストップ制御については周知の構成を適宜実施すればよいため、詳細な説明は省略する。加えて、車両走行中であっても、減速中であり、減速燃料カット制御を経て、このまま車両停止してアイドリングストップ制御に移行する可能性が高いと判断したときは、エンジン1を停止するコーストストップ制御を行う。
 すなわち、運転者がアクセルペダルを操作することなく惰性走行している所謂コースト走行状態(ブレーキペダル操作をしている状態を含む)のときには、燃料噴射を停止する。この減速燃料カット制御中は、燃料噴射を停止する一方、駆動輪4から伝達されるコーストトルクによってロックアップクラッチを介してエンジン回転数を維持する。しかし、所定車速CSVSP1まで減速するとロックアップクラッチは解放されるため、燃料噴射しなければエンジン1は停止してしまう。そこで、従来は、ロックアップクラッチが解放されるタイミングで減速燃料カット制御を中止して燃料噴射を再開し、エンジン自立回転を維持すると共に、その後、車両が完全停止した後、エンジンアイドリングを停止するようにしていた。しかし、このように燃料噴射を停止した走行状態から、一旦燃料噴射を再開し、再度エンジン停止を行う上記過程において、燃料噴射再開時の燃料を更に抑制することができれば、燃費を改善することが可能となる。そこで、本実施例1のコーストストップ制御では、所定の条件が成立すると、燃料噴射を再開することなく、エンジン1を停止したままとし(燃料噴射等を行わず)、車両停止後は通常のアイドリングストップ制御にそのまま移行可能とした。
 コーストストップ制御を行う際の1つの条件は、運転者のブレーキペダル操作量が所定範囲内であることとした。ブレーキペダル操作量を条件の1つとした理由は、コーストストップ制御の開始または終了(中止)は、運転者の制動意図に基づいて行うべきものだからである。すなわち、ブレーキペダル操作量が所定値以上であれば、運転者の制動意図を推認でき、このまま車両停止してアイドリングストップ制御に移行する可能性が高いため、作動中のエンジン1を停止してコーストストップ制御を開始する。コーストストップ制御開始後、ブレーキペダル操作量が減少して上記所定値を下回ると、運転者の非制動意図(走行継続の意図)を推認できるため、停止中のエンジン1を再始動してコーストストップ制御を終了(中止)する。
 また、実施例1では、エンジン停止後にエンジン再始動を行う(コーストストップ制御を終了する)ためのブレーキペダル操作量の閾値として、上記所定値(ブレーキペダル操作量の減少側の閾値)のみを設けるのではなく、上記所定値よりも大きな第2の閾値(ブレーキペダル操作量の増加側の閾値)を設けた。すなわち、コーストストップ制御開始後、ブレーキペダル操作量が増加して第2の閾値以上になると、エンジン1を再始動する。
 このように、コーストストップ制御を開始・終了する条件としてのブレーキペダル操作量の閾値を、ブレーキペダル操作量の減少側と増加側とで別々に設け、ブレーキペダル操作量が上記2つの閾値に挟まれる所定範囲内(第2の閾値=上限値と上記所定値=下限値との間)であるときにコーストストップ制御を行うこととした。
 第2の閾値(上限値)を設けたのは以下の諸理由による。
(1) エンジン1の回転により発生する負圧を利用してブレーキペダルの操作力を倍力するブレーキマスターバックを備える車両においては、コーストストップ制御中にブレーキペダル操作量が増大した場合、エンジン停止を継続すると、エンジン回転による負圧を利用できないため、運転者が意図する制動力を十分に得られないおそれがある。
(2)ブレーキペダルを強く踏んでいるときは、急減速しているときであり、車両停止に至るまでの時間が短いと考えられる。このとき、車両が停止するまでの間(すなわち駆動輪4が回転しており、変速機が変速可能な間)に変速機(ベルト式無段変速機3)の変速比を発進時の低速段(最Low側)まで変速する必要がある。エンジン1により駆動されるオイルポンプ30の吐出圧を利用して変速を行う変速機を備えた車両においては、上記のように車両が停止するまでの間に素早く変速するために、オイルポンプ30の吐出量を確保する必要がある。特に、ベルト式無段変速機3の変速には比較的高いプーリ圧の供給を要する。したがって、オイルポンプ30の駆動源であるエンジン1の停止は好ましくない。尚、電動オイルポンプ31が供給する油圧により変速を行うことも考えられるが、変速を素早く行うためには電動オイルポンプ31を大型化する必要があり、好ましくない。
(3)急減速時には車両挙動を安定化するための各種の制御が介入することも考えられる。例えば、車輪ロックを回避するためのABS制御では、車輪に作用するブレーキ液圧を増減するにあたり、エンジン1側からのトルク入力も加味した上で種々のゲイン等が制御ロジックに設定される。また、スリップ量が多い場合には、エンジントルクを抑制するトラクションコントロールシステム等が作動するおそれもある。よって、不用意にエンジン停止を行うと、これら制御への影響も懸念される。
 よって、上記諸事情(全てに限らず一部でもよい)を考慮したエンジン停止判定閾値(コーストストップ制御を許可するブレーキペダル操作量の上限値BRKIN)が設定され、ブレーキペダル操作量が上記閾値(上限値BRKIN)を下回るとエンジン1を停止し、ブレーキペダル操作量が上記閾値(上限値BRKIN)以上になるとエンジン1を再始動する。
 減少側の閾値(上記所定値=下限値)についてみると、ブレーキペダルを緩やかに踏み込んでいる緩減速時には、そのまま車両停止する場合と、再度ブレーキペダルを解放し、再発進する場合とが考えられる。例えば、渋滞を走行しているときに、ブレーキペダルを緩やかに操作して走行状態を継続することなどが考えられる。この場合、不用意にエンジン1を停止すると、エンジン1が発生するクリープトルクを利用することができず、またエンジン停止と再始動とが繰り返され、運転者に違和感を与えるおそれがある。
 また、停車間際等、車速が低いときには、エンジンを再始動するブレーキペダル操作量の閾値が低すぎる(エンジン再始動時における制動力が不足する)と、車両挙動や運転者の運転フィーリングに影響を与えるおそれがある。例えば、エンジン停止後、ブレーキペダルが緩やかに踏まれた状態(発生する制動力が小さい状態)でエンジン再始動すると、エンジントルクが駆動輪4に出力されることで運転者に飛び出し感を与えるおそれがある。また、勾配路における減速中にあっては、車両のイナーシャ(車両重量による慣性力)が作用するため、平坦路と同じブレーキペダル操作量でエンジン再始動を行うと、車両の予期せぬ移動やショック(急激な加速度変動)が発生してしまうおそれがある。例えば、上り勾配における減速中でコーストストップを行い、その状態から運転者が再度ブレーキペダルを離して走行状態を維持しようとした場合、エンジン再始動するブレーキペダル操作量の閾値が低すぎると、ブレーキペダルによる制動力が小さくなってからエンジン再始動するため、車両が若干後退するおそれがある。一方、下り勾配にあっては、ブレーキペダルによる制動力が小さくなってからエンジン再始動すると、制動力不足からエンジン再始動時に上記飛び出し感が生じ、運転者に違和感を与えるおそれがある。
 よって、上記諸事情を考慮したエンジン始動判定閾値(コーストストップ制御を許可するブレーキペダル操作量の下限値BRKOUT)が設定され、ブレーキペダル操作量が上記閾値(下限値BRKOUT)以上になるとエンジン1を停止し、ブレーキペダル操作量が上記閾値(下限値BRKOUT)を下回るとエンジン1を再始動する。
 尚、エンジン停止と再始動の切換えが頻繁に行われることを抑制するため、上記上限値BRKINと下限値BRKOUTにそれぞれヒステリシスを設けることとしてもよい。
 〔エンジン自動停止再始動制御処理〕
 図2は、実施例1のエンジンコントロールユニット10にて実行されるエンジン自動停止再始動制御処理を表すフローチャートである。この処理は、走行中、所定周期毎に繰り返し実行される。車両が走行中であるか否かは、例えば、車速VSPが車両停止状態を表す所定値VSP0以下か否かにより判断する。所定値VSP0はゼロでもよいし、1~2km/h程度の極低車速領域であってもよく、ほぼ車両停止と判断できる値であればよい。尚、本フローチャートに現れない他の条件等を適宜追加設定してもよい。
 ステップS101では、エンジン自動停止再始動制御の許可条件を満たすか否か、具体的には、コースト走行状態(アクセルペダル操作量がゼロ)であり、かつブレーキペダルが操作されているか否かを判断する。アクセルペダル操作量がゼロであり、かつブレーキペダルが操作されているときはステップS102へ進み、それ以外のときはステップS112へ進んでエンジン作動状態を継続する。
 ステップS102では、車速VSP、ブレーキペダル操作量(マスタシリンダ圧)BRKP、アイドリングストップ制御を許可するブレーキペダル操作量BRKPの上限値(アイドリングストップ許可上限値)と下限値(アイドリングストップ許可下限値)、及びコーストストップ制御を許可するブレーキペダル操作量BRKPの上限値(コーストストップ許可上限値BRKIN)と下限値(コーストストップ許可下限値BRKOUT)の読み込みを行い、ステップS103へ進む。
 車速VSPは、車輪速センサ14により検出された各車輪速の平均値でもよいし、従動輪車輪速の平均値でもよく、特に限定しない。
 アイドリングストップ許可上限値は、システム内に予め設定した値であり、実施例1では固定値とする。
 コーストストップ許可上限値BRKINは、システム内に予め設定した値であり、実施例1では固定値BRKINHに設定する。
 コーストストップ許可下限値BRKOUTは、車速VSPが高いほど小さく設定する。実施例1では、コーストストップ許可下限値BRKOUTは、車速VSPが高い(CSVSP2≦VSP<CSVSP1)ときに用いる高車速帯コーストストップ許可下限値BRKOUTHと、車速VSPが低い(VSP0<VSP<CSVSP2)ときに用いる低車速帯コーストストップ許可下限値BRKOUTLを有し、高車速帯コーストストップ許可下限値BRKOUTHを低車速帯コーストストップ許可下限値BRKOUTLよりも小さい値に設定する(BRKOUTH<BRKOUTL<BRKINH)。
 すなわち、上記のように、車速VSPが低いときには、エンジン1を再始動するブレーキペダル操作量の閾値が低すぎると、車両挙動や運転フィーリングに影響を与えるおそれがある。よって、低車速帯コーストストップ許可下限値BRKOUTLを、車両挙動等に与える影響を抑制するのに十分大きな所定値に設定する。例えば、上り勾配にあっては車両の後退(ロールバック)を抑制し、下り勾配にあっては飛び出し感を抑制可能な制動力を発生する値に設定する。これにより、車両が停止状態近くになっているときに、運転者の再発進意図を素早く検知するとともに、エンジン再始動時の制動力を極力確保して、以て車両挙動等への影響を抑制する。尚、路面勾配検出部10aが検知する路面勾配に基づき上記影響の度合いを推測し、路面勾配が大きくなるほど上記影響の度合いが高いと判断して下限値BRKOUTLを大きく設定することとしてもよい。
 一方、車速VSPがある程度高い状態では、エンジン1を再始動するブレーキペダル操作量の閾値が低くても、車両挙動や運転フィーリングに影響を与えるおそれがより少ない。よって、高車速帯コーストストップ許可下限値BRKOUTHを、低車速帯コーストストップ許可下限値BRKOUTLよりも小さい値に設定する。これにより、ブレーキペダル操作量が多少小さくても(運転者がブレーキペダルを多少緩めたりしても)コーストストップを許可してエンジン停止を行う時間を極力長くし、以て燃費を改善する。
 アイドリングストップ許可下限値はコーストストップ許可下限値BRKOUT(例えばBRKOUTL)よりも大きな値に設定する。すなわち、アイドリングストップが行われる状態は車両停止状態であり、この状態でエンジン始動をすると、エンジントルク(クリープトルク)が出力されるが、ブレーキによる制動力が低い状態では、このクリープトルクによって不用意に車両が移動するおそれがある。これに対し、コーストストップが行われる状態は車両減速中(すなわち走行中)であり、この状態では極力エンジン停止を行うことで燃費を改善することが狙いであり、仮に車両停止前にエンジン1が再始動したとしても、走行中であればエンジントルクによる飛び出し感を運転者が比較的感じにくい。よって、上記のように設定する。
 ステップS103では、車速VSPがコーストストップ制御を許可する上限値CSVSP1を下回るか否かを判断する。上限値CSVSP1を下回るときはステップS104へ進み、それ以外のときはステップS112へ進んでエンジン作動状態を継続する。
 ステップS104では、ブレーキペダル操作量BRKPがコーストストップ許可上限値BRKINHを下回るか否かを判断する。上限値BRKINHを下回るときはステップS105へ進み、それ以外のときはステップS112へ進んでエンジン作動状態を継続する。
 ステップS105では、車速VSPが、コーストストップ許可上限値CSVSP1よりも小さく設定された所定値CSVSP2を下回るか否かを判断する。車速VSPが所定値CSVSP2を下回るときは低車速であると判断してステップS106へ進み、それ以外のときは高車速であると判断してステップS107へ進む。すなわち、所定値CSVSP2は、高車速であるか低車速であるかを判断して、高車速帯コーストストップ許可下限値BRKOUTHと低車速帯コーストストップ許可下限値BRKOUTLとを切替えるための車速VSPの閾値である。
 ステップS106では、ブレーキペダル操作量BRKPが低車速帯コーストストップ許可下限値BRKOUTLを下回るか否かを判断する。低車速帯コーストストップ許可下限値BRKOUTLを下回るときはステップS109へ進んでエンジン再始動を行い、それ以外のときはステップS108へ進んでエンジン停止を行う。
 ステップS107では、ブレーキペダル操作量BRKPが高車速帯コーストストップ許可下限値BRKOUTHを下回るか否かを判断する。高車速帯コーストストップ許可下限値BRKOUTHを下回るときはステップS111へ進んでエンジン再始動を行い、それ以外のときはステップS110へ進んでエンジン停止を行う。
 〔作用〕
 次に、上記制御処理に基づく作用について、比較例を用いて説明する。図3は実施例1のコースト走行時におけるコーストストップ許可下限値BRKOUTの設定処理の作用を表すタイムチャートである。このタイムチャートの最初の時刻における走行状態(前提条件)は、走行中に運転者がアクセルペダルから足を放したコースト走行状態であるものとする。
 (コーストストップ許可下限値BRKOUTを車速に応じて変化させた場合:実施例1)
 まず、実施例1の作用を説明する。
 時刻t11以前、運転者がブレーキペダルを踏み込んでおり、エンジン自動停止再始動制御の許可条件を満たすが、車速VSPがコーストストップ許可上限値CSVSP1以上である。
 よって、図2の制御処理でステップS101→S102→S103→S112へ進む流れとなり、コーストストップ制御を行わない。エンジン1は作動状態を継続する。運転者のブレーキペダル操作量BRKP(図3の実線)はコーストストップ許可上限値BRKINH(図3の二点鎖線)を下回り、かつ低車速帯コーストストップ許可下限値BRKOUTL以上である(BRKOUTL≦BRKP<BRKINH)。
 時刻t11において、車速VSPがコーストストップ許可上限値CSVSP1を下回る(CSVSP2<VSP<CSVSP1)。また、ブレーキペダル操作量BRKPが、コーストストップ許可上限値BRKINHを下回っている(BRKOUTH≦BRKP<BRKINH)。よって、ステップS101→S102→S103→S104→S105→S107→S110へ進む流れとなり、エンジン1(燃料噴射)を停止する。このようにコーストストップを開始する時刻t11後、エンジン回転数はゼロに向けて減少する。時刻t12において、エンジン回転数はほぼゼロとなる。
 時刻t121~t126において、運転者がブレーキペダルの踏み込みを一時的に緩める。
 時刻t121において、ブレーキペダル操作量BRKPが減少し始め、時刻t122で低車速帯コーストストップ許可下限値BRKOUTLを下回り、時刻t123で高車速帯コーストストップ許可下限値BRKOUTH以上の所定値となる(BRKOUTH≦BRKP<BRKOUTL)。
 時刻t124において、ブレーキペダル操作量BRKPが上記所定値から増加し始め、時刻t125で低車速帯コーストストップ許可下限値BRKOUTL以上となり、時刻t126で高車速帯コーストストップ許可上限値BRKINHを下回る所定値となる(BRKOUTL≦BRKP<BRKINH)。
 時刻t13において、車速VSPが所定値CSVSP2を下回る(VSP0<VSP<CSVSP2)。よって、ステップS101→S102→S103→S104→S105→S106へ進む流れとなり、コーストストップ許可下限値BRKOUT(図3の一点鎖線)が高車速帯コーストストップ許可下限値BRKOUTHから低車速帯コーストストップ許可下限値BRKOUTLへ切り替わる。ブレーキペダル操作量BRKPが低車速帯コーストストップ許可下限値BRKOUTL以上である(BRKOUTL≦BRKP<BRKINH)ため、ステップS106→S108へ進む流れとなり、エンジン停止を継続する。
 車速VSPが十分に小さくなる停車間際の時刻t14において、運転者がブレーキペダルを離し始め、以後、ブレーキペダル操作量BRKPが減少する。
時刻t15において、ブレーキペダル操作量BRKPが低車速帯コーストストップ許可下限値BRKOUTLを下回る(BRKP<BRKOUTL)ため、ステップS101→S102→S103→S104→S105→S106→S109へ進む流れとなり、エンジン1を再始動する。これに伴い、時刻t15以後、エンジン回転数が増大する。
 時刻t16において、ブレーキペダル操作量BRKPが高車速帯コーストストップ許可下限値BRKOUTHを下回る(BRKP<BRKOUTL)。
 時刻t17において、ブレーキペダル操作量BRKPがほぼゼロとなり、車速VSPもほぼゼロとなる。
 (コーストストップ許可下限値BRKOUTを車速に関わらず固定値とした場合:比較例)
 次に、コーストストップ許可下限値BRKOUTを車速VSPに応じて変化させずに固定値とした比較例の作用を説明する。
 比較例では、高車速時、すなわち車速VSPが所定値CSVSP2以上である時刻t13以前においても、コーストストップ許可下限値BRKOUTは、時刻t13以後と同様の高い値、すなわち低車速帯コーストストップ許可下限値BRKOUTLに設定される(図3の破線)。
 時刻t122において、ブレーキペダル操作量BRKPが低車速帯コーストストップ許可下限値BRKOUTLを下回るため、エンジン1を再始動する。図3の破線に示すように、時刻t122後、エンジン回転数は上昇する。ブレーキペダル操作量BRKPが再び低車速帯コーストストップ許可下限値BRKOUTL以上となる時刻t125まで、エンジン1の作動を継続する。このように、比較例では、運転者がブレーキペダルの踏み込みを一時的に緩めただけで、運転者が再発進を真に意図していないにも関わらず、エンジン1を再始動することとなるため、燃費の向上を十分に図ることができない。
 これに対し、実施例1では、上記のように、車速VSPが高いほどコーストストップ許可下限値BRKOUTを小さく設定する(ステップS103~S107)。よって、高車速時には、運転者がブレーキペダルを多少緩めたとしても(時刻t121~t126の間も)コーストストップを許可し、これによりエンジン停止を行う時間を極力長くするため、燃費をより向上することができる。また、車速VSPがコーストストップ許可上限値CSVSP1を下回ってからブレーキペダルが踏まれ始める場合には、ブレーキペダル操作量が容易にコーストストップ許可下限値BRKOUT(高車速帯コーストストップ許可下限値BRKOUTH)以上となる。すなわち、コーストストップ許可下限値BRKOUTが大きく(例えば低車速帯コーストストップ許可下限値BRKOUTLに)設定された場合よりも早い時点でコーストストップ許可条件が成立して早めにエンジン停止するため、エンジン停止を行う時間を極力長くして、燃費をより向上することができる。
 一方、低車速時にもコーストストップ許可下限値BRKOUTを小さい値(高車速帯コーストストップ許可下限値BRKOUTH)のままとした場合には、ブレーキペダル操作量が比較的小さい値(高車速帯コーストストップ許可下限値BRKOUTH)まで減少した時刻t16でエンジン始動することとなる(図3の破線)。よって、ロールバックや飛び出し感等が発生するおそれがあり、車両挙動や運転者の運転フィーリングに影響を与えるおそれがある。これに対し、実施例1では、車速VSPが低いほどコーストストップ許可下限値BRKOUTを大きく設定する(ステップS103~S107)。よって、車両が停止状態近くになっているときに、ブレーキペダル操作量がまだ比較的大きい値(低車速帯コーストストップ許可下限値BRKOUTL)である時刻t15でエンジン始動するため、エンジン再始動時の制動力を確保して、車両挙動等への影響を抑制することができる。したがって、例えば後退(ロールバック)抑制用の機能を車両のシステムに特別に設けることが不要となるため、コストを削減することが可能である。
 以上説明したように、実施例1にあっては下記の効果を得ることができる。
 (1)運転者のブレーキ操作量(マスタシリンダ圧)を検出するブレーキ操作量検出手段(マスタシリンダ圧センサ13)と、コースト走行中、検出されたブレーキ操作量に基づきエンジン1を停止し、エンジン停止後に、検出されたブレーキ操作量が第1の閾値(コーストストップ許可下限値BRKOUT)を下回るとエンジン1を再始動するエンジン停止再始動手段(エンジンコントロールユニット10) と、車速VSPが高いほど第1の閾値を小さく設定する第1の閾値設定手段(ステップS103~S107)と、を設けた。
 よって、エンジン停止を行う時間をより長くして、燃費を向上することができる。
 (2)エンジン停止再始動手段(エンジンコントロールユニット10)は、コースト走行中、エンジン停止後に、検出されたブレーキ操作量(マスタシリンダ圧)が第2の閾値(コーストストップ許可上限値BRKIN)以上になるとエンジン1を再始動する。
 よって、コーストストップ制御(エンジン停止)中にブレーキペダル操作量が増大した場合、エンジン1を再始動することで、エンジン1の負圧発生を速やかに確保し、ブレーキマスターバックを利用して車両の制動性能を向上することができる。また、エンジン1により駆動されるポンプ(オイルポンプ30)の吐出圧を利用して変速を行う変速機(ベルト式無段変速機3)の変速制御性を向上することができる。また、急減速時に車両挙動安定化のための各種制御が介入しても、エンジン1を作動することで、これら制御への影響を抑制することができる。
 [実施例2]
 次に、実施例2について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図4は、実施例2のエンジンコントロールユニット10にて実行されるエンジン自動停止再始動制御処理を表すフローチャートである。
 実施例2では、コーストストップ許可上限値BRKINを、車速VSPが低いほど大きく設定する。コーストストップ許可上限値BRKINは、車速VSPが高い(CSVSP2≦VSP<CSVSP1)ときに用いられる高車速帯コーストストップ許可上限値BRKINHと、車速VSPが低い(VSP0<VSP<CSVSP2)ときに用いられる低車速帯コーストストップ許可上限値BRKINLを有し、低車速帯コーストストップ許可上限値BRKINLを高車速帯コーストストップ許可上限値BRKINHよりも大きい値に設定する(BRKOUTL<BRKINH<BRKINL)。
 ステップS201~S205は、図2のステップS101~S105と同様である。ステップS204では、ブレーキペダル操作量BRKPが高車速帯コーストストップ許可上限値BRKINHを下回るか否かを判断する。
 ステップS206では、ブレーキペダル操作量BRKPが低車速帯コーストストップ許可上限値BRKINLを下回るか否かを判断する。上限値BRKINLを下回るときはステップS208へ進み、それ以外のときはステップS210へ進んでエンジン再始動を行う。ステップS208は、図2のステップS106と同様である。
 ステップS207、S209~S213は、それぞれ図2のステップS107、S108~S112と同様である。
 〔作用〕
 次に、上記制御処理に基づく作用について説明する。図5は、実施例2のコースト走行時におけるコーストストップ許可上限値BRKIN及び下限値BRKOUTの設定処理の作用を表す、実施例1(図3)と同様のタイムチャートである。
 時刻t23までは、図3の実施例1の時刻t13までと同様である。
時刻t23において、車速VSPが所定値CSVSP2を下回る(VSP0<VSP<CSVSP2)。よって、図4の制御処理でステップS201→S202→S203→S204→S205→S206へ進む流れとなり、コーストストップ許可下限値BRKOUTが低車速帯コーストストップ許可下限値BRKOUTLへ切り替わると共に、コーストストップ許可上限値BRKINが高車速帯コーストストップ許可上限値BRKINHから低車速帯コーストストップ許可上限値BRKINLへ切り替わる。ブレーキペダル操作量BRKPが低車速帯コーストストップ許可上限値BRKINLより小さく、低車速帯コーストストップ許可下限値BRKOUTL以上である(BRKOUTL≦BRKP<BRKINL)ため、ステップS206→S208→S209へ進む流れとなり、エンジン停止を継続する。
 時刻t231~t236において、運転者がブレーキペダルの踏み込みを一時的に強める。
 時刻t231において、ブレーキペダル操作量BRKPが増加し始め、時刻t232で高車速帯コーストストップ許可上限値BRKINH以上となり、時刻t233で低車速帯コーストストップ許可上限値BRKINLを下回る所定値となる(BRKINH≦BRKP<BRKINL)。
 時刻t234において、ブレーキペダル操作量BRKPが上記所定値から減少し始め、時刻t235で高車速帯コーストストップ許可上限値BRKINHを下回り、時刻t236で低車速帯コーストストップ許可下限値BRKOUTL以上の所定値となる(BRKOUTL≦BRKP<BRKINH)。
 時刻t231~t236では、ブレーキペダル操作量BRKPが低車速帯コーストストップ許可上限値BRKINLを下回る(BRKOUTL≦BRKP<BRKINL)。よって、ステップS201→S202→S203→S204→S205→S206→S208→S209へ進む流れとなり、エンジン停止を継続する。
 時刻t24から時刻t27までは、図3の実施例1の時刻t14~t17と同様である。
 実施例2とは異なり、コーストストップ許可上限値BRKINを車速VSPに応じて変化させずに固定値(例えば高車速帯コーストストップ許可上限値BRKINH)とした場合には、時刻t232において、ブレーキペダル操作量BRKPが高車速帯コーストストップ許可上限値BRKINH以上となるため、エンジン1を再始動する。図5の破線に示すように、時刻t232後、エンジン回転数は上昇する。ブレーキペダル操作量BRKPが再び高車速帯コーストストップ許可上限値BRKINHを下回る時刻t235まで、エンジン1の作動を継続する。よって、運転者がブレーキペダルの踏み込みを一時的に強めただけにも関わらず、エンジン1を再始動することとなるため、燃費の向上を十分に図ることができない。具体的には、低車速時にコーストストップ許可下限値BRKOUTを高車速時よりも大きくしたにもかかわらず、コーストストップ許可上限値BRKINを変化させない場合、下限値BRKOUTと上限値BRKINとに挟まれる範囲、すなわちコーストストップ制御を許可するブレーキペダル操作量BRKPの範囲が、高車速時よりも狭くなる。よって、低車速時には、高車速時における運転者のブレーキペダル操作感覚に反して、容易にコーストストップ制御が終了してしまい、エンジン再始動が行われることとなる。
 これに対し、実施例2では、上記のように、車速VSPが低いほどコーストストップ許可下限値BRKOUTだけでなく上限値BRKINを大きく設定する(ステップS203~S206)。言換えると、車速VSPに関わらず下限値BRKOUTとの間隔がほぼ一定となるように上限値BRKINを設定する。よって、エンジン停止する(コーストストップ制御を行う)ブレーキペダル操作量BRKPの範囲(大きさ)が、高車速時と低車速時とで異なることを抑制することができる。したがって、運転者の意図に反してエンジン再始動を行うことを抑制し、以て燃費と運転フィーリングの向上を図ることができる。
 以上説明したように、実施例2にあっては、上記(1)(2)に加え、下記に示す効果を得ることができる。 
 (3)車速VSPが低いほど第2の閾値(コーストストップ許可上限値BRKIN)を大きく設定する第2の閾値設定手段(ステップS203~S206)を設けた。 
 よって、運転者の意図に反してエンジン再始動を行うことを抑制し、燃費と運転フィーリングの向上を図ることができる。
 (4)言換えると、車速VSPに関わらず第1の閾値(コーストストップ許可下限値BRKOUT)との間隔が一定となるように第2の閾値を設定する第2の閾値設定手段(ステップS203~S206)を設けた。 
 よって、運転者の意図に反してエンジン再始動を行うことを抑制し、燃費と運転フィーリングの向上を図ることができる。
 [実施例3]
 次に、実施例3について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図6は、実施例3のエンジンコントロールユニット10にて実行されるエンジン自動停止再始動制御処理を表すフローチャートである。
 実施例3では、実施例2と同様に、コーストストップ許可上限値BRKIN及びコーストストップ許可下限値BRKOUTを、車速VSPが低いほど大きく設定する。エンジンコントロールユニット10は、コーストストップ許可上限値BRKINと車速VSPとの関係を示すマップ1、及び、コーストストップ許可下限値BRKOUTと車速VSPとの関係を示すマップ2を有する。
 マップ1は、図6のステップS303に示すように、車速VSPが高い側から低い側へ変化するのに応じてコーストストップ許可上限値BRKINが段階的に(ステップ状に)増加するように境界線が引かれ、この境界線によりコーストストップ許可(OK)領域とコーストストップ禁止(NG)領域が区分される。そのときの運転状態(車速VSP及びブレーキペダル操作量BRKP)がどちらの領域に属するかにより、コーストストップ(エンジン停止)の許否を判断する。 
 マップ2もマップ1と同様の形状であり、車速VSPが高い側から低い側へ変化するのに応じてコーストストップ許可下限値BRKOUTが段階的に(ステップ状に)増加するように境界線が引かれ、この境界線によりコーストストップ許可(OK)領域とコーストストップ禁止(NG)領域が区分される。
 ステップS301では、エンジン自動停止再始動制御の許可条件を満たすか否か、具体的には、コースト走行状態であり、かつブレーキペダルが操作されている等の条件を満たすか否かを判断する。許可条件を満たすときはステップS302へ進み、それ以外のときはステップS307へ進んでエンジン作動状態を継続する。 ステップS302では、車速VSP、ブレーキペダル操作量(マスタシリンダ圧)BRKP、アイドリングストップ制御を許可するブレーキペダル操作量BRKPの上限値・下限値、及びマップ1,2の読み込みを行い、ステップS303へ進む。
 ステップS303では、そのときの運転状態(車速VSP及びブレーキペダル操作量BRKP)がマップ1のコーストストップ許可領域とコーストストップ禁止領域のどちらに属するかを判断する。コーストストップ許可領域に属すると判断したときはステップS304 へ進み、コーストストップ禁止領域に属すると判断したときはステップS307へ進んでエンジン作動状態を継続する。
 ステップS304では、そのときの運転状態(車速VSP及びブレーキペダル操作量BRKP)がマップ2のコーストストップ許可領域とコーストストップ禁止領域のどちらに属するかを判断する。コーストストップ許可領域に属すると判断したときはステップS305へ進んでエンジン停止を行い、コーストストップ禁止領域に属すると判断したときはステップS306へ進んでエンジン再始動を行う。
 〔作用〕
 次に、上記制御処理に基づく作用について説明する。図7は実施例3のコースト走行時におけるコーストストップ許可上限値BRKIN及び下限値BRKOUTの設定処理の作用を表す、実施例1(図3)と同様のタイムチャートである。
 時刻t31以前、運転者がブレーキペダルを踏み込んでいるが、エンジン自動停止再始動制御の許可条件を満たさないため、図6の制御処理でステップS301→S307へ進む流れとなり、エンジン1の作動を継続する。運転者のブレーキペダル操作量BRKPは所定値に維持される。
 時刻t31において、エンジン自動停止再始動制御の許可条件が満たされる。また、運転状態(車速VSP及びブレーキペダル操作量BRKP)がマップ1におけるコーストストップ許可領域及びマップ2におけるコーストストップ許可領域に属する。よって、ステップS301→S302→S303→S304→S305へ進む流れとなり、エンジン1(燃料噴射)を停止する。エンジン回転数はゼロに向けて減少し、時刻t32において、エンジン回転数はほぼゼロとなる。
 時刻t33において、車速VSPの低下に応じて、マップ1におけるコーストストップ許可上限値BRKIN及びマップ2における下限値BRKOUTがそれぞれ段階的に(ステップ状に)増加する。
 時刻t331~t332において、運転者がブレーキペダルの踏み込みを強める。
時刻t34において、車速VSPの低下に応じて、マップ1,2におけるコーストストップ許可上限値BRKIN及び下限値BRKOUTがそれぞれ段階的に(ステップ状に)増加する。
 車速VSPが十分に小さくなる停車間際の時刻t35において、運転者がブレーキペダルを離し始め、以後、ブレーキペダル操作量BRKPが減少する。
 時刻t31から時刻t36まで、運転状態はコーストストップ許可領域に属するため、エンジン停止を継続する。
 時刻t36において、ブレーキペダル操作量BRKPがコーストストップ許可下限値BRKOUTを下回り(BRKP<BRKOUT)、運転状態がコーストストップ禁止領域に属するため、ステップS301→S302→S303→S304→S306へ進む流れとなり、エンジン1を再始動する。これに伴い、時刻t36以後、エンジン回転数が増大する。
 時刻t37において、ブレーキペダル操作量BRKPがほぼゼロとなり、車速VSPもほぼゼロとなる。
 時刻t331~時刻t332の前後で、運転者のブレーキペダル操作量BRKPは増加する。並行して、車速VSPの低下に応じて、マップ1におけるコーストストップ許可上限値BRKINが増加しているため、ブレーキペダル操作量BRKPがコーストストップ許可上限値BRKIN以上となることが抑制される。言換えると、運転状態(車速VSP及びブレーキペダル操作量BRKP)がマップ1におけるコーストストップ許可領域にとどまる。よって、ステップS301→S302→S303→S304→S305へ進む流れとなり、エンジン停止を継続する。
 また、車速VSPの低下に応じて、マップ2におけるコーストストップ許可下限値BRKOUTが増加するため、運転者がブレーキペダルを離すと、その後、ブレーキペダル操作量BRKPが比較的早くコーストストップ許可下限値BRKOUTを下回りやすい。言換えると、運転状態がマップ2におけるコーストストップ許可領域から禁止領域へ移行しやすい。よって、エンジン再始動がより速やかに行われる。
 実施例3では、車速VSPが低いほど大きくなるよう、コーストストップ許可下限値BRKOUTを複数設定する。具体的には、コーストストップ許可下限値BRKOUTを、実施例1,2(高車速帯コーストストップ許可下限値BRKOUTHと低車速帯コーストストップ許可下限値BRKOUTLの2つ)とは異なり、3以上設定する。このように、コーストストップ許可下限値BRKOUTを車速VSPに合わせてより細かく設定することで、コーストストップ許可下限値BRKOUTが急激に変化することを抑制し、より適切なタイミングでエンジン1を再始動することができる。したがって、燃費をより向上することができるとともに、エンジン再始動時の制動力をより適切に確保して、車両挙動等への影響をより抑制することができる。
 また、コーストストップ許可下限値BRKOUTをマップ2に基づき設定する。よって、コーストストップ許可下限値BRKOUTの設定自由度を向上することができると共に、例えば計算式に基づきコーストストップ許可下限値BRKOUTを設定する場合に比べ、エンジンコントロールユニット10の演算負荷を軽減することができる。
 また、車速VSPが低いほど大きくなるよう、コーストストップ許可上限値BRKINを複数設定する。具体的には、コーストストップ許可上限値BRKINを、実施例2(高車速帯コーストストップ許可上限値BRKINHと低車速帯コーストストップ許可上限値BRKINLの2つ)とは異なり、3以上設定する。このように、コーストストップ許可上限値BRKINを車速VSPに合わせてより細かく設定することで、エンジン停止(コーストストップ)するブレーキペダル操作量BRKPの範囲(大きさ)が急激に変化することを抑制し、より適切なタイミングでエンジン1を再始動することができる。したがって、燃費と運転フィーリングをより向上することができる。また、マップ1に基づきコーストストップ許可上限値BRKINを設定することで、エンジンコントロールユニット10の演算負荷を軽減しつつ、コーストストップ許可上限値BRKINの設定自由度を向上することができる。
 以上説明したように、実施例3にあっては、上記(1)~(4)に加え、下記に示す効果を得ることができる。
 (5)第1の閾値設定手段(ステップS304)は、車速VSPが高いほど小さくなるよう、第1の閾値(コーストストップ許可下限値BRKOUT)を複数設定する。
 よって、より適切なタイミングでエンジン1を再始動することができるため、燃費等をより向上することができる。 
 (6)第1の閾値設定手段(ステップS304)は、第1の閾値(コーストストップ許可下限値BRKOUT)を所定のマップ(マップ2)に基づき設定する。
 よって、第1の閾値(コーストストップ許可下限値BRKOUT)の設定自由度を向上することができる。
 (7)第2の閾値設定手段(ステップS303)は、車速VSPが低いほど大きくなるよう、第2の閾値(コーストストップ許可上限値BRKIN)を複数設定する。
 よって、より適切なタイミングでエンジン1を再始動することができるため、燃費等をより向上することができる。
 (8)第2の閾値設定手段(ステップS303)は、第2の閾値(コーストストップ許可上限値BRKIN)を所定のマップ(マップ1)に基づき設定する。
 よって、第2の閾値(コーストストップ許可上限値BRKIN)の設定自由度を向上することができる。
 [実施例4]
 次に、実施例4について説明する。基本的な構成は実施例3と同じであるため、異なる点についてのみ説明する。図8は、実施例4のエンジンコントロールユニット10にて実行されるエンジン自動停止再始動制御処理を表すフローチャートである。 
 エンジンコントロールユニット10は、車速VSPが低くなるほどコーストストップ許可上限値BRKINを大きく算出する計算式1と、車速VSPが低くなるほどコーストストップ許可下限値BRKOUTを大きく算出する計算式2とを用いて、車速VSPに基づきコーストストップ許可上限値BRKIN及び下限値BRKOUTを演算する。計算式1,2は、例えば、車速VSPの低下に応じて上限値BRKIN又は下限値BRKOUTが線形的に大きくなる特性とすることができる。
 ステップS401は、図6のステップS301と同様である。
 ステップS402では、車速VSP、ブレーキペダル操作量(マスタシリンダ圧)BRKP、及びアイドリングストップ制御を許可するブレーキペダル操作量BRKPの上限値・下限値の読み込みを行い、ステップS403へ進む。
 ステップS403では、読み込んだ車速VSPと計算式1に基づきコーストストップ許可上限値BRKINを算出し、読み込んだブレーキペダル操作量BRKPが上記コーストストップ許可上限値BRKINを下回るか否かを判断する。言換えると、そのときの運転状態(車速VSP及びブレーキペダル操作量BRKP)が、コーストストップ許可上限値BRKINの(計算式1に表される)特性により区分されるコーストストップ許可(OK)領域とコーストストップ禁止(NG)領域のどちらに属するかを判断する。ブレーキペダル操作量BRKPがコーストストップ許可上限値BRKINを下回る(コーストストップ許可領域に属する)と判断したときはステッ
プS404へ進み、ブレーキペダル操作量BRKPがコーストストップ許可上限値BRKIN以上である(コーストストップ禁止領域に属する)と判断したときはステップS407へ進んでエンジン作動状態を継続する。
 ステップS404では、読み込んだ車速VSPと計算式2に基づきコーストストップ許可下限値BRKOUTを算出し、読み込んだブレーキペダル操作量BRKPが上記コーストストップ許可下限値BRKOUTを下回るか否かを判断する。言換えると、そのときの運転状態(車速VSP及びブレーキペダル操作量BRKP)が、コーストストップ許可下限値BRKOUTの(計算式2に表される)特性により区分されるコーストストップ許可(OK)領域とコーストストップ禁止(NG)領域のどちらに属するかを判断する。ブレーキペダル操作量BRKPがコーストストップ許可下限値BRKOUTを下回る(コーストストップ禁止領域に属する)と判断したときはステップS406へ進んでエンジン再始動を行い、ブレーキペダル操作量BRKPがコーストストップ許可下限値BRKOUT以上である(コーストストップ許可領域に属する)と判断したときはステップS405へ進んでエンジン停止を行う。
 〔作用〕
 次に、上記制御処理に基づく作用について説明する。図9は実施例4のコースト走行時におけるコーストストップ許可上限値BRKIN及び下限値BRKOUTの設定処理の作用を表す、実施例1(図3)と同様のタイムチャートである。
 時刻t41以前、運転者がブレーキペダルを踏み込んでいるが、エンジン自動停止再始動制御の許可条件を満たさないため、図8の制御処理でステップS401→S407へ進む流れとなり、エンジン1は作動状態を継続する。運転者のブレーキペダル操作量BRKPは所定値に維持される。
 時刻t41において、エンジン自動停止再始動制御の許可条件が満たされる。また、ブレーキペダル操作量BRKPが、車速VSPと計算式1により算出されるコーストストップ許可上限値BRKINを下回り、かつ、車速VSPと計算式2により算出されるコーストストップ許可下限値BRKOUT以上である。よって、ステップS401→S402→S403→S404→S405へ進む流れとなり、エンジン停止を行う。エンジン回転数はゼロに向けて減少し、時刻t42において、エンジン回転数はほぼゼロとなる。
 時刻t421~t422において、運転者がブレーキペダルの踏み込みを強める。
車速VSPが十分に小さくなる停車間際の時刻t43において、運転者がブレーキペダルを離し始め、以後、ブレーキペダル操作量BRKPが減少する。
時刻t41から時刻t44まで、運転状態はコーストストップ許可領域に属するため、エンジン停止を継続する。
 時刻t44において、ブレーキペダル操作量BRKPがコーストストップ許可下限値BRKOUTを下回り(BRKP<BRKOUT)、運転状態がコーストストップ禁止領域に属するため、ステップS401→S402→S403→S404→S406へ進む流れとなり、エンジン1を再始動する。これに伴い、時刻t44以後、エンジン回転数が増大する。
 時刻t45において、ブレーキペダル操作量BRKPがほぼゼロとなり、車速VSPもほぼゼロとなる。
 時刻t421~時刻t422の前後で、運転者のブレーキペダル操作量BRKPは増加する。並行して、車速VSPの低下に応じて、コーストストップ許可上限値BRKINが増加しているため、ブレーキペダル操作量BRKPがコーストストップ許可上限値BRKIN以上となることが抑制される。言換えると、運転状態がコーストストップ許可領域にとどまる。よって、ステップS401→S402→S403→S404→S405へ進む流れとなり、エンジン停止を継続する。
 また、車速VSPの低下に応じて、コーストストップ許可下限値BRKOUTが増加するため、運転者がブレーキペダルを離すと、その後、ブレーキペダル操作量BRKPが比較的早くコーストストップ許可下限値BRKOUTを下回りやすい。言換えると、運転状態がコーストストップ許可領域から禁止領域へ移行しやすい。よって、エンジン再始動がより速やかに行われる。
 以上のように、実施例4では、コーストストップ許可上限値BRKIN及びコーストストップ許可下限値BRKOUTをそれぞれ計算式1,2に基づき設定する。よって、例えばマップを用いて上限値BRKIN及び下限値BRKOUTを設定する場合よりも、エンジンコントロールユニット10において記憶するデータ量を縮小することができる。すなわち、上限値BRKIN及び下限値BRKOUTを車速VSPに合わせてより細かく設定しようとすると、マップを用いた場合にはデータ量が増大するが、計算式を用いれば、データ量の増大を抑制することができる。
 以上説明したように、実施例4にあっては、上記(1)~(5)(7)に加え、下記に示す効果を得ることができる。 
 (9)第1の閾値設定手段(ステップS404)は、第1の閾値(コーストストップ許可下限値BRKOUT)を所定の計算式(計算式2)に基づき設定する。
 よって、データの記憶量を節減することができる。
 (10)第2の閾値設定手段(ステップS403)は、第2の閾値(コーストストップ許可上限値BRKIN)を所定の計算式(計算式1)に基づき設定する。
 よって、データの記憶量を節減することができる。
 以上、本願発明を実施例1~4に基づいて説明してきたが、上記実施例に限らず、他の構成であっても本願発明に含まれる。
 例えば、実施例1~4では、ベルト式無段変速機を採用した例を示したが、他の有段式自動変速機や手動変速機等を備えた構成であってもよい。また、トルクコンバータを備えた例を示したが、トルクコンバータを備えていない車両であっても適用できる。これらの場合、コーストストップ制御(エンジン自動停止)を許可する条件のパラメータとして、所定車速CSVSP1ではなく、エンジン自立回転の維持の可否を示す他のパラメータ(車速と変速比の組合せやエンジン回転数)を用いることができる。
 また、実施例2,3で、コーストストップ許可上限値BRKINを変化させる閾値となる車速VSPは、コーストストップ許可下限値BRKOUTを変化させる閾値となる車速VSPと厳密に同じである必要はなく、両車速VSPを異ならせることとしてもよい。この場合も、上限値BRKINと下限値BRKOUTとの間の範囲の変動を平均して抑制できれば、運転者の意図に反してエンジン再始動を行うことを抑制でき、実施例2等と同様の効果を得ることができる。

Claims (7)

  1.  運転者のブレーキ操作量を検出するブレーキ操作量検出手段と、
     コースト走行中、検出されたブレーキ操作量に基づきエンジンを停止し、エンジン停止後に、検出されたブレーキ操作量が第1の閾値を下回るとエンジンを再始動するエンジン停止再始動手段と、
     車速が高いほど前記第1の閾値を小さく設定する第1の閾値設定手段と、を設けた車両のエンジン自動制御装置。
  2.  請求項1に記載の車両のエンジン自動制御装置において、
     前記第1の閾値設定手段は、車速が高いほど小さくなるよう、前記第1の閾値を複数設定する車両のエンジン自動制御装置。
  3.  請求項1または2に記載の車両のエンジン自動制御装置において、
     前記第1の閾値設定手段は、前記第1の閾値を所定のマップに基づき設定する車両のエンジン自動制御装置。
  4.  請求項1または2に記載の車両のエンジン自動制御装置において、
     前記第1の閾値設定手段は、前記第1の閾値を所定の計算式に基づき設定する車両のエンジン自動制御装置。
  5.  請求項1ないし4のいずれかに記載の車両のエンジン自動制御装置において、
     前記エンジン停止再始動手段は、コースト走行中、エンジン停止後に、検出されたブレーキ操作量が前記第1の閾値より大きい第2の閾値以上になるとエンジンを再始動する車両のエンジン自動制御装置。
  6.  請求項5に記載の車両のエンジン自動制御装置において、
     車速が低いほど前記第2の閾値を大きく設定する第2の閾値設定手段を設けた車両のエンジン自動制御装置。
  7.  請求項5に記載の車両のエンジン自動制御装置において、
     車速に関わらず第1の閾値との間隔が一定となるように第2の閾値を設定する第2の閾値設定手段を設けた車両のエンジン自動制御装置。
PCT/JP2012/079772 2011-12-05 2012-11-16 車両のエンジン自動制御装置 WO2013084689A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011266190A JP2013117215A (ja) 2011-12-05 2011-12-05 車両のエンジン自動制御装置
JP2011-266190 2011-12-05

Publications (1)

Publication Number Publication Date
WO2013084689A1 true WO2013084689A1 (ja) 2013-06-13

Family

ID=48574067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079772 WO2013084689A1 (ja) 2011-12-05 2012-11-16 車両のエンジン自動制御装置

Country Status (2)

Country Link
JP (1) JP2013117215A (ja)
WO (1) WO2013084689A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017003949B4 (de) 2016-05-19 2023-12-21 Suzuki Motor Corporation Antriebsmaschinen-stopp-neustart-vorrichtung für ein fahrzeug

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008584A (ja) * 2014-06-26 2016-01-18 ダイハツ工業株式会社 アイドルストップ車の制御装置
JP7127946B2 (ja) * 2018-03-27 2022-08-30 ダイハツ工業株式会社 車両制御装置
JP7242606B2 (ja) 2020-05-26 2023-03-20 スズキ株式会社 車両のエンジン自動停止再始動装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095097A (ja) * 1998-09-22 2000-04-04 Aisin Seiki Co Ltd エンジンの負圧制御装置
JP2002195068A (ja) * 2000-12-22 2002-07-10 Toyota Motor Corp 車載内燃機関の制御装置
JP2002221059A (ja) * 2001-01-26 2002-08-09 Denso Corp エンジン制御装置
JP2003013768A (ja) * 2001-06-27 2003-01-15 Denso Corp エンジン自動停止再始動装置
JP2003035175A (ja) * 2001-07-24 2003-02-07 Denso Corp エンジン自動車の停止再始動装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095097A (ja) * 1998-09-22 2000-04-04 Aisin Seiki Co Ltd エンジンの負圧制御装置
JP2002195068A (ja) * 2000-12-22 2002-07-10 Toyota Motor Corp 車載内燃機関の制御装置
JP2002221059A (ja) * 2001-01-26 2002-08-09 Denso Corp エンジン制御装置
JP2009063001A (ja) * 2001-01-26 2009-03-26 Denso Corp エンジン制御装置
JP2003013768A (ja) * 2001-06-27 2003-01-15 Denso Corp エンジン自動停止再始動装置
JP2003035175A (ja) * 2001-07-24 2003-02-07 Denso Corp エンジン自動車の停止再始動装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017003949B4 (de) 2016-05-19 2023-12-21 Suzuki Motor Corporation Antriebsmaschinen-stopp-neustart-vorrichtung für ein fahrzeug

Also Published As

Publication number Publication date
JP2013117215A (ja) 2013-06-13

Similar Documents

Publication Publication Date Title
JP5834855B2 (ja) 車両のエンジン自動制御装置
JP5834844B2 (ja) 車両のエンジン自動制御装置
JP5853690B2 (ja) 車両のエンジン自動停止制御装置
KR101322069B1 (ko) 차량의 제어 장치
JP5870660B2 (ja) 車両のエンジン自動制御装置
US9562480B2 (en) Automatic engine-stop control device for vehicle
JP2017078436A (ja) 車両のセーリングストップ制御方法及び制御装置
WO2017068718A1 (ja) 車両のロックアップ制御方法及び制御装置
WO2013084689A1 (ja) 車両のエンジン自動制御装置
WO2013084690A1 (ja) 車両のエンジン自動制御装置
WO2012132119A1 (ja) 車両のエンジン自動停止制御装置
WO2013084691A1 (ja) 車両のエンジン自動制御装置
JP3945312B2 (ja) 車両の制御装置
US11872986B2 (en) Vehicle control method and vehicle control device
JP2018154145A (ja) 車両の制御装置および車両の制御方法
JP7491392B2 (ja) 車両制御方法及び車両制御装置
JP2013163994A (ja) 車両のエンジン自動制御装置
JP2013189869A (ja) 車両のエンジン自動停止制御装置
JP6598712B2 (ja) 車両のセーリングストップ制御方法及び制御装置
JP5935549B2 (ja) 車両のエンジン自動停止制御装置
JP2013036379A (ja) 車両のエンジン自動停止制御装置
JP2013189868A (ja) 車両のエンジン自動停止制御装置
JP2016048086A (ja) 車両のロックアップクラッチ制御装置
JP2016048087A (ja) 車両のロックアップクラッチ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855161

Country of ref document: EP

Kind code of ref document: A1