WO2013084624A1 - 電動車両 - Google Patents

電動車両 Download PDF

Info

Publication number
WO2013084624A1
WO2013084624A1 PCT/JP2012/077954 JP2012077954W WO2013084624A1 WO 2013084624 A1 WO2013084624 A1 WO 2013084624A1 JP 2012077954 W JP2012077954 W JP 2012077954W WO 2013084624 A1 WO2013084624 A1 WO 2013084624A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
downhill
forward travel
electric vehicle
characteristic
Prior art date
Application number
PCT/JP2012/077954
Other languages
English (en)
French (fr)
Inventor
小林真也
齊藤大
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to DE112012005125.4T priority Critical patent/DE112012005125T5/de
Priority to JP2013548148A priority patent/JP5538633B2/ja
Priority to US14/362,497 priority patent/US9199544B2/en
Publication of WO2013084624A1 publication Critical patent/WO2013084624A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • B60L15/2018Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking for braking on a slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an electric vehicle including a shift range switching device (for example, a shift lever) that switches a parking range, a reverse travel range, a first forward travel range, and a second forward travel range as a shift range. More specifically, the present invention relates to an electric vehicle capable of suitably performing regenerative control in the first forward travel range and the second forward travel range.
  • a shift range switching device for example, a shift lever
  • US Patent Application Publication No. 2009/0112386 discloses regenerative control of an electric motor while traveling on a downhill road. More specifically, US 2009/0112386 A1 is an electric motor that can generate an acceleration suitable for the gradient of the road surface while reducing the influence of disturbance factors when the electric vehicle travels on a downhill road. The issue is regenerative operation (summary, [0007]). In order to solve this problem, in US 2009/0112386 A1, when the vehicle 1 travels on a downhill road, the target acceleration of the vehicle 1 when the accelerator and brake operation states of the vehicle 1 are in the off state is used as the slope of the road surface.
  • the output torque of the electric motor 2 is controlled according to Trc (summary).
  • some electric vehicles are capable of a plurality of types of forward travel (in other words, those having a plurality of types of forward travel ranges) ⁇ International Publication No. 2010/110098 (hereinafter referred to as “WO 2010/110098”). A1 ") ⁇ .
  • WO 2010/110098 A1 among the shift positions of the shift lever 32, there are a D position and a B position corresponding to forward travel (FIG. 2).
  • the D position corresponds to the D range, which is a forward travel range in which the driving force for moving the vehicle forward is transmitted to the drive wheels, whereas the B position in the D range, for example, by generating regenerative torque in the motor.
  • a decelerating forward travel range engine brake range
  • decelerates the rotation of the drive wheels [0049], [0050]).
  • US 2009/0112386 A1 can execute regenerative control suitable for a downhill road, but the regenerative control does not take into account a plurality of forward travel ranges.
  • the present invention has been made in consideration of such problems, and an object of the present invention is to provide an electric vehicle capable of suitably performing regenerative control when switching a plurality of forward travel ranges.
  • the electric vehicle includes a shift range switching device that switches a parking range, a reverse travel range, a first forward travel range, and a second forward travel range as a shift range, and the driver operates the accelerator on a flat road.
  • the accelerator regeneration control in which the braking force equivalent to the engine brake is applied to the electric vehicle by the regenerative power generation of the electric motor is executed, and the accelerator regeneration control when the second forward travel range is selected.
  • the deceleration of the electric vehicle is larger than the deceleration by the accelerator regeneration control when the first forward travel range is selected, and further, the electric vehicle when the accelerator is closed during the downhill traveling of the electric vehicle.
  • Downhill regeneration control is performed to adjust the regeneration amount of the electric motor so that the acceleration of the vehicle becomes a downhill acceleration according to the road surface gradient,
  • the downhill acceleration when the forward travel range is selected is smaller than the downhill acceleration when the first forward travel range is selected over the entire road gradient set as the control range.
  • the deceleration of the second forward travel range is larger than the deceleration of the first forward travel range in both the accelerator regeneration control and the descending slope regeneration control. For this reason, regardless of whether the electric vehicle is traveling on a flat road or a downhill road, the deceleration of the electric vehicle increases when the first forward travel range is switched to the second forward travel range. Therefore, in that case, it is possible to give the driver a feeling of deceleration, and an electric vehicle with less idling feeling can be provided. In addition, regardless of whether the electric vehicle is traveling on a flat road or a downhill road, if the second forward travel range is switched to the first forward travel range, the driver is given acceleration and the acceleration changes. It is possible to avoid a sense of incongruity due to not doing. Therefore, it is possible to suitably perform the regeneration control in the electric vehicle having a plurality of forward travel ranges.
  • the difference between the downhill acceleration when the first forward travel range is selected and the downhill acceleration when the second forward travel range is selected is that the first forward travel range is selected. You may make it equal to the difference of the deceleration by the said accelerator regeneration control when there is, and the deceleration by the said accelerator regeneration control when the said 2nd forward traveling range is selected.
  • the downhill acceleration and the second when the first forward travel range is selected are selected, compared to when the road gradient is gentler than the predetermined value.
  • the difference from the downhill acceleration when the forward travel range is selected may be small.
  • the predetermined value may be a road slope value at which the downhill acceleration changes from positive to negative when the first forward travel range is switched to the second forward travel range.
  • 1 is a schematic overall configuration diagram of an electric vehicle according to a first embodiment of the present invention. It is a flowchart which controls the driving force of a traveling motor in D range or B range of the said 1st Embodiment. It is a timing chart which shows an example of the relationship between the road surface gradient at the time of using the various control of the said 1st Embodiment, a vehicle speed, an accelerator pedal opening degree, a brake pedal opening degree, and the target driving force of the said traveling motor. It is a characteristic view which shows an example of the relationship between the road surface gradient used by downhill regeneration control during selection of D range, and a target acceleration.
  • 3 is a flowchart (details of S3 in FIG. 2) for calculating a downhill regeneration correction amount (downhill regeneration control) in the first embodiment. It is a flowchart (detail of S12 of FIG. 7) which calculates target acceleration in the said 1st Embodiment. It is a characteristic view which shows an example of the relationship between the road surface gradient and target acceleration about each for D range and B range used by 2nd Embodiment.
  • FIG. 1 is a schematic overall configuration diagram of an electric vehicle 10 according to the first embodiment of the present invention.
  • the electric vehicle 10 includes a travel motor 12 (hereinafter also referred to as “motor 12”), an inverter 14, a battery 16, an accelerator pedal 18, and an accelerator pedal opening sensor 20 ( Hereinafter referred to as “AP opening sensor 20”), brake pedal 22, brake pedal opening sensor 24 (hereinafter referred to as “BP opening sensor 24”), shift lever 26 (shift range switching device), shift A position sensor 28, a vehicle speed sensor 30, an acceleration sensor 32, and an electronic control unit 34 (hereinafter referred to as “ECU 34”) are included.
  • AP opening sensor 20 accelerator pedal opening sensor 20
  • BP opening sensor 24 brake pedal opening sensor 24
  • shift lever 26 shift range switching device
  • shift A position sensor 28 a vehicle speed sensor 30
  • acceleration sensor 32 an acceleration sensor 32
  • ECU 34 electronice control unit 34
  • the motor 12 (electric motor) is a three-phase alternating current brushless type, and is based on the electric power supplied from the battery 16 via the inverter 14 (hereinafter referred to as “motor driving force F” or “driving force F”). .) [N] (or torque [N ⁇ m]) is generated. Further, the motor 12 charges the battery 16 by outputting electric power (hereinafter referred to as “regenerative power Preg”) [W] generated by performing regeneration to the battery 16. The regenerative power Preg may be output to an auxiliary machine (not shown).
  • the inverter 14 is configured as a three-phase bridge type, performs DC / AC conversion, converts DC to three-phase AC and supplies it to the motor 12, and supplies the DC after AC / DC conversion accompanying the regenerative operation.
  • the battery 16 is supplied.
  • the battery 16 is a power storage device (energy storage) including a plurality of battery cells, and for example, a lithium ion secondary battery, a nickel hydride secondary battery, or a capacitor can be used. In the first embodiment, a lithium ion secondary battery is used. Note that a DC / DC converter (not shown) may be provided between the inverter 14 and the battery 16 to increase or decrease the output voltage of the battery 16 or the output voltage of the motor 12.
  • the AP opening sensor 20 detects the depression amount (hereinafter referred to as “AP opening ⁇ ap”) [degree] from the original position of the accelerator pedal 18 and outputs it to the ECU 34.
  • the BP opening sensor 24 detects the amount of depression (hereinafter referred to as “BP opening ⁇ bp”) [degree] from the original position of the brake pedal 22 and outputs the detected degree to the ECU 34.
  • the shift position sensor 28 detects the position of the shift lever 26 (hereinafter referred to as “shift position Ps”) and outputs it to the ECU 34.
  • shift position Ps the position of the shift lever 26
  • N the neutral range
  • R the reverse travel range
  • D the range
  • B the B range
  • the D range and B range are both forward travel ranges as shift ranges.
  • the D range is used during normal travel (during travel other than the B range).
  • the B range is a shift range in which the regenerative amount by the motor 12 is larger than that in the D range when the driver wants to increase the regenerative amount in the vehicle 10 (motor 12) (for example, during downhill).
  • the vehicle speed sensor 30 detects the actual vehicle speed V [km / h] of the vehicle 10 and outputs it to the ECU 34.
  • the acceleration sensor 32 detects the actual acceleration a [m / s / s] of the vehicle 10 and outputs it to the ECU 34.
  • the acceleration a is used to estimate the gradient of the road on which the vehicle 10 is traveling (hereinafter referred to as “road gradient G” or “gradient G”) (details will be described later).
  • the ECU 34 controls the output (motor power) of the motor 12 by controlling the inverter 14 based on outputs from various sensors.
  • the ECU 34 includes an input / output unit, a calculation unit, and a storage unit (all not shown).
  • FIG. 2 is a flowchart for controlling the driving force F of the motor 12 in the D range or the B range of the first embodiment.
  • the flowchart of FIG. 2 is applied both when the vehicle 10 is in powering mode and during regeneration.
  • a target value of the driving force F of the motor 12 (hereinafter referred to as “target driving force Ftar”) [N] is calculated, but basically, the same processing as in US 2009/0112386 A1.
  • the torque can be calculated by multiplying the driving force F by the radius of a wheel (not shown).
  • the ECU 34 determines whether the shift range corresponding to the shift position Ps from the shift position sensor 28 is the D range or the B range.
  • the shift range is not the D range or the B range, that is, when the shift range is the P range, the N range, or the R range (S1: NO)
  • the processing in FIG. 2 is finished and the target driving force Ftar of the motor 12 is separately set.
  • the shift range is the D range or the B range (S1: YES)
  • the process proceeds to step S2.
  • step S2 the ECU 34 calculates a basic driving force Fbase.
  • the basic driving force Fbase is calculated based on the AP opening ⁇ ap from the AP opening sensor 20, the shift position Ps (or shift range) from the shift position sensor 28, and the vehicle speed V from the vehicle speed sensor 30. That is, the ECU 34 calculates the basic driving force Fbase using a map that defines the basic driving force Fbase corresponding to the combination of the AP opening ⁇ ap and the vehicle speed V in accordance with each shift position Ps (shift range).
  • the basic driving force Fbase for driving (powering) the vehicle 10 is a positive value
  • the basic driving force Fbase for regenerating the vehicle 10 is a negative value.
  • the basic driving force Fbase corresponds to the basic target torque Trs of US 2009/0112386 A1. Accordingly, the basic driving force Fbase can be calculated by, for example, the same method as the basic target torque Trs of US 2009/0112386 A1 (see [0071] and [0082] of US 2009/0112386 A1).
  • the control of the basic driving force Fbase during the regeneration of the vehicle 10 is referred to as “accelerator regeneration control” in distinction from “downhill regeneration control” described later.
  • step S3 the ECU 34 performs downhill regeneration control and calculates a downhill regeneration correction amount ⁇ F1.
  • the downhill regeneration correction amount ⁇ F1 is used to moderate the acceleration of the vehicle 10 when the vehicle 10 is descending, and the downhill road regeneration correction amount ⁇ Trd of US012009 / 0112386 [A1 (US 2009/0112386 A1 [ 0074]).
  • the downhill regeneration correction amount ⁇ F1 of the first embodiment is suitable for the vehicle 10 having a plurality of forward travel ranges (D range and B range). Details of the calculation of the downhill regeneration correction amount ⁇ F1 (downhill regeneration control) will be described later with reference to FIGS.
  • the ECU 34 calculates a temporary target driving force Ftar_temp. Specifically, the ECU 34 sets a value obtained by adding the basic driving force Fbase calculated in step S2 and the downhill regeneration correction amount ⁇ F1 calculated in step S3 as the temporary target driving force Ftar_temp.
  • step S5 the ECU 34 calculates a brake regeneration correction amount ⁇ F2.
  • the brake regeneration correction amount ⁇ F2 is a correction amount of the motor driving force F set in accordance with the operation of the brake pedal 22, and is used to improve drivability.
  • the brake regeneration correction amount ⁇ F2 is the same as the brake regeneration correction amount ⁇ Trb of US 2009/0112386 A1 in that it is set based on the BP opening ⁇ bp. Accordingly, the brake regeneration correction amount ⁇ F2 can be calculated by, for example, the same method as the brake regeneration correction amount ⁇ Trb of US 2009/0112386 A1 (see [0073] and [0084] of US 2009/0112386 A1).
  • the process of correcting the temporary target driving force Ftar_temp using the brake regeneration correction amount ⁇ F2 is referred to as drivability filter process.
  • step S6 the ECU 34 calculates a target driving force Ftar.
  • the ECU 34 sets the target driving force Ftar that is obtained by adding the temporary target driving force Ftar_temp calculated in step S4 and the brake regeneration correction amount ⁇ F2 calculated in step S5.
  • FIG. 3 is a timing chart showing an example of the relationship among the road surface gradient G, the vehicle speed V, the AP opening ⁇ ap, the BP opening ⁇ bp, and the target driving force Ftar of the motor 12 when the various controls of the first embodiment are used. is there.
  • the road surface gradient G is 0% on a flat road, takes a positive value when the road is uphill, and takes a negative value when the road is downhill (the same applies hereinafter). ).
  • the gradient of the road on which the vehicle 10 is traveling (that is, the road surface gradient G) is 0% (that is, a flat road) from the time point t1 to the time point t2, but after the time point t2, the time point As it goes to t5, it becomes lower (downhill gradient G becomes steeper).
  • the driver returns the accelerator pedal 18 to the original position, and the AP opening degree ⁇ ap becomes zero.
  • the increase in the vehicle speed V is gentler than the decrease in the road gradient G (increase as an absolute value).
  • the basic driving force Fbase when the AP opening ⁇ ap becomes zero (time point t2), the basic driving force Fbase correspondingly becomes a predetermined value (hereinafter referred to as “regenerative basic driving force Freg_base”). (Accelerator regeneration control).
  • the regenerative basic driving force Freg_base is a fixed value set when the AP opening ⁇ ap is zero, and is a driving force F equivalent to engine braking generated by regenerative power generation of the motor 12.
  • the vehicle 10 enters the downhill road from time t2, and the driver does not operate the brake pedal 22, and the BP opening ⁇ bp remains zero. For this reason, the vehicle speed V increases rapidly only with the regenerative basic driving force Freg_base (a fixed value for regeneration).
  • the downhill regeneration correction amount ⁇ F1 set by downhill regeneration control is used. That is, in the first embodiment, the downhill regeneration correction amount ⁇ F1 is set according to the road surface gradient G in addition to the basic regeneration driving force Freg_base. For example, after the time point t2, the road gradient G continuously decreases (increases as an absolute value), so the downhill regeneration correction amount ⁇ F1 is increased. As a result, when the vehicle 10 is traveling on a downhill road, the vehicle 10 can be gently accelerated even if the driver does not operate the brake pedal 22.
  • FIG. 4 is a characteristic diagram showing an example of the relationship between the road surface gradient G used in the downhill regeneration control and the target acceleration a_tar while the D range is selected.
  • the characteristic diagram of FIG. 4 is obtained when the vehicle speed V is at a specific value, and can be changed according to the vehicle speed V.
  • a characteristic diagram (map) as shown in FIG. 4 is provided for each vehicle speed V, and the characteristic diagram (map) is switched according to the vehicle speed V. Note that, as will be described later, in the first embodiment, not only the characteristics for the D range (FIG. 4) are used, but the characteristics of both the D range and the B range (FIG. 5) are used.
  • a characteristic 100 indicated by a broken line is a characteristic when only the regeneration basic driving force Freg_base (accelerator regeneration control) is used
  • a characteristic 102 indicated by a solid line is a regeneration basic driving force Freg_base (acceleration regeneration control) and This is a characteristic when both of the downhill regeneration correction amount ⁇ F1 (downhill regeneration control) are used.
  • the characteristics used in the first embodiment are: This is a solid line characteristic 102. It should be noted that the broken line characteristic 100 shows a reference example and is not used in the first embodiment.
  • the road surface gradient G is from zero to a predetermined value G1, which is the same as the characteristic 100.
  • the downhill regeneration control is prohibited when the road surface gradient G is from zero to the predetermined value G1.
  • the road surface gradient G is between the predetermined values G1 and G2
  • the road surface gradient G decreases from the characteristic 100 as the road surface gradient G decreases (increases as an absolute value). That is, the target acceleration a_tar is lower than that of the characteristic 100.
  • the vehicle 10 can gradually accelerate the downhill road.
  • the road gradient G becomes smaller than the predetermined value G2 when it becomes larger as an absolute value
  • the difference between the target acceleration a_tar and the characteristic 100 hereinafter referred to as “difference ⁇ a1” becomes constant.
  • the downhill regeneration control uses the downhill regeneration correction amount ⁇ F1 in addition to the basic regeneration driving force Freg_base. Therefore, the vehicle 10 can gradually accelerate the downhill road, Operability is improved.
  • the B range is provided in addition to the D range as a shift range for causing the vehicle 10 to travel forward.
  • the road surface gradient G-target acceleration a_tar characteristic is set for each vehicle speed V for each of the D range and the B range.
  • FIG. 5 is a characteristic diagram showing an example of the relationship between the road surface gradient G and the target acceleration a_tar for each of the D range and the B range used in the first embodiment.
  • the characteristic diagram of FIG. 5 is obtained when the vehicle speed V is at a specific value, and can be changed according to the vehicle speed V.
  • a characteristic diagram (map) as shown in FIG. 5 is provided for each vehicle speed V, and the characteristic diagram (map) is switched according to the vehicle speed V.
  • a characteristic 100 indicated by a broken line and a characteristic 102 indicated by a solid line are the same as those shown in FIG. That is, the characteristic 102 is used in the D range of the first embodiment, and the characteristic 100 is a reference example that is not used in the first embodiment.
  • a characteristic 104 indicated by a one-dot chain line is a characteristic when only the regenerative basic driving force Freg_base (accelerator regenerative control) is used in the B range, and a characteristic 106 indicated by a solid line is the regenerative basic driving force Freg_base (in the B range).
  • This is a characteristic when both of (accelerator regeneration control) and downhill regeneration correction amount ⁇ F1 (downhill regeneration control) are used.
  • both the basic regeneration driving force Freg_base and the downhill regeneration correction amount ⁇ F1 are used even in the B range, and therefore, the characteristic used in the first embodiment is the solid line characteristic 106.
  • the broken line characteristic 104 shows a reference example and is not used in the first embodiment.
  • the target acceleration a_tar is smaller in the B range than in the D range. This is because the regenerative amount (regenerative power Preg) by the motor 12 is larger in the B range than in the D range. Therefore, the amount of charge of the battery 16 increases when the B range is used.
  • the characteristic 106 for the B range is set so that the target acceleration a_tar is always lower than the characteristic 102 for the D range. More specifically, in the first embodiment, the difference between the target acceleration a_tar in the D range characteristic 102 and the target acceleration a_tar in the B range characteristic 106 is always equal regardless of the road gradient G. It is set to be. That is, the difference between the characteristic 102 and the characteristic 106 (hereinafter referred to as “difference ⁇ a2”) when the road surface gradient G is in a region between 0 and a predetermined value G1 (in other words, a region where downhill regeneration control is prohibited).
  • difference ⁇ a3 The difference between the characteristic 102 and the characteristic 106 (hereinafter referred to as “difference ⁇ a3”) when the road surface gradient G is in a region where the road surface gradient G is lower than the predetermined value G1 (in other words, a region in which downhill regeneration control is permitted). Constant and equal. Thereby, when the vehicle 10 travels on the downhill road, when the vehicle 10 is switched from the D range to the B range, the vehicle 10 is decelerated more than before.
  • FIG. 6 is a characteristic diagram showing an example of the relationship between the road surface gradient G and the target acceleration a_tar for each of the D range and the B range used in the comparative example.
  • the characteristic diagram of FIG. 6 is set at the same vehicle speed V as the characteristic diagram of FIG.
  • a characteristic 200 indicated by a broken line and a characteristic 202 indicated by a solid line are the same as the characteristics 100 and 102 shown in FIG. 6 is the same as the characteristic 104 (reference example) indicated by the alternate long and short dash line in FIG. 5, but is actually used in the B range in this comparative example.
  • the characteristic 106 for the B range indicated by the solid line in FIG. 5 is not used.
  • both the regeneration basic driving force Freg_base (accelerator regeneration control) and the downhill regeneration correction amount ⁇ F1 (downhill regeneration control) are used.
  • only the regeneration basic driving force Freg_base (accelerator regeneration control) is used.
  • the D range characteristic 202 and the B range characteristic 204 coincide with each other in a region 206 indicated by a dashed ellipse. For this reason, even if the vehicle 10 is traveling on a downhill road where the road surface gradient G is smaller (steeper) than the predetermined value G2, the target acceleration a_tar does not change even if the vehicle 10 is switched from the D range to the B range. As a result, the driver may feel uncomfortable.
  • FIG. 7 is a flowchart (detail of S3 in FIG. 2) for calculating the downhill regeneration correction amount ⁇ F1 (downhill regeneration control) in the first embodiment.
  • step S11 the ECU 34 acquires the actual acceleration a of the vehicle 10 from the acceleration sensor 32.
  • step S12 the ECU 34 calculates a target acceleration a_tar (see FIG. 5) (details will be described later with reference to FIG. 8).
  • step S13 the ECU 34 calculates the downhill regeneration correction amount ⁇ F1. Specifically, the difference between the actual acceleration a and the target acceleration a_tar (hereinafter referred to as “difference D1”) is calculated, and the downhill regeneration correction amount ⁇ F1 is calculated by feedback control according to the difference D1. In other words, the absolute value of the downhill regeneration correction amount ⁇ F1 is increased as the absolute value of the difference D1 increases.
  • difference D1 the difference between the actual acceleration a and the target acceleration a_tar
  • FIG. 8 is a flowchart (details of S12 in FIG. 7) for calculating the target acceleration a_tar in the first embodiment.
  • the ECU 34 estimates the road surface gradient G.
  • the road surface gradient G is calculated using the acceleration a from the acceleration sensor 32 or the like.
  • a specific method for estimating the road surface gradient G is, for example, the one described in US 2009/0112386 A1 (see FIG. 5, [0076], [0077], [0090] to [0110] of US 2009/0112386 A1). Can be used.
  • the road surface gradient G may be estimated by other existing methods.
  • step S22 the ECU 34 determines the shift range.
  • the shift range is the D range
  • step S23 the ECU 34 selects a map for the D range (that is, the characteristic 102 in FIG. 5).
  • the shift range is the B range
  • step S24 the ECU 34 selects a map for the B range (that is, the characteristic 106 in FIG. 5).
  • the maps are switched according to the vehicle speed V. Therefore, the ECU 34 also uses the vehicle speed V from the vehicle speed sensor 30 when selecting a map.
  • step S25 the ECU 34 selects the target acceleration a_tar corresponding to the road gradient G estimated in step S21 in the map (characteristic 102 or characteristic 106 in FIG. 5) selected in step S23 or S24. To do.
  • the target acceleration a_tar in the B range is equal. (Characteristic 106 in FIG. 5) is lower than the target acceleration a_tar (characteristic 102 in FIG. 5) of the D range (see FIG. 5).
  • the deceleration in the B range is larger than the deceleration in the D range. For this reason, regardless of whether the vehicle 10 is traveling on a flat road or a downhill road, when the vehicle 10 is switched from the D range to the B range, the deceleration of the vehicle 10 increases.
  • the difference ⁇ a3 between the characteristic 102 and the characteristic 106 in a region where is lower than the predetermined value G1 (in other words, a region where downhill regeneration control is permitted) is both constant and equal.
  • FIG. Difference from the First Embodiment The hardware configuration related to the second embodiment is the same as that of the first embodiment (see FIG. 1).
  • the second embodiment is different from the first embodiment in that the process performed by the ECU 34 is different from the first embodiment. More specifically, for example, the characteristic diagram of FIG. 9 and the flowchart of FIG. 11 are used in the second embodiment instead of the characteristic diagram of FIG. 5 and the flowchart of FIG. 7 of the first embodiment.
  • the same components are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 9 is a characteristic diagram showing an example of the relationship between the road surface gradient G and the target acceleration a_tar for each of the D range and the B range used in the second embodiment.
  • the characteristic diagram of FIG. 9 is obtained when the vehicle speed V is at a specific value, and can be changed according to the vehicle speed V.
  • a characteristic diagram (map) as shown in FIG. 9 is provided for each vehicle speed V, and the characteristic diagram (map) is switched according to the vehicle speed V.
  • a characteristic 110 indicated by a broken line and a characteristic 112 indicated by a solid line are the same as the characteristics 100 and 102 shown in FIG. 5, and the characteristic 112 is used in the D range of the second embodiment.
  • Reference numeral 110 is a reference example that is not used in the second embodiment.
  • a characteristic 114 indicated by a broken line is a characteristic when only the regenerative basic driving force Freg_base (accelerator regeneration control) is used in the B range, and a characteristic 116 indicated by a solid line is the regenerative basic driving force Freg_base (accelerator in the B range.
  • This is a characteristic when both of (regeneration control) and downhill regeneration correction amount ⁇ F1 (downhill regeneration control) are used.
  • the characteristic used in the second embodiment is a solid line characteristic 116. is there. It should be noted that the broken line characteristic 114 shows a reference example and is not used in the second embodiment.
  • the use of the B range characteristic 106 is limited. Is provided. That is, when the road surface gradient G in FIG. 9 is smaller than the predetermined value G3 (when the absolute value is large), the deceleration at the portion indicated by the two-dot chain line in the characteristic 116 is limited (decrease in the target acceleration a_tar). The characteristic indicated by the solid line is used.
  • the regenerative driving force limit value Freg_lim and the correction amount limit value ⁇ F1_lim are set for the characteristic 116 for the B range.
  • the regenerative drive force limit value Freg_lim is the maximum regenerative drive force of the motor 12 during downhill regeneration (the value is the minimum and the absolute value is the maximum).
  • the correction amount limit value ⁇ F1_lim is the maximum value (the value is the minimum and the absolute value is the maximum) that the downhill regeneration correction amount ⁇ F1 can take in the regenerative driving force limit value Freg_lim.
  • FIG. 10 is a diagram for explaining the regenerative driving force limit value Freg_lim and the correction amount limit value ⁇ F1_lim used in the second embodiment.
  • the regenerative driving force limit value Freg_lim is set so that the deceleration of the vehicle 10 does not become excessively large. That is, as shown in FIG. 10, the regenerative driving force limit value Freg_lim is set according to the vehicle speed V. As the vehicle speed V increases, the regenerative driving force limit value Freg_lim is increased (the absolute value is decreased). This is because, for example, when the vehicle 10 is traveling at high speed, the traveling resistance is small.
  • the vehicle 10 becomes easier to accelerate as the road surface gradient G becomes steeper. Therefore, the regenerative driving force limit value Freg_lim may be changed according to the road surface gradient G in addition to the vehicle speed V.
  • the map of FIG. 10 can be set for each road gradient G.
  • the characteristic 118 is a characteristic corresponding to the correction amount limit value ⁇ F1_lim described above. That is, when the road surface gradients G are equal, the difference between the characteristic 114 and the characteristic 118 related to the target acceleration a_tar (hereinafter referred to as “difference ⁇ a4”) is a value corresponding to the correction amount limit value ⁇ F1_lim.
  • the regenerative basic driving force Freg_base, the regenerative driving force limit value Freg_lim, and the correction amount limit value ⁇ F1_lim are all set by the vehicle speed V. Therefore, when the AP opening ⁇ ap is zero, the temporary target driving force Ftar_temp (S4 in FIG. 2) can be set based only on the vehicle speed V instead of steps S2 to S4 in FIG.
  • FIG. 11 is a flowchart (details of S3 in FIG. 2) for calculating the downhill regeneration correction amount ⁇ F1 (downhill regeneration control) in the second embodiment.
  • Steps S31 and S32 in FIG. 11 are the same as steps S11 and S12 in FIG. Therefore, the specific process of step S32 can use the flowchart of FIG.
  • step S33 of FIG. 11 the ECU 34 calculates the temporary downhill regeneration correction amount ⁇ F1_temp.
  • the temporary downhill regeneration correction amount ⁇ F1_temp is a value for obtaining the downhill regeneration correction amount ⁇ F1, in other words, the temporary downhill regeneration correction amount ⁇ F1, and the downhill regeneration correction amount ⁇ F1 in the first embodiment is the first value. This corresponds to the provisional downhill regeneration correction amount ⁇ F1_temp of the second embodiment.
  • step S34 the ECU 34 calculates the correction amount limit value ⁇ F1_lim (FIG. 10) (details will be described later with reference to FIG. 12).
  • step S35 the ECU 34 calculates the downhill regeneration correction amount ⁇ F1. Specifically, it is determined whether or not the temporary downhill regeneration correction amount ⁇ F1_temp calculated in step S33 exceeds the correction amount limit value ⁇ F1_lim calculated in step S34, in other words, in FIG.
  • the characteristic 118 is a characteristic corresponding to the correction amount limit value ⁇ F1_lim described above, that is, when the vehicle speed V is equal, the difference between the characteristic 114 and the characteristic 118 regarding the target acceleration a_tar.
  • ⁇ a4 corresponds to the correction amount limit value ⁇ F1_lim.
  • the road gradient G is equal to the predetermined value G3.
  • the difference (hereinafter referred to as “ ⁇ a6”) between the characteristic 112 and the characteristic 116 when the value is smaller (when the absolute value is large) becomes smaller.
  • step S35 limit processing is performed to limit the temporary downhill regeneration correction amount ⁇ F1_temp from exceeding the correction amount limit value ⁇ F1_lim.
  • FIG. 12 is a flowchart (details of S34 in FIG. 11) for calculating the correction amount limit value ⁇ F1_lim in the second embodiment.
  • step S ⁇ b> 41 the ECU 34 acquires the vehicle speed V from the vehicle speed sensor 30.
  • step S42 the ECU 34 sets the regenerative driving force limit value Freg_lim according to the vehicle speed V using the characteristic (map) of FIG. As described above, the characteristics used here may be switched according to the road gradient G.
  • the target acceleration a_tar when the D range is selected compared to when the road surface gradient G is gentler than the predetermined value G3.
  • the target acceleration a_tar when the B range is selected are small.
  • the difference ⁇ a6 is smaller than the difference ⁇ a5.
  • the electric vehicle 10 is easily accelerated. For this reason, if the amount of change in the target acceleration a_tar when switching from the D range to the B range is constant regardless of the road gradient G, the change in the actual acceleration a (deceleration) increases as the road gradient G increases. The amount gets bigger.
  • the difference between the target acceleration a_tar when the D range is selected and the target acceleration a_tar when the B range is selected is small. For this reason, it becomes possible to make the change amount of the actual acceleration a (deceleration) uniform.
  • the predetermined value G3 is a value of the road surface gradient G at which the target acceleration a_tar changes from positive to negative when switching from the D range to the B range (see FIG. 9).
  • the vehicle 10 having one motor 12 and one battery 16 has been described (FIG. 1).
  • the present invention is not limited thereto, and the present invention may be applied to another object.
  • the present invention may be applied to an electric vehicle having a drive motor and a regeneration motor separately.
  • it can be applied to a hybrid vehicle having an engine in addition to the motor 12.
  • the present invention may be applied to a fuel cell vehicle having a fuel cell in addition to the motor 12 and the battery 16.
  • the present invention can be applied not only to the electric vehicle 10 but also to another moving body or a movable device (for example, a robot arm) having a plurality of forward travel ranges (drive ranges in the same direction).
  • the vehicle 10 is not limited to a four-wheeled vehicle, and may be a truck, a motorcycle, a power-assisted bicycle, or the like.
  • the P range, the N range, the R range, the D range, and the B range are provided as the shift ranges.
  • a plurality of shift ranges that drive in the same direction in the above embodiments, the D range) And B range is not limited to this.
  • each shift range is switched using the shift lever 26, but other switching devices may be used as long as each shift range (in particular, at least one of the D range and the B range) can be switched.
  • switching between the D range and the B range may be performed by a button (not shown) provided on the steering in addition to or instead of the shift lever 26.
  • accelerator regeneration control may be included in the downhill regeneration control.
  • the regeneration control during downhill is collectively referred to as downhill regeneration control, and the accelerator regeneration control can be included in the downhill regeneration control.
  • the correction amount limit value ⁇ F1_lim is always calculated when the B range is selected (see FIGS. 11 and 12).
  • the correction amount limit value ⁇ F1_lim may be calculated only after the predetermined range is satisfied after the D range is switched to the B range.
  • the predetermined condition for example, a predetermined time has elapsed after switching from the D range to the B range, or after the switching from the D range to the B range, the correction amount limit value ⁇ F1_lim is increased by a predetermined ratio, The fact that the initial characteristic 116 (the part indicated by the two-dot chain line in the characteristic 116 in FIG. 9) has been reached can be used.
  • the correction amount limit value ⁇ F1_lim is temporarily used, and the characteristic initially set as the characteristic 116 (the portion indicated by the two-dot chain line in the characteristic 116 in FIG. 9) can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 複数の前進走行レンジを相互に切り替える際の回生制御を好適に行うことが可能な電動車両を提供する。電動車両(10)は、降坂路走行中、アクセル閉時の加速度が路面勾配に応じた降坂加速度となるように電動機(12)の回生量を調整する降坂回生制御を実行し、第1前進走行レンジよりも電動車両(10)の減速度が大きくなる第2前進走行レンジが選択されているときの前記降坂加速度は、設定された路面勾配の全域にわたって、前記第1前進走行レンジが選択されているときの前記降坂加速度度より小さい。

Description

電動車両
 この発明は、シフトレンジとして駐車レンジ、後退走行レンジ、第1前進走行レンジ及び第2前進走行レンジを切り替えるシフトレンジ切替装置(例えば、シフトレバー)を備える電動車両に関する。より詳細には、前記第1前進走行レンジ及び前記第2前進走行レンジにおける回生制御を好適に行うことが可能な電動車両に関する。
 米国特許出願公開第2009/0112386号公報(以下「US 2009/0112386 A1」という。)には、降坂路の走行中における電動モータの回生制御が開示されている。より具体的には、US 2009/0112386 A1は、降坂路での電動車両の走行時に、外乱要因の影響を少なくしつつ、路面の勾配に適した加速度を車両に発生させ得るように電動モータの回生運転を行うことを課題としている(要約、[0007])。この課題を解決するため、US 2009/0112386 A1では、降坂路での車両1の走行時に、車両1のアクセル及びブレーキの操作状態がオフ状態である場合における車両1の目標加速度を、路面の勾配に応じて決定する手段25と、車両1の実際の加速度を目標加速度に近づけるための回生トルクの補正量ΔTrdを決定する手段26と、アクセルの操作状態がオフ状態であるときに回生トルクとなる電動モータ2の基本目標トルクTrsをアクセルの操作状態に応じて決定する手段21と、基本目標トルクTrsを少なくとも補正量ΔTrdにより補正して目標トルクTrcを決定する手段27とを備え、この目標トルクTrcに応じて電動モータ2の出力トルクを制御する(要約)。
 また、電動車両の中には、複数種類の前進走行が可能なもの(換言すると、複数種類の前進走行レンジを有するもの)が存在する{国際公開第2010/110098号(以下「WO 2010/110098 A1」という。)}。WO 2010/110098 A1には、シフトレバー32のシフトポジションのうち前進走行に対応するものとして、DポジションとBポジションが存在する(図2)。Dポジションは、車両を前進させる駆動力が駆動輪に伝達される前進走行レンジであるDレンジに対応するのに対し、Bポジションは、Dレンジにおいて、例えば、電動機に回生トルクを発生させる等によりエンジンブレーキ効果を発揮させ駆動輪の回転を減速させる減速前進走行レンジ(エンジンブレーキレンジ)に対応する([0049]、[0050])。
 上記のように、US 2009/0112386 A1では、降坂路に適した回生制御を実行することが可能であるが、当該回生制御は、複数の前進走行レンジを考慮したものとはなっていない。
 この発明はこのような課題を考慮してなされたものであり、複数の前進走行レンジを相互に切り替える際の回生制御を好適に行うことが可能な電動車両を提供することを目的とする。
 この発明に係る電動車両は、シフトレンジとして駐車レンジ、後退走行レンジ、第1前進走行レンジ及び第2前進走行レンジを切り替えるシフトレンジ切替装置を備えるものであって、平坦路で運転者がアクセルを閉状態にしたとき、電動機の回生発電によりエンジンブレーキ相当の制動力が前記電動車両に付与されるアクセル回生制御を実行し、前記第2前進走行レンジが選択されているときの前記アクセル回生制御による前記電動車両の減速度は、前記第1前進走行レンジが選択されているときの前記アクセル回生制御による減速度よりも大きく、さらに、前記電動車両の降坂路走行中は、アクセル閉時の前記電動車両の加速度が路面勾配に応じた降坂加速度となるように前記電動機の回生量を調整する降坂回生制御を実行し、前記第2前進走行レンジが選択されているときの前記降坂加速度は、制御範囲として設定された前記路面勾配の全域にわたって、前記第1前進走行レンジが選択されているときの前記降坂加速度より小さいことを特徴とする。
 この発明によれば、アクセル回生制御及び降坂回生制御のいずれにおいても、第2前進走行レンジの減速度は、第1前進走行レンジの減速度よりも大きくなる。このため、電動車両が平坦路及び降坂路のいずれを走行中であっても、第1前進走行レンジから第2前進走行レンジに切り替えられた場合には、電動車両の減速度が増加する。従って、その場合、運転者に減速感を与えることが可能となり、空走感の少ない電動車両を提供することができる。また、電動車両が平坦路及び降坂路のいずれを走行中であっても、第2前進走行レンジから第1前進走行レンジに切り替えられた場合には、運転者に加速感を与え、加速度が変化しないことによる違和感を回避することが可能となる。よって、複数の前進走行レンジを有する電動車両における回生制御を好適に行うことが可能となる。
 前記第1前進走行レンジが選択されているときの前記降坂加速度と前記第2前進走行レンジが選択されているときの前記降坂加速度との差は、前記第1前進走行レンジが選択されているときの前記アクセル回生制御による減速度と前記第2前進走行レンジが選択されているときの前記アクセル回生制御による減速度の差に等しくしてもよい。
 前記路面勾配が所定値より急であるときは、前記路面勾配が前記所定値よりも緩やかなときと比べて、前記第1前進走行レンジが選択されているときの前記降坂加速度と前記第2前進走行レンジが選択されているときの前記降坂加速度との差が小さくてもよい。
 前記所定値は、前記第1前進走行レンジから前記第2前進走行レンジへと切り替えると前記降坂加速度が正から負に変化する路面勾配の値であってもよい。
この発明の第1実施形態に係る電動車両の概略全体構成図である。 前記第1実施形態のDレンジ又はBレンジにおいて走行モータの駆動力を制御するフローチャートである。 前記第1実施形態の各種制御を用いた場合における路面勾配、車速、アクセルペダル開度、ブレーキペダル開度及び前記走行モータの目標駆動力との関係の一例を示すタイミングチャートである。 Dレンジの選択中に降坂回生制御で用いる路面勾配と目標加速度との関係の一例を示す特性図である。 前記第1実施形態で用いるDレンジ用及びBレンジ用それぞれについての路面勾配と目標加速度との関係の一例を示す特性図である。 比較例で用いるDレンジ用及びBレンジ用それぞれについての路面勾配と目標加速度との関係の一例を示す特性図である。 前記第1実施形態において降坂回生補正量の算出(降坂回生制御)を行うフローチャート(図2のS3の詳細)である。 前記第1実施形態において目標加速度の算出を行うフローチャート(図7のS12の詳細)である。 第2実施形態で用いるDレンジ用及びBレンジ用それぞれについての路面勾配と目標加速度との関係の一例を示す特性図である。 前記第2実施形態で用いる回生駆動力制限値及び補正量制限値を説明するための図である。 前記第2実施形態において降坂回生補正量の算出(降坂回生制御)を行うフローチャート(図2のS3の詳細)である。 前記第2実施形態において補正量制限値の算出を行うフローチャート(図11のS34の詳細)である。
A.第1実施形態
1.全体的な構成の説明
[1-1.全体構成]
 図1は、この発明の第1実施形態に係る電動車両10の概略全体構成図である。電動車両10(以下「車両10」ともいう。)は、走行モータ12(以下「モータ12」ともいう。)と、インバータ14と、バッテリ16と、アクセルペダル18と、アクセルペダル開度センサ20(以下「AP開度センサ20」という。)と、ブレーキペダル22と、ブレーキペダル開度センサ24(以下「BP開度センサ24」という。)と、シフトレバー26(シフトレンジ切替装置)と、シフト位置センサ28と、車速センサ30と、加速度センサ32と、電子制御装置34(以下「ECU34」という。)とを有する。
[1-2.電力系]
 モータ12(電動機)は、3相交流ブラシレス式であり、インバータ14を介してバッテリ16から供給される電力に基づいて車両10の駆動力(以下「モータ駆動力F」又は「駆動力F」という。)[N](又はトルク[N・m])を生成する。また、モータ12は、回生を行うことで生成した電力(以下「回生電力Preg」という。)[W]をバッテリ16に出力することでバッテリ16を充電する。回生電力Pregは、図示しない補機等に対して出力してもよい。
 インバータ14は、3相ブリッジ型の構成とされて、直流/交流変換を行い、直流を3相の交流に変換してモータ12に供給する一方、回生動作に伴う交流/直流変換後の直流をバッテリ16に供給する。
 バッテリ16は、複数のバッテリセルを含む蓄電装置(エネルギストレージ)であり、例えば、リチウムイオン2次電池、ニッケル水素2次電池又はキャパシタ等を利用することができる。第1実施形態ではリチウムイオン2次電池を利用している。なお、インバータ14とバッテリ16との間に図示しないDC/DCコンバータを設け、バッテリ16の出力電圧又はモータ12の出力電圧を昇圧又は降圧してもよい。
[1-3.各種センサ]
 AP開度センサ20は、アクセルペダル18の原位置からの踏込み量(以下「AP開度θap」という。)[度]を検出し、ECU34に出力する。BP開度センサ24は、ブレーキペダル22の原位置からの踏込み量(以下「BP開度θbp」という。)[度]を検出し、ECU34に出力する。
 シフト位置センサ28は、シフトレバー26の位置(以下「シフト位置Ps」という。)を検出し、ECU34に出力する。第1実施形態において、シフト位置Psとしては、シフトレンジとしての駐車レンジに対応する「P」と、ニュートラルレンジに対応する「N」と、後退走行レンジに対応する「R」と、Dレンジ(第1前進走行レンジ)に対応する「D」と、Bレンジ(第2前進走行レンジ)を示す「B」とがある。
 Dレンジ及びBレンジは、いずれもシフトレンジとしての前進走行レンジである。Dレンジは、通常走行時(Bレンジ以外の走行時)に用いられる。Bレンジは、運転者が車両10(モータ12)における回生量を大きくしたいと望む場合(例えば、降坂時)においてモータ12による回生量をDレンジのときよりも大きくするシフトレンジである。
 車速センサ30は、車両10の実際の車速V[km/h]を検出し、ECU34に出力する。加速度センサ32は、車両10の実際の加速度a[m/s/s]を検出し、ECU34に出力する。第1実施形態において、加速度aは、車両10が走行している道路の勾配(以下「路面勾配G」又は「勾配G」という。)の推定に用いられる(詳細は後述する。)。
[1-4.ECU34]
 ECU34は、各種センサからの出力に基づいてインバータ14を制御することにより、モータ12の出力(電動機動力)を制御する。ECU34は、入出力部、演算部及び記憶部(いずれも図示せず)を有する。
2.第1実施形態の制御
 以下、第1実施形態の各種制御(モータ駆動力制御を含む。)について説明する。
[2-1.モータ駆動力制御]
 図2は、第1実施形態のDレンジ又はBレンジにおいてモータ12の駆動力Fを制御するフローチャートである。図2のフローチャートは、車両10の力行時及び回生時のいずれにも適用される。なお、第1実施形態では、モータ12の駆動力Fの目標値(以下「目標駆動力Ftar」という。)[N]を算出するが、基本的には、US 2009/0112386 A1と同様の処理を用いることができる。すなわち、US 2009/0112386 A1では、電動モータ2のトルクを制御対象として説明しているが、第1実施形態では、これをモータ駆動力Fに置き換えて取り扱う。なお、トルクは、駆動力Fに車輪(図示せず)の半径を乗算することにより算出することが可能である。
 図2のステップS1において、ECU34は、シフト位置センサ28からのシフト位置Psに対応するシフトレンジがDレンジ又はBレンジであるか否かを判定する。シフトレンジがDレンジ又はBレンジでない場合、すなわち、シフトレンジがPレンジ、Nレンジ又はRレンジである場合(S1:NO)、図2の処理を終え、別途、モータ12の目標駆動力Ftarを設定する。シフトレンジがDレンジ又はBレンジである場合(S1:YES)、ステップS2に進む。
 ステップS2において、ECU34は、基本駆動力Fbaseを算出する。基本駆動力Fbaseは、AP開度センサ20からのAP開度θapと、シフト位置センサ28からのシフト位置Ps(又はシフトレンジ)と、車速センサ30からの車速Vとに基づいて算出する。すなわち、ECU34は、各シフト位置Ps(シフトレンジ)に応じてAP開度θap及び車速Vの組合せに対応する基本駆動力Fbaseを規定したマップを用いて基本駆動力Fbaseを算出する。便宜上、車両10を駆動(力行)させる基本駆動力Fbaseを正の値とし、車両10の回生を行う基本駆動力Fbaseを負の値とする。
 AP開度θap及び車速Vを用いる点については、US 2009/0112386 A1と同様であり、基本駆動力Fbaseは、US 2009/0112386 A1の基本目標トルクTrsに対応する。従って、基本駆動力Fbaseは、例えば、US 2009/0112386 A1の基本目標トルクTrsと同様の方法で算出可能である(US 2009/0112386 A1の[0071]、[0082]参照)。
 但し、US 2009/0112386 A1と異なり、第1実施形態の場合、前進走行可能なシフトレンジとして、DレンジとBレンジを有する。このため、第1実施形態では、DレンジとBレンジそれぞれについてAP開度θap及び車速Vの組合せと基本駆動力Fbaseとの関係を規定するマップを事前に設定しておき、当該マップを用いて基本駆動力Fbaseを算出する。上記のように、Dレンジと比べてBレンジの方がモータ12の回生量を大きくする。このため、回生時の基本駆動力Fbaseは、Bレンジの方が小さい(車両10の回生を行う基本駆動力Fbaseを負の値とするため、絶対値としては大きい)。
 第1実施形態において、車両10の回生時における基本駆動力Fbaseの制御を、後述する「降坂回生制御」と区別して「アクセル回生制御」という。
 ステップS3において、ECU34は、降坂回生制御を実行し、降坂回生補正量ΔF1を算出する。降坂回生補正量ΔF1は、車両10の降坂時に車両10の加速を緩やかにするために用いられるものであり、US 2009/0112386 A1の降坂路回生補正量ΔTrd(US 2009/0112386 A1の[0074]参照)と同様のものである。但し、第1実施形態の降坂回生補正量ΔF1は、複数の前進走行レンジ(Dレンジ及びBレンジ)を有する車両10に適したものである。降坂回生補正量ΔF1の算出(降坂回生制御)の詳細は、図3、図7及び図8等を参照して後述する。
 図2のステップS4において、ECU34は、仮目標駆動力Ftar_tempを算出する。具体的には、ECU34は、ステップS2で算出した基本駆動力Fbaseと、ステップS3で算出した降坂回生補正量ΔF1とを加算したものを仮目標駆動力Ftar_tempとする。
 ステップS5において、ECU34は、ブレーキ回生補正量ΔF2を算出する。ブレーキ回生補正量ΔF2は、ブレーキペダル22の操作に応じて設定するモータ駆動力Fの補正量であり、ドライバビリティを向上するために用いられる。ブレーキ回生補正量ΔF2は、BP開度θbpに基づいて設定される点については、US 2009/0112386 A1のブレーキ回生補正量ΔTrbと同様である。従って、ブレーキ回生補正量ΔF2は、例えば、US 2009/0112386 A1のブレーキ回生補正量ΔTrbと同様の方法で算出可能である(US 2009/0112386 A1の[0073]、[0084]参照)。なお、ブレーキ回生補正量ΔF2を用いて仮目標駆動力Ftar_tempを補正する処理を、ドライバビリティフィルタ処理という。
 ステップS6において、ECU34は、目標駆動力Ftarを算出する。すなわち、ECU34は、ステップS4で算出した仮目標駆動力Ftar_tempと、ステップS5で算出したブレーキ回生補正量ΔF2とを加算したものを目標駆動力Ftarとする。
[2-2.降坂回生補正量ΔF1の算出(降坂回生制御)]
(2-2-1.降坂回生制御の概念)
 次に、第1実施形態における降坂回生制御の概念を説明する。図3は、第1実施形態の各種制御を用いた場合における路面勾配G、車速V、AP開度θap、BP開度θbp及びモータ12の目標駆動力Ftarとの関係の一例を示すタイミングチャートである。便宜上、図3において、路面勾配Gは、平坦路のときに0%であり、道路が上り坂であるときに正の値となり、道路が下り坂であるときに負の値とする(以下同様)。
 図3に示すように、車両10が走行している道路の勾配(すなわち、路面勾配G)は、時点t1から時点t2までは0%(すなわち、平坦路)であるが、時点t2以降は時点t5に向かうに連れて低くなる(下り坂の勾配Gが急になる)。時点t2において、運転者はアクセルペダル18を原位置まで戻し、AP開度θapがゼロとなる。この場合において、第1実施形態の各種制御を用いると、車速Vの増加は、路面勾配Gの減少(絶対値としては増加)に比べて緩やかとなる。
 より具体的には、第1実施形態では、AP開度θapがゼロになると(時点t2)、それに応じて基本駆動力Fbaseは、所定値(以下「回生基本駆動力Freg_base」という。)となる(アクセル回生制御)。回生基本駆動力Freg_baseは、AP開度θapがゼロのときに設定される固定値であり、モータ12の回生発電によって生じるエンジンブレーキ相当の駆動力Fである。また、車両10は、時点t2から降坂路に入ると共に、運転者はブレーキペダル22を操作せず、BP開度θbpはゼロのままである。このため、回生基本駆動力Freg_base(回生用の固定値)のみでは、車速Vが急激に増加する。
 そこで、第1実施形態では、降坂回生制御により設定した降坂回生補正量ΔF1を用いる。すなわち、第1実施形態では、回生基本駆動力Freg_baseに加え、路面勾配Gに応じて降坂回生補正量ΔF1を設定する。例えば、時点t2以降は、路面勾配Gが連続的に減少している(絶対値としては増加している)ため、降坂回生補正量ΔF1を増大させる。これにより、車両10が降坂路を走行中であるとき、運転者によるブレーキペダル22の操作がなくても、車両10を緩やかに加速させることが可能となる。
(2-2-2.降坂回生制御を実現するための特性)
 図4は、Dレンジの選択中に降坂回生制御で用いる路面勾配Gと目標加速度a_tarとの関係の一例を示す特性図である。図4の特性図は、車速Vが特定の値にあるときのものであり、車速Vに応じて変化させることができる。換言すると、図4のような特性図(マップ)を車速V毎に設けておき、車速Vに応じて特性図(マップ)を切り替えて用いる。なお、後述するように、第1実施形態では、Dレンジ用の特性(図4)のみを用いるのではなく、Dレンジ及びBレンジ両方の特性(図5)を用いることに留意されたい。
 図4において、破線で示される特性100は、回生基本駆動力Freg_base(アクセル回生制御)のみを用いる場合の特性であり、実線で示される特性102は、回生基本駆動力Freg_base(アクセル回生制御)及び降坂回生補正量ΔF1(降坂回生制御)の両方を用いる場合の特性である。上述のように、第1実施形態では、回生基本駆動力Freg_base(アクセル回生制御)及び降坂回生補正量ΔF1(降坂回生制御)の両方を用いるため、第1実施形態で使用する特性は、実線の特性102である。破線の特性100は、参考例を示すものであり、第1実施形態では用いないことに留意されたい。
 図4からわかるように、第1実施形態で用いる特性102では、路面勾配Gがゼロから所定値G1までは特性100と一緒である。換言すると、路面勾配Gがゼロから所定値G1までは降坂回生制御を禁止する。路面勾配Gが所定値G1~G2の間にあるとき、路面勾配Gが小さくなる(絶対値としては大きくなる)に連れて特性100から離れていく。すなわち、特性100と比べて、目標加速度a_tarがより低くなる。これにより、車両10は降坂路を緩やかに加速していくことが可能となる。路面勾配Gが所定値G2よりも小さくなると(絶対値としては大きくなると)、目標加速度a_tarについて特性100との差(以下「差Δa1」という。)が一定となる。
 以上のように、降坂回生制御では、回生基本駆動力Freg_baseに加え、降坂回生補正量ΔF1を用いるため、車両10は、降坂路を緩やかに加速していくことが可能となり、運転者の操作性が向上する。
(2-2-3.Dレンジ用及びBレンジ用の路面勾配G-目標加速度a_tar特性)
 上記のように、第1実施形態では、車両10を前進走行させるシフトレンジとして、Dレンジに加え、Bレンジを備える。第1実施形態では、Dレンジ及びBレンジそれぞれについて路面勾配G-目標加速度a_tar特性を車速V毎に設定する。
 図5は、第1実施形態で用いるDレンジ用及びBレンジ用それぞれについての路面勾配Gと目標加速度a_tarとの関係の一例を示す特性図である。図5の特性図は、車速Vが特定の値にあるときのものであり、車速Vに応じて変化させることができる。換言すると、図5のような特性図(マップ)を車速V毎に設けておき、車速Vに応じて特性図(マップ)を切り替えて用いる。
 図5において、破線で示される特性100及び実線で示される特性102は、図4に表記したものと同様である。すなわち、特性102は第1実施形態のDレンジで用いるものであり、特性100は第1実施形態では用いない参考例である。
 また、一点鎖線で示される特性104は、Bレンジにおいて回生基本駆動力Freg_base(アクセル回生制御)のみを用いる場合の特性であり、実線で示される特性106は、Bレンジにおいて回生基本駆動力Freg_base(アクセル回生制御)及び降坂回生補正量ΔF1(降坂回生制御)の両方を用いる場合の特性である。上述のように、第1実施形態では、Bレンジにおいても回生基本駆動力Freg_base及び降坂回生補正量ΔF1の両方を用いるため、第1実施形態で使用する特性は、実線の特性106である。破線の特性104は、参考例を示すものであり、第1実施形態では用いないことに留意されたい。
 Dレンジの特性102とBレンジの特性106を比較すると、路面勾配Gが等しいとき、目標加速度a_tarは、DレンジよりもBレンジの方が小さい。これは、Dレンジと比べて、Bレンジの方が、モータ12による回生量(回生電力Preg)を大きくしているためである。従って、Bレンジを用いた方がバッテリ16の充電量は増加する。
 また、路面勾配Gが等しいとき、Bレンジ用の特性106は、Dレンジ用の特性102よりも目標加速度a_tarが常に低くなるように設定されている。より具体的には、第1実施形態では、いずれの路面勾配Gであっても、Dレンジ用の特性102における目標加速度a_tarと、Bレンジ用の特性106における目標加速度a_tarとの差は常に等しくなるように設定されている。すなわち、路面勾配Gが0から所定値G1の間の領域(換言すると、降坂回生制御が禁止される領域)にある場合の特性102と特性106の差(以下「差Δa2」という。)と、路面勾配Gが所定値G1より低くなる領域(換言すると、降坂回生制御が許可される領域)にある場合の特性102と特性106の差(以下「差Δa3」という。)は、いずれも一定であり且つ等しい。これにより、車両10が降坂路を走行する際、DレンジからBレンジに切り替えられると、車両10はそれまでよりも減速することとなる。
 上記のような特性102、106の効果を説明するために、比較例としての図6の特性を用いる。図6は、比較例で用いるDレンジ用及びBレンジ用それぞれについての路面勾配Gと目標加速度a_tarとの関係の一例を示す特性図である。図6の特性図は、図5の特性図と同じ車速Vで設定される。
 図6において破線で示される特性200及び実線で示される特性202は、図5に表記した特性100、102と同じである。また、図6において一点鎖線で示される特性204は、図5において一点鎖線で示される特性104(参考例)と同じであるが、本比較例では、Bレンジで実際に用いられる。換言すると、比較例では、図5において実線で示されるBレンジ用の特性106は用いられない。
 以上からわかるように、図6に示す比較例では、Dレンジのときは、回生基本駆動力Freg_base(アクセル回生制御)及び降坂回生補正量ΔF1(降坂回生制御)の両方を用い、Bレンジのときは、回生基本駆動力Freg_base(アクセル回生制御)のみを用いる。
 そして、路面勾配Gが所定値G2よりも小さくなると(絶対値としては大きくなると)、破線の楕円で示す領域206において、Dレンジの特性202とBレンジの特性204とが一致してしまう。このため、車両10が、路面勾配Gが所定値G2よりも小さい(より急な)降坂路を走行しているときにDレンジからBレンジに切り替えられても目標加速度a_tarは変化しない。その結果、運転者に違和感を与えるおそれがある。
 加えて、DレンジからBレンジに切り替えられた場合、運転者は、より大きな減速度を求めていると考えられる。しかしながら、図6の比較例では、運転者がDレンジからBレンジに切り替えても、目標加速度a_tarが変化しないため、車両10の減速度は増加しない。その結果、運転者にブレーキペダル22の操作を強いる可能性が生じ、運転性能を損うおそれがある。
 これに対し、第1実施形態では、図5の特性102、106を用いるため、上記のような問題点を解消することが可能となる。
(2-2-4.降坂回生補正量ΔF1の算出(降坂回生制御)の詳細)
 次に、図2のステップS3における降坂回生補正量ΔF1(図3)の算出(降坂回生制御)の詳細について説明する。図7は、第1実施形態において降坂回生補正量ΔF1の算出(降坂回生制御)を行うフローチャート(図2のS3の詳細)である。
 ステップS11において、ECU34は、加速度センサ32から車両10の実際の加速度aを取得する。ステップS12において、ECU34は、目標加速度a_tar(図5参照)を算出する(詳細は図8を参照して後述する。)。
 ステップS13において、ECU34は、降坂回生補正量ΔF1を算出する。具体的には、実際の加速度aと目標加速度a_tarとの差(以下「差D1」という。)を算出し、当該差D1に応じたフィードバック制御により降坂回生補正量ΔF1を算出する。換言すると、差D1の絶対値が大きくなる程、降坂回生補正量ΔF1の絶対値を大きくする。
 図8は、第1実施形態において目標加速度a_tarの算出を行うフローチャート(図7のS12の詳細)である。ステップS21において、ECU34は、路面勾配Gを推定する。路面勾配Gは、加速度センサ32からの加速度a等を用いて算出する。路面勾配Gを推定する具体的方法は、例えば、US 2009/0112386 A1に記載のもの(US 2009/0112386 A1の図5、[0076]、[0077]、[0090]~[0110]参照)を用いることができる。或いは、路面勾配Gは、その他の既存の方法で推定してもよい。
 ステップS22において、ECU34は、シフトレンジを判定する。シフトレンジがDレンジである場合、ステップS23において、ECU34は、Dレンジ用のマップ(すなわち、図5の特性102)を選択する。シフトレンジがBレンジである場合、ステップS24において、ECU34は、Bレンジ用のマップ(すなわち、図5の特性106)を選択する。なお、上記の通り、上記各マップ(図5の特性102、106)は、車速Vに応じて切り替える。このため、ECU34は、マップを選択する際、車速センサ30からの車速Vを併せて用いる。
 ステップS23又はS24の後、ステップS25において、ECU34は、ステップS23又はS24で選択したマップ(図5の特性102又は特性106)において、ステップS21で推定した路面勾配Gに対応する目標加速度a_tarを選択する。
3.第1実施形態の効果
 以上説明したように、第1実施形態によれば、路面勾配Gが0以下のいずれの値であっても路面勾配Gが0以下で等しいとき、Bレンジの目標加速度a_tar(図5の特性106)は、Dレンジの目標加速度a_tar(図5の特性102)よりも低くなる(図5参照)。換言すると、路面勾配Gが0以下で等しいとき、Bレンジの減速度は、Dレンジの減速度よりも大きくなる。このため、車両10が平坦路及び降坂路のいずれを走行中であっても、DレンジからBレンジに切り替えられた場合には、車両10の減速度が増加する。従って、その場合、運転者に減速感を与えることが可能となり、空走感の少ない車両10を提供することができる。また、車両10が平坦路及び降坂路のいずれを走行中であっても、BレンジからDレンジに切り替えられた場合には、運転者に加速感を与え、加速度が変化しないことによる違和感を回避することが可能となる。よって、複数の前進走行レンジ(Dレンジ及びBレンジ)を有する車両10における回生制御を好適に行うことが可能となる。
 第1実施形態において、路面勾配Gが0から所定値G1の間の領域(換言すると、降坂回生制御が禁止される領域)にある場合の特性102と特性106の差Δa2と、路面勾配Gが所定値G1より低くなる領域(換言すると、降坂回生制御が許可される領域)にある場合の特性102と特性106の差Δa3とは、いずれも一定であり且つ等しい。
 上記構成によれば、降坂回生制御中にDレンジとBレンジが切り替えられた場合と、平坦路でのアクセル回生制御中にDレンジとBレンジが切り替えられた場合とで、運転者は、同じように加速度(減速度)の変化を認識することが可能となる。従って、より空走感の少ない又は加速感の多い電動車両10を提供することが可能となる。
B.第2実施形態
1.第1実施形態との相違
 第2実施形態に関するハードウェアの構成は、第1実施形態(図1参照)と同様である。第2実施形態は、ECU34が行う処理が、第1実施形態と異なる点で第1実施形態と相違する。より具体的には、例えば、第1実施形態の図5の特性図及び図7のフローチャートの代わりに、第2実施形態では、図9の特性図及び図11のフローチャートを用いる点等が異なる。以下では、同一の構成要素には、同一の参照符号を付して説明を省略する。
2.降坂回生補正量ΔF1の算出(降坂回生制御)
[2-1.Dレンジ用及びBレンジ用の路面勾配G-目標加速度a_tar特性]
 図9は、第2実施形態で用いるDレンジ用及びBレンジ用それぞれについての路面勾配Gと目標加速度a_tarとの関係の一例を示す特性図である。図9の特性図は、車速Vが特定の値にあるときのものであり、車速Vに応じて変化させることができる。換言すると、図9のような特性図(マップ)を車速V毎に設けておき、車速Vに応じて特性図(マップ)を切り替えて用いる。
 図9において、破線で示される特性110及び実線で示される特性112は、図5に表記した特性100、102と同様であり、特性112は第2実施形態のDレンジで用いるものであり、特性110は第2実施形態では用いない参考例である。
 また、破線で示される特性114は、Bレンジにおいて回生基本駆動力Freg_base(アクセル回生制御)のみを用いる場合の特性であり、実線で示される特性116は、Bレンジにおいて回生基本駆動力Freg_base(アクセル回生制御)及び降坂回生補正量ΔF1(降坂回生制御)の両方を用いる場合の特性である。第1実施形態と同様、第2実施形態では、Bレンジにおいても回生基本駆動力Freg_base及び降坂回生補正量ΔF1の両方を用いるため、第2実施形態で使用する特性は、実線の特性116である。破線の特性114は、参考例を示すものであり、第2実施形態では用いないことに留意されたい。
 第1実施形態との相違点として、第2実施形態では、DレンジからBレンジに切り替えられた際、目標加速度a_tarの変化が過度になることを避けるため、Bレンジの特性106の利用に制限を設ける。すなわち、図9の路面勾配Gが所定値G3よりも小さい場合(絶対値としては大きい場合)において、特性116のうち二点鎖線で示される箇所の減速度を制限して(目標加速度a_tarの減少を小さくして)実線で示される特性を用いる。
 具体的には、第2実施形態では、Bレンジ用の特性116のために回生駆動力制限値Freg_lim及び補正量制限値ΔF1_limを設定する。回生駆動力制限値Freg_limは、降坂回生時におけるモータ12の最大回生駆動力(値としては最小であり、絶対値では最大)である。補正量制限値ΔF1_limは、回生駆動力制限値Freg_limにおいて、降坂回生補正量ΔF1が採り得る最大値(値としては最小であり、絶対値としては最大)である。換言すると、補正量制限値ΔF1_limは、回生駆動力制限値Freg_limと回生基本駆動力Freg_baseとの差として定義される(ΔF1_lim=Freg_lim-Freg_base)。
 図10は、第2実施形態で用いる回生駆動力制限値Freg_lim及び補正量制限値ΔF1_limを説明するための図である。第2実施形態において、回生駆動力制限値Freg_limは、車両10の減速度が過度に大きくならないように設定される。すなわち、図10に示すように、回生駆動力制限値Freg_limは、車速Vに応じて設定される。車速Vが高くなるほど回生駆動力制限値Freg_limを大きくする(絶対値としては小さくする)。これは、例えば、車両10が高速走行しているときは、走行抵抗が小さいためである。
 なお、路面勾配Gが急になるほど車両10は加速し易くなる。このため、回生駆動力制限値Freg_limは、車速Vに加え、路面勾配Gに応じて変化させてもよい。例えば、図10のマップを路面勾配G毎に設定することもできる。
 図9に戻り、特性118は、上述した補正量制限値ΔF1_limに対応する特性である。すなわち、路面勾配Gが等しいとき、目標加速度a_tarに関する特性114と特性118の差(以下「差Δa4」という。)は、補正量制限値ΔF1_limに対応する値となる。
 なお、図10から認識可能なように、第2実施形態では、回生基本駆動力Freg_base、回生駆動力制限値Freg_lim及び補正量制限値ΔF1_limがいずれも車速Vによって設定される。このため、AP開度θapがゼロである場合、図2のステップS2~S4の代わりに、仮目標駆動力Ftar_temp(図2のS4)を車速Vのみに基づいて設定することも可能である。
[2-2.降坂回生補正量ΔF1の算出(降坂回生制御)の詳細]
 次に、第2実施形態における降坂回生補正量ΔF1の算出(降坂回生制御)の詳細について説明する。図11は、第2実施形態において降坂回生補正量ΔF1の算出(降坂回生制御)を行うフローチャート(図2のS3の詳細)である。図11のステップS31、S32は、図7のステップS11、S12と同様である。従って、ステップS32の具体的な処理は、図8のフローチャートを用いることができる。
 図11のステップS33において、ECU34は、仮降坂回生補正量ΔF1_tempを算出する。仮降坂回生補正量ΔF1_tempは、降坂回生補正量ΔF1を求めるための値、換言すると、暫定的な降坂回生補正量ΔF1であり、第1実施形態における降坂回生補正量ΔF1がそのまま第2実施形態の仮降坂回生補正量ΔF1_tempに該当する。
 ステップS34において、ECU34は、補正量制限値ΔF1_lim(図10)を算出する(詳細は、図12を参照して後述する。続くステップS35において、ECU34は、降坂回生補正量ΔF1を算出する。具体的には、ステップS33で算出した仮降坂回生補正量ΔF1_tempが、ステップS34で算出した補正量制限値ΔF1_limを超えるか否かを判定する。換言すると、図9において、特性116が特性118を下回るか否かを判定する。上述の通り、特性118は、上述した補正量制限値ΔF1_limに対応する特性である。すなわち、車速Vが等しいとき、目標加速度a_tarに関する特性114と特性118の差Δa4は、補正量制限値ΔF1_limに対応する。
 その結果、路面勾配Gが所定値G3より大きいとき(絶対値としては小さいとき)における特性112と特性116との差(以下「Δa5」という。)と比較して、路面勾配Gが所定値G3より小さいとき(絶対値としては大きいとき)における特性112と特性116との差(以下「Δa6」という。)は小さくなる。
 仮降坂回生補正量ΔF1_tempが補正量制限値ΔF1_limを超えない場合、仮降坂回生補正量ΔF1_tempをそのまま降坂回生補正量ΔF1として用いる。仮降坂回生補正量ΔF1_tempが補正量制限値ΔF1_limを超える場合、補正量制限値ΔF1_limを降坂回生補正量ΔF1として用いる。このように、ステップS35では、仮降坂回生補正量ΔF1_tempが補正量制限値ΔF1_limを超えることを制限するリミット処理を行う。
 図12は、第2実施形態において補正量制限値ΔF1_limの算出を行うフローチャート(図11のS34の詳細)である。ステップS41において、ECU34は、車速センサ30から車速Vを取得する。ステップS42において、ECU34は、図10の特性(マップ)を用い、車速Vに応じて回生駆動力制限値Freg_limを設定する。上記のように、ここで用いる特性は、路面勾配Gに応じて切り替えてもよい。
 ステップS43において、ECU34は、補正量制限値ΔF1_limを算出する。具体的には、ECU34は、ステップS42で算出した回生駆動力制限値Freg_limから回生基本駆動力Freg_baseを引いたものを補正量制限値ΔF1_limとする(ΔF1_lim=Freg_lim-Freg_base)。
3.第2実施形態の効果
 以上説明したように、第2実施形態によれば、第1実施形態における効果に加え又はこれに代えて、以下の効果を奏することが可能となる。
 すなわち、第2実施形態では、路面勾配Gが所定値G3より急であるときは、路面勾配Gが所定値G3よりも緩やかなときと比べて、Dレンジが選択されているときの目標加速度a_tarとBレンジが選択されているときの目標加速度a_tarとの差が小さい。換言すると、図9において、差Δa6は、差Δa5よりも小さい。
 路面勾配Gが急になると、電動車両10は加速し易くなる。このため、DレンジからBレンジへと切り替えた際の目標加速度a_tarの変化量を路面勾配Gにかかわらず一定とすると、路面勾配Gが急である程、実際の加速度a(減速度)の変化量は大きくなってしまう。第2実施形態によれば、路面勾配Gが所定値G3より急なときは、Dレンジが選択されているときの目標加速度a_tarとBレンジが選択されているときの目標加速度a_tarとの差が小さい。このため、実際の加速度a(減速度)の変化量を均一にし易くすることが可能となる。
 第2実施形態において、所定値G3は、DレンジからBレンジへと切り替えると目標加速度a_tarが正から負に変化する路面勾配Gの値である(図9参照)。これにより、DレンジからBレンジに切り替えることで、加速状態から減速状態に切り替わる際の実際の加速度a(減速度)の変化量を小さくすることで、降坂路でも安定性の高い車両10を提供することが可能となる。
C.変形例
 なお、この発明は、上記各実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
1.適用対象
 上記実施形態では、1つのモータ12及び1つのバッテリ16を有する車両10について説明したが(図1)、これに限らず、本発明は別の対象に適用してもよい。例えば、駆動用のモータと回生用のモータを別々に有する電動車両に適用してもよい。或いは、モータ12に加え、エンジンを有するハイブリッド車両に適用することもできる。或いは、モータ12及びバッテリ16に加え、燃料電池を有する燃料電池車両に適用してもよい。或いは、電動車両10のみならず、複数の前進走行レンジ(同一方向への駆動レンジ)を有する別の移動体又は可動装置(例えば、ロボットアーム)に適用することも可能である。また、車両10は自動四輪車に限らず、トラック、自動二輪車、電動アシスト自転車等であってもよい。
2.シフトレンジ
 上記各実施形態では、シフトレンジとしてPレンジ、Nレンジ、Rレンジ、Dレンジ及びBレンジを設けたが、同一方向への駆動を行う複数のシフトレンジ(上記各実施形態では、Dレンジ及びBレンジ)を備えるものであれば、これに限らない。
 上記各実施形態では、各シフトレンジをシフトレバー26を用いて切り替えたが、各シフトレンジ(特に、Dレンジ及びBレンジの少なくとも一方)を切り替えることができれば、その他の切替装置を用いてもよい。例えば、DレンジとBレンジとの間の切替えは、シフトレバー26に加え又はシフトレバー26に代えて、ステアリングに設けられたボタン(図示せず)により行ってもよい。
3.アクセル回生制御及び降坂回生制御
 上記各実施形態では、Dレンジ及びBレンジそれぞれについてアクセル回生制御と降坂回生制御の両方を実行するという説明をしたが、実質的な意味でアクセル回生制御と降坂回生制御が実行されていれば、両制御の形式的な区別は不要である。例えば、降坂回生制御にアクセル回生制御を含ませてもよい。換言すると、降坂時の回生制御をまとめて降坂回生制御と呼び、その降坂回生制御の中にアクセル回生制御を含ませることもできる。
 上記第2実施形態では、Bレンジが選択されているとき、補正量制限値ΔF1_limを常に算出した(図11及び図12参照)。しかし、補正量制限値ΔF1_limの算出は、DレンジからBレンジに切り替えられた後、所定条件が満たされるまでの間のみ行ってもよい。当該所定条件としては、例えば、DレンジからBレンジへの切替え後、所定時間が経過したこと、又はDレンジからBレンジへの切替え後、補正量制限値ΔF1_limを所定割合で大きくしていき、当初の特性116(図9の特性116のうち二点鎖線で示される部分)に到達したことを用いることができる。これにより、補正量制限値ΔF1_limの使用が一時的となり、当初、特性116として設定された特性(図9の特性116のうち二点鎖線で示される部分)を利用することが可能となる。

Claims (4)

  1.  シフトレンジとして駐車レンジ、後退走行レンジ、第1前進走行レンジ及び第2前進走行レンジを切り替えるシフトレンジ切替装置(26)を備える電動車両(10)であって、
     平坦路で運転者がアクセルを閉状態にしたとき、電動機(12)の回生発電によりエンジンブレーキ相当の制動力が前記電動車両(10)に付与されるアクセル回生制御を実行し、
     前記第2前進走行レンジが選択されているときの前記アクセル回生制御による前記電動車両(10)の減速度は、前記第1前進走行レンジが選択されているときの前記アクセル回生制御による減速度よりも大きく、
     さらに、前記電動車両(10)の降坂路走行中は、アクセル閉時の前記電動車両(10)の加速度が路面勾配に応じた降坂加速度となるように前記電動機(12)の回生量を調整する降坂回生制御を実行し、
     前記第2前進走行レンジが選択されているときの前記降坂加速度は、制御範囲として設定された前記路面勾配の全域にわたって、前記第1前進走行レンジが選択されているときの前記降坂加速度より小さい
     ことを特徴とする電動車両(10)。
  2.  請求項1記載の電動車両(10)において、
     前記第1前進走行レンジが選択されているときの前記降坂加速度と前記第2前進走行レンジが選択されているときの前記降坂加速度との差は、前記第1前進走行レンジが選択されているときの前記アクセル回生制御による減速度と前記第2前進走行レンジが選択されているときの前記アクセル回生制御による減速度の差に等しい
     ことを特徴とする電動車両(10)。
  3.  請求項1又は2記載の電動車両(10)において、
     前記路面勾配が所定値より急であるときは、前記路面勾配が前記所定値よりも緩やかなときと比べて、前記第1前進走行レンジが選択されているときの前記降坂加速度と前記第2前進走行レンジが選択されているときの前記降坂加速度との差が小さい
     ことを特徴とする電動車両(10)。
  4.  請求項3記載の電動車両(10)において、
     前記所定値は、前記第1前進走行レンジから前記第2前進走行レンジへと切り替えると前記降坂加速度が正から負に変化する路面勾配の値である
     ことを特徴とする電動車両(10)。
PCT/JP2012/077954 2011-12-09 2012-10-30 電動車両 WO2013084624A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012005125.4T DE112012005125T5 (de) 2011-12-09 2012-10-30 Elektrisches Fahrzeug
JP2013548148A JP5538633B2 (ja) 2011-12-09 2012-10-30 電動車両
US14/362,497 US9199544B2 (en) 2011-12-09 2012-10-30 Method of controlling electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-269579 2011-12-09
JP2011269579 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013084624A1 true WO2013084624A1 (ja) 2013-06-13

Family

ID=48574006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077954 WO2013084624A1 (ja) 2011-12-09 2012-10-30 電動車両

Country Status (4)

Country Link
US (1) US9199544B2 (ja)
JP (1) JP5538633B2 (ja)
DE (1) DE112012005125T5 (ja)
WO (1) WO2013084624A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017127068A (ja) * 2016-01-12 2017-07-20 トヨタ自動車株式会社 自動車
WO2018138781A1 (ja) * 2017-01-24 2018-08-02 日産自動車株式会社 電動車両の制御方法、及び、制御装置
WO2019111397A1 (ja) * 2017-12-07 2019-06-13 日産自動車株式会社 車両の制御方法及び制御装置
KR20190100401A (ko) * 2017-01-24 2019-08-28 닛산 지도우샤 가부시키가이샤 전동 차량의 제어 방법, 및 전동 차량의 제어 장치
CN111038274A (zh) * 2018-10-11 2020-04-21 郑州宇通客车股份有限公司 一种纯电动车辆超速的控制方法及装置
CN112757911A (zh) * 2021-01-22 2021-05-07 台州蓝德电子科技有限公司 一种电动车半坡起步防溜控制系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326403B2 (ja) * 2015-12-25 2018-05-16 本田技研工業株式会社 ハイブリッド車両
CN113790264B (zh) * 2021-09-13 2022-07-12 安徽江淮汽车集团股份有限公司 一种amt变速箱的换挡方法及换挡装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670406A (ja) * 1992-08-08 1994-03-11 Nissan Motor Co Ltd 電気自動車の走行制御装置
JPH0937407A (ja) * 1995-07-18 1997-02-07 Toyota Motor Corp 回生制動制御装置
WO1997010966A1 (fr) * 1995-09-20 1997-03-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Appareil de commande du freinage par recuperation pour vehicule electrique
JP2003164013A (ja) * 2001-11-29 2003-06-06 Nissan Motor Co Ltd 車両の駆動力制御方法とその制御装置
JP2009106130A (ja) * 2007-10-25 2009-05-14 Honda Motor Co Ltd 電動車両、および電動車両の回生制御方法
JP2009303342A (ja) * 2008-06-11 2009-12-24 Honda Motor Co Ltd 電動車両、および電動車両の制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396723B2 (ja) * 2007-04-03 2010-01-13 トヨタ自動車株式会社 省エネルギ運転促進装置
JP4461398B2 (ja) * 2007-12-19 2010-05-12 トヨタ自動車株式会社 燃料電池システム
JP5359459B2 (ja) 2009-03-27 2013-12-04 トヨタ自動車株式会社 車両のシフト制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670406A (ja) * 1992-08-08 1994-03-11 Nissan Motor Co Ltd 電気自動車の走行制御装置
JPH0937407A (ja) * 1995-07-18 1997-02-07 Toyota Motor Corp 回生制動制御装置
WO1997010966A1 (fr) * 1995-09-20 1997-03-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Appareil de commande du freinage par recuperation pour vehicule electrique
JP2003164013A (ja) * 2001-11-29 2003-06-06 Nissan Motor Co Ltd 車両の駆動力制御方法とその制御装置
JP2009106130A (ja) * 2007-10-25 2009-05-14 Honda Motor Co Ltd 電動車両、および電動車両の回生制御方法
JP2009303342A (ja) * 2008-06-11 2009-12-24 Honda Motor Co Ltd 電動車両、および電動車両の制御方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017127068A (ja) * 2016-01-12 2017-07-20 トヨタ自動車株式会社 自動車
KR102097929B1 (ko) 2017-01-24 2020-04-06 닛산 지도우샤 가부시키가이샤 전동 차량의 제어 방법, 및 제어 장치
KR20190097290A (ko) * 2017-01-24 2019-08-20 닛산 지도우샤 가부시키가이샤 전동 차량의 제어 방법, 및 제어 장치
KR20190100401A (ko) * 2017-01-24 2019-08-28 닛산 지도우샤 가부시키가이샤 전동 차량의 제어 방법, 및 전동 차량의 제어 장치
JPWO2018138781A1 (ja) * 2017-01-24 2019-11-07 日産自動車株式会社 電動車両の制御方法、及び、制御装置
WO2018138781A1 (ja) * 2017-01-24 2018-08-02 日産自動車株式会社 電動車両の制御方法、及び、制御装置
KR102097930B1 (ko) 2017-01-24 2020-04-06 닛산 지도우샤 가부시키가이샤 전동 차량의 제어 방법, 및 전동 차량의 제어 장치
RU2720227C1 (ru) * 2017-01-24 2020-04-28 Ниссан Мотор Ко., Лтд. Способ управления электромотором электротранспортного средства и устройство управления электромотором электротранспортного средства
US11878592B2 (en) 2017-01-24 2024-01-23 Nissan Motor Co., Ltd. Control method for electric vehicle and control device for electric vehicle
WO2019111397A1 (ja) * 2017-12-07 2019-06-13 日産自動車株式会社 車両の制御方法及び制御装置
CN111038274A (zh) * 2018-10-11 2020-04-21 郑州宇通客车股份有限公司 一种纯电动车辆超速的控制方法及装置
CN112757911A (zh) * 2021-01-22 2021-05-07 台州蓝德电子科技有限公司 一种电动车半坡起步防溜控制系统及方法
CN112757911B (zh) * 2021-01-22 2022-05-24 台州蓝德电子科技有限公司 一种电动车半坡起步防溜控制系统及方法

Also Published As

Publication number Publication date
US20140350759A1 (en) 2014-11-27
JP5538633B2 (ja) 2014-07-02
JPWO2013084624A1 (ja) 2015-04-27
DE112012005125T5 (de) 2014-10-16
US9199544B2 (en) 2015-12-01

Similar Documents

Publication Publication Date Title
JP5538633B2 (ja) 電動車両
JP4527138B2 (ja) ハイブリッド車両の制御装置
WO2013084681A1 (ja) 電動車両
US8744656B2 (en) Running control device for electric vehicle
JP5563062B2 (ja) アクセルペダル装置
JP5247000B2 (ja) 車両のコースト減速制御装置
JP5652020B2 (ja) 電動車両のクリープカット制御装置
JP5843412B2 (ja) アクセルペダル反力制御装置及び車両
JP5892175B2 (ja) ハイブリッド車両の制御装置
JP4971414B2 (ja) ハイブリッド車両の制御装置
WO2018011968A1 (ja) トルク制御方法及びトルク制御装置
JP2005253126A (ja) ハイブリッド車両の制動力制御装置および該制御装置を搭載した車両
US20150019097A1 (en) Control system for vehicle
CN111491839B (zh) 混合动力车辆的控制方法和控制装置
JP2007210418A (ja) 車両の制御装置
JP5825081B2 (ja) ハイブリッド車両の制御装置
JP2019115226A (ja) 電動車両の制御装置、制御方法および制御システム
CN111137139B (zh) 电动车辆
JP3857144B2 (ja) ハイブリッド車両の制御装置
WO2013035179A1 (ja) 車両および車両の制御方法
JP5817095B2 (ja) 電動車両の制御装置
WO2012157102A1 (ja) 車両および車両用制御方法
JP5927792B2 (ja) 車両用制御装置および車両用制御方法
JP6686384B2 (ja) ハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法
JP2015131559A (ja) 電動車両の制動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548148

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14362497

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120051254

Country of ref document: DE

Ref document number: 112012005125

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854721

Country of ref document: EP

Kind code of ref document: A1