WO2013084407A1 - Lamp and illuminating apparatus - Google Patents

Lamp and illuminating apparatus Download PDF

Info

Publication number
WO2013084407A1
WO2013084407A1 PCT/JP2012/007106 JP2012007106W WO2013084407A1 WO 2013084407 A1 WO2013084407 A1 WO 2013084407A1 JP 2012007106 W JP2012007106 W JP 2012007106W WO 2013084407 A1 WO2013084407 A1 WO 2013084407A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
lamp
support member
container
case
Prior art date
Application number
PCT/JP2012/007106
Other languages
French (fr)
Japanese (ja)
Inventor
次弘 松田
利雄 森
亨 岡崎
美奈子 赤井
直紀 田上
考志 大村
三貴 政弘
隆在 植本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013512669A priority Critical patent/JPWO2013084407A1/en
Publication of WO2013084407A1 publication Critical patent/WO2013084407A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a lamp and a lighting device using a semiconductor light emitting element such as a light emitting diode (LED) as a light source.
  • a semiconductor light emitting element such as a light emitting diode (LED) as a light source.
  • an LED lamp a lamp using high-efficiency long-life LED (hereinafter referred to as an LED lamp) has been proposed as a bulb-shaped lamp replacing a incandescent lamp.
  • a mounting substrate on which a large number of LEDs are mounted is attached to the end of the case, and a glove covering the LEDs is attached to the end of the case (Patent Documents 1 and 2).
  • the LED generates heat when it emits light. If the heat causes the LED to be excessively heated, the luminous efficiency of the LED may be reduced or the life of the LED may be shortened.
  • Patent Document 2 a heat dissipation groove is provided on the surface of the case so that the heat transmitted from the mounting substrate to the case at the time of light emission is dissipated efficiently.
  • the case is formed of a metal which is a good thermal conductive material so that the heat of the LED at the time of light emission is transmitted from the case to the base so that the heat is not accumulated in the case.
  • JP 2006-313717 A JP, 2010-003580, A
  • the calorific value of the LED increases with the increase in luminance, and the case is enlarged in order to release and transfer the heat.
  • the increase in size of the case leads to the increase in size of the LED lamp and can not be applied to existing lighting devices.
  • An object of the present invention is to provide a lamp and a lighting device of a novel configuration which can cope with high brightness without causing the enlargement of the lamp.
  • a lamp according to the present invention is a lamp in which a semiconductor light emitting element as a light source is supported by a support member in a container in which a glove opening is closed by a lid member.
  • a lamp characterized in that a fluid having a higher thermal conductivity than air is enclosed inside, and the volume of the container is 250 cm 3 or less.
  • volume refers to the amount by which fluid at 1 atm can enter the container in which the semiconductor light emitting device and the support member are stored. Specifically, the volume of the semiconductor light emitting element and the support member is subtracted from the volume of the container (based on the inner surface).
  • the semiconductor light emitting device is supported by the support member
  • the semiconductor light emitting device when the semiconductor light emitting device is directly mounted on and supported by the support member, the semiconductor light emitting device is supported via another member (for example, mounting substrate) Including the case supported by
  • a lighting device includes a lamp and a lighting fixture for mounting and lighting the lamp, and the lamp has the above configuration.
  • the fluid having a thermal conductivity higher than that of air is sealed in the container, the heat generated from the light emitting element can be conducted to the container by the fluid.
  • the heat radiation characteristics can be improved without increasing the size of the lamp, and high brightness can be coped with.
  • the volume in the container is set to 250 [cm 3 ], the temperature rise of the light emitting element can be efficiently suppressed.
  • the surface area of the support member in contact with the fluid is 18 cm 2 or more, or the fluid is helium gas, and the support member is in contact with the fluid. Is made of a metal material.
  • FIG. 2 is a cross-sectional view of the LED lamp shown in FIG. It is a B-B 'arrow directional cross-sectional view of a LED lamp. It is a figure which shows the structure of a LED module. It is an analysis result which shows the relationship between the volume of a container, and the temperature (it is junction temperature) of LED at the time of lighting. It is a figure explaining the container used for analysis. It is a figure explaining the support member used for analysis. It is a figure which shows the analysis result of the temperature distribution of the lamp
  • FIG. 12 is a cross-sectional view of the LED lamp shown in FIG. It is the F-F 'arrow directional cross-sectional view of the LED lamp shown in FIG. It is the schematic of the illuminating device which concerns on 4th Embodiment.
  • FIG. 1 is a perspective view showing the structure of the LED lamp 100 according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the LED lamp 100 shown in FIG. 1 taken along the line AA ′
  • FIG. 3 is a cross-sectional view of the LED lamp 100 taken along the line BB ′.
  • a partial cross-sectional view of the LED lamp 100 is shown.
  • the alternate long and short dash line drawn along the vertical direction of the drawing shows the lamp axis J of the LED lamp 100, and the upper side of the drawing is expressed as “forward” or “upper” in front of the LED lamp 100.
  • the lower side of the drawing is the rear of the LED lamp 100 (sometimes referred to as “lower” or “lower”).
  • the “lamp axis” refers to an imaginary line passing through the center of the globe 7 when the globe 7 is viewed in plan from the front side, and the center of the mouthpiece 11 when viewed in plan from the rear side.
  • the LED lamp 100 mainly includes an LED module 5 including the LED, a globe 7 covering the LED module 5, a case 9 attached to the rear side of the globe 7, and a case 9
  • the cap 11 attached to the open end of the rear side, the stem (corresponding to the “lid member” of the present invention) 13 for closing the rear end opening of the globe 7, and the cap 11 And a support member 17 for supporting the LED module 5 inside the globe 7.
  • the opening of the glove 7 is closed by the stem (lid member) 13 is the container 14, and the volume of the container 14 is 250 [cm 3 ] or less.
  • FIG. 4 is a view showing a structure of the LED module 5.
  • 4 (a) is a plan view of the LED module 5 as viewed from the front side of the LED lamp 100
  • FIG. 4 (b) is a cross-sectional view taken along the line CC 'in FIG. 4 (a).
  • the LED module 5 includes a mounting substrate 21, a plurality of LEDs 3 mounted on the front surface of the mounting substrate 21, and a sealing body 23 that covers the LEDs 3.
  • the mounting substrate 21 has a rectangular shape in plan view.
  • the mounting substrate 21 has a wiring pattern 22 for electrically connecting a plurality of LEDs 3 (series connection or / and parallel connection) or connecting with the circuit unit 15 on the surface of the substrate body There is.
  • a material having translucency is used as a material of the substrate body of the mounting substrate 21 and the wiring pattern 22.
  • the light emitted from the LED 3 can be emitted not only to the front side of the LED lamp 100 but also to the rear side through the mounting substrate 21.
  • Examples of the material of the substrate main body of the mounting substrate 21 include glass, alumina, sapphire, resin and the like, and examples of the material of the wiring pattern 22 include ITO and the like.
  • a plurality of LEDs 3 are mounted on the mounting substrate at predetermined intervals in the state of a bare chip, and here, the LEDs 3 are linearly arranged in two rows along the longitudinal direction of the mounting substrate 21.
  • the number, arrangement, and the like of the LEDs 3 are appropriately determined according to the luminance and the like required for the LED lamp 100.
  • the sealing body 23 also has a function of preventing the entry of air and moisture into the LED 3 and a wavelength conversion function of converting the wavelength of light from the LED 3 here.
  • the sealing body 23 covers one row of LEDs 3.
  • the sealing body 23 is mainly made of a translucent material.
  • a translucent material of the sealing body 23 for example, a silicone resin can be used.
  • blue light emitted from the LED 3 and fluorescence are mixed, for example, by mixing a translucent material with phosphor particles that convert blue light into yellow light as a wavelength conversion material.
  • White light mixed with yellow light wavelength-converted by body particles is emitted from the LED module 5 (LED lamp 100).
  • the mounting substrate 21 supplies power to the through holes 26 for inserting the lead wires 49 and 51 (FIGS. 1 and 2) for supplying power from the circuit unit 15 to the LED 3. It has on the surrounding surface (periphery) of terminal 22a, 22b.
  • connection between the mounting substrate 21 (the LED module 5) and the lead wires 49, 51 is made by connecting one end of each of the lead wires 49, 51 to the feed terminals 22a, 22b of the wiring pattern 22 by the solder 24.
  • the other ends of the lead wires 49 and 51 are connected to the circuit unit 15 as shown in FIG.
  • the mounting substrate 21 has a through hole 25 used for coupling with the convex portion 17 a (FIGS. 2 and 3) of the support member 17 substantially at the center.
  • the LED module 5 is provided in the globe 7 at a position (for example, substantially the same position) corresponding to the light source (filament) position of the incandescent lamp.
  • a position for example, substantially the same position
  • the light source (filament) position of the incandescent lamp As a result, it is possible to obtain characteristics similar to the light distribution characteristics when the incandescent lamp is attached.
  • the globe 7 returns to FIGS. 1 to 3 and is of the same type as the bulb of the incandescent bulb, that is, the A type.
  • the globe 7 is made of a translucent material.
  • a translucent material which can be used there exist a glass material, a resin material, etc., for example, and the glass material is utilized in this embodiment.
  • the glove 7 has a hollow spherical portion 7a and a cylindrical portion 7b.
  • the diameter of the cylindrical portion 7b decreases as it separates from the spherical portion 7a, and the end opposite to the spherical portion 7a (the end on the rear side of the glove 7) opens.
  • the case 9 has the same shape as the portion close to the base of the bulb of the incandescent lamp.
  • the case 9 is made of, for example, a metal material, a resin material or the like, and is made of a resin material (for example, polybutylene terephthalate (PBT)) in this case.
  • PBT polybutylene terephthalate
  • the case 9 has a function of storing the circuit unit 15 inside, a function of releasing heat generated from the circuit unit 15 to the outside at the time of lighting, a heat of the LED module 5 at the time of light emission transmitted via the stem 13 It has a releasing function. Heat dissipation is performed by heat conduction from the case 9 to the outside air and the base 11, convection by the outside air, and radiation.
  • the case 9 has a large diameter portion 9a in the front half in the lamp axis J direction and a small diameter portion 9b in the rear half. Further, between the large diameter portion 9a and the small diameter portion 9b, a stepped portion 9c is formed as shown in the enlarged view on the lower left in FIG.
  • the large diameter portion 9a of the case 9 is joined to the lower end so as to cover the lower end of the container 14 in which the glove 7 and the stem 13 are integrated.
  • the bonding is here fixed using an adhesive 57.
  • the adhesive 57 for example, an organic adhesive such as a resin or an inorganic adhesive can be used.
  • a stepped portion 9 e is formed in order to hold the lower end portion of the container 14 in a stable state.
  • An Edison-type mouthpiece 11 is attached to the small diameter portion 9 b of the case 9, that is, the opening end of the case 9 opposite to the glove 7.
  • the outer periphery of the small diameter portion 9 b is a male screw, and by screwing this screw portion into the mouthpiece 11, the mouthpiece 11 and the case 9 are coupled.
  • the base 11 is for receiving power from the socket of the lighting apparatus.
  • the type of the base 11 is not particularly limited, but in the present embodiment, an Edison type is used.
  • the base 11 includes a shell 27 having a cylindrical shape and a screw-like peripheral wall, and an eyelet 31 attached to the shell 27 via an insulating material 29.
  • the electrical connection between the base 11 and the circuit unit 15 is made by the shell 27 via the lead wire 33 and the eyelet 31 via the lead wire 35.
  • the lead wire 33 is covered with the shell portion 27 in a state of being drawn out from the inside of the small diameter portion 9 b of the case 9 through the opening at the lower end and fitting into the groove 9 d of the case 9.
  • the lead wire 35 is sandwiched between the outer periphery of the case 9 and the inner periphery of the shell portion 27, and the lead wire 35 and the base 11 are electrically connected.
  • the stem 13 is made of a translucent material (for example, a glass material), and constitutes the container 14 with the globe 7.
  • helium (He) gas is used as the fluid.
  • the advantages of using helium gas include inertness, low cost, corrosiveness to other members, and extremely low reducibility.
  • the stem 13 is a so-called flare stem, and as shown in FIG. 3, the exhaust pipe 59 is provided in an airtight manner.
  • the exhaust pipe 59 is used to evacuate the inside of the container 14 or seal helium.
  • the exhaust pipe 59 in FIG. 3 has an opening 61 at one end in the container 14 and is located outside the container 14 to seal the inside of the container 14 after sealing the helium gas. The end is shown in a burnt-out (chip-off sealed) state. Further, the stem 13 is sealed in a state in which a pair of lead wires 49 and 51 pass through. As a result, the lead wires 49, 51 and the exhaust pipe 59 extend from the container 14 and the container 14 is held airtight.
  • the circuit unit 15 converts commercial power received via the base 11 into LED 3 lighting power.
  • the circuit unit 15 is comprised from the circuit board 41 and the various electronic components 43 and 45 mounted in the circuit board 41, as shown in FIG.
  • the circuit configuration of the circuit unit 15 mainly includes a rectifier circuit that rectifies commercial power (AC) and a smoothing circuit that smoothes the rectified DC power.
  • the rectifier circuit is constituted by the diode bridge 45
  • the smoothing circuit is constituted by the capacitor 43.
  • the diode bridge 45 is mounted on the main surface of the circuit board 41 on the globe 7 side.
  • the capacitor 43 is mounted on the main surface of the circuit board 41 on the base 11 side, and is located inside the base 11.
  • the circuit board 41 is fixed to the inside of the case 9 using a locking structure. Specifically, as shown in the enlarged view on the lower left in FIG. 2, the peripheral portion of the back surface of the circuit board 41 abuts against the step 9c inside the case 9, and the locking portion 47 on the inner surface of the large diameter portion 9a. The surface of the circuit board 41 is locked.
  • a plurality of (for example, four) locking portions 47 are formed at intervals (for example, at equal intervals) in the circumferential direction.
  • the locking portion 47 protrudes toward the central axis of the case 9 as it gets closer to the stepped portion 9 c, and the distance between the locking portion 47 and the stepped portion 9 c corresponds to the thickness of the circuit board 41.
  • the support member 17 supports the LED module 5 in the container 14 as shown in FIGS.
  • the support member 17 has a function as a support for the LED module 5 and a function as a heat dissipation member when the LED lamp 100 emits light.
  • the support member 17 has, for example, a rod-like shape, and the upper end is coupled to the LED module 5, and the lower end is attached to the stem 13 by an adhesive 19.
  • An intermediate region of the support member 17 is a cylindrical portion 17 b having a circular cross section.
  • the upper region of the support member 17 is a flat portion 17 c having a flat (thin in the width direction) shape in the width direction of the rectangular mounting substrate 21.
  • the LED module 5 is held stably, and in the cylindrical portion 17b, the light emitted backward from the LED 3 is not blocked as much as possible.
  • the support member 17 is made of, for example, a metal material or a resin material.
  • the support member 17 is made of, for example, aluminum, the heat from the LED module 5 can also be transmitted, and the weight reduction of the LED lamp 100 can be achieved.
  • the adhesive 19 desirably has high thermal conductivity. By doing so, it is possible to promote the conduction of the heat generated in the LED 3 to the stem 13 via the mounting substrate 21 of the LED module 5 and the support member 17. The heat conducted to the stem 13 is conducted to the globe 7 and is released from the globe 7 to the outside of the LED lamp 100.
  • the adhesive having high thermal conductivity include adhesives of inorganic materials such as ceramics and cement, and adhesives of organic materials such as heat dissipating silicone.
  • connection between the support member 17 and the LED module 5 utilizes an engagement structure or an adhesive.
  • a convex portion 17 a is formed on the upper surface of the support member 17, and the convex portion 17 a is inserted (fitted) into the through hole 25 (FIG. 3) substantially at the center of the mounting substrate 21 of the LED module 5.
  • the function as a heat dissipating member is achieved by conducting the heat transferred to the support member 17 to the helium gas or air contained in the glove 7, which is the heat generated when the LED 3 is lit.
  • FIG. 5 is an analysis result showing the relationship between the volume of the container and the temperature of the LED at the time of lighting (which is the junction temperature).
  • FIG. 6 is a view for explaining a container used for analysis
  • FIG. 7 is a view for explaining a support member used for analysis.
  • FIG. 8 is a diagram showing an analysis result of the temperature distribution of the lamp at the time of lighting. Note that FIG. 8 shows the temperature difference between the maximum temperature and the room temperature in ten steps, and since the region of the maximum temperature is small, nine steps are shown in the figure.
  • the sizes of the containers used for the analysis test are five types of 104 [cm 3 ], 181 [cm 3 ], 252 [cm 3 ], 335 [cm 3 ], and 426 [cm 3 ].
  • the volume is obtained by subtracting the volumes of the LED module and the support member from the volume of the container constituted by the globe and the stem.
  • the container 151 having a volume of 104 [cm 3 ] is an A type close to the shape of an incandescent lamp, and the container 153 having a volume of 426 [cm 3 ] close to a ball As the volume increases, the shape of the container approaches from the A type to the G type.
  • the stem (lid member) 155 constituting each container is a so-called button stem having a disk shape regardless of the volume of the container as shown in FIG.
  • the size of the stem 155 is the same in all the containers.
  • the containers (151, 153, etc.) differ in the size and shape of the glove, but as shown in FIG. 6, the size and shape of the stem 155 blocking the opening of the gloves 157, 159 are the same, and the volume increases According to, the shape of the glove (157, 159) approaches the spherical shape of G-type from the A-type ladder shape.
  • X type (163) Y type (165), and Z type (167).
  • the X-type support member 163 has a cylindrical shape, and has a stepped shape as if a large diameter portion 163a near the stem 155 and a small diameter portion 163b near the LED module 169 are combined.
  • the Y-type support member 165 has a tapered cylindrical shape in which the outer diameter decreases with distance from the stem 155.
  • the Z-type support member 167 has a cylindrical shape and is shaped like a combination of a cylindrical portion 167 a closer to the stem 155 and a truncated cone portion 167 b closer to the LED module 169.
  • the surface area (area in contact with helium) of the support member used for the analysis is 16.7 cm 2 for the X type (163), 18.5 cm 2 for the Y type (165), and Z type ( 167) There are three types of 24.1 [cm 2 ].
  • the diameter D1 of the lower surface is equal, and the diameter D2 of the upper surface (the opposite side to the stem) is also equal. That is, the areas of the lower and upper surfaces of all types of support members 163, 165 and 167 are equal. This is to make the amount of heat transferred from the LED module 169 to the support members 163, 165 and 167 equal to the amount of heat transferred from the support members 163, 165 and 167 to the stem 155 (container) in each type.
  • the height H1 is also equal.
  • the LED modules 169 used for the analysis are all the same, and as shown in FIG. 6, the case 171 and the cap 173 joined to the container (151, 153, etc.) are all analyzed with the same thing.
  • the junction temperature of the LED drops as the volume of the container increases in each type of support member 163, 165, 167, and hardly decreases when the volume of the container exceeds 252 cm 3 in each type. That is, if the volume is less than 252 cm 3 , for example, 250 cm 3 or less, the junction temperature of the LED can be effectively reduced.
  • the reason for this is that only the gas (helium gas or air) in the vicinity of the LED module 5 and the support member 17 contributes to lowering the junction temperature of the LED, and even if a container having a certain volume or more is provided, It is considered that the gas located away from the LED module 5 hardly contributes to the drop of the junction temperature.
  • junction temperatures of the LEDs are lower in the order of the X type, the Y type, and the Z type in the support members 163, 165, and 167.
  • This order is the order in which the surface area of the support members 163, 165 and 167 is increased. That is, it can be seen that the junction temperature of the LED decreases as the surface area of the support member increases. The reason is that the heat transfer from the support member to the helium gas is performed from the surface of the support member to the surrounding helium gas.
  • the temperature distribution of the helium gas in the container is the highest in the A region around the LED module 169 which is a heat source, and then the LED module 169 and the small diameter portion 163 of the support member 163 The region B which is the whole is high, and the temperature of the helium gas is lowered as the region B is left. Region B included the LED module 169 and the upper half of the support member 163 while region C included the entire support member 163.
  • the heat generated in the LED module 169 is transferred to the helium gas around the LED module 169 to increase the temperature of the A region, and is transferred to substantially the entire support member 163. Therefore, the temperature in the B region including the upper portion of the support member 163 is high, and the temperature also in the C region including the entire support member 163 is high.
  • the heat transfer from the support member 169 to the helium gas is performed from the entire surface of the support member 169, and the temperatures in the D and E regions are also high, but most of the heat of the LED module is transferred in the H and I regions. Not. In particular, at the position away from the LED module 169 at the upper side (opposite the support member), the difference with the ambient temperature around the lamp is small, and it can be seen that the heat of the LED module is not conducted.
  • heat conduction to the helium gas is actively performed within 10 cm from this outer surface of the LED module 169 and the support member 163 (this area is the A area to the E area),
  • this area is the A area to the E area
  • the distance between the LED module 169 and the container, and the distance between the support member 163 and the container are at least 10 mm or more.
  • the heat from the LED module 169 is mostly transmitted outside the radius ("K” in the figure) of the LED module 169 and the support member 163 centered on the position with the highest temperature ("K” in the figure). Not. For this reason, it is preferable that helium gas be present inside the radius 40 [mm] centering on the position of the highest temperature among the LED module 169 and the support member 163.
  • FIG. 9 is a perspective view showing the structure of the LED lamp 200 according to the second embodiment.
  • FIG. 10 is a cross-sectional view taken along line DD ′ of the LED lamp 200 shown in FIG.
  • the same components as those of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the LED lamp 200 according to this embodiment differs from the LED lamp 100 according to the first embodiment in the configuration of the LED module 81, the support member 83, and the stem 85.
  • the container 86 is comprised by the globe 7 and the stem 85, and the volume of the container 86 is 250 [cm ⁇ 3 >] or less.
  • the support member 83 is a hollow member, and the lead wires 49 and 51 are inserted into the support member 83.
  • the support member 83 has a hollow structure in which the external shape of the support member 17 in the first embodiment is left unchanged. Therefore, the support member 83 has a cylindrical portion 83 b and a flat portion 83 c as the support member 17 in the first embodiment.
  • the positions of the stems 85 through which the lead wires 49 and 51 are inserted are closer to the lamp axis J side. Further, as the lead wires 49 and 51 are accommodated inside the support member 83, the position of the solder 87 connecting the lead wires 49 and 51 and the mounting substrate 91 of the LED module 81 is closer to the lamp axis J side.
  • the interface between the stem 85 and the globe 7 is joined (sealed) in an airtight manner.
  • An adhesive 89 is used to fix the support member 83 and the LED module 81.
  • the adhesive 89 for example, those mentioned for the above-mentioned adhesive 19 can be used.
  • the lead wires 49 and 51 are accommodated inside the support member 83. Therefore, compared with the first embodiment, of the light emitted from the LED module 81, the light emitted toward the rear is not blocked more.
  • FIG. 11 is a perspective view showing the structure of the LED lamp 300 according to the third embodiment.
  • FIG. 12 is a cross-sectional view of the LED lamp 300 shown in FIG.
  • the same components as those in the first and second embodiments are designated by the same reference numerals, and the description thereof will be omitted.
  • the LED lamp 300 according to the present embodiment differs from the LED lamp 100 according to the first embodiment in the configuration of a stem (the “lid member” of the present invention) 111.
  • the container 112 is comprised by the globe 7 and the stem 111, and the volume of the container 112 is 250 [cm ⁇ 3 >] or less.
  • the stem 111 has a dome shape, and has a recess 111 a in the vicinity of the intersection with the lamp axis J.
  • the support member 17 and the stem 111 are fixed by the adhesive 19 in the recess 111 a.
  • the LED module 5 is stably supported inside the globe 7 as compared to the case where the support member 17 is fixed to the convex stem head 13 b as in the first embodiment. It is possible.
  • the stem 111 and the globe 7 are integrally formed, so the interface between the stem 111 and the globe 7 is joined in an airtight manner.
  • Fourth Embodiment in the embodiments and the like, in particular, the LED lamp has been described, but the present invention is also applicable to a lighting device using the LED lamp.
  • the LED lamp 100 according to the first embodiment is attached to a luminaire (which is a downlight type) will be described.
  • FIG. 14 is a schematic view of a lighting device according to a fourth embodiment.
  • the lighting device 401 is attached to, for example, the ceiling 402 and used.
  • the lighting device 401 is an LED lamp (for example, the LED lamp 1 described in the first embodiment) 100 and a lighting fixture 403 for mounting the LED lamp 100 and lighting / extinguishing. And
  • the lighting fixture 403 includes, for example, a fixture body 405 attached to the ceiling 402, and a cover 407 attached to the fixture body 405 and covering the LED lamp 100.
  • the cover 407 is an aperture type here, and has a reflective film 411 on its inner surface that reflects the light emitted from the LED lamp 100 in a predetermined direction (here, the lower side).
  • the fixture body 405 includes a socket 409 to which the base 11 of the LED lamp 100 is attached (screwed), and power is supplied to the LED lamp 100 via the socket 409.
  • the lighting fixture here is an example, and for example, the lighting fixture may have a closed cover without the open cover 407, or the posture in which the LED lamp faces sideways ( The lighting apparatus may be lighted in such a manner that the central axis of the lamp is horizontal or inclined (the central axis of the lamp is inclined with respect to the central axis of the lighting apparatus).
  • the lighting device is a direct attachment type in which the lighting fixture is mounted in contact with the ceiling or wall, but it is an embedded type in which the lighting fixture is mounted in a state of being embedded in the ceiling or wall It may be a hanging type that can be hung from the ceiling by an electric cable of a lighting fixture.
  • the lighting fixture here lights one attached LED lamp, a plurality of, for example, three LED lamps may be attached.
  • the materials, numerical values, and the like described in the above-described embodiment only exemplify preferable ones, and are not limited thereto. Furthermore, it is possible to appropriately change the configuration of the LED lamp and the lighting device without departing from the scope of the technical idea of the present invention.
  • the container 14, 84, 112 is constituted by the glove 7 and the lid member (stem) 13, 83, 111, and the glove and the lid member are constituted by the glass material. Other materials may be used as long as they can hold.
  • the globe 7 (containers 14, 84, 112) has an A-type shape, but may have another type, for example, a G-type or R-type, or a light bulb etc. The shape may be completely different from the shape.
  • the inner surface of the glove is not particularly described.
  • a diffusion process for example, a process with silica, a white pigment, or the like
  • the glove may be made of a translucent material, and, for example, transparency and opacity are not particularly relevant.
  • the glove 7 is integral (made as one piece), but may be, for example, a combination (joined) of a plurality of members.
  • the lid members (stems) 13, 83, 111 are flared, but may be other types such as a disk-shaped button type. Also, a reflection process (for example, a process by application of a reflective film) that reflects light from the LED module to the globe tip side (the opposite side to the opening) with respect to the surface of the stem located inside the container May be applied.
  • Bonding of Glove and Lid Member In the embodiment, the glove and the lid member are made of a glass material, and the bonding portions of the both are heated and melted for bonding.
  • the bonding method may be a so-called drop seal method or a so-called butt seal method.
  • helium gas is sealed as a fluid in the container 14, but other types of gas (gas) having a thermal conductivity higher than that of air may be sealed.
  • gases include hydrogen, nitrogen, neon and the like.
  • the light-emitting element is the LED 3. However, for example, it may be an LD (laser diode) or an EL element (electric luminescence element).
  • the LED 3 is mounted on the mounting substrate 21 in a bare chip state, but the LED may be mounted on the mounting substrate in a surface mounting type (so-called SMD) or a shell type, for example. Furthermore, the plurality of LEDs may be a mixture of chip type and surface mount type.
  • the mounting board 21 in the embodiment has a rectangular shape in plan view. However, the mounting substrate may have another shape, for example, a polygon such as a square or a pentagon (including a regular polygon), an oval, a circle, a ring, or the like.
  • the number of mounting substrates is not limited to one, and may be two or more.
  • the LED 3 is mounted on the surface of the mounting substrate 21. However, the LED may be mounted on the back surface.
  • the sealing body 23 covers the LEDs 3 arranged in two rows in a row unit, but two rows may be coated collectively, or a plurality of constant numbers The LED group may be coated with one sealing body, or all the LEDs may be coated with one sealing body.
  • the plurality of LEDs 3 are arranged in two rows, but in plan view, the LEDs 3 may be arranged on four sides of a square, or an ellipse (circle It may be disposed on the circumference of (including).
  • the LED module 5 is configured to emit white light by using the LED 3 that emits blue light and phosphor particles that convert blue light to yellow light, for example, ultraviolet light
  • the semiconductor light emitting device of the present invention may be combined with phosphor particles of each color that emits light of three primary colors (red, green and blue).
  • the wavelength conversion material a material including a semiconductor, a metal complex, an organic dye, a pigment, or the like, which absorbs light of a certain wavelength and emits light of a wavelength different from the absorbed light may be used.
  • the case 9 is made of a resin material, but may be made of another material.
  • a metal material as another material, it is necessary to ensure the insulation with a nozzle.
  • the insulation with the base can be ensured, for example, by applying an insulating film to the small diameter portion of the case or insulating the small diameter portion, and the glove side of the case is made of a metal material. It is also possible to secure the sides by resin materials (two or more members are joined).
  • the surface of the case 9 is not particularly described.
  • a radiation fin may be provided, or a process for improving the emissivity may be performed.
  • Bonding of Container and Case In the first embodiment, the container 14 and the case 9 are fixed by the adhesive 57. Therefore, the heat of the container 14 is transmitted to the case 9 at the time of lighting. However, when a fluid having a high thermal conductivity is sealed in the container, the temperature of the container may be increased, the heat may be transmitted to the case, and the temperature of the case may be increased. In such a case, in order to reduce the thermal load on the circuit unit in the case, a material having a low thermal conductivity may be interposed between the container and the case, and the two may be joined. 6.
  • the Edison type cap 11 is used, other types, for example, a pin type (specifically, G type such as GY, GX, etc.) may be used.
  • die 11 was attached to (joined) the case 9 by screwing to the screw part of the case 9 using the internal thread of a shell part, with the case by other methods It may be joined. Other methods include adhesive bonding, caulking bonding, press-in bonding, and the like, and two or more of these methods may be combined. 7.
  • Lamp in the embodiment, a lamp for storing a circuit unit in a case (so-called bulb type lamp) has been described as a lamp, but a lamp not containing a circuit unit in the case, for example, a compact bulb is substituted It is also applicable to such lamps. Furthermore, it may be a non-conventional lamp, for example, a lamp directly incorporated into a luminaire.

Abstract

An LED lamp (100) is provided with: an LED module (5), which is provided with an LED; a globe (7), which covers the LED module (5); a case (9), which is mounted on the rear side of the globe (7); a ferrule (11), which is attached to an rear-side opening end portion of the case (9); a cover member (13), which covers a rear-side opening of the globe (7); a circuit unit (15), which receives power from the ferrule (11) and makes the LED emit light; and a supporting member (17), which supports the LED module (5) to the inside of the globe (7). The volume of a container (14) formed by covering the opening of the globe (7) with the cover member (13) is 250 [cm3] or less.

Description

ランプ及び照明装置Lamp and lighting device
 本発明は、LED(Light Emitting Diode)等の半導体発光素子を光源とするランプ及び照明装置に関する。 The present invention relates to a lamp and a lighting device using a semiconductor light emitting element such as a light emitting diode (LED) as a light source.
 近年、省エネルギーの観点から、白熱電球に代替する電球形ランプとして、高効率・長寿命なLEDを利用するランプ(以下、LEDランプと記載する。)が提案されている。 In recent years, from the viewpoint of energy saving, a lamp using high-efficiency long-life LED (hereinafter referred to as an LED lamp) has been proposed as a bulb-shaped lamp replacing a incandescent lamp.
 LEDランプは、例えば、多数のLEDを実装する実装基板がケースの端部に装着され、LEDを覆うグローブがケースの端部に装着されている(特許文献1~2)。 In the LED lamp, for example, a mounting substrate on which a large number of LEDs are mounted is attached to the end of the case, and a glove covering the LEDs is attached to the end of the case (Patent Documents 1 and 2).
 LEDは発光時に熱を発生する。この熱によりLEDが過度に加熱されると、LEDの発光効率が低下したり、LEDの寿命が短くなったりする。 The LED generates heat when it emits light. If the heat causes the LED to be excessively heated, the luminous efficiency of the LED may be reduced or the life of the LED may be shortened.
 このようなことから、発光時のLEDの過度な温度上昇を防止するために種々の対策が施されている。特許文献2では、ケースの表面に放熱溝を設け、発光時に実装基板からケースへと伝わった熱を効率良く放熱させるようにしている。非特許文献1では、ケースを良熱伝導材料である金属で形成して、発光時のLEDの熱をケースから口金へと伝えてケースに熱が蓄積しないようにしている。 From such a thing, various measures are taken in order to prevent the excessive temperature rise of LED at the time of light emission. In Patent Document 2, a heat dissipation groove is provided on the surface of the case so that the heat transmitted from the mounting substrate to the case at the time of light emission is dissipated efficiently. In Non-Patent Document 1, the case is formed of a metal which is a good thermal conductive material so that the heat of the LED at the time of light emission is transmitted from the case to the base so that the heat is not accumulated in the case.
特開2006-313717号公報JP 2006-313717 A 特開2010-003580号公報JP, 2010-003580, A
 近年、LEDランプへの高輝度化の要望が強くなっており、上記技術ではこの要望に答えることができない。つまり、高輝度化に伴ってLEDの発熱量が増大し、この熱を放出・伝熱するために、ケースが大型化するのである。ケースの大型化はLEDランプの大型化につながり、既存の照明装置に適用できない。 In recent years, the demand for high luminance to the LED lamp has become strong, and the above technology can not meet this demand. That is, the calorific value of the LED increases with the increase in luminance, and the case is enlarged in order to release and transfer the heat. The increase in size of the case leads to the increase in size of the LED lamp and can not be applied to existing lighting devices.
 本発明は、ランプの大型化を招くことなく、高輝度化に対応し得る新規構成のランプ及び照明装置を提供することを目的とする。 An object of the present invention is to provide a lamp and a lighting device of a novel configuration which can cope with high brightness without causing the enlargement of the lamp.
 上記の目的を達成するため、本発明に係るランプは、グローブ開口が蓋部材により塞がれてなる容器内に光源としての半導体発光素子が支持部材により支持されているランプであって、前記容器内には空気よりも高い熱伝導性を有する流体が封入され、前記容器の容積が250cm3以下であることを特徴とするランプ。 In order to achieve the above object, a lamp according to the present invention is a lamp in which a semiconductor light emitting element as a light source is supported by a support member in a container in which a glove opening is closed by a lid member. A lamp characterized in that a fluid having a higher thermal conductivity than air is enclosed inside, and the volume of the container is 250 cm 3 or less.
 ここでいう「容積」とは、半導体発光素子及び支持部材を格納した状態の容器内に1気圧の状態の流体が入り得る量を意味する。具体的には、容器(内面を基準とする。)の体積から半導体発光素子及び支持部材の体積を引いたものとなる。 The term "volume" as used herein refers to the amount by which fluid at 1 atm can enter the container in which the semiconductor light emitting device and the support member are stored. Specifically, the volume of the semiconductor light emitting element and the support member is subtracted from the volume of the container (based on the inner surface).
 また、「半導体発光素子が支持部材により支持されている」には、半導体発光素子が支持部材に直接実装されて支持される場合、半導体発光素子が他部材(例えば実装基板)を介して支持部材により支持される場合を含む。 In addition, in “the semiconductor light emitting device is supported by the support member”, when the semiconductor light emitting device is directly mounted on and supported by the support member, the semiconductor light emitting device is supported via another member (for example, mounting substrate) Including the case supported by
 上記の目的を達成するため、本発明に係る照明装置は、ランプと、前記ランプを装着して点灯させる照明器具とを備え、前記ランプは、上記構成を有することを特徴としている。 In order to achieve the above object, a lighting device according to the present invention includes a lamp and a lighting fixture for mounting and lighting the lamp, and the lamp has the above configuration.
 上記の構成によれば、空気よりも高い熱伝導率を有する流体が容器内に封入されているので、発光素子から発生した熱を流体により容器へ伝導させることができる。これにより、ランプの大型化を招くことなく、放熱特性を向上させることができ、高輝度化に対応可能となる。特に、容器内の容積を250[cm3]としているので、発光素子の温度上昇を効率的に抑制することができる。 According to the above configuration, since the fluid having a thermal conductivity higher than that of air is sealed in the container, the heat generated from the light emitting element can be conducted to the container by the fluid. As a result, the heat radiation characteristics can be improved without increasing the size of the lamp, and high brightness can be coped with. In particular, since the volume in the container is set to 250 [cm 3 ], the temperature rise of the light emitting element can be efficiently suppressed.
 前記支持部材における前記流体と接触する部分の表面積が18cm2以上であることを特徴とし、あるいは、前記流体はヘリウムガスであることを特徴とし、さらには、前記支持部材における前記流体と接触する部分が金属材料で構成されていることを特徴とする。 The surface area of the support member in contact with the fluid is 18 cm 2 or more, or the fluid is helium gas, and the support member is in contact with the fluid. Is made of a metal material.
第1の実施形態に係るLEDランプの構造を示す斜視図である。It is a perspective view which shows the structure of the LED lamp which concerns on 1st Embodiment. 図1に示すLEDランプのA-A’線矢視断面図である。FIG. 2 is a cross-sectional view of the LED lamp shown in FIG. LEDランプのB-B’線矢視断面図である。It is a B-B 'arrow directional cross-sectional view of a LED lamp. LEDモジュールの構造を示す図である。It is a figure which shows the structure of a LED module. 容器の容積と、点灯時のLEDの温度(ジャンクション温度である。)との関係を示す解析結果である。It is an analysis result which shows the relationship between the volume of a container, and the temperature (it is junction temperature) of LED at the time of lighting. 解析に用いた容器を説明する図である。It is a figure explaining the container used for analysis. 解析に用いた支持部材を説明する図である。It is a figure explaining the support member used for analysis. 点灯時のランプの温度分布の解析結果を示す図である。It is a figure which shows the analysis result of the temperature distribution of the lamp | ramp at the time of lighting. 第2の実施形態に係るLEDランプの構造を示す斜視図である。It is a perspective view which shows the structure of the LED lamp which concerns on 2nd Embodiment. 図9に示すLEDランプのD-D’線矢視断面図である。It is the D-D 'arrow directional cross-sectional view of the LED lamp shown in FIG. 第3の実施形態に係るLEDランプの構造を示す斜視図である。It is a perspective view which shows the structure of the LED lamp which concerns on 3rd Embodiment. 図11に示すLEDランプのE-E’線矢視断面図である。FIG. 12 is a cross-sectional view of the LED lamp shown in FIG. 図11に示すLEDランプのF-F’線矢視断面図である。It is the F-F 'arrow directional cross-sectional view of the LED lamp shown in FIG. 第4の実施形態に係る照明装置の概略図である。It is the schematic of the illuminating device which concerns on 4th Embodiment.
 ≪第1の実施形態≫
1.全体構成
 図1は、第1の実施形態に係るLEDランプ100の構造を示す斜視図である。図2は、図1に示すLEDランプ100のA-A’線矢視断面図であり、図3は、LEDランプ100のB-B’線矢視断面図である。なお、図3においては、LEDランプ100の一部断面図としている。
First Embodiment
1. Overall Configuration FIG. 1 is a perspective view showing the structure of the LED lamp 100 according to the first embodiment. FIG. 2 is a cross-sectional view of the LED lamp 100 shown in FIG. 1 taken along the line AA ′, and FIG. 3 is a cross-sectional view of the LED lamp 100 taken along the line BB ′. In FIG. 3, a partial cross-sectional view of the LED lamp 100 is shown.
 図2,3において、紙面上下方向に沿って描かれた一点鎖線は、LEDランプ100のランプ軸Jを示しており、紙面上方がLEDランプ100の前方(「上方」または「上」と表現する場合もある。)であって、紙面下方がLEDランプ100の後方(「下方」または「下」と表現する場合もある。)である。ここで、「ランプ軸」とは、グローブ7を前方側から平面視した時のグローブ7の中心、ならびに、口金11を後方側から平面視した時の口金11の中心を通る仮想線を指す。 In FIGS. 2 and 3, the alternate long and short dash line drawn along the vertical direction of the drawing shows the lamp axis J of the LED lamp 100, and the upper side of the drawing is expressed as “forward” or “upper” in front of the LED lamp 100. In some cases, the lower side of the drawing is the rear of the LED lamp 100 (sometimes referred to as “lower” or “lower”). Here, the “lamp axis” refers to an imaginary line passing through the center of the globe 7 when the globe 7 is viewed in plan from the front side, and the center of the mouthpiece 11 when viewed in plan from the rear side.
 図1~3に示すように、LEDランプ100は、その主な構成として、LEDを備えるLEDモジュール5、LEDモジュール5を覆うグローブ7、グローブ7の後方側に取着されたケース9、ケース9の後方側の開口端部に被着された口金11、グローブ7における後方側の開口を塞ぐステム(本発明の「蓋部材」に相当する。)13、口金11から受電してLEDを発光させるための回路ユニット15、LEDモジュール5をグローブ7の内部に支持する支持部材17を備える。ここで、グローブ7の開口がステム(蓋部材)13により塞がれたものが容器14となり、容器14の容積が250[cm3]以下である。 As shown in FIGS. 1 to 3, the LED lamp 100 mainly includes an LED module 5 including the LED, a globe 7 covering the LED module 5, a case 9 attached to the rear side of the globe 7, and a case 9 The cap 11 attached to the open end of the rear side, the stem (corresponding to the “lid member” of the present invention) 13 for closing the rear end opening of the globe 7, and the cap 11 And a support member 17 for supporting the LED module 5 inside the globe 7. Here, what the opening of the glove 7 is closed by the stem (lid member) 13 is the container 14, and the volume of the container 14 is 250 [cm 3 ] or less.
 以下、図1~3中の各部分について説明する。
2.各部構成
(1)LEDモジュール
 図4は、LEDモジュール5の構造を示す図である。図4(a)は、LEDランプ100の前方側から見たLEDモジュール5の平面図であり、図4(b)は、図4(a)におけるC-C’線矢視断面図である。
Each part in FIGS. 1 to 3 will be described below.
2. Configuration of Each Part (1) LED Module FIG. 4 is a view showing a structure of the LED module 5. 4 (a) is a plan view of the LED module 5 as viewed from the front side of the LED lamp 100, and FIG. 4 (b) is a cross-sectional view taken along the line CC 'in FIG. 4 (a).
 図1,2、4に示すように、LEDモジュール5は、実装基板21と、実装基板21における前方側の面に実装された複数のLED3と、LED3を被覆する封止体23とを備える。 As shown in FIGS. 1, 2 and 4, the LED module 5 includes a mounting substrate 21, a plurality of LEDs 3 mounted on the front surface of the mounting substrate 21, and a sealing body 23 that covers the LEDs 3.
 実装基板21は、図4(a)に示すように、平面視形状が矩形状をしている。実装基板21は、複数のLED3を電気的に接続(直列接続又は/及び並列接続である。)したり、回路ユニット15と接続したりするための配線パターン22を基板本体の表面に有している。 As shown in FIG. 4A, the mounting substrate 21 has a rectangular shape in plan view. The mounting substrate 21 has a wiring pattern 22 for electrically connecting a plurality of LEDs 3 (series connection or / and parallel connection) or connecting with the circuit unit 15 on the surface of the substrate body There is.
 実装基板21の基板本体及び配線パターン22を構成する材料として、透光性を有する材料が利用される。これにより、LED3から発せられた光は、LEDランプ100の前方側へ出射されるだけでなく、実装基板21を透過して後方側へも出射させることができる。 A material having translucency is used as a material of the substrate body of the mounting substrate 21 and the wiring pattern 22. Thus, the light emitted from the LED 3 can be emitted not only to the front side of the LED lamp 100 but also to the rear side through the mounting substrate 21.
 実装基板21の基板本体の材料として、例えば、ガラス、アルミナ、サファイア、樹脂等が挙げられ、配線パターン22の材料として、例えばITO等が挙げられる。 Examples of the material of the substrate main body of the mounting substrate 21 include glass, alumina, sapphire, resin and the like, and examples of the material of the wiring pattern 22 include ITO and the like.
 LED3は、ベアチップの状態で実装基板に所定の間隔をおいて複数実装されており、ここでは、実装基板21の長手方向に沿って直線状に2列に配置されている。なお、LED3の個数、配列等は、LEDランプ100に要求される輝度等により適宜決定される。 A plurality of LEDs 3 are mounted on the mounting substrate at predetermined intervals in the state of a bare chip, and here, the LEDs 3 are linearly arranged in two rows along the longitudinal direction of the mounting substrate 21. The number, arrangement, and the like of the LEDs 3 are appropriately determined according to the luminance and the like required for the LED lamp 100.
 封止体23は、LED3への空気、水分の侵入を防止する機能、さらに、ここではLED3からの光の波長を変換する波長変換機能も有している。封止体23は、1列分のLED3を被覆している。 The sealing body 23 also has a function of preventing the entry of air and moisture into the LED 3 and a wavelength conversion function of converting the wavelength of light from the LED 3 here. The sealing body 23 covers one row of LEDs 3.
 封止体23は、主に透光性材料で構成されている。ここでは、封止体23の透光性材料は、例えばシリコーン樹脂を利用することができる。また、例えば、LED3が青色光を発する場合、例えば、青色光を黄色光に変換する蛍光体粒子を波長変換材料として透光性材料を混入することで、LED3から出射された青色光と、蛍光体粒子により波長変換された黄色光とにより混色された白色光がLEDモジュール5(LEDランプ100)から発せられることとなる。 The sealing body 23 is mainly made of a translucent material. Here, as the translucent material of the sealing body 23, for example, a silicone resin can be used. Also, for example, when the LED 3 emits blue light, blue light emitted from the LED 3 and fluorescence are mixed, for example, by mixing a translucent material with phosphor particles that convert blue light into yellow light as a wavelength conversion material. White light mixed with yellow light wavelength-converted by body particles is emitted from the LED module 5 (LED lamp 100).
 実装基板21は、図4(a),(b)に示すように、回路ユニット15からLED3へ給電するためのリード線49,51(図1,2)を挿通させるための貫通孔26を給電端子22a,22bの周面(周辺)に有している。 As shown in FIGS. 4A and 4B, the mounting substrate 21 supplies power to the through holes 26 for inserting the lead wires 49 and 51 (FIGS. 1 and 2) for supplying power from the circuit unit 15 to the LED 3. It has on the surrounding surface (periphery) of terminal 22a, 22b.
 実装基板21(LEDモジュール5)とリード線49,51との接続は、リード線49,51の一端が半田24により配線パターン22の給電端子22a,22bと接続されることにより行われる。なお、リード線49,51の他端は、図2に示すように、回路ユニット15に接続されている。 The connection between the mounting substrate 21 (the LED module 5) and the lead wires 49, 51 is made by connecting one end of each of the lead wires 49, 51 to the feed terminals 22a, 22b of the wiring pattern 22 by the solder 24. The other ends of the lead wires 49 and 51 are connected to the circuit unit 15 as shown in FIG.
 実装基板21は、支持部材17の凸部17a(図2,3)との結合に用いられる貫通孔25を略中央に有している。 The mounting substrate 21 has a through hole 25 used for coupling with the convex portion 17 a (FIGS. 2 and 3) of the support member 17 substantially at the center.
 本実施形態に係るLEDランプ100では、グローブ7内であって、白熱電球の光源(フィラメント)位置に対応した位置(例えば略同じ位置である。)にLEDモジュール5を設けている。これにより、白熱電球を装着した際の配光特性と近い特性を得ることができる。
(2)グローブ
 グローブ7は、図1~3に戻り、白熱電球のバルブと同じようなタイプ、つまりAタイプである。グローブ7は、透光性材料により構成されている。使用可能な透光性材料としては、例えば、ガラス材料や樹脂材料等があり、本実施形態では、ガラス材料が利用されている。
In the LED lamp 100 according to the present embodiment, the LED module 5 is provided in the globe 7 at a position (for example, substantially the same position) corresponding to the light source (filament) position of the incandescent lamp. As a result, it is possible to obtain characteristics similar to the light distribution characteristics when the incandescent lamp is attached.
(2) Glove The globe 7 returns to FIGS. 1 to 3 and is of the same type as the bulb of the incandescent bulb, that is, the A type. The globe 7 is made of a translucent material. As a translucent material which can be used, there exist a glass material, a resin material, etc., for example, and the glass material is utilized in this embodiment.
 グローブ7は、図2に示すように、中空の球状をした球状部7aと、筒状をした筒状部7bとを有している。筒状部7bは球状部7aから離れるに従って縮径し、球状部7aと反対側の端部(グローブ7における後方側の端部)が開口する。
(3)ケース
 ケース9は、図1~3に示すように、白熱電球のバルブの口金側に近い部分と同じような形状をしている。ケース9は、例えば金属材料、樹脂材料等により構成され、ここでは、樹脂材料(例えばポリブチレンテレフタレート(PBT)である。)により構成されている。
As shown in FIG. 2, the glove 7 has a hollow spherical portion 7a and a cylindrical portion 7b. The diameter of the cylindrical portion 7b decreases as it separates from the spherical portion 7a, and the end opposite to the spherical portion 7a (the end on the rear side of the glove 7) opens.
(3) Case As shown in FIGS. 1 to 3, the case 9 has the same shape as the portion close to the base of the bulb of the incandescent lamp. The case 9 is made of, for example, a metal material, a resin material or the like, and is made of a resin material (for example, polybutylene terephthalate (PBT)) in this case.
 ケース9は、内部に回路ユニット15を格納する機能の他、点灯時に回路ユニット15から発生する熱を外部に放出する機能や、ステム13を介して伝達してきた発光時のLEDモジュール5の熱を放出する機能を有している。なお、放熱は、ケース9から外気や口金11への熱伝導、外気による対流、輻射により行われる。 The case 9 has a function of storing the circuit unit 15 inside, a function of releasing heat generated from the circuit unit 15 to the outside at the time of lighting, a heat of the LED module 5 at the time of light emission transmitted via the stem 13 It has a releasing function. Heat dissipation is performed by heat conduction from the case 9 to the outside air and the base 11, convection by the outside air, and radiation.
 ケース9は、図2に示すように、ランプ軸J方向における前方側半分に大径部9aを、後方側半分に小径部9bをそれぞれ有する。また、大径部9aと小径部9bとの間には、図2における左下に示す拡大図のように段差部9cが形成されている。 As shown in FIG. 2, the case 9 has a large diameter portion 9a in the front half in the lamp axis J direction and a small diameter portion 9b in the rear half. Further, between the large diameter portion 9a and the small diameter portion 9b, a stepped portion 9c is formed as shown in the enlarged view on the lower left in FIG.
 ケース9の大径部9aは、図2に示すように、グローブ7とステム13とが一体化してなる容器14の下端部を覆うようにして、前記下端部と接合している。接合は、ここでは、接着剤57を利用して固着されている。接着剤57としては、例えば、樹脂等の有機系接着剤や無機系接着剤を用いることができる。 As shown in FIG. 2, the large diameter portion 9a of the case 9 is joined to the lower end so as to cover the lower end of the container 14 in which the glove 7 and the stem 13 are integrated. The bonding is here fixed using an adhesive 57. As the adhesive 57, for example, an organic adhesive such as a resin or an inorganic adhesive can be used.
 ケース9の大径部9aには、容器14の下端部を安定した状態で保持するために、段差部9eが形成されている。 In the large diameter portion 9 a of the case 9, a stepped portion 9 e is formed in order to hold the lower end portion of the container 14 in a stable state.
 ケース9の小径部9b、すなわち、ケース9におけるグローブ7と反対側に開口端部には、エジソンタイプの口金11が被着されている。図2に示すように、小径部9bの外周は雄ネジとなっており、このネジ部分が口金11内にねじ込まれることにより、口金11とケース9とが結合される。 An Edison-type mouthpiece 11 is attached to the small diameter portion 9 b of the case 9, that is, the opening end of the case 9 opposite to the glove 7. As shown in FIG. 2, the outer periphery of the small diameter portion 9 b is a male screw, and by screwing this screw portion into the mouthpiece 11, the mouthpiece 11 and the case 9 are coupled.
 また、ケース9の小径部9bには、ケース9の中心軸と平行に延伸する溝9dが形成されている。この溝9dは、後述する口金11と回路ユニット15とを接続するリード線33を固定する(リード線33の移動を規制する)ものである。
(4)口金
 口金11は、照明器具のソケットから電力を受けるためのものである。口金11の種類は、特に限定するものではないが、本実施形態においてはエジソンタイプが使用されている。口金11は、図2に示すように、筒状であって周壁がネジ状をしたシェル部27と、シェル部27に絶縁材料29を介して装着されたアイレット部31とからなる。
Further, in the small diameter portion 9 b of the case 9, a groove 9 d extending in parallel with the central axis of the case 9 is formed. The groove 9 d is for fixing a lead 33 connecting the base 11 described later and the circuit unit 15 (for restricting the movement of the lead 33).
(4) Base The base 11 is for receiving power from the socket of the lighting apparatus. The type of the base 11 is not particularly limited, but in the present embodiment, an Edison type is used. As shown in FIG. 2, the base 11 includes a shell 27 having a cylindrical shape and a screw-like peripheral wall, and an eyelet 31 attached to the shell 27 via an insulating material 29.
 口金11と回路ユニット15との電気的接続は、シェル部27はリード線33を介して、アイレット部31はリード線35を介してそれぞれ行われる。なお、リード線33は、ケース9の小径部9bの内側から下端の開口を経由して外側へと引き出されてケース9の溝9dに嵌められた状態で、シェル部27に覆われている。これにより、ケース9の外周とシェル部27の内周とにリード線35が挟まれ、リード線35と口金11とが電気的に接続される。
(5)ステム
 ステム13は、グローブ7と同様に、透光性材料で構成されており(例えばガラス材料である。)、グローブ7とで容器14を構成する。つまり、ステムの外周部分をグローブ7の開口周辺に当接させた状態で、当接部分を加熱して溶融・溶着し、ステム13とグローブ7とを一体化して容器14を構成する。なお、溶融・溶着した部分の符号を「13b」として図示している。
The electrical connection between the base 11 and the circuit unit 15 is made by the shell 27 via the lead wire 33 and the eyelet 31 via the lead wire 35. The lead wire 33 is covered with the shell portion 27 in a state of being drawn out from the inside of the small diameter portion 9 b of the case 9 through the opening at the lower end and fitting into the groove 9 d of the case 9. As a result, the lead wire 35 is sandwiched between the outer periphery of the case 9 and the inner periphery of the shell portion 27, and the lead wire 35 and the base 11 are electrically connected.
(5) Stem As in the case of the globe 7, the stem 13 is made of a translucent material (for example, a glass material), and constitutes the container 14 with the globe 7. That is, in a state where the outer peripheral portion of the stem is in contact with the periphery of the opening of the globe 7, the contact portion is heated, melted and welded, and the stem 13 and the globe 7 are integrated to configure the container 14. In addition, the code | symbol of the fuse | melted and welded part is shown in figure as "13b."
 容器14の内部には、空気よりも高い熱伝導性を有する流体が封入されている。これにより、LED3の点灯時に発生した熱を、LEDモジュール5からグローブ7へ効率良く伝導させることが可能となる。 Inside the container 14, a fluid having a higher thermal conductivity than air is enclosed. Thereby, it becomes possible to efficiently conduct the heat generated at the time of lighting of the LED 3 from the LED module 5 to the globe 7.
 ここでは、流体として、ヘリウム(He)ガスが利用されている。なお、ヘリウムガスを用いる利点としては、不活性であること、安価であること、他部材への腐食性、還元性が極めて小さいこと等が挙げられる。 Here, helium (He) gas is used as the fluid. The advantages of using helium gas include inertness, low cost, corrosiveness to other members, and extremely low reducibility.
 ステム13は、いわゆる、フレアステムであり、図3に示すように、排気管59が気密状に設けられている。排気管59は、容器14内を真空にしたり、ヘリウムを封入したりするのに利用される。 The stem 13 is a so-called flare stem, and as shown in FIG. 3, the exhaust pipe 59 is provided in an airtight manner. The exhaust pipe 59 is used to evacuate the inside of the container 14 or seal helium.
 なお、図3での排気管59は、容器14内のある端部は開口61を有したままであり、ヘリウムガスを封入した後、容器14内を密閉するために、容器14の外側にある端部が焼き切られた(チップオフ封止された)状態を示している。
 また、ステム13には、一対のリード線49,51が貫通する状態で封着されている。これにより、容器14からは一対のリード線49,51と排気管59とが延出することとなり、容器14が気密状に保持される。
(6)回路ユニット
 回路ユニット15は、口金11を介して受電した商用電力をLED3点灯用電力に変換する。回路ユニット15は、図2に示すように、回路基板41と、回路基板41に実装された各種の電子部品43,45とから構成されている。
Note that the exhaust pipe 59 in FIG. 3 has an opening 61 at one end in the container 14 and is located outside the container 14 to seal the inside of the container 14 after sealing the helium gas. The end is shown in a burnt-out (chip-off sealed) state.
Further, the stem 13 is sealed in a state in which a pair of lead wires 49 and 51 pass through. As a result, the lead wires 49, 51 and the exhaust pipe 59 extend from the container 14 and the container 14 is held airtight.
(6) Circuit Unit The circuit unit 15 converts commercial power received via the base 11 into LED 3 lighting power. The circuit unit 15 is comprised from the circuit board 41 and the various electronic components 43 and 45 mounted in the circuit board 41, as shown in FIG.
 回路ユニット15の回路構成としては、主に、商用電力(交流)を整流する整流回路と、整流された直流電力を平滑化する平滑回路が含まれる。本実施形態においては、整流回路はダイオードブリッジ45により、平滑回路はコンデンサ43により構成されている。ダイオードブリッジ45は回路基板41のグローブ7側の主面に実装されている。コンデンサ43は、回路基板41の口金11側の主面に実装され、口金11の内部に位置する。 The circuit configuration of the circuit unit 15 mainly includes a rectifier circuit that rectifies commercial power (AC) and a smoothing circuit that smoothes the rectified DC power. In the present embodiment, the rectifier circuit is constituted by the diode bridge 45, and the smoothing circuit is constituted by the capacitor 43. The diode bridge 45 is mounted on the main surface of the circuit board 41 on the globe 7 side. The capacitor 43 is mounted on the main surface of the circuit board 41 on the base 11 side, and is located inside the base 11.
 回路基板41は、ケース9の内部に係止構造を利用して固定される。具体的には、図2における左下の拡大図に示すように、ケース9の内部の段差部9cに回路基板41の裏面の周縁部分が当接し、大径部9aの内面の係止部47により回路基板41の表面が係止されている。 The circuit board 41 is fixed to the inside of the case 9 using a locking structure. Specifically, as shown in the enlarged view on the lower left in FIG. 2, the peripheral portion of the back surface of the circuit board 41 abuts against the step 9c inside the case 9, and the locking portion 47 on the inner surface of the large diameter portion 9a. The surface of the circuit board 41 is locked.
 係止部47は、周方向に間隔(例えば、等間隔である。)をおいて複数個(例えば4個である。)形成されている。係止部47は、段差部9cに近づくに従ってケース9の中心軸側に張り出す形状をし、係止部47と段差部9cとの距離は、回路基板41の厚みに相当する。 A plurality of (for example, four) locking portions 47 are formed at intervals (for example, at equal intervals) in the circumferential direction. The locking portion 47 protrudes toward the central axis of the case 9 as it gets closer to the stepped portion 9 c, and the distance between the locking portion 47 and the stepped portion 9 c corresponds to the thickness of the circuit board 41.
 なお、回路基板41(回路ユニット15)を装着する際には、回路ユニット15をケース9の大径部9a側から挿入し、回路基板41の下面(口金11側の面)が係止部47に到達すると、回路基板41をさらに押し込んで係止部47を通過させる。これにより、回路基板41が係止部47により係止され、回路ユニット15がケース9に装着される。
(7)支持部材
 支持部材17は、図1~3に示すように、容器14内においてLEDモジュール5を支持する。支持部材17は、LEDモジュール5の支持具としての機能、LEDランプ100の発光時には放熱部材としての機能を有する。
When the circuit board 41 (circuit unit 15) is mounted, the circuit unit 15 is inserted from the large diameter portion 9a side of the case 9, and the lower surface (the surface on the base 11 side) of the circuit substrate 41 is the locking portion 47. When the circuit board 41 is reached, the circuit board 41 is further pushed to pass the locking portion 47. Thus, the circuit board 41 is locked by the locking portion 47, and the circuit unit 15 is mounted on the case 9.
(7) Support Member The support member 17 supports the LED module 5 in the container 14 as shown in FIGS. The support member 17 has a function as a support for the LED module 5 and a function as a heat dissipation member when the LED lamp 100 emits light.
 支持部材17は、例えば棒状をし、上端部はLEDモジュール5に結合され、下端部は接着剤19によりステム13に取着されている。 The support member 17 has, for example, a rod-like shape, and the upper end is coupled to the LED module 5, and the lower end is attached to the stem 13 by an adhesive 19.
 支持部材17の中間領域は、断面が円形状をした円柱部17bとなっている。支持部材17の上側領域は、矩形状の実装基板21の短手方向に偏平な(短手方向の厚みが薄い)形状をした偏平部17cとなっている。 An intermediate region of the support member 17 is a cylindrical portion 17 b having a circular cross section. The upper region of the support member 17 is a flat portion 17 c having a flat (thin in the width direction) shape in the width direction of the rectangular mounting substrate 21.
 これにより、支持部材17の偏平部17cにおいては、LEDモジュール5を安定に保持しつつ、円柱部17bにおいては、LED3から後方へと発せられた光をなるべく遮らないような構成としている。 As a result, in the flat portion 17c of the support member 17, the LED module 5 is held stably, and in the cylindrical portion 17b, the light emitted backward from the LED 3 is not blocked as much as possible.
 支持部材17は、例えば、金属材料や樹脂材料等で構成される。支持部材17を、例えばアルミニウムで構成すると、LEDモジュール5からの熱も伝達でき、しかも、LEDランプ100の軽量化も図ることができる。 The support member 17 is made of, for example, a metal material or a resin material. When the support member 17 is made of, for example, aluminum, the heat from the LED module 5 can also be transmitted, and the weight reduction of the LED lamp 100 can be achieved.
 接着剤19としては、熱伝導性の高いものが望ましい。このようにすることで、LED3で発生した熱を、LEDモジュール5の実装基板21、支持部材17を介して、ステム13へ伝導するのを促進することが可能である。ステム13へ伝導した熱はグローブ7へ伝わり、グローブ7からLEDランプ100の外部へ放出される。熱伝導性の高い接着剤としては、例えば、セラミックス、セメント等の無機材料系の接着剤、放熱性シリコーン等の有機材料系の接着剤が挙げられる。 The adhesive 19 desirably has high thermal conductivity. By doing so, it is possible to promote the conduction of the heat generated in the LED 3 to the stem 13 via the mounting substrate 21 of the LED module 5 and the support member 17. The heat conducted to the stem 13 is conducted to the globe 7 and is released from the globe 7 to the outside of the LED lamp 100. Examples of the adhesive having high thermal conductivity include adhesives of inorganic materials such as ceramics and cement, and adhesives of organic materials such as heat dissipating silicone.
 支持部材17とLEDモジュール5との結合は係合構造や接着剤を利用している。具体的には、支持部材17の上面には凸部17aが形成されており、この凸部17aがLEDモジュール5の実装基板21の略中央の貫通孔25(図3)に挿入(嵌合)された状態で、凸部17aと貫通孔25との間に接着剤を充填することで、支持部材17とLEDモジュール5とが結合される。 The connection between the support member 17 and the LED module 5 utilizes an engagement structure or an adhesive. Specifically, a convex portion 17 a is formed on the upper surface of the support member 17, and the convex portion 17 a is inserted (fitted) into the through hole 25 (FIG. 3) substantially at the center of the mounting substrate 21 of the LED module 5. By filling the space between the convex portion 17 a and the through hole 25 with the adhesive in the above state, the support member 17 and the LED module 5 are coupled.
 放熱部材としての機能は、LED3の点灯時に発生した熱であって、支持部材17に伝わってきた熱をグローブ7内に含まれるヘリウムガスや空気に伝導させることで達成される。 The function as a heat dissipating member is achieved by conducting the heat transferred to the support member 17 to the helium gas or air contained in the glove 7, which is the heat generated when the LED 3 is lit.
 なお、支持部材17とステム13との接合に接着剤19を用いることにより、支持部材17の下端面およびステム13のステムヘッド13b(図2,3)の両方が平坦な面でない場合の固着にも対応することができる。
3.容器の容積について
 図5は、容器の容積と、点灯時のLEDの温度(ジャンクション温度である。)との関係を示す解析結果である。図6は、解析に用いた容器を説明する図であり、図7は、解析に用いた支持部材を説明する図である。図8は、点灯時のランプの温度分布の解析結果を示す図である。なお、図8は、最高温度と室温との温度差を10段階で示し、最高温度の領域が小さいため図中では9段階が示されている。
Incidentally, by using the adhesive 19 for joining the support member 17 and the stem 13, for fixing when the lower end surface of the support member 17 and the stem head 13 b (FIGS. 2 and 3) of the stem 13 are not flat. Can also respond.
3. Regarding Volume of Container FIG. 5 is an analysis result showing the relationship between the volume of the container and the temperature of the LED at the time of lighting (which is the junction temperature). FIG. 6 is a view for explaining a container used for analysis, and FIG. 7 is a view for explaining a support member used for analysis. FIG. 8 is a diagram showing an analysis result of the temperature distribution of the lamp at the time of lighting. Note that FIG. 8 shows the temperature difference between the maximum temperature and the room temperature in ten steps, and since the region of the maximum temperature is small, nine steps are shown in the figure.
 解析試験に用いた容器の大きさは、104[cm3]、181[cm3]、252[cm3]、335[cm3]、426[cm3]の5種類である。なお、ここでの容積は、グローブとステムとから構成される容器の容積からLEDモジュールと支持部材の各体積を引いたものである。 The sizes of the containers used for the analysis test are five types of 104 [cm 3 ], 181 [cm 3 ], 252 [cm 3 ], 335 [cm 3 ], and 426 [cm 3 ]. Here, the volume is obtained by subtracting the volumes of the LED module and the support member from the volume of the container constituted by the globe and the stem.
 容器の形状は、図6に示すように、容積が104[cm3]の容器151が白熱電球の形状に近いAタイプであり、容積が426[cm3]の容器153がボール形状に近いGタイプであり、容積が増加するに従って、容器の形状がAタイプからGタイプに近づいていく。 As for the shape of the container, as shown in FIG. 6, the container 151 having a volume of 104 [cm 3 ] is an A type close to the shape of an incandescent lamp, and the container 153 having a volume of 426 [cm 3 ] close to a ball As the volume increases, the shape of the container approaches from the A type to the G type.
 各容器を構成するステム(蓋部材)155は、図6に示すように、容器の容積に関係なく、円板状をした、いわゆるボタンステムである。なお、ステム155の大きさはすべての容器で同じである。 The stem (lid member) 155 constituting each container is a so-called button stem having a disk shape regardless of the volume of the container as shown in FIG. The size of the stem 155 is the same in all the containers.
 容器(151,153等)は、グローブの大きさ・形状が異なるが、図6に示すように、グローブ157,159の開口を塞ぐステム155の大きさ・形状は同じであり、容積が大きくなるに従って、グローブ(157,159)の形状がAタイプの茄子形状からGタイプの球形状に近づいている。 The containers (151, 153, etc.) differ in the size and shape of the glove, but as shown in FIG. 6, the size and shape of the stem 155 blocking the opening of the gloves 157, 159 are the same, and the volume increases According to, the shape of the glove (157, 159) approaches the spherical shape of G-type from the A-type ladder shape.
 また、解析に用いた支持部材の形状は、図7に示すように、Xタイプ(163)、Yタイプ(165)、Zタイプ(167)の3種類がある。 Further, as shown in FIG. 7, there are three types of shapes of the support member used for analysis: X type (163), Y type (165), and Z type (167).
 Xタイプの支持部材163は円柱形状であってステム155に近い側の大径部分163aとLEDモジュール169に近い側の小径部分163bとを結合したような段付き形状をしている。Yタイプの支持部材165はステム155から離れるに従って外径が小さくなる先細り状の円柱形状をしている。Zタイプの支持部材167は円柱形状あってステム155に近い側の円柱部分167aとLEDモジュール169に近い側の円錐台部分167bとを結合したような形状をしている。 The X-type support member 163 has a cylindrical shape, and has a stepped shape as if a large diameter portion 163a near the stem 155 and a small diameter portion 163b near the LED module 169 are combined. The Y-type support member 165 has a tapered cylindrical shape in which the outer diameter decreases with distance from the stem 155. The Z-type support member 167 has a cylindrical shape and is shaped like a combination of a cylindrical portion 167 a closer to the stem 155 and a truncated cone portion 167 b closer to the LED module 169.
 解析に用いた支持部材の表面積(ヘリウムと接する面積である。)は、Xタイプ(163)が16.7[cm2]、Yタイプ(165)が18.5[cm2]、Zタイプ(167)24.1[cm2]の3種類である。 The surface area (area in contact with helium) of the support member used for the analysis is 16.7 cm 2 for the X type (163), 18.5 cm 2 for the Y type (165), and Z type ( 167) There are three types of 24.1 [cm 2 ].
 各タイプの支持部材163,165,167は、下面(ステム側である。)の直径D1が等しく、上面(ステムと反対側である。)の直径D2も等しくなっている。つまり、すべてのタイプの支持部材163,165,167の下面及び上面の面積が等しくなっている。これは、LEDモジュール169から支持部材163,165,167に伝わる熱量と、支持部材163,165,167からステム155(容器)に伝わる熱量とを各タイプとも同じにするためである。なお、高さH1も等しくなっている。 In each type of support member 163, 165, 167, the diameter D1 of the lower surface (the stem side) is equal, and the diameter D2 of the upper surface (the opposite side to the stem) is also equal. That is, the areas of the lower and upper surfaces of all types of support members 163, 165 and 167 are equal. This is to make the amount of heat transferred from the LED module 169 to the support members 163, 165 and 167 equal to the amount of heat transferred from the support members 163, 165 and 167 to the stem 155 (container) in each type. The height H1 is also equal.
 解析に用いたLEDモジュール169はすべて同じものであり、また、図6に示すように、容器(151,153等)と接合されるケース171、口金173がすべて同じもので解析されている。 The LED modules 169 used for the analysis are all the same, and as shown in FIG. 6, the case 171 and the cap 173 joined to the container (151, 153, etc.) are all analyzed with the same thing.
 LEDのジャンクション温度は、各タイプの支持部材163,165,167において容器の容積が大きくなるに従って下降し、各タイプとも容器の容積が252[cm3]以上になるとほとんど低下しなくなる。つまり、容積が252[cm3]未満、例えば、250[cm3]以下であれば、LEDのジャンクション温度を有効に低下させることができる。 The junction temperature of the LED drops as the volume of the container increases in each type of support member 163, 165, 167, and hardly decreases when the volume of the container exceeds 252 cm 3 in each type. That is, if the volume is less than 252 cm 3 , for example, 250 cm 3 or less, the junction temperature of the LED can be effectively reduced.
 この理由は、LEDのジャンクション温度の降下に寄与するのは、LEDモジュール5と支持部材17の近傍にある気体(ヘリウムガスや空気)のみであり、ある一定の容積以上の容器を設けても、LEDモジュール5から離れた位置にある気体は、ジャンクション温度の降下にほとんど寄与しないためであると考えられる。 The reason for this is that only the gas (helium gas or air) in the vicinity of the LED module 5 and the support member 17 contributes to lowering the junction temperature of the LED, and even if a container having a certain volume or more is provided, It is considered that the gas located away from the LED module 5 hardly contributes to the drop of the junction temperature.
 また、LEDのジャンクション温度は、支持部材163,165,167が、Xタイプ、Yタイプ、Zタイプの順で低くなっている。この順は、支持部材163,165,167の表面積が大きくなる順である。つまり、支持部材の表面積が大きくなるに従って、LEDのジャンクション温度が低くなることが分かる。この理由は、支持部材からヘリウムガスへの熱伝導は、支持部材の表面から周囲のヘリウムガスへと行われるためである。 Further, the junction temperatures of the LEDs are lower in the order of the X type, the Y type, and the Z type in the support members 163, 165, and 167. This order is the order in which the surface area of the support members 163, 165 and 167 is increased. That is, it can be seen that the junction temperature of the LED decreases as the surface area of the support member increases. The reason is that the heat transfer from the support member to the helium gas is performed from the surface of the support member to the surrounding helium gas.
 また、容器内のヘリウムガスの温度分布は、図8に示すように、熱源であるLEDモジュール169の周辺のA領域が最も高く、次にLEDモジュール169と支持部材163の小径部分163を含む略全体であるB領域が高く、当該領域Bを離れるに従ってヘリウムガスの温度が低くなっている。領域Bは、LEDモジュール169と支持部材163の上半分を含んでいたが、領域Cは支持部材163の全体を含む。 Further, as shown in FIG. 8, the temperature distribution of the helium gas in the container is the highest in the A region around the LED module 169 which is a heat source, and then the LED module 169 and the small diameter portion 163 of the support member 163 The region B which is the whole is high, and the temperature of the helium gas is lowered as the region B is left. Region B included the LED module 169 and the upper half of the support member 163 while region C included the entire support member 163.
 つまり、LEDモジュール169で発生した熱は、当該LEDモジュール169の周辺でヘリウムガスへと伝熱してA領域の温度が高くなり、支持部材163の略全体に伝熱する。このため、支持部材163の上部を含むB領域での温度が高く、また、支持部材163全体を含むC領域でも温度が高くなる。 That is, the heat generated in the LED module 169 is transferred to the helium gas around the LED module 169 to increase the temperature of the A region, and is transferred to substantially the entire support member 163. Therefore, the temperature in the B region including the upper portion of the support member 163 is high, and the temperature also in the C region including the entire support member 163 is high.
 支持部材169からヘリウムガスへの熱伝導は、支持部材169の表面全体から行われ、D領域、E領域の温度も高くなっているが、H領域やI領域ではLEDモジュールの熱はほとんど伝達していない。特に、LEDモジュール169に対して、上方(支持部材と反対側である。)に離れた位置では、ランプ周囲の雰囲気温度と差が少なく、LEDモジュールの熱が伝導していないことが分かる。 The heat transfer from the support member 169 to the helium gas is performed from the entire surface of the support member 169, and the temperatures in the D and E regions are also high, but most of the heat of the LED module is transferred in the H and I regions. Not. In particular, at the position away from the LED module 169 at the upper side (opposite the support member), the difference with the ambient temperature around the lamp is small, and it can be seen that the heat of the LED module is not conducted.
 上記温度分布から、LEDモジュール169及び支持部材163の外表面から10[cm]以内(この領域がA領域からE領域である。)で、ヘリウムガスへの熱伝導が盛んに行われており、LEDモジュール169と容器との間隔、支持部材163と容器との間隔が少なくとも10[mm]以上あるのが好ましい。 From the above temperature distribution, heat conduction to the helium gas is actively performed within 10 cm from this outer surface of the LED module 169 and the support member 163 (this area is the A area to the E area), Preferably, the distance between the LED module 169 and the container, and the distance between the support member 163 and the container are at least 10 mm or more.
 さらに、LEDモジュール169と支持部材163のうち、最も温度の高い位置を中心とする半径(図中の「K」である。)40[mm]の外側では、LEDモジュール169からの熱がほとんど伝わっていない。このため、LEDモジュール169と支持部材163のうち、最も温度の高い位置を中心とする半径40[mm]の内側にヘリウムガスが存在することが好ましい。 Furthermore, the heat from the LED module 169 is mostly transmitted outside the radius ("K" in the figure) of the LED module 169 and the support member 163 centered on the position with the highest temperature ("K" in the figure). Not. For this reason, it is preferable that helium gas be present inside the radius 40 [mm] centering on the position of the highest temperature among the LED module 169 and the support member 163.
 ≪第2の実施形態≫
 図9は、第2の実施形態に係るLEDランプ200の構造を示す斜視図である。図10は、図9に示すLEDランプ200のD-D’線矢視断面図である。なお、図9,10において、第1の実施形態と同様の構成には同じ符号を付し、説明を省略する。
Second Embodiment
FIG. 9 is a perspective view showing the structure of the LED lamp 200 according to the second embodiment. FIG. 10 is a cross-sectional view taken along line DD ′ of the LED lamp 200 shown in FIG. In FIGS. 9 and 10, the same components as those of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 本実施形態におけるLEDランプ200において、第1の実施形態に係るLEDランプ100と相違する点は、LEDモジュール81、支持部材83、ステム85の構成である。なお、容器86は、グローブ7とステム85とにより構成され、容器86の容積が250[cm3]以下である。 The LED lamp 200 according to this embodiment differs from the LED lamp 100 according to the first embodiment in the configuration of the LED module 81, the support member 83, and the stem 85. In addition, the container 86 is comprised by the globe 7 and the stem 85, and the volume of the container 86 is 250 [cm < 3 >] or less.
 具体的に説明すると、図10に示すように、支持部材83を中空の部材とし、支持部材83の内部にリード線49,51を挿通させる構成とした。支持部材83は、図9、10に示すように、第1の実施形態における支持部材17の外観形状をそのままに、中空構造としたものである。したがって、支持部材83は、第1の実施形態における支持部材17と同様に円柱部83bと偏平部83cを有する。 Specifically, as shown in FIG. 10, the support member 83 is a hollow member, and the lead wires 49 and 51 are inserted into the support member 83. As shown in FIGS. 9 and 10, the support member 83 has a hollow structure in which the external shape of the support member 17 in the first embodiment is left unchanged. Therefore, the support member 83 has a cylindrical portion 83 b and a flat portion 83 c as the support member 17 in the first embodiment.
 なお、支持部材83の内部にリード線49,51を挿通させるのに伴って、ステム85におけるリード線49,51が挿通する位置がランプ軸J側に寄っている。また、リード線49,51が支持部材83の内部に収容されるのに伴って、リード線49,51とLEDモジュール81の実装基板91とを接続する半田87の位置がランプ軸J側に寄った構成となっている。 As the lead wires 49 and 51 are inserted into the support member 83, the positions of the stems 85 through which the lead wires 49 and 51 are inserted are closer to the lamp axis J side. Further, as the lead wires 49 and 51 are accommodated inside the support member 83, the position of the solder 87 connecting the lead wires 49 and 51 and the mounting substrate 91 of the LED module 81 is closer to the lamp axis J side. The structure is
 図10に示すように、ステム85とグローブ7は一体的に成形されているため、ステム85とグローブ7との界面は気密状に接合(封止)されている。 As shown in FIG. 10, since the stem 85 and the globe 7 are integrally formed, the interface between the stem 85 and the globe 7 is joined (sealed) in an airtight manner.
 支持部材83とLEDモジュール81との固着には、接着剤89が用いられている。接着剤89としては、例えば、上記の接着剤19で挙げたものを用いることができる。 An adhesive 89 is used to fix the support member 83 and the LED module 81. As the adhesive 89, for example, those mentioned for the above-mentioned adhesive 19 can be used.
 本実施形態においては、リード線49,51が支持部材83の内部に収容されている。したがって、第1の実施形態と比較して、LEDモジュール81から発せられた光のうち、後方へ発せられた光をより遮らないような構成となっている。 In the present embodiment, the lead wires 49 and 51 are accommodated inside the support member 83. Therefore, compared with the first embodiment, of the light emitted from the LED module 81, the light emitted toward the rear is not blocked more.
 ≪第3の実施形態≫
 図11は、第3の実施形態に係るLEDランプ300の構造を示す斜視図である。図12は、図11に示すLEDランプ300の断面図である。なお、図11、12において、第1~第2の実施形態と同様の構成には同じ符号を付し、説明を省略する。
Third Embodiment
FIG. 11 is a perspective view showing the structure of the LED lamp 300 according to the third embodiment. FIG. 12 is a cross-sectional view of the LED lamp 300 shown in FIG. In FIGS. 11 and 12, the same components as those in the first and second embodiments are designated by the same reference numerals, and the description thereof will be omitted.
 本実施形態におけるLEDランプ300において、第1の実施形態に係るLEDランプ100と相違する点は、ステム(本発明の「蓋部材」である。)111の構成である。なお、容器112は、グローブ7とステム111とにより構成され、容器112の容積が250[cm3]以下である。 The LED lamp 300 according to the present embodiment differs from the LED lamp 100 according to the first embodiment in the configuration of a stem (the “lid member” of the present invention) 111. In addition, the container 112 is comprised by the globe 7 and the stem 111, and the volume of the container 112 is 250 [cm < 3 >] or less.
 具体的には、ステム111はドーム形状をしており、ランプ軸Jと交差する付近に凹部111aを有する形状である。この凹部111aにおいて、支持部材17とステム111とが接着剤19により固着される。 Specifically, the stem 111 has a dome shape, and has a recess 111 a in the vicinity of the intersection with the lamp axis J. The support member 17 and the stem 111 are fixed by the adhesive 19 in the recess 111 a.
 このような構成にすることで、第1の実施形態のように凸状のステムヘッド13bに支持部材17が固着されている場合と比較して、安定にLEDモジュール5をグローブ7の内部に支持することが可能である。 With such a configuration, the LED module 5 is stably supported inside the globe 7 as compared to the case where the support member 17 is fixed to the convex stem head 13 b as in the first embodiment. It is possible.
 なお、図11,12に示すように、ステム111とグローブ7は一体的に成形されているため、ステム111とグローブ7との界面は、気密状に接合されている。
 ≪第4の実施形態≫
 実施形態等では、特に、LEDランプについて説明したが、本発明は、上記LEDランプを利用した照明装置にも適用できる。
Note that, as shown in FIGS. 11 and 12, the stem 111 and the globe 7 are integrally formed, so the interface between the stem 111 and the globe 7 is joined in an airtight manner.
Fourth Embodiment
In the embodiments and the like, in particular, the LED lamp has been described, but the present invention is also applicable to a lighting device using the LED lamp.
 第4の実施形態では、第1の実施形態に係るLEDランプ100を照明器具(ダウンライトタイプである。)に装着する場合について説明する。 In the fourth embodiment, a case where the LED lamp 100 according to the first embodiment is attached to a luminaire (which is a downlight type) will be described.
 図14は、第4の実施形態に係る照明装置の概略図である。 FIG. 14 is a schematic view of a lighting device according to a fourth embodiment.
 照明装置401は、例えば、天井402に装着されて使用される。 The lighting device 401 is attached to, for example, the ceiling 402 and used.
 照明装置401は、図14に示すように、LEDランプ(例えば、第1の実施形態で説明したLEDランプ1である。)100と、LEDランプ100を装着して点灯・消灯をさせる照明器具403とを備える。 As illustrated in FIG. 14, the lighting device 401 is an LED lamp (for example, the LED lamp 1 described in the first embodiment) 100 and a lighting fixture 403 for mounting the LED lamp 100 and lighting / extinguishing. And
 照明器具403は、例えば、天井402に取着される器具本体405と、器具本体405に装着され且つLEDランプ100を覆うカバー407とを備える。カバー407は、ここでは開口型であり、LEDランプ100から出射された光を所定方向(ここでは下方である。)に反射させる反射膜411を内面に有している。 The lighting fixture 403 includes, for example, a fixture body 405 attached to the ceiling 402, and a cover 407 attached to the fixture body 405 and covering the LED lamp 100. The cover 407 is an aperture type here, and has a reflective film 411 on its inner surface that reflects the light emitted from the LED lamp 100 in a predetermined direction (here, the lower side).
 器具本体405には、LEDランプ100の口金11が取着(螺着)されるソケット409を備え、このソケット409を介してLEDランプ100に給電される。 The fixture body 405 includes a socket 409 to which the base 11 of the LED lamp 100 is attached (screwed), and power is supplied to the LED lamp 100 via the socket 409.
 本実施形態では、照明器具403に装着されるLEDランプ100のLED3(LEDモジュール5)の配置位置が白熱電球のフィラメントの配置位置に近いため、LEDランプ100における発光中心と、白熱電球における発光中心とが近いものとなる。 In this embodiment, since the arrangement position of the LED 3 (LED module 5) of the LED lamp 100 mounted on the lighting fixture 403 is close to the arrangement position of the filament of the incandescent lamp, the emission center of the LED lamp 100 and the emission center of the incandescent lamp It will be close.
 このため、白熱電球が装着されていた照明器具(403)にLEDランプ100を装着しても、ランプとしての発光中心の位置が似ているため、白熱電球に似た配光特性が得られる。 For this reason, even if the LED lamp 100 is attached to the lighting fixture (403) to which the incandescent lamp has been attached, the position of the light emission center as the lamp is similar, so that light distribution characteristics similar to the incandescent lamp can be obtained.
 なお、ここでの照明器具は、一例であり、例えば、開口型のカバー407を有さずに、閉塞型のカバーを有するものであっても良いし、LEDランプが横を向くような姿勢(ランプの中心軸が水平となるような姿勢)や傾斜する姿勢(ランプの中心軸が照明器具の中心軸に対して傾斜する姿勢)で点灯させるような照明器具でも良い。 Note that the lighting fixture here is an example, and for example, the lighting fixture may have a closed cover without the open cover 407, or the posture in which the LED lamp faces sideways ( The lighting apparatus may be lighted in such a manner that the central axis of the lamp is horizontal or inclined (the central axis of the lamp is inclined with respect to the central axis of the lighting apparatus).
 また、照明装置は、天井や壁に接触する状態で照明器具が装着される直付タイプであったが、天井や壁に埋め込まれた状態で照明器具が装着される埋込タイプであっても良いし、照明器具の電気ケーブルにより天井から吊り下げられる吊下タイプ等であっても良い。 In addition, the lighting device is a direct attachment type in which the lighting fixture is mounted in contact with the ceiling or wall, but it is an embedded type in which the lighting fixture is mounted in a state of being embedded in the ceiling or wall It may be a hanging type that can be hung from the ceiling by an electric cable of a lighting fixture.
 さらに、ここでは、照明器具は、装着される1つのLEDランプを点灯させているが、複数、例えば、3個のLEDランプが装着されるようにものであっても良い。 Furthermore, although the lighting fixture here lights one attached LED lamp, a plurality of, for example, three LED lamps may be attached.
 ≪変形例≫
 以上、本発明の構成を、第1~第4の実施形態に基づいて説明したが、本発明は上記実施形態に限られない。例えば、第1~第4の実施形態に係るLEDランプや照明装置の部分的な構成および下記の変形例に係る構成を、適宜組み合わせてなるLEDランプであっても良い。
«Modification»
The configuration of the present invention has been described above based on the first to fourth embodiments, but the present invention is not limited to the above embodiments. For example, the LED lamp according to the first to fourth embodiments and the partial configuration of the illumination device and the configuration according to the following modification may be combined as appropriate.
 また、上記実施形態に記載した材料、数値等は好ましいものを例示しているだけであり、それに限定されることはない。さらに、本発明の技術的思想の範囲を逸脱しない範囲で、LEDランプや照明装置の構成に適宜変更を加えることは可能である。
1.容器
 実施形態では、容器14,84,112をグローブ7と蓋部材(ステム)13,83,111とで構成し、グローブと蓋部材とをガラス材料で構成していたが、容器内の気密性を保持することができれば、他の材料を用いても良い。
In addition, the materials, numerical values, and the like described in the above-described embodiment only exemplify preferable ones, and are not limited thereto. Furthermore, it is possible to appropriately change the configuration of the LED lamp and the lighting device without departing from the scope of the technical idea of the present invention.
1. Container In the embodiment, the container 14, 84, 112 is constituted by the glove 7 and the lid member (stem) 13, 83, 111, and the glove and the lid member are constituted by the glass material. Other materials may be used as long as they can hold.
 他の材料としては、樹脂材料がある。この場合、例えば、熱可塑性材料を用いると、グローブとステムとの接合部分を加熱溶融させることで実施できるし、熱硬化性樹脂を用いると、接着剤を利用することで実施できる。さらに、ガスバリアー用の樹脂を用いると、さらに気密性を高めることができる。
(1)グローブ
 実施形態では、グローブ7(容器14,84,112)をAタイプの形状としたが、他のタイプ、例えばGタイプ、Rタイプ等の形状であっても良いし、電球等の形状と全く異なるような形状であっても良い。
Another material is a resin material. In this case, for example, when a thermoplastic material is used, it can be carried out by heating and melting the joint portion between the glove and the stem, and when a thermosetting resin is used, it can be carried out by using an adhesive. Further, the gas tightness can be further enhanced by using a gas barrier resin.
(1) Glove In the embodiment, the globe 7 ( containers 14, 84, 112) has an A-type shape, but may have another type, for example, a G-type or R-type, or a light bulb etc. The shape may be completely different from the shape.
 実施形態では、グローブの内面について特に説明しなかったが、例えば、LEDモジュール5から発せられた光を拡散させる拡散処理(例えば、シリカや白色顔料等による処理)が施されていても良い。また、グローブは透光性材料により構成されていれば良く、例えば、透明・不透明は特に関係ない。 In the embodiment, the inner surface of the glove is not particularly described. However, for example, a diffusion process (for example, a process with silica, a white pigment, or the like) may be performed to diffuse the light emitted from the LED module 5. Also, the glove may be made of a translucent material, and, for example, transparency and opacity are not particularly relevant.
 実施形態では、グローブ7は一体であった(1つのものとして製造されている)が、例えば、複数の部材を組み合わせた(接合させた)ものであっても良い。
(2)蓋部材
 実施形態では、蓋部材(ステム)13,83,111をフレアタイプとしていたが、例えば、円盤状をしたボタンタイプ等の他のタイプであっても良い。また、ステムにおける容器内に位置する面に対して、LEDモジュールからの光をグローブ先端側(開口とは反対側である。)に反射させる反射処理(例えば、反射膜等の塗布による処理)等が施されていても良い。
(3)グローブと蓋部材との接合
 実施形態では、グローブと蓋部材とがガラス材料で構成され、両者における接合部分を加熱・溶融させて接合している。この場合、接合方法は、いわゆるドロップシール方式でも良く、いわゆるバットシール方式でも良い。
2.流体
 実施形態では、容器14内に流体としてヘリウムガスが封入されていたが、空気よりも熱伝導率が高い他の種類のガス(気体)を封入しても良い。他のガスとしては水素、窒素、ネオン等がある。
In the embodiment, the glove 7 is integral (made as one piece), but may be, for example, a combination (joined) of a plurality of members.
(2) Lid member In the embodiment, the lid members (stems) 13, 83, 111 are flared, but may be other types such as a disk-shaped button type. Also, a reflection process (for example, a process by application of a reflective film) that reflects light from the LED module to the globe tip side (the opposite side to the opening) with respect to the surface of the stem located inside the container May be applied.
(3) Bonding of Glove and Lid Member In the embodiment, the glove and the lid member are made of a glass material, and the bonding portions of the both are heated and melted for bonding. In this case, the bonding method may be a so-called drop seal method or a so-called butt seal method.
2. In the fluid embodiment, helium gas is sealed as a fluid in the container 14, but other types of gas (gas) having a thermal conductivity higher than that of air may be sealed. Other gases include hydrogen, nitrogen, neon and the like.
 また、流体として、ガス(気体)以外に液体を利用することもできる。空気よりも熱伝導率が高い液体としては、シリコーンオイル、水等である。なお、水素ガスを用いる場合には、バルブ内に酸素が含まれないようにする必要がある。また、水を使用する場合には、錆による劣化を防止するため、リード線49,51を樹脂等でコーティングしておく必要がある。
3.LEDモジュール
(1)発光素子
 実施形態では、発光素子はLED3であったが、例えば、LD(レーザダイオード)であっても良く、EL素子(エレクトリックルミネッセンス素子)であっても良い。
In addition to the gas, a liquid can also be used as the fluid. Examples of the liquid having a thermal conductivity higher than that of air include silicone oil and water. When using hydrogen gas, it is necessary to prevent oxygen from being contained in the valve. Moreover, when using water, in order to prevent the deterioration by rust, it is necessary to coat lead wire 49, 51 with resin etc.
3. LED Module (1) Light-Emitting Element In the embodiment, the light-emitting element is the LED 3. However, for example, it may be an LD (laser diode) or an EL element (electric luminescence element).
 また、LED3はベアチップの状態で実装基板21に実装されていたが、LEDは例えば、表面実装タイプ(いわゆる、SMDである。)や砲弾タイプで実装基板に実装されても良い。さらに、複数のLEDは、チップタイプと表面実装タイプとの混合であっても良い。
(2)実装基板
 実施形態での実装基板21は平面視において矩形状をしている。しかしながら、実装基板は、他の形状を例えば、正方形状、5角形等の多角形(正多角形状を含む。)、楕円形状、円形状、環状等であっても良い。
The LED 3 is mounted on the mounting substrate 21 in a bare chip state, but the LED may be mounted on the mounting substrate in a surface mounting type (so-called SMD) or a shell type, for example. Furthermore, the plurality of LEDs may be a mixture of chip type and surface mount type.
(2) Mounting Board The mounting board 21 in the embodiment has a rectangular shape in plan view. However, the mounting substrate may have another shape, for example, a polygon such as a square or a pentagon (including a regular polygon), an oval, a circle, a ring, or the like.
 また、実装基板数も1個に限定するものでなく、2以上の複数個であっても良い。さらに、実施形態では、実装基板21の表面にLED3を実装していたが、裏面にもLEDを実装するようにしても良い。
(3)封止体
 実施形態では、封止体23は2列状に配されたLED3を列単位で被覆していたが、2列分をまとめて被覆しても良いし、複数の一定数のLED群に対して1つの封止体で被覆しても良いし、すべてのLEDに対して1つの封止体で被覆しても良い。
(4)LEDの配置
 実施形態では、複数のLED3は2列状に配されていたが、平面視において、四角形の4辺上に位置するように配されていても良いし、楕円(円を含む)の円周上に位置するように配されていても良い。さらには、マトリクス状に配されても良いし、他の配置でも良い。
(5)その他
 LEDモジュール5は、青色光を出射するLED3と、青色光を黄色光に波長変換する蛍光体粒子とを利用することで白色光を出射するようにしていたが、例えば、紫外線発光の半導体発光素子と三原色(赤色、緑色、青色)に発光する各色蛍光体粒子とを組み合わせたものでも良い。
Also, the number of mounting substrates is not limited to one, and may be two or more. Furthermore, in the embodiment, the LED 3 is mounted on the surface of the mounting substrate 21. However, the LED may be mounted on the back surface.
(3) Sealing Body In the embodiment, the sealing body 23 covers the LEDs 3 arranged in two rows in a row unit, but two rows may be coated collectively, or a plurality of constant numbers The LED group may be coated with one sealing body, or all the LEDs may be coated with one sealing body.
(4) Arrangement of LEDs In the embodiment, the plurality of LEDs 3 are arranged in two rows, but in plan view, the LEDs 3 may be arranged on four sides of a square, or an ellipse (circle It may be disposed on the circumference of (including). Furthermore, they may be arranged in a matrix, or may be arranged otherwise.
(5) Others Although the LED module 5 is configured to emit white light by using the LED 3 that emits blue light and phosphor particles that convert blue light to yellow light, for example, ultraviolet light The semiconductor light emitting device of the present invention may be combined with phosphor particles of each color that emits light of three primary colors (red, green and blue).
 さらに、波長変換材料として半導体、金属錯体、有機染料、顔料など、ある波長の光を吸収し、吸収した光とは異なる波長の光を発する物質を含んでいる材料を利用しても良い。
4.ケース
 実施形態等では、ケース9は樹脂材料により構成していたが、他の材料で構成することもできる。他の材料として、金属材料を利用する場合、口金との絶縁性を確保する必要がある。口金との絶縁性は、例えば、ケースの小径部に絶縁膜を塗布したり、小径部に対して絶縁処理をしたりすることで確保できる他、ケースのグローブ側を金属材料により、ケースの口金側を樹脂材料によりそれぞれ構成(2以上部材を結合する。)することでも確保できる。
Furthermore, as the wavelength conversion material, a material including a semiconductor, a metal complex, an organic dye, a pigment, or the like, which absorbs light of a certain wavelength and emits light of a wavelength different from the absorbed light may be used.
4. Case In the embodiment and the like, the case 9 is made of a resin material, but may be made of another material. When using a metal material as another material, it is necessary to ensure the insulation with a nozzle. The insulation with the base can be ensured, for example, by applying an insulating film to the small diameter portion of the case or insulating the small diameter portion, and the glove side of the case is made of a metal material. It is also possible to secure the sides by resin materials (two or more members are joined).
 上記実施形態では、ケース9の表面について特に説明しなかったが、例えば、放熱フィンを設けても良いし、輻射率を向上させるための処理を行っても良い。
5.容器とケースの結合
 第1の実施形態では、容器14とケース9とが接着剤57により固着されている。このため、点灯時に容器14の熱がケース9にも伝わるような構成となっている。しかしながら、容器内に熱伝導率の高い流体を封入すると、容器の温度が上がり、その熱がケースに伝わりケースの温度が上昇するおそれもある。このような場合、ケース内の回路ユニットへの熱負荷を削減するために、容器とケースとの間に熱伝導率の低い材料を介在させて、両者を接合しても良い。
6.口金
 実施形態では,エジソンタイプの口金11を利用したが、他のタイプ、例えば、ピンタイプ(具体的にはGY、GX等のGタイプである。)を利用しても良い。
In the above embodiment, the surface of the case 9 is not particularly described. However, for example, a radiation fin may be provided, or a process for improving the emissivity may be performed.
5. Bonding of Container and Case In the first embodiment, the container 14 and the case 9 are fixed by the adhesive 57. Therefore, the heat of the container 14 is transmitted to the case 9 at the time of lighting. However, when a fluid having a high thermal conductivity is sealed in the container, the temperature of the container may be increased, the heat may be transmitted to the case, and the temperature of the case may be increased. In such a case, in order to reduce the thermal load on the circuit unit in the case, a material having a low thermal conductivity may be interposed between the container and the case, and the two may be joined.
6. In the embodiment, although the Edison type cap 11 is used, other types, for example, a pin type (specifically, G type such as GY, GX, etc.) may be used.
 また、上記実施形態では、口金11は、シェル部の雌ネジを利用してケース9のネジ部に螺合させることで、ケース9に装着(接合)されていたが、他の方法でケースと接合されても良い。他の方法としては、接着剤による接合、カシメによる接合、圧入による接合等があり、これらの方法を2つ以上組合せても良い。
7.ランプ
 実施形態では、ランプとして、ケース内に回路ユニットを格納するランプ(いわゆる、電球型ランプである。)について説明したが、ケース内に回路ユニットを格納していないランプ、例えば、コンパクト電球を代替とするようなランプにも適用できる。さらには、従来にないようなランプ、例えば、照明器具に直接組みこまれているようなランプであっても良い。
Moreover, in the said embodiment, although the nozzle | cap | die 11 was attached to (joined) the case 9 by screwing to the screw part of the case 9 using the internal thread of a shell part, with the case by other methods It may be joined. Other methods include adhesive bonding, caulking bonding, press-in bonding, and the like, and two or more of these methods may be combined.
7. Lamp In the embodiment, a lamp for storing a circuit unit in a case (so-called bulb type lamp) has been described as a lamp, but a lamp not containing a circuit unit in the case, for example, a compact bulb is substituted It is also applicable to such lamps. Furthermore, it may be a non-conventional lamp, for example, a lamp directly incorporated into a luminaire.
  1   LEDランプ
  3   LED
  5   LEDモジュール
  7   グローブ
  9   ケース
 11   口金
 13   ステム(蓋部材)
 14   容器
 17   支持部材
1 LED lamp 3 LED
5 LED module 7 globe 9 case 11 base 13 stem (lid member)
14 container 17 support member

Claims (5)

  1.  グローブ開口が蓋部材により塞がれてなる容器内に光源としての半導体発光素子が支持部材により支持されているランプであって、
     前記容器内には空気よりも高い熱伝導性を有する流体が封入され、
     前記容器の容積が250cm3以下である
     ことを特徴とするランプ。
    A lamp in which a semiconductor light emitting element as a light source is supported by a support member in a container in which a globe opening is closed by a lid member,
    A fluid having a higher thermal conductivity than air is enclosed in the container,
    Lamps, wherein the volume of the container is 250 cm 3 or less.
  2.  前記支持部材における前記流体と接触する部分の表面積が18cm2以上である
     ことを特徴とする請求項1に記載のランプ。
    The lamp according to claim 1, wherein a surface area of a portion of the support member in contact with the fluid is 18 cm 2 or more.
  3.  前記流体はヘリウムガスである
     ことを特徴とする請求項1又は2に記載のランプ。
    The lamp according to claim 1, wherein the fluid is helium gas.
  4.  前記支持部材における前記流体と接触する部分が金属材料で構成されている
     ことを特徴とする請求項1~3のいずれか1項に記載のランプ。
    The lamp according to any one of claims 1 to 3, wherein a portion of the support member in contact with the fluid is made of a metal material.
  5.  ランプと、前記ランプを装着して点灯させる照明器具とを備える照明装置において、
     前記ランプは、請求項1~4のいずれか1項に記載のランプである
     ことを特徴とする照明装置。
    In a lighting device comprising: a lamp; and a lighting fixture for mounting and lighting the lamp,
    The lighting device according to any one of claims 1 to 4, wherein the lamp is a lamp according to any one of claims 1 to 4.
PCT/JP2012/007106 2011-12-06 2012-11-06 Lamp and illuminating apparatus WO2013084407A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013512669A JPWO2013084407A1 (en) 2011-12-06 2012-11-06 Lamp and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011266907 2011-12-06
JP2011-266907 2011-12-06

Publications (1)

Publication Number Publication Date
WO2013084407A1 true WO2013084407A1 (en) 2013-06-13

Family

ID=48573801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007106 WO2013084407A1 (en) 2011-12-06 2012-11-06 Lamp and illuminating apparatus

Country Status (3)

Country Link
JP (1) JPWO2013084407A1 (en)
TW (1) TW201335531A (en)
WO (1) WO2013084407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528876A (en) * 2014-11-17 2017-09-28 フィリップス ライティング ホールディング ビー ヴィ Lighting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108286824A (en) * 2017-12-29 2018-07-17 浙江英科新能源有限公司 Combined solar water system
CN108344192A (en) * 2017-12-29 2018-07-31 浙江英科新能源有限公司 Wall-hung solar water system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047383A (en) * 2006-08-14 2008-02-28 Ichikoh Ind Ltd Lighting tool for vehicle
JP2010199145A (en) * 2009-02-23 2010-09-09 Ushio Inc Light source equipment
JP2010541152A (en) * 2007-09-27 2010-12-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device and method for cooling light emitting device
WO2011010535A1 (en) * 2009-07-22 2011-01-27 帝人株式会社 Led illuminator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047383A (en) * 2006-08-14 2008-02-28 Ichikoh Ind Ltd Lighting tool for vehicle
JP2010541152A (en) * 2007-09-27 2010-12-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device and method for cooling light emitting device
JP2010199145A (en) * 2009-02-23 2010-09-09 Ushio Inc Light source equipment
WO2011010535A1 (en) * 2009-07-22 2011-01-27 帝人株式会社 Led illuminator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528876A (en) * 2014-11-17 2017-09-28 フィリップス ライティング ホールディング ビー ヴィ Lighting device

Also Published As

Publication number Publication date
JPWO2013084407A1 (en) 2016-05-26
TW201335531A (en) 2013-09-01

Similar Documents

Publication Publication Date Title
JP5406347B2 (en) lamp
US8911108B2 (en) Light bulb shaped lamp and lighting apparatus
WO2013024557A1 (en) Led lamp and lighting device
JP5895166B2 (en) Light emitting module, lamp and lighting device
JP5612800B1 (en) Lamp and lighting device
JP2013026053A (en) Lamp and lighting fixture
JP5374003B1 (en) Illumination light source and illumination device
WO2013084407A1 (en) Lamp and illuminating apparatus
WO2013014822A1 (en) Lamp and lighting device
JP5363687B1 (en) Lamp and lighting device
JP5074639B1 (en) Lamp and lighting device
JP2013026050A (en) Lamp and lighting device
WO2013121484A1 (en) Lamp and lighting device
JP5938748B2 (en) Lighting device
JP5296950B1 (en) Lamp and lighting device
JP2014146568A (en) Lamp and illumination device
JP5824680B2 (en) Lamp and lighting device
WO2013084389A1 (en) Lamp and illumination device
JP5374001B1 (en) Lamp and lighting device
JP5066304B1 (en) lamp
JP2013165040A (en) Lamp, lighting device, and light-emitting module
JP2013026051A (en) Lamp and lighting device
JP2014146567A (en) Lamp and illumination device
TW201341709A (en) Bulb-shaped lamp and lighting device
JPWO2014010146A1 (en) Light bulb shaped lamp and lighting device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013512669

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855117

Country of ref document: EP

Kind code of ref document: A1