WO2013081095A1 - 基板処理装置、及び、搬送装置 - Google Patents

基板処理装置、及び、搬送装置 Download PDF

Info

Publication number
WO2013081095A1
WO2013081095A1 PCT/JP2012/081046 JP2012081046W WO2013081095A1 WO 2013081095 A1 WO2013081095 A1 WO 2013081095A1 JP 2012081046 W JP2012081046 W JP 2012081046W WO 2013081095 A1 WO2013081095 A1 WO 2013081095A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrates
cassette
processing chamber
substrate
glass substrate
Prior art date
Application number
PCT/JP2012/081046
Other languages
English (en)
French (fr)
Inventor
西谷 英輔
国井 泰夫
豊田 一行
吉田 秀成
石坂 光範
克己 村上
勝好 小谷津
本田 真
Original Assignee
株式会社日立国際電気
東海高熱工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気, 東海高熱工業株式会社 filed Critical 株式会社日立国際電気
Priority to KR1020147015940A priority Critical patent/KR20140095557A/ko
Priority to CN201280067091.XA priority patent/CN104067378A/zh
Priority to JP2013547228A priority patent/JP5853291B2/ja
Publication of WO2013081095A1 publication Critical patent/WO2013081095A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67326Horizontal carrier comprising wall type elements whereby the substrates are vertically supported, e.g. comprising sidewalls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67754Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a batch of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a substrate processing apparatus and a transport apparatus, and more particularly to a substrate processing apparatus and a transport apparatus for forming a light absorption layer of a selenide CIS solar cell.
  • the selenide-based CIS solar cell has a structure in which a glass substrate, a metal back electrode layer, a CIS light absorption layer, a high-resistance buffer layer, and a window layer are stacked in this order.
  • the CIS light absorption layer is formed by selenizing any one of the laminated structures of copper (Cu) / gallium (Ga), Cu / indium (In), or Cu—Ga / In.
  • the substrate can be thinned and the manufacturing cost can be reduced.
  • the CIS-based light absorption layer is characterized by a large absorption coefficient and high efficiency compared with Si.
  • Patent Document 1 there is Patent Document 1 as an example of an apparatus for performing selenization.
  • a plurality of flat objects are provided at regular intervals by a holder, and the plate surfaces thereof are arranged in parallel to the long axis direction of a cylindrical quartz chamber and vertically.
  • a plurality of objects are simultaneously selenized by introducing a selenium source.
  • a fan is attached to an end portion in the axial direction of a cylindrical quartz chamber to forcibly convection the selenization source in the quartz chamber and uniform the temperature distribution on the glass substrate.
  • the convection of the atmosphere in the quartz chamber is transverse to the quartz chamber, that is, the long side of the glass substrate. Will flow in the direction.
  • the glass substrate is enlarged in order to reduce the manufacturing cost of the CIS solar cell, the long side of the glass substrate also becomes long. Therefore, in order to maintain the uniformity of the temperature in the surface of the glass substrate at the time of temperature increase / decrease, it is necessary to increase the flow rate of the convection gas or to increase the temperature increase / decrease rate. In the former case, it is necessary to increase the capacity of the fan, but there is a limit to the capacity of the fan, which may be difficult to realize.
  • Patent Document 1 when a plurality of glass substrates are arranged in a quartz chamber and the convection of an atmosphere generated by a fan is caused to flow on each main surface of the glass substrate, the flow rate of convection, etc.
  • Various conditions may become non-uniform between glass substrates.
  • the space between the glass substrates at both ends and the quartz chamber is configured wider than the space between the inner glass substrates, the conductance around the glass substrates at both ends will be relatively large. And the convection produced
  • the conditions of the convection between glass substrates differ, the temperature uniformity between glass substrates will fall.
  • temperature uniformity within the substrate surface is lowered. For example, if the fan capacity is adjusted so that the in-plane temperature uniformity of the glass substrates at both ends is maintained, the temperature uniformity in the substrate surface deteriorates due to insufficient convection flow rate in other glass substrates. It will end up.
  • the present invention improves the temperature uniformity between substrates and the temperature uniformity within the substrate surface when simultaneously processing a plurality of glass substrates even when the glass substrate is enlarged. It is another object of the present invention to provide a substrate processing apparatus and a transfer apparatus that can reduce the cost of substrate processing.
  • the plurality of glass substrates are arranged so as to be freely carried into the processing chamber, and the main surfaces of the glass substrates are arranged so as to face each other with a predetermined interval, and among the arranged glass substrates, the glass substrates at both ends are arranged.
  • a cassette provided with a pair of side walls respectively covering the outer main surface;
  • a gas supply pipe for introducing a selenium element-containing gas or a sulfur element-containing gas into the processing chamber;
  • An exhaust pipe for exhausting the atmosphere in the processing chamber;
  • a heating unit provided so as to surround the reaction tube;
  • a substrate processing apparatus comprising: a fan for forcibly convection of an atmosphere in the processing chamber in a short side direction of the plurality of glass substrates on each main surface of the plurality of glass substrates.
  • a transfer device for transferring a cassette holding a plurality of glass substrates into a processing chamber A support for supporting the cassette; A wheel part fixed to the support part; There is provided a transfer device including an arm that integrally operates the support portion and the wheel portion.
  • the present invention even when the glass substrate is enlarged, it is possible to improve the temperature uniformity between the glass substrates and the temperature uniformity within the substrate surface when simultaneously processing a plurality of glass substrates. It becomes possible. In addition, the cost of substrate processing can be reduced.
  • FIG. 1 is a side sectional view of a processing furnace 10 incorporated in a substrate processing apparatus that performs selenization processing according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the processing furnace 10 as viewed from the left side of FIG.
  • the processing furnace 10 has a reaction tube 100 as a furnace body formed of a metal material such as stainless steel. By using a metal material such as stainless steel, the processing becomes easier than that made of quartz, and the reaction tube 100 is easily increased in size.
  • the reaction tube 100 has a hollow cylindrical shape, and has a structure in which one end is closed and the other end is opened.
  • a processing chamber 30 is formed by the hollow portion of the reaction tube 100.
  • a cylindrical manifold 120 having both ends opened concentrically with the reaction tube 100 is provided.
  • An O-ring (not shown) as a seal member is provided between the reaction tube 100 and the manifold 120.
  • a movable seal cap 110 is provided in the opening of the manifold 120 where the reaction tube 100 is not provided.
  • the seal cap 110 is formed of a metal material such as stainless steel and has a convex shape in which a part thereof is inserted into the opening of the manifold 120.
  • An O-ring (not shown) as a seal member is provided between the movable seal cap 110 and the manifold 120. When performing processing, the seal cap 110 seals the opening side of the reaction tube 100 in an airtight manner. Block.
  • an inner wall 400 for placing a cassette 410 described later is provided in the reaction tube 100. As shown in FIG. 2, one end of the inner wall 400 is fixed to the inner peripheral surface of the reaction tube 100, and the cassette 410 is placed on the center of the reaction tube 100 via the installation table 420. Composed. The strength of the inner wall 400 is enhanced by a configuration in which a pair of members provided so as to sandwich the cassette 410 are connected at both ends thereof.
  • the cassette 410 includes a plurality of holding members 411 that hold a plurality of glass substrates 20, and four side walls 43a provided so as to cover four sides of the glass substrate 20 group. 43b (a pair of side walls 413a and a pair of side walls 413b) and a pair of collar portions 412 provided on the outer surfaces of the pair of side walls 413a, respectively.
  • the cassette 410 is formed as a rectangular parallelepiped that is open at least in the vertical direction and allows gas to flow in the vertical direction. Has been.
  • the holding members 411 are each configured in a bar shape, and a plurality of ladder members are provided below the cassette 410 so as to support a plurality (for example, 30 to 40) of glass substrates 20 from below.
  • the holding member 411 is configured so that the plurality of glass substrates 20 are arranged side by side in a state where each short side faces the vertical direction, each long side faces the horizontal direction, and each of the glass substrates 20 stands upright. .
  • the plurality of glass substrates 20 are held so that their main surfaces face each other with a predetermined interval, that is, each other so that their main surfaces face each other in a non-contact state. Thereby, in the space between the glass substrates 20, the atmosphere can be circulated at least in the short side direction (vertical direction).
  • a laminated film containing, for example, copper (Cu), indium (In), and gallium (Ga) is formed on the surface of the glass substrate 20 in advance.
  • the pair of side walls 413a forming the longitudinal side walls of the cassette 410 are each configured as a rectangular flat plate having a size equal to or greater than that of the glass substrate 20, with the short sides facing the vertical direction and the long sides being the horizontal direction. The main surfaces of the two are opposed to each other.
  • the pair of side walls 413 a are provided so as to cover the outer principal surfaces of the glass substrates 20 at both ends (outermost sides) among the plurality of glass substrates 20 held by the holding member 411.
  • the pair of side walls 413b forming the front and rear end portions of the cassette 410 are configured as flat plates that cover the short sides (front and rear end portions) of the glass substrate 20 group, and the main surfaces of the pair of side walls 413b are opposed to each other in the same manner as the side walls 413a. It is provided to do.
  • the distance between the outer main surface of the glass substrate 20 at both ends and the inner surfaces of the pair of side walls 413a is configured to be equal to the distance between the main surfaces of the plurality of glass substrates 20, respectively. That is, the conductance around the glass substrate 20 at both ends (the conductance of the space between the glass substrate 20 at both ends and the side wall 413a) is the conductance around the glass substrate 20 inside (the space between the inside glass substrates 20). It is configured to be equivalent to (conductance). Thereby, the flow of the gas escaping around the glass substrate 20 can be suppressed, and the gas can be supplied uniformly and efficiently to the main surface of each glass substrate 20.
  • Each of the pair of collar portions 412 is formed in a strip shape, and is provided in a horizontal posture on each of the outer surfaces of the pair of side walls 413a so as to protrude outward from the side portion of the cassette 410 formed as a rectangular parallelepiped. .
  • the collar portion 412 is used when the cassette 410 is carried into and out of the processing chamber 30.
  • the inner wall 400 is formed with a convex central portion so that the collar portion 412 can be stored.
  • a furnace body heating unit 200 having a hollow cylindrical shape with one end closed and the other end opened is provided so as to surround the reaction tube 100.
  • a cap heating unit 210 is provided on the side surface of the seal cap 110 opposite to the reaction tube 100.
  • the interior of the processing chamber 30 is heated by the furnace body heating unit 200 and the cap heating unit 210.
  • the furnace heating unit 200 is fixed to the reaction tube 100 by a fixing member (not shown), and the cap heating unit 210 is fixed to the seal cap 110 by a fixing member (not shown).
  • the seal cap 110 and the manifold 120 are provided with cooling means such as a water cooling unit (not shown) that protects the O-ring having low heat resistance.
  • the manifold 120 is provided with a gas supply pipe 300 that supplies, for example, selenium hydride (hereinafter, “H 2 Se”) as a selenium element-containing gas (selenization source).
  • H 2 Se supplied from the gas supply pipe 300 is supplied from the gas supply pipe 300 into the processing chamber 30 through a gap between the manifold 120 and the seal cap 110.
  • an exhaust pipe 310 is provided at a position different from the gas supply pipe 300 of the manifold 120.
  • the atmosphere in the processing chamber 30 is exhausted from the exhaust pipe 310 through a gap between the manifold 120 and the seal cap 110.
  • the reaction tube 100 is made of a metal material such as stainless steel. Metal materials such as stainless steel are easier to process than quartz. Therefore, it is possible to easily manufacture a large reaction tube 100 used in a substrate processing apparatus that performs selenization processing of CIS solar cells. By enlarging the reaction tube 100, the number of the glass substrates 20 which can be accommodated in the reaction tube 100 can be increased, and the manufacturing cost of the CIS solar cell can be reduced.
  • a plurality of electric fans 500 configured as, for example, a multi-blade fan (sirocco fan) are provided on the upper side of the processing furnace 10 along the long side direction of the glass substrate 20.
  • Each of the plurality of electric fans 500 rotates so as to pass through the blade portion 510 that forms convection in the processing chamber 30 by rotating, the side wall of the cylindrical reaction tube 100, and the side wall of the furnace body heating unit 200.
  • the rotary shaft unit 520 is provided, and a power unit 530 that is provided outside the furnace body heating unit 200 and rotates the rotary shaft unit 520.
  • a protective member 540 is provided between the rotating shaft 520 and the reaction tube 100 and the furnace body heating unit 200.
  • the gas flow toward the short sides of the plurality of glass substrates 20 is formed in the processing chamber 30 by the plurality of electric fans 500.
  • the in-plane temperature uniformity of the glass substrate 20 can be improved.
  • the forced convection formed by the electric fan 500 flows between the glass substrates 20 from the bottom to the top as shown by the arrows in FIGS. At this time, since the conductance between the glass substrates 20 is small, the pressure tends to decrease on the intake side of the electric fan 500, and the pressure tends to increase on the exhaust side.
  • a multi-blade fan (sirocco fan) having a strong atmosphere for sending out the atmosphere is used as the electric fan 500, and therefore a large pressure difference is generated between the intake side and the exhaust side.
  • the above-described forced convection can be stably formed.
  • a pair of both ends (outermost sides) of the glass substrates 20 at the both ends (outermost sides) are covered.
  • a side wall 413a is provided. Thereby, forced convection can be made to flow uniformly to each of the plurality of glass substrates 20.
  • a pair of side walls 413b is provided so as to cover the short sides (front and rear end portions) of the glass substrate 20 group. Thereby, the gas which escapes to the periphery can be suppressed and it becomes possible to heat efficiently.
  • the pair of side walls 413a If the pair of side walls 413a is not provided, the space between the glass substrate 20 at both ends and the inner wall 400 becomes wider than the space between the glass substrates 20 on the inner side. That is, if the pair of side walls 413a is not provided, the conductance around the glass substrate 20 at both ends becomes relatively larger than the conductance around the glass substrate 20 on the inner side. As a result, the heating efficiency changes between the glass substrates 20 at both ends and the glass substrates 20 inside thereof, and uniform heating becomes difficult. In other words, by providing the pair of side walls 413a, it is possible to match the gas conductance between the glass substrate 20 at both ends and between the glass substrates 20 on the inner side thereof. Heating is possible.
  • a pair of side walls 413b are provided.
  • the forced convection generated by the electric fan 500 is limited to the space between the inner glass substrates 20, so that the glass substrate can be heated more efficiently.
  • the temperature uniformity between the glass substrates 20 decreases. For example, the temperature of the outer glass substrate 20 becomes lower than the temperature of the inner glass substrate 20. Further, in at least some of the glass substrates 20, the temperature uniformity within the substrate surface is reduced. For example, if the ability of the electric fan 500 is adjusted so that the in-plane temperature uniformity of the glass substrates 20 at both ends is maintained, the flow rate of forced convection is insufficient in the other glass substrates 20, and the temperature uniformity in the substrate surface Will get worse.
  • the above-mentioned subject is solved by having a pair of side wall 413a which covers the main surface of the glass substrate 20 of both ends.
  • the above-mentioned subject can be solved by providing the side wall 413b so that the short side (front-and-rear end part) of the some glass substrate 20 may be covered.
  • the temperature between the glass substrates 20 when processing the plurality of glass substrates 20 at the same time is further uniformed. And the temperature uniformity within the surface of the glass substrate 20 can be improved.
  • the distance between the outer main surfaces of the glass substrates 20 at both ends and the inner surfaces of the pair of side walls 413a is made equal to the distance between the main surfaces of the plurality of glass substrates 20, respectively. ing.
  • the conductance around the glass substrate 20 and the conductance around the inner glass substrate 20 can be made uniform, and forced convection can be made to flow more uniformly to each of the plurality of glass substrates 20. And it becomes possible to further improve the temperature uniformity between the glass substrates 20 and the temperature uniformity within the glass substrate 20 surface.
  • the cassette 410 is provided with a pair of side walls 413a and a pair of side walls 413b in order to suppress the flow of gas escaping around the glass substrate 20.
  • the present invention is not limited to this.
  • the pair of side walls 413 a and the pair of side walls 413 b may be provided in the reaction tube 100 instead of being provided in the cassette 410.
  • the pair of side walls 413a is configured such that the distance between the outer main surfaces of the glass substrates 20 at both ends and the inner surfaces of the pair of side walls 413a is equal to the distance between the main surfaces of the plurality of glass substrates 20, respectively. Therefore, it is preferable to provide the cassette 410.
  • the left side wall of the pair of side walls 413b in FIG. 1 is replaced by placing the cassette 410 in the reaction tube 100 and pressing the cassette 410 in consideration of the movement of the cassette 410 in the horizontal direction of FIG. It becomes possible.
  • the side wall on the right side in FIG. 1 of the pair of side walls 413b can also be replaced by being provided in the seal cap 110 or the like and pressing against the cassette 410 when the seal cap 110 closes the reaction tube 100. It is.
  • the electric fan 500 is operated so that the forced convection is directed in the short side direction instead of the long side direction of the glass substrate 20. Thereby, the flow rate of gas required in order to equalize the temperature in the surface of the glass substrate 20 can be lowered.
  • FIG. 7 shows that the temperature difference in the surface of the glass substrate is reduced by changing the flow rate between the glass substrates when the temperature is raised at a rate of 5 ° C./min in a processing furnace having the same structure except for the position of the electric fan. It is the result of having simulated the flow rate required in order to hold down to 30 degreeC.
  • (A) is the result when the electric fan is arranged on the side surface of the processing furnace and the gas flow on the surface of the glass substrate is in the long side direction of the glass substrate, and the temperature difference in the surface of the glass substrate is about 30.
  • the flow rate of the gas required for keeping the temperature at 10 ° C. was 10 m / sec.
  • (B) is the result when the electric fan is disposed on the upper surface of the processing furnace as in the present embodiment, and the gas flow on the surface of the glass substrate is in the short side direction of the glass substrate.
  • the gas flow rate required to keep the temperature difference at about 30 ° C. was 2 m / sec.
  • the processing furnace 10 has a plate-shaped first rectifying plate 430 having a plurality of openings 431 fixed to the inner wall 400 on the upstream side of the gas of the glass substrate 20.
  • the gas can be made to flow more uniformly on the surfaces of the plurality of glass substrates 20.
  • the gas flow is different between the space immediately below the electric fan 500 and the space between the electric fans 500. There is a possibility.
  • the gas can be made to flow uniformly by adjusting the gas conductance by making the opening ratio of the first rectifying plate 430 different between the space immediately below the electric fan 500 and the space between the electric fans 500. It becomes.
  • the opening 431 is described as having one opening 431 with respect to the plurality of glass substrates 20, but is not limited thereto, and corresponds to one space between the glass substrates 20. One opening 431 may be provided.
  • FIG. 8 shows a configuration diagram when the effect of the first rectifying plate 430 having regions with different aperture ratios is simulated.
  • a model with a length of half of 20 sheets (1/4 symmetric model) obtained by dividing 40 glass substrates into 4 on the symmetry plane is used.
  • Gas is supplied and flows out from the outlet OUT.
  • gas flow resistors are provided in the regions R1, R2, and R3.
  • the opening rate of the region R1 corresponding directly below the electric fan is 40%, and the opening of the region R2 corresponding between the electric fans.
  • the rate is set at 30%.
  • the end region R3 in the direction in which the plurality of glass substrates are arranged is not shown, but is set so that the gas does not flow outward.
  • the total circulating gas flow rate is reduced. It was possible to obtain a result that the average gas flow rate between the glass substrates was 2 m / sec or more and the minimum gas flow rate between the glass substrates was 1.2 m / sec or more when the rate was 72 m 3 / min.
  • FIG. 9 shows the result of simulation of the temperature deviation ( ⁇ T) in the glass substrate surface that occurs when the glass substrate is heated under the same gas flow rate condition in the same configuration as in FIG.
  • the simulation is performed with a length in which two electric fans are arranged in the long side direction of the glass substrate, instead of the 1/4 symmetrical model of FIG.
  • FIG. 9 (a) shows the temperature at 550 ° C. (823K) 1 hour and 45 minutes after the temperature is increased at 5 ° C./min, heating is started from room temperature (25 ° C.), and the temperature deviation ( ⁇ T) is maximum. The temperature distribution is shown.
  • (A-1) indicates the vicinity of the first sheet from the end
  • (a-2) indicates the vicinity of the eleventh sheet from the end
  • (a-3) indicates the vicinity of the twentieth sheet from the end (center portion).
  • the numbers written at the top are the maximum and minimum temperatures in the plane. Of the 40 glass substrates, it was found that the temperature dropped most in the downstream part between the two electric fans near the 11th sheet between the both ends and the center. When heated to about 550 ° C., the deviation ( ⁇ T) is 28 ° C., and it can be seen that it is well within the allowable range.
  • FIG. 9B shows the temperature deviation ( ⁇ T) after about 10 minutes have elapsed with the furnace body temperature fixed at 552 ° C. (825 K) from FIG. 9A.
  • (b-1) is near the first sheet from the end
  • (b-2) is near the 11th sheet from the end
  • (b-3) is near the 20th sheet (center) from the end.
  • the maximum and minimum in-plane temperatures are shown at the top. From (b), it can be seen that sufficient temperature uniformity can be maintained during the process (when the temperature is stabilized).
  • FIG. 9 shows the in-plane temperature distribution of the glass substrate in the vicinity of the first sheet, the eleventh sheet, and the center part from the end.
  • FIG. 10 shows the in-plane temperature distribution generated during heating in the furnace body. The maximum temperature difference is plotted for all 40 sheets. A is a temperature deviation at the time of heating to 550 ° C. (corresponding to FIG. 9A), B is 550 ° C., and the gas is circulated while maintaining the gas temperature at 552 ° C. After 10 minutes. The temperature deviation (corresponding to FIG. 9B) is shown. Although a relatively large temperature deviation occurs between the 6th and 8th sheets from the end due to the influence of the two electric fans, conductance adjustment using a rectifying plate, etc. allows the temperature to be within 30 ° C during heating and within 10 ° C during processing It can be seen that extremely good uniformity can be realized.
  • the processing furnace 10 has a second rectifying plate 440 that is a plate-like member having a plurality of openings 441 fixed to the inner wall 400 on the lower side of the glass substrate 20.
  • a second rectifying plate 440 that is a plate-like member having a plurality of openings 441 fixed to the inner wall 400 on the lower side of the glass substrate 20.
  • the surface exposed to at least the atmosphere in the processing chamber 30 of the reaction tube 100 and the surfaces of at least the blades 510 and the rotating shaft 520 of the electric fan 500 are as shown in FIG.
  • a coating film 102 having a higher selenization resistance than a metal material such as stainless steel is formed on a metal material such as stainless steel to be the base material 101.
  • Widely used metal materials such as stainless steel corrode due to extremely high reactivity when a gas such as H 2 Se is heated to 200 ° C. or higher, but is selenization resistant as in this embodiment.
  • the coating film 102 having a high thickness on the surface corrosion due to a gas such as H 2 Se can be suppressed.
  • a metal material such as stainless steel can be used, and the manufacturing cost of the substrate processing apparatus can be reduced.
  • a coating film having high selenization resistance a coating film mainly composed of ceramic is preferable.
  • chromium oxide (Cr x O y : x, y is an arbitrary number of 1 or more)
  • silica Si x O y : x, y is an arbitrary number of 1 or more
  • the coating film 102 of the present embodiment is formed of a porous film. Thereby, it becomes possible to flexibly follow the thermal expansion / contraction due to the difference in linear expansion coefficient between the base material 101 formed of a metal material such as stainless steel and the coating film 102. As a result, even if the heat treatment is repeated, the occurrence of cracks in the coating film 102 can be minimized.
  • the coating film 102 is desirably formed to a thickness of 2 to 200 ⁇ m, preferably 50 to 120 ⁇ m. Further, the deviation of the linear expansion coefficient between the substrate 101 and the coating film 102 is 20% or less, preferably 5% or less.
  • the above-described coating film 102 may also be formed on the seal cap 110, the manifold 120, the gas supply pipe 300, and the exhaust pipe 310 in a portion exposed to the selenization source.
  • the portion cooled to 200 ° C. or less by the cooling means to protect the O-ring or the like does not react even when a metal material such as stainless steel comes into contact with the selenization source, so the coating film 102 is not formed. good.
  • FIG. 5 shows a state when the cassette 410 is loaded or unloaded, where (a) is a cross-sectional view corresponding to FIG. 2, and (b) is a view when the processing furnace 10 is viewed from the side. Only the parts necessary for the explanation are described.
  • FIGS. 6A and 6B are views of the conveying device 600 according to the present embodiment, in which FIG. 6A is a side view, FIG. 6B is a top view, and FIG. 6C is a view as seen from the rear of the conveying device 600. Yes.
  • the conveyance device 600 includes a support portion 601 that supports the collar portion 412, a plurality of elevating portions 602 that elevate and lower the support portion 601, a plurality of wheel portions 603 provided below the elevating portion, a plurality of elevating portions 602, It has the fixing member 604 which can operate
  • the entire conveying device 600 is configured such that the left and right elevating parts 602 and the wheel part 603 are integrally operated by the support part 601 and the fixing member 604, and by moving the arm 605 back and forth, The entire conveying device 600 can be integrally operated.
  • the elevating unit 602 raises the support unit 601 and lifts the collar unit 412 of the cassette 410, thereby lifting the entire cassette 410.
  • the cassette 410 can move without contacting the installation table 420.
  • the inner wall 400 is provided with a convex portion (conveyance path) that protrudes outward so that the plurality of wheel portions 603 can move. Therefore, by moving the arm 605 back and forth, the wheel portion 603 can move along the transport path of the inner wall 400, and the cassette 410 can be transported smoothly.
  • the support unit 601 is lowered by the elevating unit 602.
  • the cassette 410 is lowered as the support portion 601 is lowered.
  • the cassette 410 is not lowered any further.
  • the transfer device 600 can be taken out from the processing chamber 30 with the cassette 410 placed in the processing chamber 30 by retracting the arm 605. If it is desired to carry out the cassette 410, the reverse procedure may be performed.
  • the glass substrate 20 can be increased in size by lifting and moving the cassette 410 by the transfer device 600 having the support portion 601 and the plurality of wheel portions 603.
  • the elevating unit 602 that can raise and lower the support unit 601
  • the cassette 410 and the transfer device 600 can be separated, and only the transfer device 600 can be carried in and out of the processing chamber 30. .
  • the support unit 601 is further lowered by the elevating unit 602 to separate the transport device 600 and the cassette 410. Thereafter, the arm 605 is retracted to carry the transfer device 600 out of the processing chamber 30. Next, the processing chamber 30 is sealed with a movable seal cap 110 (carrying-in process).
  • the atmosphere in the processing chamber 30 is replaced with an inert gas such as nitrogen gas (substitution step).
  • an inert gas such as nitrogen gas
  • substitution step the replacement can be performed more quickly.
  • an inert gas selenization of H 2 Se gas or the like diluted to 1 to 20% (preferably 2 to 10%) with an inert gas at room temperature
  • a source is introduced from the gas supply pipe 300.
  • the selenization source is contained or in a state where the selenization source flows by a certain amount by exhausting from the exhaust pipe 310, for example, 400 to 550 ° C., preferably 450 ° C. to 550 ° C.
  • the temperature is raised at a rate of 3 to 50 ° C. per minute.
  • the electric fan 500 is operated to forcibly convection the atmosphere in the processing chamber 30 so that the gas flow is directed in the short side direction of the glass substrate 20.
  • the laminated film formed on the glass substrate 20 is subjected to selenization, and light absorption of the CIS solar cell is performed. A layer is formed (formation process).
  • the processing chamber 30 is opened by moving the seal cap 110.
  • the wheel unit 603 is placed on the conveyance path of the inner wall 400 while the support unit 601 is lowered by the elevating unit 602 of the conveyance device 600.
  • the support unit 601 is raised by the elevating unit 602 and the cassette 410 is raised.
  • the cassette 410 is unloaded (unloading step), and a series of processes is completed.
  • the glass flow can be made without increasing the flow velocity of the convection gas compared to the case where the gas flow is in the long side direction of the glass substrate.
  • the temperature uniformity of the substrate can be maintained, and the glass substrate can be enlarged.
  • the distance between the outer principal surfaces of the glass substrates at both ends and the inner surfaces of the pair of side walls is made equal to the distance between the principal surfaces of the plurality of glass substrates.
  • the gas flow in the long side direction of the glass substrate can be made uniform.
  • the electric fan is a multi-blade fan (sirocco fan)
  • forced convection can be stably formed between the glass substrates even if the pressure difference between the intake side and the exhaust side increases.
  • the gas flow can be efficiently directed to the glass substrate by extending the pair of inner walls to the side surface of the electric fan.
  • At least the wing part and the rotating shaft of the electric fan are coated with a substance having a higher selenization resistance than the base material of the wing part, so that The base material of the wing
  • reaction tube by forming the reaction tube from a metal material such as stainless steel, the reaction tube can be enlarged and the glass substrate can be enlarged.
  • the cost of the substrate processing apparatus is reduced by coating at least a portion of the reaction tube exposed to the atmosphere of the processing chamber with a substance having a higher selenization resistance than the base material of the reaction tube. be able to.
  • the plurality of glass substrates can be easily conveyed even when they are enlarged. In other words, the glass substrate can be increased in size.
  • FIGS. 1 and 2 ⁇ Second Embodiment>
  • FIG. 11 members having the same functions as those in FIGS. 1 and 2 are given the same numbers.
  • differences from the first embodiment will be mainly described.
  • a plurality of cassettes 410 are arranged in a plurality. The difference is that they are arranged side by side in a direction parallel to the surface of the glass substrate 20.
  • each of the plurality of glass substrates 20 is similar to the first embodiment.
  • forced convection can be made to flow uniformly.
  • the pair of side walls 413b so as to cover the short sides (front and rear ends) of the glass substrate 20 group, forced convection is uniformly and efficiently applied to each of the plurality of glass substrates 20. It is possible to flow. As a result, it is possible to improve the temperature uniformity between the substrates and the temperature uniformity within the substrate surface when simultaneously processing the plurality of glass substrates 20.
  • the distance between the outer main surfaces of the glass substrates 20 at both ends and the inner surfaces of the pair of side walls 413a is equal to the distance between the main surfaces of the plurality of glass substrates 20, respectively.
  • forced convection can be made to flow more uniformly to each of the plurality of glass substrates, and the temperature uniformity between the substrates and the temperature uniformity within the substrate surface can be achieved. It is possible to further improve the performance.
  • forced convection of the atmosphere in the processing chamber 30 by the electric fan 500 is set to the short side direction of the glass substrate 20, so that even if the plurality of cassettes 410 are arranged in the long side direction of the glass substrate 20, respectively.
  • the gas flow on the surface of the glass substrate 20 is the same as that of the first embodiment. Therefore, a plurality of glass substrates 20 can be arranged in the long side direction, and the number of glass substrates 20 that can be processed at a time can be increased.
  • the pair of side walls 413a and 413b may be provided on the reaction tube 100 side without being provided in the cassette 410.
  • the number of glass substrates 20 that can be processed at one time is increased by arranging a plurality of cassettes 410 side by side.
  • another cassette 410 is arranged in the left-right direction on the paper surface.
  • the gas flow can be restricted in the cassette 410 without providing a pair of side walls 413b. . Therefore, in such a case, the pair of side walls 413b need not be provided.
  • the cassette 410 is transported into the processing chamber 30 by the transport device 600 having the wheel portion 603. Therefore, even if the cassettes 410 are arranged in order from the carry-in entrance as in the present embodiment, the cassette 410 can be transported far by adjusting the length of the arm 605.
  • a metal material such as stainless steel is used as the base material of the reaction tube 100. Therefore, even if the reaction tube 100 is enlarged, its molding is easier than that made of quartz, and the cost increase is small compared to that made of quartz. Therefore, the number of glass substrates 20 that can be processed at a time can be increased, and the manufacturing cost of the CIS solar cell can be reduced. Further, by using a metal material such as stainless steel as a base material for the reaction tube, it is easy to handle as compared with a quartz reaction tube, and the reaction tube can be enlarged.
  • the following effects can be realized. That is, by arranging a plurality of cassettes 410 holding a plurality of glass substrates 20 in a direction parallel to the surface of the glass substrate 20 in the reaction tube 100, the number of glass substrates 20 that can be processed at a time can be increased. The manufacturing cost of the CIS solar cell can be reduced.
  • a plurality of glass substrates formed with / indium (In), copper (Cu) / gallium (Ga), etc. may be subjected to selenization treatment.
  • the selenization having high reactivity with the metal material is mentioned.
  • the sulfur element-containing gas is supplied instead of the selenization treatment or after the selenization treatment. In some cases, sulfuration treatment is performed. At that time, by using the large reactor of the present embodiment, the number of sheets that can be subjected to the sulfiding treatment can be increased at one time, so that the manufacturing cost can be reduced.
  • the inner wall 400 is continuously provided from the lower part to the upper part of the reaction tube 100, but the present invention is not limited to this. That is, the gas is rectified by the pair of side walls 413a in the portion where the cassette 410 is provided with the pair of side walls 413a. Therefore, it is not necessary to provide the inner wall 400 in this portion. It may be provided between the portion exceeding the upper part of the rectifying plate 413a and the electric fan 510 to restrict the gas flow. Thus, the cost can be reduced by reducing the number of members constituting the inner wall 400.
  • a processing chamber for storing a plurality of glass substrates on which a laminated film made of any one of copper-indium, copper-gallium, or copper-indium-gallium is formed;
  • a reaction tube formed to constitute the processing chamber;
  • the plurality of glass substrates are arranged so as to be freely carried into the processing chamber, and the main surfaces of the glass substrates are arranged so as to face each other with a predetermined interval, and among the arranged glass substrates, the glass substrates at both ends are arranged.
  • a cassette provided with a pair of side walls respectively covering the outer main surface;
  • a gas supply pipe for introducing a selenium element-containing gas or a sulfur element-containing gas into the processing chamber;
  • An exhaust pipe for exhausting the atmosphere in the processing chamber;
  • a heating unit provided so as to surround the reaction tube;
  • a substrate processing apparatus comprising: a fan for forcibly convection of an atmosphere in the processing chamber in a short side direction of the plurality of glass substrates on each main surface of the plurality of glass substrates.
  • the distance between the outer main surfaces of the glass substrates at both ends and the inner surfaces of the pair of side walls provided in the cassette is between the main surfaces of the plurality of glass substrates.
  • a substrate processing apparatus configured to be equal to the distance.
  • a pair of inner walls extending in the long side direction of the plurality of glass substrates and provided so as to sandwich the plurality of glass substrates are further provided.
  • a substrate processing apparatus provided.
  • the fan has a wing part that rotates in the processing chamber, and the wing part is more resistant to selenization than the base material of the wing part.
  • a substrate processing apparatus wherein the wing base material is coated with a coating film comprising a substance having a high resistance to sulfuration as a main component.
  • a plurality of selenium element-containing gases or sulfur element-containing gases on the surfaces of the plurality of glass substrates are upstream of the plurality of substrates in the direction in which the gas flows.
  • the substrate processing apparatus provided with the 1st baffle plate which has an opening part.
  • the second rectification having a plurality of openings on the downstream side of the plurality of glass substrates in the direction in which the selenium element-containing gas or the sulfur element-containing gas flows on the surfaces of the plurality of glass substrates.
  • a substrate processing apparatus provided with a plate.
  • a plurality of the fans are provided along a long side direction of the plurality of glass substrates, and the opening portion of the first rectifying plate in a region directly below the fan.
  • the substrate processing apparatus has an aperture ratio different from the aperture ratio of the opening in the region between the plurality of fans arranged.
  • the plurality of glass substrates are held in a cassette, and the plurality of cassettes are arranged in a long side direction of the plurality of glass substrates. apparatus.
  • a transfer device that transfers a cassette holding a plurality of glass substrates into a processing chamber, the support unit supporting the cassette, a wheel unit fixed to the support unit, the support unit, and the wheel unit. And an arm that integrally operates.
  • the transfer device further includes an elevating part that is provided between the support part and the wheel part and can be raised and lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 銅-インジウム、銅-ガリウム、又は、銅-インジウム-ガリウムのいずれか一つからなる積層膜が形成された複数のガラス基板を収納する処理室と、処理室を構成するように形成される反応管と、処理室内に搬入自在に構成され、複数のガラス基板を互いの主面が所定の間隔を保ってそれぞれ対向するよう配列させると共に、配列させた複数のガラス基板のうち両端のガラス基板の外側の主面をそれぞれ覆う一対の側壁が設けられるカセットと、処理室内にセレン元素含有ガス又は硫黄元素含有ガスを導入するガス供給管と、処理室内の雰囲気を排気する排気管と、反応管を囲うように設けられた加熱部と、複数のガラス基板の各主面において、複数のガラス基板の短辺方向に処理室内の雰囲気を強制対流させるファンと、を具備する。

Description

基板処理装置、及び、搬送装置
 本発明は、基板処理装置、及び、搬送装置に係り、特に、セレン化物系CIS太陽電池の光吸収層を形成するための基板処理装置、及び、搬送装置に関する。
 セレン化物系CIS太陽電池は、ガラス基板、金属裏面電極層、CIS系光吸収層、高抵抗バッファ層、窓層が順に積層される構造を有する。ここでCIS系光吸収層は、銅(Cu)/ガリウム(Ga)、Cu/インジウム(In)、若しくは、Cu-Ga/Inのいずれか一つの積層構造をセレン化することにより形成される。このように、セレン化物系CIS太陽電池は、シリコン(Si)を用いずに形成できるため、基板を薄くできると共に製造コストを下げることができるという特徴を有する。また、CIS系光吸収層は、Siと比較して吸収係数が大きく、効率がよいという特徴を有する。
 ここで、セレン化を行う装置の一例として、特許文献1がある。特許文献1に記載されるセレン化装置は、ホルダーにより複数の平板状の対象物を一定の間隔を設けて、円筒状の石英チャンバーの長軸方向に平行にかつその板面を垂直に配置し、セレン源を導入することにより、複数の対象物のセレン化を同時に行っている。また、ファンを円筒状の石英チャンバーの軸方向の端部に取り付けることにより、石英チャンバー内のセレン化源を強制的に対流させ、ガラス基板上の温度分布の均一化を行うことが記載されている。
特開2006-186114号公報
 特許文献1に記載されるようにファンを円筒状の石英チャンバーの軸方向の端部に配置した場合、石英チャンバー内の雰囲気の対流は、石英チャンバー内を横方向、即ち、ガラス基板の長辺方向に流れることになる。ここで、CIS系太陽電池の製造コストを下げるためガラス基板を大型化すると、ガラス基板の長辺も長くなる。従って、昇降温時のガラス基板の面内の温度の均一性を保つためには、対流するガスの流速を大きくするか、若しくは、昇降温の速度を緩やかにする必要がある。前者の場合、ファンの能力を高くする必要があるが、ファンの能力にも限界があり、実現が困難になってしまう可能性がある。更には、複数のガラス基板間の狭い空間を速い速度のガスが流れると、ガラス基板を引きつけようとする力が大きくなり、ガラス基板が揺らぐ可能性がある。その結果、ガラス基板とホルダーとが擦れて、パーティクルの発生等の問題を引き起こすことになる。一方、昇降温の速度を小さくすると、処理時間が長くなるため、スループットが低下し、製造コストが増加する。従って、ガラス基板の大型化が困難である。
 また、特許文献1に示すように、石英チャンバー内に複数のガラス基板を配列させ、ファンによって発生させた雰囲気の対流をガラス基板の各主面にそれぞれ流すようにした場合、対流の流量等の諸条件が、ガラス基板間で不均一になってしまうことがある。例えば、両端のガラス基板と石英チャンバーとの間の空間が、内側のガラス基板間の空間よりも広く構成されている場合、両端のガラス基板周辺のコンダクタンスが相対的に大きくなってしまう。そして、ファンによって発生させた対流が、内側のガラス基板間の空間に流れずに、両端のガラス基板の外側の空間へと逃げてしまう。このように、ガラス基板間での対流の条件が異なると、ガラス基板間の温度均一性の低下を引き起こしてしまう。また、少なくとも一部のガラス基板では、基板面内の温度均一性が低下してしまうことになる。例えば、両端のガラス基板の面内温度均一性が保たれるようにファンの能力を調節すると、他のガラス基板では対流の流量が不足等して、基板面内の温度均一性が悪化してしまうこととなる。
 また、特許文献1に示す装置では、ガラス基板が大型化すると重量も重くなり、複数のガラス基板を石英チャンバー内に搬入することが難しくなる。
 本発明は、上述の課題に鑑み、ガラス基板を大型化した場合であっても、複数のガラス基板を同時に処理する際の基板間の温度均一性、及び、基板面内の温度均一性を向上させ、また、基板処理のコストを低減させることが可能な基板処理装置、及び、搬送装置を提供することを目的とする。
 本発明の好ましい一態様によれば、
 銅-インジウム、銅-ガリウム、又は、銅-インジウム-ガリウムのいずれか一つからなる積層膜が形成された複数のガラス基板を収納する処理室と、
 前記処理室を構成するように形成される反応管と、
 前記処理室内に搬入自在に構成され、前記複数のガラス基板を互いの主面が所定の間隔を保ってそれぞれ対向するよう配列させると共に、配列させた前記複数のガラス基板のうち両端のガラス基板の外側の主面をそれぞれ覆う一対の側壁が設けられるカセットと、
 前記処理室内にセレン元素含有ガス又は硫黄元素含有ガスを導入するガス供給管と、
 前記処理室内の雰囲気を排気する排気管と、
 前記反応管を囲うように設けられた加熱部と、
 前記複数のガラス基板の各主面において、前記複数のガラス基板の短辺方向に前記処理室内の雰囲気を強制対流させるファンと、を具備する基板処理装置が提供される。
 本発明の好ましい他の態様によれば、
 複数のガラス基板を保持するカセットを処理室内に搬送する搬送装置であって、
 前記カセットを支持する支持部と、
 前記支持部に固定される車輪部と、
 前記支持部及び前記車輪部を一体的に動作させるアームと、を具備する搬送装置が提供される。
 本発明によれば、ガラス基板が大型化した場合であっても、複数のガラス基板を同時に処理する際のガラス基板間の温度均一性、及び、基板面内の温度均一性を向上させることが可能となる。また、基板処理のコストを低減させることが可能となる。
本発明の第1の実施形態に係る処理炉の側面断面図である。 図1の紙面左方向から見た処理炉の断面図である。 本発明の第1の実施形態に係るカセットの斜視図である。 本発明の第1の実施形態に係るコーティング膜を説明する図である。 本発明の第1の実施形態に係るカセットを搬送する際の状態を説明する図である。 本発明の第1の実施形態に係る搬送装置を説明する図である。 本発明の第1の実施形態に係る効果を説明するシミュレーションの結果を示す図である。 本発明の第1の実施形態に係る効果を説明する他のシミュレーションのモデルの構成を示す図である。 本発明の第1の実施形態に係る効果を説明する他のシミュレーションの結果を示す図である。 本発明の第1の実施形態に係る効果を説明する他のシミュレーションの結果を示す図である。 本発明の第2の実施形態に係る処理炉の側面断面図である。
 <第1の実施形態>
 以下、図面を参照しつつ本発明の第1の実施形態を説明する。図1は、本実施形態に係るセレン化処理を行う基板処理装置に組み込まれる処理炉10の側面断面図を示している。また、図2は、図1の紙面左側から見た処理炉10の断面図を示している。
 処理炉10は、ステンレス等の金属材料で形成される炉体としての反応管100を有する。ステンレス等の金属材料を用いることで、石英製とするよりも加工が容易となり、反応管100を大型化しやすくなる。反応管100は、中空の円筒形状をしており、その一端が閉塞し、他端が開口する構造を有する。反応管100の中空部分により、処理室30が形成される。反応管100の開口側には、反応管100と同心円上に、その両端が開口した円筒形状のマニホールド120が設けられる。反応管100とマニホールド120との間には、シール部材としてのOリング(図示せず)が設けられている。
 マニホールド120の反応管100が設けられない開口部には、可動性のシールキャップ110が設けられる。シールキャップ110は、ステンレス等の金属材料で形成され、マニホールド120の開口部に、その一部が挿入される凸型形状をしている。可動性のシールキャップ110とマニホールド120との間には、シール部材としてのOリング(図示せず)が設けられ、処理を行う際には、シールキャップ110が反応管100の開口側を気密に閉塞する。
 反応管100の内部には、後述するカセット410を載置するインナーウォール400が設けられる。インナーウォール400は、図2に示されるように、その一端が反応管100の内周面に固定されると共に、反応管100の中心部にカセット410を設置台420を介して載置させるように構成される。インナーウォール400は、カセット410を挟むように設けられた一対の部材が、その両端で繋がるように構成されることで、強度が高められている。
 カセット410は、図1~図3に示されるように、複数枚のガラス基板20を保持する複数本の保持部材411と、ガラス基板20群の四方を覆うように設けられる4枚の側壁43a,43b(一対の側壁413a及び一対の側壁413b)と、一対の側壁413aの外側面にそれぞれ設けられる一対のつば部412と、を備えている。このように、4枚の側壁43a,43bがガラス基板20群の四方を覆うように設けられることで、カセット410は、少なくとも上下方向が開放され、上下方向にガスの流通が可能な直方体として形成されている。
 保持部材411は、それぞれ棒状に構成されており、複数(例えば30~40枚)のガラス基板20を下方から支持するように、カセット410の下部に梯子状に複数設けられている。保持部材411は、複数のガラス基板20を、それぞれの短辺が鉛直方向を向き、それぞれの長辺が水平方向を向き、それぞれが立設された状態で並んで配列させるように構成されている。なお、複数のガラス基板20は、互いの主面が所定の間隔を保って対向するように、すなわち、互いの主面が非接触な状態で平行に対向するようにそれぞれ保持される。これにより、ガラス基板20間の空間には、少なくとも短辺方向(上下方向)に雰囲気の流通が可能なように構成されている。なお、ガラス基板20の表面には、例えば銅(Cu)、インジウム(In)、及び、ガリウム(Ga)を含有する積層膜が予め形成されている。
 カセット410の長手方向側壁を形成する一対の側壁413aは、ガラス基板20と同等以上の大きさを有する長方形状の平板としてそれぞれ構成されており、短辺が鉛直方向を向き、長辺が水平方向を向き、互いの主面が対向するように設けられている。一対の側壁413aは、保持部材411により保持される複数のガラス基板20のうち、両端(最も外側)のガラス基板20の外側の主面をそれぞれ覆うように設けられている。また、カセット410の前後端部を形成する一対の側壁413bは、ガラス基板20群の短辺(前後端部)を覆う平板として構成されており、側壁413aと同様に、互いの主面が対向するように設けられている。
 なお、両端のガラス基板20の外側の主面と、一対の側壁413aの内側面との間の距離は、複数のガラス基板20の主面間の距離とそれぞれ等しくなるよう構成されている。すなわち、両端のガラス基板20周辺のコンダクタンス(両端のガラス基板20と側壁413aとの間の空間のコンダクタンス)は、それよりも内側のガラス基板20周辺のコンダクタンス(内側のガラス基板20間の空間のコンダクタンス)と同等になるよう構成されている。これにより、ガラス基板20の周囲に逃げるガスの流れを抑制することができ、各ガラス基板20の主面に対して均一かつ効率的にガスを供給することが可能となる。
 一対のつば部412は、それぞれ短冊状に構成されており、直方体として形成されたカセット410の側部から外側に突出するように、一対の側壁413aの外側面にそれぞれ水平姿勢で設けられている。後述するが、つば部412は、カセット410を処理室30内外に搬入出する際に用いられる。なお、インナーウォール400は、つば部412を格納できるように中央部が凸状に形成されている。
 また、反応管100を囲うように、一端が閉塞し、他端が開口する中空の円筒形状をした炉体加熱部200が設けられる。また、シールキャップ110の反応管100と反対側の側面には、キャップ加熱部210が設けられる。この炉体加熱部200とキャップ加熱部210とにより処理室30内が加熱される。なお、炉体加熱部200は、図示しない固定部材により反応管100に固定され、キャップ加熱部210は、図示しない固定部材によりシールキャップ110に固定される。また、シールキャップ110やマニホールド120には、耐熱性の低いOリングを保護する図示しない水冷部等の冷却手段が設けられる。
 マニホールド120には、セレン元素含有ガス(セレン化源)としての例えば水素化セレン(以下、「HSe」)を供給するガス供給管300が設けられる。ガス供給管300から供給されたHSeは、ガス供給管300からマニホールド120とシールキャップ110との間の間隙を介して処理室30内へ供給される。また、マニホールド120のガス供給管300と異なる位置には、排気管310が設けられる。処理室30内の雰囲気は、マニホールド120とシールキャップ110との間の間隙を介して排気管310より排気される。なお、上述の冷却手段により冷却される箇所は、150℃以下まで冷却すると、その部分に未反応のセレンが凝縮してしまうため、例えば150℃から170℃程度に温度制御すると良い。
 反応管100は、ステンレス等の金属材料で形成されている。ステンレス等の金属材料は、石英と比較して加工が容易である。そのため、CIS系太陽電池のセレン化処理を行う基板処理装置に用いられるような大型の反応管100を容易に製造することが可能となる。反応管100を大型化することで、反応管100内に収納できるガラス基板20の数を増やすことができ、CIS系太陽電池の製造コストを下げることができる。
 処理炉10の上部側には、ガラス基板20の長辺方向に沿って、例えば多翼式ファン(シロッコファン)として構成された複数の電動ファン500が設けられる。複数の電動ファン500の夫々は、回転することにより処理室30内の対流を形成する羽部510と、円筒状の反応管100の側壁、及び、炉体加熱部200の側壁を貫通するように設けられた回転軸部520と、炉体加熱部200の外部に設けられ、回転軸部520を回転させる動力部530と、を有する。更に、回転軸部520と反応管100及び炉体加熱部200との間には、保護部材540が設けられている。保護部材540と回転軸部520との間の狭い間隙に窒素パージを行うことにより、回転軸部520から動力部530側に反応ガスが漏洩するのを極力抑えるようにしている。
 複数の電動ファン500により、処理室30内には、複数のガラス基板20の夫々の短辺方向に向かうガスの流れが形成される。複数のガラス基板20の夫々に対し、強制対流を流すことで、ガラス基板20の面内温度均一性を向上させることが可能となる。なお、電動ファン500により形成される強制対流は、図1,2の矢印で示すように、ガラス基板20間を下から上へと流れる。このとき、ガラス基板20間のコンダクタンスは小さいため、電動ファン500の吸気側では圧力が小さくなり、排気側では圧力が大きくなり易い。これに対し本実施形態では、電動ファン500として、雰囲気を送り出す力の強い多翼式ファン(シロッコファン)を採用しているため、吸気側と排気側との間に大きな圧力差が生じたとしても、上述の強制対流を安定して形成することが可能となる。
 ここで、上述したように、本実施形態では、保持部材411により保持される複数のガラス基板20のうち、両端(最も外側)のガラス基板20の外側の主面をそれぞれ覆うように、一対の側壁413aを設けている。これにより、複数のガラス基板20の夫々に対し、強制対流を均一に流すことが可能となる。また、ガラス基板20群の短辺(前後端部)を覆うように、一対の側壁413bを設けている。これにより、周辺に逃げるガスを抑制することができ、効率よく加熱することが可能となる。
 仮に、一対の側壁413aを設けないこととすると、両端のガラス基板20とインナーウォール400との間の空間は、それよりも内側のガラス基板20間の空間よりも広くなってしまう。すなわち、一対の側壁413aを設けないこととすると、両端のガラス基板20周辺のコンダクタンスが、それよりも内側のガラス基板20周辺のコンダクタンスに比べて、相対的に大きくなってしまう。その結果、両端のガラス基板20と、それよりも内側のガラス基板20とで加熱効率が変化してしまい、均一な加熱が困難となる。言い換えれば、一対の側壁413aを設けることにより、両端のガラス基板20周辺と、それよりも内側のガラス基板20間とのガスのコンダクタンスをあわせることができるため、複数のガラス基板20間の均一な加熱が可能となる。
 また、本実施形態では、一対の側壁413bを設けている。その結果、電動ファン500によって発生させた強制対流が、内側のガラス基板20間の空間に制限されるため、より効率的にガラス基板を加熱することが可能となる。
 ガラス基板20間での対流の条件が上述のように異なると、ガラス基板20間の温度均一性が低下してしまう。例えば、外側のガラス基板20の温度が、内側のガラス基板20の温度よりも低くなってしまう。また、少なくとも一部のガラス基板20では、基板面内の温度均一性が低下してしまうことになる。例えば、両端のガラス基板20の面内温度均一性が保たれるように電動ファン500の能力を調節すると、他のガラス基板20では強制対流の流量が不足して、基板面内の温度均一性が悪化してしまうこととなる。これに対し、本実施形態では、両端のガラス基板20の主面を覆うような一対の側壁413aを有することで上述の課題を解決している。
 また、ガラス基板20群の短辺(前後端部)の周辺に強制対流が逃げてしまうと、周辺に流れた分ガラス中央の流速が低下し、中央での昇温が遅くなり、短辺近辺の温度が中央領域の温度よりも高くなってしまい易くなる。これに対し、本実施形態では、複数のガラス基板20の短辺(前後端部)を覆うように側壁413bを設けることで、上述の課題を解決可能である。
 そして、本実施形態のように複数のガラス基板20の四方を覆うように側壁413a、413bの両方を設けることにより、更に、複数のガラス基板20を同時に処理する際のガラス基板20間の温度均一性、及び、ガラス基板20面内の温度均一性をそれぞれ向上させることが可能となる。
 特に、本実施形態では、両端のガラス基板20の外側の主面と、一対の側壁413aの内側面との間の距離を、複数のガラス基板20の主面間の距離とそれぞれ等しくなるようにしている。これにより、ガラス基板20周辺のコンダクタンスと、内側のガラス基板20周辺のコンダクタンスとを揃えることが可能となり、複数のガラス基板20の夫々に対し、強制対流をより均一に流すことが可能となる。そして、ガラス基板20間の温度均一性、及び、ガラス基板20面内の温度均一性をさらに向上させることが可能となる。
 なお、本実施形態では、カセット410に、ガラス基板20の周囲に逃げるガスの流れを抑制するために一対の側壁413aと一対の側壁413bを設けているがこれに限らない。例えば、一対の側壁413aと一対の側壁413bをカセット410に設けるのではなく、反応管100に設けてもよい。但し、一対の側壁413aは、両端のガラス基板20の外側の主面と、一対の側壁413aの内側面との間の距離が複数のガラス基板20の主面間の距離とそれぞれ等しくなるよう構成することが望ましいため、カセット410に設けるほうが望ましい。一方、一対の側壁413bの図1の紙面左側の側壁は、カセット410が図1の紙面左右方向に移動することを考えると、反応管100に設けておき、カセット410を押し当てることにより代替することが可能となる。また、一対の側壁413bの図1の紙面右側の側壁についても、シールキャップ110等に設けておき、シールキャップ110が反応管100を閉塞する際にカセット410に押し当てることにより代替することが可能である。
 また、本実施形態では、電動ファン500を動作させ、強制対流を、ガラス基板20の長辺方向ではなく、短辺方向に向かうようにする。これにより、ガラス基板20の面内の温度を均一化するために必要なガスの流速を下げることができる。
 図7は、電動ファンの位置以外は、同じ構造をした処理炉において、5℃/分の速度で昇温した場合のガラス基板間の流速を変化させ、ガラス基板の面内の温度差を約30℃に抑えるために必要な流速をシュミレーションした結果である。(a)は、電動ファンを処理炉の側面に配置し、ガラス基板の表面のガスの流れをガラス基板の長辺方向とした場合の結果であり、ガラス基板の面内の温度差を約30℃に抑えるために必要なガスの流速は10m/秒であった。(b)は、本実施形態のように電動ファンを処理炉の上面に配置し、ガラス基板の表面のガスの流れをガラス基板の短辺方向にした場合の結果であり、ガラス基板の面内の温度差を約30℃に抑えるために必要なガスの流速は2m/秒であった。なお、(a)及び(b)の左側は、加熱20分後(400K=123℃)の状態を示し、右側は、加熱60分後(600K=323℃)の状態を示している。図7の結果からもわかるように、本実施形態のようにガスの流れをガラス基板の短辺方向とすることにより、ガスの流速を抑えることが可能となり、ガラス基板を大型化することが可能となる。
 図2に示されるように、ガラス基板20の表面を通過したガスは、反応管100の内壁に沿って下部に戻る。従って、処理室30内の雰囲気は循環するようになっている。また、インナーウォール400を電動ファン500の側部を挟むように構成することで、電動ファン500により強制対流されるガス流をガラス基板20に向かうようすることができる。更には、ガラス基板20の長辺方向に複数の電動ファン500を設けたことにより、長辺方向のガスの均一性を向上させることができる。
 処理炉10は、ガラス基板20のガスの上流側に、インナーウォール400に固定された複数の開口部431を有する板状部材の第1整流板430を有している。この第1整流板430の開口部431の開口率を調整し、ガスのコンダクタンスを調整することにより、更に均一に複数のガラス基板20の表面にガスを流すことができる。特に、本実施形態では、電動ファン500を長辺方向に複数並べる構成をしているため、電動ファン500の直下の空間と、電動ファン500の間の空間とでは、ガスの流れが異なってしまう可能性もある。この場合、電動ファン500の直下の空間と、電動ファン500の間の空間とで第1整流板430の開口率を異ならせ、ガスのコンダクタンスを調整することにより、均一にガスを流すことが可能となる。なお、図2において、開口部431は、複数のガラス基板20に対して一つの開口部431を持つように記載してあるが、これに限らず、ガラス基板20の間の一つの空間に対応して一つの開口部431を設けても良い。
 図8は、開口率の異なる領域を有する第1整流板430の効果をシミュレーションした際の構成図を示している。今回のシミュレーションでは、40枚のガラス基板を対称面で4分割した20枚分の半分の長さのモデル(1/4対称モデル)を用いている。また、電動ファン500に対応して第1流入口IN1及び第2流入口IN2があり、第1流入口IN1からは12m/分の、第2流入口IN2からは6m/分の流量でガスが供給され、流出口OUTから流出するようにしている。また、第1整流板430に対応して、ガス流の抵抗体を領域R1,R2,R3に設けている。具体的には、開口率の異なる領域を有する第1整流板430に対応させるため、電動ファンの直下に該当する領域R1の開口率は40%に、電動ファンの間に該当する領域R2の開口率は30%に設定してある。また、複数のガラス基板が並ぶ方向の端の領域R3は、図示されていないが、ガスが外側に流出しないように設定してある。
 このように複数のガラス基板が並ぶ方向の端に流れるガスの流量を絞り、また、電動ファン直下のガス流速を抑え、複数の電動ファンの合流による流速低下を抑えることにより、総循環ガス流量を72m/分とした際のガラス基板間の平均ガス流速が2m/秒以上、ガラス基板間の最低ガス流速が1.2m/秒以上となる結果を得ることができた。
 図9は、図8と同様の構成において、同様のガス流速条件下でガラス基板を加熱した場合に発生するガラス基板面内の温度偏差(ΔT)についてシミュレーションした結果である。なお、本シミュレーションでは、図8の1/4対称モデルではなく、ガラス基板の長辺方向に電動ファンが2つ分並んだ長さでシミュレーションを行っている。図9(a)は、5℃/分で昇温し、室温(25℃)から加熱を開始して、温度偏差(ΔT)が最大となる1時間45分後の550℃(823K)での温度分布を示している。また、(a-1)は、端から1枚目付近、(a-2)は、端から11枚目付近、(a-3)は、端から20枚目付近(中央部)を示しており、その上部に記載されている数字は、その面内の最大温度と最小温度である。40枚のガラス基板のうち両端と中央との間にある、端から11枚目付近の2つの電動ファンの間の下流部分で、最も温度低下していることが分かったが、ガラス基板全体が約550℃に加熱された状態で、28℃の偏差(ΔT)となっており、十分許容できる範囲に収まっていることが分かる。また、図9(b)は、図9(a)から炉体温度を552℃(825K)に固定し、約10分経過した後の温度偏差(ΔT)を示している。(a)と同様に、(b-1)は端から1枚目付近、(b-2)は端から11枚目付近、(b-3)は端から20枚目付近(中央部)を示しており、その上部に面内の最大温度と最小温度が示されている。(b)からも、プロセス時(温度が安定した時)は、十分な温度均一性が保てていることが分かる。
 図9は、端から1枚目付近、11枚目付近、中央部付近にあるガラス基板の面内温度分布を示したが、図10は、炉体において加熱中に発生するガラス基板面内の最大温度差を、40枚全てについてプロットしたものである。Aは、550℃に加熱時の温度偏差(図9(a)に対応)、Bは、552℃に到達した後、ガスの温度を552℃に保持したままガス循環させ、10分経過した後の温度偏差(図9(b)に対応)を示している。2つの電動ファンの影響により、端から6~8枚目の間で比較的大きな温度偏差が発生するものの、整流板などによるコンダクタンス調整を行うことにより、加熱時に30℃以内、プロセス時に10℃以内という極めて良好な均一性が実現できていることが分かる。
 なお、本シミュレーションは、電動ファンの直下の領域の開口率を電動ファンの間の領域の開口率より高くした場合について行ったが、これに限らず、反応炉の構成により反対の関係にしたほうが望ましい場合もある。但し、電動ファンの直下の領域と電動ファンの間の領域とでは、ガス流の条件が異なるため、本実施形態のように、電動ファンの直下の領域と電動ファンの間の領域とで開口率を異ならせることで、ガス流のコンダクタンスを調整でき、均一性を向上させることができる。
 更に、処理炉10は、ガラス基板20の下部側に、インナーウォール400に固定された複数の開口部441を有する板状部材の第2整流板440を有する。上部側の第1整流板430に加えて、下部側にも第2整流板440を有することにより、ガスの均一化の調整できる要因を増やすことができ、ガスの流れをより均一化しやすくなる。なお、図2において、開口部441は、複数のガラス基板20に対して一つの開口部441を持つように記載してあるが、これに限らず、ガラス基板20の間の一つの空間に対応して一つの開口部441を設けても良い。
 更に、本実施形態では、反応管100の少なくとも処理室30内の雰囲気に曝される表面、及び、電動ファン500の少なくとも羽部510および回転軸部520の表面は、図4で示されるように、基材101となるステンレス等の金属材料の上に、ステンレス等の金属材料と比較してセレン化耐性の高いコーティング膜102が形成されて構成されている。広く用いられるステンレス等の金属材料は、HSe等のガスが200℃以上に加熱されて供給されると、非常に高い反応性により腐食してしまうが、本実施形態のようにセレン化耐性の高いコーティング膜102を表面に形成することにより、HSe等のガスによる腐食を抑制できるようになる。そのため、ステンレス等の金属材料を用いることができ、基板処理装置の製造コストを下げることが可能となる。なお、このセレン化耐性の高いコーティング膜としては、セラミックを主成分とするコーティング膜がよく、例えば、酸化クロム(Cr:x,yは1以上の任意数)、アルミナ(Al:x,yは1以上の任意数)、シリカ(Si:x,yは1以上の任意数)の夫々単独あるいは混合物が挙げられる。
 また、本実施形態のコーティング膜102は、ポーラス状の膜で形成している。これにより、ステンレス等の金属材料で形成される基材101とコーティング膜102との線膨張係数の違いによる熱膨張・収縮に、柔軟に追従することが可能となる。その結果、熱処理を繰り返し行ったとしても、コーティング膜102への亀裂の発生を最小限に抑えることができる。なお、コーティング膜102は、2~200μm、望ましくは50~120μmの厚さで形成するのが望ましい。また、基材101とコーティング膜102との線膨張係数の偏差が20%以下、望ましくは、5%以下とするのが望ましい。
 また、シールキャップ110、マニホールド120、ガス供給管300、及び、排気管310も同様に、セレン化源に曝される部分に上述のコーティング膜102を形成しても良い。但し、Oリング等を保護するために冷却手段により200℃以下に冷却されている部分は、ステンレス等の金属材料がセレン化源と接触しても反応しないため、コーティング膜102を形成しなくとも良い。
 次に、カセット410の処理室30内外への搬入出について説明する。図5は、カセット410の搬入時、又は、搬出時の状態を示しており、(a)は、図2に対応する断面図、(b)は、処理炉10を側面から見た場合の図で、説明に必要な部分のみを記載している。また、図6は、本実施形態の搬送装置600を抜き出した図であり、(a)が側面図、(b)が上面図、(c)が搬送装置600の後方から見た図を示している。
 ガラス基板20を大型化するとカセット410が重くなる。そのため、カセット410の下部に板状部材を挿入して持ち上げることが困難になる。そこで、本実施形態では、カセット410につば部412を設け、つば部412を持ち上げることが可能な車輪付きの搬送装置600により、カセット410を持ち上げて搬送する。搬送装置600は、つば部412を支持する支持部601と、支持部601を昇降させる複数の昇降部602と、昇降部の下部に設けられた複数の車輪部603と、複数の昇降部602及び複数の車輪部603を一体的に動作可能とする固定部材604と、固定部に設けられたアーム605と、を有する。搬送装置600全体は、図6に示すように、支持部601及び固定部材604で左右の昇降部602及び車輪部603が一体的に動作するように構成され、アーム605を前後に動かすことにより、搬送装置600全体が一体的に動作可能になっている。
 カセット410を搬送する際には、昇降部602が支持部601を上昇させ、カセット410のつば部412を持ち上げることにより、カセット410全体を持ち上げる。その結果、カセット410は、設置台420と接触することなく移動可能となる。また、カセット410は、複数の車輪部603により支持されているため、カセット410が重くなったとしても荷重を分散することができ、より重いカセット410を搬送することが可能となる。また、インナーウォール400には、複数の車輪部603が移動可能なように外側に突出した凸部(搬送路)が設けられている。従って、アーム605を前後させることにより、車輪部603がインナーウォール400の搬送路を移動し、スムーズにカセット410を搬送させることが可能となる。
 また、カセット410を所定位置まで搬入した後、昇降部602により支持部601を下降させる。カセット410は、支持部601の下降に従って下降するが、カセット410の下面が設置台420と接触すると、それ以上は下降しない。ここで、更に昇降部602により支持部601を下降させると、カセット410はこれ以上は下降しないため、支持部601とつば部412とが離れる。その結果、アーム605を後退させることにより、カセット410を処理室30内に載置した状態で、搬送装置600を処理室30内から取り出すことができる。カセット410を搬出したい場合は、この逆の手順を踏めばよい。
 このように、支持部601と複数の車輪部603とを有する搬送装置600により、カセット410を持ち上げて移動させることにより、ガラス基板20の大型化に対応することができる。また、支持部601を昇降可能な昇降部602を設けることで、カセット410と搬送装置600とを分離することが可能となり、搬送装置600のみを処理室30内外に搬入出することが可能となる。
 次に、本実施形態の処理炉を用いて行う、CIS系太陽電池の製造方法の一部である基板の製造方法について説明する。
 まず、銅(Cu)、インジウム(In)、及び、ガリウム(Ga)を含有する積層膜が形成された30枚から40枚のガラス基板20をカセット410内に準備する。次に、カセット410のつば部412を、搬送装置600の支持部601により持ち上げる。これにより、カセット410の移動が可能となる。その後、搬送装置600の車輪部603をインナーウォール400の搬送路に乗せ、アーム605を前進させることにより、カセット410及び搬送装置600を処理室30内の所定の位置まで移動する。次に、搬送装置600の昇降部602により支持部601及びカセット410を下降させる。カセット410が設置台420に載置された後、昇降部602により支持部601を更に下降させ、搬送装置600とカセット410とを分離させる。その後、アーム605を後退させることにより、搬送装置600を処理室30の外に搬出する。次に、可動性のシールキャップ110により、処理室30を密閉する(搬入工程)。
 その後、処理室30内の雰囲気を窒素ガス等の不活性ガスで置換する(置換工程)。ここで、真空ポンプで処理室30内の雰囲気を一旦排気することで、より速く置換することが可能となる。不活性ガスで処理室30内の雰囲気を置換した後、常温の状態で、不活性ガスにて例えば1~20%(望ましくは、2~10%)に希釈したHSeガス等のセレン化源をガス供給管300から導入する。次に、上記セレン化源を封じ込めた状態、若しくは、排気管310から一定量排気することにより上記セレン化源が一定量フローした状態で、例えば400~550℃、望ましくは450℃~550℃まで、毎分3~50℃の昇温速度で昇温する。この際に、電動ファン500を動作させ、処理室30内の雰囲気をガラス基板20の短辺方向にガス流が向くように強制対流させる。所定温度まで昇温した後、例えば10~180分間、望ましくは、20~120分間保持することにより、ガラス基板20に形成された積層膜にセレン化処理が行われ、CIS系太陽電池の光吸収層が形成される(形成工程)。
 その後、ガス供給管300から不活性ガスを導入し、処理室30内の雰囲気を置換し、また、所定温度まで降温させる(降温工程)。ここで、真空ポンプで処理室30内の雰囲気を一旦排気することで、より速く置換することが可能となる。所定温度まで降温させた後、シールキャップ110を移動させることにより、処理室30を開口する。処理室30が開口したら、搬送装置600の昇降部602により支持部601を下降させた状態で、車輪部603をインナーウォール400の搬送路に乗せる。次に、アーム605を前進させ、搬送装置600を所定位置まで移動させた後、昇降部602により支持部601を上昇させ、カセット410を持ち上げる。そして、アーム605を後退させることにより、カセット410を搬出する(搬出工程)ことにより一連の処理が終了する。
 以上の本発明の第1の実施形態によれば、以下に記載する効果の少なくとも一つを奏する。
 (1)両端(最も外側)のガラス基板の外側の主面をそれぞれ覆うように一対の側壁を設けることにより、複数のガラス基板の夫々に対し、強制対流を均一かつ効率的に流すことが可能となる。その結果、複数のガラス基板を同時に処理する際の基板間の温度均一性、及び、基板面内の温度均一性を向上させることが可能となる。また、ガラス基板群の短辺(前後端部)をそれぞれ覆うように一対の側壁を更に設けることにより、複数のガラス基板の夫々に対し、強制対流を均一かつ効率的に流すことが可能となる。また、処理室内のガスの流れをガラス基板の短辺方向にすることにより、ガスの流れをガラス基板の長辺方向とした場合と比較して、対流させるガスの流速を高くしなくてもガラス基板の温度均一性を保つことが可能となり、ガラス基板を大型化することができる。
 (2)上記(1)において、両端のガラス基板の外側の主面と、一対の側壁の内側面と、の間の距離を、複数のガラス基板の主面間の距離とそれぞれ等しくなるようにしたことで、複数のガラス基板の夫々に対し、強制対流をより均一かつ効率的に流すことが可能となる。その結果、複数のガラス基板を同時に処理する際の基板間の温度均一性、及び、基板面内の温度均一性を向上させることが可能となる。
 (3)上記(1)又は(2)において、複数の電動ファンをガラス基板の長辺方向に複数配置したことにより、ガラス基板の長辺方向のガス流の均一化を実現できる。また、電動ファンを多翼式ファン(シロッコファン)としたことで、吸気側と排気側との圧力差が大きくなっても、ガラス基板間に安定して強制対流を形成することができる。
 (4)(1)乃至(3)において、ガラス基板を挟むように一対のインナーウォールを設けたことにより、対流させたガス流をガラス基板に効率的に向かわせることができる。
 (5)(4)において、電動ファンの側面まで一対のインナーウォールを延在させることにより、ガス流をガラス基板により効率的に向かわせることができる。
 (6)(3)乃至(5)の何れか一つにおいて、電動ファンの少なくとも羽部および回転軸を、羽部の基材よりもセレン化耐性が高い物質でコーティングすることにより、ステンレス等の金属材料で複雑な加工が必要な羽部の基材を構成できる。
 (7)(1)乃至(6)の何れか一つにおいて、反応管をステンレス等の金属材料で形成することにより、反応管を大きくすることができ、ガラス基板を大型化することができる。
 (8)(7)において、反応管の少なくとも処理室の雰囲気に曝される部分を、反応管の基材よりもセレン化耐性の高い物質でコーティングすることにより、基板処理装置のコストを小さくすることができる。
 (9)(1)乃至(8)の何れか一つにおいて、複数のガラス基板の表面の上部側に複数の開口部を有する整流板を配置したことにより、ガス流のコンダクタンスを調整することができる。その結果、電動ファンによる強制対流のガス流れの調整を行うことができ、ガス流の均一化を実現できる。
 (10)(9)において、整流板の開口部の開口率を電動ファンの直下の領域と電動ファンの間の領域とで異ならせることにより、電動ファンの配置によるガス流の乱れを調整することが可能となる。
 (11)(9)又は(10)において、ガラス基板の下部側にも整流板を設けることにより、より細やかにガスのコンダクタンスを調整することが可能となる。
 (12)複数のガラス基板を保持するカセットを処理室内外に搬入出する搬送装置を、複数の車輪部を有する構成としたことにより、複数のガラス基板を大型化した場合も容易に搬送できる。言い換えれば、ガラス基板の大型化を実現できる。
 (13)(12)において、カセットを持ち上げる昇降部を搬送装置に設けたことにより、カセットを搬送後、処理室から搬送装置を取り出すことが可能となる。
<第2の実施形態>
 次に、図1及び図2に示される処理炉10の他の実施形態を図11を用いて説明する。図11では、図1及び図2と同一の機能を有する部材には同一番号を付してある。また、ここでは、第1の実施形態と相違する点について主に説明する。
 図11に示す第2の実施形態では、複数のガラス基板20を保持するカセット410を一つのみ載置した第1の実施形態と異なり、複数のカセット410(ここでは、3つ)を複数のガラス基板20の表面と平行な方向に並べて配置している点が異なる。
 本実施形態では、両端(最も外側)のガラス基板20の外側の主面をそれぞれ覆うように一対の側壁413aを設けたことにより、第1の実施形態と同様に、複数のガラス基板20の夫々に対し、強制対流を均一に流すことが可能となる。また、同様に、ガラス基板20群の短辺(前後端部)をそれぞれ覆うように一対の側壁413bを設けたことにより、複数のガラス基板20の夫々に対し、強制対流を均一かつ効率的に流すことが可能となる。その結果、複数のガラス基板20を同時に処理する際の基板間の温度均一性、及び、基板面内の温度均一性を向上させることが可能となる。
 更に、本実施形態では、両端のガラス基板20の外側の主面と、一対の側壁413aの内側面と、の間の距離を、複数のガラス基板20の主面間の距離とそれぞれ等しくなるようにしたことで、第1の実施形態と同様に、複数のガラス基板の夫々に対し、強制対流をより均一に流すことが可能となり、基板間の温度均一性、及び、基板面内の温度均一性をより向上させることが可能となる。
 また、本実施形態では、電動ファン500による処理室30内の雰囲気の強制対流をガラス基板20の短辺方向としているため、ガラス基板20の長辺方向に複数カセット410を配置しても、夫々のガラス基板20の表面を流れるガスの流れは、第1の実施形態と同様になる。従って、複数のガラス基板20を長辺方向に複数並べることが可能となり、一度に処理できるガラス基板20の数を増やすことができる。
 なお、第1の実施形態で説明したように、一対の側壁413a、413bをカセット410に設けずに、反応管100側に設けても良い。特に第2の実施形態では、複数のカセット410を並べて配置することにより一度の処理できるガラス基板20の数を増やしている。この際、例えば、3個並べたカセット410の中央のカセット410は、その紙面左右方向に別のカセット410が配置される。この場合、中央に配置されるカセット410と他のカセット410とを接触するように配置することにより、一対の側壁413bを設けなくとも、ガスの流れをカセット410内に制限することが可能となる。従って、このような場合は、一対の側壁413bを設けなくともよい。
 また、第1の実施形態で説明したように、本発明では、車輪部603を有する搬送装置600によりカセット410を処理室30内に搬送する。従って、本実施形態のようにカセット410を搬入口から順に並べて配置したとしても、アーム605の長さを調整することにより、遠くまでカセット410搬送することが可能となる。
 更に、従来の石英製の反応管を用いるのではなく、ステンレス等の金属材料を反応管100の基材として用いている。従って、反応管100を大型化したとしても、石英製と比較してその成型が容易であり、また、そのコストの増加も石英製と比較して小さい。そのため、一度に処理できるガラス基板20の数を増やすことができ、CIS系太陽電池の製造コストを下げることができる。また、ステンレス等の金属材料を反応管の基材として使用することにより、石英製の反応管と比較して、その取り扱いも容易であり、反応管を大型化をすることができる。
 また、本実施形態では、第1の実施形態の効果に加えて、以下に記す効果を実現できる。すなわち、反応管100内に、複数のガラス基板20を保持するカセット410をガラス基板20の表面と平行な方向に並んで複数配置することにより、一度に処理できるガラス基板20の数を増やすことができ、CIS系太陽電池の製造コストを小さくすることができる。
<本発明の他の実施形態>
 以上、本発明の実施形態を図面を用いて説明してきたが、本発明の趣旨を逸脱しない限り、様々な変更が可能である。
 例えば、上述の実施形態では、銅(Cu)、インジウム(In)、ガリウム(Ga)が形成された複数のガラス基板をセレン化処理することで説明したが、これに限らず、銅(Cu)/インジウム(In)や銅(Cu)/ガリウム(Ga)等が形成された複数のガラス基板をセレン化処理するようにしてもよい。また、上述の実施形態では、金属材料との反応性の高いセレン化について言及したが、CIS系太陽電池では、セレン化処理に変えて、若しくは、セレン化処理の後に硫黄元素含有ガスを供給し硫化処理を行う場合もある。その際も、本実施形態の大型反応炉を用いることにより、一度に硫化処理をできる枚数を増やすことができるため、製造コストの低下を実現できる。
 また、上述の実施形態では、インナーウォール400を反応管100の下部から上部に渡って連続的に設けているが、これに限らない。即ち、カセット410に一対の側壁413aを設けている部分については、一対の側壁413aにより、ガスが整流されることになるため、この部分については、インナーウォール400を設ける必要はなく、少なくとも一対の整流板413aの上部を超えた部分から電動ファン510までの間に設け、ガスの流れを制限できればよい。このようにインナーウォール400を構成する部材を少なくすることでコスト低減を図ることができる。
<本発明の好ましい態様>
 最後に、本発明の好ましい主な態様を以下に付記する。
(1)銅-インジウム、銅-ガリウム、又は、銅-インジウム-ガリウムのいずれか一つからなる積層膜が形成された複数のガラス基板を収納する処理室と、
 前記処理室を構成するように形成される反応管と、
 前記処理室内に搬入自在に構成され、前記複数のガラス基板を互いの主面が所定の間隔を保ってそれぞれ対向するよう配列させると共に、配列させた前記複数のガラス基板のうち両端のガラス基板の外側の主面をそれぞれ覆う一対の側壁が設けられるカセットと、
 前記処理室内にセレン元素含有ガス又は硫黄元素含有ガスを導入するガス供給管と、
 前記処理室内の雰囲気を排気する排気管と、
 前記反応管を囲うように設けられた加熱部と、
 前記複数のガラス基板の各主面において、前記複数のガラス基板の短辺方向に前記処理室内の雰囲気を強制対流させるファンと、を具備する基板処理装置。
(2)上記(1)において、前記両端のガラス基板の外側の主面と、前記カセットが備える前記一対の側壁の内側面と、の間の距離が、前記複数のガラス基板の主面間の距離とそれぞれ等しくなるよう構成されている基板処理装置。
(3)上記(1)又は(2)において、前記ファンは、前記ガラス基板の長辺方向に沿って複数配置される基板処理装置。
(4)上記(1)乃至(3)の何れか一つにおいて、前記複数のガラス基板の長辺方向に延在し、前記複数のガラス基板を挟むように設けられた一対のインナーウォールを更に具備する基板処理装置。
(5)上記(4)において、前記一対のインナーウォールは、更に前記ファンの側面を挟むように設けられる基板処理装置。
(6)上記(3)乃至(5)の何れか一つにおいて、前記ファンは、前記処理室内で回転する羽部を有し、前記羽部は、前記羽部の基材よりセレン化耐性又は硫化耐性が高い物質を主成分するコーティング膜により前記羽部の基材がコーティングされている基板処理装置。
(7)上記(1)乃至(6)の何れか一つにおいて、前記反応管の基材は、金属材料で形成される基板処理装置。
(8)上記(7)において、前記反応管の少なくとも前記処理室内の雰囲気に曝される部分は、前記反応管の基材よりセレン化耐性又は硫化耐性が高い物質でコーティングされる基板処理装置。
(9)上記(1)乃至(8)の何れか一つにおいて、前記複数のガラス基板の表面における前記セレン元素含有ガス又は前記硫黄元素含有ガスが流れる方向の前記複数の基板の上流側に複数の開口部を有する第1整流板が設けられる基板処理装置。
(10)上記(9)において、前記複数のガラス基板の表面における前記セレン元素含有ガス又は前記硫黄元素含有ガスが流れる方向の前記複数のガラス基板の下流側に複数の開口部を有する第2整流板が設けられる基板処理装置。
(11)上記(9)又は(10)において、前記ファンは、前記複数のガラス基板の長辺方向に沿って複数設けられ、前記第1整流板のうち前記ファンの真下の領域の前記開口部の開口率は、複数配置された前記ファンの間の領域の前記開口部の開口率と異なる基板処理装置。
(12)上記(1)乃至(11)の何れか一つにおいて、前記複数のガラス基板は、カセットに保持され、前記カセットは、前記複数のガラス基板の長辺方向に複数配置される基板処理装置。
(13)複数のガラス基板を保持するカセットを処理室内に搬送する搬送装置であって、前記カセットを支持する支持部と、前記支持部に固定される車輪部と、前記支持部及び前記車輪部を一体的に動作させるアームと、を具備する搬送装置。
(14)上記(13)において、前記搬送装置は、前記支持部と前記車輪部との間に設けられ昇降可能な昇降部を更に具備する搬送装置。
 10:処理炉、20:ガラス基板、30:処理室、100:反応管、101:基材、102:コーティング膜、110:シールキャップ、120:マニホールド、200:炉体加熱部、210:キャップ加熱部、300:ガス供給管、310:排気管、400:インナーウォール、410:カセット、411:保持部材、412:つば部、413a,413b:側壁、420:設置台、430:第1整流板、440:第2整流板、500:電動ファン、510:羽部、520:回転軸部、530:動力部、540:保護部材、600:搬送装置、601:支持部、602:昇降部、603:車輪部、604:固定部材、605:アーム

Claims (5)

  1.  銅-インジウム、銅-ガリウム、又は、銅-インジウム-ガリウムのいずれか一つからなる積層膜が形成された複数のガラス基板を収納する処理室と、
     前記処理室を構成するように形成される反応管と、
     前記処理室内に搬入自在に構成され、前記複数のガラス基板を互いの主面が所定の間隔を保ってそれぞれ対向するよう配列させると共に、配列させた前記複数のガラス基板のうち両端のガラス基板の外側の主面をそれぞれ覆う一対の側壁が設けられるカセットと、
     前記処理室内にセレン元素含有ガス又は硫黄元素含有ガスを導入するガス供給管と、
     前記処理室内の雰囲気を排気する排気管と、
     前記反応管を囲うように設けられた加熱部と、
     前記複数のガラス基板の各主面において、前記複数のガラス基板の短辺方向に前記処理室内の雰囲気を強制対流させるファンと、を具備する基板処理装置。
  2.  請求項1に記載の基板処理装置であって、
     前記両端のガラス基板の外側の主面と、前記カセットが備える前記一対の側壁の内側面と、の間の距離が、前記複数のガラス基板の主面間の距離とそれぞれ等しくなるよう構成されている基板処理装置。
  3.  請求項1に記載の基板処理装置であって、
     前記ファンは、前記基板の長辺方向に沿って複数配置される基板処理装置。
  4.  請求項1に記載の基板処理装置であって、
     前記複数のガラス基板の長辺方向に延在し、前記複数のガラス基板を挟むように設けられた一対のインナーウォールを更に具備する基板処理装置。
  5.  複数のガラス基板を保持するカセットを処理室内に搬送する搬送装置であって、
     前記カセットを支持する支持部と、
     前記支持部に固定される車輪部と、
     前記支持部及び前記車輪部を一体的に動作させるアームと、を具備する搬送装置。
PCT/JP2012/081046 2011-12-01 2012-11-30 基板処理装置、及び、搬送装置 WO2013081095A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147015940A KR20140095557A (ko) 2011-12-01 2012-11-30 기판 처리 장치 및 반송 장치
CN201280067091.XA CN104067378A (zh) 2011-12-01 2012-11-30 衬底处理装置及搬运装置
JP2013547228A JP5853291B2 (ja) 2011-12-01 2012-11-30 基板処理装置、及び、搬送装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-263720 2011-12-01
JP2011263720 2011-12-01

Publications (1)

Publication Number Publication Date
WO2013081095A1 true WO2013081095A1 (ja) 2013-06-06

Family

ID=48535543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081046 WO2013081095A1 (ja) 2011-12-01 2012-11-30 基板処理装置、及び、搬送装置

Country Status (4)

Country Link
JP (1) JP5853291B2 (ja)
KR (1) KR20140095557A (ja)
CN (1) CN104067378A (ja)
WO (1) WO2013081095A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057809A (ja) * 2013-08-12 2015-03-26 本田技研工業株式会社 太陽電池の製造方法
CN105556651A (zh) * 2013-09-10 2016-05-04 泰拉半导体株式会社 热处理装置以及具备该热处理装置的热处理系统
CN110366774A (zh) * 2018-01-12 2019-10-22 株式会社爱发科 真空装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186114A (ja) * 2004-12-28 2006-07-13 Showa Shell Sekiyu Kk Cis系薄膜太陽電池の光吸収層の作製方法
WO2010055669A1 (ja) * 2008-11-12 2010-05-20 株式会社アルバック 電極回路、成膜装置、電極ユニットおよび成膜方法
WO2010060646A1 (de) * 2008-11-28 2010-06-03 Volker Probst Verfahren zum herstellen von halbleiterschichten bzw. von mit elementarem selen und/oder schwefel behandelten beschichteten substraten, insbesondere flächigen substraten

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2581378T3 (es) * 2008-06-20 2016-09-05 Volker Probst Dispositivo de procesamiento y procedimiento para procesar productos de procesamiento apilados

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186114A (ja) * 2004-12-28 2006-07-13 Showa Shell Sekiyu Kk Cis系薄膜太陽電池の光吸収層の作製方法
WO2010055669A1 (ja) * 2008-11-12 2010-05-20 株式会社アルバック 電極回路、成膜装置、電極ユニットおよび成膜方法
WO2010060646A1 (de) * 2008-11-28 2010-06-03 Volker Probst Verfahren zum herstellen von halbleiterschichten bzw. von mit elementarem selen und/oder schwefel behandelten beschichteten substraten, insbesondere flächigen substraten

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057809A (ja) * 2013-08-12 2015-03-26 本田技研工業株式会社 太陽電池の製造方法
CN105556651A (zh) * 2013-09-10 2016-05-04 泰拉半导体株式会社 热处理装置以及具备该热处理装置的热处理系统
JP2016535459A (ja) * 2013-09-10 2016-11-10 テラセミコン コーポレイション 熱処理装置及びそれを備えた熱処理システム
CN110366774A (zh) * 2018-01-12 2019-10-22 株式会社爱发科 真空装置
CN110366774B (zh) * 2018-01-12 2023-06-02 株式会社爱发科 真空装置

Also Published As

Publication number Publication date
CN104067378A (zh) 2014-09-24
JPWO2013081095A1 (ja) 2015-04-27
JP5853291B2 (ja) 2016-02-09
KR20140095557A (ko) 2014-08-01

Similar Documents

Publication Publication Date Title
JP5698059B2 (ja) 基板処理装置、及び、太陽電池の製造方法
JP5405562B2 (ja) 処理チャンバ内で物体を焼き戻しするための装置および方法
JP5090097B2 (ja) 基板処理装置、半導体装置の製造方法及び基板処理方法
KR101500820B1 (ko) 다층체의 가공을 위한 장치, 시스템 및 방법
KR20120123097A (ko) 감소된 챔버 공간을 형성하는 장치 및 다층체의 위치 결정 방법
WO2001041202A1 (fr) Dispositif et procede de traitement thermique
US20140060435A1 (en) Doors for high volume, low cost system for epitaxial silicon deposition
KR101698281B1 (ko) 기판을 가공하기 위한 시스템 및 방법
JP5853291B2 (ja) 基板処理装置、及び、搬送装置
JP6257616B2 (ja) コーティングされた基板を処理するための、プロセスボックス、装置及び方法
KR20150002556A (ko) 기판 처리 장치, 태양 전지의 제조 방법 및 기판의 제조 방법
WO2013099894A1 (ja) 基板処理装置及びそれを用いた基板処理方法
JP5517372B2 (ja) 真空処理装置
US10163670B2 (en) Device and method for heat treating an object
KR101473176B1 (ko) 열처리 장치
JP6754530B2 (ja) 成膜装置及び成膜方法並びに太陽電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547228

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147015940

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12853714

Country of ref document: EP

Kind code of ref document: A1