WO2013099894A1 - 基板処理装置及びそれを用いた基板処理方法 - Google Patents

基板処理装置及びそれを用いた基板処理方法 Download PDF

Info

Publication number
WO2013099894A1
WO2013099894A1 PCT/JP2012/083559 JP2012083559W WO2013099894A1 WO 2013099894 A1 WO2013099894 A1 WO 2013099894A1 JP 2012083559 W JP2012083559 W JP 2012083559W WO 2013099894 A1 WO2013099894 A1 WO 2013099894A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction tube
substrate
gas
processing
glass substrate
Prior art date
Application number
PCT/JP2012/083559
Other languages
English (en)
French (fr)
Inventor
吉田秀成
国井泰夫
西谷英輔
平野光浩
谷山智志
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to CN201280065144.4A priority Critical patent/CN104160480A/zh
Priority to KR1020147014504A priority patent/KR20140085584A/ko
Publication of WO2013099894A1 publication Critical patent/WO2013099894A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67754Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a batch of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method using the same, and more particularly to a technique effective when applied to shortening the processing time of a substrate.
  • a selenide-based CIS (chalcopyrite) solar cell has a structure in which a glass substrate, a metal back electrode layer, a CIS-based light absorption layer, a high-resistance buffer layer, and a window layer are sequentially stacked.
  • the CIS light absorption layer is formed by selenizing any one of the laminated structures of copper (Cu) / gallium (Ga), Cu / indium (In), or Cu—Ga / In.
  • the selenide CIS solar cell can be formed without using silicon (Si), the substrate can be made thin and the manufacturing cost can be reduced.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-186114.
  • a long axis direction of a cylindrical quartz chamber is formed by providing a plurality of flat objects (substrates) with a fixed interval by a holder.
  • the object is selenized by arranging the plate surface in parallel with the (longitudinal direction) and introducing a selenium source.
  • a fan to the end of the cylindrical quartz chamber in the axial direction, the gas containing the selenization source in the quartz chamber can be forced to convection and the temperature distribution on the glass substrate can be made uniform.
  • the glass substrate has a low thermal conductivity, it is difficult to heat the glass substrate in a short time while maintaining the temperature of the glass substrate uniformly by heat conduction or radiation from the outside of the plurality of glass substrates in the holder.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a technique capable of increasing the heating efficiency of the substrate in the substrate processing.
  • a substrate processing apparatus includes a reaction tube, a fan for forcibly convectioning the atmosphere inside the reaction tube along the surface of the substrate, and a surface of the substrate disposed at an outermost position among the plurality of substrates. And a rectifying plate that controls the processing gas flowing toward the fan outside the plurality of substrates so as to flow along the inner peripheral surface of the reaction tube.
  • the substrate processing method according to the present invention is directed to the fan outside the plurality of substrates by a rectifying plate that covers the surface of the substrate disposed at the outermost position among the plurality of substrates inside the reaction tube.
  • the film forming process is performed by controlling the flowing process gas to flow along the inner peripheral surface of the reaction tube.
  • the substrate heating time can be shortened.
  • FIG. 3 is an enlarged partial cross-sectional view showing the structure of part A in FIG. 2. It is sectional drawing which shows an example of the structure of the coating film of the reaction tube of the substrate processing apparatus shown in FIG. It is sectional drawing which shows an example of the structure of the principal part of the substrate processing apparatus of Embodiment 2 of this invention. It is sectional drawing which shows an example of the structure of the circumferential direction of the substrate processing apparatus shown in FIG. It is an expanded partial sectional view which shows the structure of the B section of FIG. It is a simulation result figure which shows an example of the effect by the substrate processing apparatus of Embodiment 2 of this invention. It is sectional drawing which shows the structure of the principal part of the substrate processing apparatus of the modification in Embodiment 2 of this invention.
  • the constituent elements are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a main part of a substrate processing apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of the structure in the circumferential direction of the substrate processing apparatus shown in FIG. 3 is an enlarged partial sectional view showing the structure of part A of FIG. 2, and
  • FIG. 4 is a sectional view showing an example of the structure of the coating film of the reaction tube of the substrate processing apparatus shown in FIG.
  • the substrate processing apparatus performs a heat treatment on a substrate such as a glass substrate, and includes a processing furnace 10 which is a main part shown in FIG.
  • a processing chamber (also referred to as a reaction chamber) 30 in which a heat treatment such as a film forming process is performed on a substrate is hermetically configured by a reaction tube 100 and a seal cap (lid) 110, and a plurality of glass substrates 20 are included therein. Is placed on the installation table 420 in a state of being stored in a cassette (also referred to as a boat) 410.
  • the reaction tube 100 has a structure that is heated by a heating unit (heater) such as a furnace body heating unit 200 and a cap heating unit 210 provided in the surroundings, and the material of the reaction tube 100 is corrosive.
  • a heating unit such as a furnace body heating unit 200 and a cap heating unit 210 provided in the surroundings, and the material of the reaction tube 100 is corrosive.
  • a metal having high corrosion resistance that can withstand gas or a metal having a corrosion-resistant coating on its surface is used.
  • an electric fan 500 is provided on one side of the reaction tube 100 that is closed, and a power unit (fan driving unit) 530 provided outside the processing chamber 30. Therefore, the gas in the processing chamber 30 can be agitated by rotating the wing (fan) 510.
  • the reaction tube 100 is connected to a gas introduction unit for processing the glass substrate 20, an exhaust port for replacing the gas inside the processing chamber 30, and an exhaust device for exhausting the gas from the exhaust port.
  • An exhaust pipe, an introduction part of an inert gas such as nitrogen, and the like are provided.
  • the processing furnace 10 has a reaction tube 100 as a furnace body made of a metal material such as stainless steel.
  • the reaction tube 100 has a hollow cylindrical shape (tubular shape), and has a structure in which one end is closed and the other end is opened.
  • a processing chamber 30 is formed by the hollow portion of the reaction tube 100.
  • a cylindrical manifold 120 having both ends opened concentrically with the reaction tube 100 is provided.
  • An O-ring (not shown) as a seal member is provided between the reaction tube 100 and the manifold 120.
  • a movable seal cap 110 is provided in the opening portion of the manifold 120 where the reaction tube 100 is not provided.
  • the seal cap 110 is formed of a metal material such as stainless steel and has a convex shape in which a part thereof is inserted into the opening of the manifold 120.
  • An O-ring (not shown) as a seal member is provided between the movable seal cap 110 and the manifold 120. When performing processing, the seal cap 110 seals the opening side of the reaction tube 100 in an airtight manner. Block.
  • a plurality of glass substrates (for example, 30 to 60 sheets) 20 on which a laminated film containing copper (Cu), indium (In), and gallium (Ga) is formed are provided inside the reaction tube 100.
  • An installation table 420 for placing the cassette 410 to be held is provided inside the reaction tube 100.
  • the installation table 420 is configured such that one end thereof is fixed to the inner peripheral surface 100 a of the reaction tube 100 and the cassette 410 is mounted on the center of the reaction tube 100 via the installation table 420.
  • the cassette 410 is a holding member that can hold the glass substrates 20 side by side in a state in which the plurality of glass substrates 20 stand on both ends of the glass substrate 20.
  • the plate of the side surface portion C is only the frame 410a as much as possible (the plate of the side surface portion C is, for example, a frame shape) so as not to disturb the gas flow of the airflow P.
  • the gas flowing through the plate 430 is easy to flow.
  • each glass substrate 20 is supported by the groove
  • a furnace body heating unit 200 which is a heating unit having a hollow cylindrical shape with one end closed and the other end opened.
  • a cap heating unit 210 is provided on the side surface (outside) of the seal cap 110 opposite to the reaction tube 100.
  • the interior of the furnace body heating unit 200 and the cap heating unit 210 are heated through the reaction tube 100, that is, the inside of the processing chamber 30.
  • the furnace heating unit 200 is fixed to the reaction tube 100 by a fixing unit (not shown), and the cap heating unit 210 is fixed to the seal cap 110 by a fixing unit (not shown).
  • the seal cap 110 and the manifold 120 are provided with a cooling means (not shown) for water cooling in order to protect the O-ring having low heat resistance.
  • the manifold 120 is provided with a gas supply pipe 300 for supplying selenium hydride (hereinafter referred to as “H 2 Se”) as a selenium element-containing gas (selenization source, process gas 600).
  • H 2 Se selenium hydride
  • the H 2 Se supplied from the gas supply pipe 300 is supplied (introduced) from the gas supply pipe 300 through the gap between the manifold 120 and the seal cap 110.
  • an exhaust pipe 310 is provided in the manifold 120 on the opposite side of the gas supply pipe 300, and the atmosphere in the processing chamber 30 is from the exhaust pipe 310 through a gap between the manifold 120 and the seal cap 110. Exhausted. It should be noted that when the portion cooled by the above-described cooling means is cooled to 150 ° C. or lower, unreacted selenium is condensed in that portion, so the temperature is preferably controlled from 150 ° C. to about 170 ° C.
  • an electric fan 500 is provided inside the reaction tube 100 of the first embodiment. That is, the electric fan 500 is provided on one end side of the reaction tube 100 that is closed, and the electric fan 500 can be driven to forcibly convection the atmosphere inside the reaction tube 100 along the surface of the glass substrate 20.
  • the electric fan 500 rotates to provide a wing portion 510 that forms convection in the processing chamber 30, and a rotating shaft portion provided so as to penetrate the side wall of the cylindrical reaction tube 100 and the side wall of the furnace body heating unit 200.
  • 520 and a power unit 530 that is provided outside the furnace body heating unit 200 and rotates the rotating shaft unit 520.
  • a protective member 540 is provided between the rotary shaft portion 520 and the reaction tube 100 and the furnace body heating portion 200, and a nitrogen purge is performed in a narrow gap between the protective member 540 and the rotary shaft portion 520. This prevents the reaction gas (processing gas 600) from entering the power unit 530 from the rotating shaft unit 520 as much as possible.
  • the rotation of the electric fan 500 forms an air flow P of the processing gas 600 that flows along the long side direction of the glass substrate 20 (longitudinal direction of the cylindrical reaction tube 100) in the processing chamber 30. In this way, the electric fan 500 is operated so that forced convection is directed in the long side direction of the glass substrate 20.
  • a cylindrical rectifying plate 430 is provided in the processing chamber 30.
  • the rectifying plate 430 covers the surface of the glass substrate 20 arranged at the outermost position among the plurality of glass substrates 20 arranged upright on the cassette 410 inside the reaction tube 100, and both ends are open. It has a shape. That is, a cylindrical rectifying plate 430 is provided so as to cover a plurality of glass substrates 20 arranged upright on the cassette 410, and gas can pass through both ends of the cylindrical rectifying plate 430. Is open.
  • the rectifying plate 430 is connected to the rectifying plate 430 through one opening of the cylindrical rectifying plate 430 from the wing portion 510 of the electric fan 500 attached to the wall of the inner peripheral surface 100a of the reaction tube 100 that is closed in the longitudinal direction.
  • An airflow can be sent into the interior, and an airflow can be sent out of the rectifying plate 430 from the opening on the other side.
  • the rectifying plate 430 is attached to the inner peripheral surface 100a of the reaction tube 100.
  • the rectifying plate 430 includes an air flow P that flows along the glass substrate 20 by forced convection formed by the rotation of the blades 510 by driving the electric fan 500, and the air flow P is sealed cap 110.
  • the air flow Q of the processing gas 600 that flows toward the wings 510 of the electric fan 500 is separated from the outside of the plurality of glass substrates 20. That is, the rectifying plate 430 is directed toward the wing 510 of the electric fan 500 after the air flow P flowing along the glass substrate 20 formed by the rotation of the wing 510 and the air flow P collides with the inner wall of the seal cap 110.
  • the air flow Q flowing toward the wing 510 is controlled so as to flow along the inner peripheral surface 100a of the reaction tube 100.
  • the airflow P of the processing gas 600 flowing along the surface of the glass substrate 20 by the forced convection formed by driving the electric fan 500 exits from the rectifying plate 430 and is then sealed.
  • the rectifying plate 430 causes the flow of the processing gas 600 to reach the inner wall of the cap 110 and then flow along the inner peripheral surface 100a of the reaction tube 100 in the region outside the rectifying plate 430 in the region outside the rectifying plate 430. I have control.
  • the flow of the processing gas 600 during the processing of the glass substrate 20 in the processing chamber 30 can be stably circulated.
  • the flow path of the processing gas 600 flowing toward the wing portion 510 of the electric fan 500 can be changed within the reaction tube 100. Therefore, the processing gas 600 flowing toward the wing portion 510 can be controlled to flow along the inner peripheral surface 100a of the heated reaction tube 100. As a result, the flow of the processing gas 600 inside the reaction tube 100 can be stabilized.
  • the heating efficiency of the processing gas 600 can be increased, the heating efficiency of the glass substrate 20 can be increased, and the temperature raising time can be shortened.
  • the processing furnace 10 has a plurality of irregularities 103 formed on the inner peripheral surface 100 a of the reaction tube 100.
  • the unevenness 103 is formed over substantially the entire inner peripheral surface 100a of the reaction tube 100 (for example, the inner peripheral surface 100a through which the processing gas 600 passes).
  • the surface area of the inner peripheral surface 100a of the reaction tube 100 can be increased, and the contact area when the processing gas 600 passes through the inner peripheral surface 100a of the heated reaction tube 100 can be increased. .
  • the heating efficiency of the processing gas 600 can be further increased, the heating efficiency of the glass substrate 20 can be further increased, and the temperature raising time can be further shortened.
  • the reaction tube 100 of the processing furnace 10 of the first embodiment is made of a metal material such as stainless steel.
  • Metal materials such as stainless steel are easier to process than quartz. Therefore, it is possible to easily manufacture a large reaction tube 100 used in a substrate processing apparatus that performs selenization processing of CIS (chalcopyrite) solar cells. Therefore, the number of glass substrates 20 that can be accommodated in the reaction tube 100 can be increased, and the manufacturing cost of the CIS solar cell can be reduced.
  • the surface (inner peripheral surface 100a) exposed to at least the atmosphere in the processing chamber 30 of the reaction tube 100 is the base material 101 of the reaction tube 100 of FIG. 1, as shown in FIG.
  • a coating film 102 having higher selenization resistance than a metal material such as stainless steel is formed on a metal material such as stainless steel.
  • a metal material such as stainless steel which is widely used, is corroded due to extremely high reactivity when a gas such as H 2 Se is heated to 200 ° C. or more.
  • a gas such as H 2 Se is heated to 200 ° C. or more.
  • a coating film 102 containing ceramic as a main component for example, chromium oxide (Cr x O y : x, y is an arbitrary number of 1 or more), alumina (Al x O y : x, y is an arbitrary number of 1 or more), silica (Si x O y : x, y is an arbitrary number of 1 or more), respectively, or a coating film 102 containing carbon as a main component, for example, Examples thereof include silicon carbide (SiC) and diamond-like carbon (DLC).
  • SiC silicon carbide
  • DLC diamond-like carbon
  • the coating film 102 of the first embodiment is formed of a porous film.
  • the coating film 102 is desirably formed to a thickness of 2 to 200 ⁇ m, preferably 50 to 120 ⁇ m.
  • the deviation of the linear expansion coefficient between the substrate 101 and the coating film 102 is 20% or less, preferably 5% or less.
  • the above-described coating film 102 may be formed on the seal cap 110, the manifold 120, the gas supply pipe 300, and the exhaust pipe 310 in the same manner at portions exposed to the selenization source. However, since the portion cooled to 200 ° C. or less by the cooling means to protect the O-ring or the like does not react even when a metal material such as stainless steel comes into contact with the selenization source, the coating film 102 is not formed. Also good.
  • FIGS. 1 and 2 an example of a substrate processing apparatus including a processing furnace 10 having a cylindrical reaction tube 100 provided with an electric fan 500 on one side portion closed inside is shown.
  • the case where the selenization process is performed in a manufacturing process of a CIGS (C: Cu (Copper), I: ln (lndium), G: Ga (Gallium), S: Se (Selenium)) solar cell will be described.
  • each glass substrate 20 is arrange
  • the cassette 410 is carried into the processing chamber 30 by, for example, moving the cassette 410 into the processing chamber 30 with the lower portion of the cassette 410 supported and lifted by an arm of a loading / unloading device (not shown). After reaching the position, the arm is moved downward and the cassette 410 is placed on the installation table 420.
  • the seal cap 110 is closed to make the processing chamber 30 sealed, and the atmosphere inside the processing chamber 30 is replaced with an inert gas (processing gas 600) such as nitrogen gas (replacement step).
  • processing gas 600 such as nitrogen gas
  • replacement step After substituting the atmosphere in the processing chamber 30 with the inert gas, power is supplied to a heater such as the furnace body heating unit 200 and the reaction tube 100 is heated at a predetermined temperature increase rate. For example, the temperature is raised to 400 to 550 ° C., preferably 450 to 550 ° C. at 3 to 15 ° C. per minute.
  • the blades 510 of the electric fan 500 are rotated by the power unit 530, and a plurality of processing gases (inert gases) 600 heated in the vicinity of the inner peripheral surface 100 a of the reaction tube 100 are accommodated in the cassette 410.
  • the glass substrate 20 is heated by passing through the glass substrate 20 along the long side direction (longitudinal direction) of each glass substrate 20 and transferring the heat of the processing gas 600 to the glass substrate 20.
  • the temperature rise rate of the reaction tube 100 or the processing gas that passes between the adjacent glass substrates 20 so that the temperature difference does not increase. Gas
  • the flow rate of 600 is adjusted to an appropriate value and heated.
  • a cylindrical rectifying plate 430 is provided inside the reaction tube 100, and a plurality of glass substrates 20 are provided inside the cylindrical rectifying plate 430. Is arranged.
  • the cylindrical rectifying plate 430 of the first embodiment extends along the flow direction of the processing gas 600 on the surface of the glass substrate 20 generated by the forced convection by the wings 510 of the electric fan 500, and includes a plurality of It is provided so that the surface of the board
  • the cylindrical rectifying plate 430 has an airflow P of the processing gas 600 (flowing direction of the processing gas 600) flowing along the long side direction of the glass substrate 20 formed by the rotation of the wing portion 510 and the airflow P.
  • the airflow Q flowing toward the wing portion 510 of the electric fan 500 reverses at the inner wall of the seal cap 110 and flows toward the wing portion 510 of the electric fan 500. It is controlled to flow along.
  • the flow path of the air flow Q that is reversed by the seal cap 110 and goes to the wings 510 outside the plurality of glass substrates 20 is narrowed, so that the air flow Q flows along the inner peripheral surface 100 a of the reaction tube 100. Is controlling.
  • the flow straightening plate 430 controls the flow of the processing gas 600 so that the air flow Q toward the wing portion 510 flows along the inner peripheral surface 100a of the reaction tube 100 in a region outside the flow straightening plate 430.
  • the cylindrical rectifying plate 430 is provided inside the reaction tube 100 (inside the processing chamber 30), the flow path of the processing gas 600 flowing toward the wing portion 510 of the electric fan 500 is changed to the reaction tube 100. Therefore, the processing gas 600 can be controlled so as to flow along the inner peripheral surface 100a of the heated reaction tube 100. Thereby, stabilization of the flow of the processing gas 600 inside the reaction tube 100 can be achieved.
  • the heating efficiency of the processing gas 600 can be increased, the heating efficiency of the glass substrate 20 can be increased, and the temperature raising time can be shortened.
  • the processing furnace 10 has a plurality of irregularities 103 formed on the inner peripheral surface 100a of the reaction tube 100, thereby increasing the surface area of the inner peripheral surface 100a of the reaction tube 100. Therefore, it is possible to increase the contact area when the processing gas 600 passes through the inner peripheral surface 100a of the heated reaction tube 100.
  • the heating efficiency of the processing gas 600 can be further increased, the heating efficiency of the glass substrate 20 can be further increased, and the temperature raising time can be further shortened.
  • the glass substrate 20 is heated, and when the glass substrate 20 is heated to a predetermined temperature (for example, 400 to 500 ° C., which will be described later), the processing gas (selenium element-containing gas (selenium selenization) is contained in the processing chamber 30. Source)) 600 is introduced to perform film formation on the glass substrate 20.
  • a predetermined temperature for example, 400 to 500 ° C., which will be described later
  • the processing gas elenium element-containing gas (selenium selenization) is contained in the processing chamber 30.
  • Source 600 is introduced to perform film formation on the glass substrate 20.
  • the processing gas (selenization source) 600 is introduced into the reaction tube 100 while the reaction tube 100 is heated, and also in this case, the atmosphere inside the reaction tube 100 is changed to a glass substrate by the blades 510 of the electric fan 500.
  • the airflow P and airflow Q stabilized by the cylindrical rectifying plate 430 are formed by forced convection along the surface 20, and a film forming process is performed on the plurality of glass substrates 20 in this state.
  • the light absorption layer of a CIS type solar cell is formed on each glass substrate 20 (formation process).
  • the temperature of the reaction tube 100 is decreased at a constant rate, and the processing gas 600 in the processing chamber 30 is replaced with an inert gas such as nitrogen. That is, after completion of the film forming process, an inert gas such as nitrogen gas is introduced from the gas supply pipe 300 to replace the atmosphere in the processing chamber 30, and the temperature is lowered to a predetermined temperature (temperature lowering step).
  • the seal cap 110 is moved to open the processing chamber 30. Thereafter, the cassette 410 is unloaded by the arm of the unloading / unloading apparatus (not shown) (unloading step), and the series of film forming processes is completed.
  • a metal precursor film (laminated film) made of Cu (copper), In (indium), and Ga (gallium) formed on the glass substrate 20 is formed of H 2 Se ( In the process of performing Se (selenium) conversion with hydrogen selenide gas, film formation is performed in about 20 minutes to 2 hours while the temperature of the glass substrate 20 disposed in the processing chamber 30 is maintained at 400 to 500 ° C. .
  • FIG. 5 is a sectional view showing an example of the structure of the main part of the substrate processing apparatus according to the second embodiment of the present invention.
  • FIG. 6 is a sectional view showing an example of the structure in the circumferential direction of the substrate processing apparatus shown in FIG. 7 is an enlarged partial cross-sectional view showing the structure of part B of FIG. 6, and
  • FIG. 8 is a simulation result diagram showing an example of the effect of the substrate processing apparatus according to the second embodiment of the present invention.
  • the substrate processing apparatus of the second embodiment includes the same processing furnace 10 as the substrate processing apparatus of the first embodiment, but the processing furnace 10 of the second embodiment is shown in FIGS.
  • a plurality of electric fans 500 are provided on the upper portion of the reaction tube 100, and therefore forced convection caused by the rotation of the blade portion 510 of the electric fan 500 is directed from the upper portion to the lower portion of the reaction tube 100. Therefore, the airflow R generated by the rotation of the wing portion 510 flows along the short side direction of the glass substrate 20.
  • the reaction tube 100 and the seal cap 110 can be hermetically configured, and a plurality of electric fans 500 are provided side by side on the upper portion of the reaction tube 100.
  • the structure is such that the gas in the processing chamber 30 can be agitated by rotating the wing part (fan) 510 by a power part (fan drive part) 530 provided outside the chamber.
  • the processing furnace 10 has the reaction tube 100 as a furnace body formed with metal materials, such as stainless steel.
  • the reaction tube 100 has a hollow cylindrical shape (tubular shape), and has a structure in which one end is closed and the other end is opened.
  • a processing chamber 30 is formed by the hollow portion of the reaction tube 100.
  • a cylindrical manifold 120 having both ends opened concentrically with the reaction tube 100 is provided.
  • An O-ring (not shown) as a seal member is provided between the reaction tube 100 and the manifold 120.
  • a movable seal cap 110 is provided in the opening portion of the manifold 120 where the reaction tube 100 is not provided.
  • the seal cap 110 is formed of a metal material such as stainless steel and has a convex shape in which a part thereof is inserted into the opening of the manifold 120.
  • An O-ring (not shown) as a seal member is provided between the movable seal cap 110 and the manifold 120. When performing processing, the seal cap 110 seals the opening side of the reaction tube 100 in an airtight manner. Block.
  • a plurality of glass substrates (for example, 30 to 40 sheets) 20 on which a laminated film containing copper (Cu), indium (In), and gallium (Ga) is formed are provided inside the reaction tube 100.
  • An installation table 420 for placing the cassette 410 to be held is provided inside the reaction tube 100.
  • the installation table 420 is configured such that one end thereof is fixed to the inner peripheral surface 100 a of the reaction tube 100 and the cassette 410 is mounted on the center of the reaction tube 100 via the installation table 420.
  • the cassette 410 is a holding member that can hold the glass substrates 20 side by side in a state in which the plurality of glass substrates 20 stand on both ends of the glass substrate 20.
  • the glass substrate 20 when the glass substrate 20 is accommodated in the cassette 410, as shown in FIG. 6, it accommodates at intervals so that it may not interfere with the adjacent glass substrate 20 (it does not contact).
  • the bottom plate of the cassette 410 is hollow to facilitate the passage of the gas of the airflow R, and as shown in the D part, the glass substrate 20 is supported only by its edge part. It has become.
  • a furnace body heating unit 200 which is a heating unit having a hollow cylindrical shape with one end closed and the other end opened.
  • a cap heating unit 210 is provided on the side surface (outside) of the seal cap 110 opposite to the reaction tube 100.
  • the interior of the furnace body heating unit 200 and the cap heating unit 210 are heated through the reaction tube 100, that is, the inside of the processing chamber 30.
  • the furnace heating unit 200 is fixed to the reaction tube 100 by a fixing unit (not shown), and the cap heating unit 210 is fixed to the seal cap 110 by a fixing unit (not shown).
  • the seal cap 110 and the manifold 120 are provided with a cooling means (not shown) for water cooling in order to protect the O-ring having low heat resistance.
  • the manifold 120 is provided with a gas supply pipe 300 for supplying selenium hydride (hereinafter referred to as “H 2 Se”) as a selenium element-containing gas (selenization source, process gas 600).
  • H 2 Se selenium hydride
  • the H 2 Se supplied from the gas supply pipe 300 is supplied (introduced) from the gas supply pipe 300 through the gap between the manifold 120 and the seal cap 110.
  • an exhaust pipe 310 is provided in the manifold 120 on the opposite side of the gas supply pipe 300, and the atmosphere in the processing chamber 30 is from the exhaust pipe 310 through a gap between the manifold 120 and the seal cap 110. Exhausted. It should be noted that when the portion cooled by the above-described cooling means is cooled to 150 ° C. or lower, unreacted selenium is condensed in that portion, so the temperature is preferably controlled from 150 ° C. to about 170 ° C.
  • the reaction tube 100 of the second embodiment is provided with a plurality of electric fans 500. That is, as shown in FIG. 5, a plurality of electric fans 500 are provided on the upper portion of the reaction tube 100, and by driving these electric fans 500, the atmosphere inside the reaction tube 100 is forcibly convected along the surface of the glass substrate 20. be able to.
  • Each of the plurality of electric fans 500 is provided so as to penetrate the blade portion 510 that forms convection in the processing chamber 30 by rotating, the side wall of the cylindrical reaction tube 100, and the side wall of the furnace body heating unit 200.
  • a power unit 530 that is provided outside the furnace body heating unit 200 and rotates the rotation shaft unit 520.
  • a protective member 540 is provided between the rotary shaft portion 520 and the reaction tube 100 and the furnace body heating portion 200, and a nitrogen purge is performed in a narrow gap between the protective member 540 and the rotary shaft portion 520. This prevents the reaction gas (processing gas 600) from entering the power unit 530 from the rotating shaft unit 520 as much as possible.
  • an air flow R of the processing gas 600 that flows along the short side direction of the glass substrate 20 (the vertical direction (circumferential cross-sectional direction) of the cylindrical reaction tube 100) is formed in the processing chamber 30. Is done.
  • the flow velocity of the gas necessary to make the temperature in the surface of the glass substrate 20 uniform. Can be lowered.
  • the 1st baffle plate 440 which covers the circumference
  • the first rectifying plate 440 covers the surface of the glass substrate 20 arranged at the outermost position among the plurality of glass substrates 20 arranged upright on the cassette 410 inside the reaction tube 100, and although it extends along the flow direction (air flow R) of the processing gas 600 on the surface of the glass substrate 20 generated by forced convection of the electric fan 500, it also covers one side of the plurality of glass substrates 20.
  • the upper and lower portions of the first rectifying plate 440 are open so that gas can pass as shown in FIG.
  • the second rectifying plate 450 has a flow path of the airflow S toward the upper wing portion 510 in a region between the first rectifying plate 440 and the inner peripheral surface 100 a of the reaction tube 100.
  • the airflow S is narrow and provided in a curved shape so as to flow along the inner peripheral surface 100 a of the reaction tube 100.
  • the first rectifying plate 440 is attached to the inner peripheral surface 100a of the reaction tube 100, and the second rectifying plate 450 is attached to the first rectifying plate 440.
  • the first rectifying plate 440 and the second rectifying plate 450 are arranged along the short side direction of the glass substrate 20 by the forced convection formed by the rotation of the blade portion 510 by the driving of the plurality of electric fans 500 provided in the upper portion.
  • the airflow R collides with the inner wall of the lower part of the reaction tube 100 and then the outside of the plurality of glass substrates 20 (region between the second rectifying plate 450 and the inner peripheral surface 100a of the reaction tube 100).
  • the airflow S of the processing gas 600 flowing toward the wings 510 of the plurality of electric fans 500 is separated.
  • the first rectifying plate 440 and the second rectifying plate 450 include an air flow R that flows along the short side direction of the glass substrate 20 formed by the rotation of the plurality of blades 510, and the air flow R is the lower part of the reaction tube 100.
  • the airflow S flowing toward the wings 510 of the plurality of electric fans 500 after reaching the inner peripheral surface 100a of the plurality of electric fans 500 has a function of dividing the airflow S toward the wings 510 into the inner periphery of the reaction tube 100. It is controlled to flow along the surface 100a.
  • the airflow R of the processing gas 600 flowing along the surface in the short side direction of the glass substrate 20 by the forced convection formed by driving the plurality of electric fans 500 (the flow direction of the processing gas 600) is the first rectification.
  • the air flow S toward the wing 510 is the inner peripheral surface of the reaction tube 100 in the region outside the second rectifying plate 450.
  • the first rectifying plate 440 and the second rectifying plate 450 control the flow of the processing gas 600 so as to flow along 100a.
  • the flow of the processing gas 600 during the processing of the glass substrate 20 in the processing chamber 30 can be stably circulated.
  • the flow path of the processing gas 600 that flows toward the blades 510 of the plurality of electric fans 500. Can be made narrower along the inner peripheral surface 100a of the reaction tube 100, so that the processing gas 600 flowing toward the plurality of wings 510 can be made to flow along the inner peripheral surface 100a of the heated reaction tube 100. It can be controlled to flow. As a result, the flow of the processing gas 600 inside the reaction tube 100 can be stabilized.
  • the heating efficiency of the processing gas 600 can be increased, the heating efficiency of the glass substrate 20 can be increased, and the temperature raising time can be shortened.
  • a plurality of irregularities 103 are formed on the inner peripheral surface 100 a of the reaction tube 100 as shown in FIG.
  • the unevenness 103 is formed over substantially the entire inner peripheral surface 100a of the reaction tube 100 (for example, the inner peripheral surface 100a through which the processing gas 600 passes).
  • the surface area of the inner peripheral surface 100a of the reaction tube 100 can be increased, and the contact area when the processing gas 600 passes through the inner peripheral surface 100a of the heated reaction tube 100 can be increased. .
  • the heating efficiency of the processing gas 600 can be further increased, the heating efficiency of the glass substrate 20 can be further increased, and the temperature raising time can be further shortened.
  • the other configuration of the substrate processing apparatus according to the second embodiment is the same as that of the substrate processing apparatus according to the first embodiment, and a duplicate description thereof is omitted.
  • a CIGS solar system A case where the selenization process is performed in the battery manufacturing process will be described.
  • each glass substrate 20 is arrange
  • the cassette 410 is carried into the processing chamber 30 by, for example, moving the cassette 410 into the processing chamber 30 with the lower portion of the cassette 410 supported and lifted by an arm of a loading / unloading device (not shown). After reaching the position, the arm is moved downward and the cassette 410 is placed on the installation table 420.
  • the seal cap 110 is closed to make the processing chamber 30 sealed, and the atmosphere inside the processing chamber 30 is replaced with an inert gas (processing gas 600) such as nitrogen gas (replacement step).
  • processing gas 600 such as nitrogen gas
  • replacement step After substituting the atmosphere in the processing chamber 30 with the inert gas, power is supplied to a heater such as the furnace body heating unit 200 and the reaction tube 100 is heated at a predetermined temperature increase rate. For example, the temperature is raised to 400 to 550 ° C., preferably 450 to 550 ° C. at 3 to 15 ° C. per minute.
  • the blades 510 of the electric fan 500 are rotated by the power unit 530, and a plurality of processing gases (inert gases) 600 heated in the vicinity of the inner peripheral surface 100 a of the reaction tube 100 are accommodated in the cassette 410.
  • the glass substrate 20 is heated by passing through the glass substrates 20 along the short side direction of each glass substrate 20 and transferring the heat of the processing gas 600 to the glass substrate 20.
  • the temperature rise rate of the reaction tube 100 or the processing gas that passes between the adjacent glass substrates 20 so that the temperature difference does not increase. Gas
  • the flow rate of 600 is adjusted to an appropriate value and heated.
  • a first rectifying plate 440 that covers the periphery of the cassette 410 is provided inside the reaction tube 100, and further, in a region outside the first rectifying plate 440.
  • a second rectifying plate 450 is provided.
  • the first rectifying plate 440 covers the surface of the glass substrate 20 arranged at the outermost position among the plurality of glass substrates 20 arranged upright on the cassette 410 inside the reaction tube 100, and although it extends along the flow direction (air flow R) of the processing gas 600 on the surface of the glass substrate 20 generated by forced convection of the electric fan 500, it also covers one side of the plurality of glass substrates 20.
  • the upper and lower portions of the first rectifying plate 440 are open so that gas can pass as shown in FIG.
  • the second rectifying plate 450 has a flow path of the airflow S toward the upper wing portion 510 in a region between the first rectifying plate 440 and the inner peripheral surface 100 a of the reaction tube 100.
  • the airflow S is narrow and provided in a curved shape so as to flow along the inner peripheral surface 100 a of the reaction tube 100.
  • the first rectifying plate 440 and the second rectifying plate 450 are arranged along the short side direction of the glass substrate 20 by the forced convection formed by the rotation of the blade portion 510 by the driving of the plurality of electric fans 500 provided in the upper portion.
  • the airflow R collides with the inner wall of the lower part of the reaction tube 100 and then the outside of the plurality of glass substrates 20 (region between the second rectifying plate 450 and the inner peripheral surface 100a of the reaction tube 100).
  • the airflow S of the processing gas 600 flowing toward the wings 510 of the plurality of electric fans 500 is separated.
  • the first rectifying plate 440 and the second rectifying plate 450 include an air flow R that flows along the short side direction of the glass substrate 20 formed by the rotation of the plurality of blades 510, and the air flow R is the lower part of the reaction tube 100.
  • the airflow S flowing toward the wings 510 of the plurality of electric fans 500 after reaching the inner peripheral surface 100a of the plurality of electric fans 500 has a function of dividing the airflow S toward the wings 510 into the inner periphery of the reaction tube 100. It is controlled to flow along the surface 100a.
  • the flow of the processing gas 600 flowing toward the blades 510 of the plurality of electric fans 500 is increased.
  • the path can be narrowed along the inner peripheral surface 100a of the reaction tube 100, and thus the process gas 600 can be controlled to flow along the inner peripheral surface 100a of the heated reaction tube 100. . Thereby, stabilization of the flow of the processing gas 600 inside the reaction tube 100 can be achieved.
  • the heating efficiency of the processing gas 600 can be increased, the heating efficiency of the glass substrate 20 can be increased, and the temperature raising time can be shortened.
  • the processing furnace 10 has a plurality of irregularities 103 formed on the inner peripheral surface 100 a of the reaction tube 100, thereby increasing the surface area of the inner peripheral surface 100 a of the reaction tube 100. Therefore, it is possible to increase the contact area when the processing gas 600 passes through the inner peripheral surface 100a of the heated reaction tube 100.
  • the heating efficiency of the processing gas 600 can be further increased, the heating efficiency of the glass substrate 20 can be further increased, and the temperature raising time can be further shortened.
  • the temperature increase rate of the reaction tube 100 and the speed of the processing gas 600 blown between the glass substrates 20 so that the temperature difference does not increase. Adjust to heat. That is, the temperature increase rate of the glass substrate 20 and the blowing speed of the electric fan 500 (the number of rotations of the electric fan 500) are adjusted as appropriate so that the temperature distribution of the glass substrate 20 does not deteriorate.
  • the glass substrate 20 is heated, and when the glass substrate 20 is heated to a predetermined temperature (for example, 400 to 500 ° C., which will be described later), the processing gas (selenium element-containing gas (selenium selenization) is contained in the processing chamber 30. Source)) 600 is introduced to perform film formation on the glass substrate 20.
  • a predetermined temperature for example, 400 to 500 ° C., which will be described later
  • the processing gas elenium element-containing gas (selenium selenization) is contained in the processing chamber 30.
  • Source 600 is introduced to perform film formation on the glass substrate 20.
  • the processing gas (selenization source) 600 is introduced into the reaction tube 100 while the reaction tube 100 is heated, and also in this case, the atmosphere inside the reaction tube 100 is changed to a glass substrate by the blades 510 of the electric fan 500. Then, forced convection is performed along the surface of 20, and stabilized airflow R and airflow S are formed by the cylindrical rectifying plate 430. In this state, film formation processing is performed on the plurality of glass substrates 20. By this selenization process, the light absorption layer of a CIS type solar cell is formed on each glass substrate 20 (formation process).
  • the supply of the processing gas (selenization source, hydrogen selenide gas) 600 is stopped, the temperature of the reaction tube 100 is lowered at a constant rate, and the processing gas 600 in the processing chamber 30 is nitrogenated.
  • an inert gas such as nitrogen gas is introduced from the gas supply pipe 300 to replace the atmosphere in the processing chamber 30, and the temperature is lowered to a predetermined temperature (temperature lowering step).
  • the seal cap 110 is moved to open the processing chamber 30. Thereafter, the cassette 410 is unloaded by the arm of the unloading / unloading apparatus (not shown) (unloading step), and the series of film forming processes is completed.
  • the temperature lowering conditions such as the amount of nitrogen gas introduced are adjusted so that the temperature difference in the substrate does not increase.
  • the electric fan 500 is provided on the upper portion of the glass substrate 20 has been described.
  • the plurality of electric fans 500 may be installed on the lower portion of the glass substrate 20.
  • FIG. 8 shows that in the processing furnace 10 having the same structure except for the position of the electric fan 500, the flow rate between the glass substrates 20 when the temperature is raised at a rate of 5 ° C./min is changed. It is the result of simulating the flow rate required to suppress the temperature difference to about 30 ° C.
  • FIG. 8A shows a case where the electric fan 500 is arranged on the side of the processing furnace 10 as in the first embodiment and the flow of the processing gas 600 on the surface of the glass substrate 20 is in the long side direction of the glass substrate 20.
  • FIG. 8A-1 shows a state where 20 minutes have elapsed since the start of heating
  • FIG. 8A-2 shows a state where 60 minutes have elapsed since the start of heating. It can be seen from the degree of shading in the figure that the temperature difference in the surface of the glass substrate 20 is suppressed to about 30 ° C. Furthermore, the result that the flow rate of the gas required for suppressing the temperature difference in the plane of the glass substrate 20 to about 30 ° C. by simulation was 10 m / sec.
  • FIG. 8B the electric fan 500 is arranged on the upper part of the processing furnace 10 as in the second embodiment, and the flow of the processing gas 600 on the surface of the glass substrate 20 is directed in the short side direction of the glass substrate 20.
  • FIG. 8B-1 shows a state where 20 minutes have elapsed since the start of heating
  • FIG. 8B-2 shows a state where 60 minutes have elapsed since the start of heating. It can be seen from the degree of shading in the figure that the temperature difference in the surface of the glass substrate 20 is suppressed to about 30 ° C. Furthermore, the simulation showed that the flow rate of the gas required to suppress the in-plane temperature difference of the glass substrate 20 to about 30 ° C. was 2 m / sec.
  • the flow of the process gas 600 in the first embodiment is changed to the glass substrate 20 by setting the flow of the process gas 600 in the short side direction of the glass substrate 20 as in the second embodiment.
  • the flow velocity of the processing gas 600 can be suppressed (reduced), and the glass substrate 20 can be enlarged.
  • FIG. 9 is a cross-sectional view showing the structure of the main part of a substrate processing apparatus according to a modification of the second embodiment of the present invention.
  • the processing furnace 10 of the modified example shown in FIG. 9 is different from the structure in which only one cassette 410 holding a plurality of glass substrates 20 is placed, and a plurality of cassettes 410 (here, three) are arranged into a plurality of glass substrates.
  • the structure which has been arranged in the direction parallel to the long side direction of the surface of 20 is shown.
  • the reaction tube 100 has a more horizontally long shape and the flow of the processing gas 600 becomes unstable.
  • the plurality of electric fans 500 are provided at the upper portion and the rectifying plate 460 is also provided, the processing gas 600 can be flowed along the short side direction of each glass substrate 20, and as a result, the processing gas 600. Can be stabilized.
  • the reaction tube 100 is increased in size by adopting a structure in which the processing gas 600 flows along the short side direction of the glass substrate 20 as in the processing furnace 10 of the second embodiment.
  • it is easier to mold than quartz, and its cost increase is small compared to quartz.
  • the number of glass substrates 20 that can be processed at a time can be increased, and the manufacturing cost of the CIS solar cell can be reduced.
  • reaction tube 100 by using a metal material such as stainless steel as a base material of the reaction tube 100, it is easy to handle as compared with a quartz reaction tube, and the reaction tube 100 can be enlarged.
  • a metal material such as stainless steel
  • the flow path of the processing gas 600 flowing toward the electric fan 500 can be narrowed along the inner peripheral surface 100a of the reaction tube 100. Therefore, the processing gas 600 is heated to the heated reaction tube. It can control so that it may flow along the internal peripheral surface 100a of 100. As a result, the flow of the processing gas 600 inside the reaction tube 100 can be stabilized.
  • the surface area of the inner peripheral surface 100a of the reaction tube 100 can be increased, and the inner periphery of the heated reaction tube 100
  • the heating efficiency of the processing gas 600 can be further increased, the heating efficiency of the glass substrate 20 can be further increased, and the temperature raising time can be further shortened.
  • a plurality of glass substrates on which copper (Cu), indium (In), and gallium (Ga) are formed have been subjected to selenization treatment.
  • a plurality of glass substrates on which (Cu) / indium (In), copper (Cu) / gallium (Ga), or the like is formed may be selenized.
  • the selenization having high reactivity with the metal material is mentioned.
  • the sulfur element-containing gas is changed to the selenization treatment or after the selenization treatment.
  • the sulfuration treatment may be performed by supplying. Also in that case, by using the large reactor of the second embodiment, the number of sheets that can be subjected to the sulfiding treatment can be increased at one time, so that the manufacturing cost can be reduced.
  • the plurality of irregularities 103 may be provided over the entire inner peripheral surface 100a of the reaction tube 100 in a state where a predetermined interval is provided with respect to the inner peripheral surface 100a.
  • a reaction tube that is formed in a cylindrical shape and in which a film forming process is performed on a plurality of substrates, and a gas supply pipe that introduces a processing gas for the film forming process into the reaction tube;
  • An exhaust pipe that exhausts the atmosphere inside the reaction tube, a heating unit that heats the reaction tube, a fan that forces the atmosphere inside the reaction tube along the surface of the substrate, and the forced convection.
  • a rectifying plate that extends along a flow direction of the processing gas on the surface of the generated substrate and covers the surface of the substrate disposed at an outermost position among the plurality of substrates.
  • a substrate processing apparatus for controlling the processing gas flowing toward the fan outside the plurality of substrates to flow along an inner peripheral surface of the reaction tube.
  • the current plate is a cylindrical substrate processing apparatus.
  • a reaction tube that is formed in a cylindrical shape and in which a film forming process is performed on a plurality of substrates, and a gas supply pipe that introduces a processing gas for the film forming process into the reaction tube;
  • An exhaust pipe that exhausts the atmosphere inside the reaction tube, a heating unit that heats the reaction tube, and a fan that forcibly convects the atmosphere inside the reaction tube along the surface of the substrate,
  • a substrate processing apparatus wherein a plurality of irregularities are formed on an inner peripheral surface of the reaction tube.
  • a substrate processing method using a substrate processing apparatus comprising a cylindrical reaction tube provided with a fan inside, wherein (a) a step of arranging a plurality of substrates at intervals in the reaction tube And (b) introducing a processing gas into the reaction tube while the reaction tube is heated, and forcibly convection the atmosphere inside the reaction tube along the surface of the substrate by the fan.
  • a film forming process on the substrate, and extending in the flow direction of the processing gas on the surface of the substrate generated by the forced convection in the step (b) and The processing gas that flows toward the fan outside the plurality of substrates flows along the inner peripheral surface of the reaction tube by a rectifying plate that covers the surface of the substrate disposed at the outermost position of the substrates.
  • Substrate processing method to be controlled.
  • the present invention is suitable for a technique for performing substrate processing by heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】基板の加熱効率を高めて基板の昇温時間の短縮化を図る。 【解決手段】筒状の反応管100とシールキャップ110とで気密に構成される処理室30と、反応管100の周囲に設けられたヒータである炉体加熱部200と、処理室30内に配置され、かつ複数のガラス基板20が収容されたカセット410と、反応管100の内部の閉塞された一方の側部に設けられた電動ファン500と、処理室30内においてカセット410上で立てて配置される複数のガラス基板20のうちの最外部の位置に配置されるガラス基板20の表面を覆い、かつ電動ファン500の羽部510に向かう気流Qが反応管100の内周面100aに沿って流れるように制御する円筒形の整流板430と、を備えた基板処理装置。

Description

基板処理装置及びそれを用いた基板処理方法
 本発明は、基板処理装置及びそれを用いた基板処理方法に関し、特に、基板の処理時間の短縮化に適用して有効な技術に関する。
 セレン化物系CIS(カルコパイライト)太陽電池は、ガラス基板、金属裏面電極層、CIS系光吸収層、高抵抗バッファ層、窓層が順に積層される構造を有する。ここでCIS系光吸収層は、銅(Cu)/ガリウム(Ga)、Cu/インジウム(In)、若しくは、Cu-Ga/Inのいずれか一つの積層構造をセレン化することにより形成される。このように、セレン化物系CIS太陽電池は、シリコン(Si)を用いずに形成できるため、基板を薄くできると共に製造コストを下げることができるという特徴を有している。
 ここで、セレン化を行う装置の一例として、特許文献1(特開2006-186114号公報)がある。特許文献1に記載されるセレン化装置(成膜装置)は、ホルダーにより複数の平板状の対象物(基板)を一定の間隔を設けて、円筒状の石英チャンバー(反応管)の長軸方向(長手方向)に平行に、かつその板面を垂直に配置し、セレン源を導入することにより、対象物のセレン化を行っている。また、ファンを円筒状の石英チャンバーの軸方向の端部に取り付けることにより、石英チャンバー内のセレン化源を含むガスを強制的に対流させ、ガラス基板上の温度分布の均一化を行うことが記載されている。
特開2006-186114号公報
 特許文献1に記載されるようにファンを円筒状の石英チャンバー(反応管、反応室)の軸方向(長手方向)の端部に配置した場合、石英チャンバー内の雰囲気の対流は、石英チャンバー内を横方向、すなわち、ガラス基板の長辺方向に流れることになる。
 ここで、セレン化には長時間を要することから、セレン化装置の処理能力を上げるためには、反応室に載置するガラス基板の枚数を可能な限り多くする必要があり、したがって、ホルダーに挿入する複数のガラス基板の隣り合った基板との間隔を小さくして詰め込むことになる。
 なお、ガラス基板は、熱伝導率が小さいため、ホルダー内の複数のガラス基板の外側から熱伝導あるいは輻射でガラス基板の温度を均一に保持しながら短時間で加熱することが難しい。
 また、ヒータに大きな電力を投入して急速に加熱すると、ガラス基板内の温度差が大きくなり、ガラス基板が破損してしまう。このため、ホルダー内の複数のガラス基板を加熱する場合、一般的に反応室の内部の処理ガスをファン等で攪拌して処理ガスの熱をガラス基板に伝達する方法が採用されている。
 ところが、円筒形の反応室の内部にガラス基板を載置すると、ガラス基板の表面、すなわちガラス基板と反応室の内周面との間に空間が形成され、隣り合ったガラス基板との間を通過しないガス循環が生じたり、あるいは反応室の内周面に沿わないガス循環が生じたりして、反応室内のガスの流れが不安定になる。
 その結果、効率的にガラス基板を加熱できないという課題が発生する。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、基板処理における基板の加熱効率を高めることができる技術を提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
 本発明に係る基板処理装置は、反応管と、反応管の内部の雰囲気を基板の表面に沿って強制対流させるファンと、複数の基板のうちの最外部の位置に配置される基板の表面を覆い、前記複数の基板の外側で前記ファンに向かって流れる処理ガスを前記反応管の内周面に沿って流れるように制御する整流板と、を有するものである。
 また、本発明に係る基板処理方法は、反応管の内部で、複数の基板のうちの最外部の位置に配置される基板の表面を覆う整流板によって、前記複数の基板の外側でファンに向かって流れる処理ガスを反応管の内周面に沿って流れるように制御して成膜処理を行うものである。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下のとおりである。
 基板の昇温時間の短縮化を図ることができる。
本発明の実施の形態1の基板処理装置の主要部の構造の一例を示す断面図である。 図1に示す基板処理装置の円周方向の構造の一例を示す断面図である。 図2のA部の構造を示す拡大部分断面図である。 図1に示す基板処理装置の反応管のコーティング膜の構造の一例を示す断面図である。 本発明の実施の形態2の基板処理装置の主要部の構造の一例を示す断面図である。 図5に示す基板処理装置の円周方向の構造の一例を示す断面図である。 図6のB部の構造を示す拡大部分断面図である。 本発明の実施の形態2の基板処理装置による効果の一例を示すシミュレーション結果図である。 本発明の実施の形態2における変形例の基板処理装置の主要部の構造を示す断面図である。
 以下の実施の形態では特に必要なとき以外は同一または同様な部分の説明を原則として
繰り返さない。
 さらに、以下の実施の形態では便宜上その必要があるときは、複数のセクションまたは
実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明などの関係にある。
 また、以下の実施の形態において、要素の数など(個数、数値、量、範囲などを含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良いものとする。
 また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 また、以下の実施の形態において、構成要素等について、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。
 (実施の形態1)
 図1は本発明の実施の形態1の基板処理装置の主要部の構造の一例を示す断面図、図2は図1に示す基板処理装置の円周方向の構造の一例を示す断面図、図3は図2のA部の構造を示す拡大部分断面図、図4は図1に示す基板処理装置の反応管のコーティング膜の構造の一例を示す断面図である。
 本実施の形態1の基板処理装置は、ガラス基板等の基板に加熱処理を行うものであり、図1に示す主要部である処理炉10を備えている。
 まず、図1に示す処理炉10の基本構造について説明する。
 基板に対して成膜処理等の加熱処理が行われる処理室(反応室ともいう)30は、反応管100とシールキャップ(蓋)110とで気密に構成され、内部には複数のガラス基板20がカセット(ボートともいう)410に収納された状態で設置台420上に配置されている。
 また、反応管100は、周囲に設けた炉体加熱部200やキャップ加熱部210等の加熱部(ヒータ)により加熱される構造となっており、さらに、反応管100の材質には腐食性のガスにも耐えられるような耐腐食性が高い金属あるいはその表面に耐腐食コーティングを施した金属が用いられている。
 本実施の形態1の処理炉10では、反応管100の内部の閉塞された一方の側部に電動ファン500が設けられており、処理室30の外部に設けた動力部(ファン駆動部)530によって羽部(ファン)510を回転させることで処理室30内のガスを攪拌可能な構造となっている。
 なお、反応管100には、ガラス基板20を処理するためのガス導入部、処理室30の内部のガスを置換するための排気口、排気口からガスを排気するための排気装置に連結された排気管、窒素等の不活性ガスの導入部等が設けられている。
 次に、処理炉10の構造について詳しく説明する。
 処理炉10は、ステンレス等の金属材料で形成される炉体としての反応管100を有している。反応管100は、中空の円筒形状(筒状)をしており、その一端が閉塞し、他端が開口する構造を有している。反応管100の中空部分により、処理室30が形成される。反応管100の開口側には、反応管100と同心円上に、その両端が開口した円筒形状のマニホールド120が設けられている。反応管100とマニホールド120との間には、シール部材としてのOリング(図示せず)が設けられている。
 また、マニホールド120の反応管100が設けられない開口部には、可動性のシールキャップ110が設けられている。シールキャップ110は、ステンレス等の金属材料で形成され、マニホールド120の開口部に、その一部が挿入される凸型形状をしている。可動性のシールキャップ110とマニホールド120との間には、シール部材としてのOリング(図示せず)が設けられ、処理を行う際には、シールキャップ110が反応管100の開口側を気密に閉塞する。
 また、反応管100の内部には、一例として、銅(Cu)、インジウム(In)、ガリウム(Ga)を含有する積層膜が形成された複数のガラス基板(例えば、30~60枚)20を保持するカセット410を載置するための設置台420が設けられている。
 設置台420は、その一端が反応管100の内周面100aに固定されると共に、反応管100の中心部にカセット410が設置台420を介して載置されるように構成されている。
 カセット410は、図1に示されるように、ガラス基板20の両端に、複数のガラス基板20を立てた状態で横方向に並んで保持可能な保持部材である。なお、ガラス基板20がカセット410に収容される際には、図2に示すように、隣のガラス基板20と干渉しないように(接触しないように)間隔をあけて収容される。さらに、図1に示すように気流Pのガス流れを妨げないように、側面部Cの板は極力フレーム410aのみ(側面部Cの板は、例えば枠状)となっており、円筒形の整流板430内を流れるガスが流れ易い構造となっている。また、それぞれのガラス基板20は、例えばカセット410の図2に示す底板の溝と図1のフレーム410aによって支持されている。
 また、反応管100の周囲には、一端が閉塞し、かつ他端が開口する中空の円筒形状をした加熱部である炉体加熱部200が設けられている。さらに、シールキャップ110の反応管100と反対側(外側)の側面には、キャップ加熱部210が設けられている。この炉体加熱部200とキャップ加熱部210により反応管100を介してその内部、すなわち処理室30内が加熱される。なお、炉体加熱部200は、図示しない固定部により反応管100に固定され、キャップ加熱部210は、図示しない固定部によりシールキャップ110に固定されている。また、シールキャップ110やマニホールド120には、耐熱性の低いOリングを保護するため図示しない水冷との冷却手段が設けられる。
 なお、マニホールド120には、セレン元素含有ガス(セレン化源、処理ガス600)としての水素化セレン(以下、「H2Se」と呼ぶ)を供給するためのガス供給管300が設けられており、ガス供給管300から供給されたH2Seは、ガス供給管300からマニホールド120とシールキャップ110との間の間隙を介して処理室30へ供給される(導入される)。
 一方、ガス供給管300の反対側のマニホールド120には、排気管310が設けられており、処理室30内の雰囲気は、マニホールド120とシールキャップ110との間の間隙を介して排気管310より排気される。なお、上述の冷却手段により冷却される箇所は、150℃以下まで冷却すると、その部分に未反応のセレンが凝縮してしまうため、150℃から170℃程度に温度制御すると良い。
 また、本実施の形態1の反応管100の内部には、電動ファン500が設けられている。すなわち、反応管100の閉塞された一端側に電動ファン500が設けられ、電動ファン500の駆動により、反応管100の内部の雰囲気をガラス基板20の表面に沿って強制対流させることができる。電動ファン500は、回転することにより処理室30内の対流を形成する羽部510と、円筒状の反応管100の側壁及び炉体加熱部200の側壁を貫通するように設けられた回転軸部520と、炉体加熱部200の外部に設けられ、かつ回転軸部520を回転させる動力部530とを有している。さらに、回転軸部520と反応管100及び炉体加熱部200との間には、保護部材540が設けられており、保護部材540と回転軸部520との間の狭い間隙に窒素パージを行うことにより、回転軸部520から動力部530に反応ガス(処理ガス600)が浸入するのを極力抑えるようにしている。
 電動ファン500の回転により、処理室30内はガラス基板20の長辺方向(筒状の反応管100の長手方向)に沿って流れる処理ガス600の気流Pが形成される。このように、電動ファン500を動作させ、強制対流をガラス基板20の長辺方向に向かうようにしている。
 また、本実施の形態1の処理炉10では、図1及び図2に示すように、処理室30に円筒形の整流板430が設けられている。整流板430は、反応管100の内部においてカセット410上で立てて配置される複数のガラス基板20のうちの最外部の位置に配置されるガラス基板20の表面を覆っており、両端が開口した形状となっている。すなわち、カセット410上に立てて配置された複数のガラス基板20を覆うように円筒形の整流板430が設けられており、円筒形の整流板430の両側の端部はガスが通過可能なように開口している。
 したがって、反応管100の内周面100aの長手方向の閉塞された側の壁に取り付けられた電動ファン500の羽部510から円筒形の整流板430の一方の開口部を介して整流板430の内部に気流を送り込むことができるとともに、他方の反対側の開口部から整流板430の外側に気流を送り出すことができる。
 なお、整流板430は、反応管100の内周面100aに取り付けられている。
 さらに、整流板430は、図1に示すように、電動ファン500の駆動で羽部510の回転によって形成された強制対流によるガラス基板20に沿って流れる気流Pと、この気流Pがシールキャップ110の内壁に衝突した後、複数のガラス基板20の外側で電動ファン500の羽部510に向かって流れる処理ガス600の気流Qとを区分けしている。すなわち、整流板430は、羽部510の回転によって形成されたガラス基板20に沿って流れる気流Pと、この気流Pがシールキャップ110の内壁に衝突した後、電動ファン500の羽部510に向かって流れる気流Qとを区分けする機能を有しており、羽部510に向かう気流Qが反応管100の内周面100aに沿って流れるように制御している。
 これにより、電動ファン500の駆動によって形成された強制対流により、ガラス基板20の表面に沿って流れる処理ガス600の気流P(処理ガス600の流れ方向)は、整流板430から出た後、シールキャップ110の内壁に到達し、その後、羽部510に向かう気流Qが整流板430の外側の領域で反応管100の内周面100aに沿って流れるように処理ガス600の流れを整流板430が制御している。
 その結果、処理室30でのガラス基板20の処理中の処理ガス600の流れを安定して循環させることができる。
 つまり、反応管100の内部(処理室30内)に円筒形の整流板430を設けたことで、電動ファン500の羽部510に向かって流れる処理ガス600の流路を、反応管100の内周面100aに沿うように狭くすることができ、したがって、羽部510に向かって流れる処理ガス600を加熱された反応管100の内周面100aに沿って流れるように制御することができる。その結果、反応管100の内部の処理ガス600の流れの安定化を図ることができる。
 これにより、処理ガス600の加熱効率を高めることができ、ガラス基板20の加熱効率を高めて昇温時間の短縮化を図ることができる。
 また、処理炉10には、図3に示すように反応管100の内周面100aに複数の凹凸103が形成されている。この凹凸103は、反応管100の内周面100aの略全面(例えば、処理ガス600が通過する内周面100a)に亘って形成されている。
 これにより、反応管100の内周面100aの表面積を大きくすることができ、加熱された反応管100の内周面100aに対して処理ガス600が通過する際に接触する面積を増やすことができる。
 その結果、処理ガス600の加熱効率をさらに高めることができ、ガラス基板20の加熱効率をさらに高めて昇温時間の短縮化をさらに図ることができる。
 次に、反応管100の内部の表面(内周面100a)のコーティング材について説明する。
 本実施の形態1の処理炉10の反応管100は、ステンレス等の金属材料によって形成されている。ステンレス等の金属材料は、石英と比較して加工が容易である。よって、CIS系(カルコパイライト系)太陽電池のセレン化処理を行う基板処理装置に用いられるような大型の反応管100を容易に製造することが可能となる。したがって、反応管100内に収容できるガラス基板20の枚数を多くすることができ、CIS系太陽電池の製造コストを下げることができる。
 さらに、本実施の形態1では、反応管100の少なくとも処理室30内の雰囲気に曝される表面(内周面100a)は、図4に示すように、図1の反応管100の基材101となるステンレス等の金属材料の上に、ステンレス等の金属材料と比較してセレン化耐性の高いコーティング膜102が形成されている。一般的に広く用いられているステンレス等の金属材料は、H2Se等のガスが200℃以上に加熱されると、非常に高い反応性により腐食してしまうが、本実施の形態1のようにセレン化耐性の高いコーティング膜102を形成することにより、H2Se等のガスによる腐食を抑制できる。
 その結果、一般的に広く用いられているステンレス等の金属材料を用いることができ、基板処理装置の製造コストを下げることが可能となる。なお、このセレン化耐性の高いコーティング膜102としては、セラミックを主成分とするコーティング膜102、例えば、酸化クロム(Crxy:x,yは1以上の任意数)、アルミナ(Alxy:x,yは1以上の任意数)、シリカ(Sixy:x,yは1以上の任意数)のそれぞれ単独あるいは混合物、または、炭素を主成分とするコーティング膜102、例えば、炭化珪素(SiC)、ダイヤモンドライクカーボン(DLC)が挙げられる。
 また、本実施の形態1のコーティング膜102は、ポーラス状の膜で形成されている。これにより、反応管100のステンレス等の金属材料で形成される基材101とコーティング膜102との線膨張係数の違いによる熱膨張・収縮に柔軟に追従することが可能となる。その結果、熱処理を繰り返し行ったとしても、コーティング膜102への亀裂の発生を最小限に抑えることができる。なお、コーティング膜102は、2~200μm、望ましくは50~120μmの厚さで形成するのが望ましい。また、基材101とコーティング膜102との線膨張係数の偏差が20%以下、望ましくは、5%以下とするのが望ましい。
 また、シールキャップ110、マニホールド120、ガス供給管300、及び排気管310も同様にセレン化源に曝される部分に上述のコーティング膜102を形成しても良い。ただし、Oリング等を保護するために冷却手段により200℃以下に冷却されている部分は、ステンレス等の金属材料がセレン化源と接触しても反応しないため、コーティング膜102を形成しなくても良い。
 次に、本実施の形態1の処理炉10を備える基板処理装置を用いた基板処理方法について説明する。
 ここでは、図1及び図2に示すような、内部の閉塞された一方の側部に電動ファン500が設けられた筒状の反応管100を有した処理炉10を備える基板処理装置において、一例として、CIGS(C:Cu(Copper)、I:ln(lndium)、G:Ga(Gallium)、S:Se(Selenium))系の太陽電池の製造プロセスでセレン化処理を行う場合を説明する。
 まず、銅(Cu)、インジウム(In)、ガリウム(Ga)を含有する積層膜が形成された30枚から60枚のガラス基板20をカセット(ボート)410内に配置し、可動性のシールキャップ110をマニホールド120から外した状態で、カセット410を反応管100の内部である処理室30内に搬入し、設置台420上にセットする(搬入工程)。
 なお、カセット410内においてそれぞれのガラス基板20は、隣り合った基板と接触しない程度に間隔をあけて立てて配置されている。
 また、カセット410の処理室30内への搬入は、例えば、図示しない搬入出装置のアームによりカセット410の下部を支持して持ち上げた状態で、カセット410を処理室30内に移動し、所定の位置に到達させた後、当該アームを下方に移動させカセット410を設置台420に載置することにより行われる。
 その後、シールキャップ110を閉めて処理室30を密閉状態とし、処理室30の内部の大気を窒素ガス等の不活性ガス(処理ガス600)で置換する(置換工程)。前記不活性ガスで処理室30内の雰囲気を置換した後、炉体加熱部200等のヒータに電力を投入し、所定の昇温速度で反応管100を加熱する。例えば、400~550℃、望ましくは450℃~550℃まで、毎分3~15℃で昇温する。
 さらに昇温と同時に、電動ファン500の羽部510を動力部530により回転させ、反応管100の内周面100a付近で加熱された処理ガス(不活性ガス)600をカセット410に収容された複数のガラス基板20それぞれの長辺方向(長手方向)に沿って、かつガラス基板20間を通過させ、処理ガス600の熱をガラス基板20に伝達することによりガラス基板20を加熱する。
 なお、ガラス基板20は基板内の温度差が大きくなると破損するため、温度差が大きくならないように反応管100の昇温速度や、隣り合ったガラス基板20の間を通過させる処理ガス(不活性ガス)600の流速を適切な値に調節して加熱する。
 ここで、本実施の形態1の処理炉10には、その反応管100の内部に、円筒形の整流板430が設けられており、この円筒形の整流板430の内部に複数のガラス基板20が配置されている。本実施の形態1の円筒形の整流板430は、電動ファン500の羽部510による強制対流で生じたガラス基板20の表面上の処理ガス600の流れ方向に沿って延在し、かつ複数のガラス基板20のうちの最外部の位置に配置される基板の表面を覆うように設けられている。
 すなわち、円筒形の整流板430は、羽部510の回転によって形成されたガラス基板20の長辺方向に沿って流れる処理ガス600の気流P(処理ガス600の流れ方向)と、この気流Pがシールキャップ110の内壁で反転して電動ファン500の羽部510に向かって流れる気流Qとを区分けする機能を有しており、羽部510に向かう気流Qが反応管100の内周面100aに沿って流れるように制御している。
 つまり、シールキャップ110で反転して複数のガラス基板20の外側において羽部510に向かう気流Qの流路を狭くし、これによって、気流Qが反応管100の内周面100aに沿って流れるように制御している。
 したがって、電動ファン500の駆動によって形成された強制対流により、ガラス基板20の表面に沿って流れる処理ガス(不活性ガス)600の気流Pは、整流板430から出た後、シールキャップ110の内壁に衝突して反転し、その後、羽部510に向かう気流Qが整流板430の外側の領域で反応管100の内周面100aに沿って流れるように処理ガス600の流れを整流板430が制御する。
 これにより、処理室30でのガラス基板20の昇温時の処理ガス600の流れを安定して循環させることができる。
 すなわち、反応管100の内部(処理室30内)に円筒形の整流板430が設けられたことで、電動ファン500の羽部510に向かって流れる処理ガス600の流路を、反応管100の内周面100aに沿うように狭くすることができ、したがって、この処理ガス600を加熱された反応管100の内周面100aに沿って流れるように制御することができる。これにより、反応管100の内部の処理ガス600の流れの安定化を図ることができる。
 その結果、処理ガス600の加熱効率を高めることができ、ガラス基板20の加熱効率を高めて昇温時間の短縮化を図ることができる。
 また、処理炉10には、図3に示すように反応管100の内周面100aに複数の凹凸103が形成されており、これにより、反応管100の内周面100aの表面積を大きくすることができるため、加熱された反応管100の内周面100aに対して処理ガス600が通過する際に接触する面積を増やすことができる。
 その結果、処理ガス600の加熱効率をさらに高めることができ、ガラス基板20の加熱効率をさらに高めて昇温時間の短縮化をさらに図ることができる。
 以上の方法により、ガラス基板20を加熱し、ガラス基板20が所定の温度(例えば、後述する400~500℃)に昇温した時点で処理室30内に処理ガス(セレン元素含有ガス(セレン化源))600を導入してガラス基板20に成膜処理を行う。
 すなわち、反応管100を加熱した状態で反応管100の内部に処理ガス(セレン化源)600を導入し、その際も、電動ファン500の羽部510により反応管100の内部の雰囲気をガラス基板20の表面に沿って強制対流させて、さらに円筒形の整流板430によって安定化した気流P及び気流Qを形成し、この状態で複数のガラス基板20に成膜処理を行う。このセレン化処理によって、それぞれのガラス基板20にCIS系太陽電池の光吸収層が形成される(形成工程)。
 成膜処理の終了後、反応管100の温度を一定速度で降温するとともに、処理室30内の処理ガス600を窒素等の不活性ガスで置換する。すなわち、成膜処理の終了後、ガス供給管300から窒素ガス等の不活性ガスを導入して処理室30内の雰囲気を置換するとともに、所定温度まで降温する(降温工程)。
 さらに、ガラス基板20の温度が所定の温度に降温し、かつ処理室30内の処理ガス600の窒素ガス等による置換が終了した時点で、シールキャップ110を移動させることにより、処理室30を開口し、その後、図示しない搬入出装置のアームにてカセット410を搬出する(搬出工程)ことにより一連の成膜処理が終了する。
 なお、一例として、CIGS系の太陽電池の製造プロセスにおいて、ガラス基板20上に形成したCu(銅)、In(インジウム)、Ga(ガリウム)からなる金属プリカーサ膜(積層膜)をH2Se(セレン化水素)ガスでSe(セレン)化処理するプロセスでは、処理室30内に配置されたガラス基板20の温度を400~500℃に保持した状態で20分から2時間程度で成膜処理を行う。
 (実施の形態2)
 図5は本発明の実施の形態2の基板処理装置の主要部の構造の一例を示す断面図、図6は図5に示す基板処理装置の円周方向の構造の一例を示す断面図、図7は図6のB部の構造を示す拡大部分断面図、図8は本発明の実施の形態2の基板処理装置による効果の一例を示すシミュレーション結果図である。
 本実施の形態2の基板処理装置は、実施の形態1の基板処理装置と同様の処理炉10を備えたものであるが、本実施の形態2の処理炉10は、図5及び図6に示すように、反応管100の上部に複数の電動ファン500が設けられているものであり、したがって、電動ファン500の羽部510の回転によって生じる強制対流は、反応管100の上部から下部に向かうものであり、したがって、羽部510の回転によって生じる気流Rは、ガラス基板20の短辺方向に沿って流れるものである。
 本実施の形態2の処理炉10では、反応管100とシールキャップ110とで気密に構成可能であり、その反応管100の上部に複数の電動ファン500が並んで設けられており、処理室30の外部に設けた動力部(ファン駆動部)530によって羽部(ファン)510を回転させることで処理室30内のガスを攪拌可能な構造となっている。
 処理炉10の構造について詳しく説明すると、処理炉10は、ステンレス等の金属材料で形成される炉体としての反応管100を有している。反応管100は、中空の円筒形状(筒状)をしており、その一端が閉塞し、他端が開口する構造を有している。反応管100の中空部分により、処理室30が形成される。反応管100の開口側には、反応管100と同心円上に、その両端が開口した円筒形状のマニホールド120が設けられている。反応管100とマニホールド120との間には、シール部材としてのOリング(図示せず)が設けられている。
 また、マニホールド120の反応管100が設けられない開口部には、可動性のシールキャップ110が設けられている。シールキャップ110は、ステンレス等の金属材料で形成され、マニホールド120の開口部に、その一部が挿入される凸型形状をしている。可動性のシールキャップ110とマニホールド120との間には、シール部材としてのOリング(図示せず)が設けられ、処理を行う際には、シールキャップ110が反応管100の開口側を気密に閉塞する。
 また、反応管100の内部には、一例として、銅(Cu)、インジウム(In)、ガリウム(Ga)を含有する積層膜が形成された複数のガラス基板(例えば、30~40枚)20を保持するカセット410を載置するための設置台420が設けられている。
 設置台420は、その一端が反応管100の内周面100aに固定されると共に、反応管100の中心部にカセット410が設置台420を介して載置されるように構成されている。
 カセット410は、図5に示されるように、ガラス基板20の両端に、複数のガラス基板20を立てた状態で横方向に並んで保持可能な保持部材である。なお、ガラス基板20がカセット410に収容される際には、図6に示すように、隣のガラス基板20と干渉しないように(接触しないように)間隔をあけて収容される。さらに、図5に示すようにカセット410の底の板は、気流Rのガスを通り易くするために空洞となっており、D部に示すようにガラス基板20をそのエッジ部のみで支える構造となっている。
 また、反応管100の周囲には、一端が閉塞し、かつ他端が開口する中空の円筒形状をした加熱部である炉体加熱部200が設けられている。さらに、シールキャップ110の反応管100と反対側(外側)の側面には、キャップ加熱部210が設けられている。この炉体加熱部200とキャップ加熱部210により反応管100を介してその内部、すなわち処理室30内が加熱される。なお、炉体加熱部200は、図示しない固定部により反応管100に固定され、キャップ加熱部210は、図示しない固定部によりシールキャップ110に固定されている。また、シールキャップ110やマニホールド120には、耐熱性の低いOリングを保護するため図示しない水冷との冷却手段が設けられる。
 なお、マニホールド120には、セレン元素含有ガス(セレン化源、処理ガス600)としての水素化セレン(以下、「H2Se」と呼ぶ)を供給するためのガス供給管300が設けられており、ガス供給管300から供給されたH2Seは、ガス供給管300からマニホールド120とシールキャップ110との間の間隙を介して処理室30へ供給される(導入される)。
 一方、ガス供給管300の反対側のマニホールド120には、排気管310が設けられており、処理室30内の雰囲気は、マニホールド120とシールキャップ110との間の間隙を介して排気管310より排気される。なお、上述の冷却手段により冷却される箇所は、150℃以下まで冷却すると、その部分に未反応のセレンが凝縮してしまうため、150℃から170℃程度に温度制御すると良い。
 また、本実施の形態2の反応管100には、複数の電動ファン500が設けられている。すなわち、図5に示すように反応管100の上部に複数の電動ファン500が設けられ、これら電動ファン500の駆動により、反応管100の内部の雰囲気をガラス基板20の表面に沿って強制対流させることができる。複数の電動ファン500のそれぞれは、回転することにより処理室30内の対流を形成する羽部510と、円筒状の反応管100の側壁及び炉体加熱部200の側壁を貫通するように設けられた回転軸部520と、炉体加熱部200の外部に設けられ、かつ回転軸部520を回転させる動力部530とを有している。さらに、回転軸部520と反応管100及び炉体加熱部200との間には、保護部材540が設けられており、保護部材540と回転軸部520との間の狭い間隙に窒素パージを行うことにより、回転軸部520から動力部530に反応ガス(処理ガス600)が浸入するのを極力抑えるようにしている。
 複数の電動ファン500の回転により、処理室30内はガラス基板20の短辺方向(筒状の反応管100の縦方向(円周断面方向))に沿って流れる処理ガス600の気流Rが形成される。このように、複数の電動ファン500を動作させ、強制対流をガラス基板20の短辺方向に沿うようにすることで、ガラス基板20の面内の温度を均一化するために必要なガスの流速を下げることができる。
 また、本実施の形態2の処理炉10では、図5及び図6に示すように、処理室30にカセット410の周囲を覆う第1整流板440が設けられ、さらに、第1整流板440の外側の領域に第2整流板450が設けられている。
 ここで、第1整流板440は、反応管100の内部においてカセット410上で立てて配置される複数のガラス基板20のうちの最外部の位置に配置されるガラス基板20の表面を覆うとともに、電動ファン500の強制対流により生じたガラス基板20の表面上の処理ガス600の流れ方向(気流R)に沿って延在し、かつ複数のガラス基板20の一方の側部も覆っているが、ただし、第1整流板440の上部及び下部は、図6に示すようにガスが通過可能なように開口している。
 一方、第2整流板450は、図6に示すように、第1整流板440と反応管100の内周面100aとの間の領域で、上部の羽部510に向かう気流Sの流路を狭くして気流Sが反応管100の内周面100aに沿って流れるように湾曲状に設けられている。
 なお、第1整流板440は、反応管100の内周面100aに取り付けられ、第2整流板450は、第1整流板440に取り付けられている。
 このように第1整流板440と第2整流板450は、上部に設けられた複数の電動ファン500の駆動で羽部510の回転によって形成された強制対流によるガラス基板20の短辺方向に沿って流れる気流Rと、この気流Rが反応管100の下部の内壁に衝突した後、複数のガラス基板20の外側(第2整流板450と反応管100の内周面100aとの間の領域)で複数の電動ファン500の羽部510に向かって流れる処理ガス600の気流Sとを区分けしている。
 すなわち、第1整流板440と第2整流板450は、複数の羽部510の回転によって形成されたガラス基板20の短辺方向に沿って流れる気流Rと、この気流Rが反応管100の下部の内周面100aに到達した後、複数の電動ファン500の羽部510に向かって流れる気流Sとを区分けする機能を有しており、羽部510に向かう気流Sが反応管100の内周面100aに沿って流れるように制御している。
 これにより、複数の電動ファン500の駆動によって形成された強制対流により、ガラス基板20の短辺方向の表面に沿って流れる処理ガス600の気流R(処理ガス600の流れ方向)は、第1整流板440の下部から出た後、反応管100の下部の内周面100aに衝突し、その後、羽部510に向かう気流Sが第2整流板450の外側の領域で反応管100の内周面100aに沿って流れるように処理ガス600の流れを第1整流板440と第2整流板450が制御している。
 その結果、処理室30でのガラス基板20の処理中の処理ガス600の流れを安定して循環させることができる。
 つまり、反応管100の内部(処理室30内)に第1整流板440と第2整流板450を設けたことで、複数の電動ファン500の羽部510に向かって流れる処理ガス600の流路を、反応管100の内周面100aに沿うように狭くすることができ、したがって、複数の羽部510に向かって流れる処理ガス600を、加熱された反応管100の内周面100aに沿って流れるように制御することができる。その結果、反応管100の内部の処理ガス600の流れの安定化を図ることができる。
 これにより、処理ガス600の加熱効率を高めることができ、ガラス基板20の加熱効率を高めて昇温時間の短縮化を図ることができる。
 また、処理炉10には、実施の形態1と同様に、図7に示すように反応管100の内周面100aに複数の凹凸103が形成されている。この凹凸103は、反応管100の内周面100aの略全面(例えば、処理ガス600が通過する内周面100a)に亘って形成されている。
 これにより、反応管100の内周面100aの表面積を大きくすることができ、加熱された反応管100の内周面100aに対して処理ガス600が通過する際に接触する面積を増やすことができる。
 その結果、処理ガス600の加熱効率をさらに高めることができ、ガラス基板20の加熱効率をさらに高めて昇温時間の短縮化をさらに図ることができる。
 本実施の形態2の基板処理装置のその他の構成については、実施の形態1の基板処理装置と同様であるため、その重複説明は省略する。
 次に、本実施の形態2の処理炉10を備える基板処理装置を用いた基板処理方法について説明する。
 ここでは、図5及び図6に示すような、上部に複数の電動ファン500が設けられた筒状の反応管100を有した処理炉10を備える基板処理装置において、一例として、CIGS系の太陽電池の製造プロセスでセレン化処理を行う場合を説明する。
 まず、銅(Cu)、インジウム(In)、ガリウム(Ga)を含有する積層膜が形成された30枚から60枚のガラス基板20をカセット(ボート)410内に配置し、可動性のシールキャップ110をマニホールド120から外した状態で、カセット410を反応管100の内部である処理室30内に搬入し、設置台420上にセットする(搬入工程)。
 なお、カセット410内においてそれぞれのガラス基板20は、図6に示すように隣り合った基板と接触しない程度に間隔をあけて立てて配置されている。
 また、カセット410の処理室30内への搬入は、例えば、図示しない搬入出装置のアームによりカセット410の下部を支持して持ち上げた状態で、カセット410を処理室30内に移動し、所定の位置に到達させた後、当該アームを下方に移動させカセット410を設置台420に載置することにより行われる。
 その後、シールキャップ110を閉めて処理室30を密閉状態とし、処理室30の内部の大気を窒素ガス等の不活性ガス(処理ガス600)で置換する(置換工程)。前記不活性ガスで処理室30内の雰囲気を置換した後、炉体加熱部200等のヒータに電力を投入し、所定の昇温速度で反応管100を加熱する。例えば、400~550℃、望ましくは450℃~550℃まで、毎分3~15℃で昇温する。
 さらに昇温と同時に、電動ファン500の羽部510を動力部530により回転させ、反応管100の内周面100a付近で加熱された処理ガス(不活性ガス)600をカセット410に収容された複数のガラス基板20それぞれの短辺方向に沿って、かつガラス基板20間を通過させ、処理ガス600の熱をガラス基板20に伝達することによりガラス基板20を加熱する。
 なお、ガラス基板20は基板内の温度差が大きくなると破損するため、温度差が大きくならないように反応管100の昇温速度や、隣り合ったガラス基板20の間を通過させる処理ガス(不活性ガス)600の流速を適切な値に調節して加熱する。
 ここで、本実施の形態2の処理炉10には、その反応管100の内部に、カセット410の周囲を覆う第1整流板440が設けられ、さらに、第1整流板440の外側の領域に第2整流板450が設けられている。
 ここで、第1整流板440は、反応管100の内部においてカセット410上で立てて配置される複数のガラス基板20のうちの最外部の位置に配置されるガラス基板20の表面を覆うとともに、電動ファン500の強制対流により生じたガラス基板20の表面上の処理ガス600の流れ方向(気流R)に沿って延在し、かつ複数のガラス基板20の一方の側部も覆っているが、ただし、第1整流板440の上部及び下部は、図6に示すようにガスが通過可能なように開口している。
 一方、第2整流板450は、図6に示すように、第1整流板440と反応管100の内周面100aとの間の領域で、上部の羽部510に向かう気流Sの流路を狭くして気流Sが反応管100の内周面100aに沿って流れるように湾曲状に設けられている。
 このように第1整流板440と第2整流板450は、上部に設けられた複数の電動ファン500の駆動で羽部510の回転によって形成された強制対流によるガラス基板20の短辺方向に沿って流れる気流Rと、この気流Rが反応管100の下部の内壁に衝突した後、複数のガラス基板20の外側(第2整流板450と反応管100の内周面100aとの間の領域)で複数の電動ファン500の羽部510に向かって流れる処理ガス600の気流Sとを区分けしている。
 すなわち、第1整流板440と第2整流板450は、複数の羽部510の回転によって形成されたガラス基板20の短辺方向に沿って流れる気流Rと、この気流Rが反応管100の下部の内周面100aに到達した後、複数の電動ファン500の羽部510に向かって流れる気流Sとを区分けする機能を有しており、羽部510に向かう気流Sが反応管100の内周面100aに沿って流れるように制御している。したがって、羽部510の回転で送風された処理ガス600は第1整流板440によりそのほとんどがガラス基板20の間を短辺方向に沿って気流Rとして通過し、さらにガラス基板20を抜けて反応管100の下部の内周面100aに到達した後は、気流Sとして第2整流板450により反応管100の内周面100aに沿って流れ、ガラス基板20を加熱するための効果的な流れを形成する。
 これにより、処理室30でのガラス基板20の昇温時の処理ガス600の流れを安定して循環させることができる。
 つまり、反応管100の内部(処理室30内)に第1整流板440と第2整流板450が設けられたことで、複数の電動ファン500の羽部510に向かって流れる処理ガス600の流路を、反応管100の内周面100aに沿うように狭くすることができ、したがって、この処理ガス600を加熱された反応管100の内周面100aに沿って流れるように制御することができる。これにより、反応管100の内部の処理ガス600の流れの安定化を図ることができる。
 その結果、処理ガス600の加熱効率を高めることができ、ガラス基板20の加熱効率を高めて昇温時間の短縮化を図ることができる。
 また、処理炉10には、図7に示すように反応管100の内周面100aに複数の凹凸103が形成されており、これにより、反応管100の内周面100aの表面積を大きくすることができるため、加熱された反応管100の内周面100aに対して処理ガス600が通過する際に接触する面積を増やすことができる。
 その結果、処理ガス600の加熱効率をさらに高めることができ、ガラス基板20の加熱効率をさらに高めて昇温時間の短縮化をさらに図ることができる。
 なお、ガラス基板20は基板内の温度差が大きくなると破損するため、温度差が大きくならないように反応管100の昇温速度や、ガラス基板20間に送風する処理ガス600の速度を適切な値に調節して加熱する。すなわち、ガラス基板20の昇温速度および電動ファン500の送風速度(電動ファン500の回転数)は、ガラス基板20の温度分布が悪化しないように適宜調節する。
 以上の方法により、ガラス基板20を加熱し、ガラス基板20が所定の温度(例えば、後述する400~500℃)に昇温した時点で処理室30内に処理ガス(セレン元素含有ガス(セレン化源))600を導入してガラス基板20に成膜処理を行う。
 すなわち、反応管100を加熱した状態で反応管100の内部に処理ガス(セレン化源)600を導入し、その際も、電動ファン500の羽部510により反応管100の内部の雰囲気をガラス基板20の表面に沿って強制対流させて、さらに円筒形の整流板430によって安定化した気流R及び気流Sを形成し、この状態で複数のガラス基板20に成膜処理を行う。このセレン化処理によって、それぞれのガラス基板20にCIS系太陽電池の光吸収層が形成される(形成工程)。
 成膜処理の終了後、処理ガス(セレン化源、セレン化水素ガス))600の供給を停止させ、反応管100の温度を一定速度で降温するとともに、処理室30内の処理ガス600を窒素等の不活性ガスで置換する。すなわち、成膜処理の終了後、ガス供給管300から窒素ガス等の不活性ガスを導入して処理室30内の雰囲気を置換するとともに、所定温度まで降温する(降温工程)。
 さらに、ガラス基板20の温度が所定の温度に降温し、かつ処理室30内の処理ガス600の窒素ガス等による置換が終了した時点で、シールキャップ110を移動させることにより、処理室30を開口し、その後、図示しない搬入出装置のアームにてカセット410を搬出する(搬出工程)ことにより一連の成膜処理が終了する。
 なお、基板降温時、基板内における温度差が大きくならないように窒素ガスの導入量等の降温条件を調節する。
 また、本実施の形態2では、電動ファン500をガラス基板20の上部に設けた場合を説明したが、複数の電動ファン500は、ガラス基板20の下部に設置してもよい。
 次に、図8を用いて、ガラス基板20の長辺方向(実施の形態1)と短辺方向(実施の形態2)とで、処理ガス600の流す方向による有意差について説明する。
 図8は、電動ファン500の位置以外は、同じ構造を有する処理炉10において、5℃/分の速度で昇温した場合のガラス基板20間の流速を変化させ、ガラス基板20の面内の温度差を約30℃に抑えるために必要な流速をシュミレーションした結果である。
 図8(a)は、実施の形態1のように電動ファン500を処理炉10の側部に配置し、ガラス基板20の表面の処理ガス600の流れをガラス基板20の長辺方向とした場合の結果である。図8(a-1)は加熱開始後20分経過した状態であり、図8(a-2)は加熱開始後60分経過した状態を表示している。図中の濃淡の度合いからガラス基板20の面内の温度差が約30℃に抑えられているのがわかる。さらに、シュミレーションにより、ガラス基板20の面内の温度差を約30℃に抑えるために必要なガスの流速は、10m/秒であるという結果が得られた。
 一方、図8(b)は、本実施の形態2のように電動ファン500を処理炉10の上部に配置し、ガラス基板20の表面の処理ガス600の流れをガラス基板20の短辺方向にした場合の結果である。図8(b-1)は加熱開始後20分経過した状態であり、図8(b-2)は加熱開始後60分経過した状態を表示している。図中の濃淡の度合いからガラス基板20の面内の温度差が約30℃に抑えられているのがわかる。さらに、シュミレーションにより、ガラス基板20の面内の温度差を約30℃に抑えるために必要なガスの流速は、2m/秒であるという結果が得られた。
 なお、図8(a)及び(b)それぞれの左側の図は、加熱20分後(400K=123℃)の状態を示し、右側の図は、加熱60分後(600K=323℃)の状態を示している。
 以上、シュミレーションの結果に示されるように、本実施の形態2のように処理ガス600の流れをガラス基板20の短辺方向とすることにより、実施の形態1の処理ガス600の流れをガラス基板20の長辺方向とすることに比べて、処理ガス600の流速の大きさを抑える(小さくする)ことが可能となり、ガラス基板20を大型化することが可能となる。
 次に、本実施の形態2の変形例について説明する。図9は本発明の実施の形態2における変形例の基板処理装置の主要部の構造を示す断面図である。
 図9に示す変形例の処理炉10は、複数のガラス基板20を保持するカセット410を一つのみ載置した構造とは異なり、複数のカセット410(ここでは、3つ)を複数のガラス基板20の表面の長辺方向と平行な方向に並べて配置している構造を示している。
 このように、ガラス基板20を収容するカセット410を一列に3つ配置した構造では、反応管100がさらに横長な形状となり、処理ガス600の流れが不安定になるが、図9に示すように、複数の電動ファン500が上部に設けられ、かつ整流板460も設けられていることで、各ガラス基板20の短辺方向に沿って処理ガス600を流すことができ、その結果、処理ガス600の流れを安定化させることができる。
 ここで、実施の形態1及び2で説明した処理炉10では、従来の石英製の反応管を用いるのではなく、ステンレス等の金属材料を反応管100の基材として用いている。したがって、実施の形態2の処理炉10のように、処理ガス600をガラス基板20の短辺方向に沿って流す構造とすることで、図9に示すように、反応管100を大型化したとしても、石英製と比較してその成型が容易であり、また、そのコストの増加も石英製と比較して小さい。その結果、一度に処理できるガラス基板20の数を多くすることができ、CIS系太陽電池の製造コストを下げることができる。
 また、ステンレス等の金属材料を反応管100の基材として使用することにより、石英製の反応管と比較して、その取り扱いも容易であり、反応管100を大型化することができる。
 前記実施の形態1及び実施の形態2における本発明では、以下に記す効果のうち少なくとも1つを実現することができる。
 (1)反応管100の内部に、複数のガラス基板20のうちの最外部の位置に配置されるガラス基板20の表面を覆う整流板430、もしくは第1整流板440と第2整流板450が設けられたことにより、電動ファン500に向かって流れる処理ガス600の流路を反応管100の内周面100aに沿うように狭くすることができ、したがって、この処理ガス600を加熱された反応管100の内周面100aに沿って流れるように制御することができる。その結果、反応管100の内部の処理ガス600の流れの安定化を図ることができる。
 (2)反応管100の内部の処理ガス600の流れの安定化を図ることができるため、処理ガス600の加熱効率を高めることができ、ガラス基板20の加熱効率を高めて昇温時間の短縮化を図ることができる。
 (3)反応管100の内周面100aに複数の凹凸103が形成されていることにより、反応管100の内周面100aの表面積を大きくすることができ、加熱された反応管100の内周面100aに対して処理ガス600が通過する際に接触する面積を増やすことができる。その結果、処理ガス600の加熱効率をさらに高めることができ、ガラス基板20の加熱効率をさらに高めて昇温時間の短縮化をさらに図ることができる。
 以上、本発明者によってなされた発明を発明の実施の形態に基づき具体的に説明したが、本発明は前記発明の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 例えば、前記実施の形態1,2では、銅(Cu)、インジウム(In)、ガリウム(Ga)が形成された複数のガラス基板をセレン化処理することで説明したが、これに限らず、銅(Cu)/インジウム(In)や銅(Cu)/ガリウム(Ga)等が形成された複数のガラス基板をセレン化処理するようにしてもよい。
 また、前記実施の形態1,2では、金属材料との反応性の高いセレン化について言及したが、CIS系太陽電池では、セレン化処理に変えて、もしくはセレン化処理の後に硫黄元素含有ガスを供給して硫化処理を行う場合もある。その際も、前記実施の形態2の大型反応炉を用いることにより、一度に硫化処理をできる枚数を増やすことができるため、製造コストの低下を実現できる。
 また、前記実施の形態1,2では、反応管100の内周面100aに複数の凹凸103が全面に亘って設けられている場合を説明したが、内周面100aの全面ではなく、一部、例えば、内周面100aに対して所定の間隔を設けた状態で複数の凹凸103が設けられていてもよい。
 最後に本発明の好ましい主な態様を以下に付記する。
 (1)筒状に形成され、かつ内部で複数の基板に対して成膜処理が行われる反応管と、前記反応管の内部に前記成膜処理のための処理ガスを導入するガス供給管と、前記反応管の内部の雰囲気を排気する排気管と、前記反応管を加熱する加熱部と、前記反応管の内部の雰囲気を前記基板の表面に沿って強制対流させるファンと、前記強制対流により生じた前記基板の表面上の前記処理ガスの流れ方向に沿って延在し、かつ前記複数の基板のうちの最外部の位置に配置される前記基板の表面を覆う整流板と、を有し、前記複数の基板の外側で前記ファンに向かって流れる前記処理ガスを前記反応管の内周面に沿って流れるように制御する基板処理装置。
 (2)前記(1)において、前記強制対流による前記処理ガスの流れ方向が、前記基板の短辺方向に沿っている基板処理装置。
 (3)前記(1)において、前記整流板は円筒形である基板処理装置。
 (4)筒状に形成され、かつ内部で複数の基板に対して成膜処理が行われる反応管と、前記反応管の内部に前記成膜処理のための処理ガスを導入するガス供給管と、前記反応管の内部の雰囲気を排気する排気管と、前記反応管を加熱する加熱部と、前記反応管の内部の雰囲気を前記基板の表面に沿って強制対流させるファンと、を有し、前記反応管の内周面に複数の凹凸が形成されている基板処理装置。
 (5)内部にファンが設けられた筒状の反応管を備える基板処理装置を用いた基板処理方法であって、(a)前記反応管の内部に複数の基板を間隔をあけて配置する工程と、(b)前記反応管を加熱した状態で前記反応管の内部に処理ガスを導入し、前記ファンにより前記反応管の内部の雰囲気を前記基板の表面に沿って強制対流させて前記複数の基板に成膜処理を行う工程と、を有し、前記(b)工程において、前記強制対流により生じた前記基板の表面上の前記処理ガスの流れ方向に沿って延在し、かつ前記複数の基板のうちの最外部の位置に配置される前記基板の表面を覆う整流板によって、前記複数の基板の外側で前記ファンに向かって流れる前記処理ガスを前記反応管の内周面に沿って流れるように制御する基板処理方法。
 本発明は、加熱して基板処理を行う技術に好適である。
  10 処理炉
  20 ガラス基板
  30 処理室
 100 反応管
100a 内周面
 101 基材
 102 コーティング膜
 103 凹凸
 110 シールキャップ
 120 マニホールド
 200 炉体加熱部
 210 キャップ加熱部
 300 ガス供給管
 310 排気管
 410 カセット
410a フレーム
 420 設置台
 430 整流板
 440 第1整流板
 450 第2整流板
 460 整流板
 500 電動ファン
 510 羽部
 520 回転軸部
 530 動力部
 540 保護部材
 600 処理ガス

Claims (5)

  1.  筒状に形成され、内部で複数の基板に対して成膜処理が行われる反応管と、
     前記反応管の内部に前記成膜処理のための処理ガスを導入するガス供給管と、
     前記反応管の内部の雰囲気を排気する排気管と、
     前記反応管を加熱する加熱部と、
     前記反応管の内部の雰囲気を前記基板の表面に沿って強制対流させるファンと、
     前記強制対流により生じた前記基板の表面上の前記処理ガスの流れ方向に沿って延在し、前記複数の基板のうちの最外部の位置に配置される前記基板の表面を覆う整流板と、
     を有し、
     前記複数の基板の外側で前記ファンに向かって流れる前記処理ガスを前記反応管の内周面に沿って流れるように制御することを特徴とする基板処理装置。
  2. 前記強制対流による前記処理ガスの流れ方向が、前記基板の短辺方向に沿っている請求項1記載の基板処理装置。
  3. 前記整流板は円筒形である請求項1記載の基板処理装置。
  4.  筒状に形成され、内部で複数の基板に対して成膜処理が行われる反応管と、
     前記反応管の内部に前記成膜処理のための処理ガスを導入するガス供給管と、
     前記反応管の内部の雰囲気を排気する排気管と、
     前記反応管を加熱する加熱部と、
     前記反応管の内部の雰囲気を前記基板の表面に沿って強制対流させるファンと、
     を有し、
     前記反応管の内周面に複数の凹凸が形成されていることを特徴とする基板処理装置。
  5.  内部にファンが設けられた筒状の反応管を備える基板処理装置を用いた基板処理方法であって、
     (a)前記反応管の内部に複数の基板を間隔をあけて配置する工程と、
     (b)前記反応管を加熱した状態で前記反応管の内部に処理ガスを導入し、前記ファンにより前記反応管の内部の雰囲気を前記基板の表面に沿って強制対流させて前記複数の基板に成膜処理を行う工程と、
     を有し、
     前記(b)工程において、前記強制対流により生じた前記基板の表面上の前記処理ガスの流れ方向に沿って延在し、かつ前記複数の基板のうちの最外部の位置に配置される前記基板の表面を覆う整流板によって、前記複数の基板の外側で前記ファンに向かって流れる前記処理ガスを前記反応管の内周面に沿って流れるように制御することを特徴とする基板処理方法。
PCT/JP2012/083559 2011-12-28 2012-12-26 基板処理装置及びそれを用いた基板処理方法 WO2013099894A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280065144.4A CN104160480A (zh) 2011-12-28 2012-12-26 衬底处理装置及使用该装置的衬底处理方法
KR1020147014504A KR20140085584A (ko) 2011-12-28 2012-12-26 기판 처리 장치 및 그것을 이용한 기판 처리 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-288734 2011-12-28
JP2011288734 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099894A1 true WO2013099894A1 (ja) 2013-07-04

Family

ID=48697378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083559 WO2013099894A1 (ja) 2011-12-28 2012-12-26 基板処理装置及びそれを用いた基板処理方法

Country Status (4)

Country Link
JP (1) JPWO2013099894A1 (ja)
KR (1) KR20140085584A (ja)
CN (1) CN104160480A (ja)
WO (1) WO2013099894A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016535459A (ja) * 2013-09-10 2016-11-10 テラセミコン コーポレイション 熱処理装置及びそれを備えた熱処理システム
JP2016538730A (ja) * 2013-09-10 2016-12-08 テラセミコン コーポレイション 熱処理装置のチャンバ及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102567296B1 (ko) * 2021-03-31 2023-08-18 주식회사 에프엑스티 탄화 규소 부재의 제조 장치, 탄화 규소의 부재 제조 방법, 및 포커스 링의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412525A (ja) * 1990-05-02 1992-01-17 Babcock Hitachi Kk 有機金属化学気相成長装置
JP2006186114A (ja) * 2004-12-28 2006-07-13 Showa Shell Sekiyu Kk Cis系薄膜太陽電池の光吸収層の作製方法
WO2009128253A1 (ja) * 2008-04-17 2009-10-22 本田技研工業株式会社 太陽電池の熱処理装置
WO2010060646A1 (de) * 2008-11-28 2010-06-03 Volker Probst Verfahren zum herstellen von halbleiterschichten bzw. von mit elementarem selen und/oder schwefel behandelten beschichteten substraten, insbesondere flächigen substraten
JP2012222156A (ja) * 2011-04-08 2012-11-12 Hitachi Kokusai Electric Inc 基板処理装置、及び、搬送装置
JP2013026437A (ja) * 2011-07-21 2013-02-04 Kyocera Corp 薄膜製造方法、および薄膜製造装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2581378T3 (es) * 2008-06-20 2016-09-05 Volker Probst Dispositivo de procesamiento y procedimiento para procesar productos de procesamiento apilados

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412525A (ja) * 1990-05-02 1992-01-17 Babcock Hitachi Kk 有機金属化学気相成長装置
JP2006186114A (ja) * 2004-12-28 2006-07-13 Showa Shell Sekiyu Kk Cis系薄膜太陽電池の光吸収層の作製方法
WO2009128253A1 (ja) * 2008-04-17 2009-10-22 本田技研工業株式会社 太陽電池の熱処理装置
WO2010060646A1 (de) * 2008-11-28 2010-06-03 Volker Probst Verfahren zum herstellen von halbleiterschichten bzw. von mit elementarem selen und/oder schwefel behandelten beschichteten substraten, insbesondere flächigen substraten
JP2012222156A (ja) * 2011-04-08 2012-11-12 Hitachi Kokusai Electric Inc 基板処理装置、及び、搬送装置
JP2013026437A (ja) * 2011-07-21 2013-02-04 Kyocera Corp 薄膜製造方法、および薄膜製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016535459A (ja) * 2013-09-10 2016-11-10 テラセミコン コーポレイション 熱処理装置及びそれを備えた熱処理システム
JP2016538730A (ja) * 2013-09-10 2016-12-08 テラセミコン コーポレイション 熱処理装置のチャンバ及びその製造方法

Also Published As

Publication number Publication date
CN104160480A (zh) 2014-11-19
KR20140085584A (ko) 2014-07-07
JPWO2013099894A1 (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5698059B2 (ja) 基板処理装置、及び、太陽電池の製造方法
US20190157125A1 (en) Wafer carrier having thermal cover for chemical vapor deposition systems
US9111980B2 (en) Gas exhaust for high volume, low cost system for epitaxial silicon deposition
WO2011114858A1 (ja) 半導体薄膜の製造方法、半導体薄膜の製造装置、サセプター、およびサセプター保持具
JP6444641B2 (ja) 成膜装置、サセプタ、及び成膜方法
US9926626B2 (en) System and method for processing substrates
WO2013099894A1 (ja) 基板処理装置及びそれを用いた基板処理方法
CN102738261B (zh) 衬底处理装置、太阳能电池的制造方法及衬底的制造方法
CN1920120A (zh) 薄板制造方法和薄板制造装置
CN102738296A (zh) 衬底处理装置、及该装置用反应管的表面涂膜形成方法
JP5853291B2 (ja) 基板処理装置、及び、搬送装置
JP2013051281A (ja) 基板処理装置
JP6343592B2 (ja) 多結晶シリコン製造用反応炉及び多結晶シリコンの製造方法
JP3151092B2 (ja) 熱処理装置及び熱処理方法
JP2013159545A (ja) 基板処理装置及び太陽電池用基板の製造方法
JP2011198957A (ja) 基板処理装置及び基板保持体及び半導体装置の製造方法
KR101978040B1 (ko) 칼코겐화 열처리 장치 및 칼코겐화 열처리 방법
JP2010053393A (ja) 基板処理装置
JP2008311587A (ja) 基板処理装置
WO2004005592A1 (ja) 薄板製造装置および薄板製造方法
JP2005299990A (ja) 高温加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147014504

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013551717

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12862194

Country of ref document: EP

Kind code of ref document: A1