WO2013080894A1 - 弁制御装置、ガスタービン、及び弁制御方法 - Google Patents

弁制御装置、ガスタービン、及び弁制御方法 Download PDF

Info

Publication number
WO2013080894A1
WO2013080894A1 PCT/JP2012/080388 JP2012080388W WO2013080894A1 WO 2013080894 A1 WO2013080894 A1 WO 2013080894A1 JP 2012080388 W JP2012080388 W JP 2012080388W WO 2013080894 A1 WO2013080894 A1 WO 2013080894A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
valve
pressure
value
combustor
Prior art date
Application number
PCT/JP2012/080388
Other languages
English (en)
French (fr)
Inventor
昭彦 齋藤
園田 隆
敬史 宇田
藤井 文倫
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/348,354 priority Critical patent/US9732676B2/en
Priority to CN201280044970.0A priority patent/CN103946516B/zh
Priority to EP12852649.8A priority patent/EP2752568B1/en
Priority to KR1020147008203A priority patent/KR101520240B1/ko
Publication of WO2013080894A1 publication Critical patent/WO2013080894A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/263Control of fuel supply by means of fuel metering valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/32Control of fuel supply characterised by throttling of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/02Purpose of the control system to control rotational speed (n)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/05Purpose of the control system to affect the output of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/06Purpose of the control system to match engine to driven device
    • F05D2270/061Purpose of the control system to match engine to driven device in particular the electrical frequency of driven generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/09Purpose of the control system to cope with emergencies
    • F05D2270/091Purpose of the control system to cope with emergencies in particular sudden load loss
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure

Definitions

  • the present invention relates to a valve control device, a gas turbine, and a valve control method.
  • the rotational speed of the gas turbine may increase rapidly.
  • the power generation facility is disconnected from the commercial power system, and the power generation facility is The number of revolutions of the gas turbine rises when shifting to a single operation in which power is transmitted only to the load equipment.
  • the output request of the gas turbine is rapidly reduced (load reduction) by an amount corresponding to the amount of loss that the power generation facility has transmitted to the commercial power system. For this reason, the fuel supplied to the combustor which a gas turbine has must be narrowed down rapidly.
  • Patent Document 1 when a load interruption or an interruption from the power transmission system occurs, a fuel flow rate of a predetermined premixed combustion fuel system is predetermined among a plurality of premixed combustion fuel systems.
  • the first minimum fuel flow rate that can hold the flame is set for the first effective time
  • the fuel flow rate of the diffusion combustion fuel system is set to the second minimum fuel flow rate that can hold the flame for the second effective time. Only a gas turbine fuel control device is described.
  • the present invention has been made in view of such circumstances, and is capable of suppressing the output of the gas turbine from becoming unstable even when the load is suddenly reduced.
  • the valve control device, the gas turbine, and the valve control It aims to provide a method.
  • valve control apparatus In order to solve the above problems, the valve control apparatus, gas turbine, and valve control method of the present invention employ the following means.
  • the valve control device adjusts the flow rate of fuel supplied to the combustor that burns fuel and generates combustion gas, the turbine driven by the combustion gas generated by the combustor, and the combustor.
  • a gas turbine having a pressure regulating valve disposed upstream of the flow regulating valve in a fuel flow path for supplying fuel to the combustor and regulating a fuel pressure, and at least the pressure regulating
  • a valve control device for controlling the opening of the valve, wherein the detection unit detects a reduction in the load of the gas turbine, and when the reduction in the load is detected by the detection unit, Pressure control means for controlling the opening of the pressure regulating valve according to the output of the gas turbine.
  • the valve control device combusts fuel and generates combustion gas, a turbine driven by the combustion gas generated by the combustor, and a flow rate adjustment valve that adjusts the flow rate of fuel supplied to the combustor. And at the upstream side of the flow rate adjustment valve in the fuel flow path for supplying fuel to the combustor, provided in a gas turbine having a pressure adjustment valve for adjusting the fuel pressure, and controlling at least the opening of the pressure adjustment valve .
  • the reduction of the load of the gas turbine is detected by the detection means.
  • the load of the gas turbine is reduced, the amount of fuel corresponding to the load cannot be reduced in time, and the output of the gas turbine may become unstable.
  • the fuel flow rate is adjusted by feedback control of the opening of the flow rate adjustment valve based on, for example, the output of the gas turbine.
  • the flow control valve is feedback-controlled based on the gas after the load reduction, if the pressure control valve arranged upstream from the flow control valve is not at an appropriate opening, the frequency rise or Combustion instability cannot be suppressed.
  • the opening of the pressure regulating valve is controlled by the pressure control means according to the output of the gas turbine after the reduction of the load.
  • the control according to the output of the gas turbine after the load is reduced is feedforward control.
  • this configuration can suppress the output of the gas turbine from becoming unstable even when the load is suddenly reduced.
  • the pressure control means obtains a fuel requirement value indicating the amount of fuel to be supplied to the combustor according to the output requirement value of the gas turbine after the reduction of the load, and the fuel requirement value It is preferable to determine the opening of the pressure regulating valve based on the above.
  • the required fuel value indicating the amount of fuel to be supplied to the combustor is obtained according to the required output value of the gas turbine after the load is reduced, and the pressure adjustment valve is opened based on the required fuel value. Since the degree is determined, the opening degree of the pressure regulating valve after the load reduction can be accurately controlled.
  • the air flow rate calculation means for calculating the flow rate of air flowing into the compressor for introducing the compressed air into the combustor based on the required output value
  • the pressure control means includes the gas turbine.
  • the air flow rate calculation means calculates the air flow rate that flows into the compressor that introduces the compressed air into the combustor based on the required output value of the gas turbine.
  • the required fuel value is changed from the heat balance data indicating the state quantity of the inlet / outlet of each device constituting the gas turbine to the air flow rate calculated by the air flow rate calculation means, the atmospheric temperature, and the required output value of the gas turbine. It is derived as a corresponding value. Therefore, in this configuration, since the fuel requirement according to the output demand value of the gas turbine after the load reduction is obtained from the heat balance of the gas turbine and the opening degree of the pressure regulating valve is determined, the pressure after the load reduction is determined. The opening degree of the regulating valve can be determined with high accuracy.
  • the pressure control means derives the fuel demand value according to the power demand value using the first information indicating the relationship between the power demand value and the fuel demand value. preferable.
  • the fuel requirement value is derived from the first information indicating the relationship between the output requirement value of the gas turbine after the load reduction and the fuel requirement value, and the opening degree of the pressure regulating valve is determined. Since the amount of calculation performed until the opening degree of the pressure regulating valve is determined is reduced, the opening degree of the pressure regulating valve after the load reduction can be determined with a simple configuration.
  • the pressure control means uses the second information indicating the relationship between the output required value of the gas turbine and the opening of the pressure regulating valve, and the opening according to the output required value. Is preferably derived.
  • the opening degree of the pressure regulating valve is derived from the second information indicating the relationship between the required output value of the gas turbine and the opening degree of the pressure regulating valve, the opening degree of the pressure regulating valve is determined. Since the amount of calculation performed until the load is reduced, the opening degree of the pressure regulating valve after the load reduction can be determined with a simple configuration.
  • the pressure control unit corrects the derived opening degree based on a parameter that affects a combustion state in the combustor.
  • the opening degree of the pressure regulating valve derived using the second information is corrected based on a parameter that affects the combustion state in the combustor.
  • the degree can be determined accurately.
  • the parameters are, for example, atmospheric temperature, fuel calorie, fuel temperature, fuel supply pressure, and the like.
  • the pressure control means uses a command value indicating a fuel flow rate calculated based on the rotational speed of the gas turbine after the reduction of the load, and uses the command value and the fuel supplied to the combustor. It is preferable to determine the opening degree of the pressure regulating valve based on the fuel requirement value derived from the third information indicating the relationship with the fuel requirement value indicating the amount.
  • the required fuel value is calculated using the command value indicating the fuel flow rate calculated based on the rotation speed of the gas turbine after the load is reduced. It can be determined more accurately.
  • the command value includes the opening degree of the flow rate adjustment valve because the opening degree of the flow rate adjustment valve corresponds to the fuel flow rate.
  • the pressure control means opens the pressure regulating valve according to the output of the gas turbine after the reduction of the load when the load reduction amount exceeds a predetermined threshold. It is preferable to control the degree.
  • a gas turbine includes a combustor that burns fuel and generates combustion gas, a turbine that is driven by the combustion gas generated by the combustor, and a fuel flow rate that is supplied to the combustor.
  • a flow regulating valve to be adjusted; a pressure regulating valve that is disposed upstream of the flow regulating valve and that regulates fuel pressure; and the valve control device according to the above that controls an opening degree of the pressure regulating valve. .
  • the valve control method includes a combustor that burns fuel and generates combustion gas, a turbine that is driven by the combustion gas generated by the combustor, and a fuel flow rate that is supplied to the combustor.
  • a gas turbine having a pressure regulating valve disposed upstream of the flow regulating valve in a fuel flow path for supplying fuel to the combustor and regulating a fuel pressure, and at least the pressure regulating
  • valve control device a gas turbine, and a valve control method according to the present invention will be described with reference to the drawings.
  • FIG. 1 is an overall configuration diagram of a factory facility 10 according to the first embodiment.
  • the factory facility 10 includes a power generation facility 16 including a gas turbine 12 and a generator 14, and a load facility 18 that consumes power.
  • the gas turbine 12 includes a compressor 20, a combustor 22, and a turbine 24.
  • the compressor 20 is driven by the rotary shaft 26 to compress the air taken in from the air intake port and generate compressed air.
  • the combustor 22 injects fuel into the compressed air introduced from the compressor 20 into the passenger compartment 28 to generate high-temperature and high-pressure combustion gas.
  • the turbine 24 is rotationally driven by the combustion gas generated in the combustor 22.
  • the intake air amount of the compressor 20 is adjusted by opening and closing an inlet guide vane (hereinafter referred to as “IGV”) provided at the inlet of the compressor 20.
  • IIGV inlet guide vane
  • a bypass pipe 30 is provided between the vehicle compartment 28 and the combustor 22, and the bypass pipe 30 is a combustor when air in the combustor 22 becomes insufficient due to load fluctuation of the turbine 24.
  • the bypass valve 32 When the bypass valve 32 is opened, it becomes a flow path for introducing the air in the passenger compartment 28 into the combustor 22.
  • An extraction pipe 34 for introducing cooling air from the compressor 20 to the turbine 24 is provided between the compressor 20 and the turbine 24.
  • the turbine 24, the compressor 20, and the generator 14 are connected by a rotating shaft 26, and the rotational driving force generated in the turbine 24 is transmitted to the compressor 20 and the generator 14 by the rotating shaft 26.
  • the generator 14 generates power by the rotational driving force of the turbine 24.
  • the generator 14 is connected to the load facility 18 and supplies the generated power to the load facility 18 in the factory facility 10.
  • the generator 14 is grid-connected to the commercial power system, and supplies the generated power to the commercial power system, which is a power transmission network outside the factory facility 10.
  • a breaker 36A is provided on the transmission line between the power generation facility 16 and the load facility 18, and a breaker 36B is provided on the transmission line between the power generation facility 16 and the commercial power system.
  • the combustor 22 is provided with a nozzle 38, and the fuel supplied from the nozzle 38 is burned using compressed air.
  • a fuel flow path 40 that supplies fuel to the combustor 22 is disposed upstream of the flow rate adjustment valve 42 in the fuel flow path 40 and a flow rate adjustment valve 42 that adjusts the flow rate of fuel supplied to the combustor 22.
  • a pressure adjusting valve 44 for adjusting the pressure is provided. The amount of fuel supplied to the combustor 22 is controlled by controlling the opening amounts of the flow rate adjustment valve 42 and the pressure adjustment valve 44.
  • the valve control device 50 includes a load reduction detection unit 52, a flow rate control unit 54, and a pressure control unit 56.
  • the load reduction detection unit 52 detects a reduction in the load of the gas turbine 12 (hereinafter referred to as “load reduction”).
  • the flow rate control unit 54 controls the flow rate of the fuel supplied to the combustor 22 by controlling the opening degree of the flow rate adjustment valve 42. Specifically, the flow rate control unit 54 controls the fuel flow rate by feedback-controlling the opening degree of the flow rate adjustment valve 42 based on the output of the gas turbine 12.
  • the pressure control unit 56 controls the fuel pressure supplied to the combustor 22 by controlling the opening of the pressure regulating valve 44. Specifically, the pressure control unit 56 controls the opening degree of the pressure adjustment valve 44 so that the fuel pressure flowing through the fuel flow path 40 becomes a predetermined value.
  • the circuit breaker 36B is opened, or the like. For example, when it is blocked. In such a case, the load of the gas turbine 12 decreases rapidly.
  • the power generation facility 16 shifts to a single operation in which power is transmitted only to the load facility 18 in the factory facility 10. Therefore, as shown in FIG. 2, the output of the gas turbine 12 rapidly decreases by an amount corresponding to the loss (lost load) of the power transmitted to the commercial power system. That is, the output request of the gas turbine 12 corresponds to the load (in-system load) of the load facility 18.
  • the opening degree of the flow rate adjustment valve 42 and the pressure adjustment valve 44 is also throttled according to the load reduction, and the fuel supplied to the combustor 22 is reduced.
  • the mechanical output of the gas turbine 12 actually decreases due to delay in detection of load reduction, supply of fuel remaining in the fuel flow path 40 to the combustor 22, operation delay of the flow rate adjustment valve 42 and pressure adjustment valve 44, and the like.
  • the frequency of the power system in the factory facility 10 may increase.
  • FIG. 3 is a graph showing an example of a change in the frequency of the power system in the factory facility 10 when the load regulation is reduced and the throttle opening degree of the pressure regulating valve 44 is small.
  • the opening of the pressure regulating valve 44 after the load reduction is small, the fuel pressure supplied to the combustor 22 decreases, and accordingly, the amount of fuel with respect to the load becomes too small. This can lead to a significant decrease in frequency after the accompanying frequency increase.
  • FIG. 4 is a graph showing an example of a change in the frequency of the power system in the factory facility 10 when the load regulation is large and the narrowed opening degree of the pressure regulating valve 44 is large.
  • the opening of the pressure regulating valve 44 after the load reduction is large, the fuel pressure supplied to the combustor 22 is not sufficiently lowered, and accordingly, the fuel amount with respect to the load becomes excessive. There is a possibility that the increase in the frequency accompanying the load reduction becomes larger.
  • the pressure control unit 56 when the load reduction of the gas turbine 12 is detected by the load reduction detection unit 52, the pressure control unit 56 according to the first embodiment has a pressure adjustment valve according to the output of the gas turbine 12 after the load reduction.
  • the load reduction opening degree control which controls the opening degree of 44 is performed.
  • the load reduction opening degree control according to the first embodiment indicates the amount of fuel supplied to the combustor 22 in accordance with the required output value of the gas turbine 12 after load reduction (hereinafter referred to as “GT output required value”).
  • GT output required value the required output value of the gas turbine 12 after load reduction
  • FIG. 5 is a functional block diagram showing functions of the pressure control unit 56 for performing load reduction opening degree control according to the first embodiment.
  • the pressure control unit 56 includes an IGV opening calculation unit 60, a required fuel value derivation unit 62, a valve flow rate calculation unit 64, and an opening determination unit 66.
  • the IGV opening calculation unit 60 receives the GT output request value and the atmospheric temperature measurement value that is the measurement result of the atmospheric temperature. And the IGV opening calculation part 60 calculates the air flow rate which flows in into the compressor 20 based on GT output request value and an atmospheric temperature measured value, and calculates the opening degree of IGV according to the calculated air flow rate.
  • the fuel requirement value deriving unit 62 uses the GT heat balance data indicating the state quantities (temperature, pressure, enthalpy, flow rate, etc.) of the inlets and outlets of the respective devices constituting the gas turbine 12, and uses the IGV opening calculation unit 60. A fuel requirement value corresponding to the calculated air flow rate, atmospheric temperature measurement value, and GT output requirement value is derived.
  • the GT heat balance data is created in advance as a design value of the gas turbine 12 and is stored in the fuel requirement value deriving unit 62.
  • the pressure control unit 56 calculates the Cv value by the valve flow rate calculation unit 64 in order to determine the opening degree of the pressure adjustment valve 44 according to the fuel requirement value.
  • the valve flow rate calculation unit 64 sets the required fuel value derived by the required fuel value deriving unit 62, the inlet pressure of the pressure adjustment valve 44 (fuel supply pressure to the pressure adjustment valve 44), and the set value of the outlet pressure of the pressure adjustment valve 44. Then, the Cv value of the pressure regulating valve 44 is calculated based on the measured value of the fuel temperature.
  • the Cv value is obtained from a general equation as shown in Equation 1, for example, where W is the required fuel value, ⁇ P is the difference between the inlet pressure and the outlet pressure of the pressure regulating valve 44, and T is the fuel temperature. Calculated.
  • the opening degree determination unit 66 stores in advance table information A (table function) indicating the relationship between the Cv value and the opening degree of the pressure regulating valve 44. Then, the opening determination unit 66 determines the opening corresponding to the Cv value calculated by the valve flow rate calculation unit 64 as the opening of the pressure adjustment valve 44, and sets the valve opening setting value indicating the determined opening to the pressure. Transmit to the regulating valve 44.
  • table information A table function
  • the load reduction detection unit 52 transmits an execution instruction for load reduction opening degree control to the pressure control unit 56 when the load reduction amount exceeds a predetermined threshold value.
  • the valve control device 50 according to the first embodiment does not perform load reduction opening degree control on the pressure adjustment valve 44 when the load reduction amount is small. The risk of misfire and the like due to control in accordance with can be suppressed.
  • FIG. 6 is a flowchart showing a flow of processing by the load reduction detection unit 52 according to the first embodiment.
  • step 100 the load of the gas turbine 12 is measured.
  • the load is measured by, for example, detecting the output of the generator 14 (hereinafter referred to as “generator output”), and the value of the detected generator output is sequentially stored.
  • the difference between the detected current generator output and the past generator output before a predetermined time is calculated as a load reduction amount.
  • step 104 it is determined whether or not the calculated load reduction amount is equal to or greater than a predetermined threshold value. If the determination is affirmative, the process proceeds to step 106. If the determination is negative, the process returns to step 100.
  • the threshold value is, for example, a predicted load loss due to the power generation facility 16 being disconnected from the commercial power system.
  • step 106 an instruction to execute load reduction opening degree control is transmitted to the pressure control unit 56.
  • the pressure control unit 56 receives the execution instruction for the load reduction opening degree control, the pressure control unit 56 controls the opening degree of the pressure adjusting valve 44 according to the output of the gas turbine 12 after the load reduction.
  • the pressure control unit 56 calculates the air flow rate flowing into the compressor 20 based on the GT output request value and the atmospheric temperature measurement value, and calculates the fuel request value as the GT heat balance. Using the data, it is derived as a value corresponding to the calculated air flow rate, atmospheric temperature measurement value, and GT output request value. Then, the pressure control unit 56 determines the opening degree of the pressure adjustment valve 44 according to the required fuel value, and transmits a valve opening setting value indicating the opening degree to the pressure adjustment valve 44. When the pressure adjustment valve 44 receives the valve opening setting value, the pressure adjusting valve 44 has an opening indicated by the valve opening setting value.
  • the load reduction opening degree control is feedforward control for the pressure regulating valve 44. Accordingly, when the load on the gas turbine 12 is reduced, the fuel pressure is controlled by the pressure adjusting valve 44 so as to be an appropriate value corresponding to the load. For this reason, the control of the fuel flow rate by the flow rate adjustment valve 42 arranged on the downstream side of the pressure adjustment valve 44 can be controlled to be an appropriate value corresponding to the load.
  • FIG. 7 is a graph showing the time change of the opening degree of the pressure regulating valve 44 and the time change of the frequency of the power system in the factory facility 10 when the load reduction opening degree control according to the first embodiment is performed. .
  • the opening of the pressure regulating valve 44 fluctuates in the vicinity of the opening in the settling state (the settling opening), and since this opening is an appropriate value, the fuel flow rate is also appropriate. The frequency fluctuation becomes small.
  • the pressure control unit 56 when the load reduction is detected by the load reduction detection unit 52, the pressure control unit 56 outputs the output of the gas turbine 12 after the load reduction. Accordingly, the opening degree of the pressure regulating valve 44 is controlled.
  • the pressure control unit 56 according to the first embodiment obtains a fuel requirement value according to the GT output requirement value, and decides the opening of the pressure regulating valve 44 based on the fuel requirement value.
  • the pressure control unit 56 calculates the air flow rate flowing into the compressor 20 based on the GT output request value, and uses the GT heat balance data to calculate the calculated air flow rate, the atmospheric temperature, and the GT output request value.
  • the fuel requirement value according to the is derived. Therefore, the valve control device 50 according to the first embodiment can accurately determine the opening degree of the pressure regulating valve 44 after the load is reduced, and the output of the gas turbine 12 becomes unstable even if the load is suddenly reduced. This can be suppressed.
  • the atmospheric temperature may not be used for deriving the required fuel value using the GT heat balance data.
  • a fuel requirement value corresponding to the air flow rate and the output requirement value is derived using the GT heat balance data with the atmospheric temperature as a fixed value.
  • FIG. 8 is a functional block diagram showing functions of the pressure control unit 56 for performing load reduction opening degree control according to the second embodiment. 8 that are the same as in FIG. 5 are assigned the same reference numerals as in FIG. 5 and descriptions thereof are omitted.
  • the fuel requirement value deriving unit 70 stores table information B (table function) indicating the relationship between the GT output requirement value and the fuel requirement value.
  • the table information B is created in advance.
  • the pressure control unit 56 receives an instruction to execute load reduction opening degree control and a GT output request value after load reduction is input, the requested fuel value deriving unit 70 uses the table information B to input the input GT.
  • a required fuel value corresponding to the required output value is derived, and the required fuel value is output to the valve flow rate calculation unit 64.
  • the pressure control unit 56 uses the valve flow rate calculation unit 64 and the opening degree determination unit 66 to open the opening of the pressure adjustment valve 44 based on the fuel request value derived by the fuel request value deriving unit 70. To decide.
  • the pressure control unit 56 responds to the GT output request value after load reduction using the table information B indicating the relationship between the GT output request value and the fuel request value.
  • the fuel requirement value is derived. Accordingly, since the amount of calculation performed until the opening degree of the pressure adjustment valve 44 is determined is reduced, the pressure control unit 56 according to the second embodiment simplifies the opening degree of the pressure adjustment valve 44 after the load reduction. Can be determined with a simple configuration.
  • FIG. 9 is a functional block diagram showing functions of the pressure control unit 56 for performing load reduction opening degree control according to the third embodiment.
  • the pressure control unit 56 includes an opening determination unit 80 and a correction unit 82.
  • the opening degree determination unit 80 stores table information C (table function) indicating the relationship between the GT output request value and the opening degree of the pressure regulating valve 44.
  • the table information C is created in advance.
  • the opening determination unit 80 uses the table information C to input the GT output.
  • the opening degree of the pressure adjustment valve 44 corresponding to the required value is derived, and a valve opening degree set value indicating the opening degree is output to the correction unit 82.
  • the correction unit 82 corrects the input valve opening setting value based on parameters that affect the combustion state in the combustor 22.
  • the parameters are, for example, atmospheric temperature, fuel calorie, fuel temperature, fuel supply pressure, and the like, and each value is input to the correction unit 82 as a correction signal.
  • the correction unit 82 corrects the valve opening setting value so that the amount of fuel supplied to the combustor 22 increases. Further, when the fuel calorie is high, the output of the gas turbine 12 is increased. For this reason, when the fuel calorie is high, the correction unit 82 corrects the valve opening setting value so that the amount of fuel supplied to the combustor 22 decreases. Further, when the fuel temperature is high, the density of the fuel becomes low, and the output of the gas turbine 12 is reduced. For this reason, when the fuel temperature is high, the correction unit 82 corrects the valve opening setting value so that the amount of fuel supplied to the combustor 22 increases.
  • the correction unit 82 corrects the valve opening setting value so that the amount of fuel supplied to the combustor 22 decreases.
  • the valve opening setting value corrected by the correction unit 82 is transmitted to the pressure adjustment valve 44.
  • the pressure control unit 56 uses the table information C indicating the relationship between the GT output request value and the opening degree of the pressure regulating valve 44 to request the GT output after load reduction.
  • the opening degree of the pressure regulating valve 44 corresponding to the value is derived. Accordingly, since the amount of calculation performed until the opening degree of the pressure adjustment valve 44 is determined is reduced, the pressure control unit 56 according to the third embodiment simplifies the opening degree of the pressure adjustment valve 44 after the load reduction. Can be determined with a simple configuration.
  • the pressure control unit 56 corrects the opening degree of the pressure regulating valve 44 derived using the table information C based on parameters that affect the combustion state in the combustor 22, The opening degree of the pressure regulating valve 44 after the load reduction can be accurately determined.
  • the fuel flow rate command value which is a command value indicating the fuel flow rate
  • rotational speed control that is control based on the rotational speed of the gas turbine 12 immediately after the transition to the single operation. For this reason, the fuel flow rate command value becomes a value different from the flow rate when the gas turbine 12 is in a steady state by the rotational speed control immediately after the transition to the single operation.
  • the pressure control unit 56 calculates the required fuel value by using the fuel flow rate command value as a value corresponding to the output of the gas turbine 12 after the load reduction.
  • FIG. 10 is a functional block diagram showing functions of the pressure control unit 56 for performing load reduction opening degree control according to the fourth embodiment. 10 that are the same as in FIG. 5 are assigned the same reference numerals as in FIG. 5 and descriptions thereof are omitted.
  • the fuel requirement value deriving unit 90 stores table information D (table function) indicating the relationship between the fuel flow rate command value and the fuel requirement value.
  • the table information D is created in advance.
  • the required fuel value deriving unit 90 uses the table information D to input the fuel A required fuel value corresponding to the flow rate command value is derived, and the required fuel value is output to the valve flow rate calculation unit 64.
  • the pressure control unit 56 uses the valve flow rate calculation unit 64 and the opening degree determination unit 66 to open the opening of the pressure adjustment valve 44 based on the fuel request value derived by the fuel request value deriving unit 90. To decide.
  • the pressure control unit 56 according to the fourth embodiment uses the fuel flow rate command value to derive the fuel request value corresponding to the fuel flow rate command value after the load reduction.
  • the opening degree of the pressure regulating valve 44 can be determined with higher accuracy.
  • the pressure control unit 56 according to the fourth embodiment uses the opening degree command value of the flow rate adjusting valve 42 instead of the fuel flow rate command value. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Turbines (AREA)

Abstract

弁制御装置50は、燃料を燃焼させ、燃焼ガスを生成する燃焼器22、燃焼器22によって生成された燃焼ガスにより駆動するタービン24、燃焼器22へ供給する燃料流量を調整する流量調整弁42、及び燃焼器22へ燃料を供給する燃料流路40において流量調整弁42の上流側に配置され、燃料圧力を調整する圧力調整弁44を備えたガスタービン12に設けられ、圧力調整弁44の開度を制御する。そして、弁制御装置50は、ガスタービン12の負荷の低減を検知する負荷低減検知部52、負荷低減検知部52によって負荷低減が検知された場合に、負荷低減後のガスタービン12の出力に応じて、圧力調整弁44の開度を制御する圧力制御部56を備える。これにより、弁制御装置50は、負荷が急激に低下してもガスタービンの出力が不安定になることを抑制する

Description

弁制御装置、ガスタービン、及び弁制御方法
 本発明は、弁制御装置、ガスタービン、及び弁制御方法に関するものである。
 ガスタービンの運転が行われている間にガスタービンの負荷が低減すると、急激にガスタービンの回転数が上昇する場合がある。
 例えば、ガスタービンによって発電機を駆動させ商用電力系統に系統連系された発電設備と電力を消費する負荷設備とを含む工場設備において、発電設備が商用電力系統から遮断され、発電設備が工場設備内の負荷設備にのみ送電する単独運転に移行した場合等にガスタービンの回転数が上昇する。この場合、ガスタービンの出力要求は、発電設備が商用電力系統へ送電していた分の喪失量に相当するだけ急激に低減(負荷低減)する。このため、ガスタービンが有する燃焼器へ供給される燃料は、急激に絞り込まれなくてはならない。
 しかし、負荷低減の検知遅れ、燃料流路に残っている燃料の燃焼器への供給、燃料流量を調整する流量調整弁や燃料圧力を調整する圧力調整弁の動作遅れ等により、実際にはガスタービンの機械出力の低下が遅れ、工場設備内における電力系統の周波数の上昇が生じる場合がある。
 このため、単独運転に移行した場合は、周波数の上昇を抑制し、かつ燃焼安定性を確保する必要がある。
 そこで、特許文献1には、負荷遮断あるいは送電系統からの遮断が発生したときに、複数の予混合燃焼用燃料系統の内、予め定められた予混合燃焼用燃料系統の燃料流量を予め定められた火炎保持可能な第1の最小燃料流量に第1の有効時間だけ設定し、拡散燃焼用燃料系統の燃料流量を予め定められた火炎保持可能な第2の最小燃料流量に第2の有効時間だけ設定する、ガスタービン燃料制御装置が記載されている。
特許第3828738号公報
 特許文献1に記載のように、負荷遮断あるいは送電系統からの遮断が発生したときに、燃料流量を予め定められた値に設定することは、単独運転後のガスタービンの要求出力が常に決まった値ならば有効である。
 しかしながら、単独運転前後のガスタービンの要求出力が決まった値とならない場合は、その都度、必要とする燃料量も異なるので、単独運転後の要求出力に応じて適正な燃料制御弁の開度を設定しなければ、周波数の変動や燃焼不安定を招く恐れがある。
 本発明は、このような事情に鑑みてなされたものであって、負荷が急激に低下してもガスタービンの出力が不安定になることを抑制できる、弁制御装置、ガスタービン、及び弁制御方法を提供することを目的とする。
 上記課題を解決するために、本発明の弁制御装置、ガスタービン、及び弁制御方法は以下の手段を採用する。
 本発明の第一態様に係る弁制御装置は、燃料を燃焼させ、燃焼ガスを生成する燃焼器、前記燃焼器によって生成された燃焼ガスにより駆動するタービン、前記燃焼器へ供給する燃料流量を調整する流量調整弁、及び前記燃焼器へ燃料を供給する燃料流路において前記流量調整弁の上流側に配置され、燃料圧力を調整する圧力調整弁を備えたガスタービンに設けられ、少なくとも前記圧力調整弁の開度を制御する弁制御装置であって、前記ガスタービンの負荷の低減を検知する検知手段と、前記検知手段によって前記負荷の低減が検知された場合に、前記負荷の低減後の前記ガスタービンの出力に応じて、前記圧力調整弁の開度を制御する圧力制御手段と、を備える。
 本構成によれば、弁制御装置は、燃料を燃焼させ、燃焼ガスを生成する燃焼器、燃焼器によって生成された燃焼ガスにより駆動するタービン、燃焼器へ供給する燃料流量を調整する流量調整弁、及び燃焼器へ燃料を供給する燃料流路において流量調整弁の上流側に配置され、燃料圧力を調整する圧力調整弁を備えたガスタービンに設けられ、少なくとも圧力調整弁の開度を制御する。
 そして、検知手段によって、ガスタービンの負荷の低減が検知される。ガスタービンの負荷が低減すると、負荷に応じた燃料量の低減が間に合わず、ガスタービンの出力が不安定になる可能性がある。
 ここで、燃料流量の調整は、流量調整弁の開度が例えばガスタービンの出力に基づいてフィードバック制御させることで行われる。しかし、流量調整弁を負荷低減後のガスに基づいてフィードバック制御したとしても、流量調整弁よりも上流側に配置されている圧力調整弁が適正な開度となっていないと、周波数の上昇や燃焼不安定を抑制できない。
 そこで、検知手段で負荷の低減が検知された場合、圧力制御手段によって、負荷の低減後のガスタービンの出力に応じて、圧力調整弁の開度が制御される。負荷の低減後のガスタービンの出力に応じた制御とは、すなわちフィードフォワード制御である。これにより、ガスタービンの負荷が低減すると、圧力調整弁により燃料圧力が、負荷に応じた適正値となるように制御されることとなる。このため、圧力調整弁よりも下流側に配置されている流量調整弁による燃料流量の制御が、負荷に応じた適正値となるように制御可能となる。
 従って、本構成は、負荷が急激に低下してもガスタービンの出力が不安定になることを抑制できる。
 上記第一態様では、前記圧力制御手段が、前記負荷の低減後の前記ガスタービンの出力要求値に応じて、前記燃焼器へ供給する燃料量を示した燃料要求値を求め、該燃料要求値に基づいて、前記圧力調整弁の開度を決定することが好ましい。
 本構成によれば、負荷低減後のガスタービンの出力要求値に応じて、燃焼器へ供給する燃料量を示した燃料要求値が求められ、該燃料要求値に基づいて、圧力調整弁の開度が決定されるので、負荷低減後の圧力調整弁の開度を精度良く制御できる。
 上記第一態様では、前記燃焼器へ圧縮空気を導入する圧縮機へ流入させる空気流量を、前記出力要求値に基づいて算出する空気流量算出手段を備え、前記圧力制御手段が、前記ガスタービンを構成する各機器の入口出口の状態量を示したヒートバランスデータを用いて、前記空気流量算出手段によって算出された前記空気流量、大気温度、及び前記出力要求値に応じた前記燃料要求値を導出することが好ましい。
 本構成によれば、空気流量算出手段によって、燃焼器へ圧縮空気を導入する圧縮機へ流入される空気流量が、ガスタービンの出力要求値に基づいて算出される。そして、燃料要求値が、ガスタービンを構成する各機器の入口出口の状態量を示したヒートバランスデータから、空気流量算出手段で算出された空気流量、大気温度、及びガスタービンの出力要求値に応じた値として導出される。
 従って、本構成は、負荷低減後のガスタービンの出力要求値に応じた燃料要求置が、ガスタービンのヒートバランスから求められ、圧力調整弁の開度が決定されるので、負荷低減後の圧力調整弁の開度を精度よく決定できる。
 上記第一態様では、前記圧力制御手段が、前記出力要求値と前記燃料要求値との関係を示した第1情報を用いて、前記出力要求値に応じた前記燃料要求値を導出することが好ましい。
 本構成によれば、燃料要求値が、負荷低減後のガスタービンの出力要求値と燃料要求値との関係を示した第1情報から導出され、圧力調整弁の開度が決定されるため、圧力調整弁の開度が決定するまでに行われる演算量が低減されるので、負荷低減後の圧力調整弁の開度を簡易な構成で決定できる。
 上記第一態様では、前記圧力制御手段が、前記ガスタービンの出力要求値と前記圧力調整弁の開度との関係を示した第2情報を用いて、前記出力要求値に応じた前記開度を導出することが好ましい。
 本構成によれば、圧力調整弁の開度が、ガスタービンの出力要求値と圧力調整弁の開度との関係を示した第2情報から導出されるため、圧力調整弁の開度が決定するまでに行われる演算量が低減されるので、負荷低減後の圧力調整弁の開度を簡易な構成で決定できる。
 上記第一態様では、前記圧力制御手段が、導出した前記開度を、前記燃焼器における燃焼状態に影響を及ぼすパラメータに基づいて補正することが好ましい。
 本構成によれば、第2情報を用いて導出された圧力調整弁の開度が、燃焼器における燃焼状態に影響を及ぼすパラメータに基づいて補正されるので、負荷低減後の圧力調整弁の開度を精度よく決定できる。上記パラメータは、例えば大気温度、燃料カロリー、燃料温度、及び燃料供給圧力等である。
 上記第一態様では、前記圧力制御手段が、前記負荷の低減後の前記ガスタービンの回転数に基づいて算出される燃料流量を示す指令値を用い、該指令値と前記燃焼器へ供給する燃料量を示した燃料要求値との関係を示した第3情報から導出される前記燃料要求値に基づいて、前記圧力調整弁の開度を決定することが好ましい。
 本構成によれば、負荷の低減後のガスタービンの回転数に基づいて算出される燃料流量を示す指令値を用いて燃料要求値を算出するので、負荷低減後の圧力調整弁の開度をより精度よく決定できる。なお、上記指令値とは、流量調整弁の開度が燃料流量に対応するため、流量調整弁の開度も含む。
 上記第一態様では、前記圧力制御手段が、前記負荷の低減量が予め定められた閾値を超えた場合に、前記負荷の低減後の前記ガスタービンの出力に応じて、前記圧力調整弁の開度を制御することが好ましい。
 本構成によれば、負荷の低減量が小さい場合には、圧力調整弁に対する負荷の低減に応じた制御が行われないので、圧力調整弁を負荷の低減に応じて制御することによる失火等の危険性を抑制できる。
 本発明の第二態様に係るガスタービンは、燃料を燃焼させ、燃焼ガスを生成する燃焼器と、前記燃焼器によって生成された燃焼ガスにより駆動するタービンと、前記燃焼器へ供給する燃料流量を調整する流量調整弁と、前記流量調整弁に対して上流側に配置され、燃料圧力を調整する圧力調整弁と、前記圧力調整弁の開度を制御する上記記載の弁制御装置と、を備える。
 本発明の第三態様に係る弁制御方法は、燃料を燃焼させ、燃焼ガスを生成する燃焼器、前記燃焼器によって生成された燃焼ガスにより駆動するタービン、前記燃焼器へ供給する燃料流量を調整する流量調整弁、及び前記燃焼器へ燃料を供給する燃料流路において前記流量調整弁の上流側に配置され、燃料圧力を調整する圧力調整弁を備えたガスタービンに設けられ、少なくとも前記圧力調整弁の開度を制御する弁制御方法であって、前記ガスタービンの負荷の低減を検知する第1工程と、前記負荷の低減を検知した場合に、前記負荷の低減後の前記ガスタービンの出力に応じて、前記圧力調整弁の開度を制御する第2工程と、を含む。
 本発明によれば、負荷が急激に低下してもガスタービンの出力が不安定になることを抑制できる、という優れた効果を有する。
本発明の第1実施形態に係る工場設備の構成図である。 負荷低減が生じた場合のガスタービンの出力の変化の例を示すグラフである。 負荷低減が生じた場合において、圧力調整弁の絞込規定開度が小さい場合における工場設備内の電力系統の周波数の変化の例を示すグラフである。 負荷低減が生じた場合において、圧力調整弁の絞込規定開度が大きい場合における工場設備内の電力系統の周波数の変化の例を示すグラフである。 本発明の第1実施形態に係る負荷低減開度制御を行うための圧力制御部の機能を示す機能ブロック図である。 本発明の第1実施形態に係る負荷低減検知部による処理の流れを示すフローチャートである。 本発明の第1実施形態に係る負荷低減開度制御を行った場合における、圧力調整弁の開度の時間変化と工場設備内の電力系統の周波数の時間変化を示すグラフである。 本発明の第2実施形態に係る負荷低減開度制御を行うための圧力制御部の機能を示す機能ブロック図である。 本発明の第3実施形態に係る負荷低減開度制御を行うための圧力制御部の機能を示す機能ブロック図である。 本発明の第4実施形態に係る負荷低減開度制御を行うための圧力制御部の機能を示す機能ブロック図である。
 以下に、本発明に係る弁制御装置、ガスタービン、及び弁制御方法の一実施形態について、図面を参照して説明する。
〔第1実施形態〕
 図1は、第1実施形態に係る工場設備10の全体構成図である。工場設備10は、ガスタービン12及び発電機14で構成される発電設備16、並びに電力を消費する負荷設備18を備える。
 ガスタービン12は、圧縮機20、燃焼器22、及びタービン24を備える。
 圧縮機20は、回転軸26により駆動されることで、空気取込口から取り入れた空気を圧縮して圧縮空気を生成する。燃焼器22は、圧縮機20から車室28へ導入された圧縮空気に燃料を噴射して高温・高圧の燃焼ガスを発生させる。タービン24は、燃焼器22で発生した燃焼ガスによって回転駆動する。なお、圧縮機20の空気の吸気量は、圧縮機20の入口に設けられた入口案内翼(Inlet Guide Vane、以下、「IGV」という。)の開閉によって調整される。
 車室28と燃焼器22との間にはバイパス管30が設けられており、バイパス管30は、タービン24の負荷変動により燃焼器22内の空気が不足する状態になった場合に、燃焼器バイパス弁32が開かれると車室28内の空気を燃焼器22内に導入する流路となる。また、圧縮機20とタービン24との間には、圧縮機20からタービン24へ冷却用の空気を導入させるための抽気管34が設けられている。
 なお、タービン24、圧縮機20、及び発電機14は、回転軸26によって連結され、タービン24に生じる回転駆動力は、回転軸26によって圧縮機20及び発電機14に伝達される。そして、発電機14は、タービン24の回転駆動力によって発電する。発電機14は、負荷設備18に接続されており、発電した電力を工場設備10内の負荷設備18へ供給する。また、発電機14は、商用電力系統と系統連系されており、発電した電力を工場設備10外の送電網である商用電力系統へ供給する。
 なお、発電設備16と負荷設備18との間の送電線にはブレーカ36Aが設けられ、発電設備16と商用電力系統との間の送電線にはブレーカ36Bが設けられている。
 また、燃焼器22には、ノズル38が設けられ、ノズル38から供給された燃料を、圧縮空気を用いて燃焼させる。
 燃焼器22へ燃料を供給する燃料流路40には、燃焼器22へ供給する燃料流量を調整する流量調整弁42、及び燃料流路40において流量調整弁42の上流側に配置され、燃料圧力を調整する圧力調整弁44が備えられている。燃焼器22へ供給される燃料量は、流量調整弁42及び圧力調整弁44の開度が制御されることによって、制御される。
 弁制御装置50は、負荷低減検知部52、流量制御部54、及び圧力制御部56を備える。
 負荷低減検知部52は、ガスタービン12の負荷の低減(以下、「負荷低減」という。)を検知する。
 流量制御部54は、流量調整弁42の開度を制御することによって、燃焼器22へ供給される燃料流量を制御する。具体的には、流量制御部54は、流量調整弁42の開度をガスタービン12の出力に基づいてフィードバック制御させることで、燃料流量の制御を行う。
 圧力制御部56は、圧力調整弁44の開度を制御することによって、燃焼器22へ供給される燃料圧力を制御する。具体的には、圧力制御部56は、燃料流路40を流れる燃料圧力が所定値となるように圧力調整弁44の開度を制御する。
 なお、ガスタービン12の負荷が低減する場合とは、例えば、発電設備16と商用電力系統との間の送電線が断線やブレーカ36Bの開放等、発電設備16から商用電力系統への電力供給が遮断された場合等である。このような場合、ガスタービン12の負荷が急激に低下する。
 図2を参照して、商用電力系統への電力供給が遮断された場合を例にして、負荷低減が生じた場合のガスタービン12の出力の変化について説明する。
 商用電力系統への電力供給が遮断されると、発電設備16が、工場設備10内の負荷設備18にのみ送電する単独運転に移行することとなる。このため、図2に示されるように、ガスタービン12の出力は、商用電力系統へ送電していた分の喪失量(喪失負荷)に相当するだけ急減する。すなわち、ガスタービン12の出力要求は、負荷設備18が有する負荷(系統内負荷)相当となる。
 また、流量調整弁42及び圧力調整弁44の開度も、負荷低減に応じて絞られ、燃焼器22へ供給される燃料が低減される。しかしながら、負荷低減の検知遅れ、燃料流路40に残っている燃料の燃焼器22への供給、流量調整弁42や圧力調整弁44の動作遅れ等により実際にはガスタービン12の機械出力の低下が遅れ、工場設備10内における電力系統の周波数の上昇が生じる場合がある。
 また、流量調整弁42の開度を絞っても、流量調整弁42よりも上流側に配置されている圧力調整弁44の絞り込みが遅れると、燃料圧力上昇により燃焼器22への燃料の供給が想定よりも多くなり、さらなる周波数上昇が発生する。一方、燃料を絞り込みすぎると燃焼安定性が低下し、失火する恐れがある。
 図3は、負荷低減が生じた場合において、圧力調整弁44の絞込規定開度が小さい場合における工場設備10内の電力系統の周波数の変化の例を示すグラフである。図3に示されるように、負荷低減後の圧力調整弁44の開度が小さいと、燃焼器22へ供給される燃料圧力が低下し、これに伴い負荷に対する燃料量が過少となり、負荷低減に伴う周波数上昇後における周波数の大幅な低下を招く可能性がある。
 図4は、負荷低減が生じた場合において、圧力調整弁44の絞込規定開度が大きい場合における工場設備10内の電力系統の周波数の変化の例を示すグラフである。図4に示されるように、負荷低減後の圧力調整弁44の開度が大きいと、燃焼器22へ供給される燃料圧力の低下が不十分であり、これに伴い負荷に対する燃料量が過剰となり、負荷低減に伴う周波数の上昇がより大きくなる可能性がある。
 図3,4に示されるように、流量調整弁42よりも上流側に配置されている圧力調整弁44が適正な開度となっていないと、流量調整弁42を負荷低減後のガスタービン12の出力に基づいてフィードバック制御したとしても、周波数の上昇や燃焼不安定を抑制できない。
 そこで、本第1実施形態に係る圧力制御部56は、負荷低減検知部52によってガスタービン12の負荷低減が検知された場合に、負荷低減後のガスタービン12の出力に応じて、圧力調整弁44の開度を制御する負荷低減開度制御を行う。本第1実施形態に係る負荷低減開度制御は、負荷低減後のガスタービン12の出力要求値(以下、「GT出力要求値」という。)に応じて燃焼器22へ供給する燃料量を示した燃料要求値を求め、該燃料要求値に基づいて、圧力調整弁44の開度を決定する。
 図5は、本第1実施形態に係る負荷低減開度制御を行うための圧力制御部56の機能を示す機能ブロック図である。
 圧力制御部56は、IGV開度算出部60、燃料要求値導出部62、弁流量算出部64、及び開度決定部66を備える。
 IGV開度算出部60は、GT出力要求値及び大気温度の計測結果である大気温度計測値が入力される。そして、IGV開度算出部60は、圧縮機20へ流入させる空気流量を、GT出力要求値及び大気温度計測値に基づいて算出し、算出した空気流量に応じたIGVの開度を算出する。
 燃料要求値導出部62は、ガスタービン12を構成する各機器の入口出口の状態量(温度、圧力、エンタルピ、流量等)を示したGTヒートバランスデータを用いて、IGV開度算出部60で算出された空気流量、大気温度計測値、及びGT出力要求値に応じた燃料要求値を導出する。なお、GTヒートバランスデータは、ガスタービン12の設計値として予め作成されており、燃料要求値導出部62に記憶されている。
 そして、圧力制御部56は、燃料要求値に応じた圧力調整弁44の開度を決定するために、弁流量算出部64でCv値を算出する。
 弁流量算出部64は、燃料要求値導出部62で導出された燃料要求値、圧力調整弁44の入口圧力(圧力調整弁44に対する燃料の供給圧力)、圧力調整弁44の出口圧力の設定値、燃料温度の計測値に基づいて圧力調整弁44のCv値を算出する。
 なお、Cv値は、燃料要求値をW、圧力調整弁44の入口圧力と出口圧力との差をΔP、燃料温度をTとした場合に、例えば数1に示されるような一般的な式から算出される。
Figure JPOXMLDOC01-appb-M000001
 
 
 開度決定部66は、Cv値と圧力調整弁44の開度との関係を示したテーブル情報A(テーブル関数)が予め記憶されている。そして、開度決定部66は、弁流量算出部64で算出されたCv値に応じた開度を圧力調整弁44の開度として決定し、決定した開度を示す弁開度設定値を圧力調整弁44へ送信する。
 また、負荷低減検知部52は、負荷低減量が予め定められた閾値を超えた場合に、圧力制御部56に負荷低減開度制御の実行指示を送信する。これにより、本第1実施形態に係る弁制御装置50は、負荷低減量が小さい場合、圧力調整弁44に対して負荷低減開度制御を行わないこととなるので、圧力調整弁44を負荷低減に応じて制御することによる失火等の危険性を抑制できる。
 図6は、本第1実施形態に係る負荷低減検知部52による処理の流れを示すフローチャートである。
 まず、ステップ100では、ガスタービン12の負荷の測定を行う。負荷の測定は、例えば発電機14の出力(以下、「発電機出力」という。)が検知されることで行われ、検知された発電機出力の値は逐次記憶される。
 次のステップ102では、検知された現在の発電機出力と所定時間(例えば1秒)前の過去の発電機出力との差分を負荷低減量として算出する。
 次のステップ104では、算出した負荷低減量が予め定められた閾値以上であるか否かを判定し、肯定判定の場合は、ステップ106へ移行し、否定判定の場合は、ステップ100へ戻る。なお、閾値は、例えば、発電設備16が商用電力系統から遮断されることによる予測される負荷の喪失量とする。
 ステップ106では、圧力制御部56に負荷低減開度制御の実行指示を送信する。
 圧力制御部56は、負荷低減開度制御の実行指示を受信すると、負荷低減後のガスタービン12の出力に応じて、圧力調整弁44の開度を制御する。
 本第1実施形態に係る圧力制御部56は、上述したように、圧縮機20へ流入させる空気流量をGT出力要求値及び大気温度計測値に基づいて算出し、燃料要求値を、GTヒートバランスデータを用いて、算出した空気流量、大気温度計測値、及びGT出力要求値に応じた値として導出する。そして、圧力制御部56は、燃料要求値に応じた圧力調整弁44の開度を決定し、該開度を示す弁開度設定値を圧力調整弁44へ送信する。
 圧力調整弁44は、弁開度設定値を受信すると、弁開度設定値により示される開度となる。
 すなわち、負荷低減開度制御は、圧力調整弁44に対するフィードフォワード制御である。これにより、ガスタービン12の負荷が低減すると、圧力調整弁44により燃料圧力が、負荷に応じた適正値となるように制御されることとなる。このため、圧力調整弁44よりも下流側に配置されている流量調整弁42による燃料流量の制御が、負荷に応じた適正値となるように制御可能となる。
 図7は、本第1実施形態に係る負荷低減開度制御を行った場合における、圧力調整弁44の開度の時間変化と工場設備10内の電力系統の周波数の時間変化を示すグラフである。
 図7に示されるように、圧力調整弁44の開度は整定状態の開度(整定開度)の近傍で変動し、この開度が適正な値となるため燃料流量も適正となり、その結果、周波数変動が小さくなる。
 以上説明したように、本第1実施形態に係る弁制御装置50は、負荷低減検知部52によって負荷低減が検知された場合に、圧力制御部56によって、負荷低減後のガスタービン12の出力に応じて、圧力調整弁44の開度を制御する。
 なお、本第1実施形態に係る圧力制御部56は、GT出力要求値に応じて燃料要求値を求め、該燃料要求値に基づいて、圧力調整弁44の開度を決定する。このために、圧力制御部56は、圧縮機20へ流入させる空気流量をGT出力要求値に基づいて算出し、GTヒートバランスデータを用いて、算出した空気流量、大気温度、及びGT出力要求値に応じた燃料要求値を導出する。
 従って、本第1実施形態に係る弁制御装置50は、負荷低減後の圧力調整弁44の開度を精度よく決定でき、負荷が急激に低下してもガスタービン12の出力が不安定になることを抑制できる。
 なお、本第1実施形態に係る弁制御装置50では、GTヒートバランスデータを用いた燃料要求値の導出に大気温度を用いなくてもよい。具体的には、大気温度を固定値として、GTヒートバランスデータを用いて空気流量及び出力要求値に応じた燃料要求値を導出する。なお、固定値とした大気温度は、季節に応じて変化させてもよい。
〔第2実施形態〕
 以下、本発明の第2実施形態について説明する。
 なお、本第2実施形態に係る工場設備10の構成は、図1に示す第1実施形態に係る工場設備10の構成と同様であるので説明を省略する。
 図8は、本第2実施形態に係る負荷低減開度制御を行うための圧力制御部56の機能を示す機能ブロック図である。なお、図8における図5と同一の構成部分については図5と同一の符号を付して、その説明を省略する。
 本第2実施形態に係る燃料要求値導出部70は、GT出力要求値と燃料要求値との関係を示したテーブル情報B(テーブル関数)が記憶されている。なお、このテーブル情報Bは、予め作成されている。燃料要求値導出部70は、負荷低減開度制御の実行指示を圧力制御部56が受信し、負荷低減後のGT出力要求値が入力されると、テーブル情報Bを用いて、入力されたGT出力要求値に応じた燃料要求値を導出し、燃料要求値を弁流量算出部64へ出力する。
 そして、本第2実施形態に係る圧力制御部56は、燃料要求値導出部70によって導出した燃料要求値に基づいて、弁流量算出部64及び開度決定部66によって圧力調整弁44の開度を決定する。
 以上説明したように、本第2実施形態に係る圧力制御部56は、GT出力要求値と燃料要求値との関係を示したテーブル情報Bを用いて負荷低減後のGT出力要求値に応じた燃料要求値を導出する。従って、圧力調整弁44の開度が決定するまでに行われる演算量が低減されるので、本第2実施形態に係る圧力制御部56は、負荷低減後の圧力調整弁44の開度を簡易な構成で決定できる。
〔第3実施形態〕
 以下、本発明の第3実施形態について説明する。
 なお、本第3実施形態に係る工場設備10の構成は、図1に示す第1実施形態に係る工場設備10の構成と同様であるので説明を省略する。
 図9は、本第3実施形態に係る負荷低減開度制御を行うための圧力制御部56の機能を示す機能ブロック図である。
 本第3実施形態に係る圧力制御部56は、開度決定部80及び補正部82を備える。
 開度決定部80は、GT出力要求値と圧力調整弁44の開度との関係を示したテーブル情報C(テーブル関数)が記憶されている。なお、このテーブル情報Cは、予め作成されている。開度決定部80は、負荷低減開度制御の実行指示を圧力制御部56が受信し、負荷低減後のGT出力要求値が入力されると、テーブル情報Cを用いて、入力されたGT出力要求値に応じた圧力調整弁44の開度を導出し、該開度を示す弁開度設定値を補正部82へ出力する。
 補正部82は、入力された弁開度設定値を、燃焼器22における燃焼状態に影響を及ぼすパラメータに基づいて補正する。上記パラメータは、例えば大気温度、燃料カロリー、燃料温度、及び燃料供給圧力等であり、各々の値は補正信号として補正部82に入力される。
 例えば、大気温度が高いほど空気の密度が低くなり、ガスタービン12の出力が低下することとなる。このため、大気温度が高い場合、補正部82は、燃焼器22へ供給する燃料量が多くなるように弁開度設定値を補正する。
 また、燃料カロリーが高いと、ガスタービン12の出力が上昇することとなる。このため、燃料カロリーが高い場合、補正部82は、燃焼器22へ供給する燃料量が少なくなるように弁開度設定値を補正する。
 また、燃料温度が高いと、燃料の密度が低くなるためガスタービン12の出力が低下することとなる。このため、燃料温度が高い場合、補正部82は、燃焼器22へ供給する燃料量が多くなるように弁開度設定値を補正する。
 また、燃料供給圧力が高いと、燃料の密度が高くなるためガスタービン12の出力が上昇することとなる。このため、燃料供給圧力が高い場合、補正部82は、燃焼器22へ供給する燃料量が少なくなるように弁開度設定値を補正する。
 そして、補正部82によって補正された弁開度設定値は、圧力調整弁44へ送信される。
 以上説明したように、本第3実施形態に係る圧力制御部56は、GT出力要求値と圧力調整弁44の開度との関係を示したテーブル情報Cを用いて負荷低減後のGT出力要求値に応じた圧力調整弁44の開度を導出する。従って、圧力調整弁44の開度が決定するまでに行われる演算量が低減されるので、本第3実施形態に係る圧力制御部56は、負荷低減後の圧力調整弁44の開度を簡易な構成で決定できる。
 また、本第3実施形態に係る圧力制御部56は、テーブル情報Cを用いて導出した圧力調整弁44の開度を、燃焼器22における燃焼状態に影響を及ぼすパラメータに基づいて補正するので、負荷低減後の圧力調整弁44の開度を精度よく決定できる。
〔第4実施形態〕
 以下、本発明の第4実施形態について説明する。
 なお、本第4実施形態に係る工場設備10の構成は、図1に示す第1実施形態に係る工場設備10の構成と同様であるので説明を省略する。
 燃料流量を示す指令値である燃料流量指令値は、単独運転移行の直後にはガスタービン12の回転数に基づいた制御である回転数制御がされている。このため、燃料流量指令値は、単独運転移行の直後では回転数制御によって、ガスタービン12が整定状態となった場合の流量とは異なる値となる。特に負荷の喪失量が大きい場合、燃料流量指令は、整定状態の流量より低い流量に抑えられる。
 そこで、本第4実施形態に係る圧力制御部56は、負荷低減後のガスタービン12の出力に応じた値として燃料流量指令値を用いて、燃料要求値を算出する。
 図10は、本第4実施形態に係る負荷低減開度制御を行うための圧力制御部56の機能を示す機能ブロック図である。なお、図10における図5と同一の構成部分については図5と同一の符号を付して、その説明を省略する。
 本第4実施形態に係る燃料要求値導出部90は、燃料流量指令値と燃料要求値との関係を示したテーブル情報D(テーブル関数)が記憶されている。なお、このテーブル情報Dは、予め作成されている。燃料要求値導出部90は、負荷低減開度制御の実行指示を圧力制御部56が受信し、負荷低減後の燃料流量指令値が入力されると、テーブル情報Dを用いて、入力された燃料流量指令値に応じた燃料要求値を導出し、燃料要求値を弁流量算出部64へ出力する。
 そして、本第4実施形態に係る圧力制御部56は、燃料要求値導出部90によって導出した燃料要求値に基づいて、弁流量算出部64及び開度決定部66によって圧力調整弁44の開度を決定する。
 以上説明したように、本第4実施形態に係る圧力制御部56は、燃料流量指令値を用いて、負荷低減後の燃料流量指令値に応じた燃料要求値を導出するので、負荷低減後の圧力調整弁44の開度をより精度よく決定できる。なお、流量調整弁42の開度が燃料流量に対応するため、本第4実施形態に係る圧力制御部56は、上記燃料流量指令値に替えて、流量調整弁42の開度指令値を用いてもよい。
 以上、本発明を、上記各実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記各実施形態に多様な変更または改良を加えることができ、該変更または改良を加えた形態も本発明の技術的範囲に含まれる。
 10  工場設備
 20  圧縮機
 22  燃焼器
 24  タービン
 42  流量調整弁
 44  圧力調整弁
 50  弁制御装置
 52  負荷低減検知部
 56  圧力制御部
 60  IGV開度算出部

Claims (10)

  1.  燃料を燃焼させ、燃焼ガスを生成する燃焼器、前記燃焼器によって生成された燃焼ガスにより駆動するタービン、前記燃焼器へ供給する燃料流量を調整する流量調整弁、及び前記燃焼器へ燃料を供給する燃料流路において前記流量調整弁の上流側に配置され、燃料圧力を調整する圧力調整弁を備えたガスタービンに設けられ、少なくとも前記圧力調整弁の開度を制御する弁制御装置であって、
     前記ガスタービンの負荷の低減を検知する検知手段と、
     前記検知手段によって前記負荷の低減が検知された場合に、前記負荷の低減後の前記ガスタービンの出力に応じて、前記圧力調整弁の開度を制御する圧力制御手段と、
    を備えた弁制御装置。
  2.  前記圧力制御手段は、前記負荷の低減後の前記ガスタービンの出力要求値に応じて、前記燃焼器へ供給する燃料量を示した燃料要求値を求め、該燃料要求値に基づいて、前記圧力調整弁の開度を決定する請求項1記載の弁制御装置。
  3.  前記燃焼器へ圧縮空気を導入する圧縮機へ流入させる空気流量を、前記出力要求値に基づいて算出する空気流量算出手段を備え、
     前記圧力制御手段は、前記ガスタービンを構成する各機器の入口出口の状態量を示したヒートバランスデータを用いて、前記空気流量算出手段によって算出された前記空気流量、大気温度、及び前記出力要求値に応じた前記燃料要求値を導出する請求項2記載の弁制御装置。
  4.  前記圧力制御手段は、前記出力要求値と前記燃料要求値との関係を示した第1情報を用いて、前記出力要求値に応じた前記燃料要求値を導出する請求項2記載の弁制御装置。
  5.  前記圧力制御手段は、前記ガスタービンの出力要求値と前記圧力調整弁の開度との関係を示した第2情報を用いて、前記出力要求値に応じた前記開度を導出する請求項1記載の弁制御装置。
  6.  前記圧力制御手段は、導出した前記開度を、前記燃焼器における燃焼状態に影響を及ぼすパラメータに基づいて補正する請求項5記載の弁制御装置。
  7.  前記圧力制御手段は、前記負荷の低減後の前記ガスタービンの回転数に基づいて算出される燃料流量を示す指令値を用い、該指令値と前記燃焼器へ供給する燃料量を示した燃料要求値との関係を示した第3情報から導出される前記燃料要求値に基づいて、前記圧力調整弁の開度を決定する請求項1記載の弁制御装置。
  8.  前記圧力制御手段は、前記負荷の低減量が予め定められた閾値を超えた場合に、前記負荷の低減後の前記ガスタービンの出力に応じて、前記圧力調整弁の開度を制御する請求項1から請求項7の何れか1項記載の弁制御装置。
  9.  燃料を燃焼させ、燃焼ガスを生成する燃焼器と、
     前記燃焼器によって生成された燃焼ガスにより駆動するタービンと、
     前記燃焼器へ供給する燃料流量を調整する流量調整弁と、
     前記流量調整弁に対して上流側に配置され、燃料圧力を調整する圧力調整弁と、
     前記圧力調整弁の開度を制御する請求項1から請求項8の何れか1項記載の弁制御装置と、
    を備えたガスタービン。
  10.  燃料を燃焼させ、燃焼ガスを生成する燃焼器、前記燃焼器によって生成された燃焼ガスにより駆動するタービン、前記燃焼器へ供給する燃料流量を調整する流量調整弁、及び前記燃焼器へ燃料を供給する燃料流路において前記流量調整弁の上流側に配置され、燃料圧力を調整する圧力調整弁を備えたガスタービンに設けられ、少なくとも前記圧力調整弁の開度を制御する弁制御方法であって、
     前記ガスタービンの負荷の低減を検知する第1工程と、
     前記負荷の低減を検知した場合に、前記負荷の低減後の前記ガスタービンの出力に応じて、前記圧力調整弁の開度を制御する第2工程と、
    を含む弁制御方法。
PCT/JP2012/080388 2011-11-28 2012-11-22 弁制御装置、ガスタービン、及び弁制御方法 WO2013080894A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/348,354 US9732676B2 (en) 2011-11-28 2012-11-22 Valve control device, gas turbine, and valve control method
CN201280044970.0A CN103946516B (zh) 2011-11-28 2012-11-22 阀控制装置、燃气涡轮机以及阀控制方法
EP12852649.8A EP2752568B1 (en) 2011-11-28 2012-11-22 Valve control device, gas turbine, and valve control method
KR1020147008203A KR101520240B1 (ko) 2011-11-28 2012-11-22 밸브 제어 장치, 가스 터빈, 및 밸브 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-259473 2011-11-28
JP2011259473A JP5868671B2 (ja) 2011-11-28 2011-11-28 弁制御装置、ガスタービン、及び弁制御方法

Publications (1)

Publication Number Publication Date
WO2013080894A1 true WO2013080894A1 (ja) 2013-06-06

Family

ID=48535353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080388 WO2013080894A1 (ja) 2011-11-28 2012-11-22 弁制御装置、ガスタービン、及び弁制御方法

Country Status (6)

Country Link
US (1) US9732676B2 (ja)
EP (1) EP2752568B1 (ja)
JP (1) JP5868671B2 (ja)
KR (1) KR101520240B1 (ja)
CN (1) CN103946516B (ja)
WO (1) WO2013080894A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200818A1 (ja) * 2020-04-02 2021-10-07 三菱パワー株式会社 制御装置、制御方法及びプログラム
JP2022147400A (ja) * 2021-03-23 2022-10-06 トヨタ自動車株式会社 燃焼器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6223847B2 (ja) * 2014-02-05 2017-11-01 三菱日立パワーシステムズ株式会社 ガスタービンの制御装置、ガスタービン、及びガスタービンの制御方法
US10584645B2 (en) * 2014-07-31 2020-03-10 Mitsubishi Heavy Industries Compressor Corporation Compressor control device, compressor control system, and compressor control method
JP6193827B2 (ja) * 2014-08-29 2017-09-06 三菱日立パワーシステムズ株式会社 燃料供給装置、燃焼器、ガスタービン、及び燃料供給方法
JP2016113975A (ja) * 2014-12-16 2016-06-23 三菱日立パワーシステムズ株式会社 ガスタービンプラント制御装置およびガスタービンプラント制御方法
CN104775914B (zh) * 2015-02-10 2019-03-15 北京华清燃气轮机与煤气化联合循环工程技术有限公司 一种用于气体燃料的燃气轮机控制方法与系统
JP6427841B2 (ja) * 2015-08-25 2018-11-28 三菱日立パワーシステムズ株式会社 燃料制御装置、燃焼器、ガスタービン、制御方法及びプログラム
JP6680555B2 (ja) * 2016-02-10 2020-04-15 三菱日立パワーシステムズ株式会社 ガスタービン制御装置、ガスタービン制御方法及びプログラム
EP3456946A1 (en) * 2017-09-18 2019-03-20 Siemens Aktiengesellschaft Controller & method
JP6935327B2 (ja) * 2017-12-28 2021-09-15 三菱パワー株式会社 制御装置、ガスタービン、制御方法及びプログラム
JP6963512B2 (ja) * 2018-01-12 2021-11-10 三菱パワー株式会社 燃料供給システム、ガスタービン、発電プラント、制御方法及びプログラム
JP7206143B2 (ja) * 2019-03-28 2023-01-17 三菱重工業株式会社 1軸式ガスタービンの運転制御装置、運転制御方法及びプログラム
DE102019120126B4 (de) * 2019-07-25 2021-08-05 Straub Kg Einstellvorrichtung und Verfahren zur Ermittlung eines hydraulischen Schwellwerts eines Ventils
CN111963323B (zh) * 2020-07-29 2022-08-02 东方电气自动控制工程有限公司 一种燃气轮机升速过程中的燃料控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267528A (ja) * 1990-03-19 1991-11-28 Hitachi Ltd ガスタービンの燃料制御装置
JP2006090287A (ja) * 2004-09-27 2006-04-06 Mitsubishi Heavy Ind Ltd 複合発電システム及び燃料ガス発熱量制御方法
JP3828738B2 (ja) 2000-10-31 2006-10-04 株式会社日立製作所 ガスタービン燃料制御装置
JP2007205224A (ja) * 2006-02-01 2007-08-16 Hitachi Ltd デュアル燃料焚きガスタービンの燃料ガス圧力制御装置及び燃料ガス圧力制御方法
JP2010121598A (ja) * 2008-11-21 2010-06-03 Mitsubishi Heavy Ind Ltd ガスタービン運転制御装置及び方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197694A (ja) 1986-02-24 1987-09-01 Hitachi Ltd 圧縮機の旋回失速防止装置
JPS63134825A (ja) 1986-11-26 1988-06-07 Toshiba Corp ガスタ−ビン燃料制御装置
JPH0681906B2 (ja) 1986-12-27 1994-10-19 株式会社東芝 ガスタ−ビン制御装置
JP3881871B2 (ja) * 2001-11-13 2007-02-14 三菱重工業株式会社 ガスタービンの燃料制御方法、及びそれに供する制御装置
JP3692340B2 (ja) * 2002-07-30 2005-09-07 三菱重工業株式会社 コンバインドプラントの燃料制御方法、それに供する制御装置
JP3854556B2 (ja) * 2002-09-11 2006-12-06 三菱重工業株式会社 ガスタービンプラント制御機構
US7457688B2 (en) 2006-09-19 2008-11-25 General Electric Company Method and system for detection and transfer to electrical island operation
JP5185791B2 (ja) * 2008-11-28 2013-04-17 三菱重工業株式会社 ガスタービン制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267528A (ja) * 1990-03-19 1991-11-28 Hitachi Ltd ガスタービンの燃料制御装置
JP3828738B2 (ja) 2000-10-31 2006-10-04 株式会社日立製作所 ガスタービン燃料制御装置
JP2006090287A (ja) * 2004-09-27 2006-04-06 Mitsubishi Heavy Ind Ltd 複合発電システム及び燃料ガス発熱量制御方法
JP2007205224A (ja) * 2006-02-01 2007-08-16 Hitachi Ltd デュアル燃料焚きガスタービンの燃料ガス圧力制御装置及び燃料ガス圧力制御方法
JP2010121598A (ja) * 2008-11-21 2010-06-03 Mitsubishi Heavy Ind Ltd ガスタービン運転制御装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752568A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200818A1 (ja) * 2020-04-02 2021-10-07 三菱パワー株式会社 制御装置、制御方法及びプログラム
US11828225B2 (en) 2020-04-02 2023-11-28 Mitsubishi Heavy Industries, Ltd. Control device, control method, and program
JP2022147400A (ja) * 2021-03-23 2022-10-06 トヨタ自動車株式会社 燃焼器
JP7307441B2 (ja) 2021-03-23 2023-07-12 トヨタ自動車株式会社 燃焼器

Also Published As

Publication number Publication date
KR101520240B1 (ko) 2015-05-13
EP2752568A4 (en) 2015-06-03
EP2752568B1 (en) 2017-07-12
JP2013113201A (ja) 2013-06-10
EP2752568A1 (en) 2014-07-09
JP5868671B2 (ja) 2016-02-24
CN103946516A (zh) 2014-07-23
KR20140071385A (ko) 2014-06-11
US20140230449A1 (en) 2014-08-21
CN103946516B (zh) 2016-04-13
US9732676B2 (en) 2017-08-15

Similar Documents

Publication Publication Date Title
JP5868671B2 (ja) 弁制御装置、ガスタービン、及び弁制御方法
US8694170B2 (en) Gas turbine operation control device and operation control method
US10208678B2 (en) Gas turbine combustion control device and combustion control method and program therefor
JP5858885B2 (ja) ガスタービン制御装置及びガスタービンを制御するための方法
JP5650929B2 (ja) ガスタービンの性能を補正するシステム及び方法
US10161317B2 (en) Gas-turbine control device, gas turbine, and gas-turbine control method
US10669959B2 (en) Control device, system, control method, power control device, gas turbine, and power control method
US20120036861A1 (en) Method for compensating for combustion efficiency in fuel control system
JP2007309279A (ja) ガスタービン出力学習回路及びこれを備えたガスタービンの燃焼制御装置
JP2007077866A (ja) ガスタービンの燃焼制御装置
EP1746347A2 (en) Method and system for operating a multi-stage combustor
CN111386390B (zh) 用于燃气轮机的控制装置和方法、燃气轮机以及存储介质
WO2016021298A1 (ja) 流量比算出装置、これを備えている制御装置、この制御装置を備えているガスタービンプラント、流量比算出方法、及び燃料系統の制御方法
JP5501870B2 (ja) ガスタービン
WO2019138709A1 (ja) 燃料供給システム、ガスタービン、発電プラント、制御方法及びプログラム
JP5595221B2 (ja) ガスタービンの制御装置、ガスタービン、及びガスタービンの制御方法
JP6267087B2 (ja) 動力制御装置、ガスタービン及び動力制御方法
JP2017141728A (ja) ガスタービン制御装置、ガスタービン制御方法及びプログラム
JP2015155686A (ja) ガスタービンの制御装置、ガスタービン、及びガスタービンの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147008203

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012852649

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14348354

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE