WO2013080384A1 - 放電加工機の制御装置 - Google Patents

放電加工機の制御装置 Download PDF

Info

Publication number
WO2013080384A1
WO2013080384A1 PCT/JP2011/077971 JP2011077971W WO2013080384A1 WO 2013080384 A1 WO2013080384 A1 WO 2013080384A1 JP 2011077971 W JP2011077971 W JP 2011077971W WO 2013080384 A1 WO2013080384 A1 WO 2013080384A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
threshold value
unit
voltage
candidate
Prior art date
Application number
PCT/JP2011/077971
Other languages
English (en)
French (fr)
Inventor
森田 一成
博紀 彦坂
康雄 小野寺
英隆 加藤木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112011105907.8T priority Critical patent/DE112011105907B4/de
Priority to JP2012519843A priority patent/JP5084974B1/ja
Priority to US13/638,410 priority patent/US8519295B2/en
Priority to CN201180018372.1A priority patent/CN103249513B/zh
Priority to PCT/JP2011/077971 priority patent/WO2013080384A1/ja
Publication of WO2013080384A1 publication Critical patent/WO2013080384A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/024Detection of, and response to, abnormal gap conditions, e.g. short circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges

Definitions

  • the present invention relates to a control device for an electric discharge machine.
  • Patent Document 1 in an electric discharge machining apparatus, an electric discharge is generated between the electrodes, a gradient of the voltage change of the electric discharge, a discharge level, and a high frequency component are detected, and a discharge state is determined by combining two or more of these detection signals. It is described to judge. Thus, according to Patent Document 1, accurate detection and observation can be performed, and the control of each unit by this can be made more optimal.
  • Patent Document 2 in an electric discharge machining apparatus, an electric discharge is generated between the electrodes, the high-pass filter extracts only the high frequency component of the voltage waveform between the electrodes, the rectifier rectifies the high frequency component, and the integrating device outputs the rectified output. It is described that the integration device compares the integration voltage with the reference voltage, and the machining condition control device checks the output of the comparison device during the pause time and extends the pause time if it is determined that the discharge state is bad. Has been. Thus, according to Patent Document 2, it is said that the electrical discharge machining state can be accurately detected, generation of a continuous arc between the electrodes can be prevented, and damage to the electrode or the workpiece can be prevented. Yes.
  • a reference voltage (threshold value) for discriminating the discharge state between the electrodes is read by the operator from the value measured by the measuring instrument before the electric discharge machine is shipped and input to the control device. Therefore, it is common to set the value as a predetermined value.
  • the threshold value is set in the same manner after the electrical discharge machine is shipped, the value read by the operator varies, and the set threshold value may deviate from an appropriate value. This tends to make it difficult to accurately determine whether the discharge state between the electrodes is normal discharge or abnormal discharge.
  • the present inventor found that when a workpiece is actually processed by an electric discharge machine, a high-frequency component of a voltage change between the electrodes corresponding to the discharge state between the electrodes is processed by the electric discharge machine. It was found that the shape and progress of processing change depending on factors that are difficult to assume before shipping. For this reason, if the threshold value remains at a predetermined value before shipment, the threshold value is likely to deviate from an appropriate value depending on the machining shape and the progress of machining, and the discharge state between the electrodes is normal discharge. It may be difficult to accurately determine whether the discharge is abnormal or abnormal.
  • the threshold value when determining the threshold value for determining the discharge state between the electrodes before shipment of the electric discharge machine, the threshold value can be determined from the integrated voltage acquired by setting the discharge state between the electrodes to a state in which many abnormal discharges are included. It is common.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a control device for an electric discharge machine that can accurately determine the discharge state between the electrodes while actually processing a workpiece by the electric discharge machine. To do.
  • an electric discharge machine control device controls an electric discharge machine that generates an electric discharge between an electrode and a workpiece.
  • a control device for an electric discharge machine wherein a control unit that controls a machining condition by the electric discharge machine, and the machining condition is controlled by the control unit so that a normal discharge is generated between the electrodes.
  • An acquisition unit that acquires a parameter indicating a discharge state between the calculation unit, a calculation unit that calculates a probability density distribution of the acquired parameter, and a normal discharge and an abnormal discharge between the electrodes based on the calculated probability density distribution And a determination unit that determines a threshold value that defines a boundary of the control circuit, and a determination unit that determines whether the discharge state between the electrodes is normal discharge or abnormal discharge using the determined threshold value.
  • Part is the discrimination part Based on the determination result, and controlling the processing condition by the electric discharge machine.
  • the threshold value that defines the boundary between normal discharge and abnormal discharge can be determined without using the probability density distribution at the time of abnormal discharge, so that the workpiece is actually processed by the electric discharge machine. However, it is possible to accurately determine the discharge state between the electrodes.
  • FIG. 1 is a diagram illustrating a configuration of an electric discharge machine control device according to the first embodiment.
  • FIG. 2 is a diagram illustrating the operation of the control device for the electric discharge machine according to the first embodiment.
  • FIG. 3 is a flowchart illustrating the operation of the control device for the electric discharge machine according to the first embodiment.
  • FIG. 4 is a diagram for explaining the operation of the arithmetic unit in the first embodiment.
  • FIG. 5 is a diagram for explaining the operation of the arithmetic unit in the first embodiment.
  • FIG. 6 is a diagram for explaining the operation of the determination unit in the first embodiment.
  • FIG. 7 is a diagram illustrating a configuration of a control device for an electric discharge machine according to the second embodiment.
  • FIG. 8 is a diagram illustrating a configuration of a control device for an electric discharge machine according to the third embodiment.
  • FIG. 9 is a diagram for explaining the operation of the determination unit in the third embodiment.
  • FIG. 10 is a diagram illustrating a configuration of an electric discharge machine control device according to the fourth embodiment.
  • FIG. 1 is a diagram showing a configuration of a control device 100 of the electric discharge machine EDM.
  • Control device 100 controls the operation of electric discharge machine EDM.
  • the machining power source 1 applies a machining voltage between the machining electrode 2 and the workpiece 3 to generate a pulse discharge between the workpieces, thereby machining the workpiece 3.
  • the control device 100 has the following configuration.
  • the acquisition unit 70 acquires a parameter indicating a discharge state between the electrodes (that is, a normal discharge parameter) in a state where the processing conditions are controlled by the control unit 60 so that a normal discharge is generated between the electrodes.
  • the acquisition unit 70 includes a voltage detection unit 71, an extraction unit 72, and an integration unit 73.
  • the voltage detector 71 detects the discharge voltage between the electrodes (see FIG. 2A).
  • the voltage detector 71 receives, for example, differential signals from both ends between the poles at two input terminals, and detects a differential signal (for example, differential voltage) corresponding to the input differential signal.
  • the voltage is output from two output terminals.
  • the voltage detection unit 71 may be one in which an impedance element is connected between two parallel lines, or may have two lines that simply run in parallel.
  • the voltage detection unit 71 supplies the detected discharge voltage to the extraction unit 72.
  • Extraction unit 72 extracts a high frequency component of the detected discharge voltage.
  • the extraction unit 72 includes the high pass filter 4 and the rectifier 5.
  • the high-pass filter 4 extracts a high-frequency component (see FIG. 2B) superimposed on the discharge voltage when a machining discharge is generated between the electrodes.
  • the rectifier 5 rectifies the high-frequency component extracted by the high-pass filter 4 (see FIG. 2C) and further smoothes it (see FIG. 2D) to supply the integrator 73.
  • the integrator 73 integrates the extracted high-frequency component of the discharge voltage, and outputs the integrated voltage (integrated voltage) as a parameter indicating the discharge state between the electrodes (FIG. 2 (e), FIG. 4 (a)). reference).
  • the integration unit 73 includes an integration circuit 6 and a reset transistor 7.
  • the integration circuit 6 includes an operational amplifier OP, a resistor R1, and a capacitor C1.
  • the reset transistor 7 is turned on when the output level of the AND circuit 13 is L level, and is turned off when the output level is H level.
  • the storage unit 80 stores the integration voltage output from the integration unit 73 of the acquisition unit 70. For example, each time the integrated voltage is output from the integration circuit 6 until the stored contents are erased, the storage unit 80 adds the integrated voltage stored so far and stores a plurality of integrated voltages. .
  • the calculation unit 30 obtains a probability density distribution of the parameters acquired by the acquisition unit 70 (that is, normal discharge parameters). For example, the arithmetic unit 30 classifies each of the plurality of integrated voltages (see FIG. 4A) stored in the storage unit 80 into one of a plurality of value sections, and the frequency for each of the plurality of value sections. Ask for. Then, the calculation unit 30 creates a histogram for a plurality of value intervals (see FIG. 6A), and performs fitting using, for example, a normal distribution on the integrated voltage from the created histogram, and the fitted normal distribution. Is obtained as a probability density distribution of the integrated voltage (see FIG. 4B). That is, the arithmetic unit 30 obtains a probability density distribution of normal discharge. For example, the arithmetic unit 30 erases the stored content of the storage unit 80 after obtaining the probability density distribution of the integrated voltage.
  • the determination unit 40 determines a threshold value Vref that defines a boundary between normal discharge and abnormal discharge between the electrodes based on the obtained probability density distribution.
  • the determination unit 40 includes a candidate determination unit 41, a comparison unit 42, and a threshold determination unit 43.
  • the candidate determination unit 41 determines a candidate threshold value VrefNew that is a candidate for the threshold value Vref that defines the boundary between normal discharge and abnormal discharge between the electrodes from the obtained probability density distribution. That is, the candidate determination unit 41 statistically estimates a threshold value that defines the boundary between normal discharge and abnormal discharge from the probability density distribution of normal discharge, and sets the estimated threshold value as a candidate threshold value VrefNew. The candidate determination unit 41 supplies the determined candidate threshold value VrefNew to the comparison unit 42.
  • the comparison unit 42 receives the candidate threshold value VrefNew from the candidate determination unit 41. Further, the comparison unit 42 accesses the threshold value determination unit 43 and acquires the threshold value VrefOld determined immediately before from the threshold value determination unit 43. The comparison unit 42 compares the candidate threshold value VrefNew with the threshold value VrefOld determined immediately before, and supplies the comparison result to the threshold value determination unit 43.
  • the threshold value determination unit 43 determines a threshold value Vref that defines a boundary between normal discharge and abnormal discharge between the electrodes according to the comparison result by the comparison unit 42. That is, when it is determined from the comparison result by the comparison unit 42 that the difference between the candidate threshold value VrefNew and the threshold value VrefOld determined immediately before is out of the allowable range, the threshold value determination unit 43 replaces the threshold value VrefOld determined immediately before.
  • the candidate threshold value VrefNew is determined as the threshold value Vref.
  • the threshold value determination unit 43 sets the threshold value VrefOld determined immediately before to the threshold value Vref. Determine as. The threshold value determination unit 43 holds the determined threshold value Vref.
  • the discriminating unit 50 discriminates whether the discharge state between the electrodes is normal discharge or abnormal discharge, using the threshold value Vref determined by the determination unit 40.
  • the determination unit 50 includes a comparator 8 and a discharge pulse quality determination device 23.
  • the comparator 8 receives the integration voltage from the integration circuit 6 and acquires the threshold value Vref from the threshold value determination unit 43.
  • the comparator 8 compares the integrated voltage with the threshold value Vref and supplies the comparison result to the discharge pulse pass / fail judgment device 23.
  • the comparator 8 outputs an H level (for example, indicating abnormal discharge) when the integrated voltage exceeds the threshold value Vref, and outputs an L level (for example, indicating normal discharge) when the integrated voltage does not exceed the threshold value Vref.
  • the discharge pulse quality determination device 23 uses the comparison result by the comparator 8 to determine whether the discharge state between the electrodes is normal discharge or abnormal discharge. Details of the operation of the discharge pulse quality determination device 23 will be described later.
  • the discharge voltage detection device 9 detects a discharge voltage when a machining discharge is generated between the electrodes and outputs it to the AND circuit 11.
  • the discharge current detection device 10 detects a discharge current that flows when a machining discharge is generated between the electrodes, converts the voltage into a voltage, and outputs the voltage to the AND circuit 11.
  • the AND circuit 11 sets the output level to the L level during the period when both of the two inputs are at the H level.
  • the output of the AND circuit 11 is input to the time constant measuring device 12 and the AND circuit 13.
  • the time constant measuring device 12 delays the timing at which the output level of the AND circuit 11 falls from the H level to the L level by a time corresponding to the time constant of the high-pass filter 4 and outputs it to the AND circuit 13. Circuit.
  • the AND circuit 13 sets the output level to the L level during a period in which both of the two inputs are at the L level.
  • the machining voltage level detection device 20 detects the level of the discharge voltage when machining discharge is generated between the electrodes, and supplies it to the comparator 21.
  • the machining voltage level detection device 20 and the discharge voltage detection device 9 may be shared.
  • a reference value Vc is set in advance.
  • the comparator 21 receives the level of the discharge voltage from the machining voltage level detection device 20 and acquires the reference value Vc from the reference value setting device 15.
  • the comparator 21 compares the level of the discharge voltage with the reference value Vc, and supplies the comparison result to the discharge pulse control device 22 and the discharge quality determination device 23.
  • the comparator 21 outputs an H level (for example, indicating abnormal discharge) when the integrated voltage exceeds the reference value Vc, and an L level (for example, indicating normal discharge) when the integrated voltage does not exceed the reference value Vc. Is output.
  • the discharge pulse quality determination device 23 of the determination unit 50 is configured to generate a discharge generated between electrodes based on the comparison result of the comparator 8 and the comparison result of the comparator 21 at the end of the original discharge time at the time of electric discharge machining. It is determined whether the pulse is a normal discharge pulse (normal pulse) or an abnormal discharge pulse (defective pulse).
  • the discharge pulse quality determination device 23 determines that the pulse is a normal pulse when the output level of the comparator 21 is L level and the output level of the comparator 8 is L level. Further, the discharge pulse pass / fail judgment device 23 is configured such that when the output level of the comparator 21 is at the H level, or the output level of the comparator 21 is at the L level, but the output level of the comparator 8 is at the H level. Sometimes, it is determined as a defective pulse.
  • the discharge pulse pass / fail judgment device 23 outputs the normal judgment pulse to the count input terminal of the first pulse counter 24 and the reset input terminal of the second pulse counter 25 when it is judged as a normal pulse. In addition, when the discharge pulse pass / fail determination device 23 determines that the pulse is defective, it outputs the failure determination pulse to the count input terminal of the second pulse counter 25 and the reset input terminal of the first pulse counter 24.
  • the control unit 60 controls machining conditions by the electric discharge machine EDM based on the discrimination result of the discrimination unit 50.
  • the control unit 60 includes a first pulse counter 24, a second pulse counter 25, a pause pulse control device 26, and a discharge pulse control device 22.
  • the output terminal of the first pulse counter 24 is connected to the pause pulse control device 26 and the reset input terminal of its own counter.
  • the output terminal of the second pulse counter 25 is connected to the pause pulse control device 26 and the reset / reset input terminal of the counter itself.
  • the first pulse counter 24 counts normal determination pulses input from the discharge pulse pass / fail determination device 23 and outputs the count value to the pause pulse control device 26 one by one.
  • the discharge pulse quality determination device 23 outputs a failure determination pulse during the counting operation, it is reset at that time.
  • M normal determination pulses can be continuously counted, the counter value is reset after the count value M is output to the pause pulse controller 26.
  • the second pulse counter 25 counts the failure determination pulse input from the discharge pulse pass / fail determination device 23 and outputs the count value to the pause pulse control device 26 one by one.
  • the discharge pulse pass / fail judgment device 23 outputs a normal judgment pulse during the counting operation, it is reset at that time.
  • L defect determination pulses can be counted continuously, the counter value is reset after the count value L is output to the pause pulse controller 26.
  • the pause pulse controller 26 determines the optimum pause time based on whether the count value of the first pulse counter 24 is the value M and whether the count value of the second pulse counter 25 is the value L. Setting control is performed, and a pause pulse 28 having the set pause time as a pulse width is generated and output to the discharge pulse controller 22.
  • the discharge pulse control device 22 monitors the output level of the comparator 21 and the presence or absence of the change within the original discharge time at the time of electric discharge machining, and the output level of the comparator 21 is stably at the L level within the original discharge time. If it is maintained at, it is determined that normal discharge is being performed. In this case, the processing power supply 1 is controlled to execute voltage application that repeatedly generates a discharge pulse having a predetermined discharge voltage / pulse width between the electrodes with a predetermined pause time.
  • the discharge pulse control device 22 monitors the output level of the comparator 21 and the presence or absence of the change within the original discharge time at the time of electric discharge machining, and the output level of the comparator 21 becomes L during the original discharge time.
  • the processing power supply 1 is interrupted by interrupting the pulse width of the discharge pulse generated between the electrodes with the normal discharge time width, and inputting the discharge pulse with the reduced pulse width from the pause pulse controller 26. Control is performed to execute voltage application that is repeatedly generated across the pause time indicated by the pulse 28.
  • the processing conditions controlled by the control unit 60 based on the determination result of the determination unit 50 are not limited to the pause time described above.
  • at least two or more of them may be controlled by the control unit 60 in parallel.
  • FIG. 3 is a flowchart showing the operation of the control device 100 of the electric discharge machine EDM.
  • step S1 the control unit 60 generates a discharge between the electrodes of the electric discharge machine EDM in a state where the processing conditions are controlled so that a normal discharge is generated between the electrodes.
  • the control unit 60 can use, for example, a machining condition that has caused a normal discharge immediately before as a machining condition that causes a normal discharge between the electrodes.
  • step S2 the control unit 60 determines whether or not a discharge has occurred between the electrodes. For example, the control unit 60 detects the discharge voltage between the electrodes via the voltage detection unit 71, and determines whether or not a discharge has occurred between the electrodes according to the detection result. The controller 60 advances the process to step S3 if a discharge occurs between the electrodes, and advances the process to step S2 if no discharge occurs between the electrodes.
  • step S3 the acquisition unit 70 starts acquiring an integrated voltage as a parameter indicating a discharge state between the electrodes under the control of the control unit 60. That is, the acquisition unit 70 starts a series of operations as follows.
  • the voltage detector 71 detects the discharge voltage between the electrodes (see FIG. 2A).
  • the extraction unit 72 extracts a high-frequency component of the detected discharge voltage (see FIGS. 2B to 2D).
  • the integrating unit 73 integrates the extracted high-frequency component of the discharge voltage, and outputs the integrated voltage (integrated voltage) to the comparator 8 and the storage unit 80 as a parameter indicating the discharge state between the electrodes.
  • step S4 the storage unit 80 stores the integrated voltage acquired by the acquisition unit 70 under the control of the control unit 60. For example, each time the integrated voltage is output from the integration circuit 6 until the stored contents are erased, the storage unit 80 adds the integrated voltage stored so far and stores a plurality of integrated voltages. .
  • step S5 the calculation unit 30 obtains the probability density distribution of the parameters acquired by the acquisition unit 70 under the control of the control unit 60.
  • the arithmetic unit 30 classifies each of the plurality of integrated voltages stored in the storage unit 80 into one of a plurality of value sections, and obtains a frequency for each of the plurality of value sections.
  • the arithmetic unit 30 creates a histogram for a plurality of value intervals (see FIG. 6A), performs fitting of a normal distribution, for example, from the created histogram, and converts the fitted normal distribution to an integral voltage. Obtained as a probability density distribution (see FIG. 4B).
  • the parameter acquired by the acquisition unit 70 is acquired in a state in which the processing conditions are controlled by the control unit 60 so that normal discharge occurs between the electrodes, the parameter including normal discharge is normal. It is the parameter about discharge (refer Fig.4 (a)). Therefore, the probability density distribution obtained by the calculation unit 30 is also a probability density distribution of normal discharge that does not include the probability density distribution of abnormal discharge (see FIG. 4B).
  • calculation unit 30 may erase the stored content of the storage unit 80 after obtaining the probability density distribution of the integrated voltage, for example.
  • step S10 the determination unit 40 determines a threshold value Vref that defines the boundary between normal discharge and abnormal discharge between the electrodes based on the obtained probability density distribution. Specifically, the determination unit 40 performs steps S11 to S18.
  • the candidate determination unit 41 determines a candidate threshold value VrefNew that is a candidate for the threshold value Vref that defines the boundary between normal discharge and abnormal discharge between the electrodes from the obtained probability density distribution. That is, the candidate determination unit 41 statistically estimates a threshold value that defines the boundary between normal discharge and abnormal discharge from the probability density distribution of normal discharge, and sets the estimated threshold value as a candidate threshold value VrefNew.
  • the probability density distribution obtained by the calculation unit 30 is a probability density distribution of normal discharge that does not include the probability density distribution of abnormal discharge (see FIG. 4B).
  • the candidate determination unit 41 statistically obtains the position of the tail on the abnormal discharge side (the side that is expected to be) in the probability density distribution of normal discharge, and calculates the integrated voltage value corresponding to that position as the normal discharge between the electrodes. It is estimated as a threshold value Vref that defines a boundary with abnormal discharge.
  • the higher value side in the probability density distribution of the integrated voltage is statistically obtained, and the integrated voltage value Xref corresponding to the obtained skirt position is determined using, for example, the following Equation 1.
  • Xref X OK + m ⁇ Equation 1
  • represents a standard deviation
  • m is a constant of 1 to 3.
  • the candidate determining unit 41 sets the integrated voltage value Xref determined using, for example, Equation 1 as a candidate threshold value VrefNew.
  • the candidate determination unit 41 supplies the determined candidate threshold value VrefNew to the comparison unit 42.
  • the comparison unit 42 receives the candidate threshold value VrefNew from the candidate determination unit 41. Further, the comparison unit 42 accesses the threshold value determination unit 43 and acquires the threshold value VrefOld determined immediately before from the threshold value determination unit 43. The comparison unit 42 compares the candidate threshold value VrefNew with the threshold value VrefOld determined immediately before, and supplies the comparison result to the threshold value determination unit 43. The threshold value determination unit 43 determines whether or not the candidate threshold value VrefNew is larger than the threshold value VrefOld determined immediately before from the comparison result by the comparison unit 42.
  • step S12 If the candidate threshold value VrefNew is greater than the previously determined threshold value VrefOld (Yes in step S12), the threshold value determination unit 43 proceeds to step S13, and if the candidate threshold value VrefNew is equal to or less than the previously determined threshold value VrefOld ( In step S12, No), the process proceeds to step S14.
  • the threshold value determination unit 43 compares the value VrefNew * A obtained by multiplying the threshold value VrefOld determined immediately before by a constant A greater than 1 with the candidate threshold value VrefNew, and whether the candidate threshold value VrefNew is greater than the value VrefNew * A. Judge whether or not.
  • A is a constant for determining whether or not the candidate threshold value VrefNew is largely shifted to a higher value side with respect to the threshold value VrefOld determined immediately before, for example, 1.1.
  • the threshold value determination unit 43 determines that the candidate threshold value VrefNew is greatly shifted to a higher value side than the threshold value VrefOld determined immediately before. Proceed to step S17.
  • the threshold value determination unit 43 determines that the candidate threshold value VrefNew is not significantly shifted to a higher value side than the threshold value VrefOld determined immediately before. Advances to step S16.
  • step S14 the threshold value determination unit 43 determines whether the candidate threshold value VrefNew is smaller than the threshold value VrefOld determined immediately before from the comparison result by the comparison unit 42. If the candidate threshold value VrefNew is smaller than the threshold value VrefOld determined immediately before (Yes in step S14), the threshold value determination unit 43 advances the process to step S15. When the candidate threshold value VrefNew is equal to or greater than the threshold value VrefOld determined immediately before (No in step S14), the threshold value determination unit 43 assumes that the candidate threshold value VrefNew is equal to the threshold value VrefOld determined immediately before, and advances the process to step S16. .
  • step S15 the threshold value determination unit 43 compares the value VrefNew * B obtained by multiplying the threshold value VrefOld determined immediately before by a positive constant B smaller than 1 with the candidate threshold value VrefNew, and the candidate threshold value VrefNew is calculated based on the value VrefNew * B. Judge whether it is small or not.
  • B is a constant for determining whether or not the candidate threshold value VrefNew is largely shifted to a lower value side with respect to the threshold value VrefOld determined immediately before, for example, 0.9.
  • the threshold value determination unit 43 determines that the candidate threshold value VrefNew is greatly shifted to a lower value side than the threshold value VrefOld determined immediately before. Proceed to step S17.
  • the threshold value determination unit 43 determines that the candidate threshold value VrefNew is not significantly shifted to a lower value side than the threshold value VrefOld determined immediately before. Advances to step S16.
  • step S16 the threshold value determination unit 43 determines that the difference between the candidate threshold value VrefNew and the threshold value VrefOld determined immediately before is within the allowable range, and determines the threshold value VrefOld determined immediately before as the threshold value Vref. The threshold value determination unit 43 holds the determined threshold value Vref.
  • step S17 the threshold value determination unit 43 assumes that the difference between the candidate threshold value VrefNew and the threshold value VrefOld determined immediately before is out of the allowable range, and replaces the threshold value VrefOld determined immediately before with the candidate threshold value VrefNew as the threshold value Vref. decide.
  • the threshold value determination unit 43 holds the determined threshold value Vref.
  • the operator reads the value measured by the measuring instrument and inputs the output of the integrating circuit 6 to the control device 100.
  • the threshold value Vref used in FIG. it takes time to prepare and adjust the measuring instrument, and there is a tendency for the operator to vary the threshold value.
  • the set threshold value may deviate from an appropriate value, and it tends to be difficult to accurately determine whether the discharge state between the electrodes is normal discharge or abnormal discharge.
  • the acquisition unit 70 acquires a parameter indicating the discharge state between the electrodes
  • the calculation unit 30 calculates the probability density distribution of the acquired parameter
  • the determination unit 40 calculates Based on the obtained probability density distribution, a threshold value Vref that defines a boundary between normal discharge and abnormal discharge between the electrodes is determined. This eliminates the need for preparation and adjustment of the measuring instrument and eliminates the influence of variation by the operator in determining the threshold value, so that the discharge state between the electrodes while actually processing the workpiece 3 by the electric discharge machine EDM. Can be accurately determined.
  • the controller 100 determines the discharge state between the electrodes using a predetermined threshold value set in advance before shipment while actually processing the workpiece 3 by the electric discharge machine EDM. .
  • the threshold value remains a predetermined value before shipment, the threshold value changes every moment depending on the influence of the capacitance caused by the processing area, the processing shape, and the progress of processing. Due to factors that are difficult to assume in advance, the set threshold value is likely to deviate from the appropriate value, and it is difficult to accurately determine whether the discharge state between the electrodes is normal discharge or abnormal discharge. Tend to be.
  • the determination unit 40 does not maintain the threshold for determining the discharge state between the electrodes at a constant value, but the determination unit 40 determines the distance between the electrodes based on the obtained probability density distribution.
  • a threshold value Vref that defines the boundary between normal discharge and abnormal discharge is determined.
  • the threshold for discriminating the discharge state between the poles can be dynamically adjusted in response to the change in the discharge state between the poles.
  • the threshold value can be dynamically adjusted so as to approach the appropriate value.
  • the integrated voltage of the integrating circuit 6 acquired by controlling the discharge state between the electrodes to a state including a large amount of abnormal discharge while actually processing the workpiece 3 by the electric discharge machine EDM.
  • a threshold value for determining the discharge state between the electrodes is determined using.
  • the output of the integration circuit 6 is stored in the storage unit 80 as needed, and the calculation unit 30 creates a histogram for a plurality of integration voltages (see FIG. 5A) stored in the storage unit 80 (FIG. 6B).
  • the electric discharge machine EDM when the workpiece 3 is actually machined by the electric discharge machine EDM, if the discharge state between the electrodes is in a state in which a large amount of abnormal discharge is included, the machining of the workpiece 3 is likely to fail, and the workpiece 3 may not be useful as a product.
  • the acquisition unit 70 acquires a parameter indicating the discharge state between the electrodes in a state where the processing conditions are controlled by the control unit 60 so that normal discharge occurs between the electrodes.
  • the calculation unit 30 obtains the acquired probability density distribution during normal discharge, and the determination unit 40 defines the boundary between normal discharge and abnormal discharge between the electrodes based on the obtained probability density distribution during normal discharge.
  • the threshold value to be determined is determined by statistical estimation. Accordingly, the threshold value that defines the boundary between the normal discharge and the abnormal discharge between the electrodes can be determined while maintaining the state in which the normal discharge has occurred between the electrodes, so that the processing failure of the workpiece 3 can be reduced, The processing yield when using the workpiece 3 as a product can be improved.
  • the candidate determination unit 41 determines the candidate threshold value VrefNew that is a threshold candidate that defines the boundary between normal discharge and abnormal discharge between the poles from the obtained probability density distribution.
  • the comparison unit 42 compares the candidate threshold value VrefNew with the threshold value VrefOld determined immediately before.
  • the threshold value determination unit 43 determines the candidate threshold value VrefNew as the threshold value Vref instead of the threshold value VrefOld determined immediately before.
  • the threshold value VrefOld determined immediately before is determined as the threshold value Vref.
  • the computing unit 30 obtains a histogram of the acquired parameters at normal discharge, fits the obtained histogram with a normal distribution, and obtains the fitted normal distribution as a probability density distribution.
  • the position of the skirt corresponding to the threshold value defining the boundary between the normal discharge and the abnormal discharge can be statistically obtained (FIG. 6A). (See (b)). That is, the candidate determination unit 41 of the determination unit 40 statistically calculates the position of the skirt in the obtained (normal discharge) probability density distribution, and determines the value corresponding to the obtained skirt position as the candidate threshold value VrefNew. . This makes it possible to accurately determine the threshold value that defines the boundary between normal discharge and abnormal discharge without obtaining the probability density distribution of abnormal discharge.
  • Embodiment 2 the control device 100i of the electric discharge machine EDM according to the second embodiment will be described. Below, it demonstrates focusing on a different part from Embodiment 1.
  • FIG. 1 the control device 100i of the electric discharge machine EDM according to the second embodiment.
  • the acquisition unit 70 first detects the discharge voltage between the electrodes, but in the second embodiment, the acquisition unit 70i first detects the discharge current between the electrodes.
  • the acquisition unit 70i of the control device 100i includes a current detection unit 74i and a current-voltage conversion unit 75i.
  • the current detector 74i detects a discharge current between the electrodes.
  • the current detector 74i detects a discharge current between the electrodes.
  • the current detection unit 74i receives a differential signal from both ends of the poles at two input terminals, and outputs a current corresponding to the input differential signal as a detected discharge current from one output terminal.
  • the current / voltage converter 75i converts the detected discharge current into a voltage.
  • the current-voltage conversion unit 75i receives, for example, the current output from the current detection unit 74i at one input terminal, converts the input signal into a voltage using a resistor or a transformer, and the difference corresponding to the converted voltage.
  • a dynamic signal (for example, a differential voltage) is output to the extraction unit 72 from the two output terminals as a converted voltage.
  • the acquisition unit 70i can acquire a parameter indicating a discharge state between electrodes.
  • Embodiment 3 the control device 100j of the electric discharge machine EDM according to the third embodiment will be described. Below, it demonstrates focusing on a different part from Embodiment 1.
  • FIG. 1 the control device 100j of the electric discharge machine EDM according to the third embodiment.
  • the threshold value is constantly adjusted by the determining unit 40.
  • the threshold value is adjusted by the determining unit 40 in accordance with an instruction from the user.
  • the control unit 60j of the control device 100j includes an operation unit 61j and a mode determination unit 62j.
  • the control device 100j has an A mode in which the threshold is not adjusted and a B mode in which the threshold is adjusted.
  • the mode determination unit 62j determines the operation mode of the control device 100j to be the A mode, and stops the operations of the calculation unit 30 and the determination unit 40.
  • the threshold value is not adjusted by the determination unit 40 in the initial state.
  • the mode determination unit 62j changes the operation mode of the control device 100j from the A mode to the B mode, and determines the B mode.
  • the operation of the calculation unit 30 and the determination unit 40 is started in response to the determination.
  • the threshold value can be adjusted by the determination unit 40 at a timing according to an instruction from the user.
  • the B mode for adjusting the threshold value may include a first mode in which processing stability is emphasized and a second mode in which processing speed is emphasized.
  • the operation unit 61j may further receive an instruction to select one of the first mode and the second mode in addition to the instruction to adjust the threshold value.
  • the mode determination unit 62j changes the operation mode of the control device 100j to the first mode in the B mode, and determines,
  • the operations of the calculation unit 30 and the determination unit 40 are controlled in accordance with the determination in the first mode.
  • the candidate determining unit 41 of the determining unit 40 corresponds to the peak of the probability density distribution of the integrated voltage (see FIG. 4B) as shown in FIG. 9A under the control of the mode determining unit 62j.
  • the position of the skirt on the higher value side in the probability density distribution of the integrated voltage is statistically obtained, and the integrated voltage value Xref1 corresponding to the obtained position of the skirt is expressed by, for example, Equation 2 below. Use to determine.
  • Xref1 X OK + m ⁇ Equation 2
  • represents a standard deviation
  • m is a constant (not limited to an integer) of 1 or more and 3 or less.
  • the candidate determining unit 41 sets the integrated voltage value Xref determined using, for example, Equation 2 as a candidate threshold value VrefNew.
  • the mode determination unit 62j changes the operation mode of the control device 100j to the first mode in the B mode and determines it. Then, the operation of the calculation unit 30 and the determination unit 40 is controlled according to the determination of the first mode.
  • the candidate determining unit 41 of the determining unit 40 corresponds to the peak of the probability density distribution of the integrated voltage (see FIG. 4B) as shown in FIG. 9A under the control of the mode determining unit 62j.
  • the candidate determining unit 41 estimates the integrated voltage XNG corresponding to the peak of the probability density distribution of abnormal discharge using the following Equation 3.
  • X NG Xref1 / n Equation 3
  • n is a constant (not limited to an integer) of 2 or more and 4 or less.
  • this inventor confirmed that this integrated voltage XNG respond
  • the candidate determination part 41 determines the integral voltage value Xref2 using the following Numerical formula 4, for example.
  • Equation 4 k is a constant larger than 0 and smaller than 1.
  • Xref2 X OK + m ⁇ + ( Xref1 / n-Xref1) ⁇ k ...
  • the candidate determining unit 41 sets the integrated voltage value Xref2 determined using, for example, Equation 5 as a candidate threshold value VrefNew.
  • the mode determination unit 62j switches the operation mode of the control device 100j according to an instruction from the user, and the determination unit 40 determines the first threshold value in the first mode based on the obtained probability density distribution. And the second threshold value is determined in the second mode.
  • the electric discharge between the electrodes is performed so that the electric discharge machine EDM performs the operation according to the user's intention through the threshold value according to the user's intention while actually processing the workpiece 3 by the electric discharge machine EDM.
  • the state can be determined.
  • This is a value close to the peak (X NG ). That is, in the first mode, the discharge state between the electrodes can be determined so that the electric discharge machine EDM operates stably, and in the second mode, the discharge state between the electrodes can be determined so that the electric discharge machine EDM operates at high speed. it can.
  • Embodiment 4 FIG. Next, a control device 100k of the electric discharge machine EDM according to the fourth embodiment will be described. Below, it demonstrates focusing on a different part from Embodiment 1. FIG.
  • the reference value Vc used for comparison with the machining voltage level is preset in the reference value setting device 15 (see FIG. 1).
  • the reference value Vc is compared with the machining voltage level.
  • the reference value Vc used for comparison is also adjusted.
  • control device 100k does not include the reference value setting device 15, but further includes a storage unit 17k, a calculation unit 16k, and a determination unit 90k.
  • the storage unit 17k stores the level of the discharge voltage output from the machining voltage level detection device 20.
  • the storage unit 17k for example, every time the discharge voltage level is output from the machining voltage level detection device 20 until the stored content is erased, the storage unit 17k adds to the previously stored discharge voltage level, A plurality of discharge voltage levels are stored.
  • the calculating unit 16k obtains a probability density distribution of the parameters acquired by the acquiring unit 70 (that is, normal discharge parameters). For example, the calculation unit 16k classifies each of the plurality of discharge voltage levels stored in the storage unit 17k into one of a plurality of value sections, and obtains a frequency for each of the plurality of value sections. Then, the calculation unit 16k creates a histogram for a plurality of value sections, and obtains a probability density distribution of normal discharge with respect to the level of the discharge voltage from the created histogram. For example, the calculation unit 16k erases the stored content of the storage unit 17k after obtaining the probability density distribution of the level of the discharge voltage.
  • the calculation unit 16k erases the stored content of the storage unit 17k after obtaining the probability density distribution of the level of the discharge voltage.
  • the determining unit 90k determines a reference value Vc that defines the boundary between normal discharge and abnormal discharge between the electrodes based on the obtained probability density distribution.
  • the determination unit 90k includes a candidate determination unit 91k, a comparison unit 92k, and a reference value determination unit 93k.
  • the candidate determination unit 91k determines a candidate reference value VcNew that is a candidate for the reference value Vc that defines the boundary between normal discharge and abnormal discharge between the electrodes from the obtained probability density distribution. That is, the candidate determination unit 91k statistically estimates a reference value that defines the boundary between normal discharge and abnormal discharge from the probability density distribution of normal discharge, and sets the estimated reference value as a candidate reference value VcNew. The candidate determining unit 91k supplies the determined candidate reference value VcNew to the comparing unit 92k.
  • the comparison unit 92k receives the candidate reference value VcNew from the candidate determination unit 91k.
  • the comparison unit 92k accesses the reference value determination unit 93k, and acquires the reference value VcOld determined immediately before from the reference value determination unit 93k.
  • the comparison unit 92k compares the candidate reference value VcNew with the reference value VcOld determined immediately before and supplies the comparison result to the reference value determination unit 93k.
  • the reference value determination unit 93k determines a reference value Vc that defines the boundary between normal discharge and abnormal discharge between the electrodes according to the comparison result by the comparison unit 92k. That is, the reference value determination unit 93k determines that the difference between the candidate reference value VcNew and the reference value VcOld determined immediately before is out of the allowable range based on the comparison result of the comparison unit 92k.
  • the candidate reference value VcNew is determined as the reference value Vref instead of the value VcOld.
  • the reference value determination unit 93k determines the reference value determined immediately before VcOld is determined as the reference value Vref.
  • the reference value determining unit 93k holds the determined reference value Vc.
  • the reference value Vc used for comparison with the machining voltage level can also be adjusted dynamically. Thereby, it is possible to more accurately determine the discharge state between the electrodes while actually processing the workpiece 3 by the electric discharge machine EDM.
  • control device for the electric discharge machine is useful for determining the discharge state between the electrodes.

Abstract

放電加工機により実際に被加工物を加工しながら極間の放電状態を正確に判別できる放電加工機の制御装置を得るために、本発明の放電加工機の制御装置では、電極と被加工物との極間に放電を発生させる放電加工機を制御する放電加工機の制御装置であって、前記放電加工機による加工条件を制御する制御部と、前記極間に正常放電が発生するように前記制御部により加工条件が制御された状態で、前記極間の放電状態を示すパラメータを取得する取得部と、前記取得されたパラメータの確率密度分布を求める演算部と、前記求められた確率密度分布に基づいて、前記極間の正常放電と異常放電との境界を規定する閾値を決定する決定部と、前記決定された閾値を用いて、前記極間の放電状態が正常放電及び異常放電のいずれであるのかを判別する判別部とを備え、前記制御部は、前記判別部の判別結果に基づいて、前記放電加工機による加工条件を制御する制御装置とした。

Description

放電加工機の制御装置
 本発明は、放電加工機の制御装置に関する。
 従来から、放電加工機の電極と被加工物との極間における放電状態を判断し、その判断結果を用いて放電加工機を制御する技術が存在する。
 特許文献1には、放電加工装置において、極間に放電を発生させて、放電の電圧変化の勾配、放電レベル、高周波分を検出し、それらの検出信号の2種以上を組み合わせて放電状態を判断することが記載されている。これにより、特許文献1によれば、正確な検出観測ができ、これによる各部の制御をより最適な制御にできるとされている。
 特許文献2には、放電加工装置において、極間に放電を発生させて、ハイパスフィルタが極間の電圧波形の高周波成分のみを取り出し、整流装置が高周波成分を整流し、積分装置が整流出力を積分し、比較装置が積分電圧と基準電圧とを比較し、加工条件制御装置が休止時間中に比較装置の出力をチェックし放電状態が悪いと判別された場合に休止時間を延長することが記載されている。これにより、特許文献2によれば、放電加工状態の検出を的確に行うことができ、極間での連続アークの発生を防止でき、電極あるいは被加工物の損傷を防ぐことができるとされている。
特開昭47-13795号公報 特開平5-293714号公報
 放電加工機の制御装置において、極間の放電状態を判別するための基準電圧(閾値)は、放電加工機の出荷前において、作業者が測定器で測定された値を読み取り制御装置に入力することで、予め決められた一定の値として設定しておくことが一般的である。
 しかし、放電加工機の出荷後において同様の方法で閾値の設定を行うと、作業者により読み取る値にばらつきが生じるので、設定される閾値が適正な値からずれる可能性がある。これにより、極間の放電状態が正常放電であるのか異常放電であるのかを正確に判別することが困難になる傾向にある。
 さらに、本発明者は、検討を行った結果、放電加工機により実際に被加工物を加工する場合、極間の放電状態に対応した極間の電圧変化の高周波成分が、放電加工機による加工形状や加工の進行状況など出荷前に想定しておくことが困難な要因によっても変化することを見出した。このため、閾値が出荷前に予め決められた一定の値のままであると、加工形状や加工の進行状況などによっては、閾値が適切な値からずれやすく、極間の放電状態が正常放電であるのか異常放電であるのかを正確に判別することが困難になると考えられる。
 また、極間の放電状態を判別するための閾値を放電加工機の出荷前に決める場合、極間の放電状態を異常放電が多く含まれる状態にして取得した積分電圧から、閾値を決めることが一般的である。
 しかし、放電加工機の出荷後において、放電加工機により実際に被加工物を加工する場合、極間の放電状態を異常放電が多く含まれる状態にしてしまうと、被加工物の加工が失敗しやすく、被加工物が製品として使い物にならなくなる可能性がある。
 本発明は、上記に鑑みてなされたものであって、放電加工機により実際に被加工物を加工しながら極間の放電状態を正確に判別できる放電加工機の制御装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の1つの側面にかかる放電加工機の制御装置は、電極と被加工物との極間に放電を発生させる放電加工機を制御する放電加工機の制御装置であって、前記放電加工機による加工条件を制御する制御部と、前記極間に正常放電が発生するように前記制御部により加工条件が制御された状態で、前記極間の放電状態を示すパラメータを取得する取得部と、前記取得されたパラメータの確率密度分布を求める演算部と、前記求められた確率密度分布に基づいて、前記極間の正常放電と異常放電との境界を規定する閾値を決定する決定部と、前記決定された閾値を用いて、前記極間の放電状態が正常放電及び異常放電のいずれであるのかを判別する判別部とを備え、前記制御部は、前記判別部の判別結果に基づいて、前記放電加工機による加工条件を制御することを特徴とする。
 本発明によれば、異常放電時の確率密度分布を用いることなく、正常放電と異常放電との境界を規定する閾値を決定することができるので、放電加工機により実際に被加工物を加工しながら極間の放電状態を正確に判別できる。
図1は、実施の形態1にかかる放電加工機の制御装置の構成を示す図である。 図2は、実施の形態1にかかる放電加工機の制御装置の動作を示す図である。 図3は、実施の形態1にかかる放電加工機の制御装置の動作を示すフローチャートである。 図4は、実施の形態1における演算部の動作を説明するための図である。 図5は、実施の形態1における演算部の動作を説明するための図である。 図6は、実施の形態1における決定部の動作を説明するための図である。 図7は、実施の形態2にかかる放電加工機の制御装置の構成を示す図である。 図8は、実施の形態3にかかる放電加工機の制御装置の構成を示す図である。 図9は、実施の形態3における決定部の動作を説明するための図である。 図10は、実施の形態4にかかる放電加工機の制御装置の構成を示す図である。
 以下に、本発明にかかる放電加工機の制御装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 実施の形態1にかかる放電加工機EDMの制御装置100について図1を用いて説明する。図1は、放電加工機EDMの制御装置100の構成を示す図である。
 制御装置100は、放電加工機EDMの動作を制御する。例えば、放電加工機EDMにおいて、加工電源1は、加工電極2と被加工物3との極間に加工用電圧を印加し、極間にパルス放電を発生させて、被加工物3の加工を行う。制御装置100は、以下の構成を有する。
 取得部70は、極間に正常放電が発生するように制御部60により加工条件が制御された状態で、極間の放電状態を示すパラメータ(すなわち、正常放電のパラメータ)を取得する。具体的には、取得部70は、電圧検出部71、抽出部72、及び積分部73を有する。
 電圧検出部71は、極間の放電電圧(図2(a)参照)を検出する。電圧検出部71は、例えば、極間の両端から差動信号を2つの入力端子で受けて、入力された差動信号に応じた差動信号(例えば、差動電圧)を、検出された放電電圧として2つの出力端子から出力する。電圧検出部71は、例えば、並走する2つのラインの間にインピーダンス素子が接続されたものであってもよいし、あるいは、単に並走する2つのラインを有するものであってもよい。電圧検出部71は、検出した放電電圧を抽出部72へ供給する。
 抽出部72は、検出された放電電圧の高周波成分を抽出する。抽出部72は、ハイパスフィルタ4及び整流装置5を有する。ハイパスフィルタ4は、極間に加工放電が発生しているときの放電電圧に重畳されている高周波成分(図2(b)参照)を抽出する。整流装置5は、ハイパスフィルタ4にて抽出された高周波成分を整流し(図2(c)参照)さらに平滑化して(図2(d)参照)を積分部73へ供給する。
 積分部73は、抽出された放電電圧の高周波成分を積分し、積分された電圧(積分電圧)を、極間の放電状態を示すパラメータとして出力する(図2(e)、図4(a)参照)。積分部73は、積分回路6及びリセット用トランジスタ7を有する。積分回路6は、演算増幅器OP、抵抗器R1、及びコンデンサC1を有する。リセット用トランジスタ7は、論理積回路13の出力レベルが、Lレベルである場合にオン動作状態になり、Hレベルである場合にオフ動作状態になる。
 記憶部80は、取得部70の積分部73から出力された積分電圧を記憶する。記憶部80は、例えば、その記憶内容が消去されるまで、積分回路6から積分電圧が出力されるたびに、それまで記憶していた積分電圧に追加していき、複数の積分電圧を記憶する。
 演算部30は、取得部70により取得されたパラメータ(すなわち正常放電のパラメータ)の確率密度分布を求める。例えば、演算部30は、記憶部80に記憶された複数の積分電圧(図4(a)参照)のそれぞれを、複数の値の区間のいずれかに分類し、複数の値の区間ごとの頻度を求める。そして、演算部30は、複数の値の区間についてのヒストグラムを作成し(図6(a)参照)、作成されたヒストグラムから積分電圧に対して例えば正規分布でフィッティングを行い、フィッティングされた正規分布を積分電圧の確率密度分布として求める(図4(b)参照)。すなわち、演算部30は、正常放電の確率密度分布を求める。演算部30は、例えば、積分電圧の確率密度分布を求めた後に、記憶部80の記憶内容を消去する。
 決定部40は、求められた確率密度分布に基づいて、極間の正常放電と異常放電との境界を規定する閾値Vrefを決定する。決定部40は、候補決定部41、比較部42、及び閾値決定部43を有する。
 候補決定部41は、求められた確率密度分布から、極間の正常放電と異常放電との境界を規定する閾値Vrefの候補となる候補閾値VrefNewを決定する。すなわち、候補決定部41は、正常放電の確率密度分布から、正常放電と異常放電との境界を規定する閾値を統計的に推定し、推定した閾値を候補閾値VrefNewとする。候補決定部41は、決定した候補閾値VrefNewを比較部42へ供給する。
 比較部42は、候補閾値VrefNewを候補決定部41から受ける。また、比較部42は、閾値決定部43にアクセスして、直前に決定された閾値VrefOldを閾値決定部43から取得する。比較部42は、候補閾値VrefNewと直前に決定された閾値VrefOldとを比較して、比較結果を閾値決定部43へ供給する。
 閾値決定部43は、比較部42による比較結果に応じて、極間の正常放電と異常放電との境界を規定する閾値Vrefを決定する。すなわち、閾値決定部43は、比較部42による比較結果から、候補閾値VrefNewと直前に決定された閾値VrefOldとの差が許容範囲から外れると判断される場合、直前に決定された閾値VrefOldに代えて候補閾値VrefNewを閾値Vrefとして決定する。閾値決定部43は、比較部42による比較結果から、候補閾値VrefNewと直前に決定された閾値VrefOldとの差が許容範囲内に収まると判断される場合、直前に決定された閾値VrefOldを閾値Vrefとして決定する。閾値決定部43は、決定した閾値Vrefを保持する。
 判別部50は、決定部40により決定された閾値Vrefを用いて、極間の放電状態が正常放電及び異常放電のいずれであるのかを判別する。判別部50は、比較器8及び放電パルス良否判定装置23を有する。
 比較器8は、積分電圧を積分回路6から受け、閾値Vrefを閾値決定部43から取得する。比較器8は、積分電圧と閾値Vrefとを比較して、比較結果を放電パルス良否判定装置23へ供給する。例えば、比較器8は、積分電圧が閾値Vrefを超える場合、(例えば異常放電を示す)Hレベルを出力し、積分電圧が閾値Vrefを超えない場合、(例えば正常放電を示す)Lレベルを出力する。放電パルス良否判定装置23は、比較器8による比較結果を用いて、極間の放電状態が正常放電及び異常放電のいずれであるのかを判別する。放電パルス良否判定装置23の動作の詳細は後述する。
 放電電圧検出装置9は、極間に加工放電が発生しているときの放電電圧を検出して論理積回路11に出力する。放電電流検出装置10は、極間に加工放電が発生しているときに流れる放電電流を検出し、それを電圧変換して論理積回路11に出力する。論理積回路11は、2入力が共にHレベルである期間内、出力レベルをLレベルにする。論理積回路11の出力は、時定数計測装置12と論理積回路13とに入力される。
 時定数計測装置12は、論理積回路11の出力レベルがHレベルからLレベルに立ち下がったタイミングを、ハイパスフィルタ4の時定数に相当する時間だけ遅延させて論理積回路13に出力するいわゆる遅延回路である。論理積回路13は、2入力が共にLレベルである期間内、出力レベルをLレベルにする。
 加工電圧レベル検出装置20は、極間に加工放電が発生しているときの放電電圧のレベルを検出して比較器21へ供給する。なお、加工電圧レベル検出装置20と放電電圧検出装置9とは、共通化されていてもよい。
 基準値設定装置15には、予め基準値Vcが設定されている。
 比較器21は、放電電圧のレベルを加工電圧レベル検出装置20から受け、基準値Vcを基準値設定装置15から取得する。比較器21は、放電電圧のレベルと基準値Vcとを比較して、比較結果を放電パルス制御装置22及び放電良否判定装置23へ供給する。例えば、比較器21は、積分電圧が基準値Vcを超える場合、(例えば異常放電を示す)Hレベルを出力し、積分電圧が基準値Vcを超えない場合、(例えば正常放電を示す)Lレベルを出力する。
 判別部50の放電パルス良否判定装置23は、放電加工時における本来の放電時間の終了時において、比較器8の比較結果と、比較器21の比較結果とに基づき、極間に生じている放電パルスが、正常放電パルス(正常パルス)であるか、異常放電パルス(不良パルス)であるかの良否判定を行う。
 具体的には、放電パルス良否判定装置23は、比較器21の出力レベルがLレベルで、かつ比較器8の出力レベルがLレベルであるときに正常パルスと判定する。また、放電パルス良否判定装置23は、比較器21の出力レベルがHレベルであるときに、或いは、比較器21の出力レベルはLレベルであるが、比較器8の出力レベルがHレベルであるときに、不良パルスと判定する。
 放電パルス良否判定装置23は、正常パルスと判定した場合はその正常判定パルスを第1のパルスカウンタ24のカウント入力端と第2のパルスカウンタ25のリセット入力端とに出力する。また、放電パルス良否判定装置23は、不良パルスと判定した場合はその不良判定パルスを第2のパルスカウンタ25のカウント入力端と第1のパルスカウンタ24のリセット入力端とに出力する。
 制御部60は、判別部50の判別結果に基づいて、放電加工機EDMによる加工条件を制御する。具体的には、制御部60は、第1のパルスカウンタ24、第2のパルスカウンタ25、休止パルス制御装置26、及び放電パルス制御装置22を有する。
 第1のパルスカウンタ24の出力端は、休止パルス制御装置26と自カウンタのリセット入力端とに接続されている。同様に、第2のパルスカウンタ25の出力端は、休止パルス制御装置26と自カウンタのリセットリセット入力端とに接続されている。
 第1のパルスカウンタ24は、放電パルス良否判定装置23から入力する正常判定パルスをカウントし、そのカウント値を逐一休止パルス制御装置26に出力する。カウント動作の途中で放電パルス良否判定装置23が不良判定パルスを出力すると、その時点でリセットされる。そして、正常判定パルスを連続してM個カウントできると、そのカウント値Mを休止パルス制御装置26に出力した後に、自カウンタをリセットするようになっている。
 第2のパルスカウンタ25は、放電パルス良否判定装置23から入力する不良判定パルスをカウントし、そのカウント値を逐一休止パルス制御装置26に出力する。カウント動作の途中で放電パルス良否判定装置23が正常判定パルスを出力すると、その時点でリセットされる。そして、不良判定パルスを連続してL個カウントできると、そのカウント値Lを休止パルス制御装置26に出力した後に、自カウンタをリセットするようになっている。
 休止パルス制御装置26は、第1のパルスカウンタ24のカウント値が値Mであるか否かと、第2のパルスカウンタ25のカウント値が値Lであるか否かとに基づき、最適な休止時間の設定制御を行い、設定した休止時間をパルス幅とする休止パルス28を生成して放電パルス制御装置22に出力する。
 放電パルス制御装置22は、放電加工時における本来の放電時間内において比較器21の出力レベルとその変化有無とを監視し、比較器21の出力レベルが本来の放電時間内、安定的にLレベルに維持している場合は、正常放電が行われていると判断する。この場合は、加工電源1に対して、極間に規定の放電電圧・パルス幅の放電パルスを所定の休止時間を挟んで繰り返し発生させる電圧印加を実行させる制御を行う。
 また、放電パルス制御装置22は、放電加工時における本来の放電時間内において比較器21の出力レベルとその変化有無とを監視し、比較器21の出力レベルが本来の放電時間内の途中でLレベルからHレベルに立ち上がった場合は、本来の放電時間内において正常放電後に異常放電が生じていると判断する。この場合は、加工電源1に対して、極間に生じさせている放電パルスのパルス幅を正常放電時間幅で遮断させ、その縮小したパルス幅の放電パルスを休止パルス制御装置26から入力する休止パルス28が示す休止時間を挟んで繰り返し発生させる電圧印加を実行させる制御を行う。
 なお、制御部60により判別部50の判別結果に基づいて制御される加工条件は、上記した休止時間に限定されず、例えば、ピーク電流値、パルス幅、休止時間、ジャンプダウン時間、ジャンプアップ距離、及び加工深さのうち少なくとも1つを含んでもよい。あるいは、それらのうちの少なくとも2つ以上が、制御部60により並行して制御されてもよい。
 次に、放電加工機EDMの制御装置100の動作について図3を用いて説明する。図3は、放電加工機EDMの制御装置100の動作を示すフローチャートである。
 ステップS1では、制御部60が、極間に正常放電が発生するように加工条件を制御した状態で、放電加工機EDMの極間に放電を発生させる。制御部60は、極間に正常放電が発生するような加工条件として、例えば、直前に正常放電を発生させていた加工条件を用いることができる。
 ステップS2では、制御部60が、極間に放電が発生したか否かを判断する。例えば、制御部60は、電圧検出部71を介して極間の放電電圧を検出し、その検出結果に応じて極間に放電が発生したか否かを判断する。制御部60は、極間に放電が発生した場合、処理をステップS3へ進め、極間に放電が発生していない場合、処理をステップS2へ進める。
 ステップS3では、取得部70が、制御部60による制御のもと、極間の放電状態を示すパラメータとしての積分電圧の取得を開始する。すなわち、取得部70は、次のような一連の動作を開始する。電圧検出部71は、極間の放電電圧(図2(a)参照)を検出する。抽出部72は、検出された放電電圧の高周波成分を抽出する(図2(b)~(d)参照)。積分部73は、抽出された放電電圧の高周波成分を積分し、積分された電圧(積分電圧)を、極間の放電状態を示すパラメータとして比較器8及び記憶部80へ出力する。
 ステップS4では、記憶部80が、制御部60による制御のもと、取得部70により取得された積分電圧を記憶する。記憶部80は、例えば、その記憶内容が消去されるまで、積分回路6から積分電圧が出力されるたびに、それまで記憶していた積分電圧に追加していき、複数の積分電圧を記憶する。
 ステップS5では、演算部30が、制御部60による制御のもと、取得部70により取得されたパラメータの確率密度分布を求める。例えば、演算部30は、記憶部80に記憶された複数の積分電圧のそれぞれを、複数の値の区間のいずれかに分類し、複数の値の区間ごとの頻度を求める。そして、演算部30は、複数の値の区間についてのヒストグラムを作成し(図6(a)参照)、作成されたヒストグラムから例えば正規分布のフィッティングを行い、フィッティングされた正規分布を、積分電圧の確率密度分布として求める(図4(b)参照)。
 ここで、取得部70により取得されたパラメータは、極間に正常放電が発生するように制御部60により加工条件が制御された状態で取得されたものであるため、異常放電をほとんど含まない正常放電についてのパラメータである(図4(a)参照)。そのため、演算部30により求められる確率密度分布も異常放電の確率密度分布を含まない正常放電の確率密度分布になっている(図4(b)参照)。
 なお、演算部30は、例えば、積分電圧の確率密度分布を求めた後に、記憶部80の記憶内容を消去してもよい。
 ステップS10では、決定部40が、求められた確率密度分布に基づいて、極間の正常放電と異常放電との境界を規定する閾値Vrefを決定する。具体的には、決定部40は、ステップS11~S18の処理を行う。
 ステップS11では、候補決定部41が、求められた確率密度分布から、極間の正常放電と異常放電との境界を規定する閾値Vrefの候補となる候補閾値VrefNewを決定する。すなわち、候補決定部41は、正常放電の確率密度分布から、正常放電と異常放電との境界を規定する閾値を統計的に推定し、推定した閾値を候補閾値VrefNewとする。
 ここで、演算部30により求められた確率密度分布は、異常放電の確率密度分布を含まない正常放電の確率密度分布になっている(図4(b)参照)。候補決定部41は、正常放電の確率密度分布における異常放電側(になると予想される側)の裾の位置を統計的に求め、その位置に対応した積分電圧値を、極間の正常放電と異常放電との境界を規定する閾値Vrefとして推定する。
 例えば、図6(a)に示すように、積分電圧の確率密度分布(図4(b)参照)のピークに対応した積分電圧XOKを基準として、積分電圧の確率密度分布における高い値側の裾の位置を統計的に求め、求められた裾の位置に対応する積分電圧値Xrefを、例えば下記の数式1を用いて決定する。
   Xref=XOK+mσ・・・数式1
数式1において、σは標準偏差を表し、mは1以上3以下の定数である。候補決定部41は、例えば数式1を用いて決定した積分電圧値Xrefを候補閾値VrefNewとする。
 そして、候補決定部41は、決定した候補閾値VrefNewを比較部42へ供給する。
 ステップS12では、比較部42が、候補閾値VrefNewを候補決定部41から受ける。また、比較部42は、閾値決定部43にアクセスして、直前に決定された閾値VrefOldを閾値決定部43から取得する。比較部42は、候補閾値VrefNewと直前に決定された閾値VrefOldとを比較して、比較結果を閾値決定部43へ供給する。閾値決定部43は、比較部42による比較結果から、候補閾値VrefNewが直前に決定された閾値VrefOldより大きいか否かを判断する。
 閾値決定部43は、候補閾値VrefNewが直前に決定された閾値VrefOldより大きい場合(ステップS12でYes)、処理をステップS13へ進め、候補閾値VrefNewが直前に決定された閾値VrefOld以下である場合(ステップS12でNo)、処理をステップS14へ進める。
 ステップS13では、閾値決定部43が、直前に決定された閾値VrefOldに1より大きい定数Aをかけた値VrefNew*Aと候補閾値VrefNewとを比較し、候補閾値VrefNewが値VrefNew*Aより大きいか否かを判断する。Aは、候補閾値VrefNewが直前に決定された閾値VrefOldに対して高い値側に大きくずれているか否かを判断するための定数であり、例えば、1.1である。
 閾値決定部43は、候補閾値VrefNewが値VrefNew*Aより大きい場合(ステップS13でYes)、候補閾値VrefNewが直前に決定された閾値VrefOldに対して高い値側に大きくずれているとして、処理をステップS17へ進める。閾値決定部43は、候補閾値VrefNewが値VrefNew*A以下である場合(ステップS13でNo)、候補閾値VrefNewが直前に決定された閾値VrefOldに対して高い値側に大きくずれていないとして、処理をステップS16へ進める。
 ステップS14では、閾値決定部43が、比較部42による比較結果から、候補閾値VrefNewが直前に決定された閾値VrefOldより小さいか否かを判断する。閾値決定部43は、候補閾値VrefNewが直前に決定された閾値VrefOldより小さい場合(ステップS14でYes)、処理をステップS15へ進める。閾値決定部43は、候補閾値VrefNewが直前に決定された閾値VrefOld以上である場合(ステップS14でNo)、候補閾値VrefNewが直前に決定された閾値VrefOldに等しいものとして、処理をステップS16へ進める。
 ステップS15では、閾値決定部43が、直前に決定された閾値VrefOldに1より小さい正の定数Bをかけた値VrefNew*Bと候補閾値VrefNewとを比較し、候補閾値VrefNewが値VrefNew*Bより小さいか否かを判断する。Bは、候補閾値VrefNewが直前に決定された閾値VrefOldに対して低い値側に大きくずれているか否かを判断するための定数であり、例えば、0.9である。
 閾値決定部43は、候補閾値VrefNewが値VrefNew*Bより小さい場合(ステップS15でYes)、候補閾値VrefNewが直前に決定された閾値VrefOldに対して低い値側に大きくずれているとして、処理をステップS17へ進める。閾値決定部43は、候補閾値VrefNewが値VrefNew*B以上である場合(ステップS15でNo)、候補閾値VrefNewが直前に決定された閾値VrefOldに対して低い値側に大きくずれていないとして、処理をステップS16へ進める。
 ステップS16では、閾値決定部43が、候補閾値VrefNewと直前に決定された閾値VrefOldとの差が許容範囲内にあるものとして、直前に決定された閾値VrefOldを閾値Vrefとして決定する。閾値決定部43は、決定した閾値Vrefを保持する。
 ステップS17では、閾値決定部43が、候補閾値VrefNewと直前に決定された閾値VrefOldとの差が許容範囲から外れるものとして、直前に決定された閾値VrefOldに代えて、候補閾値VrefNewを閾値Vrefとして決定する。閾値決定部43は、決定した閾値Vrefを保持する。
 ここで、仮に、放電加工機EDMにより実際に被加工物3を加工しながら、積分回路6の出力を作業者が測定器で測定された値を読み取り制御装置100に入力することで、比較器8の用いる閾値Vrefを制御装置100に設定する場合について考える。この場合、測定器の準備や調整に時間がかかり、かつ作業者による閾値のばらつきが発生する傾向にある。これにより、設定される閾値が適正な値からずれる可能性があり、極間の放電状態が正常放電であるのか異常放電であるのかを正確に判別することが困難になる傾向にある。
 これに対して、実施の形態1では、取得部70が、極間の放電状態を示すパラメータを取得し、演算部30が、取得されたパラメータの確率密度分布を求め、決定部40が、求められた確率密度分布に基づいて、極間の正常放電と異常放電との境界を規定する閾値Vrefを決定する。これにより、測定器の準備や調整が不要になるとともに、閾値の決定における作業者によるばらつきの影響を排除できるので、放電加工機EDMにより実際に被加工物3を加工しながら極間の放電状態を正確に判別できる。
 あるいは、仮に、放電加工機EDMにより実際に被加工物3を加工しながら、制御装置100において、出荷前に予め設定された一定の閾値を用いて極間の放電状態の判別を行う場合について考える。この場合、閾値が出荷前に予め決められた一定の値のままであるので、加工面積に起因する静電容量による影響や加工形状や加工の進行状況により刻一刻と閾値が変化することなど出荷前に想定しておくことが困難な要因により、設定されている閾値が適正な値からずれやすく、極間の放電状態が正常放電であるのか異常放電であるのかを正確に判別することが困難になる傾向にある。
 これに対して、実施の形態1では、極間の放電状態を判別するための閾値を一定の値に維持するのではなく、決定部40が、求められた確率密度分布に基づいて、極間の正常放電と異常放電との境界を規定する閾値Vrefを決定する。これにより、極間の放電状態の変化に対応して、極間の放電状態を判別するための閾値を動的に調節できるので、出荷前に想定しておくことが困難な要因により閾値としての適正な値が変化した場合に、閾値が適正な値に近づくように動的に調整できる。これにより、出荷前に想定しておくことが困難な要因により閾値としての適正な値が変化した場合でも、放電加工機EDMにより実際に被加工物3を加工しながら極間の放電状態を正確に判別できる。
 あるいは、仮に、放電加工機EDMにより実際に被加工物3を加工しながら、制御部60が極間の放電状態を異常放電が多く含まれる状態に制御して取得された積分回路6の積分電圧を用いて、極間の放電状態を判別するための閾値を決定する場合について考える。この場合、積分回路6の出力を記憶部80が随時記憶し、演算部30が記憶部80に記憶された複数の積分電圧(図5(a)参照)についてヒストグラムを作成し(図6(b)参照)、作成されたヒストグラムから複数の分布の山を認識して、各分布の山ごとに例えば正規分布でフィッティングを行い、フィッティングされた各正規分布を正常放電(OK)、異常放電(NG)、アーク放電(AR)の確率密度分布としてそれぞれ求める(図5(b)参照)ことになる。このとき、図6(b)に示されるように、正常放電(OK)の分布と異常放電(NG)の分布との境界が認識できるので、正常放電と異常放電との境界を規定する閾値Xrefを求めることができる。
 しかし、放電加工機EDMにより実際に被加工物3を加工する場合、極間の放電状態を異常放電が多く含まれる状態にしてしまうと、被加工物3の加工が失敗しやすく、被加工物3が製品として使い物にならなくなる可能性がある。
 それに対して、実施の形態1では、取得部70が、極間に正常放電が発生するように制御部60により加工条件が制御された状態で、極間の放電状態を示すパラメータを取得し、演算部30が、取得された正常放電時の確率密度分布を求め、決定部40が、求められた正常放電時の確率密度分布に基づいて、極間の正常放電と異常放電との境界を規定する閾値を統計的に推定して決定する。これにより、極間に正常放電が発生した状態を維持しながら、極間の正常放電と異常放電との境界を規定する閾値を決定できるので、被加工物3の加工の失敗を低減でき、被加工物3を製品として使う際の加工歩留りを向上できる。
 また、実施の形態1では、決定部40において、候補決定部41が、求められた確率密度分布から、極間の正常放電と異常放電との境界を規定する閾値の候補となる候補閾値VrefNewを決定し、比較部42が、候補閾値VrefNewと直前に決定された閾値VrefOldとを比較する。そして、閾値決定部43は、候補閾値VrefNewと直前に決定された閾値VrefOldとの差が許容範囲から外れる場合に、直前に決定された閾値VrefOldに代えて候補閾値VrefNewを閾値Vrefとして決定し、候補閾値VrefNewと直前に決定された閾値VrefOldとの差が許容範囲内に収まっている場合に、直前に決定された閾値VrefOldを閾値Vrefとして決定する。これにより、決定部40による閾値の調整動作について不感帯を設けることができ、決定部40による閾値の調整動作を安定化させることができる。
 また、実施の形態1では、演算部30が、取得された正常放電時のパラメータのヒストグラムを求め、求められたヒストグラムを正規分布でフィッティングし、フィッティングされた正規分布を確率密度分布として求める。このとき、求められた確率密度分布は、正規分布であるため、正常放電と異常放電との境界を規定する閾値に対応した裾の位置を統計的に求めることができる(図6(a)、(b)参照)。すなわち、決定部40の候補決定部41は、求められた(正常放電の)確率密度分布における裾の位置を統計的に求め、求められた裾の位置に対応する値を候補閾値VrefNewとして決定する。これにより、異常放電の確率密度分布を求めることなく、正常放電と異常放電との境界を規定する閾値を正確に決定することができる。
実施の形態2.
 次に、実施の形態2にかかる放電加工機EDMの制御装置100iについて説明する。以下では、実施の形態1と異なる部分を中心に説明する。
 第1の実施形態では、取得部70がまず極間の放電電圧を検出しているが、第2の実施形態では、取得部70iがまず極間の放電電流を検出する。
 具体的には、図7に示すように、制御装置100iの取得部70iは、電流検出部74i及び電流電圧変換部75iを有する。電流検出部74iは、極間の放電電流を検出する。電流検出部74iは、極間の放電電流を検出する。電流検出部74iは、例えば、極間の両端から差動信号を2入力端子で受けて、入力された差動信号に応じた電流を、検出された放電電流として1つの出力端子から出力する。
 電流電圧変換部75iは、検出された放電電流を電圧に変換する。電流電圧変換部75iは、例えば、電流検出部74iから出力された電流を1つの入力端子で受けて、入力された信号を抵抗やトランスなどにより電圧に変換し、変換された電圧に対応した差動信号(例えば、差動電圧)を、変換された電圧として2つの出力端子から抽出部72へ出力する。
 このように、第2の実施形態においても、取得部70iが、極間の放電状態を示すパラメータを取得することができる。
実施の形態3.
 次に、実施の形態3にかかる放電加工機EDMの制御装置100jについて説明する。以下では、実施の形態1と異なる部分を中心に説明する。
 実施の形態1では、決定部40による閾値の調整が定常的に行われているが、第3の実施形態では、決定部40による閾値の調整は、ユーザからの指示に応じて行われる。
 具体的には、図8に示すように、制御装置100jの制御部60jは、操作部61j及びモード決定部62jを有する。制御装置100jは、動作モードとして、例えば、閾値の調整を行わないAモードと、閾値の調整を行うBモードとを有している。モード決定部62jは、初期状態において、制御装置100jの動作モードをAモードに決定しており、演算部30及び決定部40の動作を停止させている。これにより、初期状態において、決定部40による閾値の調整が行われない。そして、モード決定部62jは、閾値の調整を行うことの指示が操作部61jを介してユーザから受け付けられたら、制御装置100jの動作モードをAモードからBモードへ変更して決定し、Bモードに決定されたことに応じて演算部30及び決定部40の動作を開始させる。これにより、ユーザからの指示に応じたタイミングで、決定部40による閾値の調整を行うことができる。
 なお、閾値の調整を行うBモードは、加工の安定性を重視した第1のモードと、加工の速度を重視した第2のモードとを含んでいてもよい。この場合、操作部61jは、閾値の調整を行うことの指示に加えて、第1のモード及び第2のモードのいずれかを選択する指示をさらに受け付けてもよい。
 例えば、モード決定部62jは、第1のモードを選択する指示が操作部61jを介してユーザから受け付けられたら、制御装置100jの動作モードをBモードにおける第1のモードに変更して決定し、第1のモードに決定されたことに応じて演算部30及び決定部40の動作を制御する。例えば、決定部40の候補決定部41は、モード決定部62jによる制御のもと、図9(a)に示すように、積分電圧の確率密度分布(図4(b)参照)のピークに対応した積分電圧XOKを基準として、積分電圧の確率密度分布における高い値側の裾の位置を統計的に求め、求められた裾の位置に対応する積分電圧値Xref1を、例えば下記の数式2を用いて決定する。
   Xref1=XOK+mσ・・・数式2
数式2において、σは標準偏差を表し、mは1以上3以下の(整数に限定されない)定数である。候補決定部41は、例えば数式2を用いて決定した積分電圧値Xrefを候補閾値VrefNewとする。
 あるいは、例えば、モード決定部62jは、第2のモードを選択する指示が操作部61jを介してユーザから受け付けられたら、制御装置100jの動作モードをBモードにおける第1のモードに変更して決定し、第1のモードに決定されたことに応じて演算部30及び決定部40の動作を制御する。例えば、決定部40の候補決定部41は、モード決定部62jによる制御のもと、図9(a)に示すように、積分電圧の確率密度分布(図4(b)参照)のピークに対応した積分電圧XOKを基準として、積分電圧の確率密度分布における高い値側の裾の位置を統計的に求め、求められた裾の位置に対応する積分電圧値Xref1を、例えば上記の数式2を用いて決定する。そして、候補決定部41は、異常放電の確率密度分布のピークに対応した積分電圧XNGを下記の数式3を用いて推定する。
   XNG=Xref1/n・・・数式3
数式3において、nは2以上4以下の(整数に限定されない)定数である。なお、本発明者は、この積分電圧XNGが、実際の異常放電のピークに対応していることを確認した(図9(b)参照)。そして、候補決定部41は、例えば下記の数式4を用いて積分電圧値Xref2を決定する。
   Xref2=Xref1+(XNG-Xref1)×k・・・数式4
数式4において、kは0より大きく1より小さい定数である。数式2及び数式3を数式4に代入すると、次の数式5が得られる。
   Xref2=XOK+mσ+(Xref1/n-Xref1)×k
                     ・・・数式5
候補決定部41は、例えば数式5を用いて決定した積分電圧値Xref2を候補閾値VrefNewとする。
 このように、モード決定部62jは、ユーザからの指示に応じて制御装置100jの動作モードを切り替え、決定部40は、求められた確率密度分布に基づいて、第1のモードにおいて第1の閾値を決定し、第2のモードにおいて第2の閾値を決定する。これにより、放電加工機EDMにより実際に被加工物3を加工しながら、ユーザの意図に応じた閾値を介して放電加工機EDMがユーザの意図に応じた動作を行うように、極間の放電状態を判別できる。
 例えば、加工の速度を重視した第2のモードにおいて決定される候補閾値VrefNew(=Xref2)は、加工の安定性を重視した第1のモードにおいて決定される候補閾値VrefNew(=Xref1)より異常放電のピーク(XNG)に近い値である。すなわち、第1のモードでは放電加工機EDMが安定動作するように、極間の放電状態を判別でき、第2のモードでは放電加工機EDMが高速動作するように、極間の放電状態を判別できる。
実施の形態4.
 次に、実施の形態4にかかる放電加工機EDMの制御装置100kについて説明する。以下では、実施の形態1と異なる部分を中心に説明する。
 実施の形態1では、加工電圧レベルとの比較に使用される基準値Vcが、基準値設定装置15(図1参照)に予め設定されているが、実施の形態4では、加工電圧レベルとの比較に使用される基準値Vcの調整も行う。
 具体的には、制御装置100kは、基準値設定装置15を備えず、記憶部17k、演算部16k、及び決定部90kをさらに備える。
 記憶部17kは、加工電圧レベル検出装置20から出力された放電電圧のレベルを記憶する。記憶部17kは、例えば、その記憶内容が消去されるまで、加工電圧レベル検出装置20から放電電圧のレベルが出力されるたびに、それまで記憶していた放電電圧のレベルに追加していき、複数の放電電圧のレベルを記憶する。
 演算部16kは、取得部70により取得されたパラメータ(すなわち正常放電のパラメータ)の確率密度分布を求める。例えば、演算部16kは、記憶部17kに記憶された複数の放電電圧のレベルのそれぞれを、複数の値の区間のいずれかに分類し、複数の値の区間ごとの頻度を求める。そして、演算部16kは、複数の値の区間についてのヒストグラムを作成し、作成されたヒストグラムから放電電圧のレベルに対する正常放電の確率密度分布を求める。演算部16kは、例えば、放電電圧のレベルの確率密度分布を求めた後に、記憶部17kの記憶内容を消去する。
 決定部90kは、求められた確率密度分布に基づいて、極間の正常放電と異常放電との境界を規定する基準値Vcを決定する。決定部90kは、候補決定部91k、比較部92k、及び基準値決定部93kを有する。
 候補決定部91kは、求められた確率密度分布から、極間の正常放電と異常放電との境界を規定する基準値Vcの候補となる候補基準値VcNewを決定する。すなわち、候補決定部91kは、正常放電の確率密度分布から、正常放電と異常放電との境界を規定する基準値を統計的に推定し、推定した基準値を候補基準値VcNewとする。候補決定部91kは、決定した候補基準値VcNewを比較部92kへ供給する。
 比較部92kは、候補基準値VcNewを候補決定部91kから受ける。また、比較部92kは、基準値決定部93kにアクセスして、直前に決定された基準値VcOldを基準値決定部93kから取得する。比較部92kは、候補基準値VcNewと直前に決定された基準値VcOldとを比較して、比較結果を基準値決定部93kへ供給する。
 基準値決定部93kは、比較部92kによる比較結果に応じて、極間の正常放電と異常放電との境界を規定する基準値Vcを決定する。すなわち、基準値決定部93kは、比較部92kによる比較結果から、候補基準値VcNewと直前に決定された基準値VcOldとの差が許容範囲から外れると判断される場合、直前に決定された基準値VcOldに代えて候補基準値VcNewを基準値Vrefとして決定する。基準値決定部93kは、比較部92kによる比較結果から、候補基準値VcNewと直前に決定された基準値VcOldとの差が許容範囲内に収まると判断される場合、直前に決定された基準値VcOldを基準値Vrefとして決定する。基準値決定部93kは、決定した基準値Vcを保持する。
 このように、実施の形態4では、極間に正常放電が発生するように制御部60により加工条件が制御された状態で、放電電圧の高周波成分の積分出力との比較に使用される閾値Vrefの調整に加えて、加工電圧レベルとの比較に使用される基準値Vcの調整も動的に行うことができる。これにより、放電加工機EDMにより実際に被加工物3を加工しながら極間の放電状態をさらに正確に判別できる。
 以上のように、本発明にかかる放電加工機の制御装置は、極間の放電状態の判別に有用である。
 1 加工電源
 2 加工電極
 3 被加工物
 4 ハイパスフィルタ
 5 整流装置
 6 積分回路
 7 リセット用トランジスタ
 8 比較器
 9 放電電圧検出装置
 10 放電電流検出装置
 11 論理積回路
 12 時定数計測装置
 13 論理積回路
 15 基準値設定装置
 16k 演算部
 17k 記憶部
 20 加工電圧レベル検出装置
 21 比較器
 22 放電パルス制御装置
 23 放電パルス良否判定装置
 24 第1のパルスカウンタ
 25 第2のパルスカウンタ
 26 休止パルス制御装置
 30 演算部
 40 決定部
 41 候補決定部
 42 比較部
 43 閾値決定部
 50 判別部
 60、60j 制御部
 61j 操作部
 62j モード決定部
 70 取得部
 71 電圧検出部
 72 抽出部
 73 積分部
 74i 電流検出部
 75i 電流電圧変換部
 80 記憶部
 90k 決定部
 91k 候補決定部
 92k 比較部
 93k 基準値決定部
 100、100i、100j、100k 制御装置

Claims (7)

  1.  電極と被加工物との極間に放電を発生させる放電加工機を制御する放電加工機の制御装置であって、
     前記放電加工機による加工条件を制御する制御部と、
     前記極間に正常放電が発生するように前記制御部により加工条件が制御された状態で、前記極間の放電状態を示すパラメータを取得する取得部と、
     前記取得されたパラメータの確率密度分布を求める演算部と、
     前記求められた確率密度分布に基づいて、前記極間の正常放電と異常放電との境界を規定する閾値を決定する決定部と、
     前記決定された閾値を用いて、前記極間の放電状態が正常放電及び異常放電のいずれであるのかを判別する判別部と、
     を備え、
     前記制御部は、前記判別部の判別結果に基づいて、前記放電加工機による加工条件を制御する
     ことを特徴とする放電加工機の制御装置。
  2.  前記決定部は、
     前記求められた確率密度分布から、前記極間の正常放電と異常放電との境界を規定する閾値の候補となる候補閾値を決定する候補決定部と、
     前記候補閾値と直前に決定された閾値との差が許容範囲から外れる場合に、前記直前に決定された閾値に代えて前記候補閾値を前記閾値として決定し、前記候補閾値と直前に決定された閾値との差が許容範囲内に収まっている場合に、前記直前に決定された閾値を前記閾値として決定する閾値決定部と、
     を有する
     ことを特徴とする請求項1に記載の放電加工機の制御装置。
  3.  前記演算部は、前記取得されたパラメータのヒストグラムを求め、求められたヒストグラムを正規分布でフィッティングし、フィッティングされた正規分布を前記確率密度分布として求め、
     前記候補決定部は、前記求められた確率密度分布における裾の位置を統計的に求め、求められた前記裾の位置に対応する値を前記候補閾値として決定する
     ことを特徴とする請求項2に記載の放電加工機の制御装置。
  4.  前記取得部は、
     前記極間の放電電圧を検出する電圧検出部と、
     前記検出された放電電圧の高周波成分を抽出する抽出部と、
     前記抽出された放電電圧の高周波成分を積分し、積分された電圧を前記パラメータとして出力する積分部と、
     を有する
     ことを特徴とする請求項1から3のいずれか1項に記載の放電加工機の制御装置。
  5.  前記取得部は、
     前記極間の放電電流を検出する電流検出部と、
     前記検出された放電電流を電圧に変換する電流電圧変換部と、
     前記変換された電圧の高周波成分を抽出する抽出部と、
     前記抽出された電圧の高周波成分を積分し、積分された電圧を前記パラメータとして出力する積分部と、
     を有する
     ことを特徴とする請求項1から3のいずれか1項に記載の放電加工機の制御装置。
  6.  前記決定部は、前記求められた確率密度分布に基づいて、第1のモードにおいて第1の閾値を決定し、第2のモードにおいて第2の閾値を決定する
     ことを特徴とする請求項1から5のいずれか1項に記載の放電加工機の制御装置。
  7.  前記第1のモードは、加工の安定性を重視したモードであり、
     前記第2のモードは、加工の速度を重視したモードであり、
     前記第2の閾値は、前記第1の閾値より異常放電のピークに近い値である
     ことを特徴とする請求項6に記載の放電加工機の制御装置。
PCT/JP2011/077971 2011-12-02 2011-12-02 放電加工機の制御装置 WO2013080384A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112011105907.8T DE112011105907B4 (de) 2011-12-02 2011-12-02 Steuervorrichtung zum steuern einer elektrischen entladungsmaschine
JP2012519843A JP5084974B1 (ja) 2011-12-02 2011-12-02 放電加工機の制御装置
US13/638,410 US8519295B2 (en) 2011-12-02 2011-12-02 Controller of electrical discharge machine
CN201180018372.1A CN103249513B (zh) 2011-12-02 2011-12-02 放电加工机的控制装置
PCT/JP2011/077971 WO2013080384A1 (ja) 2011-12-02 2011-12-02 放電加工機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077971 WO2013080384A1 (ja) 2011-12-02 2011-12-02 放電加工機の制御装置

Publications (1)

Publication Number Publication Date
WO2013080384A1 true WO2013080384A1 (ja) 2013-06-06

Family

ID=47435586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077971 WO2013080384A1 (ja) 2011-12-02 2011-12-02 放電加工機の制御装置

Country Status (5)

Country Link
US (1) US8519295B2 (ja)
JP (1) JP5084974B1 (ja)
CN (1) CN103249513B (ja)
DE (1) DE112011105907B4 (ja)
WO (1) WO2013080384A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835692B2 (en) 2013-10-10 2020-11-17 Aptar Radolfzell Gmbh Childproof discharging device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6190701B2 (ja) * 2013-11-25 2017-08-30 株式会社メガチップス データ受信装置およびフェイルセーフ回路
JP6227599B2 (ja) * 2015-08-25 2017-11-08 ファナック株式会社 極間距離を一定にするワイヤ放電加工機
JP6348131B2 (ja) * 2016-01-07 2018-06-27 ファナック株式会社 給電線の劣化検出機能を有するワイヤ放電加工機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205233A (ja) * 1983-05-04 1984-11-20 Mitsubishi Electric Corp 放電加工装置
JPH0265926A (ja) * 1988-08-31 1990-03-06 Mitsubishi Electric Corp 放電加工機適応制御装置
JPH04183525A (ja) * 1990-11-15 1992-06-30 Mitsubishi Electric Corp 放電加工機の制御装置
JPH0911043A (ja) * 1995-06-29 1997-01-14 Nec Corp 放電加工方法及び放電加工装置
JP2002154014A (ja) * 2000-11-15 2002-05-28 Mitsubishi Electric Corp 放電加工装置
WO2008047452A1 (fr) * 2006-10-20 2008-04-24 Mitsubishi Electric Corporation Unité de commande d'alimentation électrique d'une machine à décharge électrique
WO2008047451A1 (fr) * 2006-10-20 2008-04-24 Mitsubishi Electric Corporation Unité de commande d'alimentation électrique d'une machine à décharge électrique

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD211986A1 (de) * 1982-12-09 1984-08-01 Steremat Veb Schaltungsanordnung zur impulsauswertung bei der elektroerosion
DE3416249A1 (de) * 1983-05-02 1984-11-08 Mitsubishi Denki K.K., Tokio/Tokyo Einrichtung zum bearbeiten mittels einer entladung
DD216400A1 (de) * 1983-06-30 1984-12-12 Steremat Veb Schaltungsanordnung zur optimierung der vorschubreglerparameter bei der funkenerosion
JPH0761571B2 (ja) * 1989-06-30 1995-07-05 株式会社東芝 放電分類装置
JPH0761570B2 (ja) * 1989-06-30 1995-07-05 株式会社東芝 放電状態解析装置
JP2509701B2 (ja) * 1989-06-30 1996-06-26 株式会社東芝 放電状態表示装置
JP2858515B2 (ja) * 1992-01-07 1999-02-17 三菱電機株式会社 放電加工方法及びその装置
US5496984A (en) 1992-01-07 1996-03-05 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machine and machining method therefor
GB9319973D0 (en) * 1993-09-28 1993-11-17 Bp Chem Int Ltd Adhesive blends
JP3739425B2 (ja) * 1994-07-15 2006-01-25 三菱電機株式会社 放電加工の加工条件生成方法
JP2003117731A (ja) * 2001-10-03 2003-04-23 Mitsubishi Electric Corp 形彫放電加工機のジャンプ制御装置
JP4588702B2 (ja) * 2004-03-01 2010-12-01 三菱電機株式会社 放電加工装置
US8323473B2 (en) * 2004-11-23 2012-12-04 General Electric Company Methods and systems for monitoring and controlling electroerosion
US8415581B2 (en) * 2008-02-06 2013-04-09 Mitsubishi Electric Corporation Power source controller of electrical discharge machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205233A (ja) * 1983-05-04 1984-11-20 Mitsubishi Electric Corp 放電加工装置
JPH0265926A (ja) * 1988-08-31 1990-03-06 Mitsubishi Electric Corp 放電加工機適応制御装置
JPH04183525A (ja) * 1990-11-15 1992-06-30 Mitsubishi Electric Corp 放電加工機の制御装置
JPH0911043A (ja) * 1995-06-29 1997-01-14 Nec Corp 放電加工方法及び放電加工装置
JP2002154014A (ja) * 2000-11-15 2002-05-28 Mitsubishi Electric Corp 放電加工装置
WO2008047452A1 (fr) * 2006-10-20 2008-04-24 Mitsubishi Electric Corporation Unité de commande d'alimentation électrique d'une machine à décharge électrique
WO2008047451A1 (fr) * 2006-10-20 2008-04-24 Mitsubishi Electric Corporation Unité de commande d'alimentation électrique d'une machine à décharge électrique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835692B2 (en) 2013-10-10 2020-11-17 Aptar Radolfzell Gmbh Childproof discharging device

Also Published As

Publication number Publication date
US8519295B2 (en) 2013-08-27
JP5084974B1 (ja) 2012-11-28
CN103249513A (zh) 2013-08-14
DE112011105907B4 (de) 2020-03-12
CN103249513B (zh) 2015-01-28
US20130140276A1 (en) 2013-06-06
DE112011105907T5 (de) 2014-09-18
JPWO2013080384A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
EP2422911B1 (en) Wire electric discharge machine capable of detecting machining state
JP4833197B2 (ja) 放電加工機の電源制御装置
JP4833198B2 (ja) 放電加工機の電源制御装置
EP2269755B1 (en) Wire cut electric discharge machine with machining state discrimination function
US8735762B2 (en) Wire electric discharge machine capable of detecting machining state and determining average voltage in machining gap
JP5084974B1 (ja) 放電加工機の制御装置
JP5739563B2 (ja) 平均放電遅れ時間算出手段を備えたワイヤ放電加工機
US9272349B2 (en) Numerical control device, wire electric discharge machining apparatus using the same, and wire electric discharge machining method using the same
JP2008114362A (ja) 放電加工のための方法及び装置
US20100320173A1 (en) Power source controller of electrical discharge machine
EP1752246A1 (en) Electric discharge machining apparatus
US9533365B2 (en) Electric discharge machining apparatus
US20130062318A1 (en) Wire discharge machine
JP5357298B2 (ja) 加工状態を検出するワイヤ放電加工機
US8409423B2 (en) Method for machining workpieces
US9718140B2 (en) Electric discharge machining system
JPH10138048A (ja) 放電加工方法
WO2014016923A1 (ja) 放電加工装置
JP2021026810A (ja) プラズマ処理装置
JPH0675807B2 (ja) 放電加工装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012519843

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13638410

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876550

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120111059078

Country of ref document: DE

Ref document number: 112011105907

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876550

Country of ref document: EP

Kind code of ref document: A1