WO2013078924A1 - 液晶显示面板及其制备方法 - Google Patents

液晶显示面板及其制备方法 Download PDF

Info

Publication number
WO2013078924A1
WO2013078924A1 PCT/CN2012/083327 CN2012083327W WO2013078924A1 WO 2013078924 A1 WO2013078924 A1 WO 2013078924A1 CN 2012083327 W CN2012083327 W CN 2012083327W WO 2013078924 A1 WO2013078924 A1 WO 2013078924A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polymerizable monomer
display panel
photoinitiator
crystal display
Prior art date
Application number
PCT/CN2012/083327
Other languages
English (en)
French (fr)
Inventor
郭仁炜
陈东
董学
Original Assignee
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司 filed Critical 北京京东方光电科技有限公司
Priority to US13/704,778 priority Critical patent/US9529232B2/en
Publication of WO2013078924A1 publication Critical patent/WO2013078924A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133715Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films by first depositing a monomer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers

Definitions

  • Embodiments of the present invention relate to a liquid crystal display panel and a method of fabricating the same. Background technique
  • liquid crystal display technology has also developed rapidly. Wide viewing angle, low power consumption and fast response speed are important parameters of liquid crystal display devices. Factors that determine the response speed of the liquid crystal display In addition to the properties of the liquid crystal molecules themselves, the orientation on the array substrate is also an important external factor. By selecting an appropriate alignment film material and orientation technique to optimize the alignment and pretilt angle of the liquid crystal molecules on the array substrate, the response time of the liquid crystal display panel can be improved, and the viewing angle of the liquid crystal display device can be expanded.
  • the liquid crystal alignment mode is also different depending on the display mode of the liquid crystal display panel.
  • Common liquid crystal orientations can be divided into two types.
  • the first type is a parallel alignment of liquid crystals.
  • the alignment film material polyimide (PI) is applied to the surface of the array substrate to form an alignment film, and rubbing is formed on the alignment film to form fine groove marks for inducing the long axis of the liquid crystal molecules. Arranged in parallel to the array substrate.
  • the second method is a liquid crystal vertical alignment method in which a siloxane is used as a vertical alignment film material, and the surface of the array substrate is treated to adhere the siloxane to the substrate by a chemical bond, and the siloxane end flexible chain
  • the group is capable of inducing the long axis of the liquid crystal molecules to be aligned perpendicular to the substrate.
  • the liquid crystal molecules are subjected to a large orientation, and the long axis of the liquid crystal molecules can be arranged perpendicular to the array substrate, but at a distance from the siloxane, the liquid crystal molecules are limited in orientation, and mainly The orientation is induced by the aligned liquid crystal molecules.
  • Embodiments of the present invention provide a liquid crystal display panel and a method for fabricating the same, which are used to solve the problem that the vertical alignment film material cannot effectively induce liquid crystal molecules, so that liquid crystal molecules at different positions of the liquid crystal display panel are arranged in a vertical direction, which affects the liquid crystal.
  • the problem of the display panel display effect is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not a liquid crystal display panel, which are used to solve the problem that the vertical alignment film material cannot effectively induce liquid crystal molecules, so that liquid crystal molecules at different positions of the liquid crystal display panel are arranged in a vertical direction, which affects the liquid crystal.
  • the problem of the display panel display effect is not be used to solve the problem that the vertical alignment film material cannot effectively induce liquid crystal molecules, so that liquid crystal molecules at different positions of the liquid crystal display panel are arranged in a vertical direction, which affects the liquid crystal.
  • liquid crystalline polymerizable monomer and the polymerizable siloxane are polymerized by the photoinitiator by ultraviolet light irradiation to form a polymer network, whereby liquid crystal molecules in the liquid crystal are Anchored to a vertically oriented state.
  • a liquid crystal display panel provided by the embodiment of the invention includes: a color filter substrate, an array substrate, and a liquid crystal and a polymer network filled between the color film substrate and the array substrate;
  • the object network is formed by polymerizing a liquid crystalline polymerizable monomer and a polymerizable siloxane by ultraviolet light under the action of a photoinitiator for anchoring the liquid crystal molecules in the liquid crystal to be in a vertically oriented state.
  • the liquid crystal display panel and the preparation method provided by the embodiment of the invention include: coating a solution in which a polymerizable siloxane is dissolved on one of the array substrate and the color filter substrate; comprising a liquid crystal polymerizable monomer and a photoinitiator a mixture of a liquid crystal and a liquid crystal substrate is added between the color filter substrate and the array substrate; and the liquid crystalline polymerizable monomer and the polymerizable siloxane are polymerized under the action of a light bow by ultraviolet light irradiation to form a polymer network. Thereby, the liquid crystal molecules in the liquid crystal are anchored to a vertically oriented state.
  • the obtained liquid crystal display panel comprises a liquid crystal polymerizable monomer and a polymerizable siloxane which are irradiated by ultraviolet light, and polymerized under the action of a photoinitiator to form a polymer network, and liquid crystal molecules around the polymer network. It is anchored, and the long axis of the liquid crystal molecules is arranged perpendicular to the array substrate, which effectively enhances the uniformity of the long axis of the liquid crystal molecules perpendicular to the array substrate, and reduces the liquid crystal molecules at different positions of the liquid crystal display panel in the vertical direction. The deviation improves the display effect of the liquid crystal display panel.
  • FIG. 1 is a flow chart of preparing a liquid crystal display panel according to an embodiment of the present invention.
  • FIG. 2 is a second flowchart of a liquid crystal display panel according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a liquid crystal display panel before polymerization according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a liquid crystal display panel according to an embodiment of the present invention.
  • FIG. 5 is a FT-IR test chart provided by an embodiment of the present invention. detailed description
  • the embodiment of the invention provides a method for preparing a liquid crystal display panel. As shown in FIG. 1, the method includes the following steps.
  • Step S101 applying a solution in which the polymerizable siloxane is dissolved to the array substrate.
  • Step S102 adding a mixture comprising a liquid crystalline polymerizable monomer, a photoinitiator, and a liquid crystal between the color filter substrate and the array substrate coated with the polymerizable siloxane solution.
  • Step S103 by irradiating with ultraviolet light, polymerizing the liquid crystalline polymerizable monomer and the polymerizable siloxane under the action of a photoinitiator to form a polymer network, whereby the liquid crystal molecules in the liquid crystal are anchored to a vertical orientation. status.
  • step S101 applies a solution in which a polymerizable siloxane is dissolved onto an array substrate, which can be carried out in the following manner.
  • the polymerizable siloxane is dissolved in water or an organic solvent in a certain ratio to obtain a mixed solution; then, a solution of the polymerizable siloxane is applied onto the array substrate.
  • a solution concentration of the polymerizable siloxane is from 1% to 5%, a solution having a relatively good solubility can be obtained.
  • the solution in which the polymerizable siloxane is dissolved may be applied to the color filter substrate first, and then a mixture including a liquid crystalline polymerizable monomer, a photoinitiator, and a liquid crystal may be added to the array substrate and the polymerizable silicon may be coated.
  • the oxane solution is between the color filter substrates.
  • step S102 adds a mixture including a liquid crystalline polymerizable monomer, a photoinitiator, and a liquid crystal to the color filter substrate and the array substrate coated with the polymerizable siloxane solution, as shown in FIG. 2, and may include the following Steps:
  • Step S1021 the liquid crystalline polymerizable monomer is added to the liquid crystal in an appropriate ratio.
  • the liquid crystalline polymerizable monomer is C6M or a derivative of C6M.
  • the mesh of the polymer network formed by polymerization with the polymerizable siloxane is more sparse.
  • the mass of the liquid crystalline polymerizable monomer accounts for 1% to 20% of the total mass of the mixture, the resulting polymer network has a better effect on the orientation of the liquid crystal molecules.
  • Step S1022 a photoinitiator is added to the mixture of the liquid crystalline polymerizable monomer and the liquid crystal obtained in the step S1021 in an appropriate ratio.
  • the photoinitiator may be dibenzoyl peroxide, dodecyl peroxide, azobisisobutyronitrile, azobisisoheptanenitrile, diisopropyl peroxydicarbonate, and dicyclohexyl peroxydicarbonate. a combination of one or more of the esters.
  • the content of the photoinitiator should not be too high.
  • the mass of the photoinitiator exceeds 20% of the total mass of the mixture of the liquid crystalline polymerizable monomer, the photoinitiator, and the liquid crystal, yellowing of the liquid crystal display panel is caused, thereby affecting the display effect of the liquid crystal display panel.
  • the mass of the photoinitiator accounts for 1% to 5% of the total mass of the mixture of the liquid crystalline polymerizable monomer, the photoinitiator and the liquid crystal, the display effect of the obtained liquid crystal display panel is better.
  • a photoinitiator is more effective at 1% of the total mass of the mixture.
  • step S1023 the mixture containing the liquid crystal, the liquid crystalline polymerizable monomer, and the photoinitiator obtained in the step S1022 is uniformly stirred without being light, and then added between the color filter substrate and the array substrate.
  • the above mixture may be added between the color filter substrate and the array substrate by means of dispensing.
  • the order of the above steps S1021 and S1022 may also be interchanged, and step S1022 may be performed first, then step S1021 may be performed, or steps S1021 and S1022 may be simultaneously performed, that is, the photoinitiator and the liquid crystalline polymerizable monomer are simultaneously added to the liquid crystal. There is no limit here.
  • the liquid crystalline polymerizable monomer and the polymerizable siloxane are initiated by a photoinitiator to form a polymer network.
  • the liquid crystal small molecules around the polymer network are anchored such that the long axes of the liquid crystal small molecules are aligned perpendicular to the array substrate (and the color filter substrate) by the initial conditions. Since the formed polymer network fills the entire liquid crystal display panel and is anchored to the surrounding liquid crystal small molecules, the liquid crystal small molecules at the edge or the liquid crystal small molecules at the center are subjected to the polymer network. Anchored.
  • the single-use siloxane-induced liquid crystal molecules are arranged perpendicular to the substrate, and the present embodiment uses the polymerizable network distributed between the color filter substrate and the array substrate to anchor the surrounding liquid crystal molecules.
  • the present embodiment uses the polymerizable network distributed between the color filter substrate and the array substrate to anchor the surrounding liquid crystal molecules.
  • the alignment of the long axis of the liquid crystal molecules perpendicular to the array substrate is effectively enhanced, and the deviation of the liquid crystal molecules at different positions of the liquid crystal display panel in the vertical direction is reduced, thereby improving the display effect of the liquid crystal display panel.
  • the polymerizable siloxane as a material of the vertical alignment film is dissolved in water or an organic solvent to form a solution in a certain ratio, and then the polymerizable siloxane solution is coated.
  • the photoinitiator and the liquid crystal polymerizable monomer are respectively mixed in a certain ratio in a liquid crystal to form a mixture.
  • the resulting mixture was dropped between the color filter substrate and the array substrate as shown in FIG.
  • the polymerizable siloxane 2 coated on the array substrate 1 is adhered to the array substrate 1 by chemical bonds, and the liquid crystalline polymerizable monomer 3 itself has liquid crystallinity, so that the liquid crystal molecules 4 and the liquid crystalline polymerizable monomer 3 are acceptable.
  • the induction of the polymeric siloxane 2 is aligned perpendicular to the substrate when unpolymerized. After ultraviolet light irradiation, as shown in FIG. 4, the double bond functional group of the polymerizable siloxane 2 and the double bond functional group of the liquid crystalline polymerizable monomer 3 are polymerized under the action of a photoinitiator (not shown) to form Polymer network.
  • the long axis of the liquid crystal molecules 4 is always arranged in a vertical array substrate; after the polymerization, a polymer network formed uniformly is distributed between the color filter substrate and the array substrate, and the polymer network anchors the periphery. Liquid crystal molecule 4.
  • the single use of the siloxane-induced liquid crystal molecules is aligned perpendicular to the substrate, and the present embodiment is anchored around the polymer using a polymer polymerizable network distributed between the color filter substrate and the array substrate.
  • the liquid crystal molecules can more effectively enhance the uniformity of the long axis of the liquid crystal molecules perpendicular to the array substrate, reduce the deviation of the liquid crystal molecules at different positions of the liquid crystal display panel in the vertical direction, and improve the display effect of the liquid crystal display panel.
  • the above polymer network is formed by polymerizing the liquid crystalline polymerizable monomer 3 and the polymerizable siloxane 2 under ultraviolet light and polymerizing under the action of a photoinitiator, and the process is irreversible; and the formed polymer
  • the network has a spatial network structure whose specific structure is determined by the structure, ratio and arrangement position of the liquid crystalline polymerizable monomer 3 and the polymerizable siloxane 2 before polymerization.
  • the liquid crystal polymerizable monomer 3 has a different molecular structure, and the effect of inducing alignment of the liquid crystal molecules 4 after polymerization is also different. For example, the more the number of benzene rings in the liquid crystal polymerizable monomer 3 molecule, the greater the induction effect on the liquid crystal molecules 4.
  • the content of the liquid crystalline polymerizable monomer 3 affects the effect of inducing alignment of the liquid crystal molecules 4.
  • the formed polymer network has a better effect of inducing the orientation of the liquid crystal molecules 4.
  • liquid crystalline polymerizable monomer has a different functional group contained in the intermediate benzene ring position, and its molecular polarity is also different, which also affects the effect of inducing alignment of the liquid crystal molecule 4.
  • liquid crystalline polymerizable monomer 3 may be 1,4-bis(4-(6,-propyleneoxyhexyloxy)benzoyloxy)-2-indenylbenzene (C6M for short), and its molecular structural formula is as follows :
  • the liquid crystalline polymerizable monomer 3 can also be a derivative of C6M, and its molecular structural formula is as follows:
  • the first molecular structural formula is: 1,4-bis(4-(6,-propenyloxyhexyloxy)benzoyloxy)-2-chlorobenzene;
  • the second molecular structural formula is: 1,4-double (4-(6,-Propyloxyhexyloxy)phenylnonanoyloxy)-benzene;
  • the third molecular formula is: 1,4-bis(4-(6,-propenyloxyhexyloxy)benzene Nonanoyloxy)-2,3-dimercaptobenzene;
  • the fourth molecular structural formula is: 1,4-bis(4-(6,-propenyloxyhexyloxy)biphenylnonanoyloxy)-benzene;
  • the fifth molecular structural formula is: 1,4-double (4 -(6,-propenyloxyhexyloxy)biphenylnonanoyloxy)-2-chlorobenzene;
  • n is another value
  • the corresponding derivative of each of the above formulas can also be obtained.
  • These derivatives can also be used as the liquid crystalline polymerizable monomer 3, for example, n can also be 2, 4 or 10, and the specific value of n is not limited herein.
  • the type of the liquid crystalline polymerizable monomer to be used in the examples of the present invention may vary depending on the type of liquid crystal (structure of liquid crystal molecules), and is not limited to C6M and its derivatives.
  • the length of the alkyl group in the polymerizable siloxane 2 molecule also affects the effect of inducing alignment of the liquid crystal molecule 4.
  • the longer the alkyl group of the polymerizable siloxane 2 the better the orientation-inducing effect on the liquid crystal molecules 4; the shorter the alkyl group which can be polymerized with siloxane 2, the worse the orientation-inducing effect on the liquid crystal molecules 4.
  • n can also be 2, 4 or 10, etc., and the specific value of n is not limited here.
  • curve 1 is a map of the liquid crystalline polymerizable monomer before polymerization, and it can be seen that there is a distinct double bond functional group absorption peak at 1635;
  • curve 2 is a spectrum of the polymerizable siloxane before polymerization, It is seen that there is a distinct double bond functional group absorption peak at 1635;
  • curve 3 is a spectrum after mixing liquid crystalline polymerizable monomer and polymerizable siloxane, and it can be seen that there is an absorption peak at 1635;
  • curve 4 is liquid crystal.
  • the method includes: a color filter substrate, an array substrate, and a liquid crystal and polymer network filled between the color filter substrate and the array substrate.
  • the polymer network is formed by polymerizing a liquid crystalline polymerizable monomer and a polymerizable siloxane by ultraviolet light under the action of a photoinitiator, and is used for anchoring liquid crystal molecules in the liquid crystal to be vertically oriented.
  • the liquid crystalline polymerizable monomer may be C6M or a derivative of C6M, and the mass thereof accounts for 1% to 20% of the total mass of the mixture of the liquid crystalline polymerizable monomer, the photoinitiator and the liquid crystal.
  • the liquid crystal display panel also has the above technical effects, and will not be described again.
  • the liquid crystal display panel and the preparation method provided by the embodiment of the invention include: coating a solution in which a polymerizable siloxane is dissolved on one of the array substrate and the color filter substrate; comprising a liquid crystal polymerizable monomer and a photoinitiator a mixture of a liquid crystal and a liquid crystal substrate is added between the color filter substrate and the array substrate; and the liquid crystalline polymerizable monomer and the polymerizable siloxane are polymerized under the action of a light bow by ultraviolet light irradiation to form a polymer network. Thereby, the liquid crystal molecules in the liquid crystal are anchored to a vertically oriented state.
  • the liquid crystal molecules around the polymer network are subjected to anchoring, and the long axis of the liquid crystal molecules is arranged perpendicular to the array substrate, thereby effectively enhancing the long axis of the liquid crystal molecules perpendicular to the array substrate.
  • the consistency reduces the deviation of the liquid crystal molecules in different positions of the liquid crystal display panel in the vertical direction, and improves the display effect of the liquid crystal display panel.

Abstract

一种液晶显示面板及其制备方法,该方法包括:将溶解有可聚合硅氧烷的溶液涂覆到阵列基板和彩膜基板之一上(S101);将包括液晶性可聚合单体、光引发剂和液晶的混合物添加到彩膜基板和阵列基板之间(S102);通过紫外光照射,使液晶性可聚合单体和可聚合硅氧烷在光引发剂的作用下聚合,生成高分子聚合物网络,由此液晶中的液晶分子被锚定为垂直取向状态(S103)。该液晶显示面板有效地增强了液晶分子长轴垂直于阵列基板排列的一致性,减少了处于液晶显示面板各个位置的液晶分子在垂直方向上的偏差,提高了液晶显示面板的显示效果。

Description

液晶显示面板及其制备方法 技术领域
本发明的实施例涉及一种液晶显示面板及其制备方法。 背景技术
随着个人计算机的日渐普及, 液晶显示技术也得到了迅速发展。 视角宽、 能耗低和响应速度快成为液晶显示器件的重要参数。 决定液晶显示响应速度的 因素除了液晶分子本身的性质之外, 在阵列基板上的取向也是一个重要的外部 因素。 通过选择合适的取向膜材料和取向技术, 优化液晶分子在阵列基板上的 排列和预倾角, 可以使液晶显示面板的响应时间得到改善, 并扩展液晶显示器 件的视角。
目前, 根据液晶显示面板的显示模式不同, 液晶取向方式也不同。 常见的 液晶取向方式可分为两种。 第一种是液晶平行取向方式, 将取向膜材料聚酰亚 胺(PI )涂覆到阵列基板表面以形成取向膜, 并经过摩擦在取向膜上生成细沟 痕, 用于诱导液晶分子长轴以平行于阵列基板排列。 第二种是液晶垂直取向方 式, 这种取向方法是利用硅氧烷作为垂直取向膜材料, 并且对阵列基板表面进 行处理, 使硅氧烷通过化学键粘附在基板上, 硅氧烷末端柔性链基团能够诱导 液晶分子长轴垂直于基板排列。 在离硅氧烷较近处, 液晶分子受到的取向作用 大, 液晶分子的长轴能够按照垂直于阵列基板排列, 但在离硅氧烷较远处, 液 晶分子受到的取向作用有限, 而主要受到已取向的液晶分子诱导取向。 这就会 导致处于液晶显示面板不同位置的液晶分子在垂直方向上出现偏差,使得整个 液晶排列在垂直方向不一致, 导致光在通过整个液晶显示面板会出现光散射现 象, 从而影响到液晶显示面板的显示效果。 发明内容
本发明实施例提供了一种液晶显示面板及其制备方法,用以解决垂直取向 膜材料不能有效地诱导液晶分子,使得处于液晶显示面板不同位置的液晶分子 在垂直方向上出现排列偏差, 影响液晶显示面板的显示效果的问题。
本发明实施例提供的一种液晶显示面板的制备方法, 包括:
将溶解有可聚合硅氧烷的溶液涂覆到阵列基板和彩膜基板之一上; 将包括液晶性可聚合单体、光引发剂和液晶的混合物添加到彩膜基板和阵 列基板之间;
通过紫外光照射,使所述液晶性可聚合单体和所述可聚合硅氧烷在所述光 引发剂的作用下聚合, 生成高分子聚合物网络, 由此所述液晶中的液晶分子被 锚定为垂直取向状态。
本发明实施例提供的一种液晶显示面板, 包括: 彩膜基板、 阵列基板、 以 及填充在所述彩膜基板和所述阵列基板之间的液晶和高分子聚合物网络; 所述高分子聚合物网络是通过紫外光照射液晶性可聚合单体和可聚合硅 氧烷, 在光引发剂的作用下聚合生成的, 用于锚定所述液晶中液晶分子为垂直 取向状态。
本发明实施例提供的液晶显示面板及制备方法, 包括: 将溶解有可聚合硅 氧烷的溶液涂覆到阵列基板和彩膜基板之一上; 将包括液晶性可聚合单体、 光 引发剂和液晶的混合物添加到彩膜基板和阵列基板之间; 通过紫外光照射, 使 液晶性可聚合单体和可聚合硅氧烷在光弓 )发剂的作用下聚合, 生成高分子聚合 物网络, 由此液晶中的液晶分子被锚定为垂直取向状态。 得到的液晶显示面板 中包括通过紫外光照射液晶性可聚合单体和可聚合硅氧烷,在光引发剂的作用 下聚合形成高分子聚合物网络,在该高分子聚合物网络周围的液晶分子会受到 其锚定作用, 按照液晶分子长轴垂直于阵列基板排列, 有效地增强了液晶分子 长轴垂直于阵列基板排列的一致性, 减少了处于液晶显示面板不同位置的液晶 分子在垂直方向上的偏差, 提高了液晶显示面板的显示效果。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作简 单地介绍, 显而易见地, 下面描述中的附图仅仅涉及本发明的一些实施例, 而 非对本发明的限制。
图 1为本发明实施例提供的液晶显示面板的制备流程图之一;
图 2为本发明实施例提供的液晶显示面板的制备流程图之二;
图 3为本发明实施例提供的液晶显示面板聚合前的结构示意图;
图 4为本发明实施例提供的液晶显示面板聚合后的结构示意图;
图 5为本发明实施例提供的 FT-IR测试图谱。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发明 实施例的附图, 对本发明实施例的技术方案进行清楚、 完整地描述。 显然, 所 描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描述的 本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获得的所 有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种液晶显示面板的制备方法, 如图 1所示, 包括下 述步骤。
步骤 S101、 将溶解有可聚合硅氧烷的溶液涂覆到阵列基板上。
步骤 S102、 将包括液晶性可聚合单体、 光引发剂和液晶的混合物添加到彩 膜基板和涂覆可聚合硅氧烷溶液的阵列基板之间。
步骤 S103、 通过紫外光照射, 使液晶性可聚合单体和可聚合硅氧烷在光引 发剂的作用下聚合, 生成高分子聚合物网络, 由此液晶中的液晶分子被锚定为 垂直取向状态。
例如, 上述步骤 S101将溶解有可聚合硅氧烷的溶液涂覆到阵列基板上, 可 以通过下述方式实施。
例如, 将可聚合硅氧烷按照一定的比例溶解到水或有机溶剂中, 得到混合 溶液; 然后, 将可聚合硅氧烷的溶液涂覆到阵列基板上。 例如, 可聚合硅氧烷 的溶液浓度为 1%~5%时, 能够得到溶解性比较好的溶液。
同样, 也可以将溶解有可聚合硅氧烷的溶液先涂覆到彩膜基板上, 然后将 包括液晶性可聚合单体、光引发剂和液晶的混合物添加到阵列基板和涂覆可聚 合硅氧烷溶液的彩膜基板之间。
例如, 上述步骤 S102将包括液晶性可聚合单体、 光引发剂和液晶的混合物 添加到彩膜基板和涂覆可聚合硅氧烷溶液的阵列基板之间, 如图 2所示, 可以 包括以下步骤:
步骤 S1021、 将液晶性可聚合单体以合适比例添加到液晶中。
例如, 液晶性可聚合单体为 C6M, 或者为 C6M的衍生物。 液晶性可聚合单体含量越多, 经紫外光照射后和可聚合硅氧烷聚合生成的 高分子聚合物网络的网孔越密; 液晶性可聚合单体含量越少, 经紫外光照射后 和可聚合硅氧烷聚合生成的高分子聚合物网络的网孔则越稀疏。
例如, 液晶性可聚合单体的质量占混合物总质量的 1%~20%时, 生成的高 分子聚合物网络对液晶分子的取向诱导效果较好。
步骤 S1022、 将光引发剂以合适比例添加到步骤 S1021得到的液晶性可聚 合单体和液晶的混合物中。
例如, 光引发剂可以为过氧化二苯曱酰、 过氧化十二酰、 偶氮二异丁腈、 偶氮二异庚腈、过氧化二碳酸二异丙酯和过氧化二碳酸二环己酯之中的一种或 多种的组合。
光引发剂的含量不宜过高。 当光引发剂的质量超过液晶性可聚合单体、 光 引发剂和液晶的混合物的总质量的 20%时,会引起液晶显示面板发生黄变的现 象,从而影响液晶显示面板的显示效果。光引发剂的质量占液晶性可聚合单体、 光引发剂和液晶的混合物的总质量的的 1%~5%时, 所得到的液晶显示面板的 显示效果较佳。 例如, 光引发剂占混合物总质量的 1%时, 效果更好。
步骤 S1023、 将步骤 S1022得到的含有液晶、 液晶性可聚合单体和光引发 剂的混合物避光搅拌均匀, 之后添加到彩膜基板和阵列基板之间。
例如, 可以釆用滴涂的方式在彩膜基板和阵列基板之间加入上述混合物。 上述步骤 S1021和 S1022的顺序也可以互换, 可以先执行步骤 S1022, 再 执行步骤 S1021 , 或者, 同时执行步骤 S1021和 S1022, 即同时将光引发剂和 液晶性可聚合单体添加到液晶中, 在此不做限定。
例如, 上述步骤 S103中, 紫外光照射后, 液晶性可聚合单体和可聚合硅氧 烷受到光引发剂引发, 形成高分子聚合物网络。 在高分子聚合物网络周围的液 晶小分子被锚定, 使得液晶小分子长轴受初始条件的影响垂直于阵列基板(以 及彩膜基板)排列。 由于形成的高分子聚合物网络充满整个液晶显示面板中, 且锚定在其周围的液晶小分子, 所以无论是处于边缘的液晶小分子还是处于中 心的液晶小分子, 都会受到高分子聚合物网络的锚定。 相对于现有技术中垂直 取向方式中单一使用硅氧烷诱导液晶分子以垂直于基板排列, 本实施例使用分 布于彩膜基板和阵列基板之间的高分子可聚合网络锚定周围的液晶分子, 能更 有效地增强液晶分子长轴垂直于阵列基板排列的一致性, 减少处于液晶显示面 板不同位置的液晶分子在垂直方向上的偏差,从而提高了液晶显示面板的显示 效果。
在本发明实施例提供的上述液晶显示面板制备过程中, 将作为垂直取向膜 材料的可聚合硅氧烷按照一定的比例溶解到水中或者有机溶剂中形成溶液,之 后将可聚合硅氧烷溶液涂覆到阵列基板和彩膜基板之一上; 将光引发剂、 液晶 性可聚合单体分别以一定的比例均勾混合在液晶中形成混合物。 在对盒工艺 中, 将得到的混合物滴加到彩膜基板和阵列基板之间, 如图 3所示。 在阵列基 板 1上涂覆的可聚合硅氧烷 2通过化学键粘附在阵列基板 1上, 液晶性可聚合 单体 3本身具有液晶性, 因此液晶分子 4和液晶性可聚合单体 3受到可聚合硅 氧烷 2的诱导作用, 在未聚合时垂直于基板排列。 在紫外光照射后, 如图 4所 示, 可聚合硅氧烷 2的双键官能团会和液晶性可聚合单体 3的双键官能团在光 引发剂 (未示出) 的作用下聚合, 形成高分子聚合物网络。 在聚合过程中, 液 晶分子 4长轴一直处于垂直阵列基板排列; 在聚合之后, 在彩膜基板和阵列基 板之间均匀分布着形成的高分子聚合物网络, 高分子聚合物网络会锚定周边的 液晶分子 4。 相较于现有技术的垂直取向方式中单一使用硅氧烷诱导液晶分子 垂直于基板排列, 本实施例使用分布于彩膜基板和阵列基板之间的高分子可聚 合网络锚定在其周围的液晶分子, 能更有效地增强液晶分子长轴垂直于阵列基 板排列的一致性, 减少处于液晶显示面板不同位置的液晶分子在垂直方向上的 偏差, 提高了液晶显示面板的显示效果。
上述高分子聚合物网络由液晶性可聚合单体 3和可聚合硅氧烷 2经过紫外 光照射, 在光引发剂的作用下聚合形成的, 该过程具有不可逆性; 而且形成的 高分子聚合物网络具有空间网络结构, 其具体结构由聚合前的液晶性可聚合单 体 3和可聚合硅氧烷 2的结构、 比例和排列位置决定。
液晶性可聚合单体 3的分子结构不同, 聚合后对液晶分子 4的诱导取向效 果也会不同。 例如, 液晶性可聚合单体 3分子中的苯环数量越多, 对液晶分子 4的诱导作用较大。
再者, 液晶性可聚合单体 3含量的多少会影响到液晶分子 4的诱导取向效 果。 通常, 液晶性可聚合单体 3的含量越少, 聚合后生成的高分子聚合物网络 较稀疏, 则对液晶分子 4的取向诱导效果越差; 液晶性可聚合单体 3的含量越 多, 聚合后生成的高分子聚合物网络较密集, 则对液晶分子 4的取向诱导效果 越好。
例如, 在本发明实施例中, 液晶性可聚合单体 3的含量为液晶含量的 1%~20%时, 形成的高分子聚合物网络对液晶分子 4的取向诱导效果较好。
另外, 液晶性可聚合单体 3分子中间苯环位置含有的官能团不同, 其分子 极性也不相同, 也会影响液晶分子 4的诱导取向效果。
例如, 液晶性可聚合单体 3可以为 1,4-双 (4-(6,-丙烯氧基己氧基)苯曱酰氧 基) -2-曱苯(简称 C6M ), 其分子结构式如下:
0, . f ΐ -:、 ,0
液晶性可聚合单体 3还可以为 C6M的衍生物, 其分子结构式分别如下:
Figure imgf000008_0001
当 η=6时:
第 1个分子结构式为: 1,4-双 (4-(6,-丙烯氧基己氧基)苯曱酰氧基) -2-氯苯; 第 2个分子结构式为: 1,4-双 (4-(6,-丙烯氧基己氧基)苯曱酰氧基) -苯; 第 3个分子结构式为: 1,4-双 (4-(6,-丙烯氧基己氧基)苯曱酰氧基) -2,3-二曱 基苯; 第 4个分子结构式为: 1,4-双 (4-(6,-丙烯氧基己氧基)联苯曱酰氧基) -苯; 第 5个分子结构式为: 1,4-双 (4-(6,-丙烯氧基己氧基)联苯曱酰氧基 )-2-氯苯; 第 6个分子结构式为: 1,4-双 (4-(6,-丙烯氧基己氧基)联苯曱酰氧基 )-2-曱苯; 第 7个分子结构式为: 1,4-双 (4-(6,-丙烯氧基己氧基)联苯曱酰氧基 )-2,3-二 曱基苯。
当 n为其他数值时, 还可以得到上述各分子式相应的衍生物。 这些衍生物 同样也可以作为液晶性可聚合单体 3 , 例如 n还可以为 2、 4或 10等, 在此不 限定 n的具体数值。
本发明实施例中釆用的液晶性可聚合单体的种类, 可以根据液晶种类 (液 晶分子的结构) 的不同而不同, 并不限于 C6M及其衍生物。
可聚合硅氧烷 2分子中的烷基长短也会影响液晶分子 4的诱导取向效果。 通常, 可聚合硅氧烷 2的烷基越长, 对液晶分子 4的取向诱导效果越好; 可聚 合硅氧烷 2的烷基越短, 对液晶分子 4的取向诱导效果越差。
例如, 可聚合硅氧烷 2可以为烯丙氧基乙基硅氧烷, 其分子结构式如下:
Figure imgf000009_0001
当 n=6时: 分子结构式为: 烯丙氧基己基硅氧烷
n还可以为 2、 4或 10等, 在此不限定 n的具体数值。
此外, 对于是否生成高分子聚合物网络的判断, 可以通过图 5所示的傅立 叶变换红外光谱(FT-IR ) 测试图语得到证实。 在图 5中, 曲线 1为液晶性可 聚合单体在聚合前的图谱, 可以看到在 1635位置有明显的双键官能团吸收峰; 曲线 2为可聚合硅氧烷在聚合前的图谱, 可以看到在 1635位置存在明显的双 键官能团吸收峰; 曲线 3为液晶性可聚合单体和可聚合硅氧烷混合后的图谱, 可以看到在 1635位置存在吸收峰; 曲线 4为液晶性可聚合单体和可聚合硅氧 烷聚合后的图谱, 可以看到在双键官能团特征峰 1635位置的吸收峰消失, 证 明液晶性可聚合单体和可聚合硅氧烷发生聚合反应, 生成了高分子聚合物网 络。 具体包括: 彩膜基板、 阵列基板以及填充在彩膜基板和阵列基板之间的液晶和 高分子聚合物网络。 高分子聚合物网络是通过紫外光照射液晶性可聚合单体和 可聚合硅氧烷, 在光引发剂的作用下聚合生成的, 用于锚定液晶中液晶分子为 垂直取向状态。
上述液晶显示面板中,液晶性可聚合单体可为 C6M或者为 C6M的衍生物, 其质量占液晶性可聚合单体、 光引发剂和液晶的混合物的总质量的 1%~20%。 该液晶显示面板同样具有上述技术效果, 不再赘述。
本发明实施例提供的液晶显示面板及制备方法, 包括: 将溶解有可聚合硅 氧烷的溶液涂覆到阵列基板和彩膜基板之一上; 将包括液晶性可聚合单体、 光 引发剂和液晶的混合物添加到彩膜基板和阵列基板之间; 通过紫外光照射, 使 液晶性可聚合单体和可聚合硅氧烷在光弓 )发剂的作用下聚合, 生成高分子聚合 物网络,由此液晶中的液晶分子被锚定为垂直取向状态。在本发明的实施例中, 在高分子聚合物网络周围的液晶分子会受到其锚定作用,按照液晶分子长轴垂 直于阵列基板排列, 有效地增强了液晶分子长轴垂直于阵列基板排列的一致 性, 减少了处于液晶显示面板不同位置的液晶分子在垂直方向上的偏差, 提高 了液晶显示面板的显示效果。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种液晶显示面板的制备方法, 包括:
将溶解有可聚合硅氧烷的溶液涂覆到阵列基板和彩膜基板之一上; 将包括液晶性可聚合单体、光引发剂和液晶的混合物添加到所述彩膜基板 和所述阵列基板之间;
通过紫外光照射,使所述液晶性可聚合单体和所述可聚合硅氧烷在所述光 引发剂的作用下聚合, 生成高分子聚合物网络, 由此所述液晶中的液晶分子 被锚定为垂直取向状态。
2、 如权利要求 1所述的方法, 其中, 所述将溶解有可聚合硅氧烷的溶液 涂覆到阵列基板和彩膜基板之一上, 具体包括:
将可聚合硅氧烷溶解到水或有机溶剂中 , 得到溶液;
将所述可聚合硅氧烷的溶液涂覆到所述阵列基板和所述彩膜基板之一上。
3、 如权利要求 1所述的方法, 其中, 所述可聚合硅氧烷的溶液浓度为 1%~5%。
4、 根据权利要求 1所述的方法, 其中, 所述液晶性可聚合单体的质量占 所述液晶性可聚合单体、 光引发剂和液晶的混合物的总质量的 1%~20%。
5、 根据权利要求 1所述的方法, 其中, 所述液晶性可聚合单体为 C6M, 或者为 C6M的衍生物。
6、 根据权利要求 1所述的方法, 其中, 所述光引发剂的质量占所述液晶 性可聚合单体、 光引发剂和液晶的混合物的总质量的 1%~5%。
7、 根据权利要求 1所述的方法, 其中, 所述光引发剂包括过氧化二苯曱 酰、 过氧化十二酰、 偶氮二异丁腈、 偶氮二异庚腈、 过氧化二碳酸二异丙酯 和过氧化二碳酸二环己酯中之一或组合。
8、 一种液晶显示面板, 包括:
彩膜基板;
阵列基板;
以及填充在所述彩膜基板和所述阵列基板之间的液晶和高分子聚合物网 络; 所述高分子聚合物网络是通过紫外光照射液晶性可聚合单体和可聚合硅 氧烷, 在光引发剂的作用下聚合生成的, 用于锚定所述液晶中液晶分子为垂 直取向状态。
9、 根据权利要求 8所述的液晶显示面板, 其中, 所述液晶性可聚合单体 为 C6M, 或者为 C6M的衍生物。
10、 根据权利要求 8或 9所述的液晶显示面板, 其中, 所述液晶性可聚合 单体的质量占液晶性可聚合单体、 光引发剂和液晶的混合物的总质量的 1%~20%„
PCT/CN2012/083327 2011-11-29 2012-10-22 液晶显示面板及其制备方法 WO2013078924A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/704,778 US9529232B2 (en) 2011-11-29 2012-10-22 Liquid display panel and process for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110388315.4A CN102643387B (zh) 2011-11-29 2011-11-29 一种液晶显示面板及其制备方法
CN201110388315.4 2011-11-29

Publications (1)

Publication Number Publication Date
WO2013078924A1 true WO2013078924A1 (zh) 2013-06-06

Family

ID=46656481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083327 WO2013078924A1 (zh) 2011-11-29 2012-10-22 液晶显示面板及其制备方法

Country Status (3)

Country Link
US (1) US9529232B2 (zh)
CN (1) CN102643387B (zh)
WO (1) WO2013078924A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160363794A1 (en) * 2014-11-20 2016-12-15 Boe Technology Group Co., Ltd. Liquid Crystal Display Device and Method of Manufacturing the Same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629013B (zh) * 2011-09-15 2014-12-17 北京京东方光电科技有限公司 一种液晶显示装置及其制作方法
CN102643387B (zh) 2011-11-29 2014-09-10 北京京东方光电科技有限公司 一种液晶显示面板及其制备方法
CN103792709A (zh) * 2012-10-30 2014-05-14 统炀企业有限公司 液晶显示装置及其制造方法
CN104641282B (zh) 2013-01-25 2017-05-24 Lg化学株式会社 液晶装置
JP5905419B2 (ja) * 2013-03-13 2016-04-20 富士フイルム株式会社 重合性液晶化合物、液晶組成物、高分子材料とその製造方法、フィルム、偏光板および液晶表示装置
CN103207469B (zh) 2013-03-18 2016-01-27 北京京东方光电科技有限公司 液晶面板、显示装置及液晶面板的制造方法
CN103242863B (zh) * 2013-04-19 2015-07-29 北京京东方光电科技有限公司 液晶复合材料、显示面板、显示装置及显示面板制造方法
CN103980832B (zh) * 2014-04-17 2018-04-06 京东方科技集团股份有限公司 一种封框胶、显示面板的封装方法及显示面板
CN103992445B (zh) * 2014-05-13 2017-02-15 京东方科技集团股份有限公司 一种弹性体材料及其制成的彩膜基板、液晶面板
ES2769244T3 (es) * 2014-11-07 2020-06-25 Nissan Chemical Corp Dispositivo de visualización de cristal líquido
CN110168439B (zh) * 2017-02-06 2022-05-17 Jsr株式会社 液晶元件及其制造方法、液晶取向剂、以及显示装置
CN113341617B (zh) * 2021-05-07 2023-04-28 华南师范大学 一种功能化取向层及其应用、液晶显示器件及其制备方法
CN114167648B (zh) * 2021-12-08 2023-06-27 武汉华星光电技术有限公司 背光模组及其制备方法、显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106626A (ja) * 1986-03-20 1988-05-11 Canon Inc 液晶素子
CN1272184A (zh) * 1997-10-01 2000-11-01 松下电器产业株式会社 液晶取向膜及其制造方法以及使用该液晶取向膜的液晶显示装置及其制造方法
US20060204680A1 (en) * 2005-02-28 2006-09-14 Takayuki Hattori Varnish for forming liquid crystal alignment layer and liquid crystal display element using the same
CN101566755A (zh) * 2009-05-27 2009-10-28 北京科技大学 一种利用聚合物稳定液晶材料制备光增亮膜的方法
CN101687996A (zh) * 2007-08-01 2010-03-31 Jsr株式会社 聚有机硅氧烷、液晶取向膜和液晶显示元件
CN102643387A (zh) * 2011-11-29 2012-08-22 北京京东方光电科技有限公司 一种液晶显示面板及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495221B1 (en) * 1997-07-31 2002-12-17 Matsushita Electric Industrial Co., Ltd. Chemisorptive substance, aligned liquid-crystal film and liquid-crystal display element both made by using the same, and processes for producing these
DE19833258C1 (de) * 1998-07-23 1999-10-28 Consortium Elektrochem Ind Zu optisch anisotropen Polymerschichten vernetzbare flüssigkristalline nematische Organosiloxane
CN101874097B (zh) * 2007-11-23 2014-03-12 Lg化学株式会社 可聚合液晶组合物、由该组合物制备的垂面取向液晶膜以及制备该液晶膜的方法
KR101663563B1 (ko) * 2009-12-24 2016-10-07 엘지디스플레이 주식회사 액정표시장치의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106626A (ja) * 1986-03-20 1988-05-11 Canon Inc 液晶素子
CN1272184A (zh) * 1997-10-01 2000-11-01 松下电器产业株式会社 液晶取向膜及其制造方法以及使用该液晶取向膜的液晶显示装置及其制造方法
US20060204680A1 (en) * 2005-02-28 2006-09-14 Takayuki Hattori Varnish for forming liquid crystal alignment layer and liquid crystal display element using the same
CN101687996A (zh) * 2007-08-01 2010-03-31 Jsr株式会社 聚有机硅氧烷、液晶取向膜和液晶显示元件
CN101566755A (zh) * 2009-05-27 2009-10-28 北京科技大学 一种利用聚合物稳定液晶材料制备光增亮膜的方法
CN102643387A (zh) * 2011-11-29 2012-08-22 北京京东方光电科技有限公司 一种液晶显示面板及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160363794A1 (en) * 2014-11-20 2016-12-15 Boe Technology Group Co., Ltd. Liquid Crystal Display Device and Method of Manufacturing the Same

Also Published As

Publication number Publication date
CN102643387B (zh) 2014-09-10
US20140078455A1 (en) 2014-03-20
CN102643387A (zh) 2012-08-22
US9529232B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
WO2013078924A1 (zh) 液晶显示面板及其制备方法
JP6144708B2 (ja) 液晶表示パネル及びその製造方法
CN104597661B (zh) 垂直配向液晶显示器及其制作方法
TWI706981B (zh) 聚合物組成物、具有液晶配向膜之基板的製造方法、橫向電場驅動型液晶顯示元件、液晶顯示元件的製造方法及橫向電場驅動型液晶顯示元件用液晶配向膜
JP5028452B2 (ja) 液晶表示装置
JP2020042288A (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2013139157A1 (zh) 封框胶组合物、防止液晶污染的方法、液晶面板及显示装置
WO2013037315A1 (zh) 液晶显示装置及其制作方法
TW201512305A (zh) 具有橫向電場驅動型液晶顯示元件用液晶配向膜之基板的製造方法
CN101934267A (zh) 自支撑的胶体光子晶体膜的制备方法
WO2014148569A1 (ja) 横電界駆動型液晶表示素子の製造方法
JP2015007702A (ja) 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
WO2014127562A1 (zh) 液晶面板制作方法及液晶混合物、液晶面板
TW201805366A (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
JPWO2016047771A1 (ja) 液晶表示素子
TWI689543B (zh) 使用光反應性的氫鍵結性高分子液晶之液晶配向劑及液晶配向膜
JP6872315B2 (ja) 重合体組成物および横電界駆動型液晶表示素子用液晶配向膜
TWI644931B (zh) 具有橫向電場驅動型液晶顯示元件用液晶配向膜之基板之製造方法
TWI626269B (zh) 具有橫向電場驅動型液晶顯示元件用液晶配向膜之基板之製造方法
WO2014012279A1 (zh) 用于液晶显示器的液晶介质混合物
TWI760375B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
TW201249966A (en) Photopolymerizable liquid crystal mixture and manufacturing method thereof
JP4618700B2 (ja) 傾斜配向層の製造方法、傾斜配向フィルムの製造方法および傾斜配向フィルム
JP6794257B2 (ja) 液晶配向剤、液晶配向膜および液晶表示素子
TWI668491B (zh) 具有橫向電場驅動型液晶顯示元件用液晶配向膜之基板之製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13704778

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853975

Country of ref document: EP

Kind code of ref document: A1