WO2013078923A1 - Led灯散热器及led灯具 - Google Patents

Led灯散热器及led灯具 Download PDF

Info

Publication number
WO2013078923A1
WO2013078923A1 PCT/CN2012/083033 CN2012083033W WO2013078923A1 WO 2013078923 A1 WO2013078923 A1 WO 2013078923A1 CN 2012083033 W CN2012083033 W CN 2012083033W WO 2013078923 A1 WO2013078923 A1 WO 2013078923A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
led lamp
ribs
rib
heat
Prior art date
Application number
PCT/CN2012/083033
Other languages
English (en)
French (fr)
Inventor
朱玲
Original Assignee
京东方科技集团股份有限公司
京东方光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 京东方光科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2014543755A priority Critical patent/JP2015500549A/ja
Priority to US13/805,720 priority patent/US9182082B2/en
Priority to KR1020127031722A priority patent/KR20130075742A/ko
Priority to EP12791678.1A priority patent/EP2789908B1/en
Publication of WO2013078923A1 publication Critical patent/WO2013078923A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/77Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
    • F21V29/773Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to an LED lamp radiator and an LED lamp. Background technique
  • Embodiments of the present invention provide an LED light radiator and an LED lamp, which can improve the heat dissipation effect of the LED lamp.
  • an LED lamp heat sink comprising: a hollow heat sink body; and a heat sink bottom plate disposed at one end of the heat sink body.
  • a plurality of ribs may be disposed on the outer wall of the heat sink body.
  • the thickness of the center of the heat sink bottom plate is greater than the thickness of the edge of the heat sink bottom plate.
  • the ribs are at an angle to the outer wall of the heat sink body, the angle being less than 90°, preferably between 80 and 45. Within the range, more preferably between 80 and 60. In the range.
  • the thickness of the portion of the rib adjacent the heat sink body is greater than the thickness of the portion of the rib away from the heat sink body.
  • the height of the portion of the rib near the bottom plate of the heat sink may be greater than the height of the portion of the rib away from the bottom plate of the heat sink.
  • the portion of the rib that is adjacent to the heat sink base is provided with a bifurcation.
  • At least one opening corresponding to the LED single lamp may be disposed on the heat sink base plate.
  • the average height H of the ribs is 3-4 times the distance d between the ribs.
  • the average thickness C of the heat sink base plate is 2 - 3 times the average thickness m of the ribs.
  • the heat sink base plate has an average thickness of 4.5 to 5.8 mm.
  • the spacing d between the ribs is 3.3-4.5 mm
  • the average thickness m of the ribs is 2.0-2.7 mm
  • the average height H of the ribs is 6.5-9.0 mm
  • the length 1 of the ribs is 40. -50mm.
  • the number N of the ribs is, for example, 16, 18 or 20.
  • an LED lamp comprising the LED lamp heat sink as described above and at least one LED single lamp located in the LED lamp heat sink.
  • FIG. 1 is a schematic structural view of an LED lamp heat sink according to an embodiment of the present invention.
  • FIG. 2 is a front elevational view of an LED lamp heat sink according to an embodiment of the present invention.
  • FIG. 3 is a left side view of an LED lamp heat sink according to an embodiment of the present invention.
  • FIG. 4 is a top plan view of an LED lamp heat sink according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram of the relationship between the maximum temperature of the LED lamp heat sink and the rib spacing
  • Figure 6 is a schematic diagram of the relationship between the maximum temperature of the LED lamp heat sink and the thickness of the rib
  • Figure 7 is the maximum temperature of the LED light radiator and the heat sink Schematic diagram of the relationship between the thickness of the base plate.
  • an LED lamp heat sink includes: a hollow heat sink body 11 , the outer wall of the heat sink body 11 is provided with a plurality of ribs 12 ; and a cover for sealing the heat sink The heat sink bottom plate 13 at the bottom of the body 11.
  • the heat sink body 11 may be cylindrical, and the heat sink bottom plate 13 may be circular.
  • the thickness of the center of the heat sink base plate 13 is greater than the thickness of the edge of the heat sink base plate 13.
  • the thickness of the heat sink base plate 13 may gradually decrease from the center to the edge, or may decrease from the center to the edge step.
  • the rib 12 in the present invention is at an angle to the outer wall of the heat sink body 11, which is less than 90. . That is, the ribs in the present invention are designed as diagonal ribs. If the inclined ribs are used, although the heat storage effect is good and the heat exchange area is large, the flow inhibition coefficient will increase, and the difficulty in realizing the manufacturing process will be improved. If a straight rib is used, although the flow inhibition coefficient is small, the heat storage effect is not good and the heat exchange area is small. In the embodiment of the invention, the ribs are in the form of inclined ribs, which can ensure better heat storage effect, sufficient heat exchange area, and small flow inhibition coefficient.
  • the thickness of the portion of the rib 12 near the heat sink body 11 may be greater than the thickness of the portion of the rib 12 away from the heat sink body 11.
  • the height of the portion of the rib 12 adjacent to the heat sink base 13 may be greater than the height of the portion of the rib 12 away from the heat sink base 13.
  • the thickness of the rib 12 in the present invention is gradually decreased from the bottom of the rib to the top of the rib, wherein the bottom of the rib is the portion of the rib 12 near the heat sink body 11, and the top of the rib is the rib 12 away from heat dissipation. Part of the body 11. Since the heat is transferred from the bottom to the top, not only heat dissipation but also heat storage at the bottom of the ribs is considered to prevent heat load shock. When the heat is dissipated upward while the heat is reduced, the thickness of the fins is gradually reduced. Alternatively, the thickness of the ribs 12 may also be stepped from the bottom of the ribs to the top of the ribs.
  • the height of the rib 12 gradually decreases from the bottom end to the top end to 0, wherein the bottom end is the portion of the rib 12 adjacent to the heat sink bottom plate 13, and the top end is the portion of the rib 12 away from the heat sink bottom plate 13. Further, the height of the ribs 12 may also be reduced to zero from the bottom end to the top end step.
  • a bifurcation 15 is provided at the bottom end of the rib 12 so as to increase the heat dissipating area when heat is introduced into the rib.
  • At least one corresponding LED single is disposed on the heat sink base plate 13.
  • the opening 14 of the lamp can increase the air convection and improve the heat dissipation effect.
  • the LED lamp heat sink comprises a heat sink body and a heat sink base plate.
  • a plurality of inclined ribs may be provided on the outer wall of the radiator body. The thickness of the ribs gradually decreases from the bottom of the rib to the top of the rib, and the height gradually decreases from zero to zero at the top end.
  • a bifurcation is provided at the bottom end of the rib so that when the LED lamp is in operation, heat generated can be transmitted to the heat sink body and transmitted to the inclined rib by conduction, convection, radiation, or the like.
  • the diagonal ribs increase the heat dissipation area, which can improve the heat dissipation of the LED lamp.
  • the thickness of the heat sink bottom plate gradually decreases from the center to the edge, so that the heat generated by the heat source can be radiated from the middle to the periphery, which is favorable for heat conduction.
  • the radiator base plate can also be provided with a plurality of openings corresponding to the LED single lamps, which can increase air convection and further improve the heat dissipation effect.
  • the relevant parameters of the LED light radiator can be designed to further improve
  • the heat dissipation effect of the LED light radiator mainly include the rib pitch d, the average thickness m of the ribs, the average height H of the ribs, the length of the ribs 1, and the thickness ⁇ of the heat sink bottom plate.
  • Natural convection requires a certain rib spacing to meet the requirements of natural convection, otherwise the heat dissipation between the ribs will be affected by the vortex of heat. When forced convection, the rib spacing can be smaller.
  • the ANSYS software simulation can be used to verify the influence of the fin spacing d on the maximum temperature of the LED lamp radiator.
  • the set environmental parameters are: ⁇ Natural convection mode, convective heat transfer coefficient is 7.01W/M2.K; Ambient temperature is 25 °C; The heat flux density of the radiator is 1250W/M 2 ;
  • the LED lamp radiator is made of aluminum extrusion or die-casting.
  • Figure 5 shows the relationship between the maximum temperature of the LED lamp heat sink and the rib spacing d.
  • the rib spacing d decreases, the number of ribs increases, increasing the heat dissipation surface area, so the maximum temperature of the LED lamp heat sink should theoretically be lower and lower.
  • the maximum temperature decrease of the LED lamp heat sink is gradually flattened, so the pitch of the ribs is not as small as possible, and Need to choose the right spacing.
  • the rib spacing d may have a value of 3.3-4.5 mm.
  • Natural convection requires a certain rib thickness to increase the heat storage capacity of the LED lamp radiator and The buffering effect on the heat flow increases the heat capacity; when forced convection, the thickness of the ribs can be smaller.
  • the ANSYS software simulation can be used to verify the effect of the average thickness m of the ribs on the maximum temperature of the LED lamp radiator.
  • the set environmental parameters are: ⁇ natural convection, convection heat transfer coefficient is
  • LED lamp heat sink is made of aluminum extrusion or die-casting.
  • Figure 6 shows the relationship between the maximum temperature of the LED lamp heat sink and the average thickness m of the rib. It can be seen from Fig. 6 that when the value of m is small, the change of the maximum temperature of the LED lamp heat sink is not very obvious; when m is gradually increased, the maximum temperature of the LED lamp radiator is the lowest when it is increased to 2.56 mm; At the same time, the maximum temperature of the LED lamp radiator gradually rises because the heat dissipation area gradually decreases as the thickness of the rib increases. Therefore, it is necessary to select a suitable rib thickness m.
  • the average thickness m of the ribs may be 2.0-2.7 mm.
  • the height of the ribs can be large, but it is limited by the shape of the heat sink.
  • the increase in the average height H of the ribs has a large effect on the natural convection heat loss.
  • the average height H of the ribs does not exceed 3 to 4 times the distance d of the ribs. Otherwise, the arrangement density of the ribs is relatively large, which ultimately affects the heat reflow.
  • the height of the ribs is generally as high as possible without affecting the heat backflow, which increases the heat dissipation surface area.
  • the average height H of the ribs may be 3d - 4d. Specifically, the average height H of the ribs may be 6.5-9.0mm.
  • the length of the rib is generally determined according to the volume shape of the LED lamp heat sink.
  • the rib length 1 in order to achieve a better heat dissipation effect, can satisfy the following formula:
  • I " 18 , ⁇ d ⁇ 6.5 the specific value of 1 can be 40-50mm.
  • the thickness of the heat sink base plate When designing the thickness of the heat sink base plate, if the heat sink base plate is too thin, the thermal resistance can be reduced, but the heat storage effect is not good, and the heat sink design needs to take into account the steady-state buffering action of the heat flow to combat the transient heat load. If the heat sink base plate is too thick, the thermal resistance is large, and the weight and cost of the heat sink are increased. Therefore, the thickness of the heat sink base plate should be moderate.
  • the ANS YS software simulation can be used to verify the influence of the average thickness C of the radiator base plate on the maximum temperature of the LED lamp radiator.
  • the set environmental parameters are: ⁇ Natural convection mode, convective heat transfer coefficient is 7.01W/M2.K; Environment The temperature is 25 °C; the heat flux density of the radiator is 1250W/M 2 ; The LED lamp radiator is made of aluminum extrusion or die-casting.
  • Figure 7 shows the relationship between the maximum temperature of the LED lamp heat sink and the average thickness C of the heat sink base. It can be seen that the maximum temperature change is not 4 ⁇ when the heat sink bottom plate is thin, and the LED is 5 when C is 5 mm. The maximum temperature of the lamp radiator is the lowest, and when the C is gradually increased, the maximum temperature of the LED lamp radiator gradually increases due to the gradual increase of the thermal resistance. Therefore, the heat sink base plate needs to choose the proper thickness.
  • the average thickness C of the heat dissipation substrate may be 2 - 3 of the average thickness m of the ribs. Times.
  • the value of specific C can be 4.5-5.8mm.
  • the average height H and the average thickness m of the ribs can be determined according to the requirements for heat transfer efficiency and heat dissipation surface area. The higher the ribs, the thinner the ribs will heat up to the top of the ribs; the thicker and shorter the ribs will reduce the heat dissipation surface area.
  • the average height H and the average thickness m of different ribs can be selected according to different average thicknesses of the radiator base plate C, as shown in Table 1:
  • the average thickness C of the heat sink base plate in the embodiment of the present invention May be 4.8-5.5mm; inter-major d may be 3.5-4mm; rib average thickness m may be 2.5-2.7mm; rib average height H may be 7-8.96mm; rib length 1 may be 40-46mm; The number of ribs N may be 16, 18 or 20.
  • the experimental environmental parameters are: ⁇ Natural convection mode, convective heat transfer coefficient is 7.01W /M2.K; The ambient temperature is 25 °C; the LED single lamp heat flux density is 13121.82W/M 2 , and the heat sink heat flux density is 1250W/ M 2 .
  • the LED lamp pin temperature is up to 53.379 °C, and the LED lamp heatsink surface temperature is up to 50.684 °C; when the LED lamp heat sink is made by die casting The LED lamp pin temperature is 53.779 ° C, and the LED lamp heat sink surface temperature is 50.888 ° C.
  • the heat sink of the LED lamp usually does not have a bottom plate, and the number of ribs disposed on the heat sink body is relatively large (30-45), and the spacing between the ribs is relatively small (1.0-2.0 mm), and the ribs are relatively small. Short (average height H is generally 2.5-5.0mm) and ribs are shorter ( 15-35mm).
  • the above parameter design affects the heat storage effect of the heat sink and the steady state buffer of the heat flow, so that the heat dissipation effect of the LED lamp is not good.
  • the measured pin temperature of the existing LED lamp with a total power of 6W is about 70 °C.
  • the surface temperature of the heat sink is 60 ° C:. According to the above data, it can be seen that the LED lamp heat sink of the present invention has a remarkable heat dissipation effect.
  • the embodiment of the invention further provides an LED lamp comprising an LED lamp heat sink as shown in Figures 1-4 and at least one LED single lamp located in the LED lamp heat sink.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

一种LED灯散热器及具有该散热器的LED灯具。该LED灯散热器包括:中空的散热器本体(11),用于封闭所述散热器本体(11)的底部的散热器底板(13)。本发明的技术方案能够显著改善LED灯的散热效果。

Description

LED灯散热器及 LED灯具 技术领域
本发明涉及 LED灯散热器及 LED灯具。 背景技术
由于 LED ( Light Emitting Diode , 发光二极管)灯具有高亮度、 节能等 优点, 使得其在越来越多的场合中得到使用。 但是 LED光源的发热量通常 比较大, 这样就需要对 LED光源进行散热来保证其正常工作。 发明内容
本发明实施例提供了一种 LED灯散热器及 LED灯具, 其能够改善 LED 灯的散热效果。
根据本发明实施例,提供一种 LED灯散热器, 其包括: 中空的散热器本 体; 和设置于所述散热器本体的一个端部的散热器底板。
所述散热器本体的外壁上可以设有数个肋片。
优选, 所述散热器底板中心的厚度大于所述散热器底板边缘的厚度。 优选, 所述肋片与所述散热器本体的外壁成一定角度, 所述角度小于 90° , 优选在 80 - 45。 的范围内, 更优选在 80 - 60。 的范围内。
优选, 所述肋片靠近散热器本体的部分的厚度大于所述肋片远离散热器 本体的部分的厚度。 作为替代或补充, 所述肋片靠近散热器底板的部分的高 度可以大于所述肋片远离散热器底板的部分的高度。
根据一些示例, 所述肋片的靠近散热器底板的部分设置有分叉。
所述散热器底板上可以设置有至少一个对应 LED单灯的开孔。
优选, 所述肋片的平均高度 H为肋片之间间距 d的 3 - 4倍。
优选, 所述肋片的平均厚度 m、 肋片的长度 1、 以及肋片之间的间距 d
m_ < _ I _ 75
之间满足: / ~ 18 , d _ 6.5 。 优选, 所述散热器底板的平均厚度 C为所述肋片的平均厚度 m的 2 - 3 倍。
根据一些示例, 所述散热器底板的平均厚度为 4.5-5.8mm。
根据一些示例, 所述肋片之间的间距 d为 3.3-4.5mm, 肋片的平均厚度 m为 2.0-2.7mm,肋片的平均高度 H为 6.5-9.0mm,肋片的长度 1为 40-50mm。
所述肋片的个数 N例如为 16, 18或 20。
根据本发明实施例, 还提供一种 LED灯具, 其包括如上所述的 LED灯 散热器以及位于所述 LED灯散热器内的至少一个 LED单灯。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明实施例的 LED灯散热器的结构示意图;
图 2为本发明实施例的 LED灯散热器的正面示意图;
图 3为本发明实施例的 LED灯散热器的左视图;
图 4为本发明实施例的 LED灯散热器的俯视图;
图 5为 LED灯散热器最高温度与肋片间距之间的关系示意图; 图 6为 LED灯散热器最高温度与肋片厚度之间的关系示意图; 图 7为 LED灯散热器最高温度与散热器底板厚度之间的关系示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
如图 1所示, 本发明实施例的 LED灯散热器包括: 中空的散热器本体 11 , 所述散热器本体 11 的外壁上设有数个肋片 12; 和用于封闭所述散热器 本体 11的底部的散热器底板 13。
进一步地, 如图 1所示, 散热器本体 11可以为圓柱形, 散热器底板 13 可以为圓形。
进一步地, 散热器底板 13中心的厚度大于散热器底板 13边缘的厚度。 散热器底板 13的厚度可以从中心到边缘逐渐递减,或者可以从中心到边缘阶 梯递减。 当热源位于散热器中间时, 这种设计方式最有利于导热, 可以使得 热源产生的热量由中间往四周发散出去。
进一步地, 如图 2所示, 本发明中的肋片 12与散热器本体 11的外壁成 一定角度, 该角度小于 90。 。 即本发明中的肋片设计为斜肋片。 如果釆用斜 弯肋片, 虽然蓄热效果较好, 换热面积较大, 但是阻流系数也会增大, 并且 会提高制作工艺的实现难度。 如果釆用直肋片, 虽然阻流系数小, 但是蓄热 效果不是很好, 换热面积较小。 本发明实施例中肋片形式为斜肋片, 能够保 证较好的蓄热效果、, 足够的换热面积、 以及较小的阻流系数。
进一步地, 如图 2和图 3所示, 肋片 12靠近散热器本体 11的部分的厚 度可以大于肋片 12远离散热器本体 11的部分的厚度。 作为替代或补充, 肋 片 12靠近散热器底板 13的部分的高度可以大于肋片 12远离散热器底板 13 的部分的高度。
优选地, 本发明中的肋片 12的厚度为从肋片底部到肋片顶部逐渐递减, 其中, 肋片底部为肋片 12靠近散热器本体 11 的部分, 肋片顶部为肋片 12 远离散热器本体 11的部分。 由于热量是从下往上传递的,所以在肋片的底部 不仅要考虑散热还要考虑蓄热以防热负荷冲击。 当热量向上散热的同时热量 有所降低,相应地肋片的厚度逐渐降低。或者,肋片 12的厚度还可以为从肋 片底部到肋片顶部阶梯递减。
肋片 12的高度从底端到顶端逐渐递减为 0, 其中, 底端为肋片 12靠近 散热器底板 13的部分,顶端为肋片 12远离散热器底板 13的部分。进一步地, 肋片 12的高度还可以为从底端到顶端阶梯递减为 0。
进一步地, 如图 2所示, 在肋片 12的底端设置有分叉 15, 这样是为了 当热量导入肋片上位时增加散热面积。
进一步地, 如图 4所示, 散热器底板 13上设置有至少一个对应 LED单 灯的开孔 14, 能够增加空气对流, 提高散热效果。
本发明实施例中, LED灯散热器包括散热器本体和散热器底板。 在散热 器本体的外壁上可以设有数个斜肋片。 肋片的厚度从肋片底部到肋片顶部逐 渐递减, 并且或者高度从底端到顶端逐渐递减为 0。 在肋片的底端设置有分 叉, 从而在 LED灯工作时, 产生的热量可以通过传导、 对流、 辐射等方式到 达散热器本体并传递到斜肋片。 斜肋片增加了散热面积, 从而可以改善 LED 灯的散热效果。 另外, 散热器底板的厚度从中心到边缘逐渐递减, 可以使得 热源产生的热量由中间往四周发散出去, 有利于导热。 散热器底板还可以设 置有数个对应 LED单灯的开孔, 能够增加空气对流, 进一步提高散热效果。
此外, 还可以对 LED 灯散热器的相关参数进行设计, 以便进一步改善
LED灯散热器的散热效果。 本发明中涉及的 LED灯散热器的相关参数主要 包括肋片间距 d, 肋片的平均厚度 m, 肋片的平均高度 H, 肋片的长度 1, 散 热器底板的厚度〇。
(一)肋片间距 d
自然对流时需要一定的肋片间距来满足自然对流的要求, 否则会因为热 量的漩涡作用影响肋片之间的相互散热。 强迫对流时, 肋片间距可小一点。
可以通过 ANSYS软件模拟来验证肋片间距 d对 LED灯散热器最高温度 的影响, 设定的环境参数为: 釆用 自然对流方式, 对流换热系数为 7.01W/M2.K; 环境温度为 25 °C ; 散热器热流密度为 1250W/M2; LED灯散热 器为釆用铝挤或压铸加工制成。
如图 5所示为 LED灯散热器最高温度与肋片间距 d之间的关系示意图。 随着肋片间距 d的减小,肋片个数增加,增加了散热表面积所以 LED灯散热 器最高温度理论上应该越来越低。 但从图中可以看出当肋片间距 d减小到一 定程度的时候, 在自然对流情况下, LED灯散热器最高温度减低变化逐渐趋 平, 所以并不是肋片间距越小越好, 而需要选择合适的间距。
本发明实施例中, 为了达到较好的散热效果, 肋片间距 d的取值可以为 3.3-4.5mm。
(二)肋片平均厚度 m
自然对流时需要一定的肋片厚度以增加 LED 灯散热器的蓄热能力以及 对热流的緩冲作用, 增加热容量; 强迫对流时, 肋片的厚度可以小一些。 可以通过 ANSYS软件模拟来验证肋片的平均厚度 m对 LED灯散热器 最高温度的影响, 设定的环境参数为: 釆用自然对流方式, 对流换热系数为
7.01W/M2.K; 环境温度为 25 °C ; 散热器热流密度为 1250W/M2; LED灯散热 器为釆用铝挤或压铸加工制成。
如图 6所示为 LED灯散热器最高温度与肋片平均厚度 m之间的关系示 意图。从图 6中可以看出当 m的值比较小时, LED灯散热器最高温度的变化 并不是很明显; 当 m逐渐增加, 增加到 2.56mm时 LED灯散热器最高温度 最低; 当 m再增加的时候, 因为随着肋片厚度的增加散热面积的逐渐降低导 致 LED灯散热器最高温度逐渐升高。 所以需要选择合适的肋片厚度 m。
本发明实施例中, 为了达到较好的散热效果, 肋片平均厚度 m的取值可 以为 2.0-2.7mm。
(三)肋片平均高度 H
肋片的高度可以较大, 但是会受到散热器体积形状的限制。 肋片平均高 度 H的增加对自然对流热损影响较大。一般情况下肋片平均高度 H不超过肋 片间距 d的 3到 4倍, 否则会导致肋片的排布密度比较大最终影响热回流。 在不影响热回流的情况下, 肋片的高度一般是越高越好, 这样可以增加散热 表面积。 本发明实施例中, 为了达到较好的散热效果, 肋片平均高度 H可以 为 3d - 4d, 具体地, 肋片的平均高度 H的取值可以为 6.5-9.0mm。
(四)肋片长度 1
肋片的长度一般是根据 LED灯散热器的体积形状来决定,本发明实施例 中, 为了达到较好的散热效果, 肋片长度 1可满足以下公式:
m_ < _ I _ 75
I " 18 , ~d ~ 6.5 , 具体 1的取值可以为 40-50mm。
(五)散热底板厚度 C
在设计散热器底板的厚度时, 如果散热器底板太薄虽然可以降低热阻, 但是蓄热效果不好, 而散热器设计时需要考虑到热流的稳态緩冲作用, 来抗 击瞬态热负荷; 而如果散热器底板太厚则热阻较大, 并且会增加散热器的重 量和成本, 因此, 散热器底板的厚度要适中。 可以通过 ANS YS软件模拟来验证散热器底板平均厚度 C对 LED灯散热 器最高温度的影响, 设定的环境参数为: 釆用自然对流方式, 对流换热系数 为 7.01W/M2.K; 环境温度为 25 °C ; 散热器热流密度为 1250W/M2; LED灯 散热器为釆用铝挤或压铸加工制成。
如图 7所示为 LED灯散热器最高温度与散热器底板平均厚度 C之间的 关系示意图, 可以看出在散热器底板较薄时最高温度变化不是 4艮大, 当 C为 5mm的时候 LED灯散热器最高温度最低, 而当 C逐渐增大的时候由于热阻 逐渐增大导致 LED灯散热器最高温度逐渐升高。所以散热器底板需要选择适 当的厚度。
另外, 当肋片较长, 肋片较高的时候底板厚度需要较厚, 本发明实施例 中, 为了达到较好的散热效果, 散热底板平均厚度 C可以为肋片平均厚度 m 的 2 - 3倍。 具体 C的取值可以为 4.5-5.8mm。
(六)其他取值
a,还可以根据自然对流空气流速 Vo决定肋片的平均厚度 m和间距 d, 自 然对流空气流速越小, 肋片越厚, 间距越大; 另外对于自然对流, 肋片间距 要在 4mm以上。 具体可以在 V0=lm/s时, 选取 d=4.2mm, m=1.65mm; 在 Vo=0.5m/s时, 选取 d=5mm, m>1.65mm。
b,可以根据对传热效率和散热表面积的需要决定肋片的平均高度 H和平 均厚度 m。 肋片越高越薄会使肋片传热到肋片顶部能力变弱; 肋片越厚越矮 会使散热表面积减少。
c,可以根据 LED灯的散热功率 Q来决定散热器底板的平均厚度 C,散热 功率 Q和散热器底板的平均厚度 C之间的关系为: C=7 lgQ-6。
d, 可以根据不同的散热器底板平均厚度 C选取不同的肋片的平均高度 H和平均厚度 m, 如表 1所示:
表 1
Figure imgf000008_0001
综合上述设计原则, 优选地, 本发明实施例中散热器底板的平均厚度 C 可以为 4.8-5.5mm; 间 巨 d 可以为 3.5-4mm; 肋片平均厚度 m 可以为 2.5-2.7mm; 肋片平均高度 H可以为 7-8.96mm; 肋片长度 1可以为 40-46mm; 肋片个数 N可以为 16, 18或 20。
以总功率在 6 W以下的 LED灯为例, 对以上述参数制作出的 LED灯散 热器的散热效果进行验证, 其中实验的环境参数为: 釆用自然对流方式, 对 流换热系数为 7.01W/M2.K; 环境温度为 25 °C ; LED 单灯热流密度为 13121.82W/M2,散热器热流密度为 1250W/ M2。当 LED灯散热器为釆取铝挤 加工制作出时, LED灯引脚温度最高为 53.379 °C , LED灯散热器表面温度最 高为 50.684 °C ; 当 LED灯散热器为釆取压铸加工制作时, LED灯引脚温度 为 53.779°C , LED灯散热器表面温度为 50.888 °C。
现有技术中, LED灯的散热器通常不设置底板, 散热器本体上设置的肋 片数目比较多(30-45 ), 肋片之间的间距比较小( 1.0-2.0mm ), 肋片较矮(平 均高度 H—般为 2.5-5.0mm ), 肋片也较短( 15-35mm )。 上述参数设计影响 了散热器的蓄热效果和热流的稳态緩冲,使得 LED灯的散热效果不佳,一般 现有的总功率为 6W的 LED灯的实测引脚温度为 70°C左右, 散热器表面温 度为 60°C:。 根据以上数据可以看出本发明的 LED灯散热器散热效果显著。
本发明实施例还提供了一种 LED灯具, 包括如图 1-4所示的 LED灯散 热器以及位于该 LED灯散热器内的至少一个 LED单灯。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明所述原理的前提下, 还可以作出若干改进和 润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权利要求书
1. 一种 LED灯散热器, 其中, 包括:
中空的散热器本体; 和
设置于所述散热器本体的一个端部的散热器底板。
2. 根据权利要求 1所述的 LED灯散热器, 其中, 所述散热器本体的外 壁上设有数个肋片。
3. 根据权利要求 2所述的 LED灯散热器, 其中, 所述散热器底板中心 的厚度大于所述散热器底板边缘的厚度。
4. 根据权利要求 2或 3所述的 LED灯散热器, 其中, 所述肋片与所述 散热器本体的外壁成一定角度, 所述角度小于 90° , 优选在 80-45。 的范 围内, 更优选在 80-60。 的范围内。
5. 根据权利要求 2-4中任一项所述的 LED灯散热器, 其中, 所述肋片 靠近散热器本体的部分的厚度大于所述肋片远离散热器本体的部分的厚度。
6. 根据权利要求 2 - 5中任一项所述的 LED灯散热器, 其中, 所述肋片 靠近散热器底板的部分的高度大于所述肋片远离散热器底板的部分的高度。
7. 根据权利要求 2-6中任一项所述的 LED灯散热器, 其中, 所述肋片 的靠近散热器底板的部分设置有分叉。
8. 根据权利要求 2-7中任一项所述的 LED灯散热器, 其中, 所述散热 器底板上设置有至少一个对应 LED单灯的开孔。
9. 根据权利要求 2- 8中任一项所述的 LED灯散热器, 其中, 所述肋片 的平均高度 H为肋片之间间距 d的 3 - 4倍。
10. 根据权利要求 2-9中任一项所述的 LED灯散热器, 其中, 所述肋 片的平均厚度 m、 肋片的长度 1、 以及肋片之间的间距 d之间满足:
m_< _ I _ 75
Τ~Ϊ8 , _"^?。
11. 根据权利要求 2- 10中任一项所述的 LED灯散热器, 其中, 所述散 热器底板的平均厚度 C为所述肋片的平均厚度 m的 2 - 3倍。
12. 根据权利要求 2- 11中任一项所述的 LED灯散热器, 其中, 所述散 热器底板的平均厚度 C为 4.5-5.8mm。
13. 根据权利要求 2 - 12中任一项所述的 LED灯散热器, 其中, 所述肋 片之间的间距 d为 3.3-4.5mm, 肋片的平均厚度 m为 2.0-2.7mm, 肋片的平 均高度 H为 6.5-9.0mm, 肋片的长度 1为 40-50mm。
14. 根据权利要求 9-13中任一所述的 LED灯散热器, 其中, 所述肋片 的个数 N为 16, 18或 20。
15. 一种 LED灯具, 包括如权利要求 1-14所述的 LED灯散热器以及位 于所述 LED灯散热器内的至少一个 LED单灯。
PCT/CN2012/083033 2011-12-02 2012-10-16 Led灯散热器及led灯具 WO2013078923A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014543755A JP2015500549A (ja) 2011-12-02 2012-10-16 Ledランプ放熱器及びled照明器具
US13/805,720 US9182082B2 (en) 2011-12-02 2012-10-16 LED-light heatsink and LED lamp
KR1020127031722A KR20130075742A (ko) 2011-12-02 2012-10-16 Led-라이트 히트싱크 및 led 램프
EP12791678.1A EP2789908B1 (en) 2011-12-02 2012-10-16 Led lamp heat radiator and led lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110397971.0 2011-12-02
CN201110397971.0A CN102635839B (zh) 2011-12-02 2011-12-02 Led灯散热器及led灯具

Publications (1)

Publication Number Publication Date
WO2013078923A1 true WO2013078923A1 (zh) 2013-06-06

Family

ID=46620342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083033 WO2013078923A1 (zh) 2011-12-02 2012-10-16 Led灯散热器及led灯具

Country Status (5)

Country Link
EP (1) EP2789908B1 (zh)
JP (1) JP2015500549A (zh)
KR (1) KR20130075742A (zh)
CN (1) CN102635839B (zh)
WO (1) WO2013078923A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031371A1 (ja) * 2014-08-26 2016-03-03 岩崎電気株式会社 ランプ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635839B (zh) * 2011-12-02 2015-04-01 京东方科技集团股份有限公司 Led灯散热器及led灯具
US9182082B2 (en) 2011-12-02 2015-11-10 Boe Technology Group Co., Ltd. LED-light heatsink and LED lamp
JP7300849B2 (ja) * 2019-03-05 2023-06-30 三菱電機株式会社 ヒートシンク及び照明装置
JP7278107B2 (ja) * 2019-03-05 2023-05-19 三菱電機株式会社 ヒートシンク及び照明装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201059520Y (zh) * 2007-06-21 2008-05-14 叶华 Led灯泡散热座
CN101210664A (zh) * 2006-12-29 2008-07-02 富准精密工业(深圳)有限公司 发光二极管灯具
US20080175003A1 (en) * 2007-01-22 2008-07-24 Cheng Home Electronics Co., Ltd. Led sunken lamp
CN201302141Y (zh) * 2008-09-18 2009-09-02 马家湛 一种带散热罩的发光二极体灯具
CN201606843U (zh) * 2009-12-29 2010-10-13 天津工大海宇半导体照明有限公司 一种led灯具的散热结构
US20100259932A1 (en) * 2009-04-10 2010-10-14 Alex Horng Light emitter with heat-dissipating module
CN201706337U (zh) * 2010-06-08 2011-01-12 浙江捷莱照明有限公司 一种led投射灯
CN201764306U (zh) * 2010-08-03 2011-03-16 深圳市品尚光电有限公司 一种五金冲压led球泡灯
JP2011108493A (ja) * 2009-11-17 2011-06-02 Nakamura Mfg Co Ltd 電球形led照明灯の放熱体およびその形成方法
CN102635839A (zh) * 2011-12-02 2012-08-15 京东方科技集团股份有限公司 Led灯散热器及led灯具

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340799A (zh) * 2007-07-06 2009-01-07 北京航空航天大学 流线型电子设备散热器
CN201106831Y (zh) * 2007-11-09 2008-08-27 上海三思电子工程有限公司 Led灯具散热器
US20100242519A1 (en) * 2007-12-07 2010-09-30 Osram Gesellschaft Mit Beschraenkter Haftung Heat sink and lighting device comprising a heat sink
US8324789B2 (en) * 2009-09-25 2012-12-04 Toshiba Lighting & Technology Corporation Self-ballasted lamp and lighting equipment
JP5327472B2 (ja) * 2009-09-25 2013-10-30 東芝ライテック株式会社 電球形ランプおよび照明器具
US20110110095A1 (en) * 2009-10-09 2011-05-12 Intematix Corporation Solid-state lamps with passive cooling
US8829771B2 (en) * 2009-11-09 2014-09-09 Lg Innotek Co., Ltd. Lighting device
CN201795459U (zh) * 2010-09-28 2011-04-13 金松山 一种led灯散热器
CN102003694A (zh) * 2010-12-14 2011-04-06 浙江名芯半导体科技有限公司 一种大功率led灯的拼接式散热装置
CN201925887U (zh) * 2011-01-04 2011-08-10 伍战中 一种高效led散热器
JP3167518U (ja) * 2011-02-14 2011-04-28 群光電能科技股▲ふん▼有限公司 フィン式ledライトカップ型ランプの構造

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210664A (zh) * 2006-12-29 2008-07-02 富准精密工业(深圳)有限公司 发光二极管灯具
US20080175003A1 (en) * 2007-01-22 2008-07-24 Cheng Home Electronics Co., Ltd. Led sunken lamp
CN201059520Y (zh) * 2007-06-21 2008-05-14 叶华 Led灯泡散热座
CN201302141Y (zh) * 2008-09-18 2009-09-02 马家湛 一种带散热罩的发光二极体灯具
US20100259932A1 (en) * 2009-04-10 2010-10-14 Alex Horng Light emitter with heat-dissipating module
JP2011108493A (ja) * 2009-11-17 2011-06-02 Nakamura Mfg Co Ltd 電球形led照明灯の放熱体およびその形成方法
CN201606843U (zh) * 2009-12-29 2010-10-13 天津工大海宇半导体照明有限公司 一种led灯具的散热结构
CN201706337U (zh) * 2010-06-08 2011-01-12 浙江捷莱照明有限公司 一种led投射灯
CN201764306U (zh) * 2010-08-03 2011-03-16 深圳市品尚光电有限公司 一种五金冲压led球泡灯
CN102635839A (zh) * 2011-12-02 2012-08-15 京东方科技集团股份有限公司 Led灯散热器及led灯具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2789908A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031371A1 (ja) * 2014-08-26 2016-03-03 岩崎電気株式会社 ランプ

Also Published As

Publication number Publication date
CN102635839B (zh) 2015-04-01
KR20130075742A (ko) 2013-07-05
EP2789908A1 (en) 2014-10-15
JP2015500549A (ja) 2015-01-05
EP2789908B1 (en) 2017-01-11
CN102635839A (zh) 2012-08-15
EP2789908A4 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
US7492599B1 (en) Heat sink for LED lamp
WO2013078923A1 (zh) Led灯散热器及led灯具
EP2444724B1 (en) LED bulb
TW201413163A (zh) 主動式散熱led照明燈具
WO2023241238A1 (zh) 一种采用铝基平板热管传热的led灯
US20110038165A1 (en) Illumination system
US9182082B2 (en) LED-light heatsink and LED lamp
CN203686968U (zh) 一种led照明灯具的散热器
CN209880587U (zh) 一种散热器
CN110107822B (zh) 散热器件及照明设备
TW201235606A (en) Thermal dissipation structures
TWM345928U (en) LED lights base made of extruded aluminum
CN205048259U (zh) 一种空气自然对流散热的led筒灯
TWM421454U (en) Heat dissipation structure capable of facilitating thermal convection effect
CN202253500U (zh) 一种涡流式散热装置
CN104134740B (zh) 一种结构一体化的led封装结构
CN204922909U (zh) 一种基于烟囱效应的散热器及隧道灯
CN207407088U (zh) 一种玉米灯散热器
CN209622742U (zh) 一种半导体路灯散热装置
CN203642089U (zh) 一种新型led灯杯
JP3168331U (ja) 放熱フィン構造及びその放熱モジュール
TWI360620B (en) Led lamp
CN206320715U (zh) 一种新型灯具散热器
CN109268798A (zh) 一种led散热结构
TWM366025U (en) Improved heat-dissipation fin structure for LED lamp

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20127031722

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012791678

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012791678

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014543755

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13805720

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12791678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE