WO2013077238A1 - 樹脂組成物、そのペレットおよび成形品 - Google Patents

樹脂組成物、そのペレットおよび成形品 Download PDF

Info

Publication number
WO2013077238A1
WO2013077238A1 PCT/JP2012/079597 JP2012079597W WO2013077238A1 WO 2013077238 A1 WO2013077238 A1 WO 2013077238A1 JP 2012079597 W JP2012079597 W JP 2012079597W WO 2013077238 A1 WO2013077238 A1 WO 2013077238A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
polyamide
weight
resin composition
resin
Prior art date
Application number
PCT/JP2012/079597
Other languages
English (en)
French (fr)
Inventor
外川三成
唐澤啓夫
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP12851011.2A priority Critical patent/EP2784122B1/en
Priority to KR1020147015783A priority patent/KR101918799B1/ko
Priority to JP2012553133A priority patent/JP5360310B1/ja
Priority to CN201280057125.7A priority patent/CN103946311B/zh
Priority to US14/355,372 priority patent/US10087327B2/en
Publication of WO2013077238A1 publication Critical patent/WO2013077238A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention provides a resin composition excellent in moldability, a decrease in rigidity and strength at the time of water absorption, which is a weak point of a polyamide resin, and an excellent appearance, its pellets, and a molded product.
  • Polyamide resins have been used in various fields such as automobiles, electrical and electronic engineering, and civil engineering because they exhibit excellent mechanical properties due to the addition of fillers such as glass fibers, fillers such as inorganic fillers, and additives.
  • fillers such as glass fibers, fillers such as inorganic fillers, and additives.
  • many lightweight and highly rigid materials reinforced with carbon fibers have been proposed as metal substitute materials (for example, Patent Document 1).
  • Patent Document 2 a long fiber reinforced polyamide resin composition comprising a specific reinforcing fiber roving and a polyamide resin has also been proposed (Patent Document 2).
  • the long fiber reinforced polyamide resin composition as shown in Patent Document 2 is an excellent machine as compared with a general fiber reinforced polyamide resin manufactured by a twin screw extruder using a reinforced fiber and a thermoplastic resin. Although it shows characteristics, it has been a problem that the appearance is inferior, such as the weld part of the injection molded product is convex.
  • the problem to be solved by the present invention is to provide a resin composition excellent in moldability, a decrease in rigidity and strength at the time of water absorption, which is a weak point of a polyamide resin, and an excellent appearance, its pellets, and its molded product. It is.
  • the resin composition of the present invention has the following constitution. That is, (A) 90 to 50% by weight of a polyamide resin having 7 or more carbon atoms per amide group and not containing an aromatic ring, with respect to 100% by weight in total of component (A) and component (B); (B) (C) a resin composition containing 5 to 75 parts by weight of carbon fiber with respect to 100 parts by weight of a polyamide resin comprising 10 to 50% by weight of a polyamide resin having an aromatic ring and exhibiting crystallinity. is there.
  • the pellet of the present invention has the following configuration. That is, A pellet comprising the above resin composition, wherein the component (C) is arranged with substantially the same length as the length of the pellet in the longitudinal direction, and the pellet length is 3 to 15 mm.
  • the molded product of the present invention has the following configuration. That is, A molded product formed by molding the resin composition or the pellet.
  • the component (A) is preferably at least one polyamide resin selected from the group consisting of polyamide 610, polyamide 612, polyamide 1010, polyamide 11 and polyamide 12.
  • the component (B) is preferably a metaxylylene group-containing polyamide resin.
  • the resin composition of the present invention preferably further contains (D) 2 to 15 parts by weight of a phenolic polymer with respect to 100 parts by weight of the polyamide resin composed of the component (A) and the component (B).
  • the weight average fiber length of carbon fibers in the molded product is preferably 0.2 to 3 mm.
  • the molded product of the present invention is preferably used in an environment where water contacts.
  • the polyamide resin used as the component (A) in the present invention is a polyamide resin having 7 or more carbon atoms per amide group and containing no aromatic ring, and a lactam or amino acid having 7 or more carbon atoms, and Of the combination of a diamine and a dicarboxylic acid, a polyamide resin that satisfies the above amide group concentration requirement and has a structural unit derived from a polyamide-forming component such as a substantially equimolar salt that does not contain an aromatic ring as an essential component It is.
  • polyamide-forming components examples include amino acids such as 11-aminoundecanoic acid and 12-aminododecanoic acid, lactams such as enanthractam and ⁇ -laurolactam, tetramethylenediamine, hexamalediamine, and 2-methylpentamethylene.
  • the polyamide resin used for component (B) in the present invention is a polyamide resin having an aromatic ring in the molecular chain and exhibiting crystallinity.
  • the polyamide resin having an aromatic ring in the molecular chain is derived from a polyamide-forming component such as a substantially equimolar salt containing an aromatic ring in one or both of the combinations of diamine and dicarboxylic acid.
  • the polyamide resin exhibiting crystallinity is a polyamide having a value of heat of fusion greater than 5 J / g measured by a differential scanning calorimeter (DSC) at a heating rate of 20 ° C./min in a nitrogen atmosphere. Resin.
  • polyamide 666T polyhexamethylene adipamide / hexamethylene terephthalamide copolymer
  • polyamide 6T polyhexamethylene terephthalamide
  • polyamide 9T polynonamethylene terephthalamide
  • polyamide 10T polydeca Methylene terephthalamide
  • polyamide MXD6 polymetaxylylene adipamide
  • Particularly useful are polyamides containing a metaxylylene group, among which polyamide MXD6 can be most preferably used.
  • these polyamide resins may be copolymerized with a copolymerization component for the purpose of adjusting the melting point within the range showing crystallinity.
  • the component (A) is a polyamide 610 resin or a polyamide 612 resin
  • the component (B) is a metaxylylene group-containing polyamide resin
  • the polyamide MXD6 Resins are most preferred.
  • the degree of polymerization of the (A) component and (B) component polyamide resin used in the present invention is not particularly limited, but in order to obtain a thin molded product, it is preferably excellent in fluidity during molding, and sulfuric acid relative viscosity ⁇ r is preferably 4.0 or less. Although there is no particular lower limit for ⁇ r, it is generally 2.0 or more.
  • the sulfuric acid relative viscosity ⁇ r is dissolved in 98% sulfuric acid so that the solution concentration becomes 1 g / 100 ml, and then the Ostwald viscometer is used in a constant temperature bath at 25 ° C. The flow rate is measured and expressed as the viscosity ratio of the sample solution to 98% sulfuric acid (flow rate ratio).
  • the polyamide resin used in the present invention contains 90 to 50% by weight of component (A) and 10 to 50% by weight of component (B) with respect to a total of 100% by weight of component (A) and component (B). .
  • component (A) exceeds 90% by weight, the decrease in rigidity at the time of water absorption becomes large, and the height of the weld part of the molded product becomes large, which may be inferior in design.
  • the component (A) is less than 50% by weight, the impact resistance during water absorption may be lowered.
  • the upper limit of the component (A) is more preferably 80% by weight, still more preferably 75% by weight, and the lower limit of the component (A) is more preferably 60% by weight.
  • the carbon fiber used as the component (C) in the present invention is a carbon fiber such as PAN (polyacrylonitrile), pitch, or rayon. Also, metal-coated carbon fibers obtained by coating carbon fibers with metals such as nickel and copper can be used in the present invention.
  • a carbon fiber having a tensile elongation at break of 1.5% or more is preferable.
  • the fiber is difficult to be cut in the molding step, and it is easy to increase the fiber length in the resin composition and the molded product.
  • carbon fibers having a tensile elongation at break of 1.7% or more, more preferably 1.9% or more are more preferably used. Is good.
  • the carbon fiber is a PAN-based carbon fiber that has an excellent balance between strength and elastic modulus.
  • these carbon fibers are surface-treated with a silane coupling agent, an aluminate coupling agent, a titanate coupling agent, or the like, a urethane resin, an epoxy resin, a polyester resin, a styrene resin, an olefin resin, It may be subjected to a focusing treatment with an amide resin, an acrylic resin, a phenol polymer, a liquid crystal resin, alcohol or a water-soluble resin.
  • the resin composition of the present invention contains 5 to 75 parts by weight of component (C) with respect to 100 parts by weight of the polyamide resin composition composed of components (A) and (B). If the amount is less than 5 parts by weight, the rigidity and impact property may be inferior. If the amount exceeds 75 parts by weight, the fluidity is lowered and the thin-wall formability may be inferior.
  • the upper limit of component (C) is more preferably 60 parts by weight, still more preferably 55 parts by weight, and the lower limit of component (C) is more preferably 10 parts by weight, still more preferably 15 parts by weight.
  • the resin composition of the present invention further contains (D) a phenolic polymer
  • a phenolic polymer examples include phenol novolak, cresol novolak, octylphenol, phenylphenol, naphthol novolak, phenol aralkyl, naphthol aralkyl, alkylbenzene modified phenol, cashew modified phenol, terpene modified phenol, terpene phenol polymer, and the like.
  • the content of the phenolic polymer is preferably 2 to 15 parts by weight with respect to 100 parts by weight of the polyamide resin composed of the component (A) and the component (B) in terms of mechanical properties and moldability.
  • the heat resistance other than the polyamide resin other than the component (A) and the component (B) and the heat other than the polyamide resin may be used according to the purpose within a range not deteriorating the fluidity, rigidity, impact resistance and appearance.
  • Various stabilizers such as plastic resins, inorganic fillers, antioxidants, ultraviolet absorbers, pigments, dyes, lubricants, plasticizers, and the like can also be added.
  • the component (C) carbon fiber bundle is continuously drawn from the wound body of the component (C) carbon fiber bundle package, and the molten component (A) and component (A) B) Introduced into an impregnation die filled with, and a method of producing by a drawing method, melt kneading component (A), component (B) and chopped component (C) into a single screw extruder or twin screw extruder
  • the component (A) and the component (B) are melted by using a single-screw extruder or a twin-screw extruder.
  • the carbon fiber bundle of component (C) can be continuously drawn out from the wound body, introduced, melt kneaded, and the like.
  • the component (A) and the component (B) may be previously melt-kneaded with an extruder or the like.
  • the component (D) is pre-impregnated into the component (C), and this form makes it possible to exhibit the thin wall formability most efficiently.
  • the resin composition of the present invention has the form described in JP-A-10-138379, or the production of the resin composition of the present invention by the production method of the publication is the most preferred form.
  • the form of the resin composition of the present invention preferably takes the form of long fiber pellets.
  • the long fiber pellet as used in the present invention includes a pellet in which the component (C) is arranged substantially parallel to the longitudinal direction of the pellet and the length of the component (C) in the pellet is equal to or longer than the pellet length. Is.
  • positioning in a pellet is not specifically limited, It is also preferable that it is a pellet formed by arrange
  • a bundle of carbon fibers of component (C) is passed through a coating die filled with molten resin of component (A) and component (B) attached to the tip of the extruder.
  • a method of impregnating the resin of component (A) and component (B) into a bundle of carbon fibers of component (C) by operations such as squeezing with a bar, repeating widening and focusing, applying pressure or vibration There is a method of obtaining a wire-like gut by passing through a coating die for carbon fiber bundle wire coating of C) and extrusion coating the molten resin of component (A) and component (B). By cutting this gut into a predetermined length with a strand cutter, a long fiber pellet having a carbon fiber length substantially the same as the pellet length is obtained.
  • the pellet shape of the present invention is not particularly limited, but is preferably a cylindrical shape having a diameter of 1 to 5 mm and a pellet length of 3 to 15 mm. If the diameter is 1 mm or more, a cylindrical pellet can be easily produced. On the other hand, if the diameter is 5 mm or less, it is excellent in the contactability to the molding machine and can be stably supplied to the molding machine. Moreover, if the pellet length is 3 mm or more, the carbon fiber length is substantially 3 mm or more, and the rigidity and impact resistance can be further improved. On the other hand, if the pellet length is 15 mm or less, it is excellent in the contactability to the molding machine and can be stably supplied to the molding machine.
  • the diameter of a pellet refers to the long diameter of the cut cross section, and can be measured with a ruler.
  • the pellet length refers to the length in the direction perpendicular to the cut cross section, and can be measured with a ruler.
  • a molded product can be obtained by molding the resin composition of the present invention or pellets thereof by a method such as injection molding, extrusion molding or compression molding.
  • the injection molding is particularly suitable in that it can be mass-produced with high dimensional accuracy even for a molded product having a complicated shape such as a molded product having a weld or a hinge part or an insert molded product, or a thin molded product.
  • the resin composition of the present invention may be direct injection molding in which each component is directly supplied to a molding machine to obtain a molded product.
  • the preferable molding conditions tend to be to lower the back pressure, to increase the nozzle diameter, to increase the screw groove depth, to reduce the taper angle, and to reduce the compression ratio in the injection molding machine. It is also necessary to increase the sprue diameter, runner diameter, and gate diameter in the molding die. By taking these measures, the weight average fiber length of the component (C) can be kept long.
  • the weight average fiber length of the component (C) in the molded product is preferably 0.2 to 3 mm. If the weight average fiber length of the component (C) in the molded product is 0.2 mm or more, the impact resistance can be further improved, and if it is 3 mm or less, the appearance of the weld part is further improved, and the design surface Excellent.
  • a means for setting the weight average fiber length of the component (C) in the molded product to 0.2 to 3 mm for example, increasing the fiber length of the component (C) in the pellet used for molding, etc. For example, it is preferable to use the above-mentioned long fiber pellets.
  • the weight average fiber length is obtained by dissolving the obtained molded product with a solvent in which, for example, a polyamide resin is dissolved, and then filtering, and observing the remaining carbon fiber with an optical microscope with a magnification of 10 times. Measure the length of 1,000 pieces, classify the measured values into 11 classes obtained from the Sturges formula generally known in statistics, and calculate the weight average length from the center value and frequency of the class It can ask for. If the polyamide resin is difficult to dissolve in the solvent, use an electric furnace or the like to incinerate the polyamide resin at a temperature at which it ashes (for example, 500 ° C.), and then observe the remaining carbon fiber with an optical microscope with a magnification of 10 times. Similarly, the weight average length may be calculated.
  • the weight average fiber length L w is the fiber length L i, the density [rho i, the number of fibers having a fiber diameter r i When N i, can be calculated by the following equation.
  • L w ⁇ (N i ⁇ ⁇ ⁇ r i 2 ⁇ L i 2 ⁇ ⁇ i ) / ⁇ (N i ⁇ ⁇ ⁇ r i 2 ⁇ L i ⁇ ⁇ i )
  • the weight average fiber length L w may be calculated by the following equation.
  • Chopped carbon fiber Carbon fiber TV14-006 manufactured by Toray Industries, Inc. (diameter 7 ⁇ m, fiber length 6 mm, density 1,800 kg / m 3 ) Terpene phenol polymer: Yashara Chemical Co., Ltd.
  • test piece for density measurement (4) test piece for evaluation of flexural modulus, and (5) test piece for evaluation of Charpy impact strength
  • each material was manufactured by Nissei Plastic Industries Co., Ltd. injection molding machine NEX1000. And manufactured by injection molding according to ISO1874-2 and ISO3167.
  • (3) density, (4) flexural modulus, and (5) Charpy impact strength were measured by the following methods.
  • (3) The test piece for density measurement was enclosed in an aluminum bag immediately after molding and stored, and subjected to an absolute dry evaluation for evaluation immediately after removal.
  • Test specimens for flexural modulus evaluation and (5) Charpy impact strength test specimens are stored in aluminum bags immediately after molding and stored in dry conditions, and evaluated directly after taking out, and direct sunlight The sample was subjected to water absorption evaluation after being allowed to stand for 180 days in a room temperature of 23 ° C. and a relative humidity of 50%.
  • Fluidity A 200 mm ⁇ 200 mm ⁇ 1 mm square plate mold (fan gate) was used, and the lower limit pressure was evaluated. Filling is the first condition, but the lower the injection pressure, the better the fluidity, the wider the range of molding conditions and the thinner the molded product.
  • Example 1 Polyamide 610 and polyamide MXD6 premixed in the proportions shown in Table 1 are extruded in a melted state in a crosshead die attached to the tip of a single-screw extruder at 260 ° C. and simultaneously with carbon fiber.
  • the carbon fiber ratio was adjusted by adjusting the extrusion amount of the polyamide resin, and was 43 parts by weight with respect to 100 parts by weight of the mixed polyamide resin. After cooling, the strand was cut into a length of 7 mm with a cutter to obtain a pellet.
  • Example 1 While taking up the carbon fiber at a constant rate, on a roll heated to 130 ° C., the terpene phenol polymer was continuously applied to the carbon fiber at a ratio shown in Table 1, and further heated to 180 ° C., The eight rolls having a diameter of 50 mm, which are freely rotated by bearings and arranged in a straight line, were alternately passed above and below. By this operation, the terpene phenol polymer was impregnated to the inside of the fiber bundle of carbon fibers.
  • any of the materials in Examples 1 to 7 could be molded into a square plate of 200 mm ⁇ 200 mm ⁇ 1 mm, but from the comparison between Example 1 and Example 4, it was better to contain a terpene phenol polymer. Excellent fluidity. In addition, each material has a low weld height, excellent appearance, high bending elastic modulus when dry, high Charpy impact strength, and no deterioration in physical properties even during water absorption. did it.
  • the test piece for evaluating Charpy impact strength prepared in Example 4 was placed in an electric furnace at 500 ° C., and after the resin component was sufficiently ashed, it was observed with a microscope and 1,000 carbon fibers randomly extracted. The fiber length was measured, and the weight average fiber length was calculated by the following formula under the premise that the fiber diameter and density were constant.
  • L w ⁇ (N i ⁇ L i 2 ) / ⁇ (N i ⁇ L i )
  • L w weight average fiber length
  • L i fiber length
  • N i is the number of fibers having a fiber length L i.
  • Comparative Example 1 had a high weld height and the flexural modulus decreased upon water absorption, and Comparative Example 2 exhibited a reduced Charpy impact strength upon water absorption.
  • Comparative Example 6 the weld height was high, and both the flexural modulus and the Charpy impact strength were reduced during water absorption. It turned out that an effect expresses because the component (A) and component (B) ratio which are the components of this invention, and a component (C) exist in a specific range.
  • Comparative Example 4 it was found that the weld height was high, the flexural modulus at the time of water absorption and the Charpy impact strength were lowered, and the effect was manifested by the combination of the characteristic polyamide resins.
  • Examples 8 to 11, Comparative Examples 7 to 12 Using Nippon Steel Corporation's twin screw extruder TEX-44 ⁇ II, polyamide resin was supplied from the main feeder and chopped carbon fiber was supplied from the side feeder so that the ratio shown in Table 2 was reached. After melt-kneading at a temperature of 0 ° C., the mixture was cooled in a water bath and cut into a length of 3 mm with a cutter to obtain a pellet having a diameter of 3.0 mm. Here, the pressure was reduced from a vent port provided in the middle of the extruder to remove moisture.
  • the obtained pellets were dried in a vacuum at 80 ° C. for 5 hours or more, and then evaluated by the above method.
  • the evaluation results are shown in Table 2.
  • the pellets obtained in Example 9 were placed in an electric furnace at 500 ° C., and the resin component was sufficiently incinerated, followed by observation with a microscope and 1,000 carbon fibers randomly extracted. When the length was measured and the weight average fiber length was calculated on the assumption that the fiber diameter and density were constant, it was 0.3 mm.
  • any of the materials of Examples 8 to 11 had a low weld height, excellent appearance, and maintained substantially the same flexural modulus and Charpy impact strength as those at the time of absolute dryness even at the time of water absorption.
  • the weight average fiber length of the carbon fiber in a molded article was computed similarly to Example 4 using the pellet obtained in Example 9, it was 0.2 mm.
  • Comparative Examples 7, 9, and 10 the flexural modulus decreased upon water absorption, and in Comparative Example 8, the Charpy impact strength was inferior. Further, Comparative Example 11 was inferior in flexural modulus and Charpy impact strength, and Comparative Example 12 was inferior in fluidity because it was impossible to form a 200 mm ⁇ 200 mm ⁇ 1 mm square plate. It turned out that an effect expresses because the component (A) and component (B) ratio which are the components of this invention, and a component (C) exist in a specific range.
  • a resin composition containing a specific polyamide resin at a specific ratio and containing a specific amount of carbon fiber has an excellent appearance, rigidity at the time of absolute dryness and water absorption, and impact resistance. It had sex.
  • the polyamide resin composition according to the present invention is useful in a wide range of fields such as electrical and electronic equipment such as OA equipment and home appliances, automobile members, sports equipment, toys, and in particular, the performance of the resin composition of the present invention is utilized. It can be suitably used in applications that are used in an environment where water comes into contact.

Abstract

 成分(A)と成分(B)の合計100重量%に対し、(A)アミド基1個当たりの炭素原子数が7以上で、且つ芳香族環を含まないポリアミド樹脂90~50重量%と、(B)芳香族環を有し、且つ結晶性を示すポリアミド樹脂10~50重量%からなるポリアミド樹脂100重量部に対し、(C)炭素繊維5~75重量部を含有する樹脂組成物。 成形性に優れ、ポリアミド樹脂の弱点である吸水時の剛性、強度の低下が小さく、外観に優れた樹脂組成物、そのペレット、その成形品を提供する。

Description

樹脂組成物、そのペレットおよび成形品
 本発明は、成形性に優れ、ポリアミド樹脂の弱点である吸水時の剛性、強度の低下が小さく、外観に優れた樹脂組成物、そのペレットおよび成形品を提供するものである。
 ポリアミド樹脂は、ガラス繊維に代表される補強材や無機フィラーなどの充填材、添加剤の配合によって優れた機械的性質が発現することから、これまで自動車、電気電子、土木建築など多分野で使用され、近年では、金属代替材料として、炭素繊維で強化された軽量で高剛性な材料も多く提案されている(例えば、特許文献1)。また、さらに高温時の機械的強度を向上するために、特定の強化繊維ロービングとポリアミド樹脂からなる長繊維強化ポリアミド樹脂組成物も提案されている(特許文献2)。
特開2006-1965号公報 特開2010-202759号公報
 上記先行文献により提案された材料においても、ポリアミド樹脂の吸水する性質と吸水による物性低下は改善できず、長期間課題となっていた。他方、特許文献2に示されるような長繊維強化ポリアミド樹脂組成物は、強化繊維と熱可塑性樹脂を用いて2軸押出機で製造される一般的な繊維強化ポリアミド樹脂に比較して優れた機械特性を示すが、射出成形品のウェルド部が凸になるなど外観面に劣ることが課題となっていた。
 本発明が解決しようとする課題は、成形性に優れ、ポリアミド樹脂の弱点である吸水時の剛性、強度の低下が小さく、外観に優れた樹脂組成物、そのペレット、その成形品を提供することである。
 上記の課題を解決するため本発明の樹脂組成物は、次の構成を有する。すなわち、
 成分(A)と成分(B)の合計100重量%に対し、(A)アミド基1個当たりの炭素原子数が7以上で、且つ芳香族環を含まないポリアミド樹脂90~50重量%と、(B)芳香族環を有し、且つ結晶性を示すポリアミド樹脂10~50重量%からなるポリアミド樹脂100重量部に対し、(C)炭素繊維5~75重量部を含有する樹脂組成物、である。
 本発明のペレットは、次の構成を有する。すなわち、
 上記樹脂組成物からなるペレットであって、成分(C)が、ペレットの長尺方向の長さと実質的にほぼ同一長さで配列され、ペレット長さが3~15mmであるペレット、である。
 本発明の成形品は、次の構成を有する。すなわち、
 上記樹脂組成物または上記ペレットを成形してなる成形品、である。
 本発明の樹脂組成物は、前記成分(A)が、ポリアミド610、ポリアミド612、ポリアミド1010、ポリアミド11およびポリアミド12からなる群より選ばれる1種以上のポリアミド樹脂であることが好ましい。
 本発明の樹脂組成物は、前記成分(B)が、メタキシリレン基含有ポリアミド樹脂であることが好ましい。
 本発明の樹脂組成物は、成分(A)と成分(B)からなるポリアミド樹脂100重量部に対し、さらに(D)フェノール系重合体2~15重量部を含有することが好ましい。
 本発明の成形品は、成形品中の炭素繊維の重量平均繊維長が0.2~3mmであることが好ましい。
 本発明の成形品は、水が接触する環境下で使用されることが好ましい。
 本発明により、成形性に優れ、ポリアミド樹脂の弱点である吸水時の剛性、強度の低下が小さく、外観に優れた樹脂組成物、そのペレット、その成形品を得ることが可能となる。
 以下に、本発明について具体的に説明する。
 本発明で成分(A)として用いるポリアミド樹脂とは、アミド基1個当たりの炭素原子数が7以上で、且つ芳香族環を含まないポリアミド樹脂であり、炭素数7以上のラクタムまたはアミノ酸、およびジアミンとジカルボン酸との組み合わせのうち、上記アミド基濃度の要件を満たし、且つ芳香族環を含まない実質的当モル塩などのポリアミド形成性成分から誘導される構造単位を必須成分とするポリアミド樹脂である。
 これらのポリアミド形成性成分の例としては、11-アミノウンデカン酸、12-アミノドデカン酸などのアミノ酸、エナントラクタム、ω-ラウロラクタムなどのラクタム、テトラメチレンジアミン、ヘキサメレンジアミン、2-メチルペンタメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどの脂肪族または脂環族のジアミン、およびアジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの脂肪族または脂環族のジカルボン酸が挙げられる。この中でも特に有用なポリアミド樹脂の具体的な例としては、ポリアミド610、ポリアミド612、ポリアミド1010、ポリアミド11、ポリアミド12およびこれらの混合物、共重合体などを挙げることができる。
 本発明で成分(B)に用いられるポリアミド樹脂は、分子鎖中に芳香環を有し、且つ結晶性を示すポリアミド樹脂である。ここで、分子鎖中に芳香環を有するポリアミド樹脂は、例えば、ジアミンとジカルボン酸との組み合わせのうち、一方あるいは両方に芳香環を含有する実質的等モル塩などのポリアミド形成性成分から誘導される構造単位を必須成分とするポリアミド樹脂である。また、ここで結晶性を示すポリアミド樹脂とは、示差走査熱量計(DSC)を用いて窒素雰囲気下で20℃/分の昇温速度により測定した融解熱量の値が、5J/gより大きいポリアミド樹脂である。
 これらの例としては、ポリアミド666T(ポリヘキサメチレンアジパミド/ヘキサメチレンテレフタルアミド共重合体)、ポリアミド6T(ポリヘキサメチレンテレフタルアミド)、ポリアミド9T(ポリノナメチレンテレフタルアミド)、ポリアミド10T(ポリデカメチレンテレフタルアミド)、ポリアミドMXD6(ポリメタキシリレンアジパミド)などが挙げられ、特に有用なのはメタキシリレン基含有ポリアミドであり、その中でもポリアミドMXD6が最も好適に使用できる。また、これらのポリアミド樹脂は、結晶性を示す範囲内で、融点調整などの目的のため共重合成分で共重合されていてもよい。
 また、本発明で使用されるポリアミド樹脂の最良な組み合わせは、成分(A)がポリアミド610樹脂またはポリアミド612樹脂、成分(B)がメタキシリレン基含有ポリアミド樹脂であり、成分(B)の中でもポリアミドMXD6樹脂が最も好ましい。
 本発明で使用される(A)成分、(B)成分のポリアミド樹脂の重合度は特に制限はないが、薄肉成形品を得るためには成形時の流動性に優れることが好ましく、硫酸相対粘度ηrが4.0以下であることが好ましい。ηrの下限は特にないが、一般的に2.0以上である。ここで硫酸相対粘度ηrは、JIS K6920-2(2000)に示されるとおり、98%硫酸で溶液濃度が1g/100mlになるように溶かした後、25℃の恒温槽内でオストワルド粘度計を用いて流下速度を測定し、98%硫酸に対する試料溶液の粘度比(流下秒数比)で表される。
 本発明で使用されるポリアミド樹脂は、成分(A)と成分(B)の合計100重量%に対して、成分(A)90~50重量%と成分(B)10~50重量%を含有する。成分(A)が90重量%を越えると、吸水時の剛性の低下が大きくなることや成形品のウェルド部の高さが大きくなり意匠面に劣ることがある。また、成分(A)が50重量%未満では吸水時の耐衝撃性が低下することがある。成分(A)の上限は、より好ましくは80重量%、さらに好ましくは75重量%であり、成分(A)の下限は、より好ましくは60重量%である。
 本発明で成分(C)として用いる炭素繊維は、PAN(ポリアクリロニトリル)系、ピッチ系、レーヨン系などの炭素繊維である。また、炭素繊維にニッケルや銅などの金属を被覆した金属被覆炭素繊維なども本発明で使用できる。
 有用な炭素繊維としては、引張破断伸度1.5%以上の炭素繊維が好ましい。引張破断伸度が1.5%以上である場合、成形工程で繊維が切断され難く、樹脂組成物、およびその成形品中の繊維長さを大きくすることが容易となる。より高い力学的特性(特に衝撃強度)を付与するためには、より好ましくは引張破断伸度が1.7%以上、更に好ましくは引張破断伸度が1.9%以上の炭素繊維を用いるのがよい。本発明で使用する炭素繊維の引張破断伸度に上限はないが、一般的には5%未満である。炭素繊維として更に好ましくは、強度と弾性率とのバランスに優れるPAN系炭素繊維がよい。また、これらの炭素繊維は、シランカップリング剤、アルミネートカップリング剤、チタネートカップリング剤などで表面処理されたり、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、スチレン系樹脂、オレフィン系樹脂、アミド系樹脂、アクリル系樹脂、フェノール系重合体、液晶性樹脂、アルコールまたは水可溶性樹脂などで集束処理されたりしていてもよい。
 本発明の樹脂組成物は、成分(A)と成分(B)からなるポリアミド樹脂組成物100重量部に対し、成分(C)を5~75重量部の範囲で含有する。5重量部未満では剛性、衝撃性が劣ることがあり、75重量部を越えると流動性が低くなるため薄肉成形性が劣ることがある。成分(C)の上限は、より好ましくは60重量部、さらに好ましくは55重量部であり、成分(C)の下限は、より好ましくは10重量部、さらに好ましくは15重量部である。
 本発明の樹脂組成物に更に(D)フェノール系重合体を含有すると、本発明の樹脂組成物を成形する時の薄肉成形性をより高く発現することができるので好ましい。フェノール系重合体としては、例えば、フェノールノボラック、クレゾールノボラック、オクチルフェノール、フェニルフェノール、ナフトールノボラック、フェノールアラルキル、ナフトールアラルキル、アルキルベンゼン変性フェノール、カシュー変性フェノール、テルペン変性フェノール、テルペンフェノール重合体などが挙げられる。フェノール系重合体の含有量は、力学的特性・成形性の面から、成分(A)と成分(B)からなるポリアミド樹脂100重量部に対して、2~15重量部が好ましい。
 また、本発明の樹脂組成物へ、流動性、剛性、耐衝撃性、外観を低下させない範囲で、目的に応じて、成分(A)、成分(B)以外のポリアミド樹脂、ポリアミド樹脂以外の熱可塑性樹脂、無機フィラー、酸化防止剤、紫外線吸収剤などの各種安定剤、顔料、染料、滑剤および可塑剤などを添加することもできる。
 本発明の樹脂組成物は、例えば、成分(C)の炭素繊維束包装体の回巻体から成分(C)の炭素繊維束を連続的に引き出して、融解状態の成分(A)および成分(B)が充満している含浸ダイに導入し、引抜き法により製造する方法、単軸押出機または二軸押出機へ成分(A)および成分(B)とチョップドされた成分(C)を溶融混練して製造する方法、同じく単軸押出機または二軸押出機を使用して、成分(A)および成分(B)が溶融している中へ、成分(C)の炭素繊維束包装体の回巻体から成分(C)の炭素繊維束を連続的に引き出して導入し、溶融混練して製造する方法などで得ることができる。ここで、成分(A)と成分(B)は、予め押出機などで溶融混練してもよい。
 また、成分(D)の好ましい形態としては、成分(D)が成分(C)へ予め含浸されていることであり、該形態により、薄肉成形性を最も効率的に発現することが可能となる。本発明の樹脂組成物は、例えば、特開平10-138379公報に記載されている形態を有すること、あるいは該公報の製造方法によって本発明の樹脂組成物を製造することは最も好ましい形態である。
 本発明の樹脂組成物の形態は、長繊維ペレットの形態をとることが好ましい。本発明でいう長繊維ペレットとは、成分(C)がペレットの長手方向にほぼ平行に配列し、ペレット中の成分(C)の長さがペレット長さと同一もしくはそれ以上であるペレットが含まれるものである。特にペレット中の配置は限定されないが、少なくとも成分(A)および成分(B)を含む樹脂成分が炭素繊維の周囲を被覆するように配置されてなるペレットであることも好ましい。このようなペレットを得る手段としては、成分(C)の炭素繊維の束を押出機の先端に取り付けた成分(A)および成分(B)の溶融樹脂が充満しているコーティングダイの中に通しながら、バーでしごく、拡幅・集束を繰り返す、圧力や振動を加えるなどの操作で成分(C)の炭素繊維の束に成分(A)および成分(B)の樹脂を含浸させる方法や、成分(C)の炭素繊維の束電線被覆用のコーティグダイの中に通し、成分(A)および成分(B)の溶融樹脂を押出被覆させ電線状のガットを得る方法などがある。このガットをストランドカッターで所定の長さにカットすることで、炭素繊維長がペレットの長さと実質的に同一の長繊維ペレットが得られる。
 本発明のペレット形状は、特に限定されるものではないが、直径1~5mm、ペレット長3~15mmの円柱形状であることが好ましい。直径が1mm以上であれば、円柱形状のペレットを容易に製造することができる。一方、直径が5mm以下であれば、成形機へのカミコミ性に優れ、成形機へ安定して供給することができる。また、ペレット長が3mm以上であれば、実質的に炭素繊維長が3mm以上となり、剛性や耐衝撃性をより向上させることができる。一方、ペレット長が15mm以下であれば、成形機へのカミコミ性に優れ、成形機へ安定して供給することができる。ここで、ペレットの直径とは、カットされた断面の長径を指し、物差しで測定することができる。ペレット長は、カットされた断面と垂直方向の長さを指し、物差しで測定することができる。
 本発明の樹脂組成物またはそのペレットを、射出成形、押出成形、圧縮成形などの方法で成形することによって成形品を得ることができる。なかでも射出成形は、ウェルドやヒンジ部を有する成形品やインサート成形品などの複雑な形状の成形品や薄肉成形品であっても、高い寸法精度で量産できる点で特に好適である。
 本発明の樹脂組成物は、各成分を成形機に直接供給し成形品を得る直接射出成形であっても良い。
 射出成形においては、以下の点に配慮して、炭素繊維の過剰な折損を抑制することがより好ましい。すなわち好ましい成形条件の傾向としては、背圧を低くすること、また射出成形機において、ノズル径を太くすること、スクリューの溝深さを深くすること、テーパー角度を小さくすること、圧縮比を低くすること、また成形用金型において、スプルー径、ランナー径、ゲート径を大きくすることなどである。これらの対処を施すことにより、成分(C)の重量平均繊維長を長く保つことができる。
 本発明の成形品において、成形品中の成分(C)の重量平均繊維長は0.2~3mmであることが好ましい。成形品中の成分(C)の重量平均繊維長が0.2mm以上であれば、耐衝撃性をより向上させることができ、3mm以下であれば、ウェルド部の外観がより向上し、意匠面に優れる。ここで、成形品中の成分(C)の重量平均繊維長を0.2~3mmにする手段としては、例えば、成形に使用するペレット中の成分(C)の繊維長を長くすることなどが有効であり、例えば、前述の長繊維ペレットを使用することが好ましい。
 ここで、重量平均繊維長は、得られた成形品を例えばポリアミド樹脂が溶ける溶剤にて溶かした後、濾過を行い、その残さである炭素繊維を倍率10倍の光学顕微鏡にて観察して1,000本の長さを測定し、統計学で一般に知られているスタージェスの公式より求められる11階級にその測定値を分別し、階級の中心値と頻度から重量平均長さを算出することにより求めることができる。また、ポリアミド樹脂が溶剤に溶け難い場合は電気炉等を使用して、ポリアミド樹脂が灰化する温度(例えば500℃)で灰化した後、残った炭素繊維を倍率10倍の光学顕微鏡で観察し、同様に重量平均長さを算出してもよい。ここで、重量平均繊維長Lは、繊維長L、密度ρ、繊維径rを有する繊維の本数をNとすると、次式により計算することができる。
 L=Σ(N×π×r ×L ×ρ)/Σ(N×π×r ×L×ρ
 ここで、繊維径および密度が一定の場合には、重量平均繊維長Lは次式により計算することができる。
 L=Σ(N×L )/Σ(N×L
 本発明における成形品の用途としては、高い剛性、耐衝撃性、良外観が同時に求められるOA機器、家電機器などの電気電子機器、自動車用部材、スポーツ用品、玩具など幅広い分野に有用であり、特に本発明の樹脂組成物の性能が活かされる、水が接触する環境で使用される用途において、好適に使用できる。例えば、ノートパソコン、携帯電話、デジタルスチールカメラ、デジタルビデオカメラ、PDA、ポータブルMDなどの携帯用電気電子機器筐体、自動車外装部品、二輪車部品、登山用具、釣り用具、ゴルフ用具、スキー・スケート用具、水泳用具などに有用である。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明の骨子は以下の実施例のみに限定されるものではない。
[原材料]
 実施例および比較例で使用した原材料は以下に示すとおりである。なお、ポリアミド樹脂はいずれも常法に従い重合したものを使用した。
 ポリアミド樹脂:
 ポリアミド610(硫酸相対粘度ηr(JIS K6920-2 (2000))=2.7)
 ポリアミド612(硫酸相対粘度ηr(JIS K6920-2 (2000))=2.7)
 ポリアミドMXD6(硫酸相対粘度ηr(JIS K6920-2 (2000))=2.1、融解熱量50J/g)
 ポリアミド6(硫酸相対粘度ηr(JIS K6920-2 (2000))=2.7)
 炭素繊維:
 東レ(株)製炭素繊維T700SC-12K-50C(直径7μm、引張伸度2.1%、密度1,800kg/m
 チョップド炭素繊維:
 東レ(株)製炭素繊維TV14-006(直径7μm、繊維長6mm、密度1,800kg/m
 テルペンフェノール重合体:
 ヤスハラケミカル(株)製マイティエースK140(軟化点140℃)
[材料評価方法]
 (1)流動性評価と(2)外観評価用試験片は、各材料を(株)日本製鋼所製射出成形機J350EII-SPにて、シリンダー温度:280℃、金型:80℃、射出時間:10秒、冷却:20秒、射出速度:射出成形機の最大設定値に対して70%、射出圧力:充填下限圧力+1.0MPaの設定条件で、下記形状に射出成形することにより作製した。得られた試験片を用いて、下記方法により(1)流動性および(2)外観を評価した。また、(3)密度測定用試験片、(4)曲げ弾性率評価用試験片および(5)シャルピー衝撃強度評価用試験片は、各材料を日精樹脂工業(株)製射出成形機NEX1000にて、ISO1874-2およびISO3167に従って射出成形することにより作製した。得られた試験片を用いて、下記方法により(3)密度、(4)曲げ弾性率および(5)シャルピー衝撃強度を測定した。なお、(3)密度測定用試験片は、成形後すぐにアルミ袋に封入して保管し、取り出し後すぐに評価する絶乾時評価に供した。(4)曲げ弾性率評価用試験片と(5)シャルピー衝撃強度評価用試験片は、成形後すぐにアルミ袋に封入して保管し、取り出し後すぐに評価する絶乾時評価と、直射日光を避けた室温23℃、相対湿度50%環境下に180日間放置した後に評価する吸水時評価に供した。
(1)流動性
 200mm×200mm×1mmの角板金型(ファンゲート)を使用し、充填下限圧力で評価した。充填することが第一条件であるが、射出圧力が低いほど流動性に優れ、成形条件幅が広がるとともに薄肉成形品に対応できる。
(2)外観
 80mm×80mm×1mmのウェルド角板金型(対辺のファンゲート2点から樹脂充填)を用いて得られた成形品のウェルド部高さを表面粗さ計で測定した。値が小さいものほど、外観に優れる。
(3)密度
 ISO1183基準に従って評価した。
(4)曲げ弾性率
 ISO178基準に従って評価した。値が大きいものほど、剛性に優れ、成形品の薄肉化が可能となるため、軽量化が可能となる。
(5)シャルピー衝撃強度
 ISO179基準に従って、ノッチ付きシャルピー衝撃強度を測定した。値が大きいものほど、成形品が落下した時などの破損に耐えることができるので好ましい。
[実施例1]
 ポリアミド610とポリアミドMXD6を表1に示す割合で予め混合したものを、260℃のφ50mm単軸押出機にて、その先端に取り付けたクロスヘッドダイ中に十分溶融された状態で押し出し、同時に炭素繊維を前記クロスヘッドダイ中に連続的に供給することによって、強化繊維をポリアミド樹脂で被覆したストランドを得た。炭素繊維比率はポリアミド樹脂の押出量を調整することにより調整し、混合ポリアミド樹脂100重量部に対し43重量部とした。ストランドは冷却後、カッターにて長さ7mmに切断し、ペレットを得た。ペレット断面の長径を物差しで測定したところ、3.4mmであった。得られたペレットを80℃にて5時間以上真空中で乾燥した後、前記方法により評価した。評価結果を表1に示す。
[実施例2~7、比較例1~6]
 炭素繊維を一定の速度で引き取りながら、130℃に加熱されたロール上で、表1に示す割合で、テルペンフェノール重合体を炭素繊維に連続的に付与し、さらに180℃に加熱した雰囲気で、ベアリングで自由に回転する、一直線上に配置された8本の直径50mmのロールの上下を交互に通過させた。この操作により、テルペンフェノール重合体を炭素繊維の繊維束の内部まで含浸させた。
 続いて、表1に示す割合で予め混合(単一ポリアミド樹脂の場合はそのまま)したポリアミド樹脂を単軸押出機にて、その先端に取り付けたクロスヘッドダイ中に十分混練された状態で押し出すと同時に、前記重合体を含浸させた炭素繊維の連続糸も前記クロスヘッドダイ中に連続的に供給することによって、重合体を含浸した炭素繊維をポリアミド樹脂で被覆したストランドを得た。炭素繊維比率はポリアミド樹脂の押出量を調整することにより調整し、表1に示すとおりとした。ストランドは冷却後、カッターで7mmの長さに切断してペレットを得た。ペレット断面の長径を物差しで測定したところ、3.4mmであった。得られたペレットを80℃にて5時間以上真空中で乾燥した後、前記方法により評価した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~7のいずれの材料も、200mm×200mm×1mmの角板の成形は可能であったが、実施例1と実施例4の比較から、テルペンフェノール重合体を含有している方が流動性に優れていた。また、いずれの材料もウェルド高さが低く、外観に優れ、さらに、絶乾時の曲げ弾性率、シャルピー衝撃強度が高い上に、吸水時でも物性値の低下が見られず、高い値を確認できた。
 実施例4において作製したシャルピー衝撃強度評価用試験片を500℃の電気炉に入れ、樹脂成分が十分に灰化した後、顕微鏡にて観察し、無作為に抽出した1,000本の炭素繊維の繊維長を測定し、繊維径および密度が一定であるという前提のもと、下記式により重量平均繊維長を算出したところ、1.5mmであった。
 L=Σ(N×L )/Σ(N×L
 ここで、L:重量平均繊維長、L:繊維長、N:繊維長Lを有する繊維の本数である。
 一方、比較例1は、ウェルド高さが高く、吸水時に曲げ弾性率が低下し、比較例2は、吸水時にシャルピー衝撃強度が低下した。さらに比較例6は、ウェルド高さが高く、吸水時に曲げ弾性率、シャルピー衝撃強度の両方が低下した。本発明の構成要素である成分(A)と成分(B)比率および成分(C)が特定範囲内にあることで、効果が発現することがわかった。
 また、比較例4では、ウェルド高さが高く、吸水時の曲げ弾性率、シャルピー衝撃強度が低下し、特性のポリアミド樹脂の組み合わせにより、効果が発現することがわかった。
[実施例8~11、比較例7~12]
 (株)日本製鋼所製2軸押出機TEX-44αIIを用いて、表2に示す割合になるように、ポリアミド樹脂をメインフィーダーから供給し、チョップド炭素繊維をサイドフィーダーから供給し、樹脂温度290℃の温度で溶融混練した後、水浴バスで冷却し、カッターで3mmの長さに切断して直径3.0mmのペレットを得た。ここで、押出機の中間に設けられたベント口より減圧し水分を除去した。
 得られたペレットを80℃にて5時間以上真空中で乾燥した後、前記方法により評価した。評価結果を表2に示す。ここで、実施例9で得られたペレットを500℃の電気炉に入れ、樹脂成分が十分に灰化した後、顕微鏡にて観察し、無作為に抽出した1,000本の炭素繊維の繊維長を測定し、繊維径および密度が一定であるという前提のもと、重量平均繊維長を算出したところ、0.3mmであった。
Figure JPOXMLDOC01-appb-T000002
 実施例8~11のいずれの材料も、ウェルド高さが低く、外観に優れ、さらに、吸水時にも絶乾時とほぼ同等の曲げ弾性率およびシャルピー衝撃強度を維持していた。なお、実施例9で得られたペレットを用いて、実施例4と同様に成形品中の炭素繊維の重量平均繊維長を算出したところ、0.2mmであった。
 一方、比較例7、9、10は、吸水時に曲げ弾性率が低下し、比較例8は、シャルピー衝撃強度が劣っていた。さらに比較例11は、曲げ弾性率、シャルピー衝撃強度が劣り、比較例12は、200mm×200mm×1mmの角板の成形が不可能で流動性に劣っていた。本発明の構成要素である成分(A)と成分(B)比率および成分(C)が特定範囲内にあることで、効果が発現することがわかった。
 以上の実施例で示したように、特定のポリアミド樹脂を特定比率で含有し、特定量の炭素繊維を含有した樹脂組成物は、優れた外観と、絶乾時および吸水時の剛性、耐衝撃性を兼ね備えていた。
 本発明に係るポリアミド樹脂組成物は、OA機器、家電機器などの電気電子機器、自動車用部材、スポーツ用品、玩具など幅広い分野に有用であり、特に本発明の樹脂組成物の性能が活かされる、水が接触する環境下で使用される用途において、好適に使用できる。

Claims (8)

  1. 成分(A)と成分(B)の合計100重量%に対し、(A)アミド基1個当たりの炭素原子数が7以上で、且つ芳香族環を含まないポリアミド樹脂90~50重量%と、(B)芳香族環を有し、且つ結晶性を示すポリアミド樹脂10~50重量%からなるポリアミド樹脂100重量部に対し、(C)炭素繊維5~75重量部を含有する樹脂組成物。
  2. 前記成分(A)が、ポリアミド610、ポリアミド612、ポリアミド1010、ポリアミド11およびポリアミド12からなる群より選ばれる1種以上のポリアミド樹脂である請求項1記載の樹脂組成物。
  3. 前記成分(B)が、メタキシリレン基含有ポリアミド樹脂である請求項1または2記載の樹脂組成物。
  4. 成分(A)と成分(B)からなるポリアミド樹脂100重量部に対し、さらに(D)フェノール系重合体2~15重量部を含有する請求項1~3のいずれかに記載の樹脂組成物。
  5. 請求項1~4のいずれかに記載の樹脂組成物からなるペレットであって、成分(C)が、ペレットの長尺方向の長さと実質的にほぼ同一長さで配列され、ペレット長さが3~15mmであるペレット。
  6. 請求項1~4のいずれかに記載の樹脂組成物または請求項5のペレットを成形してなる成形品。
  7. 成形品中の炭素繊維の重量平均繊維長が0.2~3mmである請求項6に記載の成形品。
  8. 水が接触する環境下で使用される請求項6または7に記載の成形品。
PCT/JP2012/079597 2011-11-25 2012-11-15 樹脂組成物、そのペレットおよび成形品 WO2013077238A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12851011.2A EP2784122B1 (en) 2011-11-25 2012-11-15 Resin composition, and pellet and molded product thereof
KR1020147015783A KR101918799B1 (ko) 2011-11-25 2012-11-15 수지 조성물, 그의 펠릿 및 성형품
JP2012553133A JP5360310B1 (ja) 2011-11-25 2012-11-15 樹脂組成物、そのペレットおよび成形品
CN201280057125.7A CN103946311B (zh) 2011-11-25 2012-11-15 树脂组合物、该组合物的粒料和成型品
US14/355,372 US10087327B2 (en) 2011-11-25 2012-11-15 Resin composition, and pellet and molded product thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011257512 2011-11-25
JP2011-257512 2011-11-25
JP2012-127892 2012-06-05
JP2012127892 2012-06-05

Publications (1)

Publication Number Publication Date
WO2013077238A1 true WO2013077238A1 (ja) 2013-05-30

Family

ID=48469685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079597 WO2013077238A1 (ja) 2011-11-25 2012-11-15 樹脂組成物、そのペレットおよび成形品

Country Status (7)

Country Link
US (1) US10087327B2 (ja)
EP (1) EP2784122B1 (ja)
JP (1) JP5360310B1 (ja)
KR (1) KR101918799B1 (ja)
CN (1) CN103946311B (ja)
TW (1) TWI544029B (ja)
WO (1) WO2013077238A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071668A (ja) * 2013-10-02 2015-04-16 東レ株式会社 ポリアミド樹脂組成物
JP2015174968A (ja) * 2014-03-17 2015-10-05 日本カーバイド工業株式会社 粘着剤組成物及び両面粘着材
WO2015156086A1 (ja) * 2014-04-10 2015-10-15 三菱瓦斯化学株式会社 成形体及びその製造方法
EP3012298A4 (en) * 2013-06-21 2017-02-22 Mitsubishi Engineering-Plastics Corporation Crystalline thermoplastic resin composition and molded article
JP2019167502A (ja) * 2018-03-26 2019-10-03 三菱ケミカル株式会社 繊維強化熱可塑性樹脂組成物、その製造方法および射出成形品
JP2020111677A (ja) * 2019-01-11 2020-07-27 三菱ケミカル株式会社 熱可塑性樹脂組成物およびその成形品、樹脂ペレットおよびその製造方法、ならびに樹脂ペレットを用いた射出成形品
WO2022124100A1 (ja) * 2020-12-07 2022-06-16 東洋紡株式会社 ポリアミド樹脂組成物
WO2023074305A1 (ja) 2021-10-27 2023-05-04 東レ株式会社 繊維強化熱可塑性樹脂成形品
DE102020203614B4 (de) 2019-04-01 2023-07-06 Asahi Kasei Kabushiki Kaisha Gleitteil

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2711938B1 (en) * 2012-09-25 2014-11-26 Nexans Silicone multilayer insulation for electric cable
EP3116373B1 (en) 2014-03-12 2021-01-20 Performance Polyamides S.A.S. Dish support rack for dishwasher
JP6149995B1 (ja) * 2016-09-28 2017-06-21 富士ゼロックス株式会社 非架橋樹脂組成物、及び非架橋樹脂成形体
KR101961767B1 (ko) * 2017-04-26 2019-03-26 현대모비스 주식회사 차량용 카메라 모듈

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120665A (ja) * 1982-01-12 1983-07-18 Toray Ind Inc 自動車用アンダ−フ−ド部品
JPS63137956A (ja) * 1986-12-01 1988-06-09 Mitsubishi Gas Chem Co Inc 成形用ポリアミド樹脂組成物
JPH06200153A (ja) * 1993-01-06 1994-07-19 Teijin Ltd ポリアミド樹脂組成物及びそれからなる照明用リフレクター
JPH07109421A (ja) * 1993-10-12 1995-04-25 Otsuka Chem Co Ltd 芳香族ポリアミド樹脂組成物
JPH07138475A (ja) * 1993-09-08 1995-05-30 Kishimoto Sangyo Kk ポリアミド樹脂組成物及び用途
JPH10138379A (ja) 1996-11-06 1998-05-26 Toray Ind Inc 成形材料およびその製造方法
JP2000204240A (ja) * 1999-01-08 2000-07-25 Ube Ind Ltd ウエルド強度に優れたポリアミド樹脂組成物
JP2001131418A (ja) * 1999-11-01 2001-05-15 Toray Ind Inc 熱可塑性樹脂組成物、成形材料、射出成形用ペレットおよび成形品
JP2006001965A (ja) 2004-06-15 2006-01-05 Mitsubishi Rayon Co Ltd 熱可塑性樹脂成形品および熱可塑性樹脂組成物
JP2010202759A (ja) 2009-03-03 2010-09-16 Unitika Ltd ポリアミド樹脂組成物ペレットおよびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5906891A (en) * 1995-12-26 1999-05-25 Mitsubishi Gas Chemical Company, Inc. Oriented polyamide fiber and process for producing same
JP3223792B2 (ja) * 1996-04-11 2001-10-29 住友化学工業株式会社 熱可塑性樹脂組成物
JPH10120798A (ja) * 1996-10-18 1998-05-12 Kobe Steel Ltd 電子機器用導電性ケーシング
EP1018534A3 (en) 1999-01-08 2002-01-09 Ube Industries, Ltd. Polyamide resin compositions with improved weld strength
TW583246B (en) 2001-02-05 2004-04-11 Toray Industries Carbon fiber-enforced resin composition and shaped material
ATE331759T1 (de) * 2001-12-19 2006-07-15 Du Pont Polyamidharzzusammensetzugen zur abschirmung gegen elektromagnetische interferenzen, sowie daraus geformte gegenstände
US20050069662A1 (en) * 2003-05-21 2005-03-31 Cheng Paul P. Articles made from polyamide resin compositions and having improved fluid permeation barrier properties
CN1950455A (zh) * 2004-04-28 2007-04-18 宇部兴产株式会社 阻燃性树脂组合物
WO2006124659A1 (en) * 2005-05-12 2006-11-23 E. I. Du Pont De Nemours And Company Polyamide resin composition
FR2938847B1 (fr) 2008-11-21 2013-01-11 Arkema France Compositions de polyamide et de renforts bioressources a proprietes mecaniques ameliorees
FR2948377B1 (fr) 2009-07-23 2011-08-05 Arkema France Composition a base de polyamides, objet obtenu a partir d'une telle composition et leurs utilisations

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120665A (ja) * 1982-01-12 1983-07-18 Toray Ind Inc 自動車用アンダ−フ−ド部品
JPS63137956A (ja) * 1986-12-01 1988-06-09 Mitsubishi Gas Chem Co Inc 成形用ポリアミド樹脂組成物
JPH06200153A (ja) * 1993-01-06 1994-07-19 Teijin Ltd ポリアミド樹脂組成物及びそれからなる照明用リフレクター
JPH07138475A (ja) * 1993-09-08 1995-05-30 Kishimoto Sangyo Kk ポリアミド樹脂組成物及び用途
JPH07109421A (ja) * 1993-10-12 1995-04-25 Otsuka Chem Co Ltd 芳香族ポリアミド樹脂組成物
JPH10138379A (ja) 1996-11-06 1998-05-26 Toray Ind Inc 成形材料およびその製造方法
JP2000204240A (ja) * 1999-01-08 2000-07-25 Ube Ind Ltd ウエルド強度に優れたポリアミド樹脂組成物
JP2001131418A (ja) * 1999-11-01 2001-05-15 Toray Ind Inc 熱可塑性樹脂組成物、成形材料、射出成形用ペレットおよび成形品
JP2006001965A (ja) 2004-06-15 2006-01-05 Mitsubishi Rayon Co Ltd 熱可塑性樹脂成形品および熱可塑性樹脂組成物
JP2010202759A (ja) 2009-03-03 2010-09-16 Unitika Ltd ポリアミド樹脂組成物ペレットおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2784122A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012298A4 (en) * 2013-06-21 2017-02-22 Mitsubishi Engineering-Plastics Corporation Crystalline thermoplastic resin composition and molded article
US10619031B2 (en) 2013-06-21 2020-04-14 Mitsubishi Engineering-Plastics Corporation Crystallizable thermoplastic resin composition and molded article
JP2015071668A (ja) * 2013-10-02 2015-04-16 東レ株式会社 ポリアミド樹脂組成物
JP2015174968A (ja) * 2014-03-17 2015-10-05 日本カーバイド工業株式会社 粘着剤組成物及び両面粘着材
KR102292012B1 (ko) * 2014-04-10 2021-08-23 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 성형체 및 그 제조방법
KR20160143645A (ko) * 2014-04-10 2016-12-14 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 성형체 및 그 제조방법
JPWO2015156086A1 (ja) * 2014-04-10 2017-04-13 三菱瓦斯化学株式会社 成形体及びその製造方法
RU2678031C2 (ru) * 2014-04-10 2019-01-22 Мицубиси Гэс Кемикал Компани, Инк. Формованное тело и способ его производства
US10605384B2 (en) 2014-04-10 2020-03-31 Mitsubishi Gas Chemical Company, Inc. Molded body and manufacturing method thereof
CN106062074A (zh) * 2014-04-10 2016-10-26 三菱瓦斯化学株式会社 成型体和其制造方法
WO2015156086A1 (ja) * 2014-04-10 2015-10-15 三菱瓦斯化学株式会社 成形体及びその製造方法
JP2019167502A (ja) * 2018-03-26 2019-10-03 三菱ケミカル株式会社 繊維強化熱可塑性樹脂組成物、その製造方法および射出成形品
JP2020111677A (ja) * 2019-01-11 2020-07-27 三菱ケミカル株式会社 熱可塑性樹脂組成物およびその成形品、樹脂ペレットおよびその製造方法、ならびに樹脂ペレットを用いた射出成形品
DE102020203614B4 (de) 2019-04-01 2023-07-06 Asahi Kasei Kabushiki Kaisha Gleitteil
WO2022124100A1 (ja) * 2020-12-07 2022-06-16 東洋紡株式会社 ポリアミド樹脂組成物
WO2023074305A1 (ja) 2021-10-27 2023-05-04 東レ株式会社 繊維強化熱可塑性樹脂成形品

Also Published As

Publication number Publication date
EP2784122A1 (en) 2014-10-01
TWI544029B (zh) 2016-08-01
EP2784122A4 (en) 2015-04-08
CN103946311B (zh) 2016-04-06
KR20140105463A (ko) 2014-09-01
CN103946311A (zh) 2014-07-23
US10087327B2 (en) 2018-10-02
KR101918799B1 (ko) 2018-11-14
JP5360310B1 (ja) 2013-12-04
EP2784122B1 (en) 2016-02-10
TW201329161A (zh) 2013-07-16
JPWO2013077238A1 (ja) 2015-04-27
US20140288229A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP5360310B1 (ja) 樹脂組成物、そのペレットおよび成形品
CN101861357B (zh) 填充型聚酰胺模塑材料
KR102596589B1 (ko) 워핑을 제한하기 위한 원형 단면을 갖는 유리 섬유를 포함하는 지방족 폴리아미드 혼합물 중 반방향족 폴리아미드의 용도
JP5500986B2 (ja) ガラス繊維強化ポリアミド樹脂組成物
WO2007097184A1 (ja) ガラス繊維強化熱可塑性樹脂組成物および成形品
CN109844026B (zh) 圆形截面的玻璃纤维在包含半芳族聚酰胺和脂族聚酰胺的混合物中改进所述混合物的机械性质的用途
CN101622313A (zh) 基于聚酰胺和聚(乳酸)的复合材料、其制造方法和用途
KR102658950B1 (ko) 뒤틀림을 제한하기 위한 원형 단면을 갖는 유리 섬유를 갖는 충전제 물질의 매트릭스로서 코폴리아미드 조성물의 용도
JP5400457B2 (ja) ポリアミド樹脂組成物及び成型体
US20170029621A1 (en) Polyamide Resin Composition and Article Produced Therefrom
JP5400456B2 (ja) ポリアミド樹脂組成物及びそれからなる成型体
JPWO2017135215A1 (ja) ポリアミド樹脂組成物
JP6447041B2 (ja) ポリアミド樹脂成形品の製造方法
KR101777446B1 (ko) 유리섬유 보강 폴리아미드 수지 조성물 및 플라스틱 성형품
JP2020059846A (ja) ポリアミド樹脂組成物およびそれを含む成形品
JP2017206639A (ja) ポリアミド樹脂組成物
JP5451522B2 (ja) 長繊維強化ポリアミド樹脂組成物の製造方法
CN113614150A (zh) 共聚酰胺用于制造在温度影响下具有稳定刚度的组合物的用途
US20220153998A1 (en) Copolyamide compositions comprising reinforcing fibers and having high modulus stability and uses thereof
CN113631633A (zh) 共聚酰胺用于制造在湿度影响下具有稳定刚度的组合物的用途
JP2005194370A (ja) 摺動部材用ポリアミド樹脂組成物およびそれからなる摺動部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280057125.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012553133

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14355372

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012851011

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147015783

Country of ref document: KR

Kind code of ref document: A