WO2013077146A1 - 干渉フィルターを備えた光部品 - Google Patents

干渉フィルターを備えた光部品 Download PDF

Info

Publication number
WO2013077146A1
WO2013077146A1 PCT/JP2012/077983 JP2012077983W WO2013077146A1 WO 2013077146 A1 WO2013077146 A1 WO 2013077146A1 JP 2012077983 W JP2012077983 W JP 2012077983W WO 2013077146 A1 WO2013077146 A1 WO 2013077146A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
interference filter
optical component
filter
Prior art date
Application number
PCT/JP2012/077983
Other languages
English (en)
French (fr)
Inventor
加藤 隆司
智晶 桐山
Original Assignee
Fdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk株式会社 filed Critical Fdk株式会社
Priority to US14/359,643 priority Critical patent/US9341757B2/en
Priority to CN201280057732.3A priority patent/CN104126139B/zh
Publication of WO2013077146A1 publication Critical patent/WO2013077146A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/2937In line lens-filtering-lens devices, i.e. elements arranged along a line and mountable in a cylindrical package for compactness, e.g. 3- port device with GRIN lenses sandwiching a single filter operating at normal incidence in a tubular package

Definitions

  • This invention relates to an optical component using an interference filter. More specifically, the present invention relates to stray light countermeasure technology in an optical component using an interference filter.
  • the interference filter forms a dielectric thin film on a glass substrate, transmits light in a specific wavelength band, and reflects light in other bands.
  • the interference filter is incorporated in an optical component constituting an optical communication system, and is used for separating light in a wavelength band required for optical communication and light (noise, etc.) other than the wavelength band.
  • 1A and 1B show the structure of the optical component 1 using the interference filter 3.
  • 1A is a cross-sectional view of the optical component 1 cut along a plane including the optical axis 5
  • FIG. 1B is an enlarged view of the circle in FIG. 1A.
  • optical component 1 two optical fibers (41, 42) held by ferrules (61, 62) are arranged on the optical axis 5 so that the respective open ends (43, 44) face each other. Thus, an optical path is formed between the opposed open ends (43, 44). Then, light (input light) Lin incident on one optical fiber 41 is emitted as output light Lout from the other optical fiber 42.
  • the interference filter 3 is disposed near the front-rear center between the open ends (43, 44) of the front and rear optical fibers (41, 42).
  • Collimator lenses (51, 52) are arranged.
  • the ferrule (61, 52) holding the optical fiber (41, 42) and the collimator lens (51, 52) are provided in the housing (at the front and rear of the housing 2 housing the interference filter 3. 31 and 32) are connected to collimators (33 and 34).
  • the optical axis 5 is arranged so that the optical path from the input side optical fiber 41 to the interference filter 3 (outward path) and the optical path from the interference filter 3 to the input side optical fiber 41 (return path) can be easily identified. Only one of the symmetrical optical paths is shown.
  • the optical component 1 first, when the input light Lin incident on the input-side (front) optical fiber 41 from the light source is emitted from the opening end (rear end) 43 of the same optical fiber 41, the emitted light is forwardly transmitted.
  • the light enters the interference filter 3 as parallel light L1 through the collimator lens 51, and the interference filter 3 transmits only light in a specific wavelength band of the incident light L1 backward.
  • the transmitted light L ⁇ b> 2 is coupled to the open end (front end) 44 of the optical fiber 42 on the output side (rear) via the rear collimator lens 52. Then, the light L3 that has not been transmitted by the interference filter 3 is reflected.
  • the reflected light L3 from the interference filter 3 directly enters the collimator lens 51 on the input side.
  • the normal 4 of the light incident surface of the interference filter 3 is tilted by about 2 ° to 5 ° with respect to the optical axis 5 so that the light is not coupled to the optical fiber 41 on the input side. It is made to absorb with the inner surface of the body 2.
  • the light L3 reflected by the interference filter 3 travels toward the inner surface of the housing 2, but the reflected light L3 is not completely absorbed by the inner surface of the housing 2, and a part of the light L3 is housing 2. Reflect on the inner surface.
  • the inner surface of the housing 2 is not a mirror surface, the reflected light L3 from the interference filter 3 is not regularly reflected by the inner surface of the housing 2, but is scattered as shown. Then, so-called “stray light” is generated in which the scattered light L4 is further reflected and scattered on the inner surface of the housing 2. The stray light, when scattered on the inner surface of the housing 2, is absorbed and converted into heat, and eventually disappears.
  • Non-Patent Document 1 a semiconductor laser element is used as a light source, and if reverse light enters the light emitting part of the semiconductor laser, the oscillation characteristics of the semiconductor laser change, the output becomes unstable, and the optical communication quality deteriorates. .
  • the index of the degree of deterioration is a known return loss, and the measurement method is described in Non-Patent Document 1 below.
  • Patent Documents 1 to 3 countermeasures for stray light in optical components are described in Patent Documents 1 to 3 below.
  • the invention described in Patent Document 1 in order to prevent a part of light reflected by the interference filter from entering a light receiving element on the light output side and causing crosstalk, interference is caused in the housing.
  • a conical hole that gradually opens in the depth direction while opening larger than the spread of the reflected light of the filter, and reflects the reflected light on the inner surface of the conical hole so that it does not follow the optical path to the light receiving element.
  • Patent Documents 2 and 3 describe optical components using a material for absorbing stray light on the inner surface of the housing.
  • an object of the present invention is to provide an optical component using an interference filter that hardly generates reflected return light at a lower cost.
  • the present invention for achieving the above object is an optical component in which first and second collimator lenses are arranged in front and rear of an interference filter, respectively, with the extending direction of the optical axis as the front-rear direction, When light along the optical axis is input from the front, the light of a predetermined wavelength band is output backward,
  • the interference filter is disposed in a hollow cylindrical casing that is open at both front and rear ends so as to be inclined with respect to the optical axis,
  • the housing includes a filter housing portion that houses the interference filter therein, and a tubular first light that extends in the front-rear direction while maintaining the shape of the opening from the front and rear openings to the filter housing portion.
  • the optical component includes an interference filter characterized by the above.
  • the diameter of the opening of the second light path portion at the rear is reduced with respect to the apparent diameter of the second collimator lens, so that the light along the optical axis is viewed from the rear.
  • an optical component including an interference filter that outputs light in a predetermined wavelength region to the front can be provided.
  • the shape of the filter housing portion may be formed so that the reflection direction of input light is directed toward the inside of the light path portion in the interference filter.
  • An optical component having an interference filter connected to a second optical fiber collimator holding a second collimator lens is also within the scope of the present invention, and the ferrule is formed of transparent glass.
  • An optical component provided with an interference filter is more preferable.
  • an optical component using an interference filter that hardly generates reflected return light can be provided at a lower cost.
  • FIG. 2A and 2B show the structure of an optical component 1a according to an embodiment of the present invention.
  • 2A is a cross-sectional view of the optical component 1a taken along a plane including the optical axis 5, and FIG. 2B is an enlarged view of the circle in FIG. 2A.
  • the optical component 1a which concerns on an Example is two optical fibers (41, 42) hold
  • the interference filter 3 when the extending direction of the optical axis 5 is the front-rear direction, the interference filter 3 is disposed near the front-rear center between the open ends (43, 44) of the front and rear optical fibers (41, 42). 3 is based on a structure in which collimator lenses (51, 52) are respectively arranged before and after 3.
  • optical fibers (hereinafter referred to as filter cases) 2a containing the interference filter 3 are placed before and after the housing (hereinafter referred to as filter case) 2a.
  • the structure of the housing (hereinafter referred to as filter case) 2a that houses the interference filter 3, the internal structure of the filter case 2a, and the apparent diameter of the collimator lens (51, 52). It is characterized by a dimensional relationship with ⁇ 2, and it is possible to prevent the generation of reflected return light due to stray light.
  • filter case the structure of the housing (hereinafter referred to as filter case) 2a that houses the interference filter 3, the internal structure of the filter case 2a, and the apparent diameter of the collimator lens (51, 52). It is characterized by a dimensional relationship with ⁇ 2, and it is possible to prevent the generation of reflected return light due to stray light.
  • the filter case 2a is cylindrical in appearance, has circular openings (24, 25) at both ends of the cylinder, and is hollow so as to communicate between the openings (24, 25) at both ends.
  • the hollow portion includes a filter storage portion 21 that serves as a storage space for the interference filter 3 and a light path portion (22, 23) that communicates from the filter storage portion 21 to the front and rear openings (24, 25).
  • the light passage portions (22, 23) are tubular having a circular cross section, and reach the openings (24, 25) while maintaining the diameter ⁇ 1 of the circular cross section.
  • the filter storage part 21 is a cylindrical shape whose diameter is larger than the light path part (22, 23) in this example.
  • Collimators (31, 32) are connected before and after the filter case 2a.
  • the collimators (31, 32) are obtained by housing collimator lenses (51, 52) in hollow cylindrical casings (hereinafter, barrels) (33, 34).
  • the front and rear lens barrels (33, 34) each have a circular opening at both front and rear ends, and collimator lenses (51, 52) are arranged in the vicinity of the opening connected to the filter case 2a. Further, the diameter ⁇ 2 of the collimator lens (51, 52) substantially coincides with the opening diameter of the lens barrel (33, 34), and this opening diameter becomes the apparent diameter ⁇ 2 of the collimator lens.
  • a ferrule (61, 62) holding the optical fiber (41, 42) is inserted into the other opening of the lens barrel (33, 34), that is, an opening outside the filter case 2a.
  • the openings (24, 25) of the light path portions (22, 23) of the filter case 2a are contracted with respect to the apparent diameter ⁇ 2 of the collimator lens (51, 52). It has a diameter.
  • the lens (51 , 52) includes the area of the opening (24, 25) of the filter case 2a.
  • the opening diameter ⁇ 1 of the light path portion (22, 23) is larger than the apparent diameter ⁇ 2 of the collimator lens (51, 52). Is characterized in that is reduced in diameter.
  • 2B and 3 schematically show the operation of the optical component 1a according to the present embodiment.
  • the optical component 1a of a present Example is reciprocal, inputs light from any direction of the front and back, and outputs light toward back and front. Below, based on the optical path ahead of the interference filter 3, the operation of the optical component 1a and countermeasures against stray light will be described.
  • the reflected light L3 is reflected in the front optical path.
  • the front-rear direction component in the traveling direction of the reflected light L3 is the front direction
  • the inner surface 26 of the light path portion 22 extends in the front-rear direction. Therefore, most of the components in the front-rear direction of the scattered light L4 on the inner surface 26 are forward.
  • the scattered light L4 in the light path portion 22 is almost completely free of the light that follows the optical path of the reflected light L3. Since the opening diameter ⁇ 1 of the light passage portion 22 is smaller than the apparent diameter ⁇ 2 of the collimator lens 51, a part of the scattered light L4 is not reflected by the rear end surface 35 of the lens barrel 33. Therefore, there is no light that reversely follows the optical path of the reflected light L3 in any path, and no reflected return light (FIG. 1A, FIG. 1B: L6) is generated in the optical component 1a according to the present embodiment.
  • the intersection angle (tilt angle) ⁇ between the normal line 4 of the interference filter 3 and the optical axis 5 is usually about 2 ° to 5 °, and the surface of the interference filter 3 on which light is incident is the optical axis 5. Nearly perpendicular to. Therefore, as shown in FIG. 3, when the inclination angle ⁇ of the interference filter 3 is small, the reflected light L3 from the interference filter 3 is not scattered by the inner surface 26 of the light path portion 22, and the opening of the light path portion 22. It may be emitted directly from 24 in the forward direction. In this case, light directly emitted forward from the opening 24 of the light path portion 22 enters the collimator lens 51.
  • the opening diameter ⁇ 1 of the optical path portion 22 is reduced with respect to the apparent diameter ⁇ 2 of the collimator lens 51, the reflected light L3 from the interference filter 3 incident on the collimator lens 51 is incident on the optical axis 5.
  • the reflected light L 3 is incident on the vicinity of the outer periphery of the collimator lens 51 because it is inclined at a large angle ⁇ . Therefore, even if the reflected light L3 is refracted by the collimator lens 51, it is not coupled to the opening end 43 of the optical fiber 41. Therefore, no reflected return light is generated.
  • FIG. 4 shows an optical component 1b in which the apparent diameter ⁇ 2 of the collimator lens 51 is reduced with respect to the opening diameter ⁇ 1 of the optical path portion 22.
  • the reflected light L3 hits the inner surface 26 of the light path portion 22 and is scattered, and a part L7 of the scattered light L4 hits the rear end surface 35 of the lens barrel 33 and is scattered.
  • a part L9 of the scattered light L8 on the rear end surface 35 of the lens barrel 33 traces the optical path of the reflected light L3 from the interference filter 3 in the reverse direction. That is, the reflected return light L6 may be generated.
  • the interference filter in the optical component 1b according to the comparative example, in the case where the tilt angle ⁇ of the interference filter 3 is further reduced and the reflected light 3 is directly incident on the collimator lens 51, the interference filter is similar to the optical component 1. Since the reflected light L3 from 3 enters near the center of the collimator lens 51, there is a high possibility that the reflected light L3 is directly coupled to the optical fiber 41.
  • FIGS. 5A and 5B show the wavelength dependence of the return loss in each of the optical component 1 shown in FIGS. 1A and 1B and the optical component 1a according to the present embodiment shown in FIGS. 2A, 2B, and 3.
  • FIG. FIG. Note that the optical component 1 and the optical component 1a according to the present embodiment are both reciprocal, and input light from any of the front and rear passes through the interference filter 3, and is transmitted backward or forward as light of a predetermined wavelength band. Exit. Therefore, in FIGS. 5A and 5B, the reflection attenuation characteristic with respect to light from the front is “input side”, and the reflection attenuation characteristic with respect to light from the rear is “output side”.
  • the input-side characteristic 101 has a large wavelength dependency, and the return loss greatly varies depending on the wavelength. Also, the return loss is as small as 40 to 50 db over almost the entire transmission wavelength region.
  • the output-side characteristic 102 does not show a large wavelength dependency, the reflection attenuation amount is about 40 db as a whole, and it is recognized that strong reflected return light is generated.
  • the characteristics (101, 102) on the input side and the output side are asymmetric because the interference filter 3 is formed by forming an interference film made of a dielectric thin film on one side of the glass substrate.
  • the reflection characteristics of the light incident from the interference film side are asymmetric, and the straight line connecting the open ends (43, 44) of the opposing optical fibers (41, 42) is deviated from the optical axis 5. Conceivable. In any case, a large return loss cannot be obtained, and even if the characteristics (101, 102) on the input side and the output side are symmetrical, only the average characteristics on the input side and the output side are obtained. Therefore, a large amount of return loss cannot be obtained, and there is no doubt that there is a large wavelength dependency. Therefore, in the optical component 1, it is necessary to provide some other optical component (optical isolator) that prevents reflected return light from reaching the light source in the middle of the optical path from the light source to the interference filter 3. Considering the overall configuration of the optical communication system, it is difficult to reduce the cost.
  • the optical component 1a of the embodiment shown in FIG. 5B has a return loss of 50 db or more in the measurement wavelength region and a maximum of 60 db in both the input side and output side characteristics (103, 104).
  • the light intensity measuring device optical power meter
  • the light intensity measuring device has a measurement limit, and since the upper limit of the return loss based on the measurement limit is about 60 db, the characteristics (103, 104) shown in FIG.
  • the optical component 1a of the example it can be said that the intensity of the reflected return light is below the measurement limit, and the generation of the reflected return light is almost completely prevented.
  • the wavelength dependency is small, and the characteristics (103, 104) on the input side and the output side are almost symmetrical.
  • the collimator (31, 32) including the ferrule (61, 62) and the collimator lens (51, 52) is connected to the filter case 2a.
  • the collimator lenses (51, 52) may be arranged so as to face the openings (24, 25) of the light path portions (22, 23) in the filter case.
  • the two collimator lenses (51, 52) are arranged front and rear.
  • An optical component may be configured by fixing the filter case 2a on the optical test bench.
  • the optical component 1a of the above example had reciprocity, and light could be input from either front or back. Therefore, the opening diameter ⁇ 1 of the light path portion (22, 23) is reduced from the apparent diameter ⁇ 2 of the collimator lens (51, 52) when viewed from the front and the rear.
  • the optical path portion (with respect to the apparent diameter ⁇ 2 of the collimator lens (51 or 52)) The opening diameter ⁇ 1 of 22 or 23) may be reduced.
  • the shape of the filter storage portion 21 was cylindrical.
  • the angle ⁇ between the normal 4 of the interference filter 3 and the optical axis 5 is large as in the optical component 1c shown in FIG.
  • the shape of the filter storage portion 21d in the filter case 2d is such that the reflected light L3 is always guided into the optical path 22 according to the installation angle of the interference filter 3. May be changed.
  • an ellipsoidal filter storage portion 21d having a minor axis in the front-rear direction is used.
  • the angle ⁇ between the normal 4 and the optical axis 5 of the interference filter 3 is too large, the angle of the light L1 incident on the interference film of the interference filter 3 becomes large and the characteristics deteriorate.
  • the optical axis 5 is normally inclined at an angle close to perpendicular to the optical axis 5. Therefore, it can be said that there is little need to consider the reflected return light due to the large installation angle of the interference filter 3.
  • the optical component 1a according to the embodiment can almost completely remove the reflected return light caused by the reflected light L3 from the interference filter 3.
  • the light emitted from the optical fibers (41, 42) spreads slightly even if it is a laser beam with high linearity. Therefore, the light strikes the ferrule (61, 62) near the open end of the optical fiber (41, 42).
  • Most of the ferrules (61, 62) are made of a material that looks white, that is, scatters light, such as zirconia, and the light hitting the ferrule (61, 62) is scattered, and a part of the scattered light is scattered. There is a possibility of reflected return light.
  • this ferrule (61, 62) is made of a transparent glass material, reflected return light derived from the light scattering property of the ferrule (61, 62) is also suppressed, and it can be expected to obtain a higher return loss.
  • This invention can be used for optical communication technology.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 本発明は、反射戻り光が発生し難い、干渉フィルターを備えた光部品を、より安価に提供することを目的とする。 光部品1aでは、前後両端に開口24、25を有する中空筒状の筐体2a内に、干渉フィルター3が、光軸5に対して斜めとなるように配置され、また、第1、2のコリメーターレンズ51、52が、それぞれ、前方及び後方の前記開口に対面して配置される。前記筐体は、その内部に、干渉フィルター収納部21と、前方及び後方の前記開口から前記フィルター収納部まで前記開口の形状を維持しつつ延長する管状の第1、2の光通路部22、23とを備える。前方から見たときに、前記第1のコリメーターレンズの見かけ径φ2に対し、前記第1の光通路部の前記開口の径φ1が縮径されている。前方から前記光軸に沿う光Linが入力されると所定波長帯域の光Loutを後方へ出力し、また、前記干渉フィルターからの反射光L3は、前記第1の光通路部内に向かう。

Description

[規則37.2に基づきISAが決定した発明の名称] 干渉フィルターを備えた光部品
 この発明は、干渉フィルターを用いた光部品に関する。具体的には、干渉フィルターを用いた光部品における迷光対策技術に関する。
 干渉フィルターは、ガラス基板上に誘電体薄膜を形成して特定の波長帯域の光を透過し、他の帯域の光を反射する。この干渉フィルターは、例えば、光通信システムを構成する光部品に組み込まれ、光通信に要する波長帯の光とその波長帯以外の光(ノイズなど)とを分離する用途などに供される。図1A及び図1Bに、干渉フィルター3を用いた光部品1の構造を示した。図1Aは、光部品1を光軸5を含む面で切断したときの断面図であり、図1Bは、図1Aにおける円内を拡大した図である。この光部品1は、光軸5上に、フェルール(61,62)に保持された2本の光ファイバー(41,42)が、それぞれの開口端(43,44)が互いに対向するように配置されて、この対向する開口端(43,44)間を光路としている。そして、一方の光ファイバー41に入射された光(入力光)Linを、他方の光ファイバー42から出力光Loutとして出射する構成となっている。
 光軸5の延長方向を前後方向とすると、干渉フィルター3は、前後の光ファイバー(41,42)の開口端(43,44)間の前後中央付近に配置され、その干渉フィルター3の前後にそれぞれコリメーターレンズ(51,52)が配置されている。また、図示した光部品1では、干渉フィルター3を収納した筐体2の前後に、光ファイバー(41,42)を保持したフェルール(61,52)とコリメーターレンズ(51,52)を筐体(31,32)に収納してなるコリメーター(33,34)を連結した構造となっている。
 ここで、光部品1の動作を図1A及び図1Bに基づいて説明する。なお、図中では、入力側の光ファイバー41から干渉フィルター3に向かう光路(往路)と、干渉フィルター3から入力側の光ファイバー41に向かう光路(復路)が容易に識別できるように、光軸5に対して対称となる光路の一方のみを示している。そして、光部品1では、まず、光源から入力側(前方)の光ファイバー41に入射された入力光Linが同じ光ファイバー41の開口端(後端)43から出射されると、その出射光が前方のコリメーターレンズ51を介して平行光L1として干渉フィルター3に入射し、干渉フィルター3がこの入射光L1のうち、特定の波長帯域の光のみを後方へ透過させる。透過光L2は、後方のコリメーターレンズ52を介して出力側(後方)の光ファイバー42の開口端(前端)44に結合する。そして、干渉フィルター3にて透過されなかった光L3は、反射される。なお、ここに示した例のように光の入力側から出力側までの光路が直線上にある光部品1では、この干渉フィルター3における反射光L3が入力側のコリメーターレンズ51に直接入射して、入力側の光ファイバー41に結合しないように、干渉フィルター3における光の入射面の法線4を光軸5に対して2゜~5゜程度傾かせ、干渉フィルター3における反射光L3が筐体2の内面で吸収させるようにしている。
 ところで、干渉フィルター3によって反射された光L3は、筐体2の内面に向かうことになるが、この反射光L3は、筐体2の内面で完全に吸収されず、その一部が筐体2の内面で反射する。しかも、筐体2の内面が鏡面でないため、干渉フィルター3からの反射光L3が筐体2の内面で正反射せず、図示したように散乱する。そして、その散乱光L4が筐体2の内面でさらに反射と散乱を繰り返す、所謂「迷光」が発生する。なお、迷光は、筐体2内面での散乱に際し、エネルギーの多くは吸収されて熱に変換されるため、最終的には、消滅する。しかし、干渉フィルター3にて反射した光L3が最初に筐体2の内面で散乱したときの光L4の一部L5が、ちょうど干渉フィルター3による反射光L3と一致する光路を逆に辿る場合がある。このような場合、その散乱光L4の一部L5は、入力側の光ファイバー41から出射した光L1が干渉フィルター3にて反射するまでの経路を逆行し、入力側の光ファイバー41に再結合する「反射戻り光」L6となる。
 そして、その反射戻り光L6が入力側の光ファイバー41を光源方向に向かって伝搬し、光源に至る可能性がある。光通信では、光源として半導体レーザー素子を用いており、その半導体レーザーの発光部に逆戻り光が入射すれば、半導体レーザーの発振特性が変化し、出力が不安定になり、光通信品質が劣化する。この劣化の度合いの指標が周知の反射減衰量であり、その測定方法については以下の非特許文献1などに記載されている。
 なお、光部品における迷光対策については、以下の特許文献1~3に記載されている。特許文献1に記載の発明では、干渉フィルターにて反射された光の一部が光の出力側にある受光素子に入射してクロストークが発生するのを防止するために、筐体内に、干渉フィルターの反射光の広がりよりも大きく開口しつつ、奥行き方向に徐々に縮径する錐穴を設け、その錐穴の内面で反射光を反射させて、受光素子に至る光路を辿らないようにしている。また、特許文献2や3には、筐体内面に迷光を吸収するための素材を使用した光部品について記載されている。
特開2007-57859号公報 特開2009-20540号公報 特開2007-17903号公報
アジレント・テクノロジー株式会社、"Agilent 81610Aシリーズ・リターン・ロス・モジュールを使用したリターン・ロス測定"、[online]、[平成23年11月4日検索]、インターネット<URL:http://www.home.agilent.com/upload/cmc_upload/All/5988-3435JA.pdf?&cc=JP&lc=jpn>
 引用文献1~3に記載された光部品では、迷光対策として、干渉フィルターが収納された筐体の内面に、光吸収材を被膜したり、錐穴を穿設したりするなど、何らかの加工を施している。そのため、製造コストが増加する。また、筐体は、射出成形などによって光部品の筐体を一体成形するような場合では、その筐体の内面に光吸収材を塗布したり、錐穴を穿設したりするための加工技術自体が複雑となる。
 そこで本発明は、反射戻り光が発生し難い干渉フィルターを用いた光部品を、より安価に提供することを目的としている。
 上記目的を達成するための本発明は、光軸の延長方向を前後方向として、干渉フィルターの前方および後方に、それぞれ第1および第2のコリメーターレンズが配置された光部品であって、
 前方から前記光軸に沿う光が入力された際、所定の波長帯域の光を後方へ出力し、
 前記干渉フィルターは、前後両端が開口する中空筒状の筐体内に、前記光軸に対して斜めとなるように配置されて、
 前記筐体は、内部に、前記干渉フィルターを収納するフィルター収納部と、前方および後方の前記開口から当該フィルター収納部まで前記開口の形状を維持しつつ前後方向に延長する管状の第1の光通路部および第2の光通路部を備え、
 前記第1および第2のコリメーターレンズは、前記筐体の前方および後方のそれぞれの開口に対面して配置され、
  前方から見たときに、前方の前記第1の光通路部の前記開口の径が、前記第1のコリメーターレンズの見かけ径に対し縮径されている、
 ことを特徴とする干渉フィルターを備えた光部品としている。
 また、後方から見たときに、後方の前記第2の光通路部の前記開口の径が、前記第2のコリメーターレンズの見かけ径に対し縮径されて、後方から前記光軸に沿う光が入力された際、所定の波長領域の光を前方へ出力する、干渉フィルターを備えた光部品とすることもできる。
 前記フィルター収納部の形状は、前記干渉フィルターにおいて、入力された光の反射方向が前記光通路部の内部に向かうように形成されていてもよい。
 前記筐体の前端および後端に、それぞれ、フェルールに保持された光ファイバーと前記第1のコリメーターレンズが保持された第1の光ファイバー・コリメーター、およびフェルールに保持された第2の光ファイバーと前記第2のコリメーターレンズが保持された第2の光ファイバー・コリメーターとが連結されている干渉フィルターを備えた光部品も本発明の範囲であり、前記フェルールが、透明なガラスで形成されている干渉フィルターを備えた光部品であれば、より好ましい。
 本発明によれば、反射戻り光が発生し難い干渉フィルターを用いた光部品を、より安価に提供することができる。
光部品の構造と動作状態を示す図である。 光部品の構造と動作状態を示す図である。 本発明の実施例に係る光部品の構造と動作状態を示す図である。 本発明の実施例に係る光部品の構造と動作状態を示す図である。 上記実施例に係る光部品におけるその他の動作状態を示す図である。 比較例に係る光部品の構造と動作状態を示す図である。 光部品の反射減衰量特性を示す図である。 光部品の反射減衰量特性を示す図である。 上記実施例の光部品を構成する干渉フィルターの傾斜角度と動作状態との関係を示す図である。 本発明のその他の実施例に係る光部品の構造と動作状態を示す図である。
===光部品の構造と基本的な動作===
 図2A及び図2Bに本発明の一実施例に係る光部品1aの構造を示した。図2Aは、光部品1aを光軸5を含む面で切断したときの断面図であり、図2Bは、図2Aにおける円内を拡大した図である。そして、実施例に係る光部品1aは、図1A及び図1Bに示した光部品1と同様に、光軸5上に、フェルール(61,62)に保持された2本の光ファイバー(41,42)が、それぞれの開口端(43,44)が互いに対向するように配置され、この対向する開口端(43,44)間を光路としている。そして、一方の光ファイバー41に入射された光(入力光)Linを、他方の光ファイバー42から出力光Loutとして出射する。なお、図中では、光路の往路と復路が分かりやすいように、光軸5に対して一方の光路のみを示している。
 光部品1aは、光軸5の延長方向を前後方向とすると、干渉フィルター3は、前後の光ファイバー(41,42)の開口端(43,44)間の前後中央付近に配置され、その干渉フィルター3の前後にそれぞれコリメーターレンズ(51,52)が配置された構造を基本とし、例示した光部品1aでは、干渉フィルター3を収納した筐体(以下、フィルターケース)2aの前後に、光ファイバー(41,42)を保持したフェルール(61,62)とコリメーターレンズ(51,52)を筐体(31,32)に収納してなるコリメーター(33,34)を連結した構造となっている。そして、ここまでの構成や構造、動作は、図1A及び図1Bに示した従来例と同様である。しかし、本実施例に係る光部品1aでは、干渉フィルター3を収納する筐体(以下、フィルターケース)2aの構造と、そのフィルターケース2aの内部構造とコリメーターレンズ(51,52)の見かけ径φ2との寸法上の関係とに特徴を有して、迷光に起因する反射戻り光の発生を防止することが可能となっている。以下に、本実施例に係る光部品1aの構成や構造をより具体的に説明する。
 フィルターケース2aは、外観が筒状で、その筒の両端に円形の開口(24,25)を有し、内部にはその両端の開口(24,25)間を連絡するように中空となっている。この中空部分には、干渉フィルター3の収納空間となるフィルター収納部21と、このフィルター収納部21から前および後の開口(24,25)まで連絡する光通路部(22,23)とで構成されている。光通路部(22,23)は、円形断面を有する管状で、その円形断面の径φ1を維持しながら開口(24,25)まで至っている。また、フィルター収納部21は、この例では、光通路部(22,23)よりも径が大きな円筒状である。
 フィルターケース2aの前後には、コリメーター(31,32)が連結されている。コリメーター(31,32)は、中空円筒状の筐体(以下、鏡筒)(33,34)内にコリメーターレンズ(51,52)を収納したものである。前後の鏡筒(33,34)は、それぞれ、前後両端が円形に開口し、フィルターケース2aと連結している側の開口近辺にコリメーターレンズ(51,52)が配置されている。また、コリメーターレンズ(51,52)の径φ2は、鏡筒(33,34)の開口径とほぼ一致し、この開口径がコリメーターレンズの見かけ径φ2となる。また、鏡筒(33,34)の他方の開口、すなわち、フィルターケース2aに対して外側にある開口には光ファイバー(41,42)を保持したフェルール(61,62)が挿入されている。そして、この光部品1aを前後両端から見たとき、コリメーターレンズ(51,52)の見かけ径φ2に対し、フィルターケース2aの光通路部(22,23)の開口(24,25)が縮径している。すなわち、単純にコリメーターレンズ(51,52)の見かけ径φ2よりフィルターケース2aの開口径φ1が小さいのではなく、前後両端からコリメーターレンズ(51,52)を見たとき、そのレンズ(51,52)の存在領域内にフィルターケース2aの開口(24,25)の領域が包含されている。以下、このような構成や構造を備えた光部品1aの動作を説明と、当該光部品1aに施された迷光対策とについて説明する。
===迷光対策について===
 上述したように、本実施例に係る光部品1aでは、光軸5に沿った光路において、コリメーターレンズ(51,52)の見かけ径φ2より、光通路部(22,23)の開口径φ1が縮径されている点に特徴がある。図2Bと、図3に、本実施例に係る光部品1aの動作の概略を示した。なお、本実施例の光部品1aは、相反性であり、前方および後方のいずれの方向から光を入力して、後方および前方へ向けて光を出力する。以下では、干渉フィルター3よりも前方の光路に基づいて、光部品1aの動作や迷光対策について説明する。
 まず、図2Bに示したように、前方から干渉フィルター3に入射した光L1に含まれる所定の波長帯域の光L3が当該干渉フィルター3によって反射された際、その反射光L3が前方の光通路部22の内面26にて散乱する場合を考える。この場合は、反射光L3の進行方向における前後方向の成分は、前方向であり、光通路部22の内面26は前後方向に延長している。そのため、当該内面26での散乱光L4の前後方向の成分のほとんどが前方向となる。すなわち、干渉フィルター3側に戻る後方向の成分がほとんど無く、散乱光L3の一部が干渉フィルター3で反射して再度前方に向かうことがない。したがって、光通路部22における散乱光L4の中に、反射光L3の光路を逆に辿る光はほぼ完全にない、と言える。そして、光通路部22の開口径φ1がコリメーターレンズ51の見かけ径φ2よりも縮径されているため、散乱光L4の一部が鏡筒33の後端面35で反射されることもない。したがって、どのような経路であれ、反射光L3の光路を逆に辿る光は存在せず、本実施例に係る光部品1aでは、反射戻り光(図1A、図1B:L6)が発生しない。
 ところで、干渉フィルター3の法線4と光軸5との交差角度(傾斜角度)θは、普通、2゜~5゜程度であり、干渉フィルターの3において光が入射する面は、光軸5に対して垂直に近い。したがって、図3に示したように、干渉フィルター3の傾斜角度θが小さい場合では、干渉フィルター3での反射光L3が、光通路部22の内面26で散乱されず、光通路部22の開口24から前方に直接出射することもあり得る。この場合は、光通路部22の開口24から前方に直接出射した光がコリメーターレンズ51に入射することになる。しかし、コリメーターレンズ51の見かけ径φ2に対して光通路部22の開口径φ1が縮径しているため、コリメーターレンズ51に入射する干渉フィルター3からの反射光L3は、光軸5に対して大きな角度αで傾いているため、この反射光L3がコリメーターレンズ51の外周近辺に入射する。そのため、このコリメーターレンズ51で反射光L3が屈折したとしても、光ファイバー41の開口端43に結合することがない。したがって、反射戻り光が発生しない。
 なお、本実施例に対する比較例として、図4に、光通路部22の開口径φ1に対してコリメーターレンズ51の見かけ径φ2が縮径している光部品1bを示した。反射光L3が光通路部22の内面26に当たって散乱し、その散乱光L4の一部L7が鏡筒33の後端面35に当たって散乱する。そして、その鏡筒33の後端面35における散乱光L8の一部L9が干渉フィルター3からの反射光L3の光路を逆に辿る可能性がある。すなわち、反射戻り光L6が発生する可能性がある。
 なお、比較例に係る光部品1bにおいて、干渉フィルター3の傾斜角度θをさらに小さくして、反射光3を直接コリメーターレンズ51に入射させるような場合では、光部品1と同様に、干渉フィルター3からの反射光L3がコリメーターレンズ51の中心付近に入射するため、この反射光L3が光ファイバー41に直接結合する可能性が高い。
===反射減衰特性===
 以上、本実施例に係る光部品1aにおける迷光対策とその対策によって反射戻り光の発生を防止できる仕組みとを説明した。つぎに、本実施例に係る光部品1aと図1A及び図1Bに示した光部品1とを用意し、実際に光ファイバー(41,42)に入射した光の強度と、その光の入力端側に戻ってくる光の強度との比である反射減衰量を測定した。
 図5Aおよび図5Bは、図1A及び図1Bに示した光部品1、および図2A、図2B,図3に示した本実施例に係る光部品1aのそれぞれにおける反射減衰量の波長依存性を示す図である。なお、光部品1、および本実施例に係る光部品1aは、いずれも、相反性であり、前後いずれからの入力光も干渉フィルター3を透過し、所定の波長帯域の光として後方あるいは前方に出射する。そのため、図5A、図5Bでは、前方からの光に対する反射減衰量特性を「入力側」、後方からの光に対する反射減衰量特性を「出力側」としている。
 まず、図5Aに示したように、光部品1では、入力側の特性101に大きな波長依存性があり、反射減衰量が波長によって大きく変化している。また、反射減衰量も透過波長領域のほぼ全域で40db~50dbと小さい。出力側の特性102は、大きな波長依存性は見られないものの、反射減衰量が総じて40db程度であり、強い反射戻り光が発生していることが認められる。なお、入力側と出力側での特性(101,102)が非対称なのは、干渉フィルター3がガラス基板の片面に誘電体薄膜からなる干渉膜を形成したものであり、ガラス面側から入射した光と、干渉膜側から入射した光とでは、その反射特性が非対称であること、対向する光ファイバー(41,42)の開口端(43,44)を結ぶ直線が光軸5からずれていることなどが考えられる。いずれにしても、大きな反射減衰量が得られず、譬え、入力側と出力側の特性(101,102)が対称的であったとしても、入力側と出力側の平均的な特性となるだけであり、大きな反射減衰量が得られず、大きな波長依存性があることには間違いない。したがって、光部品1では、光源から干渉フィルター3に至る光路の途上に反射戻り光が光源に至らないようにする何らかの他の光部品(光アイソレーター)を設ける必要があり、この光部品1を含めた光通信システムの全体構成を考えれば、コストダウンが難しい。
 一方、図5Bに示した実施例の光部品1aでは、入力側、出力側の双方の特性(103,104)において、測定波長領域で50db以上の反射減衰量があり、最大で60dbもある。なお、光強度の測定装置(光パワーメーター)には測定限界があり、その測定限界に基づく反射減衰量の上限が60db程度であることから、図5Bに示した特性(103,104)から、実施例の光部品1aでは、その反射戻り光の強度が測定限界を下回り、反射戻り光の発生をほぼ完全に防止している、と言える。また、波長依存性も少なく、入力側と出力側の特性(103,104)がほぼ対称となっている。
===その他の実施例===
<光部品の構成について>
 上記実施例の光部品1aでは、フェルール(61,62)とコリメーターレンズ(51,52)を内蔵したコリメーター(31,32)をフィルターケース2aに連結させていたが、この例に限らず、コリメーターレンズ(51,52)がフィルターケースにおける光通路部(22,23)の開口(24,25)と対面配置されていればよく、例えば、前後二つのコリメーターレンズ(51,52)とフィルターケース2aとを光学実験台の上に固定することで光部品を構成してもよい。
<相反性について>
 上記実施例の光部品1aは、相反性があり、前後のどちらからでも光を入力することができた。したがって、前後のいずれから見ても、コリメーターレンズ(51,52)の見かけ径φ2より、光通路部(22,23)の開口径φ1が縮径していた。もちろん、前後の一方が入力側として規定されているのであれば、少なくとも、その入力側から光部品1aを見たときにコリメーターレンズ(51または52)の見かけ径φ2に対して光通路部(22または23)の開口径φ1が縮径されていればよい。
<フィルター収納部の形状について>
 上記実施例の光部品1aでは、フィルター収納部21の形状が円筒状であった。しかし、図6に示した光部品1cのように、干渉フィルター3の法線4と光軸5との角度θが大きいと、干渉フィルター3での反射光L3がフィルター収納部21の内面27にて散乱し、その散乱光L4の一部L5が干渉フィルター3に反射して反射戻り光L6となる可能性がある。そこで、図7に示した光部品1dのように、干渉フィルター3の設置角度に応じて反射光L3が必ず光通路22内に案内されるように、フィルターケース2d内のフィルター収納部21dの形状を変えてもよい。図示した例では、前後方向を短軸とする楕円体状のフィルター収納部21dとしている。なお、周知のごとく、干渉フィルター3は、その法線4と光軸5との角度θが大き過ぎると、干渉フィルター3の干渉膜に入射する光L1の角度が大きくなり、特性が劣化する。そのため、普通は、光軸5に対して垂直に近い角度で傾けて配置している。したがって、干渉フィルター3の設置角度が大きいことに起因する反射戻り光を考慮する必要は少ない、と言える。
<フェルールの素材について>
 実施例の光部品1aは、干渉フィルター3による反射光L3に起因する反射戻り光については、ほぼ完全に除去できる。しかしながら、光ファイバー(41,42)から出射する光は、直線性が高いレーザー光線であっても、僅かに広がる。そのため、光ファイバー(41,42)の開口端付近で、その光がフェルール(61、62)に当たる。フェルール(61、62)の多くは、ジルコニアなど、見た目が白色、すなわち光を散乱する素材でできており、このフェルール(61、62)に当たった光は散乱し、その散乱光の一部が反射戻り光となる可能性がある。そこで、このフェルール(61、62)を透明なガラス素材とすれば、フェルール(61、62)の光散乱性に由来する反射戻り光も抑制され、より高い反射減衰量を得ることが期待できる。
 この発明は、光通信技術に利用可能である。
1,1a~1d 光部品、2,2a,2d フィルターケース、
3 干渉フィルター、4 干渉フィルターの法線、5 光軸、
21 フィルター収納部、22,23 光通路部、
24,25 光通路部(フィルターケース)の開口、
26 光通路部の内面、27 フィルター収納部の内面、
31、32 コリメーター、33,34 鏡筒、41,42 光ファイバー、
51,52 コリメーターレンズ、61,62 フェルール、
101,102 従来例の光部品の反射減衰量特性、
103,104 実施例の光部品の反射減衰量特性、
L1 干渉フィルターへの入射光、L2 干渉フィルターからの透過光、
L3 干渉フィルターでの反射光、L4,L5,L7,L8,L9 散乱光、
L6 反射戻り光、θ 光軸に対する干渉フィルターの法線の傾斜角度、
φ1 光通路部の開口径、φ2 コリメーターレンズの見かけ径

Claims (5)

  1.  光軸の延長方向を前後方向として、干渉フィルターの前方および後方に、それぞれ第1および第2のコリメーターレンズが配置された光部品であって、
     前方から前記光軸に沿う光が入力された際、所定の波長帯域の光を後方へ出力し、
     前記干渉フィルターは、前後両端が開口する中空筒状の筐体内に、前記光軸に対して斜めとなるように配置されて、
     前記筐体は、内部に、前記干渉フィルターを収納するフィルター収納部と、前方および後方の前記開口から当該フィルター収納部まで前記開口の形状を維持しつつ前後方向に延長する管状の第1の光通路部および第2の光通路部を備え、
     前記第1および第2のコリメーターレンズは、前記筐体の前方および後方のそれぞれの開口に対面して配置され、
     前方から見たときに、前方の前記第1の光通路部の前記開口の径が、前記第1のコリメーターレンズの見かけ径に対し縮径されている、
     ことを特徴とする干渉フィルターを備えた光部品。
  2.  請求項1において、後方から見たときに、後方の前記第2の光通路部の前記開口の径が、前記第2のコリメーターレンズの見かけ径に対し縮径されて、後方から前記光軸に沿う光が入力された際、所定の波長領域の光を前方へ出力する、ことを特徴とする干渉フィルターを備えた光部品。
  3.  請求項1または2において、前記フィルター収納部の形状は、前記干渉フィルターにおいて、入力された光の反射方向が前記光通路部の内部に向かうように形成されていることを特徴とする干渉フィルターを備えた光部品。
  4.  請求項1~3のいずれかにおいて、前記筐体の前端および後端に、それぞれ、フェルールに保持された光ファイバーと前記第1のコリメーターレンズが保持された第1の光ファイバー・コリメーター、およびフェルールに保持された第2の光ファイバーと前記第2のコリメーターレンズが保持された第2の光ファイバー・コリメーターとが連結されている、ことを特徴とする干渉フィルターを備えた光部品。
  5.  請求項4において、前記フェルールは、透明なガラスで形成されていることを特徴とする干渉フィルターを備えた光部品。
PCT/JP2012/077983 2011-11-25 2012-10-30 干渉フィルターを備えた光部品 WO2013077146A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/359,643 US9341757B2 (en) 2011-11-25 2012-10-30 Optical component including interference filter
CN201280057732.3A CN104126139B (zh) 2011-11-25 2012-10-30 使用干涉滤光片的光模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-257989 2011-11-25
JP2011257989A JP5865678B2 (ja) 2011-11-25 2011-11-25 干渉フィルターを用いた光部品

Publications (1)

Publication Number Publication Date
WO2013077146A1 true WO2013077146A1 (ja) 2013-05-30

Family

ID=48469594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077983 WO2013077146A1 (ja) 2011-11-25 2012-10-30 干渉フィルターを備えた光部品

Country Status (4)

Country Link
US (1) US9341757B2 (ja)
JP (1) JP5865678B2 (ja)
CN (1) CN104126139B (ja)
WO (1) WO2013077146A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6884391B2 (ja) * 2017-12-01 2021-06-09 湖北工業株式会社 干渉フィルタモジュール
US10574852B2 (en) * 2018-01-12 2020-02-25 Seiko Epson Corporation Imaging optical mechanism, reading module, and image reading apparatus
CN109254355A (zh) * 2018-10-15 2019-01-22 深圳市亚派光电器件有限公司 光接收器件
CN109669268A (zh) * 2019-02-25 2019-04-23 京东方科技集团股份有限公司 虚拟现实镜筒组件和虚拟现实设备
JP7251782B2 (ja) 2019-05-30 2023-04-04 湖北工業株式会社 波長選択フィルタ
JP7387149B2 (ja) * 2019-10-29 2023-11-28 湖北工業株式会社 傾斜利得等化器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337603A (ja) * 1989-07-05 1991-02-19 Fujitsu Ltd ファイバコリメータ
JPH08320425A (ja) * 1995-05-26 1996-12-03 Oki Electric Ind Co Ltd 光回路用コリメータの製造方法
JPH09258064A (ja) * 1996-03-25 1997-10-03 Nippon Telegr & Teleph Corp <Ntt> フェルールおよびその製造方法
JP2002182068A (ja) * 2000-12-18 2002-06-26 Koransha Co Ltd 石英ガラスフェルールおよびその製造方法
JP2003205447A (ja) * 2002-01-08 2003-07-22 Nippon Electric Glass Co Ltd 光ファイバ付フェルール端面の研磨方法、光コネクタの組立方法、及び光ファイバ成端キット
JP2003322755A (ja) * 2002-05-07 2003-11-14 Seiko Instruments Inc 光ファイバコリメータ
JP2007086757A (ja) * 2005-08-23 2007-04-05 Sumitomo Electric Ind Ltd 光モジュール
JP2009145427A (ja) * 2007-12-11 2009-07-02 Nippon Electric Glass Co Ltd 光デバイス及びレンズアッセンブリ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608743A (en) * 1994-07-15 1997-03-04 Fuji Photo Film Co., Ltd. Semiconductor light emitting device
JP2007017903A (ja) 2005-07-11 2007-01-25 Furukawa Electric Co Ltd:The 一芯双方向光モジュール
US7413352B2 (en) 2005-08-23 2008-08-19 Sumitomo Electric Industries, Ltd. Optical module
JP2007057859A (ja) 2005-08-25 2007-03-08 Sumitomo Electric Ind Ltd 光送受信モジュール
JP4999114B2 (ja) 2008-10-27 2012-08-15 古河電気工業株式会社 一芯双方向光モジュール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337603A (ja) * 1989-07-05 1991-02-19 Fujitsu Ltd ファイバコリメータ
JPH08320425A (ja) * 1995-05-26 1996-12-03 Oki Electric Ind Co Ltd 光回路用コリメータの製造方法
JPH09258064A (ja) * 1996-03-25 1997-10-03 Nippon Telegr & Teleph Corp <Ntt> フェルールおよびその製造方法
JP2002182068A (ja) * 2000-12-18 2002-06-26 Koransha Co Ltd 石英ガラスフェルールおよびその製造方法
JP2003205447A (ja) * 2002-01-08 2003-07-22 Nippon Electric Glass Co Ltd 光ファイバ付フェルール端面の研磨方法、光コネクタの組立方法、及び光ファイバ成端キット
JP2003322755A (ja) * 2002-05-07 2003-11-14 Seiko Instruments Inc 光ファイバコリメータ
JP2007086757A (ja) * 2005-08-23 2007-04-05 Sumitomo Electric Ind Ltd 光モジュール
JP2009145427A (ja) * 2007-12-11 2009-07-02 Nippon Electric Glass Co Ltd 光デバイス及びレンズアッセンブリ

Also Published As

Publication number Publication date
US20140334776A1 (en) 2014-11-13
JP5865678B2 (ja) 2016-02-17
CN104126139A (zh) 2014-10-29
CN104126139B (zh) 2017-07-14
US9341757B2 (en) 2016-05-17
JP2013113921A (ja) 2013-06-10

Similar Documents

Publication Publication Date Title
JP5865678B2 (ja) 干渉フィルターを用いた光部品
KR102103867B1 (ko) 고출력 공간필터
US20120314996A1 (en) Optical fiber communication apparatus
RU2138835C1 (ru) Оптическое устройство (варианты), модуль лазерного диода, оптический соединитель и способ изготовления оптического устройства
JP6146573B2 (ja) レンズブロック及び光通信モジュール
JP6681751B2 (ja) 光レセプタクルおよび光モジュール
JP6494093B2 (ja) 光モジュール
JP7251782B2 (ja) 波長選択フィルタ
JP2018194723A (ja) 光コネクタ
JP6540310B2 (ja) 光ファイバ端末
JP2008151825A (ja) 光合分波器
WO2017154541A1 (ja) 光レセプタクルおよび光モジュール
JP7441698B2 (ja) 光レセプタクルおよび光モジュール
US12072538B2 (en) Optical connector
JP2005062704A (ja) 光モジュール、光減衰装置、光送受信モジュール並びに光導波部材
JP2001264551A (ja) 入射アパーチャを一体成形した光学分光計の光導波管
WO2018221401A1 (ja) 光レセプタクルおよび光モジュール
US20050185887A1 (en) Optical fiber collimator
GB2350441A (en) Optic fibre light emitting and receiving device
US20180284365A1 (en) Optical fiber drawer structure and optical module
US20120056111A1 (en) Single photon emission system
TW201341878A (zh) 光插座及具備它之光模組
KR102332244B1 (ko) 소광비를 개선한 광 서큘레이터 및 이 광 서큘레이터를 이용한 광파이버 센서 시스템
Jung et al. Multiport micro-optic devices for hollow core fibre applications
JP2015064537A (ja) 光学ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850789

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14359643

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850789

Country of ref document: EP

Kind code of ref document: A1