WO2013076988A1 - 光音響信号処理装置及び方法 - Google Patents

光音響信号処理装置及び方法 Download PDF

Info

Publication number
WO2013076988A1
WO2013076988A1 PCT/JP2012/007498 JP2012007498W WO2013076988A1 WO 2013076988 A1 WO2013076988 A1 WO 2013076988A1 JP 2012007498 W JP2012007498 W JP 2012007498W WO 2013076988 A1 WO2013076988 A1 WO 2013076988A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photoacoustic signal
waveform
photoacoustic
signal
Prior art date
Application number
PCT/JP2012/007498
Other languages
English (en)
French (fr)
Inventor
覚 入澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013076988A1 publication Critical patent/WO2013076988A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7239Details of waveform analysis using differentiation including higher order derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/489Blood vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02475Tissue characterisation

Definitions

  • the present invention relates to a photoacoustic signal processing apparatus and method, and more particularly to a photoacoustic signal processing apparatus and method for processing a photoacoustic signal generated in a subject by light irradiated to the subject.
  • Ultrasonography is known as a type of imaging that can noninvasively inspect the internal condition of a living body.
  • an ultrasonic probe capable of transmitting and receiving ultrasonic waves is used.
  • the ultrasonic waves travel inside the living body and are reflected at the tissue interface.
  • the internal appearance can be imaged by calculating the distance based on the time it takes for the ultrasound probe to receive the reflected sound and the reflected ultrasound to return to the ultrasound probe.
  • photoacoustic imaging which image-forms the inside of a biological body using a photoacoustic effect is known.
  • pulsed laser light is applied to the inside of a living body.
  • living tissue absorbs the energy of pulse laser light, and adiabatic expansion due to the energy generates an ultrasonic wave (photoacoustic signal).
  • photoacoustic signal is detected by an ultrasonic probe or the like, and a photoacoustic image is constructed based on the detection signal, whereby visualization in the living body based on the photoacoustic signal is possible.
  • the ordinary reconstruction method for example, Fourier domain method (FTA method) or delay-and-add method (Delay & Sum method) substantially images the pressure distribution, and the generated photoacoustic image is a light absorber. It is not a distribution image.
  • FFA method Fourier domain method
  • Delay & Sum method delay-and-add method
  • a single blood vessel may be displayed in duplicate. This phenomenon can be explained as follows. That is, when a pressure waveform generated by a minute element (minute absorber) is a micro waveform, a pressure waveform generated from a blood vessel as a macro structure can be grasped as an overlap of micro waveforms.
  • the thermal impulse response h (x, y) of the sample is first calculated, and then the photoacoustic image p (x, y) is constructed.
  • the thermal impulse response is defined as a transfer function until an infinitesimal single point temperature change is converted to a minute displacement of the sample surface. Thereafter, the thermal impulse response h (x, y) and the photoacoustic image p (x, y) are respectively subjected to Fourier transform to obtain Fourier transform images H ( ⁇ , ⁇ ) and P ( ⁇ , ⁇ ).
  • the derivative of an optical pulse ⁇ (t) having a finite time width is Fourier-transformed into ⁇ (k), and the derivative thereof is i ⁇ It is stated to be considered as (k).
  • the subject is irradiated with a microwave whose light pulse width is extended so that the excitation light pulse waveform falls within the detection zone of PZT (lead zirconate titanate), which is an ultrasonic detection element, The photoacoustic signal is detected by the PZT probe to reconstruct the absorption distribution.
  • PZT lead zirconate titanate
  • Non-Patent Document 2 describes that as a pressure waveform from a minute element in an object, a micro waveform obtained by combining an optical pulse differential function and an apparatus impulse response function and an absorption distribution are associated with an observed pressure waveform. ing. Absorption image reconstruction measures p d0 including optical differentiation and system response in an indivisible state, and after deconvoluting p d0 from the pressure waveform of each element, the filtered back projection method (filtered backprojection method) Using.
  • excitation is performed with pulsed laser light with a short optical pulse width
  • the detection band of ultrasonic waves is broadened compared to a normal ultrasonic diagnostic device
  • the photoacoustic signal is detected by a hydrophone and an oscilloscope, and the absorption distribution Configure.
  • the above deviation ⁇ 12.5 ns
  • the above deviation may be considered as an error, but when the light pulse width is 10 ns, the above deviation can not be called an error. It will transfer to the pressure distribution of the propagation process of the pressure wave rather than the pressure distribution at the moment of contact.
  • the "pressure distribution in the pressure wave propagation process” does not match the "absorption distribution”.
  • the inventor has found that it is advantageous to deconvolute the differential waveform of the light pulse waveform from the observed waveform or the pressure waveform after reconstruction.
  • An absorption distribution can be obtained by deconvolving the light pulse differential waveform from the observed waveform.
  • the time waveform of the pulsed laser light irradiated to the subject is not always constant. For example, when the pulsed laser light is irradiated to the subject a plurality of times, the time waveform of the pulsed laser light may be different for each laser emission. If the time waveform of the pulse laser light deviates from the previously assumed waveform, the light pulse differential waveform used for deconvolution does not match the actual differential waveform, and the absorption distribution can not be determined correctly.
  • the present invention measures the time waveform of the light intensity of the light emitted to the subject, the sampling means which samples the photoacoustic signal generated in the subject by the emitted light to the subject. And an optical differential waveform deconvoluting means for generating a signal obtained by deconvolving the differential waveform of the time waveform measured by the optical waveform measuring means from the sampled photoacoustic signal.
  • the light waveform measurement means can adopt a configuration including a light intensity detection unit that detects the light intensity of the light emitted to the subject.
  • the light intensity detection unit may detect the light intensity of the light branched from the optical path from the light emission end of the light source of the light emitted to the subject until the light is emitted to the subject.
  • the sampling means samples a plurality of photoacoustic signals generated by a plurality of times of light emission
  • the light waveform measuring means measures a time waveform of light intensity in each of the plurality of times of light
  • an optical differential deconvoluting means the differential waveform of the average waveform of the plurality of measured time waveforms may be deconvoluted from the signal obtained by averaging the plurality of photoacoustic signals.
  • the optical differential waveform deconvoluting means performs a first Fourier transformation means for performing Fourier transform on the sampled photoacoustic signal, and a second for performing a Fourier transform on the signal indicating the optical differential waveform.
  • Fourier transform means inverse filter operation means for obtaining inverse of Fourier transformed light differential waveform as inverse filter, filter application means for applying inverse filter to Fourier transformed photoacoustic signal, light to which inverse filter is applied
  • a configuration having inverse Fourier transform means for performing inverse Fourier transform on the acoustic signal can be employed.
  • the photoacoustic signal is sampled at a first sampling rate
  • the measured optical differential waveform is sampled at a second sampling rate higher than the first sampling rate, and sampled at the first sampling rate
  • the image processing apparatus may further comprise resampling means for resampling the selected photoacoustic signal at a second sampling rate
  • the first Fourier transform means may adopt a configuration for Fourier transforming the photoacoustic signal resampled by the resampling means.
  • the photoacoustic signal is sampled at a first sampling rate
  • the measured optical derivative waveform is sampled at a second sampling rate higher than the first sampling rate
  • the first Fourier is
  • the conversion means performs the Fourier transform with the first number of data points
  • the second Fourier transform means performs the Fourier transformation with the second number of data points larger than the first number of data points.
  • the signal processing method further comprises zero padding means for zero padding in which 0 is added to the center by the difference between the first data score and the second data score
  • the filter application means performs zero padding with the zero padding means.
  • a configuration may be adopted in which an inverse filter is applied to the signal subjected to
  • the photoacoustic signal is sampled at a first sampling rate
  • the measured optical differential waveform is sampled at a second sampling rate higher than the first sampling rate
  • the first Fourier transform means The Fourier transform is performed by the first data point
  • the second Fourier transform means performs the Fourier transform by the second data point, which is larger than the first data point.
  • the apparatus further comprises high-frequency component sample point removing means for removing high-frequency component sample points by the difference between the first data points and the second data points
  • the inverse filter computing means comprises Fourier transformed light pulse differential waveforms to high frequency components
  • the inverse of the signal from which the sample points have been removed may be determined as an inverse filter.
  • the sampling interval of the photoacoustic signal may be longer than the pulse time width of the light emitted to the subject.
  • the photoacoustic signal processing apparatus further comprises photoacoustic signal reconstruction means for reconstructing a photoacoustic signal based on the photoacoustic signal detected by the plurality of detection elements and sampled by the sampling means, and the optical differential waveform It is possible to adopt a configuration in which the deconvoluting means deconvolutes the light differential waveform from the photoacoustic signal reconstructed by the photoacoustic signal reconstructing means.
  • the optical differential waveform deconvoluting means may deconvolute the photoacoustic signal by multiplying the optical differential waveform by the device response function.
  • the light emitted to the subject may be pulsed laser light.
  • the light emitted to the object contains light of a plurality of wavelengths
  • the sampling means samples the photoacoustic signal corresponding to the light of each wavelength
  • the optical differential waveform deconvoluting means corresponds to the light of each wavelength
  • a signal obtained by deconvolving the optical differential waveform from the photoacoustic signal may be generated.
  • the signal obtained by deconvolving the optical differential waveform from the photoacoustic signal corresponding to the light of each wavelength is arithmetically processed 2 It may be configured to further include wavelength data calculation means.
  • composition further provided with the photoacoustic image generation means which generates a photoacoustic image based on the signal which deconvoluted the optical differential waveform from the photoacoustic signal.
  • Reflection acoustic wave image generation means for generating a reflection acoustic wave image based on the sampled reflection acoustic wave, the sampling means further sampling the reflection acoustic wave with respect to the acoustic wave transmitted to the subject;
  • a configuration further including image combining means for combining the photoacoustic image and the reflected acoustic wave image may be employed.
  • the image combining means may perform image combining by superimposing the photoacoustic image and the reflected acoustic wave image.
  • the present invention also includes the steps of detecting a photoacoustic signal generated in the subject due to light emission to the subject, measuring a temporal waveform of the light intensity of the irradiated light, and the detected light. And D. deconvoluting an optical differential waveform obtained by differentiating a temporal waveform of measured light from an acoustic signal.
  • the time waveform of the light intensity of the light irradiated to the object is measured, and the time waveform of the measured time signal is detected from the detection signal of the photoacoustic signal generated by the light irradiation.
  • Deconvolute the derivative waveform As described above, by measuring the time waveform of the irradiated light and deconvoluting the differentiated waveform, the light differential waveform convoluted to the observed waveform from the detection signal of the photoacoustic signal in the deconvolution is correctly determined. It is possible to deconvolute and obtain the absorption distribution correctly.
  • the block diagram which shows the basic algorithm of light pulse differential waveform deconvolution The wave form diagram which shows the photoacoustic signal after reconstruction.
  • the wave form diagram which shows the light pulse differential waveform of sampling rate 40MHz.
  • the block diagram which shows the light pulse differential waveform deconvoluting means in 3rd Embodiment of this invention.
  • the graph which shows a photoacoustic signal (frequency domain).
  • the graph which shows the photoacoustic signal after zero padding.
  • the block diagram which shows the light-pulse differential waveform deconvoluting means in 4th Embodiment of this invention.
  • the graph which shows a light pulse differential waveform (frequency domain).
  • the block diagram which shows the photoacoustic image generating apparatus of 5th Embodiment of this invention.
  • the block diagram which shows the photoacoustic image generating apparatus of 6th Embodiment of this invention.
  • micro-absorbent particle which is a light absorber
  • this micro-absorbent particle absorbs pulse laser light to generate a pressure wave (photoacoustic pressure wave).
  • the pressure waveform p micro (R, t) when a photoacoustic pressure wave generated from a micro-absorbing particle at position r is observed at position R, where t is time, is [Phys. Rev. Lett. 86 (2001) ] 3550.], it becomes the following spherical waves.
  • I (t) is a time waveform of the light intensity of the excitation light
  • the coefficient k is a conversion coefficient when the particle absorbs light and outputs an acoustic wave
  • v s is the sound velocity of the object is there.
  • Positions r and R are vectors indicating positions in space.
  • the pressure generated from the micro-absorbing particles is a spherical wave proportional to the light pulse differential waveform as shown in the above equation.
  • the pressure waveform obtained from the subject to be actually imaged is considered to be a waveform obtained by superimposing the above-mentioned micro absorption waveform because it has a more macroscopic absorber size (the principle of superposition).
  • a (r ⁇ R) be the absorption distribution of particles that emit macro photoacoustic waves
  • p macro (R, t) be an observed waveform of pressure from the macro absorber.
  • the observation position R the photoacoustic wave from the absorbing particle located at the radius v s t from the observation position R is observed at each time, so the observation waveform p macro (R, t) has the following pressure It is shown by a waveform equation.
  • the observed waveform shows a convolution type of light pulse differentiation. Therefore, in the present invention, in the deconvolution processing, deconvolution is performed in consideration of the light pulse differential term.
  • the pressure distribution after reconstruction is t ⁇ 0. That is, on the basis of the recognition that it is the pressure distribution of the pressure wave propagation process, it was considered to convert it into the absorption distribution.
  • p rec (R, t) in which the photoacoustic waves generated and propagating from the micro absorber present in the detection axis (r ⁇ R) are superimposed can be expressed as follows.
  • a pressure can be expressed as in the above equation.
  • the above equation (2) can be expressed as follows, where the detection axis (r ⁇ R) is the z axis and the distance
  • the light pulse differential can be deconvoluted by Fourier transforming both sides of the equation (4) and dividing the Fourier coefficient of the pressure distribution by the Fourier coefficient of the time differential of the light pulse on the frequency axis. After deconvolution, it is possible to obtain A (x, y, v s t) and to image the absorption distribution by performing inverse Fourier transform on the obtained equation.
  • the detection element reception angle dependency D (x, y, z) and the natural vibration of the probe band may be superimposed on A (x, y, v s t) obtained here.
  • the influence can be eliminated if intensity imaging is performed by Hilbert transform or orthogonal detection processing.
  • FIG. 1 shows the basic algorithm of optical pulse differential waveform deconvolution.
  • the reconstructed photoacoustic signal is input, and the reconstructed photoacoustic signal is Fourier-transformed by FFT (Fast Fourier Transform) (step S101).
  • the photoacoustic signal after reconstruction is shown in FIG. 2A
  • the photoacoustic signal FFT after FFT is shown in FIG. 2B.
  • FIG. 2B shows the absolute value of the photoacoustic signal FFT, it is processed as it is in a complex number in actual processing.
  • the light pulse differential waveform h is subjected to Fourier transform by FFT (step S102).
  • the light pulse differential waveform (h) is shown in FIG. 2C
  • the light pulse differential waveform FFT (fft_h) after the FFT is shown in FIG. 2D.
  • the signal (waveform) in the time domain shown in FIG. 2C is converted into the signal in the frequency domain shown in FIG. 2D.
  • black circles in FIG. 2C represent sampling points in the light pulse differential waveform.
  • FIG. 2D shows the absolute value of the light pulse differential waveform FFT, it is processed as it is in a complex number in actual processing.
  • the reciprocal of the light pulse differential waveform FFT (fft_h) after FFT obtained in step S102 is determined as a light pulse differential waveform FFT filter (inverse filter) (step S103).
  • the light pulse differential waveform FFT filter can be obtained by conj (fft_h) / abs (fft_h) 2 .
  • conj (fft_h) represents a conjugate complex number of fft_h
  • abs (fft_h) represents an absolute value of fft_h.
  • FIG. 2E shows an optical pulse differential waveform FFT filter.
  • FIG. 2F shows the FFT waveform after deconvolution.
  • the FFT waveform obtained by deconvolving the light pulse differential waveform in step S104 is subjected to inverse Fourier transform by inverse FFT, and the signal in the frequency domain is returned to the signal in the time domain (step S105).
  • FIG. 2G shows the inverse converted photoacoustic signal.
  • the photoacoustic signal after this deconvolution is an absorption distribution obtained by deconvoluting the light pulse differential waveform from the reconstructed photoacoustic signal (FIG. 2A) in which the light pulse differential waveform (FIG. 2C) is convoluted to the light absorption distribution It corresponds to
  • FIG. 3A shows a photoacoustic image generated based on the reconstructed photoacoustic signal (FIG. 2A)
  • FIG. 3B shows a photoacoustic image generated based on the deconvoluted photoacoustic signal (FIG. 2G) Show.
  • the photoacoustic image generated on the basis of the photoacoustic signal after reconstruction shown in FIG. 3A is substantially an image of the pressure distribution, and an image determination such as displaying one blood vessel in a double manner is performed. Above, it is difficult to confirm the position of the blood vessel.
  • the distribution of the absorber can be imaged by deconvoluting the light pulse differential waveform, and the blood vessel It is easy to check the position.
  • FIG. 4 shows a photoacoustic image generating apparatus including the photoacoustic signal processing apparatus according to the first embodiment of the present invention.
  • the photoacoustic image generation apparatus (photoacoustic image diagnostic apparatus) 10 includes an ultrasound probe (probe) 11, an ultrasound unit 12, and a light source unit (laser unit) 13.
  • the laser unit 13 generates a laser beam to be irradiated to the subject.
  • the wavelength of the laser light may be appropriately set according to the object to be observed.
  • the laser beam emitted from the laser unit 13 is guided to the probe 11 using a light guiding means such as an optical fiber, for example, and is irradiated onto the subject from the probe 11.
  • the probe 11 detects an ultrasonic wave (photoacoustic signal) generated by the light absorber in the subject absorbing the laser light after the subject is irradiated with the light emitted from the laser unit 13.
  • the probe 11 has, for example, a plurality of ultrasonic transducers arranged in a one-dimensional manner.
  • the ultrasound unit 12 includes a receiving circuit 21, an AD conversion unit 22, a reception memory 23, a photoacoustic image reconstruction unit 24, a light pulse differential waveform deconvolution unit 26, a detection / logarithmic conversion unit 27, and a photoacoustic image construction unit 28. , Trigger control circuit 29, and control means 30.
  • the ultrasound unit 12 and the light waveform measurement means 25 constitute a photoacoustic signal processing apparatus. Although the light waveform measuring means 25 is provided outside the ultrasonic unit 12 in FIG. 4, a part or all of the light waveform measuring means 25 may be included in the ultrasonic unit 12.
  • the receiving circuit 21 receives the photoacoustic signal detected by the probe 11.
  • the AD conversion means 22 is a sampling means, samples the photoacoustic signal received by the receiving circuit 21 and converts it into a digital signal.
  • the AD conversion means 22 samples the photoacoustic signal at a predetermined sampling cycle based on, for example, an AD clock signal of a predetermined frequency input from the outside.
  • the reception memory 23 stores the photoacoustic signal sampled by the AD conversion unit 22.
  • the photoacoustic image reconstruction means 24 reads the photoacoustic signal from the reception memory 23, and generates data of each line of the photoacoustic image based on the photoacoustic signal detected by the plurality of ultrasonic transducers of the probe 11. .
  • the photoacoustic image reconstruction means 24 adds, for example, data from 64 ultrasonic transducers of the probe 11 with a delay time according to the position of the ultrasonic transducer, and generates data for one line (delay Addition).
  • the photoacoustic image reconstruction means 24 may perform reconstruction by the BP method (Back Projection) instead of the delay addition method. Alternatively, the photoacoustic image reconstruction means 24 may perform reconstruction using a Hough transform method or a Fourier transform method.
  • the light waveform measurement means 25 measures the time waveform of the light intensity of the light (for example, pulsed laser light) irradiated to the subject.
  • the light pulse differential waveform deconvoluting means 26 generates a signal obtained by deconvolving the differential waveform of the time waveform measured by the light waveform measuring means 25 from the photoacoustic signal reconstructed by the photoacoustic image reconstructing means 24. .
  • the pressure distribution reconstructed at t 0, that is, the absorption distribution can be obtained from the pressure distribution reconstructed at t ⁇ 0.
  • the light pulse differential waveform deconvoluting means 26 may deconvolute the photoacoustic signal before reconstruction.
  • the detection / logarithmic conversion means 27 finds the envelope of the data of each line after deconvolution, and logarithmically transforms the found envelope.
  • a detection means for obtaining the envelope it is possible to use a conventionally used method such as Hilbert transform or quadrature detection. Thereby, the influence of the band due to the natural vibration of the ultrasonic transducer can be removed.
  • the photoacoustic image construction means 28 generates a photoacoustic image based on the data of each line subjected to logarithmic conversion.
  • the photoacoustic image construction means 28 converts, for example, the position in the time axis direction of the photoacoustic signal (peak portion) into the position in the depth direction in the photoacoustic layer image to generate a photoacoustic image.
  • the control means 30 controls each part in the ultrasonic unit 12.
  • the trigger control circuit 29 sends a flash lamp trigger signal to the laser unit 13 at the time of photoacoustic image generation. Also, after the flash lamp trigger signal is output, a Q switch trigger signal is sent.
  • the laser unit 13 includes a flash lamp 31 and a Q switch 32.
  • the laser unit 13 receives a flash lamp trigger signal, turns on the flash lamp 31, and starts laser excitation.
  • the Q switch trigger signal is input, the laser unit 13 turns on the Q switch and emits pulsed laser light.
  • the trigger control circuit 29 sends a sampling trigger signal to the AD conversion means 22 in synchronization with the laser light irradiation to the subject, and controls the sampling start timing of the photoacoustic signal in the AD conversion means 22.
  • a correction means is provided downstream of the light pulse differential waveform deconvoluting means 26, and the correction means is influenced by the reception angle dependency characteristic of the ultrasonic transducer in the probe 11 from the signal in which the light pulse differential waveform is deconvoluted. May be removed.
  • the correction means may remove the influence of the incident light distribution of the light on the object from the signal in which the light pulse differential waveform is deconvoluted in addition to or instead of the reception angle dependent characteristic.
  • FIG. 5 shows the light waveform measuring means 25.
  • the light waveform measurement unit 25 includes a light intensity detection unit 251, an amplifier 252, an AD converter 253, and a waveform memory 254.
  • the light intensity detection unit 251 detects the light intensity of the pulsed laser light irradiated to the subject.
  • the light intensity detection unit 251 outputs, for example, a signal of a voltage corresponding to the detected light intensity.
  • a fast response photodiode can be used for the light intensity detection unit 251, for example, a fast response photodiode can be used.
  • a branch portion 255 is provided to branch a part of
  • a mirror having high transmittance specifically, a mirror having a transmittance of 95% or more can be used.
  • Such a mirror is disposed, for example, at an angle of 45 ° with respect to the main flow of the laser toward the subject direction, and the reflection component of the mirror is branched in the direction of the light intensity detection unit 251.
  • the light intensity of the branched light corresponds to the light intensity of the pulsed laser light irradiated to the subject, and the light intensity detection unit 251 detects a part of the pulsed laser light branched by the mirror.
  • a transparent glass may be used in the branch portion 255 so that the reflection component of the transparent glass is branched in the direction of the light intensity detection unit 251.
  • some (for example, one) of a plurality of optical fibers may be The light may be guided to the intensity detection unit 251, and the light may be detected by the light intensity detection unit 251.
  • the amplifier 252 amplifies the signal output from the light intensity detection unit 251 at a predetermined amplification factor.
  • the AD converter 253 samples the signal amplified by the amplifier 252 at a predetermined sampling rate.
  • the AD converter 253 samples the intensity detected by the light intensity detection unit 251 over the light emission period of the pulse laser beam, whereby the time waveform of the light intensity of the pulse laser beam irradiated to the subject can be measured.
  • the AD converter 253 stores sampling data (light pulse waveform) of light intensity in the waveform memory 254.
  • FIG. 6 shows the light pulse differential waveform deconvoluting means 26.
  • the light pulse differential waveform deconvolution unit 26 includes a differential waveform calculation unit 40, Fourier transform units 41 and 42, an inverse filter calculation unit 43, a filter application unit 44, and a Fourier inverse conversion unit 45.
  • the differential waveform calculation means 40 generates an optical pulse partial waveform from the optical pulse waveform.
  • the differential waveform calculation means 40 reads an optical pulse waveform from, for example, the waveform memory 254 (FIG. 5), and generates an optical pulse differential waveform obtained by differentiating the read optical pulse waveform.
  • the Fourier transform means (first Fourier transform means) 41 transforms the reconstructed photoacoustic signal from a time domain signal into a frequency domain signal by discrete Fourier transform.
  • the Fourier transform means (second Fourier transform means) 42 converts the light pulse differential waveform generated by the differential waveform computing means 40 from a signal in the time domain to a signal in the frequency domain by discrete Fourier transform.
  • An FFT can be used as an algorithm of the Fourier transform.
  • the present invention is not limited to this.
  • the light waveform measurement unit 25 may generate the light pulse differential waveform.
  • differential waveform calculation means may be provided between the AD converter 253 (FIG. 5) of the light waveform measurement means 25 and the waveform memory 254. The differential waveform calculation means generates the differential waveform from the light pulse waveform sampled by the AD converter 253, and stores the generated light pulse differential waveform in the waveform memory 254.
  • the Fourier transform means 42 When generating the light pulse differential waveform before storing the waveform data in the waveform memory 254, the Fourier transform means 42 reads the light pulse differential waveform from the waveform memory 254 and performs Fourier transform on the read light pulse differential waveform. You can do it.
  • the sampling rate of the photoacoustic signal and the sampling rate of the light pulse differential waveform are assumed to be equal.
  • the Fourier transform means 41 Fourier-transforms the photoacoustic signal sampled at 40 MHz, for example, by 1024-point Fourier transform.
  • the Fourier transform means 42 performs Fourier transform of the light pulse differential waveform obtained by differentiating the light pulse waveform sampled at 40 MHz with 1024 points of Fourier transform.
  • the inverse filter computing means 43 finds the inverse of the Fourier-transformed light pulse differential waveform as an inverse filter. For example, when the signal obtained by Fourier-transforming the light pulse differential waveform h is fft_h, the inverse filter computing means 43 obtains conj (fft_h) / abs (fft_h) 2 as an inverse filter.
  • the filter application unit 44 applies the inverse filter obtained by the inverse filter operation unit 43 to the photoacoustic signal Fourier-transformed by the Fourier transform unit 41.
  • the filter application means 44 multiplies, for example, the Fourier coefficient of the photoacoustic signal and the Fourier coefficient of the inverse filter, element by element.
  • the Fourier inverse transform means 45 transforms the photoacoustic signal to which the inverse filter is applied from the signal of the frequency domain into the signal of the time domain by the inverse Fourier transform.
  • the inverse Fourier transform provides an absorption distribution signal in the time domain.
  • FIG. 7 shows an operation procedure.
  • the trigger control circuit 29 outputs a flash lamp trigger signal to the laser unit 13.
  • the laser unit 13 lights the flash lamp 31 in response to the flash lamp trigger signal.
  • the trigger control circuit 29 outputs a Q switch trigger signal at a predetermined timing.
  • the Q switch trigger signal is input, the laser unit 13 turns on the Q switch 32 and emits pulsed laser light.
  • the emitted pulse laser light is, for example, guided to the probe 11 and irradiated onto the subject from the probe 11 (step S1).
  • the light waveform measuring means 25 measures the time waveform of the pulsed laser light irradiated to the subject in step S1 (step S3).
  • the probe 11 detects the photoacoustic signal generated in the subject by the irradiation of the laser light after the irradiation of the laser light (step S3).
  • the receiving circuit 21 of the ultrasound unit 12 receives the photoacoustic signal detected by the probe 11.
  • the trigger control circuit 29 sends a sampling trigger signal to the AD conversion means 22 in accordance with the timing of light irradiation on the subject.
  • the AD conversion means 22 receives the sampling trigger signal, starts sampling of the photoacoustic signal, and stores sampling data of the photoacoustic signal in the reception memory 23.
  • the photoacoustic image reconstruction means 24 reads out sampling data of the photoacoustic signal from the reception memory 23, and reconstructs a photoacoustic signal based on the sampling data of the read out photoacoustic signal (step S4).
  • the light pulse differential waveform deconvoluting means 26 deconvolutes the light pulse differential waveform obtained by differentiating the light pulse waveform measured in step S1 from the photoacoustic signal reconstructed in step S3 (step S5). By this deconvolution, the photoacoustic signal which shows absorption distribution is obtained.
  • the detection / logarithmic conversion means 27 calculates the envelope of the photoacoustic signal subjected to the deconvolution, and logarithmically converts the obtained envelope.
  • the photoacoustic image construction means 28 generates a photoacoustic image based on the data of each line subjected to the logarithmic conversion (step S6).
  • the photoacoustic signal is an absorption distribution image obtained by imaging the absorption distribution.
  • the image display means 14 displays the photoacoustic image which is an absorption distribution image on a display screen (step S7).
  • the light pulse differential waveform is deconvoluted from the reconstructed photoacoustic image. By deconvolving the light pulse differential waveform, an absorption distribution can be obtained and an absorption distribution image can be generated.
  • the light waveform measurement means 25 measures the time waveform of the light intensity of the pulsed laser light irradiated to the object, and the light differential waveform reverse convolution means 26 is measured by the light waveform measurement means 25.
  • the deconvoluted optical pulse waveform is deconvoluted.
  • the time waveform of the light intensity of the pulsed laser light irradiated to the object is not always constant, and may be fluctuated for each laser emission, or may be changed depending on the apparatus mode.
  • the light pulse waveform changes as the number of times of light emission of the flash lamp increases, for example, with the change over time.
  • the light pulse waveform irradiated to the object is measured using the light waveform measuring means 25 and the differential waveform of the measured light pulse waveform is deconvoluted, the fixed light differential is obtained.
  • the absorption distribution can be obtained more accurately than when deconvoluting the waveform.
  • the light pulse waveform may be a waveform that is difficult to approximate by a function, such as a double-bulb waveform or a long-tailed waveform.
  • a function such as a double-bulb waveform or a long-tailed waveform.
  • the correct absorption distribution can not be obtained if deconvolution is performed using a waveform forcibly approximated by a function.
  • the light pulse waveform irradiated to the object is measured and deconvoluted with the differential waveform, accurate deconvolution correction is performed even if the light pulse waveform is difficult to approximate by a function. Processing becomes possible.
  • the photoacoustic signal which arose by irradiation of several times of pulsed laser radiation may be averaged, and one photoacoustic signal may be produced
  • the light pulse waveform of the pulse laser light of a plurality of times may be averaged, and the differential waveform of the average waveform of the light pulse waveform may be deconvoluted from the averaged photoacoustic signal.
  • the photoacoustic image reconstructing means 24 reconstructs the photoacoustic signal for each irradiation of the pulse laser beam and reconstructs it.
  • the five photoacoustic signals are averaged.
  • the light waveform measuring means 25 measures the light pulse waveforms of the five pulse laser beams.
  • the light differential waveform deconvoluting means 26 may obtain an average light pulse waveform obtained by averaging the measured five light pulse waveforms, and deconvolute the differential waveform of the average light pulse waveform from the averaged photoacoustic signal. .
  • the processing time can be shortened as compared to the case of performing deconvolution every time.
  • the sampling rate of the photoacoustic signal coincides with the sampling rate of the light pulse differential waveform, and both signals are subjected to Fourier transform with the same number of data points.
  • the photoacoustic signal is sampled at low speed, while the light pulse differential waveform is sampled at high speed. That is, the sampling rate of the light pulse waveform (light pulse differential waveform) is set higher than the sampling rate of the photoacoustic signal.
  • the sampling interval (the reciprocal of the sampling rate) of the photoacoustic signal is set to be longer than the pulse time width of the light irradiated to the object.
  • a low sampling rate photoacoustic signal is resampled (up sampled) at the same sampling rate as the sampling rate of the light pulse waveform, and then Fourier transform is performed.
  • the other points may be the same as in the first embodiment.
  • FIG. 8 shows the light pulse differential waveform deconvoluting means 26a in the present embodiment.
  • the light pulse differential waveform deconvoluting means 26a in this embodiment has resampling means 46 and 47 in addition to the configuration of the light pulse differential waveform deconvolving means 26 in the first embodiment shown in FIG.
  • the resampling means 46 is an upsampling means, and upsamples sampling data of the photoacoustic signal sampled at a low sampling rate at the same sampling rate as the sampling rate of the light pulse waveform.
  • the resampling means 46 performs upsampling, for example, by applying a low pass filter that adds zeros between sample points of the photoacoustic signal sampled at a low sampling rate and cuts it at the Nyquist frequency before upsampling.
  • the sampling rate (first sampling rate) of the photoacoustic signal in the AD conversion means 22 (FIG. 4) is 40 MHz
  • the sampling rate (second sampling rate) of the light pulse waveform in the AD converter 253 (FIG. 5) ) Is 400 MHz
  • the resampling means 46 upsamples the 40 MHz photoacoustic signal to a 400 MHz signal.
  • the Fourier transform means 41 Fourier transforms the photoacoustic signal upsampled by the resampling means 46.
  • the Fourier transform means 41 for performing a Fourier transform on the photoacoustic signal and the Fourier transform means for performing a Fourier transform on the light pulse differential waveform perform the Fourier transform with the same number of data points.
  • the Fourier transform means 41 converts the photoacoustic signal into a signal in the frequency domain of 8192 points
  • the Fourier transform means 42 converts the light pulse differential waveform into a signal in the frequency domain of 8192 points.
  • the filter application means 44 applies an inverse filter to the Fourier-transformed signal of the upsampled photoacoustic signal.
  • the Fourier inverse transform means 45 transforms the signal to which the inverse filter is applied, from the signal in the frequency domain to the signal in the time domain (absorption distribution).
  • the absorption distribution signal returned to the time domain signal is, for example, a signal in a state of being upsampled to 400 MHz.
  • the resampling means 47 downsamples the absorption signal so that the absorption distribution signal becomes a signal sampled at the original sampling rate of the photoacoustic signal.
  • the resampling means 47 downsamples, for example, the 400 MHz absorption signal to a 40 MHz absorption signal. Downsampling is performed, for example, by decimating sample points after applying a low pass filter that cuts at the Nyquist frequency after downsampling.
  • FIG. 9A shows an optical pulse differential waveform corresponding to a sampling rate of 400 MHz
  • FIG. 9B shows an optical pulse differential waveform corresponding to a sampling rate of 40 MHz.
  • a sampling rate of 400 MHz as shown in FIG. 9A, it is possible to accurately reproduce a waveform obtained by differentiating the time waveform of the light intensity of the pulse laser light.
  • the sampling rate of the light pulse differential waveform is matched to the sampling rate of the photoacoustic signal and it is a signal equivalent to 40 MHz, as shown in FIG. 9B, the light differential waveform can not be reproduced accurately.
  • the filter application means 44 When applying the inverse filter to the signal obtained by Fourier-transforming the photoacoustic signal by the filter application means 44, it is necessary that both data points be uniform.
  • the sampling rate of the light pulse differential waveform is set in accordance with the sampling rate of the photoacoustic signal, as shown in FIG. 9B, the sampling frequency is too low for waveform change, and the optical differential waveform can not be reproduced accurately.
  • the light pulse differential term may not be accurately deconvoluted, and the absorption distribution may not be obtained correctly.
  • the light pulse differential waveform is a signal equivalent to 400 MHz to accurately reproduce the light differential waveform, and the sampling rate of the photoacoustic signal is set to 400 MHz, the light pulse differential term can be accurately deconvoluted and absorbed.
  • the distribution can be determined correctly.
  • a high speed AD converter is required for the AD conversion means 22 and the total memory of sampling data is increased, so that the memory capacity required for the reception memory 23 (FIG. 4) is increased.
  • the time required for the reconstruction also increases.
  • the resampling unit 46 resamples the sampling data of the photoacoustic signal later.
  • the photoacoustic signal after detection is upsampled by signal processing, it is possible to accurately deconvolute the light pulse differential term while performing slow sampling from photoacoustic detection to reconstruction.
  • a high speed AD converter is not necessary for the AD conversion unit 22, and the memory capacity required for the reception memory 23 does not increase.
  • the time required to reconstruct the photoacoustic signal does not increase, and the processing time can be shortened as compared to the case of sampling at a high sampling rate when detecting the photoacoustic signal.
  • the sampling rate of the light pulse waveform (light pulse differential waveform) is set higher than the sampling rate of the photoacoustic signal.
  • the photoacoustic signals sampled at a low sampling rate are upsampled, and both signals are Fourier transformed with the same data points.
  • the Fourier transform of the light pulse differential waveform is performed with data points that are larger than the data points of the Fourier transform of the photoacoustic signal, and the center of the Fourier transformed photoacoustic signal is the difference of the data points. A zero point is added to (high frequency component region). The other points may be the same as in the first embodiment.
  • FIG. 10 shows the light pulse differential waveform deconvoluting means 26b in the present embodiment.
  • the light pulse differential waveform deconvoluting means 26b in the present embodiment has a zero padding means 48 and a zero point removing means 49 in addition to the configuration of the light pulse differential waveform deconvolving means 26 in the first embodiment shown in FIG. Have.
  • the sampling rate (first sampling rate) of the photoacoustic signal is 40 MHz
  • the sampling rate (second sampling rate) of the light pulse waveform (light pulse differential waveform) is 320 MHz.
  • the Fourier transform means 41 converts, for example, a 40 MHz photoacoustic signal into a signal in the frequency domain of 1024 points (first data points), and the Fourier transform means 42 converts an optical pulse differential waveform of 320 MHz to 8192 points (second Convert to a signal in the frequency domain).
  • the second data score is equal to or greater than the data score obtained by multiplying the first data score by the ratio of the second sampling rate to the first sampling rate.
  • the zero padding means 48 receives the photoacoustic signal converted from the Fourier transform means 41 into a signal in the frequency domain.
  • the zero padding means 48 adds a zero point (point of signal value zero) at the center by the difference of the data points of the photoacoustic signal after the Fourier transform and the light pulse differential waveform to the photoacoustic signal subjected to the Fourier transform. Do.
  • the zero padding means 48 divides the photoacoustic signal (frequency domain) of 1024 data points, for example, into two at the center frequency of the frequency band, and makes zero by the difference of the data scores between the two divided frequency domains. A point is added to generate a photoacoustic signal having 8192 data points, which is the same as the data points of the light pulse differential waveform (frequency domain). The addition of zeros corresponds to upsampling in the frequency domain.
  • the filter application means 44 applies an inverse filter to the signal that has been zero padded by the zero padding means 48.
  • the zero point removal means 49 removes the frequency band to which "0" is added by the zero padding means 48 from the signal to which the inverse filter is applied. For example, when the photoacoustic signal (frequency domain) of 1024 data points is converted to a signal of 8192 data points by the zero padding means 48, the zero point removing means 49 outputs the signal after the filter application (8192 points of data). ) Is returned to the signal of 1024 data points. Removal of the zero corresponds to downsampling in the frequency domain.
  • the inverse Fourier transform means 45 converts the signal returned to 1024 data points from the signal in the frequency domain to the signal in the time domain.
  • FIG. 11A shows a photoacoustic signal subjected to Fourier transform
  • FIG. 11B shows a photoacoustic signal after zero padding.
  • the sampling rate of the photoacoustic signal in the AD conversion means 22 is 40 MHz
  • the signal obtained by Fourier transforming the photoacoustic signal is a signal in the frequency band from 0 MHz to 40 MHz as shown in FIG. 11A. It becomes.
  • This signal is divided into two regions A and B at the border of 20 MHz which is the Nyquist frequency (1/2 of the sampling frequency).
  • the signal in region B becomes a signal corresponding to the frequency region of 300 MHz to 320 MHz.
  • the photoacoustic signal sampled at a low sampling rate is converted into a signal in the frequency domain, and the zero point in the domain of the high frequency component of the converted signal in the frequency domain is added.
  • the difference between the present embodiment and the second embodiment is that in the second embodiment, the photoacoustic signal is upsampled, whereas in the present embodiment, the photoacoustic signal is upsampled in the frequency domain.
  • resampling up-sampling
  • slow sampling is performed from photoacoustic detection to reconstruction.
  • the light pulse differential term can be deconvoluted accurately.
  • the sampling rate of the light pulse differential waveform is set higher than the sampling rate of the photoacoustic signal.
  • the Fourier transform of the light pulse differential waveform is performed with data points larger than the data points of the Fourier transform of the photoacoustic signal, high frequency component sample points are removed from the Fourier transformed light pulse differential waveform, and the reciprocal thereof As an inverse filter.
  • the other points may be the same as in the first embodiment.
  • FIG. 12 shows an optical pulse differential waveform deconvoluting means 26c in the present embodiment.
  • the light pulse differential waveform deconvolving means 26c in the present embodiment has a high frequency component sample point removing means 50.
  • the sampling rate (first sampling rate) of the photoacoustic signal is 40 MHz
  • the sampling rate (second sampling rate) of the light pulse waveform (light pulse differential waveform) is 320 MHz.
  • the Fourier transform means 41 converts, for example, a 40 MHz photoacoustic signal into a signal in the frequency domain of 1024 points (first data points), and the Fourier transform means 42 converts an optical pulse differential waveform of 320 MHz into 8192 points (second Converted into a signal in the frequency domain of The second data score is equal to or greater than the data score obtained by multiplying the first data score by the ratio of the second sampling rate to the first sampling rate.
  • the high frequency component sample point removing means 50 receives the light pulse differential waveform converted from the Fourier transform means 42 into a signal in the frequency domain.
  • the high frequency component sample point removal means 50 removes high frequency component sample points from the Fourier-transformed light pulse differential waveform by the difference between the data points of the photoacoustic signal after the Fourier transform and the light pulse differential waveform.
  • the high frequency component sample point removing means 50 for example, removes the central data point corresponding to the high frequency component from the light pulse differential waveform (frequency domain) of 8192 data points, and the same data as the data score of the photoacoustic signal (frequency domain) A light pulse differential waveform of 1024 points is generated.
  • the removal of the high frequency component sample points corresponds to the downsampling of the light pulse differential waveform in the frequency domain.
  • FIG. 13A shows a Fourier-transformed light pulse differential waveform
  • FIG. 13B shows a light pulse differential waveform from which high frequency component sample points have been removed.
  • the sampling rate of the optical pulse differential waveform is 320 MHz
  • the signal obtained by Fourier transforming the optical pulse differential waveform (the number of data points 8192) is a signal of a frequency band from 0 MHz to 320 MHz as shown in FIG. 13A.
  • This signal is divided into the first data point to the 512th area (area A), the 513th data point to the 7680th data point area (area B), and the 8192th data point from the 7681th data point.
  • the inverse filter computing means 43 finds the inverse of the light pulse differential waveform (frequency domain) from which the high frequency component sample points have been removed as an inverse filter.
  • the inverse filter computing means 43 finds, for example, the inverse number of the light pulse differential waveform in which the data points are reduced from 8192 to 1024 as an inverse filter.
  • the filter application unit 44 multiplies, for each element, the photoacoustic signal (frequency domain) of 1024 data points, for example, and the inverse filter.
  • the inverse Fourier transform means 45 converts the signal to which the inverse filter is applied from the signal in the frequency domain to the signal in the time domain.
  • the filter application unit 44 includes the photoacoustic signal (frequency domain) in which the zero point is added to the high frequency component domain shown in FIG. 11B and the light pulse differential waveform (frequency domain shown in FIG. Multiplication with the reciprocal of Since the value of the high frequency component region of the photoacoustic signal is “0”, the high frequency component of the light pulse differential waveform (region B in FIG. 13A) does not affect the photoacoustic signal after the inverse filter application. Therefore, as in the present embodiment, the high frequency component sample point is removed from the signal in the frequency domain of the optical pulse differential waveform, and the inverse filter is determined from the optical pulse differential waveform from which the high frequency component has been removed. Even when applied to (frequency domain), the obtained result is the same as the third embodiment. That is, also in this embodiment, the same effect as that of the third embodiment can be obtained.
  • FIG. 14 shows a photoacoustic image generation apparatus according to a fifth embodiment of the present invention.
  • the ultrasound unit 12a in the photoacoustic image generation apparatus 10a according to the present embodiment includes a transmission control circuit 33 and data separation.
  • Means 34, ultrasound image reconstruction means 35, detection / logarithmic conversion means 36, ultrasound image construction means 37, and image combining means 38 are provided.
  • the photoacoustic image generation apparatus 10a of the present embodiment is different from the photoacoustic image generation apparatus 10 of the first embodiment in that an ultrasonic image is generated in addition to the photoacoustic image.
  • an ultrasonic wave is used as an acoustic wave in the present embodiment
  • an acoustic wave of an audio frequency may be used by selecting an appropriate frequency in accordance with an object to be detected, a measurement condition, and the like.
  • the present embodiment may be combined with any of the second to fourth embodiments, and an ultrasound image may be generated in these embodiments.
  • the probe 11 performs the output (transmission) of the ultrasonic wave to the object and the detection (reception) of the reflected ultrasonic wave from the object to the transmitted ultrasonic wave.
  • the trigger control circuit 29 sends an ultrasonic wave transmission trigger signal to instruct the transmission control circuit 33 to transmit an ultrasonic wave when generating an ultrasonic image (reflection acoustic wave image).
  • the transmission control circuit 33 causes the probe 11 to transmit an ultrasonic wave.
  • the probe 11 detects the reflected ultrasound from the subject after transmitting the ultrasound. Transmission and reception of ultrasonic waves may be separated. For example, ultrasonic waves may be transmitted from a position different from that of the probe 11, and the reflected ultrasonic waves for the transmitted ultrasonic waves may be received by the probe 11.
  • the reflected ultrasonic waves detected by the probe 11 are input to the AD conversion means 22 through the reception circuit 21.
  • the trigger control circuit 29 sends a sampling trigger signal to the AD conversion means 22 in accordance with the timing of ultrasonic wave transmission to start sampling of reflected ultrasonic waves.
  • the photoacoustic signal is one way from the generation position to the probe 11. Since the detection of the reflected ultrasound takes twice as long as the detection of the photoacoustic signal generated at the same depth position, the sampling clock of the AD conversion means 22 is half of that at the time of the photoacoustic signal sampling, for example It may be 20 MHz.
  • the AD conversion means 22 stores the sampling data of the reflected ultrasound in the reception memory 23. Either detection (sampling) of the photoacoustic signal or detection (sampling) of the reflected ultrasonic wave may be performed first.
  • the data separation means 34 separates the sampling data of the photoacoustic signal stored in the reception memory 23 and the sampling data of the reflected ultrasound.
  • the data separation unit 34 inputs sampling data of the separated photoacoustic signal to the photoacoustic image reconstruction unit 24.
  • the measurement of the light pulse waveform and the generation of the photoacoustic image (absorption distribution image) including the deconvolution of the light pulse differential waveform are the same as in the first embodiment.
  • the data separation means 34 inputs sampling data of the separated reflected ultrasonic waves to the ultrasonic image reconstruction means 35.
  • the ultrasonic image reconstruction means 35 generates data of each line of the ultrasonic image based on the reflected ultrasonic waves (the sampling data thereof) detected by the plurality of ultrasonic transducers of the probe 11. Similarly to the generation of the data of each line in the photoacoustic image reconstruction means 24, a delay addition method or the like can be used to generate data of each line.
  • the detection / logarithmic conversion means 36 finds the envelope of the data of each line output from the ultrasonic image reconstruction means 35, and logarithmically transforms the found envelope.
  • the ultrasound image construction means 37 generates an ultrasound image based on the data of each line subjected to logarithmic transformation.
  • the ultrasonic image reconstruction means 35, the detection / logarithmic conversion means 36, and the ultrasonic image construction means 37 are ultrasonic image generation means (reflection acoustic wave image generation means) for generating an ultrasonic image based on the reflected ultrasonic waves.
  • the image combining means 38 combines the photoacoustic image and the ultrasound image.
  • the image combining means 38 performs image combining by superimposing a photoacoustic image and an ultrasonic image, for example.
  • the combined image is displayed on the image display means 14. It is also possible to display the photoacoustic image and the ultrasound image side by side on the image display unit 14 or to switch between the photoacoustic image and the ultrasound image without performing image synthesis.
  • the photoacoustic image generation device generates an ultrasound image in addition to the photoacoustic image.
  • the ultrasound image it is possible to observe a portion that can not be imaged in the photoacoustic image.
  • an absorption distribution can be imaged by generating an optical pulse differential waveform representing a differential waveform of pulse laser light irradiated to the object and deconvoluting the optical pulse differential waveform from the observed waveform. It is.
  • most of the algorithms for image reconstruction and detection / logarithmic conversion can be shared by the generation of ultrasonic images and the generation of photoacoustic images, and it is possible to simplify FPGA circuit configuration and software. It has the above merit.
  • FIG. 15 shows a photoacoustic image generation apparatus according to the sixth embodiment of the present invention.
  • the present embodiment is different from the first embodiment in that light of a plurality of wavelengths is emitted to a subject.
  • the ultrasound unit 12 b in the photoacoustic image generation apparatus 10 b according to the present embodiment includes photoacoustics for light of a plurality of wavelengths.
  • a two-wavelength data calculation unit 39 that calculates a signal (photoacoustic image) is provided. Note that this embodiment may be combined with any of the second to fifth embodiments, and light of a plurality of wavelengths may be irradiated in those embodiments to calculate photoacoustic signals (photoacoustic images) for a plurality of wavelengths.
  • the laser unit 13 is configured to be able to switch and emit light of a plurality of wavelengths.
  • the laser unit 13 switches and emits, for example, pulsed laser light with a wavelength of 750 nm and pulsed laser light with a wavelength of 800 nm.
  • the probe 11 detects a photoacoustic signal from the subject after emission of pulsed laser light of each wavelength, and the reception memory 23 stores sampling data of the photoacoustic signal corresponding to each wavelength.
  • the photoacoustic signals corresponding to the stored wavelengths are respectively reconstructed by the photoacoustic image reconstruction means.
  • the light differential waveform deconvoluting means 26 generates the light intensity of the light of each wavelength irradiated to the object from the photoacoustic signal (photoacoustic image) corresponding to each wavelength after the reconstruction by the photoacoustic image reconstructing means 24. Deconvolute differential waveforms (optical differential waveforms) of the time waveform of.
  • the photoacoustic signal in which the optical differential waveform corresponding to each wavelength is deconvoluted is processed by the two-wavelength data computing means 39.
  • the light absorption characteristics are also unique to each tissue.
  • the molecular absorption coefficient at a wavelength of 750 nm of oxygenated hemoglobin (hemoglobin combined with oxygen: oxy-Hb) abundant in human arteries is also low at a wavelength of 800 nm.
  • the molecular absorption coefficient at a wavelength of 750 nm of deoxygenated hemoglobin (hemoglobin deoxy-Hb not bound to oxygen) abundant in veins is higher than that at a wavelength of 800 nm.
  • the two-wavelength data computing means 39 compares, for example, relative magnitude relationships between photoacoustic signals corresponding to a plurality of wavelengths. Specifically, the two-wavelength data calculating means 39 compares the photoacoustic signal detected when the light of wavelength 750 nm is irradiated with the photoacoustic signal detected when the light of wavelength 800 nm is irradiated. And find out which one is bigger.
  • the photoacoustic signal detected when the light with a wavelength of 750 nm is irradiated is large, it can be judged as a photoacoustic signal from a vein, so that part may be displayed in blue.
  • the photoacoustic signal detected when the light with a wavelength of 800 nm is irradiated is large, it can be judged as a photoacoustic signal from an artery, so that portion may be displayed in red.
  • the two-wavelength data computing means 39 computes photoacoustic signals corresponding to a plurality of wavelengths after deconvolution of the light differential waveform.
  • the photoacoustic signal is irradiated with the second light to the subject.
  • the optical differential waveform When the optical differential waveform is not deconvoluted, as shown in FIG. 3A, for example, one blood vessel is displayed in double, so that the position of the blood vessel is difficult to confirm in image determination, and positional deviation correction is difficult.
  • the optical differential waveform As shown in FIG. 3B, the light absorption distribution can be imaged, the position of the blood vessel can be easily confirmed, and the positional deviation correction can be facilitated.
  • the photoacoustic signal and the light pulse differential waveform are converted into a signal in the frequency domain, and after being deconvoluted in the frequency domain, the signal is returned to the signal in the time domain, but this is not a limitation. It is also possible to perform deconvolution of the light pulse differential waveform in the time domain. Further, the light pulse differential waveform deconvoluting means 26 may perform processing for applying some kind of filter to the photoacoustic signal at the time of deconvolution. For example, the light pulse differential waveform deconvoluting means 26 may filter the noise amplification frequency band during deconvolution. Alternatively, the product of the light pulse differential waveform and the device response function (piezoelectric element or frequency filter of electrical system) may be deconvoluted.
  • the photoacoustic image (the absorption distribution image) is generated after deconvoluting the light differential waveform from the photoacoustic signal, but in addition to or instead of this, the light differential waveform is deconvoluted.
  • a photoacoustic image pressure distribution image
  • the user can select the presence or absence of the deconvolution processing by performing an operation on the switch or the display monitor, and when the user selects the implementation of the deconvolution processing, the optical differential waveform is deconvoluted.
  • a photoacoustic image may be generated above, and the photoacoustic image may be generated without deconvolution of the light differential waveform when the user selects the non-execution of the deconvolution processing. For example, when deconvolution of an optical differential waveform is performed, the photoacoustic signal is displayed in association with red and black colors, and when no deconvolution is performed, the photoacoustic signal is associated with blue and black colors. You may display it.
  • a photoacoustic image without deconvolution is generated, and the computer analyzes the photoacoustic image to determine whether or not the blood vessel portion is divided into two, and the blood vessel is divided into two.
  • deconvolution processing of the light differential waveform may be performed on only the blood vessel portion.
  • the display color of the blood vessel portion subjected to the deconvolution processing is set to a color different from the display color of the other unprocessed blood vessel portions, and the blood vessel subjected to the deconvolution processing and the other unprocessed blood vessels It may be easily distinguishable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Acoustics & Sound (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】光音響信号処理装置において、光パルス波形に変化が生じるような場合でも、検出信号から正しく吸収分布を求めるようにする。 【解決手段】被検体に対して光が照射されることで、被検体内で光音響信号が生じる。プローブ(11)で検出された光音響信号は、受信回路(21)を介して、AD変換手段(22)でサンプリングされる。光波形測定手段(25)は、被検体に照射されるパルスレーザ光の光強度の時間波形を測定する。光微分波形逆畳込み手段(26)は、検出された光音響信号から、光波形測定手段(25)で測定された光パルス波形をデコンボリューションする。このデコンボリューションにより、吸収分布が得られる。

Description

光音響信号処理装置及び方法
 本発明は、光音響信号処理装置及び方法に関し、更に詳しくは、被検体に照射された光により被検体内で生じた光音響信号を信号処理する光音響信号処理装置及び方法に関する。
 生体内部の状態を非侵襲で検査できる画像検査法の一種として、超音波検査法が知られている。超音波検査では、超音波の送信及び受信が可能な超音波探触子を用いる。超音波探触子から被検体(生体)に超音波を送信させると、その超音波は生体内部を進んでいき、組織界面で反射する。超音波探触子でその反射音波を受信し、反射超音波が超音波探触子に戻ってくるまでの時間に基づいて距離を計算することで、内部の様子を画像化することができる。
 また、光音響効果を利用して生体の内部を画像化する光音響イメージングが知られている。一般に光音響イメージングでは、パルスレーザ光を生体内に照射する。生体内部では、例えば生体組織がパルスレーザ光のエネルギーを吸収し、そのエネルギーによる断熱膨張により超音波(光音響信号)が発生する。この光音響信号を超音波プローブなどで検出し、検出信号に基づいて光音響画像を構成することで、光音響信号に基づく生体内の可視化が可能である。
 ここで、通常の再構成方法(例えばフーリエドメイン法(FTA法)や遅延加算法(Delay&Sum法))は、実質的に圧力分布を画像化しており、生成された光音響画像は光吸収体の分布画像にはなっていない。圧力分布を画像化した光音響画像では、1本の血管が二重に表示されることがある。この現象は、以下のように説明できる。すなわち、微小要素(微小吸収体)が発生する圧力波形をミクロ波形とすると、マクロ構造物としての血管から発生する圧力波形は、ミクロ波形の重ね合わせとして捉えることができる。微小吸収体で発生したミクロ波形を重ね合わせていくと、血管内部で発生したミクロの圧力波形は近接した前後のミクロ波形と重ね合わされてキャンセルされる。血管から出たミクロの圧力波形を全て重ね合わせると、最終的に血管表面で発生した圧力波形の一部(前端)と裏面で発生した圧力波形の一部(後端)とがキャンセルされずに残り、これらが観測されることになる。そのため、血管が二重に表示される。1本の血管が二重に表示されると、画像判定上、血管の位置の確認が困難になるという問題が生じる。また、複数の異なる波長で取得した画像同士を計算する際に、位置がずれやすく適切な結果が得られないなどの問題も生じる。
 圧力分布画像に代えて、吸収分布画像を生成する技術がこれまでにいくつか知られている。例えば特許文献1には、試料の熱的インパルス応答から光音響画像の分解能劣化を修復する逆フィルタを求め、得られた光音響画像に逆フィルタを作用させることで、理想的な光音響画像、すなわち試料表面の点光源によって励起され、検出されるその点(無限小)における熱的インピーダンス情報(=無限小なる点熱源の集合)を得ることが記載されている。
 特許文献1では、より詳細には、まず、試料の熱インパルス応答h(x,y)を計算し、次いで光音響画像p(x,y)を構成する。熱的インパルス応答は、無限小なる一点の温度変化が試料表面の微小変位に変換されるまでの伝達関数と定義されている。その後、熱インパルス応答h(x,y)と光音響画像p(x,y)とをそれぞれフーリエ変換し、フーリエ変換像H(μ,υ)、P(μ,υ)を得る。1/H(μ,υ)を逆フィルタとして用い、Q(μ,υ)=P(μ,υ)・(1/H(μ,υ))により、Q(μ,υ)を計算する。そのようにして計算されたQ(μ,υ)をフーリエ逆変換することで、理想的な光音響画像q(x,y)が得られる。
 上記特許文献の他にも、非特許文献1には、論理的には、有限の時間幅を持つ光パルスη(t)をフーリエ変換したものをη(k)としたとき、その微分をiη(k)として考慮することが記載されている。実験的には、超音波検出素子であるPZT(チタン酸ジルコン酸鉛)での検出帯域以内に励起光パルス波形が入るように光パルス幅を長くしたマイクロ波を被検体に照射し、通常のPZTプローブで光音響信号を検出し、吸収分布を再構成している。
 また、非特許文献2には、被写体中の微小要素からの圧力波形として光パルス微分関数と装置インパルス応答関数とを合わせたミクロ波形と、吸収分布とを、観測圧力波形に関連付けることが記載されている。吸収像再構成は、光微分とシステム応答とを不可分な状態で含むpd0を測定して、各素子の圧力波形からpd0をデコンボリューションしたのちに、フィルタ補正逆投影法(Filtered Backprojection法)を用いて行う。実験的には、光パルス幅の短いパルスレーザ光で励起し、超音波の検出帯域を通常の超音波診断装置よりも広げて、ハイドロホンとオシロスコープで光音響信号を検出し、吸収分布を再構成する。
特開平3-156362号公報
Yuan Xu, et al., IEEE Transactions on Medical Imaging, Volume 21 (2002), pp.823-828. Yi Wang, et al., Physics in Medicine and Biology, Volume 49 (2004), pp.3117-3124
 非特許文献1では、光パルスをフーリエ変換したη(k)を位置依存の関数η(r,k)として扱っていない。このため、t=0に再構成できる(検出した波形を基に時間を遡って光が入射した瞬間(t=0)に発生した圧力分布を推定する計算を行うことができる)場合には正確な吸収分布を得ることができるものの、t≠0に再構成した場合(光が入射した瞬間(t=0)の圧力分布を再構成できずに、時刻t=0からしばらく時間が経った後の圧力分布を推定することになる場合)には、光パルス幅成分が除去できず、圧力分布となる。
 また、非特許文献1及び2では、励起レーザと超音波検出装置とのどちらかを実用的な範囲から外してレーザ発光時間と超音波検出時とを合わせて再構成している。このため、非特許文献1及び2では問題は明確には現れないものの、実用的な装置構成を考えた場合、非特許文献1及び2の手法では、t=0とする再構成が困難である。すなわち、例えば実用的な装置構成として、
 ・サンプリング周波数100MHz以下で、PZTなどを利用した狭帯域プローブを用いた超音波検出装置
 ・強い光音響信号が出る1-100nsオーダーの光パルス幅を持つ励起レーザ
を用いた場合、レーザ発光が超音波検出時間と比較して短時間の現象のため、t=0に相当する状態(吸収分布と圧力分布とが比例する時間帯)に正確に再構成できない。
 ここで、「時刻t=0の圧力分布」は「吸収分布」を表すので、時刻t=0の圧力分布が求められれば吸収分布を得ることができる。しかし、一般的な超音波検出装置のサンプリング間隔は25ns程度であり、光が当たった瞬間の時刻t=0のつもりで計算しても、実際はt=±12.5ns程度の時間幅でずれが生じる。例えば光パルス幅が100nsと長い場合には、上記のずれ(±12.5ns)は誤差と考えればよいものの、光パルス幅が10nsであれば、上記のずれは誤差とは呼べなくなり、光が当たった瞬間の圧力分布というよりも圧力波の伝播過程の圧力分布に移行することとなる。その「圧力波の伝播過程の圧力分布」は、「吸収分布」に一致しない。
 更に、実験的な生体等のサンプルにおいては、t=0の圧力分布を定義することが困難である。生体内の音速を例えば1530m/sと仮定し、検出時刻とレーザ照射時刻との差を伝播時間とすると、伝播時間から伝播距離が求められる。生体内の音速が1530m/sで一定であれば、伝播時間から求めた伝播距離は実際の伝播距離と一致する。しかし、実際には、音速は生体内で一様ではなく、計算上の伝播距離と実際の伝播距離とにずれが生じる。従って、検出信号から伝播距離を推定する場合には、音速差に起因する伝搬距離のあいまいさが残る。生体内の伝播距離のあいまいさを伝播時間のあいまいさと捉えると、時刻t=0も曖昧性を持つことになり、t=0の圧力分布というのもあいまいになり、定義が困難となる。t=0の分布が吸収分布であるのに対し、t>0の分布は伝播時の圧力分布であり、これらが混ざると吸収分布とは言えなくなる。
 上記考察から、本発明者は、観測波形又は再構成後の圧力波形から、光パルス波形の微分波形をデコンボリューションすることが有利であることを見出した。観測波形から光パルス微分波形をデコンボリューションすることで、吸収分布を得ることができる。しかしながら、被検体に照射されるパルスレーザ光の時間波形は、常に一定であるとは限らない。例えば被検体に対して複数回パルスレーザ光を照射するとき、パルスレーザ光の時間波形はレーザ発光ごとに異なる可能性がある。パルスレーザ光の時間波形が事前に想定しておいた波形からずれると、デコンボリューションに用いられる光パルス微分波形と実際の微分波形とが一致せず、正しく吸収分布を求めることができなくなる。
 本発明は、上記に鑑み、光パルス波形に変化が生じるような場合でも、検出信号から正しく吸収分布を求めることができる光音響信号処理装置及び方法を提供することを目的とする。
 上記課題を解決するために、本発明は、被検体に対する出射光により被検体内で生じた光音響信号をサンプリングするサンプリング手段と、被検体に出射された光の光強度の時間波形を測定する光波形測定手段と、サンプリングされた光音響信号から、光波形測定手段で測定された時間波形の微分波形をデコンボリューションした信号を生成する光微分波形逆畳込み手段とを備えたことを特徴とする光音響信号処理装置を提供する。
 本発明の光音響信号処理装置では、光波形測定手段が、被検体に出射された光の光強度を検出する光強度検出部を含む構成を採用することができる。
 光強度検出部は、被検体に出射される光の光源の光出射端から被検体に対して光が出射されるまでの間の光路から分岐された光の光強度を検出すればよい。光路中には、被検体に出射される光の一部を分岐する分岐部を設けるとよい。
 サンプリング手段が、複数回の光の出射により生じた複数の光音響信号をサンプリングし、光波形測定手段が、複数回の光のそれぞれにおける光強度の時間波形を測定し、光微分逆畳込み手段が、複数の光音響信号を加算平均した信号から、測定された複数の時間波形の平均波形の微分波形をデコンボリューションすることとしてもよい。
 本発明の光音響信号処理装置では、光微分波形逆畳込み手段が、サンプリングされた光音響信号をフーリエ変換する第1のフーリエ変換手段と、光微分波形を示す信号をフーリエ変換する第2のフーリエ変換手段と、フーリエ変換された光微分波形の逆数を逆フィルタとして求める逆フィルタ演算手段と、フーリエ変換された光音響信号に逆フィルタを適用するフィルタ適用手段と、逆フィルタが適用された光音響信号をフーリエ逆変換するフーリエ逆変換手段とを有する構成を採用することができる。
 本発明では、光音響信号が第1のサンプリングレートでサンプリングされ、測定された光微分波形が第1のサンプリングレートよりも高い第2のサンプリングレートでサンプリングされており、第1のサンプリングレートでサンプリングされた光音響信号を、第2のサンプリングレートでリサンプルするリサンプル手段を更に備え、第1のフーリエ変換手段が、リサンプル手段でリサンプルされた光音響信号をフーリエ変換する構成を採用できる。
 上記に代えて、光音響信号が第1のサンプリングレートでサンプリングされ、測定された光微分波形が第1のサンプリングレートよりも高い第2のサンプリングレートでサンプリングされており、かつ、第1のフーリエ変換手段が第1のデータ点数でフーリエ変換を行い、第2のフーリエ変換手段が、第1のデータ点数よりも多い第2のデータ点数でフーリエ変換を行うものであり、フーリエ変換された光音響信号に対して、第1のデータ点数と第2のデータ点数との差の分だけ中央に0を付加するゼロパディングを行うゼロパディング手段を更に備え、フィルタ適用手段が、ゼロパディング手段でゼロパディングが施された信号に対して逆フィルタを適用する構成を採用してもよい。
 また、光音響信号が第1のサンプリングレートでサンプリングされ、測定された光微分波形が第1のサンプリングレートよりも高い第2のサンプリングレートでサンプリングされており、かつ、第1のフーリエ変換手段が第1のデータ点数でフーリエ変換を行い、第2のフーリエ変換手段が、第1のデータ点数よりも多い第2のデータ点数でフーリエ変換を行うものであり、フーリエ変換された光微分波形から、第1のデータ点数と第2のデータ点数の差の分だけ高周波成分サンプル点を除去する高周波成分サンプル点除去手段を更に備え、逆フィルタ演算手段が、フーリエ変換された光パルス微分波形から高周波成分サンプル点を除去した信号の逆数を逆フィルタとして求めることとしてもよい。
 光音響信号のサンプリング間隔は、被検体に出射された光のパルス時間幅よりも長くしてもよい。
 本発明の光音響信号処理装置は、複数の検出素子で検出され、サンプリング手段でサンプリングされた光音響信号に基づいて光音響信号を再構成する光音響信号再構成手段を更に備え、光微分波形逆畳込み手段が、光音響信号再構成手段で再構成された光音響信号から光微分波形をデコンボリューションする構成を採用することができる。
 光微分波形逆畳込み手段は、光音響信号から、光微分波形に装置応答関数を掛け合わせたものをデコンボリューションしてもよい。
 被検体に出射される光は、パルスレーザ光であってもよい。
 本発明では、被検体に対する出射光が複数の波長の光を含み、サンプリング手段が各波長の光に対応した光音響信号をサンプリングし、光微分波形逆畳込み手段が各波長の光に対応した光音響信号から光微分波形をデコンボリューションした信号を生成するものであってもよく、その場合、各波長の光に対応した、光音響信号から光微分波形をデコンボリューションした信号を演算処理する2波長データ演算手段を更に備える構成とすることができる。
 光音響信号から光微分波形をデコンボリューションした信号に基づいて光音響画像を生成する光音響画像生成手段を更に備える構成としてもよい。
 サンプリング手段が、更に被検体に対して送信された音響波に対する反射音響波をサンプリングするものであり、サンプリングされた反射音響波に基づいて反射音響波画像を生成する反射音響波画像生成手段と、光音響画像と反射音響波画像とを合成する画像合成手段とを更に備える構成を採用してもよい。
 画像合成手段は、光音響画像と反射音響波画像とを重畳することで画像合成を行ってもよい。
 本発明は、また、被検体に対する光出射に起因して被検体内で発生した光音響信号を検出するステップと、照射された光の光強度の時間波形を測定するステップと、検出された光音響信号から、測定された光の時間波形を微分した光微分波形をデコンボリューションするステップとを有する光音響信号処理方法を提供する。
 本発明の光音響信号処理装置及び方法では、被検体に対して照射された光の光強度の時間波形を測定し、光の照射により生じた光音響信号の検出信号から、測定した時間波形の微分波形をデコンボリューションする。このように、照射された光の時間波形を測定し、その微分波形をデコンボリューションすることで、デコンボリューションにおいて、光音響信号の検出信号から、その観測波形にコンボリューションされた光微分波形を正しくデコンボリューションすることができ、吸収分布を正しく求めることができる。
光パルス微分波形デコンボリューションの基本アルゴリズムを示すブロック図。 再構成後の光音響信号を示す波形図。 FFT後の光音響信号FFTを示す波形図。 光パルス微分波形(h)を示す波形図。 FFT後の光パルス微分波形FFT(fft_h)を示す波形図。 光パルス微分波形FFTフィルタを示す波形図。 デコンボリューション後のFFT波形を示す波形図。 逆変換された光音響信号を示す波形図。 再構成後の光音響信号に基づいて生成した光音響画像を示す図。 デコンボリューション後の光音響信号に基づいて生成した光音響画像を示す図。 本発明の第1実施形態の光音響信号処理装置を含む光音響画像生成装置を示すブロック図。 光波形測定手段を示すブロック図。 光パルス微分波形逆畳込み手段を示すブロック図。 光音響画像生成の動作手順を示すフローチャート。 本発明の第2実施形態における光パルス微分波形逆畳込み手段を示すブロック図。 サンプリングレート400MHzの光パルス微分波形を示す波形図。 サンプリングレート40MHzの光パルス微分波形を示す波形図。 本発明の第3実施形態における光パルス微分波形逆畳込み手段を示すブロック図。 光音響信号(周波数領域)を示すグラフ。 ゼロパディング後の光音響信号を示すグラフ。 本発明の第4実施形態における光パルス微分波形逆畳込み手段を示すブロック図。 光パルス微分波形(周波数領域)を示すグラフ。 高周波成分サンプル点が除去された光パルス微分波形を示すグラフ。 本発明の第5実施形態の光音響画像生成装置を示すブロック図。 本発明の第6実施形態の光音響画像生成装置を示すブロック図。
 本発明の実施の形態の説明に先立って、本発明の概要について説明する。光吸収体であるミクロ吸収粒子を考え、このミクロ吸収粒子がパルスレーザ光を吸収して圧力波(光音響圧力波)が生じることを考える。時刻をtとして、位置rにあるあるミクロ吸収粒子から発生する光音響圧力波を、位置Rで観測した場合の圧力波形pmicro(R,t)は、[Phys. Rev. Lett. 86(2001)3550.]より、以下の球面波となる。
Figure JPOXMLDOC01-appb-M000001
 ここで、I(t)は励起光の光強度の時間波形であり、係数kは、粒子が光を吸収して音響波を出力する際の変換係数であり、vは被検体の音速である。また、位置r、Rは、空間上の位置を示すベクトルである。ミクロ吸収粒子から発生する圧力は、上記式に示すように、光パルス微分波形に比例した球面波となる。
 実際にイメージングする対象から得られる圧力波形は、よりマクロな吸収体のサイズを有しているため、上記のミクロ吸収波形を重ね合わせた波形になると考える(重ね合わせの原理)。ここで、マクロな光音響波を発する粒子の吸収分布をA(r-R)とし、そのマクロな吸収体からの圧力の観測波形をpmacro(R,t)とする。観測位置Rでは、各時刻において、観測位置Rから半径vtに位置する吸収粒子からの光音響波が観測されることになるため、観測波形pmacro(R,t)は、以下の圧力波形の式で示される。
Figure JPOXMLDOC01-appb-M000002
 上記式(1)からわかるように、観測波形は、光パルス微分のコンボリューション型を示す。そこで、本発明では、デコンボリューション処理において、光パルス微分項を考慮してデコンボリューションを行うこととする。
 更に、本発明では、従来の超音波システムにおいても用いられている圧力分布を求める再構成(FTA法、DnS法、BP法など)を適用後に、再構成後の画像がt≠0の圧力分布、すなわち圧力波の伝播過程の圧力分布であることを認識の上で、これを吸収分布に変換することを考えた。圧力分布再構成の基本的な考え方としては、検出位置R=(x,y,0)の再構成後の圧力分布prec(R,t)は、各時刻tにおける、Rの検出軸(r-R)上の|r-R|位置に存在する吸収体から発生する球面波を、周囲の圧電素子の信号も含めて足し合わせてその位置における圧力強度を計算して得られる。従って、検出軸(r-R)に存在するミクロの吸収体から発生し、伝播する光音響波を重ねあわせたprec(R,t)は以下のように表記できる。
Figure JPOXMLDOC01-appb-M000003
このように吸収分布を1次元で考えて良くなることで、上記式のような圧力表記が可能となる。上記式(2)は、検出軸(r-R)をz軸、検出素子からの距離|r-R|をzとすると、下記のように表すことができる。
Figure JPOXMLDOC01-appb-M000004
 更に、式(3)から積分とは関係ないx,yは表記を省略し、z軸を時間で表記すると、上記式は、下記式のように表すことができる。
Figure JPOXMLDOC01-appb-M000005
 このように、(x,y,0)に位置する検出素子における1軸(時間軸又はz’軸)のコンボリューション表記が可能となる。
 上記式(4)の両辺をフーリエ変換し、周波数軸において、圧力分布のフーリエ係数を光パルスの時間微分のフーリエ係数で割ることで、光パルス微分をデコンボリューションすることができる。
Figure JPOXMLDOC01-appb-M000006
 デコンボリューション後、得られた式を、フーリエ逆変換することで、A(x,y,vt)を求め、吸収分布を画像化することができる。ここで求めたA(x,y,vt)には、検出素子受信角度依存性D(x,y,z)や、プローブ帯域の固有振動が重畳されている可能性がある。例えば、装置関数D(x,y,z)を事前に求めておいた上でその逆数をA(x,y,vt)に掛けることで、検出素子受信角度依存性の影響を除去できる。また、帯域の固有振動に関してはヒルベルト変換や直交検波処理により強度画像化すれば、その影響を除去することができる。更に、検体に入射する光空間分布L(x,y,z)を別に観測やシミュレーションにより求め、吸収係数に比例する画素値μ(x,y,z)を、μ(x,y,z)=A(x,y,vt)/L(x,y,z)により求めてもよい。この場合、より生体組織と密接な関係のある物理量である吸収係数の分布画像を得ることができる。
 図1は、光パルス微分波形デコンボリューションの基本アルゴリズムを示す。再構成後の光音響信号を入力し、再構成後の光音響信号をFFT(Fast Fourier Transform)によりフーリエ変換する(ステップS101)。図2Aに再構成後の光音響信号を示し、図2BにFFT後の光音響信号FFTを示す。フーリエ変換することで、図2Aに示す時間領域の信号が、図2Bに示すような周波数領域の信号に変換される。なお、図2Bでは、光音響信号FFTの絶対値を示しているが、実際の処理では複素数のまま処理される。
 光パルス微分波形hをFFTによりフーリエ変換する(ステップS102)。図2Cに光パルス微分波形(h)を示し、図2DにFFT後の光パルス微分波形FFT(fft_h)を示す。フーリエ変換することで、図2Cに示す時間領域の信号(波形)が、図2Dに示す周波数領域の信号に変換される。なお、図2Cにおける黒丸は、光パルス微分波形におけるサンプリング点を表している。また、図2Dでは、光パルス微分波形FFTの絶対値を示しているが、実際の処理では複素数のまま処理される。
 ステップS102で得られたFFT後の光パルス微分波形FFT(fft_h)の逆数を、光パルス微分波形FFTフィルタ(逆フィルタ)として求める(ステップS103)。光パルス微分波形FFTフィルタは、具体的にはconj(fft_h)/abs(fft_h)2で求めることができる。ここで、conj(fft_h)はfft_hの共役複素数、abs(fft_h)はfft_hの絶対値を表す。図2Eに、光パルス微分波形FFTフィルタを示す。図2Dに示す光パルス微分波形FFTの逆数を求めることで、図2Eに示すような光パルス微分波形FFTフィルタを得ることができる。
 上記のようにして求めた光パルス微分FFTフィルタと、再構成後の光音響信号FFTとを要素ごとに乗算し、光音響信号FFTから光パルス微分波形をデコンボリューションする(ステップS104)。図2Fに、デコンボリューション後のFFT波形を示す。図2Bに示す光音響信号FFTと図2Eに示す光パルス微分波形FFTフィルタとの乗算を行うことで、図2Fに示すFFT波形が得られる。
 ステップS104で光パルス微分波形をデコンボリューションしたFFT波形を、逆FFTによりフーリエ逆変換し、周波数領域の信号を時間領域の信号に戻す(ステップS105)。図2Gは、逆変換された光音響信号を示す。図2Fに示すFFT波形(周波数領域の信号)を逆FFTすることで、図2Gに示すデコンボリューション後の光音響信号(時間領域の信号)が得られる。このデコンボリューション後の光音響信号は、光吸収分布に光パルス微分波形(図2C)がコンボリューションされた再構成後の光音響信号(図2A)から、光パルス微分波形をデコンボリューションした吸収分布に相当する。
 図3Aに、再構成後の光音響信号(図2A)に基づいて生成した光音響画像を示し、図3Bに、デコンボリューション後の光音響信号(図2G)に基づいて生成した光音響画像を示す。図3Aに示す、再構成後の光音響信号に基づいて生成した光音響画像は、実質的に圧力分布を画像化したものであり、1本の血管が二重に表示されるなど、画像判定上、血管の位置が確認しづらい。これに対し、図3Bに示すデコンボリューション後の光音響信号に基づいて生成した光音響画像は、光パルス微分波形をデコンボリューションしていることで吸収体の分布を画像化できており、血管の位置を確認しやすくなっている。
 以下、図面を参照し、本発明の実施の形態を詳細に説明する。図4は、本発明の第1実施形態の光音響信号処理装置を含む光音響画像生成装置を示す。光音響画像生成装置(光音響画像診断装置)10は、超音波探触子(プローブ)11、超音波ユニット12、及び光源ユニット(レーザユニット)13を備える。
 レーザユニット13は、被検体に照射するレーザ光を生成する。レーザ光の波長は、観察対象物に応じて適宜設定すればよい。レーザユニット13が出射するレーザ光は、例えば光ファイバなどの導光手段を用いてプローブ11まで導光され、プローブ11から被検体に照射される。プローブ11は、レーザユニット13から出射した光が被検体に照射された後に、被検体内の光吸収体がレーザ光を吸収することで生じた超音波(光音響信号)を検出する。プローブ11は、例えば一次元配列された複数の超音波振動子を有する。
 超音波ユニット12は、受信回路21、AD変換手段22、受信メモリ23、光音響画像再構成手段24、光パルス微分波形逆畳込み手段26、検波・対数変換手段27、光音響画像構築手段28、トリガ制御回路29、及び制御手段30を有する。超音波ユニット12は、光波形測定手段25と共に、光音響信号処理装置を構成する。なお、図4では光波形測定手段25を超音波ユニット12の外部に設けているが、光波形測定手段25の一部又は全部が超音波ユニット12に含まれていてもよい。
 受信回路21は、プローブ11で検出された光音響信号を受信する。AD変換手段22は、サンプリング手段であり、受信回路21が受信した光音響信号をサンプリングしてデジタル信号に変換する。AD変換手段22は、例えば、外部から入力する所定周波数のADクロック信号に基づいて、所定のサンプリング周期で光音響信号をサンプリングする。受信メモリ23は、AD変換手段22でサンプリングされた光音響信号を記憶する。
 光音響画像再構成手段24は、受信メモリ23から光音響信号を読み出し、プローブ11の複数の超音波振動子で検出された光音響信号に基づいて、光音響画像の各ラインのデータを生成する。光音響画像再構成手段24は、例えばプローブ11の64個の超音波振動子からのデータを、超音波振動子の位置に応じた遅延時間で加算し、1ライン分のデータを生成する(遅延加算法)。光音響画像再構成手段24は、遅延加算法に代えて、BP法(Back Projection)により再構成を行ってもよい。あるいは光音響画像再構成手段24は、ハフ変換法又はフーリエ変換法を用いて再構成を行ってもよい。
 光波形測定手段25は、被検体に対して照射された光(例えばパルスレーザ光)の光強度の時間波形を測定する。光パルス微分波形逆畳込み手段26は、光音響画像再構成手段24で再構成された光音響信号から、光波形測定手段25で測定された時間波形の微分波形をデコンボリューションした信号を生成する。光パルス微分波形をデコンボリューションすることで、t≠0に再構成した圧力分布から、t=0に再構成した圧力分布、すなわち吸収分布を求めることができる。光パルス微分波形逆畳込み手段26は、再構成前の光音響信号に対してデコンボリューションを行ってもよい。
 検波・対数変換手段27は、デコンボリューション後の各ラインのデータの包絡線を求め、求めた包絡線を対数変換する。包絡線を求める検波手段としては、ヒルベルト変換や直交検波など従来から用いられている手法を用いることができる。これにより、超音波振動子の固有振動による帯域の影響が除去できる。光音響画像構築手段28は、対数変換が施された各ラインのデータに基づいて、光音響画像を生成する。光音響画像構築手段28は、例えば光音響信号(ピーク部分)の時間軸方向の位置を光音響層画像における深さ方向の位置に変換して光音響画像を生成する。
 制御手段30は、超音波ユニット12内の各部を制御する。トリガ制御回路29は、光音響画像生成に際して、レーザユニット13にフラッシュランプトリガ信号を送る。また、フラッシュランプトリガ信号の出力後に、Qスイッチトリガ信号を送る。レーザユニット13は、フラッシュランプ31とQスイッチ32とを含む。レーザユニット13は、フラッシュランプトリガ信号を受けてフラッシュランプ31を点灯し、レーザ励起を開始する。レーザユニット13は、Qスイッチトリガ信号が入力されるとQスイッチをONにし、パルスレーザ光を出射する。トリガ制御回路29は、被検体に対するレーザ光照射と同期してAD変換手段22にサンプリングトリガ信号を送り、AD変換手段22における光音響信号のサンプリング開始タイミングを制御する。
 なお、光パルス微分波形逆畳込み手段26の後段に補正手段を設け、その補正手段が、光パルス微分波形がデコンボリューションされた信号から、プローブ11における超音波振動子の受信角度依存特性の影響を除去する構成としてもよい。補正手段が、受信角度依存特性に加えて、又はこれらに代えて、光パルス微分波形がデコンボリューションされた信号から被検体における光の入射光分布の影響を除去することとしてもよい。
 図5は、光波形測定手段25を示す。光波形測定手段25は、光強度検出部251、増幅器252、AD変換器253、及び波形メモリ254を有する。光強度検出部251は、被検体に照射されるパルスレーザ光の光強度を検出する。光強度検出部251は、例えば検出した光強度に応じた電圧の信号を出力する。光強度検出部251には、例えば高速応答のフォトダイオードを用いることができる。
 例えば、レーザユニット13(図4)の光出射端から、被検体に対してパルスレーザ光が照射されるまでの間の光路(例えば光ファイバ)には、被検体に照射されるべきパルスレーザ光の一部を分岐する分岐部255が設けられている。分岐部255には、例えば透過率が高いミラー、具体的には透過率95%以上のミラーを用いることができる。そのようなミラーを、例えば被検体方向に向かうレーザ本流に対して45°の角度で配置し、ミラーの反射成分を光強度検出部251の方向に分岐する。分岐された光の光強度は被検体に照射されるパルスレーザ光の光強度に対応しており、光強度検出部251は、ミラーで分岐したパルスレーザ光の一部を検出する。分岐部255に、ミラーに代えて透明ガラスを用い、透明ガラスの反射成分を光強度検出部251の方向に分岐するようにしてもよい。別例として、例えば多数の光ファイバを束ねたバンドルファイバなどを用いてレーザ光を導光しているような場合であれば、複数本の光ファイバのうちのいくつか(例えば一本)を光強度検出部251に導光し、その光を光強度検出部251で検出するようにしてもよい。
 増幅器252は、光強度検出部251が出力する信号を所定の増幅率で増幅する。AD変換器253は、増幅器252で増幅された信号を、所定のサンプリングレートでサンプリングする。AD変換器253が、パルスレーザ光の発光期間にわたって光強度検出部251で検出された強度をサンプリングすることで、被検体に照射されたパルスレーザ光の光強度の時間波形が測定できる。AD変換器253は、光強度のサンプリングデータ(光パルス波形)を波形メモリ254に格納する。
 図6に、光パルス微分波形逆畳込み手段26を示す。光パルス微分波形逆畳込み手段26は、微分波形演算手段40と、フーリエ変換手段41、42と、逆フィルタ演算手段43と、フィルタ適用手段44と、フーリエ逆変換手段45とを有する。微分波形演算手段40は、光パルス波形から光パルス部分波形を生成する。微分波形演算手段40は、例えば波形メモリ254(図5)から光パルス波形を読み出し、読み出した光パルス波形を微分した光パルス微分波形を生成する。
 フーリエ変換手段(第1のフーリエ変換手段)41は、離散フーリエ変換により、再構成された光音響信号を時間領域の信号から周波数領域の信号へと変換する。フーリエ変換手段(第2のフーリエ変換手段)42は、離散フーリエ変換により、微分波形演算手段40で生成された光パルス微分波形を時間領域の信号から周波数領域の信号へと変換する。フーリエ変換のアルゴリズムにはFFTを用いることができる。
 なお、上記では光パルス微分波形逆畳込み手段26で光パルス微分波形の生成を行うものとして説明したが、これには限定されない。例えば、光パルス微分波形の生成を光波形測定手段25で行うこととしてもよい。その場合は、例えば光波形測定手段25のAD変換器253(図5)と波形メモリ254との間に微分波形演算手段を設ければよい。微分波形演算手段は、AD変換器253でサンプリングされた光パルス波形からその微分波形を生成し、生成した光パルス微分波形を波形メモリ254に格納する。光パルス微分波形の生成を波形メモリ254への波形データの格納前に行う場合、フーリエ変換手段42は、波形メモリ254から光パルス微分波形を読み出し、読み出した光パルス微分波形に対してフーリエ変換を行えばよい。
 本実施形態においては、光音響信号のサンプリングレートと光パルス微分波形のサンプリングレートとは等しいものとする。例えば光音響信号をサンプリングするAD変換手段22(図4)は、Fs=40MHzのサンプリングクロックに同期して光音響信号をサンプリングする。一方、光波形測定手段25のAD変換器253(図5)は、Fs_h=40MHzのサンプリングクロックに同期して光パルス波形をサンプリングする。フーリエ変換手段41は、40MHzでサンプリングされた光音響信号を、例えば1024点のフーリエ変換でフーリエ変換する。また、フーリエ変換手段42は、40MHzでサンプリングされた光パルス波形を微分した光パルス微分波形を1024点のフーリエ変換でフーリエ変換する。
 逆フィルタ演算手段43は、フーリエ変換された光パルス微分波形の逆数を逆フィルタとして求める。例えば逆フィルタ演算手段43は、光パルス微分波形hをフーリエ変換した信号をfft_hとしたとき、conj(fft_h)/abs(fft_h)2を逆フィルタとして求める。フィルタ適用手段44は、フーリエ変換手段41でフーリエ変換された光音響信号に、逆フィルタ演算手段43で求められた逆フィルタを適用する。フィルタ適用手段44は、例えば、要素ごとに、光音響信号のフーリエ係数と逆フィルタのフーリエ係数とを乗算する。逆フィルタが適用されることで、周波数領域の信号において、光パルス微分波形がデコンボリューションされる。フーリエ逆変換手段45は、フーリエ逆変換により、逆フィルタが適用された光音響信号を、周波数領域の信号から時間領域の信号へと変換する。フーリエ逆変換により、時間領域の吸収分布信号が得られる。
 図7は、動作手順を示す。トリガ制御回路29は、レーザユニット13に対してフラッシュランプトリガ信号を出力する。レーザユニット13は、フラッシュランプトリガ信号を受けてフラッシュランプ31を点灯する。トリガ制御回路29は、所定のタイミングでQスイッチトリガ信号を出力する。レーザユニット13は、Qスイッチトリガ信号が入力されると、Qスイッチ32をONにし、パルスレーザ光を出射する。出射したパルスレーザ光は、例えばプローブ11まで導光され、プローブ11から被検体に照射される(ステップS1)。
 光波形測定手段25は、ステップS1で被検体に照射されたパルスレーザ光の時間波形を測定する(ステップS3)。プローブ11は、レーザ光の照射後、レーザ光の照射により被検体内で発生した光音響信号を検出する(ステップS3)。超音波ユニット12の受信回路21は、プローブ11で検出された光音響信号を受信する。トリガ制御回路29は、被検体に対する光照射のタイミングに合わせてAD変換手段22にサンプリングトリガ信号を送る。AD変換手段22は、サンプリングトリガ信号を受けて光音響信号のサンプリングを開始し、光音響信号のサンプリングデータを受信メモリ23に格納する。
 光音響画像再構成手段24は、受信メモリ23から光音響信号のサンプリングデータを読み出し、読み出した光音響信号のサンプリングデータに基づいて、光音響信号を再構成する(ステップS4)。光パルス微分波形逆畳込み手段26は、ステップS3で再構成された光音響信号から、ステップS1で測定された光パルス波形を微分した光パルス微分波形をデコンボリューションする(ステップS5)。このデコンボリューションにより、吸収分布を示す光音響信号が得られる。
 検波・対数変換手段27は、デコンボリューションが行われた光音響信号の包絡線を求め、求めた包絡線を対数変換する。光音響画像構築手段28は、対数変換が施された各ラインのデータに基づいて、光音響画像を生成する(ステップS6)。この光音響信号は、吸収分布を画像化した吸収分布画像である。画像表示手段14は、表示画面上に、吸収分布画像である光音響画像を表示する(ステップS7)。
 本実施形態では、ひとまず、光音響画像再構成手段24にて、通常の再構成法により発光時刻(t=0)の圧力分布として光音響信号(光音響画像)を再構成する。次に、光の発光時間は実際には有限の長さを持つことから、再構成時にt=0としていた時刻を有限の長さの時間と考え、光微分波形逆畳込み手段26にて、再構成後の光音響画像から光パルス微分波形をデコンボリューションする。光パルス微分波形をデコンボリューションすることで、吸収分布を得ることができ、吸収分布画像を生成することができる。このような手法を採用することで、実用的な光パルス幅と実用的な超音波システム、或いは実際の生体を観測した場合でも、吸収分布を画像化することができる。これは、現状システムの検出器の帯域やADサンプリングを使用できる利点がある。また、本実施形態においては光音響画像の再構成で圧力分布を一度出しているため、既存の超音波アルゴリズム、装置との親和性が高い。
 本実施形態では、光波形測定手段25が、被検体に照射されたパルスレーザ光の光強度の時間波形を測定し、光微分波形逆畳込み手段26が、光波形測定手段25で測定された光パルス波形の微分波形をデコンボリューションする。被検体に対して照射されるパルスレーザ光の光強度の時間波形は常に一定とは限らず、レーザ発光ごとに変動することや、装置モードに応じて変化することなどが考えられる。また、経時変化に伴い、例えばフラッシュランプの発光回数が増えていくに連れて、光パルス波形が変化していくことも考えられる。本実施形態では、光波形測定手段25を用いて、被検体に照射される光パルス波形を測定し、その測定された光パルス波形の微分波形をデコンボリューションしているため、固定的な光微分波形をデコンボリューションする場合に比して、より正確に吸収分布を得ることができる。
 ここで、別例として、光パルス波形やその微分波形を、関数を用いて近似することも考えられる。しかし、例えば光パルス波形が、ふたこぶ波形や長く尾を引く波形など、関数で近似することが難しい波形であることもある。そのような波形の場合、無理に関数で近似した波形を用いてデコンボリューションを行うと、正しい吸収分布を得ることができないものと考えられる。本実施形態では、被検体に照射される光パルス波形を測定し、その微分波形でデコンボリューションを行うため、光パルス波形が関数で近似することが難しい波形であっても、正確なデコンボリューション補正処理が可能となる。
 なお、光音響画像の生成に際して、複数回のパルスレーザ光の照射により生じた光音響信号を加算平均し、複数回の検出信号に基づいて1つの光音響信号を生成するような場合がある。そのような場合は、複数回のパルスレーザ光の光パルス波形の平均を求め、加算平均した光音響信号から、光パルス波形の平均波形の微分波形をデコンボリューションすればよい。例えば、パルスレーザ光を5回照射し、5つの光音響信号を加算平均するとした場合、光音響画像再構成手段24は、パルスレーザ光の照射ごとに光音響信号の再構成を行い、再構成された5つの光音響信号を加算平均する。また、光波形測定手段25は、5つのパルスレーザ光のそれぞれの光パルス波形を測定する。光微分波形逆畳込み手段26は、測定された5つの光パルス波形を平均した平均光パルス波形を求め、加算平均された光音響信号から、平均光パルス波形の微分波形をデコンボリューションすればよい。この場合、毎回デコンボリューションを行う場合に比して、処理時間を短縮できる。
 次いで、本発明の第2実施形態を説明する。第1実施形態では、光音響信号のサンプリングレートと光パルス微分波形のサンプリングレートとが一致しており、双方の信号を同じデータ点数でフーリエ変換した。本実施形態では、光音響信号を低速サンプリングする一方で、光パルス微分波形を高速サンプリングする。つまり、光パルス波形(光パルス微分波形)のサンプリングレートを、光音響信号のサンプリングレートよりも高く設定する。例えば光音響信号のサンプリング間隔(サンプリングレートの逆数)は、被検体に照射される光のパルス時間幅よりも長く設定される。フーリエ変換に際しては、低サンプリングレートの光音響信号を、光パルス波形のサンプリングレートと同じサンプリングレートでリサンプル(アップサンプル)した上で、フーリエ変換を行う。その他の点は、第1実施形態と同様でよい。
 図8は、本実施形態における光パルス微分波形逆畳込み手段26aを示す。本実施形態における光パルス微分波形逆畳込み手段26aは、図6に示す第1実施形態における光パルス微分波形逆畳込み手段26の構成に加えて、リサンプル手段46及び47を有する。リサンプル手段46は、アップサンプル手段であり、低いサンプリングレートでサンプリングされた光音響信号のサンプリングデータを、光パルス波形のサンプリングレートと同じサンプリングレートでアップサンプルする。リサンプル手段46は、例えば、低サンプリングレートでサンプリングされた光音響信号のサンプル点間にゼロを付加し、アップサンプル前のナイキスト周波数でカットするローパスフィルタをかけることでアップサンプルを行う。
 例えば、AD変換手段22(図4)における光音響信号のサンプリングレート(第1のサンプリングレート)が40MHzであり、AD変換器253(図5)における光パルス波形のサンプリングレート(第2のサンプリングレート)が400MHzであったとする。この場合、リサンプル手段46は、40MHzの光音響信号を400MHzの信号にアップサンプルする。フーリエ変換手段41は、リサンプル手段46でアップサンプルされた光音響信号をフーリエ変換する。光音響信号をフーリエ変換するフーリエ変換手段41と、光パルス微分波形をフーリエ変換するフーリエ変換手段42とは、同じデータ点数でフーリエ変換を行う。例えばフーリエ変換手段41は光音響信号を8192点の周波数領域の信号に変換し、フーリエ変換手段42は光パルス微分波形を8192点の周波数領域の信号に変換する。
 フィルタ適用手段44は、アップサンプルされた光音響信号をフーリエ変換した信号に対して逆フィルタを適用する。フーリエ逆変換手段45は、逆フィルタが適用された信号を、周波数領域の信号から時間領域の信号(吸収分布)へと変換する。時間領域の信号に戻された吸収分布信号は、例えば400MHzにアップサンプルされた状態の信号となっている。リサンプル手段47は、吸収分布信号が、光音響信号の元のサンプルリングレートでサンプリングされた信号となるように、吸収信号をダウンサンプルする。リサンプル手段47は、例えば400MHzの吸収信号を40MHzの吸収信号にダウンサンプルする。ダウンサンプリングは、例えばダウンサンプル後のナイキスト周波数でカットするローパスフィルタをかけた後に、サンプル点を間引くことで行う。
 図9Aに、サンプリングレート400MHzに相当する光パルス微分波形を示し、図9Bに、サンプリングレート40MHzに相当する光パルス微分波形を示す。サンプリングレート400MHzでは、図9Aに示すように、パルスレーザ光の光強度の時間波形を微分した波形を正確に再現できる。一方、光パルス微分波形のサンプリングレートを光音響信号のサンプリングレートに合わせ、40MHz相当の信号とすると、図9Bに示すように、光微分波形を正確に再現できなくなる。
 フィルタ適用手段44にて光音響信号をフーリエ変換した信号に逆フィルタを適用する際には、双方のデータ点数が揃っている必要がある。光音響信号のサンプリングレートに合わせて光パルス微分波形のサンプリングレートを設定すると、図9Bに示したように、波形変化に対してサンプリング周波数が低すぎ、光微分波形が正確に再現できない。このような光パルス微分波形から求めた逆フィルタを適用した場合、光パルス微分項を正確にデコンボリューションできずに、吸収分布を正しく求められないこともある。
 一方、光微分波形を正確に再現するために光パルス微分波形を400MHz相当の信号とし、光音響信号のサンプリングレートを400MHzに合わせるとした場合は、光パルス微分項を正確にデコンボリューションでき、吸収分布を正しく求めることができる。しかしながら、その場合、AD変換手段22には高速なAD変換器が要求され、また、サンプリングデータの総数が増えることから、受信メモリ23(図4)に要求されるメモリ容量が増大する。更に、光音響画像再構成手段24で取り扱うデータが増えるため、再構成に要する時間も長くなる。
 本実施形態では、リサンプル手段46で、事後的に光音響信号のサンプリングデータをリサンプルする。本実施形態では、検出後の光音響信号を信号処理でアップサンプルしているため、光音響の検出から再構成までは低速サンプリングしつつも、光パルス微分項を正確にデコンボリューションすることができる。本実施形態では、AD変換手段22に高速なAD変換器は不要であり、受信メモリ23に必要なメモリ容量も増大しない。また、光音響信号の再構成に要する時間も増大せず、光音響信号の検出時に高いサンプリングレートでサンプリングする場合に比して、処理時間を短縮することができる。
 続いて、本発明の第3実施形態を説明する。本実施形態においても、第2実施形態と同様に、光パルス波形(光パルス微分波形)のサンプリングレートを光音響信号のサンプリングレートよりも高く設定する。第2実施形態では、低サンプリングレートでサンプリングされた光音響信号をアップサンプルし、双方の信号を同じデータ点数でフーリエ変換した。本実施形態では、光パルス微分波形のフーリエ変換を、光音響信号のフーリエ変換のデータ点数よりも多いデータ点数で行い、フーリエ変換された光音響信号に対して、データ点数の差の分だけ中央(高周波成分領域)にゼロ点を付加する。その他の点は、第1実施形態と同様でよい。
 図10は、本実施形態における光パルス微分波形逆畳込み手段26bを示す。本実施形態における光パルス微分波形逆畳込み手段26bは、図6に示す第1実施形態における光パルス微分波形逆畳込み手段26の構成に加えて、ゼロパディング手段48とゼロ点除去手段49とを有する。例えば、光音響信号のサンプリングレート(第1のサンプリングレート)は40MHzであり、光パルス波形(光パルス微分波形)のサンプリングレート(第2のサンプリングレート)は320MHzであるとする。フーリエ変換手段41は、例えば40MHzの光音響信号を1024点(第1のデータ点数)の周波数領域の信号に変換し、フーリエ変換手段42は、320MHzの光パルス微分波形を8192点(第2のデータ点数)の周波数領域の信号に変換する。第2のデータ点数は、第1のデータ点数に、第2のサンプリングレートと第1のサンプリングレートとの比を乗じたデータ点数と等しいか、又はそれよりも多い。
 ゼロパディング手段48は、フーリエ変換手段41から周波数領域の信号に変換された光音響信号を入力する。ゼロパディング手段48は、フーリエ変換された光音響信号に対して、フーリエ変換後の光音響信号と光パルス微分波形のデータ点数の差の分だけ中央にゼロ点(信号値ゼロの点)を付加する。ゼロパディング手段48は、例えばデータ点数1024点の光音響信号(周波数領域)を、周波数帯域の中心周波数で2つに分割し、分割した2つの周波数領域の間にデータ点数の差の分だけゼロ点を付加し、光パルス微分波形(周波数領域)のデータ点数と同じデータ点数8192点の光音響信号を生成する。ゼロ点の付加は、周波数領域におけるアップサンプリングに相当する。
 フィルタ適用手段44は、ゼロパディング手段48でゼロパディングが施された信号に対して逆フィルタを適用する。ゼロ点除去手段49は、逆フィルタが適用された信号からゼロパディング手段48で“0”が付加された周波数帯域を除去する。例えばゼロパディング手段48にてデータ点数1024点の光音響信号(周波数領域)がデータ点数8192点の信号に変換されていたとき、ゼロ点除去手段49は、フィルタ適用後の信号(データ点数8192点)をデータ点数1024点の信号に戻す。ゼロ点の除去は、周波数領域におけるダウンサンプリングに相当する。フーリエ逆変換手段45は、データ点数1024点に戻された信号を、周波数領域の信号から時間領域の信号へと変換する。
 図11Aに、フーリエ変換された光音響信号を示し、図11Bに、ゼロパディング後の光音響信号を示す。例えば、AD変換手段22(図4)における光音響信号のサンプリングレートが40MHzであるとき、その光音響信号をフーリエ変換した信号は、図11Aに示すように、0MHzから40MHzまでの周波数帯域の信号となる。この信号を、ナイキスト周波数(サンプリング周波数の1/2)である20MHzを境に2つの領域A、Bに2分割する。ゼロパディング手段48は、図11Bに示すように、2つの領域の間にゼロ点を8192-1024=7168個挿入する。ゼロ点が付加された結果、領域Bの信号は、300MHzから320MHzの周波数領域に対応した信号となる。
 本実施形態では、低サンプリングレートでサンプリングされた光音響信号を周波数領域の信号に変換し、変換された周波数領域の信号の高周波成分の領域のゼロ点を付加する。本実施形態と第2実施形態との相違点は、第2実施形態では、光音響信号をアップサンプルするのに対し、本実施形態では、光音響信号を周波数領域でアップサンプルする点である。時間領域に代え、周波数領域において、双方の信号の帯域差を埋めるようにリサンプル(アップサンプル)を行う場合も、第2実施形態と同様に、光音響の検出から再構成までは低速サンプリングしつつも、光パルス微分項を正確にデコンボリューションすることができる。
 引き続いて、本発明の第4実施形態を説明する。本実施形態においても、第2及び第3実施形態と同様に、光パルス微分波形のサンプリングレートを光音響信号のサンプリングレートよりも高く設定する。本実施形態では、光パルス微分波形のフーリエ変換を、光音響信号のフーリエ変換のデータ点数よりも多いデータ点数で行い、フーリエ変換された光パルス微分波形から高周波成分サンプル点を除去し、その逆数を逆フィルタとして求める。その他の点は、第1実施形態と同様でよい。
 図12は、本実施形態における光パルス微分波形逆畳込み手段26cを示す。本実施形態における光パルス微分波形逆畳込み手段26cは、図6に示す第1実施形態における光パルス微分波形逆畳込み手段26の構成に加えて、高周波成分サンプル点除去手段50を有する。例えば、光音響信号のサンプリングレート(第1のサンプリングレート)は40MHzであり、光パルス波形(光パルス微分波形)のサンプリングレート(第2のサンプリングレート)は320MHzであるとする。フーリエ変換手段41は、例えば40MHzの光音響信号を1024点(第1のデータ点数)の周波数領域の信号に変換し、フーリエ変換手段42は、320MHz相当の光パルス微分波形を8192点(第2のデータ点数)の周波数領域の信号に変換する。第2のデータ点数は、第1のデータ点数に、第2のサンプリングレートと第1のサンプリングレートとの比を乗じたデータ点数と等しいか、又はそれよりも多い。
 高周波成分サンプル点除去手段50は、フーリエ変換手段42から周波数領域の信号に変換された光パルス微分波形を入力する。高周波成分サンプル点除去手段50は、フーリエ変換された光パルス微分波形から、フーリエ変換後の光音響信号と光パルス微分波形のデータ点数の差の分だけ高周波成分サンプル点を除去する。高周波成分サンプル点除去手段50は、例えばデータ点数8192点の光パルス微分波形(周波数領域)から高周波成分に相当する中央のデータ点を削除し、光音響信号(周波数領域)のデータ点数と同じデータ点数1024点の光パルス微分波形を生成する。高周波成分サンプル点の除去は、周波数領域における光パルス微分波形のダウンサンプリングに相当する。
 図13Aに、フーリエ変換された光パルス微分波形を示し、図13Bに、高周波成分サンプル点が除去された光パルス微分波形を示す。例えば、光パルス微分波形のサンプリングレートが320MHzであるとき、その光パルス微分波形をフーリエ変換した信号(データ点数8192点)は、図13Aに示すように、0MHzから320MHzまでの周波数帯域の信号となる。この信号を、1番目のデータ点から512番目までの領域(領域A)、513番目のデータ点から7680番目のデータ点までの領域(領域B)、及び、7681番目のデータ点から8192番目のデータ点までの領域(領域C)の3つの領域に分け、領域Bのデータ点を除去する。図13Bに示すように、領域Aと領域Cとをつなげることで、0MHzから40MHzまでの周波数帯域に対応したデータ点数1024点の光パルス微分波形(周波数領域)が得られる。
 逆フィルタ演算手段43は、高周波成分サンプル点が除去された光パルス微分波形(周波数領域)の逆数を逆フィルタとして求める。逆フィルタ演算手段43は、例えばデータ点が8192点から1024点に削減された光パルス微分波形の逆数を逆フィルタとして求める。フィルタ適用手段44は、例えばデータ点数1024点の光音響信号(周波数領域)と逆フィルタとを要素ごとに乗算する。フーリエ逆変換手段45は、逆フィルタが適用された信号を、周波数領域の信号から時間領域の信号へと変換する。
 ここで、第3実施形態では、フィルタ適用手段44は、図11Bに示す高周波成分の領域にゼロ点が付加された光音響信号(周波数領域)と、図13Aに示す光パルス微分波形(周波数領域)の逆数とを乗算する。光音響信号の高周波成分領域の値は“0”であるため、光パルス微分波形の高周波成分(図13Aの領域B)は、逆フィルタ適用後の光音響信号に影響を与えない。従って、本実施形態のように、光パルス微分波形の周波数領域の信号から高周波成分サンプル点を除去し、高周波成分を除去した光パルス微分波形から逆フィルタを求め、求めた逆フィルタを光音響信号(周波数領域)に適用しても、得られる結果は第3実施形態と同じ結果となる。つまり、本実施形態においても、第3実施形態と同様な効果が得られる。
 続いて、本発明の第5実施形態を説明する。図14は、本発明の第5実施形態の光音響画像生成装置を示す。本実施形態の光音響画像生成装置10aにおける超音波ユニット12aは、図4に示す第1実施形態の光音響画像生成装置10における超音波ユニット12の構成に加えて、送信制御回路33、データ分離手段34、超音波画像再構成手段35、検波・対数変換手段36、超音波画像構築手段37、及び画像合成手段38を備える。本実施形態の光音響画像生成装置10aは、光音響画像に加えて、超音波画像の生成を行う点で、第1実施形態の光音響画像生成装置10と相違する。なお、本実施形態においては音響波として超音波を用いるが、被検対象や測定条件等に応じて適切な周波数を選択することにより、可聴周波数の音響波であっても良い。また、本実施形態を第2から第4実施形態の何れかと組み合わせ、それら実施形態において超音波画像の生成を行うこととしてもよい。
 本実施形態では、プローブ11は、光音響信号の検出に加えて、被検体に対する超音波の出力(送信)、及び送信した超音波に対する被検体からの反射超音波の検出(受信)を行う。トリガ制御回路29は、超音波画像(反射音響波画像)の生成時は、送信制御回路33に超音波送信を指示する旨の超音波送信トリガ信号を送る。送信制御回路33は、トリガ信号を受けると、プローブ11から超音波を送信させる。プローブ11は、超音波の送信後、被検体からの反射超音波を検出する。超音波の送受信は分離してもよい。例えばプローブ11とは異なる位置から超音波の送信を行い、その送信された超音波に対する反射超音波をプローブ11で受信してもよい。
 プローブ11が検出した反射超音波は、受信回路21を介してAD変換手段22に入力される。トリガ制御回路29は、超音波送信のタイミングに合わせてAD変換手段22にサンプリグトリガ信号を送り、反射超音波のサンプリングを開始させる。ここで、反射超音波はプローブ11と超音波反射位置との間を往復するのに対し、光音響信号はその発生位置からプローブ11までの片道である。反射超音波の検出には、同じ深さ位置で生じた光音響信号の検出に比して2倍の時間がかかるため、AD変換手段22のサンプリングクロックは、光音響信号サンプリング時の半分、例えば20MHzとしてもよい。AD変換手段22は、反射超音波のサンプリングデータを受信メモリ23に格納する。光音響信号の検出(サンプリング)と、反射超音波の検出(サンプリング)とは、どちらを先に行ってもよい。
 データ分離手段34は、受信メモリ23に格納された光音響信号のサンプリングデータと反射超音波のサンプリングデータとを分離する。データ分離手段34は、分離した光音響信号のサンプリングデータを光音響画像再構成手段24に入力する。光パルス波形の測定、及び光パルス微分波形のデコンボリューションを含む光音響画像(吸収分布画像)の生成は、第1実施形態と同様である。データ分離手段34は、分離した反射超音波のサンプリングデータを、超音波画像再構成手段35に入力する。
 超音波画像再構成手段35は、プローブ11の複数の超音波振動子で検出された反射超音波(そのサンプリングデータ)に基づいて、超音波画像の各ラインのデータを生成する。各ラインのデータの生成には、光音響画像再構成手段24における各ラインのデータの生成と同様に、遅延加算法などを用いることができる。検波・対数変換手段36は、超音波画像再構成手段35が出力する各ラインのデータの包絡線を求め、求めた包絡線を対数変換する。
 超音波画像構築手段37は、対数変換が施された各ラインのデータに基づいて、超音波画像を生成する。超音波画像再構成手段35、検波・対数変換手段36、及び超音波画像構築手段37は、反射超音波に基づいて超音波画像を生成する超音波画像生成手段(反射音響波画像生成手段)を構成する。画像合成手段38は、光音響画像と超音波画像とを合成する。画像合成手段38は、例えば光音響画像と超音波画像とを重畳することで画像合成を行う。合成された画像は、画像表示手段14に表示される。画像合成を行わずに、画像表示手段14に、光音響画像と超音波画像とを並べて表示し、或いは光音響画像と超音波画像とを切り替えてすることも可能である。
 本実施形態では、光音響画像生成装置は、光音響画像に加えて超音波画像を生成する。超音波画像を参照することで、光音響画像では画像化することができない部分を観察することができる。被検体に照射されたパルスレーザ光の微分波形を表す光パルス微分波形を生成し、観測波形から光パルス微分波形をデコンボリューションすることで吸収分布を画像化できる点は、第1実施形態と同様である。また、超音波画像の生成と光音響画像の生成とで、画像再構成や検波・対数変換などのアルゴリズムの大部分を共通化でき、FPGA回路構成やソフトの簡略化が可能であるなどの実用上のメリットを有する。
 引き続いて、本発明の第6実施形態を説明する。図15は、本発明の第6実施形態の光音響画像生成装置を示す。本実施形態は、被検体に対して複数の波長の光を照射する点で、第1実施形態と相違する。本実施形態の光音響画像生成装置10bにおける超音波ユニット12bは、図4に示す第1実施形態の光音響画像生成装置10における超音波ユニット12の構成に加えて、複数波長の光に対する光音響信号(光音響画像)の演算を行う2波長データ演算手段39を備える。なお、本実施形態を第2から第5実施形態の何れかと組み合わせ、それら実施形態において複数波長の光を照射し、複数波長に対する光音響信号(光音響画像)の演算することとしてもよい。
 本実施形態では、レーザユニット13は、複数の波長の光を切り替えて出射可能に構成されている。レーザユニット13は、例えば波長750nmのパルスレーザ光と波長800nmのパルスレーザ光を切り替えて出射する。プローブ11は、各波長のパルスレーザ光の出射後に被検体からの光音響信号を検出し、受信メモリ23には、各波長に対応した光音響信号のサンプリングデータが格納される。格納された各波長に対応した光音響信号は、それぞれ光音響画像再構成手段で再構成される。
 光微分波形逆畳込み手段26は、光音響画像再構成手段24による再構成後、各波長に対応した光音響信号(光音響画像)から、被検体に照射された各波長の光の光強度の時間波形の微分波形(光微分波形)をそれぞれデコンボリューションする。各波長に対応した光微分波形がデコンボリューションされた光音響信号は、2波長データ演算手段39にて処理される。
 ここで、生体組織の多くは光吸収特性が光の波長に応じて変わり、また一般に、その光吸収特性も組織ごとに特有のものとなっている。例えば、ヒトの動脈に多く含まれる酸素化ヘモグロビン(酸素と結合したヘモグロビン:oxy-Hb)の波長750nmにおける分子吸収係数は波長800nmにおけるそれも低い。また、静脈に多く含まれる脱酸素化ヘモグロビン(酸素と結合していないヘモグロビンdeoxy-Hb)の波長750nmにおける分子吸収係数は波長800nmにおけるそれよりも高い。この性質を利用し、波長800nmで得られた光音響信号に対して、波長750nmで得られた光音響信号が相対的に大きいのか小さいのかを調べることで、動脈からの光音響信号と静脈からの光音響信号とを判別することができる。
 2波長データ演算手段39は、例えば複数波長に対応した光音響信号間の相対的な大小関係を比較する。具体的には、2波長データ演算手段39は、波長750nmの光が照射されたときに検出された光音響信号と、波長800nmの光が照射されたときに検出された光音響信号とを比較し、どちらがどれだけ大きいかを調べる。画像表示に際しては、波長750nmの光が照射されたときに検出された光音響信号が大きければ静脈からの光音響信号と判断できるため、その部分を青色で表示するとよい。また、波長800nmの光が照射されたときに検出された光音響信号が大きければ動脈からの光音響信号と判断できるため、その部分を赤色で表示するとよい。
 本実施形態では、2波長データ演算手段39は、光微分波形のデコンボリューション後に、複数波長に対応した光音響信号の演算を行う。複数の波長の光を被検体に照射する場合、例えば1つ目の波長の光を被検体に照射した光音響信号を検出した後、2つ目の光を被検体に照射して光音響信号を検出するとき、体動などの影響で、波長間で位置ずれが生じることがある。複数波長間での光音響信号を比較する際には、同じ場所から発生した光音響信号同士を比較することが好ましい。光微分波形をデコンボリューションしない場合は、図3Aに示したように1本の血管が二重に表示されるなど、画像判定上、血管の位置が確認しづらく、位置ずれ補正がしにくい。光微分波形をデコンボリューションすることで、図3Bに示したように光吸収分布を画像化でき、血管の位置が確認しやすくなり、位置ずれ補正も容易となる。
 また、図3Aに示したように1本の血管が二重に表示される場合は血管の内部に相当する部分には信号が存在せず(信号レベルが所定レベルよりも低い)、複数波長の画像間で位置ずれが生じていると、信号が存在する部分すなわち血管の重複部分が少なくなる。この場合、複数波長間で光音響信号の相対的な大小関係を適切に比較することが難しくなる。これに対し、図3Bに示したように光吸収分布を画像化した場合は、血管内の多くの部分が信号が存在する部分となり、多少位置ずれが生じたとしても、複数波長の画像間で多くの部分が重複する。従って、本実施形態において、双方の画像を位置合わせずに比較する場合でも、位置ずれの影響を軽減することができる。
 なお、上記各実施形態では、光音響信号及び光パルス微分波形を周波数領域の信号に変換し、周波数領域でデコンボリューション後に時間領域の信号に戻しているが、これには限定されない。光パルス微分波形のデコンボリューションを時間領域で行うことも可能である。また、光パルス微分波形逆畳込み手段26は、デコンボリューション時に、光音響信号に対して何らかのフィルタをかける処理を行ってもよい。例えば光パルス微分波形逆畳込み手段26が、デコンボリューション時に、ノイズ増幅周波数帯をフィルタリングするようにしてもよい。或いは、光パルス微分波形に装置応答関数(圧電素子や電気系の周波数フィルタ)を掛け合わせたものをデコンボリューションしてもよい。
 上記各実施形態では、光音響信号から光微分波形をデコンボリューションした後に光音響画像(吸収分布画像)を生成することとしているが、これに加えて、又はこれに代えて、光微分波形をデコンボリューションせずに光音響画像(圧力分布画像)を生成してもよい。例えば、ユーザが、スイッチや表示モニタ上で操作を行うことで、デコンボリューション処理の有無を選択できるようにしておき、ユーザがデコンボリューション処理の実施を選択したときには光微分波形のデコンボリューションを行った上で光音響画像を生成し、ユーザがデコンボリューション処理の不実施を選択したときは光微分波形のデコンボリューションを行わずに光音響画像を生成してもよい。例えば、光微分波形のデコンボリューションを行ったときは、光音響信号を赤・黒の色に対応付けて表示し、デコンボリューションなしのときは、光音響信号を青・黒の色に対応付けて表示してもよい。
 また、デコンボリューションなしの場合の光音響画像を生成し、コンピュータがその光音響画像を解析することで、血管部分が2本に分かれているか否かを判定し、血管が2本に分かれていると判定されたときに、その血管部分のみを対象に光微分波形のデコンボリューション処理を行うようにしてもよい。その際、デコンボリューション処理を実施した血管部分の表示色を、他の未処理の血管部分の表示色とは異なる色とし、デコンボリューション処理が行われた血管と、他の未処理の血管とが容易に判別可能になるようにしてもよい。
 以上、本発明をその好適な実施形態に基づいて説明したが、本発明の光音響信号処理装置及び方法は、上記実施形態にのみ限定されるものではなく、上記実施形態の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。

Claims (18)

  1.  被検体に照射された光により被検体内で生じた光音響信号をサンプリングするサンプリング手段と、
     前記被検体に照射された光の光強度の時間波形を測定する光波形測定手段と、
     前記サンプリングされた光音響信号から、前記光波形測定手段で測定された時間波形の微分波形をデコンボリューションした信号を生成する光微分波形逆畳込み手段とを備えたことを特徴とする光音響信号処理装置。
  2.  前記光波形測定手段が、被検体に照射される光の光強度を検出する光強度検出部を含むことを含むことを特徴とする請求項1に記載の光音響信号処理装置。
  3.  前記光強度検出部が、被検体に照射される光の光源の光出射端から前記被検体に対して光が照射されるまでの間の光路から分岐された光の光強度を検出するものであることを特徴とする請求項2に記載の光音響信号処理装置。
  4.  前記光路中に、前記被検体に照射される光の一部を分岐する分岐部を有することを特徴とする請求項3に記載の光音響信号処理装置。
  5.  前記サンプリング手段が、複数回の光の照射により生じた複数の光音響信号をサンプリングし、
     前記光波形測定手段が、前記複数回の光のそれぞれにおける光強度の時間波形を測定し、
     前記光微分逆畳込み手段が、前記複数の光音響信号を加算平均した信号から、前記測定された複数の時間波形の平均波形の微分波形をデコンボリューションすることを特徴とする請求項1から4何れかに記載の光音響信号処理装置。
  6.  前記光微分波形逆畳込み手段が、
     前記サンプリングされた光音響信号をフーリエ変換する第1のフーリエ変換手段と、
     前記光微分波形を示す信号をフーリエ変換する第2のフーリエ変換手段と、
     前記フーリエ変換された光微分波形の逆数を逆フィルタとして求める逆フィルタ演算手段と、
     前記フーリエ変換された光音響信号に前記逆フィルタを適用するフィルタ適用手段と、
     前記逆フィルタが適用された光音響信号をフーリエ逆変換するフーリエ逆変換手段と、
    を有するものであることを特徴とする請求項1から5何れかに記載の光音響信号処理装置。
  7.  前記光音響信号が第1のサンプリングレートでサンプリングされ、前記測定された光微分波形が前記第1のサンプリングレートよりも高い第2のサンプリングレートでサンプリングされており、
     前記第1のサンプリングレートでサンプリングされた光音響信号を、前記第2のサンプリングレートでリサンプルするリサンプル手段を更に備え、
     前記第1のフーリエ変換手段が、前記リサンプル手段でリサンプルされた光音響信号をフーリエ変換するものであることを特徴とする請求項6に記載の光音響信号処理装置。
  8.  前記光音響信号が第1のサンプリングレートでサンプリングされ、前記測定された光微分波形が前記第1のサンプリングレートよりも高い第2のサンプリングレートでサンプリングされており、かつ、前記第1のフーリエ変換手段が第1のデータ点数でフーリエ変換を行い、前記第2のフーリエ変換手段が、前記第1のデータ点数よりも多い第2のデータ点数でフーリエ変換を行うものであり、
     前記フーリエ変換された光音響信号に対して、前記第1のデータ点数と前記第2のデータ点数との差の分だけ中央に0を付加するゼロパディングを行うゼロパディング手段を更に備え、
     前記フィルタ適用手段が、前記ゼロパディング手段でゼロパディングが施された信号に対して前記逆フィルタを適用するものであることを特徴とする請求項6に記載の光音響信号処理装置。
  9.  前記光音響信号が第1のサンプリングレートでサンプリングされ、前記測定された光微分波形が前記第1のサンプリングレートよりも高い第2のサンプリングレートでサンプリングされており、かつ、前記第1のフーリエ変換手段が第1のデータ点数でフーリエ変換を行い、前記第2のフーリエ変換手段が、前記第1のデータ点数よりも多い第2のデータ点数でフーリエ変換を行うものであり、
     前記フーリエ変換された光微分波形から、前記第1のデータ点数と前記第2のデータ点数の差の分だけ高周波成分サンプル点を除去する高周波成分サンプル点除去手段を更に備え、
     前記逆フィルタ演算手段が、前記フーリエ変換された光パルス微分波形から高周波成分サンプル点を除去した信号の逆数を逆フィルタとして求めるものであることを特徴とする請求項6に記載の光音響信号処理装置。
  10.  前記光音響信号のサンプリング間隔が、前記被検体に照射された光のパルス時間幅よりも長いことを特徴とする請求項7から9何れかに記載の光音響信号処理装置。
  11.  複数の検出素子で検出され、前記サンプリング手段でサンプリングされた光音響信号に基づいて前記光音響信号を再構成する光音響信号再構成手段を更に備え、
     前記光微分波形逆畳込み手段が、前記光音響信号再構成手段で再構成された光音響信号から前記光微分波形をデコンボリューションするものであることを特徴とする請求項1から10の何れかに記載の光音響信号処理装置。
  12.  前記光微分波形逆畳込み手段が、前記光音響信号から、前記光微分波形に装置応答関数を掛け合わせたものをデコンボリューションすることを特徴とする請求項1から11何れかに記載の光音響信号処理装置。
  13.  前記被検体に照射される光がパルスレーザ光であることを特徴とする請求項1から12何れかに記載の光音響信号処理装置。
  14.  被検体に対する出射光が複数の波長の光を含み、前記サンプリング手段が各波長の光に対応した光音響信号をサンプリングし、前記光微分波形逆畳込み手段が各波長の光に対応した光音響信号から光微分波形をデコンボリューションした信号を生成するものであり、
     各波長の光に対応した、光音響信号から光微分波形をデコンボリューションした信号を演算処理する2波長データ演算手段を更に備えたことを特徴とする請求項1から13何れかに記載の光音響信号処理装置。
  15.  前記光音響信号から前記光微分波形をデコンボリューションした信号に基づいて光音響画像を生成する光音響画像生成手段を更に備えること特徴とする請求項1から14何れかに記載の光音響信号処理装置。
  16.  前記サンプリング手段が、更に前記被検体に対して送信された音響波に対する反射音響波を更にサンプリングするものであり、
     前記サンプリングされた反射音響波に基づいて反射音響波画像を生成する反射音響波画像生成手段と、
     前記光音響画像と前記反射音響波画像とを合成する画像合成手段とを更に備えることを特徴とする請求項15に記載の光音響信号処理装置。
  17.  前記画像合成手段が、前記光音響画像と反射音響波画像とを重畳することで画像合成を行うものであることを特徴とする請求項16に記載の光音響信号処理装置。
  18.  被検体に対する光出射に起因して被検体内で発生した光音響信号を検出するステップと、
     前記照射された光の光強度の時間波形を測定するステップと、
     前記検出された光音響信号から、前記測定された光の時間波形を微分した光微分波形をデコンボリューションするステップとを有する光音響信号処理方法。
PCT/JP2012/007498 2011-11-22 2012-11-21 光音響信号処理装置及び方法 WO2013076988A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011254658 2011-11-22
JP2011-254658 2011-11-22
JP2012247102A JP2013128761A (ja) 2011-11-22 2012-11-09 光音響信号処理装置及び方法
JP2012-247102 2012-11-09

Publications (1)

Publication Number Publication Date
WO2013076988A1 true WO2013076988A1 (ja) 2013-05-30

Family

ID=48469451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007498 WO2013076988A1 (ja) 2011-11-22 2012-11-21 光音響信号処理装置及び方法

Country Status (2)

Country Link
JP (1) JP2013128761A (ja)
WO (1) WO2013076988A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6443851B2 (ja) * 2014-08-04 2018-12-26 キヤノン株式会社 被検体情報取得装置、被検体情報取得方法およびプログラム
JP2017150869A (ja) * 2016-02-23 2017-08-31 日本電信電話株式会社 成分濃度測定装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156362A (ja) * 1989-08-16 1991-07-04 Hitachi Ltd 光音響信号検出方法及び装置
JPH09269370A (ja) * 1996-04-01 1997-10-14 Furuno Electric Co Ltd 探知画像データ処理方法、物体探知装置、超音波診断装置、およびレーダ
JP2010012295A (ja) * 2009-09-14 2010-01-21 Toshiba Corp 生体情報映像装置
JP2010136887A (ja) * 2008-12-11 2010-06-24 Canon Inc 光音響イメージング装置および光音響イメージング方法
JP2010167167A (ja) * 2009-01-26 2010-08-05 Fujifilm Corp 光超音波断層画像化装置および光超音波断層画像化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156362A (ja) * 1989-08-16 1991-07-04 Hitachi Ltd 光音響信号検出方法及び装置
JPH09269370A (ja) * 1996-04-01 1997-10-14 Furuno Electric Co Ltd 探知画像データ処理方法、物体探知装置、超音波診断装置、およびレーダ
JP2010136887A (ja) * 2008-12-11 2010-06-24 Canon Inc 光音響イメージング装置および光音響イメージング方法
JP2010167167A (ja) * 2009-01-26 2010-08-05 Fujifilm Corp 光超音波断層画像化装置および光超音波断層画像化方法
JP2010012295A (ja) * 2009-09-14 2010-01-21 Toshiba Corp 生体情報映像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YI WANG ET AL.: "Photoacoustic imaging with deconvolution algorithm", PHYSICS IN MEDICINE AND BIOLOGY, vol. 49, 28 June 2004 (2004-06-28), pages 3117 - 3124, XP020023793 *

Also Published As

Publication number Publication date
JP2013128761A (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5779567B2 (ja) 光音響信号処理装置及び方法
US9888856B2 (en) Photoacoustic image generation apparatus, system and method
US9974440B2 (en) Photoacoustic image generation device and method
US8260403B2 (en) Photoacoustic imaging apparatus and photoacoustic imaging method
JP5810050B2 (ja) 音響画像生成装置および音響画像生成方法
JP5460000B2 (ja) イメージング装置およびイメージング方法
WO2013076986A1 (ja) 光音響信号処理装置及び方法
EP2382917B1 (en) Display data obtaining apparatus and display data obtaining method
JP6132466B2 (ja) 被検体情報取得装置及び被検体情報取得方法
JP5777394B2 (ja) 光音響画像化方法および装置
JP2015073576A (ja) 光音響装置、光音響装置の作動方法、およびプログラム
JP2013233386A (ja) 光音響画像生成装置、システム、及び方法
JP2014076153A (ja) 被検体情報取得装置およびその制御方法
WO2013094170A1 (ja) 光音響画像化方法および装置
Alles et al. Adaptive light modulation for improved resolution and efficiency in all-optical pulse-echo ultrasound
JP5864905B2 (ja) 被検体情報取得装置及び被検体情報取得方法
WO2013076987A1 (ja) 光音響画像生成装置および光音響画像生成方法
WO2013076988A1 (ja) 光音響信号処理装置及び方法
JP2013106822A (ja) 光音響画像生成装置および光音響画像生成方法
JP2012075464A (ja) 光音響画像診断装置、画像生成方法、及びプログラム
JP2012231879A (ja) 光音響画像化方法および装置
WO2010095487A1 (ja) 生体観測装置及び生体断層画像生成方法
Mustafa et al. In vivo three-dimensional raster scan optoacoustic mesoscopy using frequency domain inversion
JP2017047056A (ja) 被検体情報取得装置
JP2018110734A (ja) 被検体情報取得装置および被検体情報取得方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851723

Country of ref document: EP

Kind code of ref document: A1