WO2013076831A1 - 二次電池の製造方法、及び、二次電池 - Google Patents

二次電池の製造方法、及び、二次電池 Download PDF

Info

Publication number
WO2013076831A1
WO2013076831A1 PCT/JP2011/076968 JP2011076968W WO2013076831A1 WO 2013076831 A1 WO2013076831 A1 WO 2013076831A1 JP 2011076968 W JP2011076968 W JP 2011076968W WO 2013076831 A1 WO2013076831 A1 WO 2013076831A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
secondary battery
current
positive electrode
current collecting
Prior art date
Application number
PCT/JP2011/076968
Other languages
English (en)
French (fr)
Inventor
優 高木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/076968 priority Critical patent/WO2013076831A1/ja
Priority to CN201180075050.0A priority patent/CN103959512A/zh
Priority to US14/359,641 priority patent/US9660247B2/en
Priority to DE112011105871.3T priority patent/DE112011105871B4/de
Priority to KR1020147013469A priority patent/KR20140079500A/ko
Priority to JP2013545706A priority patent/JP5821969B2/ja
Publication of WO2013076831A1 publication Critical patent/WO2013076831A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a secondary battery including a pressure-type current interrupting mechanism that interrupts a current flowing through the battery case when the internal pressure of the battery case exceeds the operating pressure, and to such a secondary battery.
  • Patent Document 1 discloses a battery provided with a pressure-type current interrupting mechanism that interrupts current when the internal pressure of the battery case increases in order to increase the safety of the battery.
  • the pressure-type current interruption mechanism has a valve portion that is structured to break and interrupt current when the internal pressure of the battery case increases. For this reason, when the current collector foil of the electrode plate and the current collector member are connected using ultrasonic welding, not only the current collector member but also the member that forms the valve portion of the current interrupting mechanism connected to the current collector member by ultrasonic vibration. However, it may vibrate greatly. Then, due to the ultrasonic vibration, the above-described valve portion is broken, and the current interrupting mechanism is erroneously operated, which may deteriorate the yield of battery manufacturing.
  • the present invention has been made in view of the current situation, and in a secondary battery having a current interruption mechanism, the current interruption mechanism is prevented from being erroneously operated due to ultrasonic vibration caused by ultrasonic welding during manufacturing.
  • An object of the present invention is to provide a secondary battery manufacturing method with improved yield and a secondary battery having high reliability with respect to a current interruption mechanism.
  • an electrode body having an electrode plate including a current collector foil is connected to the current collector foil of the electrode plate by ultrasonic welding at its own ultrasonic weld.
  • a current collecting member and a pressure type current interrupting mechanism electrically connected to the current collecting member are hermetically housed in a battery case, and the current interrupting mechanism is integrated with the current collecting member.
  • the first valve body and the second valve body are connected by a connecting portion, and at least one of the first valve body and the second valve body is in a direction in which the mutual connection breaks due to an increase in the internal pressure of the battery case.
  • At least a part between the ultrasonic welded portion and the connecting portion is a vibration-damping property.
  • a structure forming step of forming a structure in which one valve body and the second valve body are connected by the connecting portion; and after the structure forming step, the current collecting foil of the electrode plate and the current collecting member An ultrasonic welding process for ultrasonically welding the ultrasonic welded portion.
  • the secondary battery according to this manufacturing method has a configuration in which at least one of the first valve body and the second valve body connected through the connecting portion moves in a direction in which the mutual coupling breaks due to an increase in the internal pressure of the battery case.
  • a pressure-type current interruption mechanism is included in this battery manufacturing method.
  • At least a part between the ultrasonic welded portion and the connecting portion of the current collecting member, the first valve body, and the second valve body may be made of a damping metal.
  • the current collecting member, the first valve body, and the second valve body are made of the same vibration-damping metal.
  • damping metal examples include iron-aluminum alloy, M2052 damping alloy in which copper, nickel, and iron are added based on manganese, cast iron, magnesium alloy, ferritic stainless steel, nickel-titanium alloy, and the like. .
  • connection part the site
  • portion to be broken is provided in the first valve body or the second valve body, and is configured such that the coupling between the first valve body and the second valve body is released by the breakage due to the increase in internal pressure.
  • part formed weaker than other parts such as the above-mentioned connection part, the marking part formed in the 1st valve body or the 2nd valve body, and the thin part, etc. are mentioned.
  • the current collector foil, the current collector, the first valve body, and the second valve body are all made of a metal material containing the same metal element.
  • the damping metal may be a method for manufacturing a secondary battery which is an alloy of the metal element and a different metal element different from the metal element.
  • the current collector foil, the current collector, the first valve body, and the second valve body are made of a metal material containing the same metal element.
  • the damping metal uses an alloy of the same metal element and a different metal element different from the same metal element.
  • ultrasonic welding between current collection foil and the ultrasonic welding part of a current collection member can be performed easily.
  • the first valve body and the second valve body can be connected to each other (structure of the connecting portion) with a metal material containing the same metal element. For this reason, a reliable secondary battery is obtained about ultrasonic welding and formation of a connection part.
  • the first valve body and the second valve body are made of the same damping metal, and the structure forming step includes the first valve body and the first valve body. It is good to set it as the manufacturing method of a secondary battery including the welding process which couple
  • the structure forming step of the battery manufacturing method includes a step of welding the first valve body and the second valve body made of the same vibration-damping metal.
  • the reliability of welding can be improved.
  • the ultrasonic vibration can be absorbed by the first valve body, but also the ultrasonic vibration can be absorbed in a path that is transmitted from the first valve body to the second valve body through the connecting portion. it can. Accordingly, the first valve body and the second valve body can be reliably coupled at the connection portion, and the connection portion or breakage between the first valve body and the second valve body of the current interrupting mechanism is caused by ultrasonic vibration during ultrasonic welding.
  • the first valve body and the current collecting member may be a method for manufacturing a secondary battery made of an integral material of the damping metal.
  • the first valve body and the current collecting member made of an integral material of damping metal are used. Thereby, it is not necessary to couple
  • the ultrasonic vibration can be absorbed not only by the first valve body but also by the current collecting member. Therefore, the ultrasonic vibration during ultrasonic welding more reliably suppresses the breakage of the coupling between the first valve body and the second valve body of the current interrupting mechanism at the connecting portion or the planned breaking portion, and further yields.
  • a secondary battery can be manufactured well. In addition, it is possible to further suppress the influence of the ultrasonic vibration on the connecting portion and the planned fracture portion, and the current interrupting mechanism becomes a more reliable secondary battery.
  • Another aspect of the present invention for solving the above problems is to connect an electrode body having an electrode plate including a current collector foil to the current collector foil of the electrode plate by ultrasonic welding at its own ultrasonic weld.
  • a pressure type current interrupting mechanism electrically connected to the current collecting member is hermetically accommodated in a battery case, and the current interrupting mechanism is integrated with the current collecting member.
  • the first valve body and the second valve body are connected by a connecting portion, and at least one of the first valve body and the second valve body is broken in connection with each other due to an increase in the internal pressure of the battery case. And at least a part of the current collecting member, the first valve body, and the second valve body between the ultrasonic welded portion and the connecting portion is dampened.
  • Secondary battery made of a conductive metal.
  • the battery includes a current collecting member, a first valve body, and a second valve body, wherein at least a part between the ultrasonic welded portion and the connecting portion is made of a damping metal, and then the current collecting of the electrode plate is performed.
  • the foil and the current collecting member are connected by ultrasonic welding. For this reason, at the time of ultrasonic welding of the current collector foil of the electrode plate and the current collecting member, ultrasonic vibration transmitted from the ultrasonic welded portion toward the connecting portion is absorbed at least during this time. Therefore, at the time of ultrasonic welding, not only the connection between the first valve body and the second valve body is prevented from breaking at the connection portion or the planned fracture portion, but also the connection portion or the planned fracture portion due to ultrasonic vibration is prevented. The influence can be suppressed and the secondary battery is highly reliable with little variation in the characteristics of the current interruption mechanism.
  • the current collector foil, the current collecting member, the first valve body, and the second valve body are all made of a metal material containing the same metal element
  • the damping metal is preferably a secondary battery that is an alloy of the above metal element and a different metal element different from the above metal element.
  • the current collector foil, the current collector, the first valve body, and the second valve body are made of a metal material containing the same metal element.
  • the damping metal is an alloy of the same metal element and a different metal element different from the same metal element.
  • the first valve body and the second valve body are made of the same damping metal, and are joined by welding to constitute the connecting portion. And good.
  • the first valve body and the second valve body are made of the same vibration-damping metal, and both are joined by welding to constitute a connecting portion.
  • welding since welding is performed between the same materials, the reliability of welding is favorable.
  • the first valve body and the current collecting member may be a secondary battery made of an integral material of the damping metal.
  • the first valve body and the current collecting member are made of an integral material of damping metal. For this reason, even if a minute vibration due to a ripple current or the like occurs when the battery is used, it can be absorbed not only by the first valve body but also by the current collecting member. Therefore, the secondary battery having a higher reliability with respect to the current interruption mechanism is obtained.
  • the current collector foil may be an aluminum foil
  • the damping metal may be a secondary battery made of a damping iron-aluminum alloy.
  • This battery uses a damping iron-aluminum alloy as a damping metal that forms an integral member of the first valve body and the current collecting member.
  • This vibration-damping iron-aluminum alloy can be satisfactorily ultrasonically welded with aluminum. Therefore, the current collecting member made of the damping iron-aluminum alloy can be appropriately ultrasonically welded to the aluminum foil forming the current collecting foil.
  • this battery is a secondary battery in which a vibration-damping metal is used for the current collecting member and the current collecting foil and the current collecting foil are well ultrasonically welded.
  • the vibration-damping iron-aluminum alloy may be a secondary battery containing 6 to 10% by weight of aluminum, with the balance being iron and inevitable impurities.
  • iron-aluminum alloys an alloy containing 6 to 10% by weight of aluminum and the balance being iron and inevitable impurities has particularly good damping properties as a damping alloy. Therefore, the secondary battery having higher reliability with respect to the current interruption mechanism is obtained.
  • FIG. 1 is a perspective view of a lithium ion secondary battery according to Embodiment 1.
  • FIG. 3 is an exploded perspective view showing a configuration of a negative electrode terminal according to Embodiment 1.
  • FIG. 3 is a perspective view illustrating a configuration of a positive electrode terminal including a current interrupt mechanism according to Embodiment 1.
  • FIG. 3 is an exploded perspective view showing a configuration of a positive electrode terminal including a current interrupt mechanism according to Embodiment 1.
  • FIG. FIG. 4 is a longitudinal sectional view of the current interrupting mechanism according to the AA section in FIG.
  • FIG. 6 is an explanatory diagram showing a hybrid vehicle according to a second embodiment.
  • FIG. 1 is a perspective view of a lithium ion secondary battery 1 (hereinafter also simply referred to as battery 1) according to the first embodiment.
  • battery 1 a lithium ion secondary battery 1 (hereinafter also simply referred to as battery 1) according to the first embodiment.
  • the upper side in each drawing is described as the upper UW (upper UW) of the battery 1 and the lower side is described as the lower DW (lower DW) of the battery 1.
  • the battery 1 includes an electrode body 20 having a positive electrode plate 21 and a negative electrode plate 22, a non-aqueous electrolyte solution 30, a rectangular battery case 10 that contains the electrode assembly 20 and the electrolyte solution 30 in an airtight manner, It has a positive electrode terminal 60 connected to the positive electrode plate 21 and extending out of the battery case 10, and a negative electrode terminal 70 connected to the negative electrode plate 22 and extended out of the battery case 10.
  • the battery case 10 has a case body member 11 including an opening and a sealing lid 12.
  • the sealing lid 12 has a rectangular plate shape, closes the opening of the case body member 11, and is welded to the case body member 11. Further, the sealing lid 12 is provided with a liquid injection hole 12H for injecting the electrolytic solution 30, and further, a part of the positive electrode external terminal 61 and the negative electrode terminal 70 which are a part of the positive electrode terminal 60. Negative external terminals 71 are fixed outside the battery case 10, respectively.
  • the positive electrode external terminal 61 is composed of a bolt 62 and a positive electrode external terminal member 63 made of an aluminum plate bent in a crank shape (Z-shape), and is attached to the sealing lid 12 via an external gasket 80 made of resin. It is fixed.
  • the negative external terminal 71 includes a bolt 72 and a negative external terminal member 73 made of a copper plate bent in a crank shape (Z shape), and is fixed to the sealing lid 12 via an external gasket 90 made of resin. Has been.
  • the electrode body 20 is accommodated in an insulating film enclosure (not shown) in which an insulating film is formed in a bag shape, and is accommodated in the battery case 10 in a laid state.
  • This electrode body 20 is obtained by winding a belt-like positive electrode plate 21 and a belt-like negative electrode plate 22 on each other via a belt-like separator (not shown) and compressing them into a flat shape.
  • the positive electrode plate 21 has a positive electrode current collector foil 21s made of a strip-shaped aluminum foil as a core material.
  • the positive electrode current collector foil 21s is provided with a positive electrode active material layer (not shown) made of a positive electrode active material, a conductive agent and a binder on both sides thereof, and one side of the positive electrode current collector foil 21s is formed on the positive electrode active material layer.
  • the positive electrode lead portion 21f does not exist. In other words, the positive electrode lead portion 21 f is a portion of the positive electrode plate 21 where the positive electrode current collector foil 21 s made of aluminum foil is exposed.
  • the negative electrode plate 22 has a negative electrode current collector foil 22s made of a strip-shaped copper foil as a core material.
  • the negative electrode current collector foil 22s is provided with a negative electrode active material layer (not shown) made of a negative electrode active material, a binder, and a thickener on both sides thereof, and one side of the negative electrode current collector foil 22s has the negative electrode active material.
  • the negative electrode lead portion 22f has no layer. That is, the negative electrode lead portion 22f is a portion of the negative electrode plate 22 where the negative electrode current collector foil 22s of the copper foil is exposed.
  • a positive electrode terminal 60 is connected to the positive electrode lead portion 21f (positive electrode current collector foil 21s) of the positive electrode plate 21 (see FIGS. 1, 3, and 4).
  • the positive electrode terminal 60 includes the above-described positive electrode external terminal 61 disposed outside the battery case 10, the current interrupt mechanism 2 located in the battery case 10, and a positive electrode current collecting member 64 ⁇ / b> B.
  • the positive electrode current collecting member 64B is a part of a positive electrode internal conducting member 64 described later, and the positive electrode internal conducting member 64 is made of a damping iron-aluminum alloy.
  • the positive electrode current collector 64B is bent in a crank shape and is ultrasonically welded to the positive electrode lead portion 21f (positive electrode current collector foil 21s) of the positive electrode plate 21.
  • the current interrupt mechanism 2 is disposed in the battery case 10 and is interposed between the positive electrode current collecting member 64B and the positive electrode external terminal 61 (positive electrode external terminal member 63), and conducts between the two.
  • This is a pressure-type safety mechanism that cuts off the charge / discharge current Id of the battery flowing through the battery when the internal pressure Pi of the battery exceeds the operating pressure Pf.
  • a negative electrode terminal 70 is connected to the negative electrode lead portion 22f (negative electrode current collector foil 22s) of the negative electrode plate 22 (see FIGS. 1 and 2).
  • the negative electrode terminal 70 includes a negative electrode current collecting member 74 ⁇ / b> B positioned in the battery case 10 in addition to the negative electrode external terminal 71 disposed outside the battery case 10.
  • the negative electrode current collecting member 74B is a part of a negative electrode internal conducting member 74 described later, and the negative electrode internal conducting member 74 is made of copper.
  • the negative electrode current collecting member 74B is bent in a crank shape and is resistance welded to the negative electrode lead portion 22f (negative electrode current collecting foil 22s) of the negative electrode plate 22.
  • the sealing lid 12 of the battery case 10 has a positive electrode through hole 12C.
  • the positive electrode external terminal 61 constituted by the bolt 62 and the positive electrode external terminal member 63 is connected to the positive electrode through hole 12C. It is fixed through.
  • the external gasket 80 is formed in a substantially L shape, and has a bolt holding hole 80H and a through hole 80C forming a hexagonal columnar recess.
  • the positive external terminal member 63 has two through holes 63B and 63C.
  • the bolt 62 has a hexagonal columnar head portion 62 ⁇ / b> A inserted into the bolt holding hole 80 ⁇ / b> H of the external gasket 80, and a threaded portion 62 ⁇ / b> B inserted through one through hole 63 ⁇ / b> B of the positive electrode external terminal member 63.
  • the other through hole 63C of the positive external terminal member 63 is coaxially aligned with the positive through hole 12C of the sealing lid 12 together with the through hole 80C of the external gasket 80.
  • the current interruption mechanism 2 is arranged in the battery case 10 on the lower side DW of the positive electrode through hole 12C in the drawing.
  • This current interruption mechanism 2 includes an annular plate-shaped seal rubber 81, a first internal gasket 82 made of resin, a sealing plug 67, a space forming member 66, a plate-shaped second valve body 65, and a second internal gasket 83 made of resin.
  • a positive electrode internal conduction member 64 includes a first valve body 64A and a positive electrode current collecting member 64B.
  • the space forming member 66 is made of aluminum, and has a bottomed rectangular tube-shaped space forming portion 66B having an opening 66H on the lower side DW in the drawing, and an upper side from the bottom 66BT of the upper UW in the drawing of the space forming portion 66B. It consists of a cylindrical caulking portion 66A extending to the UW. Further, the caulking portion 66A has a cylindrical hole 66C that penetrates to the space forming portion 66B. The cylindrical hole 66C is sealed with a sealing plug 67 made of aluminum, as will be described later.
  • the first internal gasket 82 made of resin has a bottomed rectangular tube shape having an opening 82H on the lower side DW in the drawing.
  • a circular hole 82C having a diameter larger than the outer diameter of the seal rubber 81 is provided at the center, and the seal rubber 81 can be accommodated in the circular hole 82C. Then, it can be fitted onto the space forming portion 66B of the space forming member 66 through the opening 82H on the lower side DW in the drawing.
  • three convex fitting protrusions 82D used for fitting with the second internal gasket 83 are provided on two opposing surfaces of the side surface of the first internal gasket 82, respectively.
  • the second internal gasket 83 has a rectangular main body portion 83A in a plan view of the lower side DW in the drawing, and side walls 83B that rise from the two side edges of the main body portion 83A to the upper side UW in the drawing.
  • the main body 83A has a holding groove 83C that penetrates through a rectangular space into which a first valve body 64A described later can be inserted.
  • circular holes 83E and 83F are formed in the center portion of the main body portion 83A through the upper UW and the lower DW, respectively, through the holding groove 83C (see FIG. 5).
  • the two side walls 83B are each provided with three fitting holes 83D penetrating the side walls 83B.
  • the second internal gasket 83 can be locked to the first internal gasket 82 by fitting the fitting hole 83D to the fitting convex portion 82D of the first internal gasket 82.
  • the first internal gasket 82 is fitted on the space forming portion 66B of the space forming member 66, and the caulking portion 66A of the space forming member 66 is interposed between the first internal gasket 82 and the seal rubber 81 accommodated therein.
  • the positive electrode through hole 12C of the sealing lid 12, the through hole 80C of the external gasket 80, and the through hole 63C of the positive electrode external terminal member 63 are inserted. Further, the tip portion 66AS of the crimping portion 66A is subjected to laser welding after being expanded in diameter and crimped to the positive external terminal member 63. Thereby, the space forming member 66 is fixed to the sealing lid 12.
  • the opening end 66HE of the opening 66H is hermetically sealed by the second valve body 65 by laser welding, and the space forming member 66 and the second valve body 65 A space C is formed.
  • the internal space C is evacuated, and the cylindrical hole 66 ⁇ / b> C of the caulking portion 66 ⁇ / b> A of the space forming member 66 is sealed with a sealing plug 67. Further, the sealing plug 67 is laser-welded to the tip portion 66AS of the caulking portion 66A.
  • the second valve body 65 has a substantially rectangular plate shape and is made of a vibration-damping iron-aluminum alloy of Fe-8 wt% Al.
  • the second valve body 65 has a convex portion 65A projecting downward in the drawing at the center thereof, and a first valve body 64A of a positive electrode internal conduction member 64 described later is connected to the convex portion 65A by welding. ing.
  • the first internal gasket 82 is externally fitted to the space forming member 66 from the upper side UW in the drawing as described above.
  • a second internal gasket 83 is externally fitted from the lower side DW in the drawing, and a fitting hole 83D of the second internal gasket 83 is fitted to the fitting convex portion 82D of the first internal gasket 82.
  • the space forming member 66 and the second valve body 65 are sandwiched between the first internal gasket 83 and the second internal gasket 83, and the second internal gasket 83 is suspended and held by the first internal gasket 82. .
  • the positive electrode internal conduction member 64 is a rectangular plate-shaped first valve body 64A located on the upper side UW in the figure, and a positive electrode extending in a downward direction DW in the figure while being bent in a crank shape from one edge 64AE of the first valve body 64A.
  • the current collecting member 64B is integrally provided.
  • the positive electrode internal conduction member 64 is also made of an integral material of Fe-8 wt% Al damping iron-aluminum alloy. Therefore, the positive electrode internal conducting member 64 and the second valve body 67 are made of the same vibration-damping iron-aluminum alloy. This vibration-damping iron-aluminum alloy has particularly good vibration-damping properties and can be satisfactorily ultrasonically welded to aluminum.
  • the positive internal conductive member 64 has its first valve body 64A inserted into the holding groove 83C of the second internal gasket 83 and suspended and held by the second internal gasket 83.
  • the circular central portion 64C of the first valve body 64A is thinner than the surroundings, and is connected to the convex portion 65A of the second valve body 65 by laser welding to form a connection portion KG.
  • a V-groove-shaped marking portion 64K which is a planned breaking portion scheduled to be broken as described below, is provided in an annular shape on the periphery of the central portion 64C of the first valve body 64A.
  • the internal space C formed by the space forming member 66 and the second valve body 65 is evacuated, and the cylindrical hole 66C of the caulking portion 66A of the space forming member 66 is sealed by the sealing plug 67, and then sealed.
  • the plug 67 is laser welded to the tip portion 66AS of the caulking portion 66A.
  • the pressure type current interrupting mechanism 2 is configured with the first valve body 64A, the second valve body 65, and the space forming member 66 as main constituent members. Moreover, the positive electrode external terminal 61, the current interruption mechanism 2, and the positive electrode internal conduction member 64 are fixed to the sealing lid 12, and form the positive electrode terminal 60.
  • the positive electrode internal conduction member 64 is ultrasonically welded to the positive electrode lead portion 21f (positive electrode current collector foil 21s) of the positive electrode plate 21 at the tip end portion 64BS (ultrasonic welding portion) of the positive electrode current collector member 64B.
  • the sealing lid 12 of the battery case 10 has a negative electrode through hole 12D.
  • the negative electrode external terminal 71 constituted by the bolt 72 and the negative electrode external terminal member 73 is connected to the external gasket 90. It is fixed through.
  • the substantially L-shaped external gasket 90 has a bolt holding hole 90H and a through hole 90C that form a hexagonal columnar recess
  • the negative external terminal member 73 has two through holes 73B and 73C.
  • the bolts 72 a hexagonal columnar head portion 72 ⁇ / b> A is fitted into the bolt holding hole 90 ⁇ / b> H, and the screw portion 72 ⁇ / b> B is inserted through the through hole 73 ⁇ / b> B of the negative electrode external terminal member 73.
  • the through hole 73C is coaxially aligned with the negative electrode through hole 12D of the sealing lid 12 together with the through hole 90C of the external gasket 90.
  • an annular plate-shaped seal rubber 91, an internal gasket 92 made of resin, and a negative electrode internal conducting member 74 are disposed.
  • the negative electrode internal conducting member 74 is bent in a crank shape from a rectangular plate-like base portion 74C, a cylindrical caulking portion 74A extending from the plate-like base portion 74C upward UW in the figure, and one edge 74CE of the plate-like base portion 74C.
  • the internal gasket 92 has a rectangular plate shape, and has a circular hole 92C having a diameter larger than the outer diameter of the seal rubber 91 at the center, and the seal rubber 91 can be accommodated in the circular hole 92C.
  • the plate-like base portion 74C of the negative electrode internal conducting member 74 is in contact with the internal gasket 92 and the seal rubber 91 accommodated therein, and the crimping portion 74A is connected to the negative electrode through hole 12D of the sealing lid 12 and the external gasket 90 via these.
  • the through hole 90C and the through hole 73C of the negative external terminal member 73 are inserted.
  • the distal end portion 74AS of the caulking portion 74A is subjected to laser welding after being expanded in diameter and crimped to the negative electrode external terminal member 73. Thereby, the negative electrode internal conduction member 74 is fixed to the sealing lid 12.
  • the negative electrode external terminal 71 and the negative electrode internal conduction member 74 are fixed to the sealing lid 12, and form the negative electrode terminal 70 with these.
  • the negative electrode internal conducting member 74 is resistance welded to the negative electrode lead portion 22f (negative electrode current collector foil 22s) of the negative electrode plate 22 at the tip 74BS of the negative electrode current collector 74B.
  • the battery 1 includes the positive electrode internal conducting member 64, which is an integral member of the positive electrode current collecting member 64B and the first valve body 64A, made of a damping iron-aluminum alloy.
  • the positive electrode current collector foil 21s and the positive electrode current collector member 64B are connected by ultrasonic welding. For this reason, at the time of ultrasonic welding of the positive electrode current collector 21s of the positive electrode plate 21 and the positive electrode current collector member 64B, ultrasonic waves transmitted from the tip end portion 64BS (ultrasonic weld portion) of the positive electrode current collector member 64B toward the connecting portion KG. The vibration is absorbed by the positive electrode internal conduction member 64 which is an integral material.
  • the battery 1 when the battery 1 is mounted on a hybrid vehicle or an electric vehicle and used for driving a motor, the battery 1 may be used by inverter control. In this case, a minute vibration may occur in the electrode body 20 due to a ripple current flowing through the battery 1. However, in the battery 1, the minute vibration due to the ripple current can also be absorbed by the positive electrode internal conduction member 64. Thereby, the influence on the durability of the electric current interruption mechanism 2 by this micro vibration can also be suppressed. Therefore, also from this point, the battery 1 having high reliability with respect to the current interruption mechanism 2 is obtained.
  • the first valve body 64A and the second valve body 65 are made of the same vibration-damping metal, and both are joined by welding to constitute a connecting portion KG.
  • welding since welding is performed between the same materials, the reliability of welding is favorable.
  • minute vibrations due to ripple current or the like occur when the battery 1 is used, this can be absorbed not only by the positive electrode internal conduction member 64 but also in a path that is transmitted to the second valve body 65. For this reason, the battery 1 having higher reliability with respect to the current interruption mechanism 2 is obtained.
  • this battery 1 uses a damping iron-aluminum alloy of Fe-8 wt% Al as a damping metal that forms the positive electrode internal conduction member 64 that is an integral member of the first valve body 64A and the positive current collector 64B. Used.
  • This iron-aluminum alloy has particularly good vibration damping properties and can be satisfactorily ultrasonically welded with aluminum.
  • the positive electrode internal conducting member 64 which is an integral member of the positive electrode current collecting member 64B made of the iron-aluminum alloy and the first valve body 64A, is appropriately ultrasonically welded to the aluminum foil forming the positive electrode current collecting foil 21s. be able to.
  • this battery 1 uses a vibration-damping metal for the positive electrode internal conduction member 64, and the positive current collector member 64B and the positive electrode current collector foil 21s, while having higher reliability with respect to the current interruption mechanism 2.
  • the battery 1 is satisfactorily ultrasonically welded.
  • a method for manufacturing the battery 1 according to the first embodiment will be described.
  • formation of the electrode body 20 will be described.
  • a positive electrode paste containing positive electrode active material particles (not shown) made of a lithium composite oxide is applied, leaving the positive electrode lead portion 21f on one side, and thereafter This is dried and pressed to form the positive electrode plate 21.
  • a negative electrode paste containing negative electrode active material particles (not shown) made of natural graphite is applied to both sides of a copper foil (negative electrode current collector foil 22s), leaving the negative electrode lead portion 22f on one side, and then dried and pressed.
  • the negative electrode plate 22 is formed.
  • the positive electrode plate 21 and the negative electrode plate 22 are wound with a separator (not shown) interposed therebetween and compressed into a flat shape to obtain an electrode body 20.
  • a positive electrode terminal 60 composed of the positive electrode external terminal 61, the current interruption mechanism 2 and the positive electrode internal conduction member 64 is formed on the sealing lid 12 of the battery case 10, and a negative electrode external terminal 71 and a negative electrode internal conduction member 74 are also constructed.
  • the negative electrode terminals 70 to be provided are respectively fixed.
  • the head portion 72 ⁇ / b> A of the bolt 72 is inserted into the bolt holding hole 90 ⁇ / b> H of the external gasket 90, and the screw portion 72 ⁇ / b> B is inserted into one through hole 73 ⁇ / b> B of the negative electrode external terminal member 73.
  • the other through hole 73C of the negative electrode external terminal member 73 is coaxially aligned with the negative electrode through hole 12D of the sealing lid 12 together with the through hole 90C of the external gasket 90.
  • the cylindrical caulking portion 74A of the negative electrode internal conducting member 74 is inserted into the internal gasket 92 and the seal rubber 91, and further, the negative electrode through hole 12D of the sealing lid 12, the through hole 90C of the external gasket 90, and the negative electrode external terminal member. 73 is inserted through the through hole 73C. Further, the distal end portion 74AS of the caulking portion 74A is enlarged in diameter and crimped to the negative external terminal member 73, and then laser welded. As described above, each member constituting the negative electrode terminal 70 is fixed to the sealing lid 12.
  • the peripheral edge portion 65E of the second valve body 65 is air-tightly joined to the opening end 66HE of the opening 66H in the space forming portion 66B of the space forming member 66 by laser welding. Further, of the welded space forming member 66 and the second valve body 65, the first internal gasket 82 is externally fitted to the space forming member 66 from the upper side UW in the drawing.
  • a second internal gasket 83 is externally fitted to these from the lower side DW in the figure, and the space forming member 66 and the second valve body 65 are sandwiched between the first internal gasket 82 and the second internal gasket 83, and the second internal gasket 83
  • the fitting hole 83 ⁇ / b> D of the gasket 83 is fitted into the fitting convex portion 82 ⁇ / b> D of the first internal gasket 82.
  • first valve body 64A of the positive electrode internal conduction member 64 is inserted into the holding groove 83C of the second internal gasket 83, and the central portion 64C of the first valve body 64A is formed into the convex portion 65A of the second valve body 65.
  • the contact part KG is formed by contacting with laser welding (welding process).
  • the head portion 62A of the bolt 62 is inserted into the bolt holding hole 80H of the external gasket 80, and the screw portion 62B is inserted into one through hole 63B of the positive electrode external terminal member 63.
  • the other through hole 63C of the positive electrode external terminal member 63 is coaxially aligned with the positive electrode through hole 12C of the sealing lid 12 together with the through hole 80C of the external gasket 80.
  • the caulking portion 66A of the space forming member 66 in the structure 60K is inserted into the seal rubber 81, and further the positive electrode through hole 12C of the sealing lid 12, the through hole 80C of the external gasket 80, and the through hole of the positive external terminal member 63. Insert through 63C.
  • the tip portion 66AS of the caulking portion 66A is enlarged in diameter and crimped, the positive electrode external terminal member 63 and the tip portion 66AS of the caulking portion 66A are laser welded.
  • each member forming the positive electrode terminal 60 is fixed to the sealing lid 12.
  • the positive electrode current collecting member 64 ⁇ / b> B of the positive electrode internal conducting member 64 and the negative electrode current collecting member 74 ⁇ / b> B of the negative electrode internal conducting member 74 integrated with the sealing lid 12 are connected to the electrode body 20.
  • the negative electrode current collector member 74B made of copper is resistance-welded to the negative electrode lead portion 22f (negative electrode current collector foil 22s) of the negative electrode plate 22.
  • the positive electrode current collector member 64B is ultrasonically welded to the positive electrode lead portion 21f (positive electrode current collector foil 21s) of the positive electrode plate 21 (ultrasonic welding process).
  • the positive electrode current collector 64B and the positive electrode internal conducting member 64 constituting the first valve body 64A and the second valve body 65 are both made of damping iron-containing Fe-8 wt% Al. It is composed of an aluminum alloy. For this reason, the ultrasonic vibration at the time of ultrasonic welding is absorbed by the second valve body 65 in addition to the positive electrode internal conduction member 64B and the first valve body 64A. Thereby, it can prevent that the connection part KG or the marking part 64K of 64 A of 1st valve bodies and the 2nd valve body 65 breaks by ultrasonic vibration.
  • the electrode body 20 is accommodated in the case body member 11, the case body member 11 is sealed with the sealing lid 12, and the sealing lid 12 is laser welded to the case body member 11. Thereafter, the electrolytic solution 30 is injected from the injection hole 12H of the sealing lid 12, and after the injection, the injection hole 12H is sealed. Next, initial charge / discharge of the battery 1 is performed. Thus, the battery 1 is completed.
  • the tip 64BS (ultrasonic welding portion) of the positive current collector 64B and the connecting portion KG.
  • a part of the gap in the first embodiment, the positive electrode internal conduction member 64 and the second valve body 65, which are an integral member of the positive electrode current collecting member 64B and the first valve body 64A, is made of a damping metal (damping property). (Iron-aluminum alloy).
  • the ultrasonic vibration that proceeds from the front end portion 64BS of the positive electrode current collector member 64B toward the connecting portion KG is at least During this period (in the first embodiment, the positive electrode internal conduction member 64), the first valve body 64A and the second valve body 65 are connected to each other at the connecting portion KG or the marking portion 64K by the transmitted ultrasonic vibration.
  • the bond can be prevented from breaking. Therefore, it is possible to prevent the current interruption mechanism 2 from operating erroneously during ultrasonic welding, and the battery 1 can be manufactured with a high yield. Further, the influence of the ultrasonic vibration on the connecting portion KG or the marking portion 64K is suppressed, and the current interrupting mechanism 2 has a highly reliable battery 1 with little variation in characteristics.
  • an aluminum foil is used for the positive electrode current collector foil 21s of the positive electrode plate 21, and the positive electrode internal conduction member 64 and the first positive electrode current collector member 64B and the first valve body 64A are integrated.
  • Damping iron-aluminum alloy is used for the two-valve body 65, and these all contain aluminum which is the same metal element.
  • the structure forming step of the manufacturing method of the battery 1 includes a step of welding the first valve body 64A and the second valve body 65 of the positive electrode internal conduction member 64 made of the same damping iron-aluminum alloy. Yes.
  • welding since welding is performed between the same materials, the reliability of welding can be improved.
  • the ultrasonic vibration can be absorbed by the first valve body 64A (positive electrode internal conduction member 64) but also the second valve through the connecting portion KG from the first valve body 64A (positive electrode internal conduction member 64). Ultrasonic vibration can also be absorbed in the path leading to the valve body 65.
  • the first valve body 64A and the second valve body 65 can be reliably coupled by the connecting portion KG, and the first valve body 64A and the second valve body 65 of the current interrupting mechanism 2 can be obtained by ultrasonic vibration during ultrasonic welding. It is possible to further suppress the breakage of the connecting portion KG or the stamped portion 64K and to manufacture the battery 1 with a high yield. Further, the influence on the connecting portion KG or the marking portion 64K due to the ultrasonic vibration can be further suppressed, and the current interrupting mechanism 2 becomes the battery 1 with higher reliability.
  • the first valve body 64A and the positive electrode current collecting member 64B (the positive electrode internal conduction member 64) made of an integral material of a damping metal are used.
  • the ultrasonic vibration can be absorbed not only by the first valve body 64A but also by the positive electrode current collector 64B. Accordingly, the ultrasonic vibration during ultrasonic welding more reliably suppresses the breakage of the coupling between the first valve body 64A and the second valve body 65 of the current interrupt mechanism 2 at the connecting portion KG or the marking portion 64K.
  • the battery 1 can be manufactured with higher yield. Further, the influence on the connecting portion KG or the marking portion 64K due to the ultrasonic vibration can be further suppressed, and the current interrupting mechanism 2 becomes the battery 1 with higher reliability.
  • a hybrid vehicle (vehicle) 700 (hereinafter also simply referred to as a vehicle 700) according to the second embodiment is equipped with the battery 1 according to the first embodiment, and the electric energy stored in the battery 1 is used as the drive energy of the drive source. It is used as a whole or a part (see FIG. 6).
  • This automobile 700 is a hybrid automobile that is mounted with an assembled battery 710 in which a plurality of batteries 1 are combined and is driven by using an engine 740, a front motor 720, and a rear motor 730 in combination.
  • the automobile 700 includes an engine 740, a front motor 720 and a rear motor 730, an assembled battery 710 (battery 1), a cable 750, and an inverter 760 on the vehicle body 790.
  • the automobile 700 is configured to be able to drive the front motor 720 and the rear motor 730 using electrical energy stored in the assembled battery 710 (battery 1).
  • the assembled battery 710 (battery 1) is used in inverter control by the inverter 760. For this reason, the battery 1 may generate minute vibrations due to a ripple current.
  • minute vibration due to the ripple current can be absorbed by the positive electrode internal conduction member 64. Therefore, the battery 1 suppresses the influence on the durability of the current interrupt mechanism 2 due to minute vibrations and has high reliability. Therefore, the reliability of the automobile 700 on which the battery 1 is mounted can be increased.
  • a damping iron-aluminum alloy is used as the damping metal, but other damping metals such as M2052 damping alloy, nickel-titanium alloy, etc. may be used.
  • the positive current collecting member 64B and the first valve body 64A are formed as an integral material (positive electrode internal conduction member 64), and the same damping iron-aluminum alloy is used together with the second valve body 67.
  • at least the first valve body 64A of the positive current collector 64B, the first valve body 64A, and the second valve body 67 may be made of a damping metal.
  • the current interrupt mechanism 2 is provided in the positive terminal 60, but may be provided in the negative terminal 70.
  • the shape of the battery 1 is a square shape, but a cylindrical battery may be similarly configured, and the battery shape is not limited.
  • the electrode body 20 in which the positive electrode plate 21 and the negative electrode plate 22 are wound on each other with a separator interposed therebetween is used.
  • the form of the electrode body is not limited to this. For example, it is good also as a laminated type formed by laminating
  • the hybrid vehicle 700 is exemplified as a vehicle on which the battery 1 according to the present invention is mounted.
  • the present invention is not limited to this.
  • Examples of the vehicle on which the battery according to the present invention is mounted include an electric vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, an electrically assisted bicycle, and an electric scooter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 二次電池(1)は、電極板(21)を有する電極体(20)、電極板の集電箔(21s)に自身の超音波溶接部(64BS)で超音波溶接により接続された集電部材(64B)、集電部材に導通接続された圧力型の電流遮断機構(2)を電池ケース(10)内に収容してなる。電流遮断機構は、集電部材と一体にされた第1弁体(64A)と第2弁体(65)とが連結部(KG)で連結され、集電部材、第1弁体及び第2弁体のうち、少なくとも、超音波溶接部と連結部との間の一部が、制振性金属で構成されてなる。この二次電池の製造方法は、集電部材と一体にされた第1弁体と第2弁体とを連結部で連結した構造体(60K)を形成する構造体形成工程と、その後に、電極板の集電箔と集電部材の超音波溶接部とを超音波溶接する超音波溶接工程とを備える。

Description

二次電池の製造方法、及び、二次電池
 本発明は、電池ケースの内圧が作動圧力を超えた場合に、自身を流れる電流を遮断する圧力型の電流遮断機構を備える二次電池の製造方法、及び、このような二次電池に関する。
 近年、リチウムイオン電池に代表される二次電池(以下、単に電池ともいう)は、携帯電話、ノートパソコン、デジタルカメラ等の小型電子機器のほか、ハイブリッド自動車や電気自動車などの駆動用電源として、広く用いられている。特に、ハイブリッド自動車や電気自動車などの車両に用いられる電池においては、高出力が要求されるため、個々の電池が大型化されると共に、複数の電池を直列ないし並列に接続して使用されている。さらに、二次電池を車両等に用いる場合には、特に高い安全性が要求される。このような電池として、例えば特許文献1には、電池の安全性を高めるため、電池ケースの内圧が上昇したときに電流を遮断する圧力型の電流遮断機構を備えた電池が開示されている。
特開2008-66254号公報
 ところで、このような二次電池において、電極板の集電箔にアルミニウム箔を、集電部材にアルミニウム材を用いる場合などでは、この集電箔と集電部材とを抵抗溶接で確実に溶接するのは難しいため、超音波溶接がしばしば用いられる。
 一方、圧力型の電流遮断機構は、電池ケースの内圧が上昇した際に、破断して電流を遮断する構造とされた弁部位を有している。このため、超音波溶接を用いて、電極板の集電箔と集電部材とを接続すると、超音波振動によって、集電部材のみならず、これに接続する電流遮断機構の弁部位をなす部材が、大きく振動してしまう場合がある。すると、超音波振動により、上述の弁部位に破断が生じて、電流遮断機構が誤って作動してしまい、電池製造の歩留りが悪くなる虞があった。また、製造時に弁部位をなす部材が破断しなかった電池についても、超音波振動の影響を受けている虞があり、遮断特性がばらつくなど製品(電池)における信頼性の点でも問題があった。加えて、車両に搭載する電池のように、インバータ制御によって電池を使用する場合には、電池使用時に流れるリップル電流により、電極体に微小振動が発生し、これが電流遮断機構へと伝わる場合がある。すると、この微小振動により、電流遮断機構の耐久性が悪化する虞もあった。
 本発明は、かかる現状に鑑みてなされたものであって、電流遮断機構を備える二次電池において、製造時の超音波溶接による超音波振動により、電流遮断機構が誤って作動することを防止し、歩留りを良くした二次電池の製造方法、及び、電流遮断機構について高い信頼性を有する二次電池を提供することを目的とする。
 上記課題を解決するための、本発明の一態様は、集電箔を含む電極板を有する電極体と、上記電極板の上記集電箔に自身の超音波溶接部で超音波溶接により接続された集電部材と、上記集電部材に導通接続された圧力型の電流遮断機構とを、電池ケース内に気密に収容してなり、上記電流遮断機構は、上記集電部材と一体にされた第1弁体と第2弁体とが連結部で連結され、上記第1弁体及び上記第2弁体の少なくともいずれかは、上記電池ケースの内圧の上昇により、互いの結合が破断する方向に移動する構成とされてなり、上記集電部材、上記第1弁体及び上記第2弁体のうち、少なくとも、上記超音波溶接部と上記連結部との間の一部が、制振性金属で構成されてなる二次電池の製造方法であって、上記集電部材と一体にされた上記第1弁体と上記第2弁体とを上記連結部で連結した構造体を形成する構造体形成工程と、上記構造体形成工程の後に、上記電極板の上記集電箔と上記集電部材の上記超音波溶接部とを超音波溶接する超音波溶接工程と、を備える二次電池の製造方法である。
 この製造方法に係る二次電池は、電池ケースの内圧の上昇により、連結部を通じて連結された第1弁体と第2弁体の少なくともいずれかが、互いの結合が破断する方向に移動する構成とされた圧力型の電流遮断機構を備える。そして、この電池の製造方法では、集電部材と一体にされた第1弁体と第2弁体とを連結部で連結した構造体を形成した後に、電極板の集電箔と集電部材とを、超音波溶接で接続する。すると、電極板の集電箔と集電部材とを超音波溶接する際に、超音波振動により、第1弁体と第2弁体との結合(連結部あるいは破断予定部)が破断してしまう虞がある。
 しかるに、この電池の製造方法では、集電部材、第1弁体及び第2弁体のうち、少なくとも、超音波溶接部と連結部との間の一部を、制振性金属で構成している。このため、電極板の集電箔と集電部材とを超音波溶接しても、超音波溶接部から連結部に向けて進む超音波振動は、少なくともこの間に存在する制振性金属で吸収されるので、伝わってきた超音波振動により、連結部あるいは破断予定部において、第1弁体と第2弁体との結合が破断してしまうことが抑えられる。従って、超音波溶接時に、電流遮断機構が誤って作動することを防止でき、歩留り良く二次電池を製造することができる。また、超音波振動による、連結部や刻印部などの破断予定部への影響も抑えられ、電流遮断機構について、特性ばらつきが少なく信頼性の高い二次電池となる。
 なお、この二次電池では、集電部材、第1弁体及び第2弁体のうち、少なくとも、超音波溶接部と連結部との間の一部を、制振性金属で構成していれば良いが、集電部材、第1弁体及び第2弁体の三者を、同じ制振性金属で構成するのがより好ましい。また、第1弁体と集電部材とを、制振性金属の一体材で形成しても良い。
 なお、制振性金属としては、鉄-アルミニウム合金や、マンガンをベースに銅・ニッケル・鉄を添加したM2052制振合金、鋳鉄、マグネシウム合金、フェライト系ステンレス鋼、ニッケル-チタン合金などが挙げられる。
 また、連結部としては、第1弁体と第2弁体とを溶接等の接続手法で結合させた部位が挙げられる。また、破断予定部は、第1弁体あるいは第2弁体に設けられ、内圧の上昇によって、破断によって、第1弁体と第2弁体との結合が解除されるように構成された部位を指す。例えば、前述の連結部や、第1弁体あるいは第2弁体に形成された刻印部,薄肉部など他の部位よりも脆弱に形成された部位等が挙げられる。
 さらに、上述の二次電池の製造方法であって、前記集電箔、前記集電部材、前記第1弁体、及び前記第2弁体は、いずれも同一の金属元素を含有する金属材料からなり、前記制振性金属は、上記金属元素及びこれとは異なる異種金属元素との合金である二次電池の製造方法とすると良い。
 この電池の製造方法では、集電箔、集電部材、第1弁体、及び第2弁体は、同一の金属元素を含有する金属材料からなる。加えて、制振性金属は、この同一の金属元素とこれとは異なる異種金属元素との合金を用いている。これにより、集電箔と集電部材の超音波溶接部との間の超音波溶接を容易に行うことができる。また、第1弁体と第2弁体との互いの連結(連結部の構成)も、同一金属元素を含む金属材料同士で良好に行うことができる。このため、超音波溶接や連結部の形成について、信頼性の高い二次電池が得られる。
 さらに、上述の二次電池の製造方法であって、前記第1弁体及び前記第2弁体は、同一の前記制振性金属からなり、前記構造体形成工程は、上記第1弁体と上記第2弁体とを溶接により結合して前記連結部を構成する溶接工程を含む二次電池の製造方法とすると良い。
 この電池の製造方法の構造体形成工程は、同一の制振性金属からなる第1弁体及び第2弁体を溶接する工程を含んでいる。このように溶接を同一材間で行うので、溶接の信頼性が良好にできる。また、超音波溶接時に、超音波振動を第1弁体で吸収できるのみならず、第1弁体から連結部を通じてさらに第2弁体へと伝わる経路においても、超音波振動を吸収することができる。従って、第1弁体と第2弁体を連結部で確実に結合できると共に、超音波溶接時の超音波振動により、電流遮断機構の第1弁体と第2弁体との連結部あるいは破断予定部が破断してしまうのをさらに抑え、さらに歩留り良く二次電池を製造することができる。また、超音波振動による連結部や刻印部などの破断予定部への影響をさらに抑えることができ、電流遮断機構について、さらに信頼性の高い二次電池となる。
 さらに、上述のいずれかに記載の二次電池の製造方法であって、前記第1弁体及び前記集電部材は、前記制振性金属の一体材からなる二次電池の製造方法とすると良い。
 この電池の製造方法では、制振性金属の一体材からなる第1弁体及び集電部材を用いている。これにより、第1弁体と集電部材を溶接等で結合する必要がなく、コストダウンを図りうる。加えて、超音波振動を第1弁体で吸収できるのみならず、集電部材においても、超音波振動を吸収することができる。従って、超音波溶接時の超音波振動により、連結部あるいは破断予定部において、電流遮断機構の第1弁体と第2弁体との結合が破断するのをより確実に抑制して、さらに歩留り良く二次電池を製造することができる。また、超音波振動による連結部や破断予定部への影響をさらに抑えることができ、電流遮断機構について、さらに信頼性の高い二次電池となる。
 上記課題を解決するための、本発明の他の態様は、集電箔を含む電極板を有する電極体と、上記電極板の上記集電箔に自身の超音波溶接部で超音波溶接により接続された集電部材と、上記集電部材に導通接続された圧力型の電流遮断機構とを、電池ケース内に気密に収容してなり、上記電流遮断機構は、上記集電部材と一体にされた第1弁体と第2弁体とが連結部で連結され、上記第1弁体及び上記第2弁体の少なくともいずれかは、上記電池ケースの内圧の上昇により、互いの結合が破断する方向に移動する構成とされてなり、上記集電部材、上記第1弁体及び上記第2弁体のうち、少なくとも、上記超音波溶接部と上記連結部との間の一部が、制振性金属で構成されてなる二次電池である。
 この電池は、集電部材、第1弁体及び第2弁体のうち、少なくとも超音波溶接部と連結部との間の一部を制振性金属で構成した上で、電極板の集電箔と集電部材とを、超音波溶接で接続してある。このため、電極板の集電箔と集電部材との超音波溶接時に、超音波溶接部から連結部に向けて伝わる超音波振動は、少なくともこの間で吸収される。従って、超音波溶接時に、連結部あるいは破断予定部において、第1弁体と第2弁体との結合が破断することが抑えられるのみならず、超音波振動による連結部や破断予定部への影響も抑制でき、電流遮断機構の特性ばらつきが少なく信頼性の高い二次電池となる。
 ところで、電池をインバータ制御で使用する場合には、電池を流れるリップル電流により、電極体に微小振動が発生する場合がある。しかるに、この電池では、リップル電流による微小振動も、少なくとも超音波溶接部と連結部との間で吸収することができる。これにより、この微小振動による電流遮断機構の耐久性への影響も抑制することができる。従って、この点からも、電流遮断機構について、高い信頼性を有する二次電池となる。
 更に、上述の二次電池であって、前記集電箔、前記集電部材、前記第1弁体、及び前記第2弁体は、いずれも同一の金属元素を含有する金属材料からなり、前記制振性金属は、上記金属元素及びこれとは異なる異種金属元素との合金である二次電池とすると良い。
 この電池は、集電箔、集電部材、第1弁体、及び第2弁体は、同一の金属元素を含有する金属材料からなる。加えて、制振性金属は、この同一の金属元素とこれとは異なる異種金属元素との合金となっている。これにより、集電箔と集電部材の超音波溶接部との間の超音波溶接や、第1弁体と第2弁体との互いの連結(連結部の構成)が、同一金属元素を含む金属材料同士で行われており、信頼性が良好である。このため、超音波溶接や連結部の形成について、信頼性の高い二次電池となる。
 更に、上述の二次電池であって、前記第1弁体及び前記第2弁体は、同一の前記制振性金属からなり、溶接により結合して前記連結部を構成してなる二次電池とすると良い。
 この電池は、第1弁体と第2弁体を同一の制振性金属とし、両者を溶接により結合して連結部を構成している。このように溶接が同一材間で行われているので、溶接の信頼性が良好である。さらに、電池使用時にリップル電流等による微小振動が生じても、これを第1弁体で吸収できるのみならず、第2弁体へと伝わる経路においても、吸収することができる。このため、電流遮断機構について、さらに高い信頼性を有する二次電池となる。
 更に、上述のいずれかに記載の二次電池であって、前記第1弁体及び前記集電部材は、前記制振性金属の一体材からなる二次電池とすると良い。
 この電池は、第1弁体及び集電部材を、制振性金属の一体材で構成している。このため、電池使用時にリップル電流等による微小振動が生じても、第1弁体で吸収できるのみならず、集電部材においても、吸収することができる。従って、電流遮断機構について、さらに高い信頼性を有する二次電池となる。
 更に、上述の二次電池であって、前記集電箔は、アルミニウム箔であり、前記制振金属は、制振性鉄-アルミニウム合金である二次電池とすると良い。
 この電池は、第1弁体と集電部材の一体材をなす制振性金属として、制振性鉄-アルミニウム合金を用いている。この制振性鉄-アルミニウム合金は、アルミニウムと良好に超音波溶接することが可能である。このため、集電箔をなすアルミニウム箔に、この制振性鉄-アルミニウム合金からなる集電部材を適切に超音波溶接することができる。かくして、この電池は、集電部材に制振性金属を用いながらも、これと集電箔とを良好に超音波溶接した二次電池となる。
 更に、上述の二次電池であって、前記制振性鉄-アルミニウム合金は、アルミニウムを6~10重量%含有し、残部が鉄及び不可避不純物からなる二次電池とすると良い。
 鉄-アルミニウム合金のうちでも、アルミニウムを6~10重量%含有し、残部が鉄及び不可避不純物からなる合金は、制振性合金として、特に良好な制振性を有する。従って、電流遮断機構について、より高い信頼性を有する二次電池となる。
実施形態1に係るリチウムイオン二次電池の斜視図である。 実施形態1に係る負極端子の構成を示す分解斜視図である。 実施形態1に係る電流遮断機構を含む正極端子の構成を示す斜視図である。 実施形態1に係る電流遮断機構を含む正極端子の構成を示す分解斜視図である。 実施形態1に係り、図3におけるA-A断面による電流遮断機構の縦断面図である。 実施形態2に係るハイブリッド自動車を示す説明図である。
(実施形態1)
 以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態1に係るリチウムイオン二次電池1(以下、単に電池1ともいう)の斜視図を示す。まず、電池1の構成の概略について説明する。なお、以下では、各図面における上方を電池1の上側UW(上方UW)、下方を電池1の下側DW(下方DW)として説明する。この電池1は、正極板21及び負極板22を有する電極体20と、非水系の電解液30と、これら電極体20及び電解液30を気密に収容してなる角型の電池ケース10と、正極板21に接続して電池ケース10外に延出する正極端子60と、負極板22に接続して電池ケース10外に延出する負極端子70とを有する。
 このうち、電池ケース10は、開口を含むケース本体部材11及び封口蓋12を有する。このうち封口蓋12は、矩形板状であり、ケース本体部材11の開口を閉塞して、このケース本体部材11に溶接されている。また、封口蓋12には、電解液30を注液するための注液孔12Hが設けられており、さらに、正極端子60の一部である正極外部端子61及び負極端子70の一部である負極外部端子71が、それぞれ電池ケース10外に固設されている。このうち、正極外部端子61は、ボルト62及びクランク状(Z字状)に屈曲されたアルミニウム板からなる正極外部端子部材63により構成され、樹脂からなる外部ガスケット80を介して、封口蓋12に固設されている。また、負極外部端子71は、ボルト72及びクランク状(Z字状)に屈曲された銅板からなる負極外部端子部材73により構成され、樹脂からなる外部ガスケット90を介して、封口蓋12に固設されている。
 電極体20は、絶縁フィルムを袋状に形成した絶縁フィルム包囲体(図示しない)内に収容され、横倒しにした状態で電池ケース10内に収容されている。この電極体20は、帯状の正極板21と帯状の負極板22とを、帯状のセパレータ(図示しない)を介して互いに重ねて捲回し、扁平状に圧縮したものである。
 このうち、正極板21は、芯材として、帯状のアルミニウム箔からなる正極集電箔21sを有する。この正極集電箔21sには、その両面に正極活物質、導電剤及び結着剤からなる正極活物質層(図示しない)が帯状に設けられており、その一方辺は、この正極活物質層が存在しない正極リード部21fとされている。即ち、正極リード部21fは、正極板21のうち、アルミニウム箔の正極集電箔21sが露出した部位となっている。
 また、負極板22は、芯材として、帯状の銅箔からなる負極集電箔22sを有する。この負極集電箔22sには、その両面に負極活物質、結着剤及び増粘剤からなる負極活物質層(図示しない)が帯状に設けられており、その一方辺は、この負極活物質層が存在しない負極リード部22fとされている。即ち、負極リード部22fは、負極板22のうち、銅箔の負極集電箔22sが露出した部位となっている。
 電極体20のうち、正極板21の正極リード部21f(正極集電箔21s)には、正極端子60が接続されている(図1,図3,図4参照)。この正極端子60は、電池ケース10外に配置された前述の正極外部端子61のほか、電池ケース10内に位置する電流遮断機構2、及び正極集電部材64Bからなる。なお、正極集電部材64Bは、後述する正極内部導通部材64の一部であり、この正極内部導通部材64は、制振性鉄-アルミニウム合金からなる。そして、正極集電部材64Bは、クランク状に屈曲されて、正極板21の正極リード部21f(正極集電箔21s)と、超音波溶接されている。
 また、電流遮断機構2は、電池ケース10内に配置され、正極集電部材64Bと正極外部端子61(正極外部端子部材63)との間に介在して、両者間を導通し、電池ケース10の内圧Piが作動圧力Pfを超えた場合に、自身を流れる電池の充放電電流Idを遮断する圧力型の安全機構である。
 一方、負極板22の負極リード部22f(負極集電箔22s)には、負極端子70が接続されている(図1,図2参照)。この負極端子70は、電池ケース10外に配置された前述の負極外部端子71のほか、電池ケース10内に位置する負極集電部材74Bからなる。なお、負極集電部材74Bは、後述する負極内部導通部材74の一部であり、この負極内部導通部材74は、銅からなる。そして、、負極集電部材74Bは、クランク状に屈曲されて、負極板22の負極リード部22f(負極集電箔22s)と、抵抗溶接されている。
 次いで、正極端子60の構造について、より詳細に説明する(図1,図3,図4,図5参照)。電池ケース10の封口蓋12は、正極貫通孔12Cを有し、この正極貫通孔12Cに、前述したように、ボルト62及び正極外部端子部材63により構成される正極外部端子61が、外部ガスケット80を介して固設されている。
 このうち、外部ガスケット80は、概略L字状に形成され、六角柱状の凹部をなすボルト保持孔80Hと貫通孔80Cを有する。また、正極外部端子部材63は、2つの貫通孔63B,63Cを有する。そして、ボルト62は、その六角柱状の頭部62Aが、外部ガスケット80のボルト保持孔80Hに嵌挿されると共に、ネジ部62Bが、正極外部端子部材63の一方の貫通孔63Bを挿通している。また、正極外部端子部材63のもう一方の貫通孔63Cは、外部ガスケット80の貫通孔80Cと共に、封口蓋12の正極貫通孔12Cに同軸に位置合わせされている。
 一方、正極貫通孔12Cの図中下側DWの電池ケース10内には、電流遮断機構2が配置されている。この電流遮断機構2は、円環板状のシールゴム81、樹脂からなる第1内部ガスケット82、封栓67、空間形成部材66、板状の第2弁体65、樹脂からなる第2内部ガスケット83、及び正極内部導通部材64により構成されている。なお、正極内部導通部材64は、第1弁体64A及び正極集電部材64Bとからなる。
 このうち、空間形成部材66は、アルミニウムからなり、図中下側DWに開口66Hを有する有底四角筒状の空間形成部66Bと、この空間形成部66Bの図中上側UWの底部66BTから上方UWに延びる円筒状のカシメ部66Aとからなる。また、カシメ部66A内は、筒孔66Cとされており、空間形成部66B内まで貫通している。なお、この筒孔66Cは、後述するように、アルミニウムからなる封栓67により封孔される。
 また、樹脂からなる第1内部ガスケット82は、図中下側DWに開口82Hを有する有底四角筒状をなす。その図中上側UWの底部82Tには、その中央にシールゴム81の外径よりも径大な円孔82Cを有し、この円孔82C内にシールゴム81を収容可能とされている。そして、図中下側DWの開口82Hを通じて、空間形成部材66の空間形成部66Bに外嵌可能とされている。さらに、第1内部ガスケット82の側面の対向する2面に、第2内部ガスケット83との嵌合に用いる凸状の嵌合凸部82Dが、各々3個ずつ設けられている。
 一方、第2内部ガスケット83は、図中下側DWの平面視、矩形状の本体部83Aと、この本体部83Aの2つの側縁からそれぞれ図中上側UWに立ち上がる側壁83Bを有する。このうち、本体部83Aには、後述する第1弁体64Aを挿入可能な矩形状の空間をなして貫通する保持溝83Cを有する。加えて、この本体部83Aの平面視、中央部分には、保持溝83Cを隔てて、図中上側UW及び下側DWのそれぞれに円孔83E,83Fが貫通形成されている(図5参照)。2つの側壁83Bには、それぞれ側壁83Bを貫通する嵌合孔83Dが、各々3箇所設けられている。そして、この嵌合孔83Dを第1内部ガスケット82の嵌合凸部82Dに嵌合させることにより、第2内部ガスケット83は、第1内部ガスケット82に係止可能とされている。
 そして、空間形成部材66の空間形成部66Bに、第1内部ガスケット82が外嵌されると共に、空間形成部材66のカシメ部66Aは、第1内部ガスケット82及びこれに収容されたシールゴム81を介して、封口蓋12の正極貫通孔12C、外部ガスケット80の貫通孔80C及び正極外部端子部材63の貫通孔63Cに挿通されている。さらに、カシメ部66Aの先端部分66ASは、拡径されて正極外部端子部材63に加締められた後に、レーザ溶接されている。これにより、空間形成部材66は、封口蓋12に固設される。
 空間形成部材66の空間形成部66Bのうち、開口66Hの開口端66HEはレーザ溶接により、第2弁体65で気密に封止されて、空間形成部材66と第2弁体65とで、内部空間Cを形成している。この内部空間Cは、真空とされ、空間形成部材66のカシメ部66Aの筒孔66Cは、封栓67で封孔されている。さらに、この封栓67は、カシメ部66Aの先端部分66ASにレーザ溶接されている。第2弁体65は、概略矩形板状で、Fe-8wt%Alの制振性鉄-アルミニウム合金からなる。
 この第2弁体65は、その中央に図中下向きに突出した凸部65Aを有し、この凸部65Aには、後述する正極内部導通部材64の第1弁体64Aが、溶接により連結されている。また、空間形成部材66及び第2弁体65のうち、空間形成部材66には、前述の通り、図中上側UWから第1内部ガスケット82が外嵌されている。これに、さらに図中下側DWから第2内部ガスケット83が外嵌され、第1内部ガスケット82の嵌合凸部82Dに第2内部ガスケット83の嵌合孔83Dが嵌合されている。これにより、空間形成部材66及び第2弁体65を、第1内部ガスケット83及び第2内部ガスケット83で挟むと共に、第2内部ガスケット83は、第1内部ガスケット82に吊下、保持されている。
 正極内部導通部材64は、図中上側UWに位置する矩形板状の第1弁体64Aと、この第1弁体64Aの一辺縁64AEからクランク状に屈曲しつつ、図中下方DWに延びる正極集電部材64Bとを一体に有する。なお、この正極内部導通部材64も、Fe-8wt%Alの制振性鉄-アルミニウム合金の一体材からなる。従って、この正極内部導通部材64と第2弁体67とは、同一の制振性鉄-アルミニウム合金で構成されている。この制振性鉄-アルミニウム合金は、特に良好な制振性を有すると共に、アルミニウムと良好に超音波溶接可能である。
 正極内部導通部材64は、その第1弁体64Aが、第2内部ガスケット83の保持溝83Cに挿入されて、第2内部ガスケット83に吊下、保持されている。また、第1弁体64Aの円形状の中央部64Cは、その厚みが周囲よりも薄くされると共に、第2弁体65の凸部65Aにレーザ溶接により連結されて連結部KGとされている。加えて、第1弁体64Aの中央部64Cの周縁には、次述するように破断することが予定されている破断予定部であるV溝状の刻印部64Kが円環状に設けてある。
 空間形成部材66と第2弁体65とで形成された内部空間Cは、真空とされて、空間形成部材66のカシメ部66Aの筒孔66Cが、封栓67で封孔された後、封栓67は、カシメ部66Aの先端部分66ASにレーザ溶接されている。このため、電池ケース10の内圧Piが上昇すると、第2弁体65が凹状に変形して、凸部65Aが図中上方UWに移動する。そして、内圧Piが作動圧力Pfを超えると、第1弁体64Aの刻印部64Kが破断して、第1弁体64Aと第2弁体65との結合が解除される。このようにして、第1弁体64A、第2弁体65及び空間形成部材66を主たる構成部材として、圧力型の電流遮断機構2が構成される。また、正極外部端子61、電流遮断機構2及び正極内部導通部材64が、封口蓋12に固設され、これらで正極端子60をなす。なお、正極内部導通部材64は、正極集電部材64Bの先端部64BS(超音波溶接部)で、正極板21の正極リード部21f(正極集電箔21s)に超音波溶接されている。
 次いで、負極端子70の構造について、詳細に説明する(図1,図2参照)。電池ケース10の封口蓋12は、負極貫通孔12Dを有し、この負極貫通孔12Dに、前述したように、ボルト72及び負極外部端子部材73により構成される負極外部端子71が、外部ガスケット90を介して固設されている。
 このうち、概略L字状の外部ガスケット90は、六角柱状の凹部をなすボルト保持孔90Hと貫通孔90Cを有し、負極外部端子部材73は、2つの貫通孔73B,73Cを有する。ボルト72のうち、六角柱状の頭部72Aは、ボルト保持孔90Hに嵌挿され、ネジ部72Bは、負極外部端子部材73の貫通孔73Bを挿通している。また、貫通孔73Cは、外部ガスケット90の貫通孔90Cと共に、封口蓋12の負極貫通孔12Dに同軸に位置合わせされている。
 一方、負極貫通孔12Dの図中下側DWの電池ケース10内には、円環板状のシールゴム91、樹脂からなる内部ガスケット92及び負極内部導通部材74が配置されている。負極内部導通部材74は、矩形板状の板状基部74Cと、この板状基部74Cから図中上方UWに延びる円筒状のカシメ部74Aと、板状基部74Cの一辺縁74CEからクランク状に屈曲しつつ、図中下方DWに延びる負極集電部材74Bとを一体に有する。また、内部ガスケット92は、矩形板状をなし、その中央にシールゴム91の外径よりも径大な円孔92Cを有し、この円孔92C内にシールゴム91を収容可能とされている。
 負極内部導通部材74の板状基部74Cは、内部ガスケット92及びこれに収容されたシールゴム91に当接し、これらを介して、カシメ部74Aが、封口蓋12の負極貫通孔12D、外部ガスケット90の貫通孔90C及び負極外部端子部材73の貫通孔73Cに挿通されている。さらに、カシメ部74Aの先端部分74ASは、拡径されて負極外部端子部材73に加締められた後に、レーザ溶接されている。これにより、負極内部導通部材74は、封口蓋12に固設されている。また、負極外部端子71及び負極内部導通部材74が、封口蓋12に固設され、これらで負極端子70をなす。なお、負極内部導通部材74は、負極集電部材74Bの先端部74BSで、負極板22の負極リード部22f(負極集電箔22s)に抵抗溶接されている。
 以上で述べたように、この電池1は、正極集電部材64Bと第1弁体64Aとの一体材である正極内部導通部材64を制振性鉄-アルミニウム合金で構成した上で、正極板21の正極集電箔21sと正極集電部材64Bとを、超音波溶接で接続してある。このため、正極板21の正極集電体21sと正極集電部材64Bとの超音波溶接時に、正極集電部材64Bの先端部64BS(超音波溶接部)から連結部KGに向けて伝わる超音波振動は、一体材である正極内部導通部材64で吸収される。従って、超音波溶接時に、連結部KGあるいは刻印部64Kにおいて、第1弁体64Aと第2弁体65との結合が破断することが抑えられるのみならず、超音波振動による連結部KGあるいは刻印部64Kへの影響も抑制でき、電流遮断機構2の特性ばらつきが少なく信頼性の高い電池1となる。
 ところで、電池1をハイブリッド自動車や電気自動車に車載して、モータ駆動に使用する場合などでは、電池1をインバータ制御で使用することがある。この場合、電池1を流れるリップル電流により、電極体20に微小振動が発生する場合がある。しかるに、この電池1では、リップル電流による微小振動も、正極内部導通部材64で吸収することができる。これにより、この微小振動による電流遮断機構2の耐久性への影響も抑制することができる。従って、この点からも、電流遮断機構2について、高い信頼性を有する電池1となる。
 さらに、この電池1は、第1弁体64Aと第2弁体65を同一の制振性金属とし、両者を溶接により結合して連結部KGを構成している。このように溶接が同一材間で行われているので、溶接の信頼性が良好である。さらに、電池1の使用時にリップル電流等による微小振動が生じても、これを正極内部導通部材64で吸収できるのみならず、第2弁体65へと伝わる経路においても、吸収することができる。このため、電流遮断機構2について、さらに高い信頼性を有する電池1となる。
 さらに、この電池1は、第1弁体64Aと正極集電部材64Bの一体材である正極内部導通部材64をなす制振性金属として、Fe-8wt%Alの制振性鉄-アルミニウム合金を用いている。この鉄-アルミニウム合金は、特に良好な制振性を有すると共に、アルミニウムと良好に超音波溶接することが可能である。このため、正極集電箔21sをなすアルミニウム箔に、この鉄-アルミニウム合金からなる正極集電部材64Bと第1弁体64Aとの一体材である正極内部導通部材64を適切に超音波溶接することができる。かくして、この電池1は、正極内部導通部材64に制振性金属を用いて、電流遮断機構2について、より高い信頼性を有しながらも、正極集電部材64Bと正極集電箔21sとを良好に超音波溶接した電池1となる。
 次いで、本実施形態1に係る電池1の製造方法について説明する。まず、電極体20の形成について説明する。まず、アルミニウム箔(正極集電箔21s)の両面に、一方辺の正極リード部21fを残して、リチウム複合酸化物からなる正極活物質粒子(図示しない)を含む正極ペーストを塗布し、その後に乾燥させ、これをプレスして、正極板21を形成する。一方、銅箔(負極集電箔22s)の両面に、一方辺の負極リード部22fを残して、天然黒鉛からなる負極活物質粒子(図示しない)を含む負極ペーストを塗布し、その後乾燥、プレスして、負極板22を形成する。次いで、正極板21と負極板22とを、セパレータ(図示しない)を介在して捲回し、扁平状に圧縮して電極体20とする。
 また別途、電池ケース10の封口蓋12に、正極外部端子61、電流遮断機構2及び正極内部導通部材64で構成される正極端子60を、また、負極外部端子71及び負極内部導通部材74で構成される負極端子70を、それぞれ固設する。
 まず、負極端子70をなす各部材の固設について説明する。まず、ボルト72の頭部72Aを、外部ガスケット90のボルト保持孔90Hに嵌挿すると共に、ネジ部72Bを、負極外部端子部材73の一方の貫通孔73Bに挿通する。また、負極外部端子部材73のもう一方の貫通孔73Cを、外部ガスケット90の貫通孔90Cと共に、封口蓋12の負極貫通孔12Dに同軸に位置合わせする。そして、負極内部導通部材74の円筒状のカシメ部74Aを、内部ガスケット92及びシールゴム91に挿通し、さらに上述の封口蓋12の負極貫通孔12D、外部ガスケット90の貫通孔90C及び負極外部端子部材73の貫通孔73Cに挿通する。さらに、カシメ部74Aの先端部分74ASを、拡径して負極外部端子部材73に加締めた後に、レーザ溶接する。以上により、封口蓋12に、負極端子70をなす各部材を固設する。
 次に、電流遮断機構2を含む正極端子60をなす各部材の固設について説明する。まず、空間形成部材66の空間形成部66Bのうち、開口66Hの開口端66HEに、第2弁体65の周縁部65Eをレーザ溶接で気密に接合する。さらに、溶接した空間形成部材66及び第2弁体65のうち、空間形成部材66に第1内部ガスケット82を図中上側UWから外嵌する。さらに、これらに第2内部ガスケット83を図中下側DWから外嵌して、空間形成部材66及び第2弁体65を第1内部ガスケット82と第2内部ガスケット83とで挟み、第2内部ガスケット83の嵌合孔83Dを第1内部ガスケット82の嵌合凸部82Dに嵌合させる。
 さらに、第2内部ガスケット83の保持溝83Cに、正極内部導通部材64の第1弁体64Aを挿入して、第1弁体64Aの中央部64Cを、第2弁体65の凸部65Aに当接させ、レーザ溶接(溶接工程)で連結させて連結部KGを形成する。これにより、正極集電部材64Bと第1弁体64Aとが一体とされた正極内部導通部材64、第2弁体65のほか、空間形成部材66、第1内部ガスケット82及び第2内部ガスケット83からなる構造体60Kが形成される(構造体形成工程)。
 次に、ボルト62の頭部62Aを、外部ガスケット80のボルト保持孔80Hに嵌挿すると共に、ネジ部62Bを、正極外部端子部材63の一方の貫通孔63Bに挿通する。また、正極外部端子部材63のもう一方の貫通孔63Cを、外部ガスケット80の貫通孔80Cと共に、封口蓋12の正極貫通孔12Cに同軸に位置合わせする。そして、構造体60Kのうち空間形成部材66のカシメ部66Aを、シールゴム81に挿通して、さらに封口蓋12の正極貫通孔12C、外部ガスケット80の貫通孔80C及び正極外部端子部材63の貫通孔63Cに挿通する。さらに、カシメ部66Aの先端部分66ASを拡径し加締めた後、正極外部端子部材63とカシメ部66Aの先端部分66ASとをレーザ溶接する。
 構造体60Kのうち空間形成部材66と第2弁体65とで形成された内部空間Cを真空とした後、空間形成部材66のカシメ部66Aの筒孔66Cを、封栓67で封孔する。さらに、レーザ溶接で、封栓67をカシメ部66Aの先端部分66ASに結合する。かくして、封口蓋12に、正極端子60をなす各部材が固設される。
 次いで、封口蓋12と一体とされた正極内部導通部材64の正極集電部材64B、及び負極内部導通部材74の負極集電部材74Bと、電極体20とを接続する。具体的には、銅からなる負極集電部材74Bを負極板22の負極リード部22f(負極集電箔22s)に、抵抗溶接する。一方、正極集電部材64Bを正極板21の正極リード部21f(正極集電箔21s)に、超音波溶接する(超音波溶接工程)。ここで、正極集電部材64B及び第1弁体64Aをなす正極内部導通部材64と、第2弁体65とは、前述したように、いずれもFe-8wt%Alからなる制振性鉄-アルミニウム合金で構成されている。このため、超音波溶接時の超音波振動は、正極内部導通部材64B、第1弁体64Aのほか、第2弁体65で吸収される。これにより、超音波振動によって、第1弁体64Aと第2弁体65との連結部KGあるいは刻印部64Kが、破断してしまうのを防止できる。
 次いで、電極体20をケース本体部材11内に収容し、封口蓋12でケース本体部材11を封口し、封口蓋12をケース本体部材11にレーザ溶接する。その後、封口蓋12の注液孔12Hから電解液30を注液し、注入後、注液孔12Hを封止する。次いで、この電池1の初期充放電を行う。かくして、電池1が完成する。
 以上で述べたように、正極集電部材64B、第1弁体64A及び第2弁体65のうち、少なくとも、正極集電部材64Bの先端部64BS(超音波溶接部)と連結部KGとの間の一部(本実施形態1では、正極集電部材64Bと第1弁体64Aとの一体材である正極内部導通部材64及び第2弁体65)を、制振性金属(制振性鉄-アルミニウム合金)で構成している。このため、正極板21の正極集電箔21sと正極集電部材64Bとを超音波溶接しても、正極集電部材64Bの先端部64BSから連結部KGに向けて進む超音波振動は、少なくともこの間(本実施形態1では、正極内部導通部材64)で吸収されるので、伝わってきた超音波振動により、連結部KGあるいは刻印部64Kにおいて、第1弁体64Aと第2弁体65との結合が破断してしまうのを防止できる。従って、超音波溶接時に、電流遮断機構2が誤って作動することを防止でき、歩留り良く電池1を製造することができる。また、超音波振動による連結部KGあるいは刻印部64Kへの影響も抑えられ、電流遮断機構2について、特性ばらつきが少なく信頼性の高い電池1となる。
 加えて、この電池1の製造方法では、正極板21の正極集電箔21sにアルミニウム箔を用い、正極集電部材64Bと第1弁体64Aとの一体材である正極内部導通部材64及び第2弁体65に制振性鉄-アルミニウム合金を用いており、これらは全て同一の金属元素であるアルミニウムを含有している。これにより、正極集電箔21sと正極集電部材64Bの先端部64BSとの超音波溶接や、第1弁体64Aと第2弁体65との連結部KGのレーザ溶接が良好に行えるので、これらについて、信頼性の高い電池1が得られる。
 さらに、この電池1の製造方法の構造体形成工程は、同一の制振性鉄-アルミニウム合金からなる正極内部導通部材64の第1弁体64A及び第2弁体65を溶接する工程を含んでいる。ここでは、溶接を同一材間で行うので、溶接の信頼性が良好にできる。また、超音波溶接時に、超音波振動を第1弁体64A(正極内部導通部材64)で吸収できるのみならず、第1弁体64A(正極内部導通部材64)から連結部KGを通じてさらに第2弁体65へと伝わる経路においても、超音波振動を吸収することができる。従って、第1弁体64Aと第2弁体65を連結部KGで確実に結合できると共に、超音波溶接時の超音波振動により、電流遮断機構2の第1弁体64Aと第2弁体65との連結部KGあるいは刻印部64Kが破断してしまうのをさらに抑え、さらに歩留り良く電池1を製造することができる。また、超音波振動による連結部KGあるいは刻印部64Kへの影響をさらに抑えることができ、電流遮断機構2について、さらに信頼性の高い電池1となる。
 さらに、この電池1の製造方法では、制振性金属の一体材からなる第1弁体64A及び正極集電部材64B(正極内部導通部材64)を用いている。これにより、第1弁体64Aと正極集電部材64Bを溶接等によって結合する必要がなく、コストダウンを図りうる。加えて、超音波振動を第1弁体64Aで吸収できるのみならず、正極集電部材64Bにおいても、超音波振動を吸収することができる。従って、超音波溶接時の超音波振動により、連結部KGあるいは刻印部64Kにおいて、電流遮断機構2の第1弁体64Aと第2弁体65との結合が破断するのをより確実に抑制して、さらに歩留り良く電池1を製造することができる。また、超音波振動による連結部KGあるいは刻印部64Kへの影響をさらに抑えることができ、電流遮断機構2について、さらに信頼性の高い電池1となる。
(実施形態2)
 次いで、第2の実施の形態について説明する。本実施形態2に係るハイブリッド自動車(車両)700(以下、単に自動車700とも言う)は、実施形態1に係る電池1を搭載し、この電池1に蓄えた電気エネルギーを、駆動源の駆動エネルギーの全部または一部として使用するものである(図6参照)。
 この自動車700は、電池1を複数組み合わせた組電池710を搭載し、エンジン740、フロントモータ720及びリアモータ730を併用して駆動するハイブリッド自動車である。具体的には、この自動車700は、その車体790に、エンジン740と、フロントモータ720及びリアモータ730と、組電池710(電池1)と、ケーブル750と、インバータ760とを搭載する。そして、この自動車700は、組電池710(電池1)に蓄えられた電気エネルギを用いて、フロントモータ720及びリアモータ730を駆動できるように構成されている。
 この自動車700では、フロントモータ720及びリアモータ730の駆動に際して、組電池710(電池1)を、インバータ760によるインバータ制御で使用する。このため、電池1には、リップル電流による微小振動が発生する場合がある。しかるに、前述したように、この電池1では、リップル電流による微小振動を、正極内部導通部材64で吸収することができる。従って、電池1は、微小振動による電流遮断機構2の耐久性への影響を抑制し、高い信頼性を有するので、この電池1を搭載する自動車700の信頼性を高くできる。
 以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態1及び2に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
 例えば、実施形態1では、制振性金属として、制振性鉄-アルミニウム合金を用いたが、他の制振性金属、例えば、M2052制振合金、ニッケル-チタン合金などを用いても良い。また、実施形態1では、正極集電部材64B及び第1弁体64Aを一体材(正極内部導通部材64)とし、第2弁体67と合わせて、同じ制振性鉄-アルミニウム合金を用いたが、正極集電部材64B、第1弁体64A及び第2弁体67のうち、少なくとも第1弁体64Aを、制振性金属で構成していれば良い。また、実施形態1では、電流遮断機構2を正極端子60内に設けたが、負極端子70内に設けても良い。
 また、実施形態1では、電池1の形状を角型としたが、円筒型の電池で同様に構成しても良く、電池形状は限定されない。また、実施形態1では、正極板21と負極板22とをセパレータを介して互いに重ねて捲回した電極体20を用いたが、電極体の形態はこれに限られない。例えば、複数の正極板及び負極板をセパレータを介して交互に積層してなる積層型としても良い。
 また、実施形態2では、本発明に係る電池1を搭載する車両として、ハイブリッド自動車700を例示したが、これに限られない。本発明に係る電池を搭載する車両としては、例えば、電気自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータなどが挙げられる。
1 リチウムイオン二次電池(二次電池、電池)
2 電流遮断機構
10 電池ケース
11 ケース本体部材
12 封口蓋
20 電極体
21 正極板(電極板)
22 負極板
21s 正極集電箔(集電箔)
22s 負極集電箔
60 正極端子
60K 構造体
64 正極内部導通部材
64A 第1弁体
64B 正極集電部材(集電部材)
64BS (正極集電部材の)先端部(超音波溶接部)
65 第2弁体
67 封栓
KG 連結部
70 負極端子
71 負極外部端子
74 負極内部導通部材
700 ハイブリッド自動車(車両)
710 組電池

Claims (10)

  1.  集電箔を含む電極板を有する電極体と、
     上記電極板の上記集電箔に自身の超音波溶接部で超音波溶接により接続された集電部材と、
     上記集電部材に導通接続された圧力型の電流遮断機構とを、電池ケース内に気密に収容してなり、
     上記電流遮断機構は、
      上記集電部材と一体にされた第1弁体と第2弁体とが連結部で連結され、
      上記第1弁体及び上記第2弁体の少なくともいずれかは、上記電池ケースの内圧の上昇により、互いの結合が破断する方向に移動する構成とされてなり、
     上記集電部材、上記第1弁体及び上記第2弁体のうち、少なくとも、上記超音波溶接部と上記連結部との間の一部が、制振性金属で構成されてなる
    二次電池の製造方法であって、
     上記集電部材と一体にされた上記第1弁体と上記第2弁体とを上記連結部で連結した構造体を形成する構造体形成工程と、
     上記構造体形成工程の後に、上記電極板の上記集電箔と上記集電部材の上記超音波溶接部とを超音波溶接する超音波溶接工程と、を備える
    二次電池の製造方法。
  2. 請求項1に記載の二次電池の製造方法であって、
     前記集電箔、前記集電部材、前記第1弁体、及び前記第2弁体は、いずれも同一の金属元素を含有する金属材料からなり、
     前記制振性金属は、上記金属元素及びこれとは異なる異種金属元素との合金である
    二次電池の製造方法。
  3. 請求項1または請求項2に記載の二次電池の製造方法であって、
     前記第1弁体及び前記第2弁体は、同一の前記制振性金属からなり、
     前記構造体形成工程は、
      上記第1弁体と上記第2弁体とを溶接により結合して前記連結部を構成する溶接工程を含む
    二次電池の製造方法。
  4. 請求項1~請求項3のいずれか一項に記載の二次電池の製造方法であって、
     前記第1弁体及び前記集電部材は、前記制振性金属の一体材からなる
    二次電池の製造方法。
  5.  集電箔を含む電極板を有する電極体と、
     上記電極板の上記集電箔に自身の超音波溶接部で超音波溶接により接続された集電部材と、
     上記集電部材に導通接続された圧力型の電流遮断機構とを、電池ケース内に気密に収容してなり、
     上記電流遮断機構は、
      上記集電部材と一体にされた第1弁体と第2弁体とが連結部で連結され、
      上記第1弁体及び上記第2弁体の少なくともいずれかは、上記電池ケースの内圧の上昇により、互いの結合が破断する方向に移動する構成とされてなり、
     上記集電部材、上記第1弁体及び上記第2弁体のうち、少なくとも、上記超音波溶接部と上記連結部との間の一部が、制振性金属で構成されてなる
    二次電池。
  6. 請求項5に記載の二次電池であって、
     前記集電箔、前記集電部材、前記第1弁体、及び前記第2弁体は、いずれも同一の金属元素を含有する金属材料からなり、
     前記制振性金属は、上記金属元素及びこれとは異なる異種金属元素との合金である
    二次電池。
  7. 請求項5または請求項6に記載の二次電池であって、
     前記第1弁体及び前記第2弁体は、同一の前記制振性金属からなり、溶接により結合して前記連結部を構成してなる
    二次電池。
  8. 請求項5~請求項7のいずれか一項に記載の二次電池であって、
     前記第1弁体及び前記集電部材は、前記制振性金属の一体材からなる
    二次電池。
  9. 請求項8に記載の二次電池であって、
     前記集電箔は、アルミニウム箔であり、
     前記制振性金属は、制振性鉄-アルミニウム合金である
    二次電池。
  10. 請求項9に記載の二次電池であって、
     前記制振性鉄-アルミニウム合金は、アルミニウムを6~10重量%含有し、残部が鉄及び不可避不純物からなる
    二次電池。
PCT/JP2011/076968 2011-11-23 2011-11-23 二次電池の製造方法、及び、二次電池 WO2013076831A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2011/076968 WO2013076831A1 (ja) 2011-11-23 2011-11-23 二次電池の製造方法、及び、二次電池
CN201180075050.0A CN103959512A (zh) 2011-11-23 2011-11-23 二次电池的制造方法以及二次电池
US14/359,641 US9660247B2 (en) 2011-11-23 2011-11-23 Secondary battery manufacturing method and secondary battery
DE112011105871.3T DE112011105871B4 (de) 2011-11-23 2011-11-23 Akkumulatorherstellungsverfahren und Akkumulator
KR1020147013469A KR20140079500A (ko) 2011-11-23 2011-11-23 2차 전지의 제조 방법 및 2차 전지
JP2013545706A JP5821969B2 (ja) 2011-11-23 2011-11-23 二次電池の製造方法、及び、二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/076968 WO2013076831A1 (ja) 2011-11-23 2011-11-23 二次電池の製造方法、及び、二次電池

Publications (1)

Publication Number Publication Date
WO2013076831A1 true WO2013076831A1 (ja) 2013-05-30

Family

ID=48469310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076968 WO2013076831A1 (ja) 2011-11-23 2011-11-23 二次電池の製造方法、及び、二次電池

Country Status (6)

Country Link
US (1) US9660247B2 (ja)
JP (1) JP5821969B2 (ja)
KR (1) KR20140079500A (ja)
CN (1) CN103959512A (ja)
DE (1) DE112011105871B4 (ja)
WO (1) WO2013076831A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097785A1 (ja) * 2013-12-25 2015-07-02 日立オートモティブシステムズ株式会社 角形二次電池
CN104821387A (zh) * 2014-01-30 2015-08-05 丰田自动车株式会社 二次电池及二次电池的制造方法
JP2015204129A (ja) * 2014-04-10 2015-11-16 エリーパワー株式会社 超音波処理装置および超音波処理方法
WO2016104734A1 (ja) * 2014-12-26 2016-06-30 株式会社Gsユアサ 蓄電素子
JP2017027779A (ja) * 2015-07-22 2017-02-02 株式会社豊田自動織機 蓄電装置の製造方法
WO2017054187A1 (en) * 2015-09-30 2017-04-06 Byd Company Limited Connector for power batteries, power battery module, power battery pack and vehicle
KR101746913B1 (ko) 2012-06-28 2017-06-14 도요타지도샤가부시키가이샤 전지의 제조 방법 및 전지
US20180166666A1 (en) * 2016-12-09 2018-06-14 Contemporary Amperex Technology Co., Limited Secondary battery
JP2019506716A (ja) * 2016-02-25 2019-03-07 ビーワイディー カンパニー リミテッド 単セルバッテリー、バッテリーモジュール、バッテリーパック、および電気自動車
US10468725B2 (en) * 2016-10-05 2019-11-05 Toyota Jidosha Kabushiki Kaisha Method for manufacturing cell
US11811155B2 (en) * 2018-01-16 2023-11-07 Contemporary Amperex Technology Co., Limited Connection member and rechargeable battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365474B2 (ja) * 2015-09-11 2018-08-01 トヨタ自動車株式会社 二次電池の製造方法
JP6662652B2 (ja) * 2016-02-02 2020-03-11 プライムアースEvエナジー株式会社 二次電池及び絶縁体の成形方法
CN109565013A (zh) * 2016-08-01 2019-04-02 江森自控科技公司 电池单元的过充保护组件
JP6566265B2 (ja) 2016-09-09 2019-08-28 トヨタ自動車株式会社 密閉型二次電池
JP6601685B2 (ja) * 2016-12-15 2019-11-06 トヨタ自動車株式会社 電池および組電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087438A (ja) * 2002-03-04 2004-03-18 Nissan Motor Co Ltd 組電池
JP2008066254A (ja) * 2006-08-11 2008-03-21 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008098204A (ja) * 2006-10-05 2008-04-24 Sumitomo Electric Ind Ltd リアクトル装置
JP2008153516A (ja) * 2006-12-19 2008-07-03 Nec Tokin Corp 電気二重層キャパシタ
JP2010067541A (ja) * 2008-09-12 2010-03-25 Toyota Motor Corp 蓄電装置、車両及び蓄電素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799048A (ja) * 1993-09-28 1995-04-11 Mitsubishi Chem Corp 二次電池用電極構造
JP3906519B2 (ja) 1997-04-30 2007-04-18 宇部興産株式会社 電池用電極とこれを用いた電池
JP3599967B2 (ja) 1997-09-09 2004-12-08 松下電器産業株式会社 密閉型電池
JPH11195412A (ja) * 1998-01-05 1999-07-21 Mitsubishi Cable Ind Ltd 密閉型電池用の内部電極端子
JP3879220B2 (ja) 1998-01-19 2007-02-07 松下電器産業株式会社 二次電池用防爆封口装置
JP4023213B2 (ja) * 2002-05-20 2007-12-19 松下電器産業株式会社 リチウムイオン二次電池
JP2004199938A (ja) * 2002-12-17 2004-07-15 Toshiba Corp 非水電解液二次電池
JP5490406B2 (ja) 2008-12-27 2014-05-14 三洋電機株式会社 車両用の電源装置
JP5430978B2 (ja) 2009-03-10 2014-03-05 三洋電機株式会社 密閉電池及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087438A (ja) * 2002-03-04 2004-03-18 Nissan Motor Co Ltd 組電池
JP2008066254A (ja) * 2006-08-11 2008-03-21 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008098204A (ja) * 2006-10-05 2008-04-24 Sumitomo Electric Ind Ltd リアクトル装置
JP2008153516A (ja) * 2006-12-19 2008-07-03 Nec Tokin Corp 電気二重層キャパシタ
JP2010067541A (ja) * 2008-09-12 2010-03-25 Toyota Motor Corp 蓄電装置、車両及び蓄電素子

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746913B1 (ko) 2012-06-28 2017-06-14 도요타지도샤가부시키가이샤 전지의 제조 방법 및 전지
US10224535B2 (en) 2013-12-25 2019-03-05 Hitachi Automotive Systems, Ltd. Rectangular secondary battery
WO2015097785A1 (ja) * 2013-12-25 2015-07-02 日立オートモティブシステムズ株式会社 角形二次電池
JPWO2015097785A1 (ja) * 2013-12-25 2017-03-23 日立オートモティブシステムズ株式会社 角形二次電池
CN104821387A (zh) * 2014-01-30 2015-08-05 丰田自动车株式会社 二次电池及二次电池的制造方法
US9761860B2 (en) 2014-01-30 2017-09-12 Toyota Jidosha Kabushiki Kaisha Secondary battery and method for producing secondary battery
JP2015204129A (ja) * 2014-04-10 2015-11-16 エリーパワー株式会社 超音波処理装置および超音波処理方法
JPWO2016104734A1 (ja) * 2014-12-26 2017-10-05 株式会社Gsユアサ 蓄電素子
CN107112492A (zh) * 2014-12-26 2017-08-29 株式会社杰士汤浅国际 蓄电元件
CN107112492B (zh) * 2014-12-26 2020-04-24 株式会社杰士汤浅国际 蓄电元件
WO2016104734A1 (ja) * 2014-12-26 2016-06-30 株式会社Gsユアサ 蓄電素子
US10381630B2 (en) 2014-12-26 2019-08-13 Gs Yuasa International Ltd. Energy storage device
JP2017027779A (ja) * 2015-07-22 2017-02-02 株式会社豊田自動織機 蓄電装置の製造方法
WO2017054187A1 (en) * 2015-09-30 2017-04-06 Byd Company Limited Connector for power batteries, power battery module, power battery pack and vehicle
JP2019506716A (ja) * 2016-02-25 2019-03-07 ビーワイディー カンパニー リミテッド 単セルバッテリー、バッテリーモジュール、バッテリーパック、および電気自動車
US10468725B2 (en) * 2016-10-05 2019-11-05 Toyota Jidosha Kabushiki Kaisha Method for manufacturing cell
US20180166666A1 (en) * 2016-12-09 2018-06-14 Contemporary Amperex Technology Co., Limited Secondary battery
US10601001B2 (en) 2016-12-09 2020-03-24 Contemporary Amperex Technology, Co., Limited Secondary battery
JP2018098189A (ja) * 2016-12-09 2018-06-21 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited 二次電池
US11811155B2 (en) * 2018-01-16 2023-11-07 Contemporary Amperex Technology Co., Limited Connection member and rechargeable battery
US11824285B2 (en) * 2018-01-16 2023-11-21 Contemporary Amperex Technology Co., Limited Connection member and rechargeable battery
US11824286B2 (en) * 2018-01-16 2023-11-21 Contemporary Amperex Technology Co., Limited Connection member and rechargeable battery

Also Published As

Publication number Publication date
KR20140079500A (ko) 2014-06-26
JP5821969B2 (ja) 2015-11-24
CN103959512A (zh) 2014-07-30
US9660247B2 (en) 2017-05-23
DE112011105871T5 (de) 2014-08-07
JPWO2013076831A1 (ja) 2015-04-27
DE112011105871B4 (de) 2020-01-30
US20150303441A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP5821969B2 (ja) 二次電池の製造方法、及び、二次電池
JP6582489B2 (ja) 角形二次電池及びそれを用いた組電池
JP4878791B2 (ja) 二次電池
JP6522417B2 (ja) 角形二次電池及びそれを用いた組電池
JP6522418B2 (ja) 角形二次電池及びそれを用いた組電池、並びにその製造方法
JP4596289B2 (ja) 密閉型電池
JP6599129B2 (ja) 角形二次電池及びそれを用いた組電池、並びにその製造方法
CN106025119B (zh) 方形二次电池
US9847514B2 (en) Battery and method for manufacturing same
JP6891930B2 (ja) 角形二次電池及びそれを用いた組電池
US10069130B2 (en) Sealed battery and manufacturing method of sealed battery
JP7088008B2 (ja) 二次電池及びその製造方法
JP6729137B2 (ja) 二次電池及びその製造方法、並びにそれを用いた組電池
US8911889B2 (en) Battery, vehicle, and battery-operated equipment
KR101483425B1 (ko) 신규한 전극 탭-리드 결합부 구조를 가진 이차전지
WO2017163999A1 (ja) 円筒形電池
JP2014056716A (ja) 密閉型二次電池
CN110612629B (zh) 包括焊接杆的圆柱形二次电池
JP5652306B2 (ja) 電池、組電池及び車両
KR101532216B1 (ko) 전극 탭-리드 결합부 구조를 가진 이차전지
JP5510051B2 (ja) 電池、車両及び電池搭載機器
JP2020518963A (ja) 電極タブリード結合部に適用されるプラスチック部材を含む電極組立体及びこれを含む二次電池
JP6641842B2 (ja) 角形二次電池
JP2024057096A (ja) 角形二次電池及びそれを用いた組電池
JP2018101568A (ja) 角形二次電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147013469

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013545706

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14359641

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011105871

Country of ref document: DE

Ref document number: 1120111058713

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876259

Country of ref document: EP

Kind code of ref document: A1