WO2013073734A1 - Method for diamond-coating both side surfaces of insert and diamond-coated insert manufactured by same method - Google Patents

Method for diamond-coating both side surfaces of insert and diamond-coated insert manufactured by same method Download PDF

Info

Publication number
WO2013073734A1
WO2013073734A1 PCT/KR2011/009648 KR2011009648W WO2013073734A1 WO 2013073734 A1 WO2013073734 A1 WO 2013073734A1 KR 2011009648 W KR2011009648 W KR 2011009648W WO 2013073734 A1 WO2013073734 A1 WO 2013073734A1
Authority
WO
WIPO (PCT)
Prior art keywords
insert
diamond
coating
filament
diamond coating
Prior art date
Application number
PCT/KR2011/009648
Other languages
French (fr)
Korean (ko)
Inventor
홍성필
강재훈
이성구
안승수
박제훈
안선용
Original Assignee
한국야금 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국야금 주식회사 filed Critical 한국야금 주식회사
Publication of WO2013073734A1 publication Critical patent/WO2013073734A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4587Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically
    • C23C16/4588Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • B23B2226/315Diamond polycrystalline [PCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings

Definitions

  • the present invention relates to a method for performing a wear-resistant diamond coating on the surface of an insert for cutting tools and a double-sided diamond coating insert manufactured by the method, and more specifically, to a diamond coating that has been conventionally performed on only one side of the insert.
  • the present invention relates to a coating method and a double-sided diamond coating insert manufactured thereby, which can form a diamond coating film on both sides at almost the same cost, thereby dramatically increasing the utilization of the insert.
  • Diamond is one of the hardest materials in the world.
  • Today, diamond-coated cutting tools artificially produced by CVD are used as tools suitable for machining difficult-to-machine, aluminum-silicon or magnesium alloys and graphite materials.
  • a diamond coating film is formed by chemical vapor deposition (CVD) which is converted into plasma or thermal energy by various power sources (direct current, alternating current, high frequency, microwave) in a mixed gas atmosphere including hydrocarbons.
  • CVD chemical vapor deposition
  • power sources direct current, alternating current, high frequency, microwave
  • examples include hot filament, combustion flame, DC glow discharge plasma, arc glow discharge plasma jet, microwave plasma method, and the like.
  • the thermal filament method is generally used for the coating for cemented carbide cutting tools.
  • a plurality of copper plates disposed at a predetermined interval in the chamber as shown in FIG.
  • the heat filament device including tungsten wires (W wires) arranged in parallel, inserts are arranged at predetermined intervals using vertical jigs, and then the copper plate is powered to provide high temperature resistance to the tungsten wires.
  • a reaction gas containing a hydrocarbon was injected into the CVD apparatus to form a diamond coating film on the upper surface of the insert.
  • the present invention is to solve the above-mentioned problems of the prior art, to solve the problem to provide a coating method that can form a diamond coating film on both sides of the insert relatively uniformly at the same cost as the conventional coating method. do.
  • Another object of the present invention is to provide an insert in which a diamond coating film is formed on both surfaces manufactured by the above method.
  • the present invention is a method of coating a diamond thin film on the surface of the insert, in the CVD apparatus, by performing diamond coating while rotating one or more inserts, diamond coating layers are formed on both sides of the insert It provides a method characterized in that.
  • the CVD apparatus includes a hot filament, a combustion flame, a dc glow discharge plasma, an arc glow discharge plasma jet, It may be one using a method selected from microwave plasma and high frequency.
  • the CVD apparatus is a thermal filament type apparatus, and the one or more inserts are preferably arranged in parallel with the filament with a major cut face.
  • the rotation of the insert may be continuous or intermittent.
  • the one or more inserts are fixed to a jig, the jig being formed extending in the longitudinal direction and connected to the axis of rotation drive provided in the CVD apparatus, It may include a spacer which is inserted to form a predetermined interval between the insert, and a fixing means provided on one side or both sides of the shaft to press-fix the insert and the spacer.
  • the jig may be made of alumina, zirconia, graphite or metal.
  • the diamond coating by the thermal filament method when the diamond coating by the thermal filament method, the diamond coating, filament temperature 1900 ⁇ 2100 °C, insert temperature 750 ⁇ 900 °C, reaction gas CH 4 and H 2 mixed gas (CH 4 1 ⁇ 10%, H 2 90 ⁇ 99%) can be carried out under the conditions of the gas pressure 10 ⁇ 100 Torr, the distance between the insert and the filament 5 ⁇ 45mm, the filament applied current 130 ⁇ 160A, the insert rotation speed 1rpm or less.
  • the diamond coating layer has a sp3 structure of 60% or more, the layer thickness may be 0.1 ⁇ 25 ⁇ m.
  • the insert rotation speed is preferably 1 rpm or less, more preferably 0.01-0.5 rpm.
  • the insert is characterized in that a hole is formed.
  • Diamond coating method according to the present invention can be evenly coated on both sides of the insert at a time, it is possible to double the utilization compared to the conventional diamond coating insert consisting of only one-side coating.
  • the diamond coating method according to the present invention costs substantially the same coating cost as the conventional one-side diamond coating, thereby significantly increasing the efficiency of the insert.
  • FIG. 1 is a schematic view showing a diamond coating method according to the prior art.
  • FIG. 2 is a schematic view showing a diamond coating method according to the present invention.
  • FIG 3 is an exploded perspective view of a jig used for diamond coating according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of an insert in which a hole used for diamond coating according to an embodiment of the present invention is formed.
  • FIG. 5 is a photograph showing a state after the insert is mounted on the diamond coating jig according to an embodiment of the present invention.
  • Figure 6 is a graph showing the Raman analysis results of the diamond coating film prepared according to an embodiment of the present invention.
  • Figure 7 is a graph showing the Raman analysis results of the diamond coating film prepared according to another embodiment of the present invention.
  • FIG. 8 is a scanning electron micrograph of the cross section and the surface of each corner portion of the insert coated with a diamond coating method according to an embodiment of the present invention.
  • the jig 1 used in the preferred embodiment of the present invention is arranged between the shaft 10 through the hole formed in the center of the insert, and between the insert and the insert fitted in the shaft.
  • the spacer 20 is formed, and the fixing means 30 for pressing and fixing the insert and the spacer 20 from one side or both sides of the shaft.
  • the shaft 10 has a circular cross section and has a circular rod shape whose diameter is slightly smaller than the diameter of a hole formed in the center of the insert, and a protruding spiral portion 11 is formed at one end of the shaft 10.
  • a circular rod was used in accordance with the shape of the hole of the insert as the shaft 10, it can be formed in various cross-sectional shapes, such as a polygonal shape, such as a triangle, a square.
  • the spacer 20 has a tubular shape with a hollow portion formed therein.
  • the diameter of the hollow portion is slightly larger than the diameter of the shaft 10 so that the spacer 20 can be inserted into the shaft 10, and the outer diameter of the spacer portion 20 is inserted into the center of the insert. It is larger than the diameter of the formed hole so that both sides of an insert can be contacted.
  • the surface 21 in contact with the insert of the side end portion of the spacer 20 is preferably made to have a predetermined surface roughness or more in order to provide frictional force, and if necessary, the surface may be uneven.
  • the fixing means 30 is composed of a member having a spiral formed therein that can be screwed with the spiral portion 11 of the shaft 10, the screwing direction is opposite to the rotation direction of the shaft 10 The screwing is prevented from loosening when the shaft 10 rotates.
  • any method can be used as long as it can fix the insert and the spacer 20, such as a clamp method.
  • Jig 1 according to the embodiment of the present invention having the above structure, as shown in Figure 2, first fastening the fixing means 30 to one end of the shaft 10, the spacer 20 And insert the insert 40 is formed in the center of the shaft alternately as shown in Figure 4, the other fixing means 30 is fixed by pressing the fixing means 30 on one side through the screw coupling. . Accordingly, the insert 40 is fixed to the shaft at intervals as long as the spacer 20.
  • the rotary drive means By rotating the jig (1) through the rotating the insert, the diamond coating is performed.
  • the rotation of the jig 1 can be continuously or intermittently, when performing intermittently, for example, coating can be performed while rotating in a step method such as a one-minute stop after 90 ° rotation. have.
  • the intermittent method has the advantage of being able to concentrate on the corners of the insert used for cutting, compared to the continuous method.
  • Diamond coating is made of filament temperature 1900 ⁇ 2100 °C, insert temperature 750 ⁇ 900 °C, reaction gas CH 4 and H 2 mixed gas (CH 4 1 ⁇ 10%, H 2 90 ⁇ 99%), gas pressure 10 ⁇ 100Torr, insert and The distance between the filament 5 ⁇ 45mm, filament applied current 130 ⁇ 160A, jig rotation speed of 1rpm or less, it is preferable to carry out under the conditions of the coating time 8 ⁇ 16 hours.
  • the reaction gas uses a mixed gas of methane and hydrogen and the mixing ratio is preferably mixed in a ratio of 1 to 10% methane, 90 to 99% hydrogen by volume ratio.
  • the gas pressure of the mixed gas is less than 10 Torr, it is difficult to control the temperature of the insert, diamond growth is unstable, and if it exceeds 100 Torr, 10 ⁇ 100 Torr is preferable because there is a difficulty in the front or bottom coating of the insert.
  • the insert when the insert is mounted, when the distance between the insert and the filament is less than 5 mm, the diamond growth is hindered by the strong electric field around the filament due to the application of the current. Do.
  • the applied current is less than 130A, graphite grows, and when it exceeds 160A, since it hinders diamond growth by a strong electric field, it is preferable to maintain 130 to 160A.
  • the jig rotation speed exceeds 1 rpm
  • the jig rotation speed is preferably set to 1 rpm or less, more preferably 0.01 to 0.5 rpm to prevent diamond growth.
  • the cutting tool insert which consists of cemented carbide and a hole with a diameter of about 5 mm, was placed together with a bulk diamond of 60 to 80 mesh and polished for 30 minutes using an ultrasonic cleaner to form a scratch on the tool surface. Thereafter, after etching for 30 minutes in Murakami solution and 10 seconds in aqua regia solution, ultrasonic cleaning using acetone as a medium was performed for 30 minutes and ultrasonic cleaning using distilled water for 30 minutes, respectively, to remove impurities.
  • the inserts from which impurities are removed are mounted on the jig 1 in the above-described manner, and as shown in FIG. 5, six inserts are held on one jig 1 by using the spacer 20 to maintain a predetermined interval.
  • the four jigs thus prepared were connected to the shaft of a rotation drive motor (not shown) inside the chamber of the thermal filament CVD apparatus as shown in FIG. 2 and mounted in parallel to the bottom of the thermal filament.
  • the spacing between the highest height of the insert and the thermal filament was maintained at 20 mm.
  • the CVD apparatus was operated while rotating the rotary drive motor at a speed of 0.5 rpm.
  • the specific CVD process conditions are maintained at 20 Torr by injecting hydrogen gas 990sccm and methane gas 10sccm, and the filament current is applied to 150A to generate a mixed gas plasma of hydrogen and methane to maintain the insert temperature at about 850 °C CVD coated diamond synthesis was carried out for 16 hours.
  • Table 1 a diamond coating film was obtained on the double-sided insert.
  • Example 2 a diamond coating film having an average thickness of 6 ⁇ m was formed in the same manner as in Example 1 except that the gas pressure of the mixed gas of the reaction gas, methane and hydrogen, was 80 Torr.
  • the coating film formed according to the embodiment of the present invention is made of diamond, specifically, the diamond coating film according to Example 1 was 92% of the sp3 structure, Example 2 The diamond coating film according to the sp3 structure was 73%.
  • the reason why the intensity of the sp3 peak of the diamond coating film according to Example 2 is low seems to be due to the relative increase in the intensity of the graphite peak of sp2 due to the increase in the interfacial area with the decrease in the particle size.
  • the diamond coating film is formed on both sides of the insert in one coating process.
  • the thicknesses of the coating films on the top and side of the corner 1 were measured at 12.6 ⁇ m and 12 ⁇ m, respectively, and the thicknesses of the coating films on the top and side of the corner 2 were measured at 5.7 ⁇ m and 7.1 ⁇ m, respectively.
  • the thicknesses of the coating films were measured to be 11.4 ⁇ m and 12 ⁇ m, and the thicknesses of the top and side surfaces of the corner 4 were 9.7 ⁇ m and 10.6 ⁇ m, respectively. That is, in the case of corners 1, 3, and 4, a coating film having a relatively even thickness was formed, and in the case of corner 2, it was confirmed that a film thickness enough to be used for a cutting tool was formed.
  • the diamond particle size of the formed thin film is formed in a relatively similar size of corners 1 to 4, respectively, 3.4 ⁇ m, 2.1 ⁇ m, 3.2 ⁇ m and 1.8 ⁇ m.
  • a diamond coating film can be formed on both sides of the insert to the extent that can be suitably used for cutting tools in a single coating process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

The present invention pertains to a method for diamond-coating and a diamond-coated insert manufactured by the same, wherein a relatively uniform coating film may be formed on the both side surfaces of an insert for a cutting tool by carrying out the diamond-coating, which has been conventionally carried on one side surface of the insert because of economic problems, on the both side surfaces at low cost such that the utility of the insert may be increased. The method for diamond-coating according to the present invention performs diamond-coating while rotating one or more inserts in a CVD device such that the diamond-coating layer may be formed on the both side surfaces of the inserts.

Description

인써트의 양면 다이아몬드 코팅방법과 이 방법으로 제조한 다이아몬드 코팅 인써트 Double-sided diamond coating method of insert and diamond coated insert manufactured by this method
본 발명은 절삭공구용 인써트의 표면에 내마모용 다이아몬드 코팅을 수행하는 방법과 이 방법에 의해 제조한 양면 다이아몬드 코팅 인써트에 관한 것으로, 보다 구체적으로는 종래 인써트의 한쪽 면에만 행하던 다이아몬드 코팅을 한쪽 면과 거의 동일한 비용으로 양면에 다이아몬드 코팅막을 형성할 수 있어, 인써트의 활용도를 획기적으로 높일 수 있는 코팅방법과 이에 의해 제조된 양면 다이아몬드 코팅 인써트에 관한 것이다.The present invention relates to a method for performing a wear-resistant diamond coating on the surface of an insert for cutting tools and a double-sided diamond coating insert manufactured by the method, and more specifically, to a diamond coating that has been conventionally performed on only one side of the insert. The present invention relates to a coating method and a double-sided diamond coating insert manufactured thereby, which can form a diamond coating film on both sides at almost the same cost, thereby dramatically increasing the utilization of the insert.
다이아몬드(diamond)는 지구상에서 존재하는 물질 중에서 가장 경도가 높은 물질중의 하나이다. 오늘날 기상합성법(CVD)을 통해 인공적으로 만들어진 다이아몬드 코팅 절삭공구는 기계가공이 힘든 난삭재, 알루미늄-실리콘합금 혹은 마그네슘합금 및 흑연재료 등을 가공하는데 적합한 공구로서 사용되고 있다.Diamond is one of the hardest materials in the world. Today, diamond-coated cutting tools artificially produced by CVD are used as tools suitable for machining difficult-to-machine, aluminum-silicon or magnesium alloys and graphite materials.
일반적으로, 다이아몬드 코팅막은 탄화수소를 포함한 혼합가스분위기에서 각종 전원(직류, 교류, 고주파, 마이크로파)에 의하여 플라즈마나 열에너지로 변환시킨 화학기상증착(chemical vapor deposition, CVD)법에 의하여 형성되고 있으며, 제조법으로서는 열 필라멘트법(hot filament), 연소법(combustion flame), 직류방전 플라즈마법(D.C. glow discharge plasma), 아크방전 플라즈마 젯법(arc glow discharge plasma jet), 마이크로파 플라즈마법(microwave plasma) 등이 있다. 이 중에서 초경합금 절삭공구용 코팅에는 열 필라멘트법이 일반적으로 사용되고 있다.In general, a diamond coating film is formed by chemical vapor deposition (CVD) which is converted into plasma or thermal energy by various power sources (direct current, alternating current, high frequency, microwave) in a mixed gas atmosphere including hydrocarbons. Examples include hot filament, combustion flame, DC glow discharge plasma, arc glow discharge plasma jet, microwave plasma method, and the like. Among them, the thermal filament method is generally used for the coating for cemented carbide cutting tools.
열 필라멘트법으로 다이아몬드 코팅막을 형성할 경우, 종래에는 안정적인 다이아몬드 코팅막을 얻기 위해, 도 1에 도시된 바와 같이, 챔버 내에 소정 간격을 두고 배치된 구리 플레이트(Cu Plate)와, 상기 구리 플레이트 사이에 복수 개 평행하게 배치된 텅스텐 와이어(W wire)를 포함하는 열 필라멘트 장치의 아래에, 수직형 지그를 이용하여 인써트를 소정 간격으로 배치한 후, 상기 구리 플레이트에 전원을 인가하여 텅스텐 와이어에 고온의 저항열이 발생하도록 한 후, CVD 장치 내에 탄화수소를 포함하는 반응가스를 주입함으로써, 상기 인써트의 상면에 다이아몬드 코팅막이 형성되도록 하였다.In the case of forming the diamond coating film by the thermal filament method, in order to obtain a stable diamond coating film, a plurality of copper plates (Cu Plate) disposed at a predetermined interval in the chamber as shown in FIG. Under the heat filament device including tungsten wires (W wires) arranged in parallel, inserts are arranged at predetermined intervals using vertical jigs, and then the copper plate is powered to provide high temperature resistance to the tungsten wires. After the heat was generated, a reaction gas containing a hydrocarbon was injected into the CVD apparatus to form a diamond coating film on the upper surface of the insert.
이와 같은 종래의 다이아몬드 코팅 방법에서, 인써트의 양면의 모든 코너를 활용하기 위해 양면에 다이아몬드 코팅막을 형성하고자 하는 경우, 일면의 코팅이 완료된 후 인써트를 뒤집어 배치한 후 다시 다이아몬드 코팅을 수행할 수밖에 없다. In the conventional diamond coating method as described above, when the diamond coating film is to be formed on both sides in order to utilize all the corners of both sides of the insert, after the coating of one surface is completed, the insert is inverted and diamond coating is performed again.
그런데, 이와 같이 2번 코팅을 하면 인써트에 코팅된 다이아몬드 코팅층의 양면에 있어서의 두께 편차가 매우 커지고, 동일한 공정을 2회 반복함으로 인해 공정의 효율성이 크게 저하할 뿐 아니라 재료손실도 상당해, 한쪽 면만 코팅하여 사용하는 것에 비해 오히려 경제적으로 불리했다.However, if the coating is applied twice, the thickness variation on both sides of the diamond coating layer coated on the insert becomes very large, and the same process is repeated twice so that the efficiency of the process is greatly reduced and the material loss is considerable. It was rather economically disadvantageous compared to using only cotton coating.
이에 따라, 현재까지 다이아몬드 코팅 인서트의 경우, 한쪽 면만 코팅하여 사용해오고 있으며, 이는 인써트의 절반밖에 활용할 수 없게 하는 비효율을 초래하고 있다.Accordingly, diamond coating inserts have been coated and used on only one side until now, which causes inefficiency that only half of the inserts can be utilized.
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로, 인써트의 양면에 종래의 코팅방법과 동일한 비용으로 양면에 비교적 균일하게 다이아몬드 코팅막을 형성할 수 있는 코팅방법을 제공하는 것을 해결하고자 하는 과제로 한다.The present invention is to solve the above-mentioned problems of the prior art, to solve the problem to provide a coating method that can form a diamond coating film on both sides of the insert relatively uniformly at the same cost as the conventional coating method. do.
본 발명의 다른 과제는 상기 방법으로 제조한 양면에 다이아몬드 코팅막이 형성된 인써트를 제공하는 것이다.Another object of the present invention is to provide an insert in which a diamond coating film is formed on both surfaces manufactured by the above method.
상기 과제를 해결하기 위한 수단으로 본 발명은, 인써트의 표면에 다이아몬드 박막을 코팅하는 방법으로, CVD 장치 내에서, 하나 이상의 인써트를 회전시키면서 다이아몬드 코팅을 수행하여, 상기 인써트의 양면에 다이아몬드 코팅층이 형성되도록 하는 것을 특징으로 하는 방법을 제공한다.As a means for solving the above problems, the present invention is a method of coating a diamond thin film on the surface of the insert, in the CVD apparatus, by performing diamond coating while rotating one or more inserts, diamond coating layers are formed on both sides of the insert It provides a method characterized in that.
또한, 본 발명에 따른 방법에 있어서, 상기 CVD 장치는 열 필라멘트(hot filament), 연소 플레임(combustion flame), 직류방전 플라즈마(d.c. glow discharge plasma), 아크방전 플라즈마 제트(arc glow discharge plasma jet), 마이크로파 플라즈마(microwave plasma) 및 고주파 중에서 선택된 하나의 방식을 이용한 것일 수 있다. In addition, in the method according to the present invention, the CVD apparatus includes a hot filament, a combustion flame, a dc glow discharge plasma, an arc glow discharge plasma jet, It may be one using a method selected from microwave plasma and high frequency.
또한, 본 발명에 따른 방법에 있어서, 상기 CVD 장치는 열 필라멘트 방식의 장치이고, 상기 하나 이상의 인써트는 주절인면이 필라멘트에 평행하게 배치되는 것이 바람직하다.In addition, in the method according to the invention, the CVD apparatus is a thermal filament type apparatus, and the one or more inserts are preferably arranged in parallel with the filament with a major cut face.
또한, 본 발명에 따른 방법에 있어서, 상기 인써트의 회전은 연속적 또는 단속적으로 이루어질 수 있다. In addition, in the method according to the invention, the rotation of the insert may be continuous or intermittent.
또한, 본 발명에 따른 방법에 있어서, 상기 하나 이상의 인써트는 지그에 고정되며, 상기 지그는, 길이방향으로 길게 연장하여 형성되며 상기 CVD 장치에 구비된 회전구동장치에 연결되는 축과, 상기 축에 삽입되어 인써트의 사이에 소정 간격을 형성하는 스페이서와, 상기 축의 일측 또는 양측에 설치되어 상기 인써트 및 스페이서를 가압 고정하는 고정수단을 포함할 수 있다.In addition, in the method according to the invention, the one or more inserts are fixed to a jig, the jig being formed extending in the longitudinal direction and connected to the axis of rotation drive provided in the CVD apparatus, It may include a spacer which is inserted to form a predetermined interval between the insert, and a fixing means provided on one side or both sides of the shaft to press-fix the insert and the spacer.
또한, 본 발명에 따른 방법에 있어서, 상기 지그는, 알루미나, 지르코니아, 흑연 또는 금속으로 이루어질 수 있다.In addition, in the method according to the invention, the jig may be made of alumina, zirconia, graphite or metal.
또한, 본 발명에 따른 방법에 있어서, 열 필라멘트 방식으로 다이아몬드 코팅을 할 경우 다이아몬드 코팅은, 필라멘트 온도 1900~2100℃, 인써트 온도 750~900℃, 반응가스 CH4와 H2 혼합가스(CH4 1~10%, H2 90~99%)로 가스압 10~100Torr, 인써트와 필라멘트 사이의 거리 5~45mm, 필라멘트 인가전류 130~160A, 인써트 회전속도 1rpm 이하의 조건으로 수행할 수 있다.In addition, in the method according to the present invention, when the diamond coating by the thermal filament method, the diamond coating, filament temperature 1900 ~ 2100 ℃, insert temperature 750 ~ 900 ℃, reaction gas CH 4 and H 2 mixed gas (CH 4 1 ~ 10%, H 2 90 ~ 99%) can be carried out under the conditions of the gas pressure 10 ~ 100 Torr, the distance between the insert and the filament 5 ~ 45mm, the filament applied current 130 ~ 160A, the insert rotation speed 1rpm or less.
또한, 본 발명에 따른 방법에 있어서, 상기 다이아몬드 코팅층은 sp3 구조가 60% 이상이며, 층 두께는 0.1~25㎛일 수 있다.In addition, in the method according to the invention, the diamond coating layer has a sp3 structure of 60% or more, the layer thickness may be 0.1 ~ 25㎛.
또한, 본 발명에 따른 방법에 있어서, 상기 인써트 회전속도는 1rpm 이하인 것이 바람직하며, 0.01~0.5rpm인 것이 보다 바람직하다.In the method according to the invention, the insert rotation speed is preferably 1 rpm or less, more preferably 0.01-0.5 rpm.
또한, 본 발명에 따른 방법에 있어서, 상기 인써트는 홀이 형성되어 있는 것을 특징으로 한다.In the method according to the invention, the insert is characterized in that a hole is formed.
본 발명에 따른 다이아몬드 코팅방법은 한번에 인써트의 양면에 고르게 다이아몬드 코팅을 수행할 수 있어, 편면 코팅만 이루어진 종래의 다이아몬드 코팅 인써트에 비해 활용도를 2배 늘릴 수 있게 된다. Diamond coating method according to the present invention can be evenly coated on both sides of the insert at a time, it is possible to double the utilization compared to the conventional diamond coating insert consisting of only one-side coating.
또한, 본 발명에 따른 다이아몬드 코팅방법은 종래의 한쪽 면 다이아몬드 코팅과 실질적으로 동일한 코팅비용밖에 들지 않아, 인써트의 효율을 획기적으로 높일 수 있게 된다.In addition, the diamond coating method according to the present invention costs substantially the same coating cost as the conventional one-side diamond coating, thereby significantly increasing the efficiency of the insert.
도 1은 종래기술에 따른 다이아몬드 코팅방법을 보여주는 개략도이다.1 is a schematic view showing a diamond coating method according to the prior art.
도 2는 본 발명에 따른 다이아몬드 코팅방법을 보여주는 개략도이다.2 is a schematic view showing a diamond coating method according to the present invention.
도 3은 본 발명의 실시예에 따른 다이아몬드 코팅에 사용한 지그의 분해사시도이다.3 is an exploded perspective view of a jig used for diamond coating according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 다이아몬드 코팅에 사용한 홀이 형성되어 있는 인써트의 사시도이다.4 is a perspective view of an insert in which a hole used for diamond coating according to an embodiment of the present invention is formed.
도 5는 본 발명의 실시예에 따른 다이아몬드 코팅용 지그에 인써트를 장착한 후의 상태를 보여주는 사진이다.5 is a photograph showing a state after the insert is mounted on the diamond coating jig according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따라 제조한 다이아몬드 코팅막의 라만분석결과를 보여주는 그래프이다.Figure 6 is a graph showing the Raman analysis results of the diamond coating film prepared according to an embodiment of the present invention.
도 7은 본 발명의 다른 실시예에 따라 제조한 다이아몬드 코팅막의 라만분석결과를 보여주는 그래프이다.Figure 7 is a graph showing the Raman analysis results of the diamond coating film prepared according to another embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 다이아몬드 코팅방법으로 코팅한 인써트의 각 코너부위 단면과 표면에 대한 주사전자현미경 사진이다.8 is a scanning electron micrograph of the cross section and the surface of each corner portion of the insert coated with a diamond coating method according to an embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 기초로 본 발명을 설명하나, 본 발명이 하기 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described based on the preferred embodiments of the present invention, but the present invention is not limited to the following examples.
먼저, 도 2 및 3을 참조하여, 본 발명의 바람직한 실시예에서 사용한 다이아몬드 코팅용 지그에 대해 상세하게 설명한다.First, with reference to Figs. 2 and 3, the diamond coating jig used in the preferred embodiment of the present invention will be described in detail.
도 2 및 3에 도시된 바와 같이, 본 발명의 바람직한 실시예에서 사용한 지그(1)는, 인써트의 중앙에 형성된 홀을 관동하는 축(10)과, 상기 축에 꿰어진 인써트와 인써트 사이에 배치되는 스페이서(20)와, 상기 축의 일측 또는 양측에서 상기 인써트와 스페이서(20)를 가압 고정하는 고정수단(30)으로 이루어진다.As shown in Figs. 2 and 3, the jig 1 used in the preferred embodiment of the present invention is arranged between the shaft 10 through the hole formed in the center of the insert, and between the insert and the insert fitted in the shaft. The spacer 20 is formed, and the fixing means 30 for pressing and fixing the insert and the spacer 20 from one side or both sides of the shaft.
상기 축(10)은 단면이 원형으로 이루어지고 그 직경이 인써트의 중앙에 형성된 홀의 직경에 비해 약간 작은 원형 막대 형상으로 이루어지고, 그 일측 선단부에는 돌출된 나선부(11)가 형성되어 있다. 한편, 본 발명의 실시예에서는 축(10)으로 인써트의 홀의 모양에 맞추어 원형의 막대를 사용하였으나, 삼각형, 사각형과 같은 다각형 형상 등 다양한 단면 형상으로 형성할 수 있다.The shaft 10 has a circular cross section and has a circular rod shape whose diameter is slightly smaller than the diameter of a hole formed in the center of the insert, and a protruding spiral portion 11 is formed at one end of the shaft 10. On the other hand, in the embodiment of the present invention, although a circular rod was used in accordance with the shape of the hole of the insert as the shaft 10, it can be formed in various cross-sectional shapes, such as a polygonal shape, such as a triangle, a square.
상기 스페이서(20)는 내부에 중공부가 형성된 관형으로 이루어지는데, 중공부의 직경은 상기 축(10)의 직경보다 약간 커서 상기 축(10)에 삽입될 수 있도록 되어 있고, 외부 직경은 인서트의 중앙에 형성된 홀의 직경보다 크게 되어 있어 인서트의 양면에 접촉할 수 있도록 되어 있다. 또한 상기 스페이서(20)의 측단부의 인서트와 접하는 면(21)에는 마찰력을 부여하기 위하여 일정한 표면거칠기 이상이 되도록 하는 것이 바람직하며, 필요에 따라서는 표면에 요철 가공을 행할 수도 있다. The spacer 20 has a tubular shape with a hollow portion formed therein. The diameter of the hollow portion is slightly larger than the diameter of the shaft 10 so that the spacer 20 can be inserted into the shaft 10, and the outer diameter of the spacer portion 20 is inserted into the center of the insert. It is larger than the diameter of the formed hole so that both sides of an insert can be contacted. In addition, the surface 21 in contact with the insert of the side end portion of the spacer 20 is preferably made to have a predetermined surface roughness or more in order to provide frictional force, and if necessary, the surface may be uneven.
상기 고정수단(30)은 상기 축(10)의 나선부(11)와 나사결합될 수 있는 나선이 내부에 형성되어 있는 부재로 이루지며, 나사결합방향은 상기 축(10)의 회전방향과 반대로 되어 있어, 축(10)의 회전시에 나사결합이 풀어지지 않도록 되어 있다. 본 발명의 실시예에서는 고정수단(30)을 나사결합하는 방식을 사용하였으나, 클램프 방식 등 인써트와 스페이서(20)를 고정할 수 있는 것이라면 어떠한 방식이라도 사용될 수 있다.The fixing means 30 is composed of a member having a spiral formed therein that can be screwed with the spiral portion 11 of the shaft 10, the screwing direction is opposite to the rotation direction of the shaft 10 The screwing is prevented from loosening when the shaft 10 rotates. In the embodiment of the present invention, but the method of screwing the fixing means 30 is used, any method can be used as long as it can fix the insert and the spacer 20, such as a clamp method.
이상과 같은 구조를 갖는 본 발명의 실시예에 따른 지그(1)는, 도 2에 도시된 바와 같이, 먼저 축(10)의 일단부에 고정수단(30)을 체결한 후, 스페이서(20)와 도 4에 도시된 바와 같이 중앙에 홀이 형성된 인써트(40)를 교대로 축에 삽입하고, 다른 쪽의 고정수단(30)을 나사결합을 통해 일측에서 가압하여 고정하는 방식으로 인써트를 고정한다. 이에 따라 인써트(40)는 스페이서(20)의 길이방향만큼의 간격을 두고 축에 움직이지 않게 고정된다. Jig 1 according to the embodiment of the present invention having the above structure, as shown in Figure 2, first fastening the fixing means 30 to one end of the shaft 10, the spacer 20 And insert the insert 40 is formed in the center of the shaft alternately as shown in Figure 4, the other fixing means 30 is fixed by pressing the fixing means 30 on one side through the screw coupling. . Accordingly, the insert 40 is fixed to the shaft at intervals as long as the spacer 20.
이와 같이 복수의 인써트가 소정 간격을 두고 고정된 지그(1)의 고정수단(30)을 도 2에 도시된 바와 같은 열 필라멘트 방식의 CVD 장치의 챔버 내에 구비된 구리 플레이트(Cu Plate)와 이 구리 플레이트 사이에 복수 개 평행하게 배치된 텅스텐 와이어(W wire)를 포함하는 열 필라멘트 장치의 아래에 소정 간격을 두고 배치한 후(즉, 주절인면이 필라멘트에 평행하게 배치), 회전구동수단(미도시)을 통해 상기 지그(1)를 회전시켜 인써트를 회전키면서, 다이아몬드 코팅을 수행한다.The copper plate (Cu Plate) and the copper provided in the chamber of the thermal filament-type CVD apparatus as shown in Fig. 2 to the fixing means 30 of the jig 1 in which a plurality of inserts are fixed at predetermined intervals as shown in FIG. After arranging at a predetermined interval below the thermal filament device including a plurality of tungsten wire (W wire) disposed in parallel between the plates (that is, the major cut surface is arranged parallel to the filament), the rotary drive means (not shown) By rotating the jig (1) through the rotating the insert, the diamond coating is performed.
한편, 지그(1)의 회전은 연속적으로 하거나 또는 단속적으로 할 수 있는데, 단속적으로 수행할 경우, 예를 들면 90°회전후 1분 정지와 같은 스텝(step) 방식으로 회전시키면서 코팅을 수행할 수 있다. 단속적인 방식은 연속적인 방식에 비해 절삭에 사용되는 인써트의 코너부에 집중적으로 코팅을 할 수 있는 이점이 있다.On the other hand, the rotation of the jig 1 can be continuously or intermittently, when performing intermittently, for example, coating can be performed while rotating in a step method such as a one-minute stop after 90 ° rotation. have. The intermittent method has the advantage of being able to concentrate on the corners of the insert used for cutting, compared to the continuous method.
다이아몬드 코팅은, 필라멘트 온도 1900~2100℃, 인써트 온도 750~900℃, 반응가스 CH4와 H2 혼합가스(CH4 1~10%, H2 90~99%)로 가스압 10~100Torr, 인써트와 필라멘트 사이의 거리 5~45mm, 필라멘트 인가전류 130~160A, 지그회전속도 1rpm 이하, 코팅시간 8~16시간의 조건으로 수행하는 것이 바람직하다.Diamond coating is made of filament temperature 1900 ~ 2100 ℃, insert temperature 750 ~ 900 ℃, reaction gas CH 4 and H 2 mixed gas (CH 4 1 ~ 10%, H 2 90 ~ 99%), gas pressure 10 ~ 100Torr, insert and The distance between the filament 5 ~ 45mm, filament applied current 130 ~ 160A, jig rotation speed of 1rpm or less, it is preferable to carry out under the conditions of the coating time 8 ~ 16 hours.
이는 상기 필라멘트 온도가 1900℃ 미만이면 흑연이 생성되고, 2100℃를 초과하면 다이아몬드가 생성하지 않기 때문이고, 상기 인써트 온도가 750℃ 미만이면 흑연이 생성되고, 900℃를 초과하면 다이아몬드가 성장하지 않기 때문이다. 또한, 상기 반응가스는 메탄과 수소의 혼합가스를 사용하며 혼합비율은 부피비로 메탄이 1~10%, 수소 90~99%의 비율로 혼합되는 것이 바람직하다. 또한, 혼합가스의 가스압은 10Torr 미만이면 인써트의 온도 조절이 어려우며, 다이아몬드 성장이 불안정하고, 100Torr를 초과하면 인서트 전면 혹은 상하 코팅의 어려움이 있으므로 10~100Torr가 바람직하다. 또한, 인써트를 장착하였을 때 인서트와 필라멘트 사이의 거리는 5mm 미만일 경우 전류 인가에 의한 필라멘트 주변의 강한 전기장에 의해 다이아몬드 성장이 방해되고, 45mm를 초과할 경우 다이아몬드 성장이 이루어지지 않기 때문에 5~45mm가 바람직하다. 또한, 인가전류는 130A 미만일 경우 흑연이 성장하고, 160A를 초과할 경우 강한 전기장의 의해 다이아몬드 성장을 방해하므로, 130~160A를 유지하는 것이 바람직하다. 또한, 지그 회전속도는 1rpm을 초과할 경우 다이아몬드 성장을 방해하기 1rpm 이하로 하는 것이 바람직하고, 0.01 ~ 0.5rpm을 유지하는 것이 보다 바람직하다.This is because graphite is produced when the filament temperature is lower than 1900 ° C., and no diamond is formed when the filament temperature is higher than 2100 ° C., and graphite does not grow when the insert temperature is lower than 750 ° C., and diamond does not grow when it exceeds 900 ° C. Because. In addition, the reaction gas uses a mixed gas of methane and hydrogen and the mixing ratio is preferably mixed in a ratio of 1 to 10% methane, 90 to 99% hydrogen by volume ratio. In addition, if the gas pressure of the mixed gas is less than 10 Torr, it is difficult to control the temperature of the insert, diamond growth is unstable, and if it exceeds 100 Torr, 10 ~ 100 Torr is preferable because there is a difficulty in the front or bottom coating of the insert. In addition, when the insert is mounted, when the distance between the insert and the filament is less than 5 mm, the diamond growth is hindered by the strong electric field around the filament due to the application of the current. Do. In addition, when the applied current is less than 130A, graphite grows, and when it exceeds 160A, since it hinders diamond growth by a strong electric field, it is preferable to maintain 130 to 160A. In addition, when the jig rotation speed exceeds 1 rpm, the jig rotation speed is preferably set to 1 rpm or less, more preferably 0.01 to 0.5 rpm to prevent diamond growth.
[실시예 1]Example 1
초경합금으로 이루어져 있으며 중앙에 직경 약 5mm의 홀이 형성된 절삭공구용 인써트를 60 ~ 80메시의 벌크형 다이아몬드와 함께 넣고 초음파 세척기를 이용하여 30분간 연마하여 공구 표면에 스크래치를 형성하였다. 이후, 무라카미 용액에서 30분, 왕수 용액에서 10초간 각각 에칭한 후, 매질로 아세톤을 사용한 초음파 세척을 30분, 증류수를 사용한 초음파 세척을 30분씩 각각 수행하여, 불순물을 제거하였다.The cutting tool insert, which consists of cemented carbide and a hole with a diameter of about 5 mm, was placed together with a bulk diamond of 60 to 80 mesh and polished for 30 minutes using an ultrasonic cleaner to form a scratch on the tool surface. Thereafter, after etching for 30 minutes in Murakami solution and 10 seconds in aqua regia solution, ultrasonic cleaning using acetone as a medium was performed for 30 minutes and ultrasonic cleaning using distilled water for 30 minutes, respectively, to remove impurities.
이와 같이, 불순물을 제거한 인써트들을 상기한 방식으로 지그(1)에 장착하여, 도 5에 보여지는 바와 같이, 하나의 지그(1)에 6개의 인써트를 스페이서(20)를 사용하여 소정 간격을 유지하도록 고정시켰다. 이와 같이 준비한 4개의 지그를 도 2에 도시된 바와 같은 열 필라멘트 CVD 장치의 챔버 내부에 회전구동모터(미도시)의 축에 연결하여 열 필라멘트의 하부에 평행하게 장착하였다. 이때 인써트의 최고 높이와 열 필라멘트 사이의 간격은 20mm로 유지하였다. 그리고, 상기 회전구동모터를 0.5rpm의 속도로 회전시키면서, CVD 장치를 가동하였다.In this way, the inserts from which impurities are removed are mounted on the jig 1 in the above-described manner, and as shown in FIG. 5, six inserts are held on one jig 1 by using the spacer 20 to maintain a predetermined interval. To be fixed. The four jigs thus prepared were connected to the shaft of a rotation drive motor (not shown) inside the chamber of the thermal filament CVD apparatus as shown in FIG. 2 and mounted in parallel to the bottom of the thermal filament. The spacing between the highest height of the insert and the thermal filament was maintained at 20 mm. The CVD apparatus was operated while rotating the rotary drive motor at a speed of 0.5 rpm.
이때, 구체적인 CVD 공정조건은 쳄버 내부에 수소가스 990sccm과 메탄가스 10sccm을 주입시켜 20Torr로 유지하고, 필라멘트 전류를 150A로 인가하여 수소와 메탄의 혼합가스 플라즈마를 생성시켜 인써트 온도를 약 850℃로 유지하면서 16시간 동안 CVD 코팅 다이몬드 합성을 실시하였다. 상기의 방법에 의해 하기 표 1과 같이, 양면형 인써트에 다이아몬드 코팅막이 얻어졌다.In this case, the specific CVD process conditions are maintained at 20 Torr by injecting hydrogen gas 990sccm and methane gas 10sccm, and the filament current is applied to 150A to generate a mixed gas plasma of hydrogen and methane to maintain the insert temperature at about 850 ℃ CVD coated diamond synthesis was carried out for 16 hours. By the above method, as shown in Table 1 below, a diamond coating film was obtained on the double-sided insert.
[실시예 2]Example 2
실시예 2는 반응가스인 메탄과 수소의 혼합가스의 가스압력을 80Torr로 한 것을 제외한 나머지는 실시예 1과 동일하게 하여 평균두께 6㎛의 다이아몬드 코팅막을 형성하였다.In Example 2, a diamond coating film having an average thickness of 6 µm was formed in the same manner as in Example 1 except that the gas pressure of the mixed gas of the reaction gas, methane and hydrogen, was 80 Torr.
코팅막의 분석Analysis of coating film
본 발명의 실시예 1 및 2에 따라 인써트의 양면에 형성한 코팅막의 결정구조를 확인하기 위하여 라만분광법을 사용하여 분석하였으며, 그 결과는 도 6 및 7과 같았다. In order to confirm the crystal structure of the coating film formed on both sides of the insert according to Examples 1 and 2 of the present invention was analyzed using Raman spectroscopy, the results were as shown in Figures 6 and 7.
도 6 및 7에서 확인되는 바와 같이 본 발명의 실시예에 따라 형성한 코팅막은 다이아몬드로 이루어져 있음이 확인되며, 구체적으로 실시예 1에 따른 다이아몬드 코팅막은 sp3 구조의 비율이 92%였고, 실시예 2에 따른 다이아몬드 코팅막은 sp3 구조가 73%였다. 실시예 2에 따른 다이아몬드 코팅막의 sp3 피크의 강도가 낮은 이유는 입자크기 감소에 따른 계면적의 증가에 의해 sp2의 흑연 피크의 강도가 상대적으로 증가한 것에 기인하는 것으로 보여진다.6 and 7 it is confirmed that the coating film formed according to the embodiment of the present invention is made of diamond, specifically, the diamond coating film according to Example 1 was 92% of the sp3 structure, Example 2 The diamond coating film according to the sp3 structure was 73%. The reason why the intensity of the sp3 peak of the diamond coating film according to Example 2 is low seems to be due to the relative increase in the intensity of the graphite peak of sp2 due to the increase in the interfacial area with the decrease in the particle size.
다음으로, 본 발명의 실시예에 1에 따라 다이아몬드 코팅막을 형성한 인써트의 4 코너에 형성된 박막의 형상과 두께를 주사전자현미경으로 관찰하였으며, 그 결과를 도 8과 표 1에 나타내었다.Next, the shape and thickness of the thin film formed at the four corners of the insert in which the diamond coating film was formed according to Example 1 of the present invention were observed with a scanning electron microscope, and the results are shown in FIG. 8 and Table 1.
표 1 코너별 다이아몬드 코팅막의 두께
부위 상면(㎛) 측면(㎛) 입자크기(㎛)
코너 1 12.6 12 3.4
코너 2 5.7 7.1 2.1
코너 3 11.4 12 3.2
코너 4 9.1 10.6 1.8
평균 9.7 10.4 -
Table 1 Thickness of Diamond Coating Film by Corner
part Top surface (㎛) Side (μm) Particle size (㎛)
Corner 1 12.6 12 3.4
Corner 2 5.7 7.1 2.1
Corner 3 11.4 12 3.2
Corner 4 9.1 10.6 1.8
Average 9.7 10.4 -
도 8에서 확인되는 바와 같이, 본 발명의 실시예 1에 따른 코팅방법을 통해, 한번의 코팅공정으로 인써트의 양면에 다이아몬드 코팅막이 양호하게 형성되는 것을 알 수 있다. 구체적으로 코너 1의 상면과 측면의 코팅막의 두께는 각각 12.6㎛와 12㎛로 측정되었고, 코너 2의 상면과 측면의 코팅막의 두께는 5.7㎛와 7.1㎛로 측정되었으며, 코너 3의 상면과 측면의 코팅막의 두께는 11.4㎛와 12㎛로 측정되었고, 코너 4의 상면과 측면의 코팅막의 두께는 9.7㎛와 10.6㎛로 각각 측정되었다. 즉, 코너 1, 3 및 4의 경우 비교적 고른 두께의 코팅막이 형성되었고, 코너 2의 경우에도 절삭공구용에 사용될 수 있을 정도의 막두께가 형성됨이 확인되었다.As can be seen in Figure 8, through the coating method according to Example 1 of the present invention, it can be seen that the diamond coating film is formed on both sides of the insert in one coating process. Specifically, the thicknesses of the coating films on the top and side of the corner 1 were measured at 12.6 μm and 12 μm, respectively, and the thicknesses of the coating films on the top and side of the corner 2 were measured at 5.7 μm and 7.1 μm, respectively. The thicknesses of the coating films were measured to be 11.4 μm and 12 μm, and the thicknesses of the top and side surfaces of the corner 4 were 9.7 μm and 10.6 μm, respectively. That is, in the case of corners 1, 3, and 4, a coating film having a relatively even thickness was formed, and in the case of corner 2, it was confirmed that a film thickness enough to be used for a cutting tool was formed.
한편, 형성된 박막의 다이아몬드 입자크기도 코너 1~4는 각각, 3.4㎛, 2.1㎛, 3.2㎛ 및 1.8㎛로 비교적 유사한 크기로 형성됨이 확인되었다.On the other hand, it was confirmed that the diamond particle size of the formed thin film is formed in a relatively similar size of corners 1 to 4, respectively, 3.4㎛, 2.1㎛, 3.2㎛ and 1.8㎛.
이상과 같은 분석결과를 통해, 본 발명에 따른 방법을 통해, 1회 코팅공정으로 절삭공구용에 적합하게 사용될 수 있을 정도의 다이아몬드 코팅막을 인써트의 양면에 형성할 수 있음을 알 수 있다.Through the above analysis results, it can be seen that through the method according to the present invention, a diamond coating film can be formed on both sides of the insert to the extent that can be suitably used for cutting tools in a single coating process.

Claims (11)

  1. 인써트의 표면에 다이아몬드 박막을 코팅하는 방법으로,By coating a diamond film on the surface of the insert,
    CVD 장치 내에서, 하나 이상의 인써트를 회전시키면서 다이아몬드 코팅을 수행하여, 상기 인써트의 양면에 다이아몬드 코팅층이 형성되도록 하는 것을 특징으로 하는 방법.In a CVD apparatus, diamond coating is performed while rotating one or more inserts so that diamond coating layers are formed on both sides of the insert.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 CVD 장치는 열 필라멘트 방식의 장치이고,The CVD apparatus is a thermal filament type apparatus,
    상기 하나 이상의 인써트는 주절인면이 필라멘트에 평행하게 배치되는 것을 특징으로 하는 방법.Wherein said at least one insert has a major cutting face disposed parallel to the filament.
  3. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 인써트의 회전은 연속적 또는 단속적으로 이루어지는 것을 특징으로 하는 방법. The rotation of the insert is continuous or intermittent.
  4. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2,
    상기 하나 이상의 인써트는 지그에 고정되며, Said at least one insert is secured to a jig,
    상기 지그는, 길이방향으로 길게 연장하여 형성되며 상기 CVD 장치에 구비된 회전구동장치에 연결되는 축과, 상기 축에 삽입되어 인써트의 사이에 소정 간격을 형성하는 스페이서와, 상기 축의 일측 또는 양측에 설치되어 상기 인써트 및 스페이서를 가압 고정하는 고정수단을 포함하는 것을 특징으로 하는 방법.The jig is formed extending in the longitudinal direction and connected to the rotary drive device provided in the CVD apparatus, a spacer inserted into the shaft to form a predetermined gap between the insert, and on one side or both sides of the shaft And a fixing means installed to press-fix the insert and the spacer.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 CVD 장치는 열 필라멘트(hot filament), 연소 플레임(combustion flame), 직류방전 플라즈마(d.c. glow discharge plasma), 아크방전 플라즈마 제트(arc glow discharge plasma jet), 마이크로파 플라즈마(microwave plasma) 및 고주파 중에서 선택된 하나의 방식을 이용한 것을 특징으로 하는 방법.The CVD apparatus is selected from hot filament, combustion flame, dc glow discharge plasma, arc glow discharge plasma jet, microwave plasma and high frequency. Characterized in that using one method.
  6. 제 3 항에 있어서, The method of claim 3, wherein
    상기 지그는, 알루미나, 지르코니아, 흑연 또는 금속으로 이루어진 것을 특징으로 하는 방법.The jig is made of alumina, zirconia, graphite or metal.
  7. 제 2 항에 있어서, The method of claim 2,
    상기 다이아몬드 코팅은, 필라멘트 온도 1900~2100℃, 인써트 온도 750~900℃, 반응가스 CH4와 H2 혼합가스(CH4 1~10%, H2 90~99%)로 가스압 10~100Torr, 인써트와 필라멘트 사이의 거리 5~45mm, 필라멘트 인가전류 130~160A, 인써트 회전속도 1rpm 이하의 조건으로 수행되는 것을 특징으로 하는 방법.The diamond coating, the filament temperature 1900 ~ 2100 ℃, insert temperature 750 ~ 900 ℃, reaction gas CH 4 and H 2 mixed gas (CH 4 1 ~ 10%, H 2 90 ~ 99%) gas pressure 10 ~ 100 Torr, insert And a distance between 5 and 45 mm, a filament applied current of 130 to 160 A, and an insert rotation speed of 1 rpm or less.
  8. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 다이아몬드 코팅층은 sp3 구조가 60% 이상이며, 층 두께는 0.1~25㎛인 것을 특징으로 하는 방법.The diamond coating layer has a sp3 structure of 60% or more, the method characterized in that the layer thickness is 0.1 ~ 25㎛.
  9. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2,
    상기 인써트 회전속도는 0.01~1rpm인 것을 특징으로 하는 방법.The insert rotation speed is characterized in that 0.01 ~ 1rpm.
  10. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 인써트는 홀이 형성되어 있는 것을 특징으로 하는 방법.The insert is characterized in that the hole is formed.
  11. 제 1 항 또는 제 2 항에 기재된 방법으로 제조된 양면 다이아몬드 코팅 인서트.A double-sided diamond coated insert made by the method of claim 1.
PCT/KR2011/009648 2011-11-14 2011-12-15 Method for diamond-coating both side surfaces of insert and diamond-coated insert manufactured by same method WO2013073734A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110118279A KR101329097B1 (en) 2011-11-14 2011-11-14 Method of coating both side of cutting insert with diamond and diamond coated instert manufactured by the same
KR10-2011-0118279 2011-11-14

Publications (1)

Publication Number Publication Date
WO2013073734A1 true WO2013073734A1 (en) 2013-05-23

Family

ID=48429779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009648 WO2013073734A1 (en) 2011-11-14 2011-12-15 Method for diamond-coating both side surfaces of insert and diamond-coated insert manufactured by same method

Country Status (2)

Country Link
KR (1) KR101329097B1 (en)
WO (1) WO2013073734A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913781A (en) * 2021-10-11 2022-01-11 久钻科技(成都)有限公司 Diamond film processing method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101713379B1 (en) * 2014-10-14 2017-03-08 한국야금 주식회사 Cutting tools coated with diamond, method of coating diamond for cutting tools and apparatus for the method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150358A (en) * 1993-12-01 1995-06-13 Shin Etsu Chem Co Ltd Diamond coating method by microwave plasma cvd
JP3249013B2 (en) * 1994-06-06 2002-01-21 神港精機株式会社 Plasma CVD equipment
JP2002239832A (en) * 2001-02-13 2002-08-28 Kyowa Seisakusho:Kk Device and method of moving inserted object in shaft body
JP3750083B2 (en) * 2002-08-20 2006-03-01 株式会社川瀬工具店 Diamond coating industrial blade manufacturing method
KR20070056580A (en) * 2005-11-30 2007-06-04 주식회사 진우엔지니어링 Method and facility for coating the 3-dimensional member with diamond-like carbon film by plasma cvd combined with plasma ion implantation
JP4232198B2 (en) * 2003-12-24 2009-03-04 三菱マテリアル株式会社 Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150358A (en) * 1993-12-01 1995-06-13 Shin Etsu Chem Co Ltd Diamond coating method by microwave plasma cvd
JP3249013B2 (en) * 1994-06-06 2002-01-21 神港精機株式会社 Plasma CVD equipment
JP2002239832A (en) * 2001-02-13 2002-08-28 Kyowa Seisakusho:Kk Device and method of moving inserted object in shaft body
JP3750083B2 (en) * 2002-08-20 2006-03-01 株式会社川瀬工具店 Diamond coating industrial blade manufacturing method
JP4232198B2 (en) * 2003-12-24 2009-03-04 三菱マテリアル株式会社 Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials
KR20070056580A (en) * 2005-11-30 2007-06-04 주식회사 진우엔지니어링 Method and facility for coating the 3-dimensional member with diamond-like carbon film by plasma cvd combined with plasma ion implantation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913781A (en) * 2021-10-11 2022-01-11 久钻科技(成都)有限公司 Diamond film processing method and device

Also Published As

Publication number Publication date
KR101329097B1 (en) 2013-11-14
KR20130052928A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
CN1026133C (en) Microwave plasma CVD apparatus for formation of large-area function deposited film
TW533494B (en) Boron nitride/yttria composite components of semiconductor processing equipment and method of manufacturing thereof
CN1260770C (en) Zirconia toughtened ceramic components and coatings in semiconductor processing equipment and method of manufacturing thereof
CA2152769C (en) Synthesizing diamond film
EP1702998B1 (en) amorphous-carbon coated member
CN1358238A (en) Corrosion resistant component of semiconductor processing equipment and method of manufacturing thereof
US7829183B2 (en) Free-standing silicon carbide articles formed by chemical vapor deposition and methods for their manufacture
JPH06951B2 (en) High adhesion diamond coated member
KR20060055364A (en) Diamond coated porous substrate and liquid treatment apparatus and liquid treatment method using same
CN101054720A (en) Method of manufacturing substrates for the growth of single crystal diamond
WO2013073734A1 (en) Method for diamond-coating both side surfaces of insert and diamond-coated insert manufactured by same method
JPH0456765B2 (en)
US5391229A (en) Apparatus for chemical vapor deposition of diamond including graphite substrate holders
US5753045A (en) Vacuum treatment system for homogeneous workpiece processing
JP2013018675A (en) Apparatus for manufacturing polycrystalline silicon
WO2014104569A1 (en) Diamond coated cutting tools having excellent surface roughness, and method for diamond coating cutting tools
JP4743473B2 (en) Conductive diamond coated substrate
US6117573A (en) Corrosion-resistant member and a producing process thereof
CN113336576A (en) Preparation method of SiC nanowire toughened HfC-SiC complex phase coating by chemical vapor codeposition
CN103789747B (en) A kind of gas spray and make the method for this gas spray
KR100296392B1 (en) An apparatus for synthesizing a diamond film by dc pacvd
JP2006169094A (en) Diamond-coated porous composite substrate and liquid treatment apparatus and liquid treatment method using same
CN86106364A (en) The method and apparatus of preparation of protective layer by plasma deposition
KR100330767B1 (en) An apparatus and method compressing diamond film chemically by using direct current discharge plasma, and the compound thereof
CN102341347A (en) Carbon material coated with diamond thin film and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875948

Country of ref document: EP

Kind code of ref document: A1