KR20070056580A - Method and facility for coating the 3-dimensional member with diamond-like carbon film by plasma cvd combined with plasma ion implantation - Google Patents

Method and facility for coating the 3-dimensional member with diamond-like carbon film by plasma cvd combined with plasma ion implantation Download PDF

Info

Publication number
KR20070056580A
KR20070056580A KR1020050115469A KR20050115469A KR20070056580A KR 20070056580 A KR20070056580 A KR 20070056580A KR 1020050115469 A KR1020050115469 A KR 1020050115469A KR 20050115469 A KR20050115469 A KR 20050115469A KR 20070056580 A KR20070056580 A KR 20070056580A
Authority
KR
South Korea
Prior art keywords
dlc
plasma
base material
vacuum chamber
coating
Prior art date
Application number
KR1020050115469A
Other languages
Korean (ko)
Other versions
KR100732198B1 (en
Inventor
장상욱
김도윤
최강용
Original Assignee
주식회사 진우엔지니어링
(주) 브이에스아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 진우엔지니어링, (주) 브이에스아이 filed Critical 주식회사 진우엔지니어링
Priority to KR1020050115469A priority Critical patent/KR100732198B1/en
Publication of KR20070056580A publication Critical patent/KR20070056580A/en
Application granted granted Critical
Publication of KR100732198B1 publication Critical patent/KR100732198B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A DLC(diamond-like carbon) coating method and a DLC coating apparatus which prevent shape or dimensions of a matrix from being changed, greatly improve interfacial adhesive force of a DLC film layer, enable a complicated shaped three-dimensional object to be coated to an uniform thickness, and make it not necessary to treat the surface of a DLC coated matrix or heat treat the DLC coated matrix are provided. In a method for modifying the surface of the matrix by plasma after injecting a gas material into a vacuum chamber in which a matrix is installed, a DLC(diamond-like carbon) coating method comprises: a cleaning step of cleaning the surface of the matrix with plasma generated using argon; a depositing step of forming a coating layer on the surface of the matrix by a plasma chemical vapor deposition method; an ion implanting step of implanting plasma ions into the coating layer formed matrix to form an ion mixed layer from a lower portion of the surface of the matrix to the coating layer; and a DLC coating step of forming a DLC film layer on the ion mixed layer by the plasma chemical vapor deposition method.

Description

DLC 코팅방법 및 코팅장치 {Method and facility for coating the 3-dimensional member with Diamond-Like Carbon Film by Plasma CVD combined with Plasma Ion Implantation}DLC Coating Method and Coating Equipment {Method and facility for coating the 3-dimensional member with Diamond-Like Carbon Film by Plasma CVD combined with Plasma Ion Implantation}

도 1은 본 발명의 일 예에 따른 DLC 코팅방법의 작업공정도.1 is a working process diagram of the DLC coating method according to an embodiment of the present invention.

도 2는 본 발명의 일 예에 따른 DLC 코팅장치의 개략 구성도.2 is a schematic configuration diagram of a DLC coating apparatus according to an embodiment of the present invention.

도 3은 본 발명의 일 실시예에 따라 모재의 표면에 DLC필름 층을 형성해 나가는 작업과정을 나타낸 모식도.Figure 3 is a schematic diagram showing a process of forming a DLC film layer on the surface of the base material according to an embodiment of the present invention.

[도면 부호의 설명][Description of Drawing Reference]

10… 진공챔버 12… 게이지10... Vacuum chamber 12.. gauge

21… 스로틀밸브 22… 메인밸브21... Throttle valve 22.. Main valve

23… 진공펌프 24… 포라인밸브23... Vacuum pump 24... Four-line valve

25… 러핑밸브 26… 릴리즈밸브25... Roughing valve 26.. Release valve

27… 로터리펌프 28… 배관27... Rotary pump 28... pipe

30… 질량흐름제어유닛 40… 플라즈마생성기30... Mass flow control unit 40.. Plasma generator

50… 펄스생성기 60… PLC50... Pulse generator 60... PLC

70… 벤트라인 80… 스테이지70... Vent line 80... stage

100… 모재 200… 코팅층100... Base material 200... Coating layer

300… 이온혼합층 400… DLC필름 층300... Ion mixed layer 400... DLC film layer

본 발명은 금속이나 비금속 소재로 만든 각종 공구/부품/금형 등의 모재 표면에 다이아몬드 유사 카본필름 층(Diamond-Like Carbon Film:“DLC필름 층”라 함)을 형성하여, 모재의 내구성/내마모성/윤활성 등을 향상시키는 방법에 관한 것이다.The present invention is to form a diamond-like carbon film ("DLC film layer") on the surface of the base material of various tools, parts, molds, etc. made of metal or non-metal material, so that the base material durability / wear resistance / It relates to a method for improving lubricity and the like.

더욱 구체적으로는, 모재의 표면에 다이아몬드 유사 카본필름 층을 형성할 때, 플라즈마 이온주입법과 플라즈마 화학기상 증착법을 혼용함으로써 모재와 다이아몬드 유사 카본필름 층 사이의 접착력이 크게 향상되도록 한 DLC 코팅방법 및 코팅장치에 관한 것이다.More specifically, when the diamond-like carbon film layer is formed on the surface of the base material, the DLC coating method and the coating which greatly improves the adhesion between the base material and the diamond-like carbon film layer by using plasma ion implantation and plasma chemical vapor deposition. Relates to a device.

일반적으로, DLC필름 층에 의해 표면이 보호된 모재는 다른 방법에 의해 표면이 보호된 경우보다 우수한 경도/윤활성/내마모성/마찰특성/내식성 등을 나타내기 때문에 다양한 분야에서 활용될 수 있다. 그러나 상기 DLC필름 층은 탄화물이 포함되지 않은 모재-예컨대, 금속소재-에는 잘 접착되지 않으므로 박리가 쉽게 일어나는 문제점이 있다.In general, the base material of which the surface is protected by the DLC film layer can be utilized in various fields because it exhibits superior hardness / lubrication / abrasion resistance / friction characteristics / corrosion resistance and the like than when the surface is protected by other methods. However, since the DLC film layer does not adhere well to the base material, for example, a metal material, which does not contain carbide, there is a problem that peeling occurs easily.

DLC필름 층의 박리를 억제하거나 완화하는 방법으로는 ⑴ 공정온도를 높여 DLC필름 층의 잔류 응력을 감소시키는 방법과 ⑵ DLC필름 층의 계면접착력을 증진시키는 방법 중 하나가 이용되는데, 본 발명은 이들 방법 중에서도 특히 계면접착력을 증진시키는 새로운 방법에 관한 것이다.As a method of suppressing or mitigating peeling of the DLC film layer, one of a method of increasing the process temperature to reduce the residual stress of the DLC film layer and a method of enhancing the interfacial adhesion of the DLC film layer is used. In particular, the present invention relates to a new method for enhancing interfacial adhesion.

계면접착력의 증진방법과 관련하여, 종래에는 ① 모재 표면을 유기용매로 세정한 다음 CVD 증착장치/PVD 증착장치에 모재를 설치하여 DLC 코팅을 하거나 ② CVD 증착장치/PVD 증착장치에 장착한 모재의 표면을 아르곤으로 스퍼터링하여 표면을 활성화한 다음 DLC 코팅을 하는 방법이 사용되었다.Regarding the method of enhancing the interfacial adhesion, conventionally, the surface of the base material is cleaned with an organic solvent, and then the base material is installed in the CVD deposition apparatus / PVD deposition apparatus to apply the DLC coating or ② to the CVD deposition apparatus / PVD deposition apparatus. A method of sputtering the surface with argon to activate the surface and then applying a DLC coating was used.

그러나 이러한 예비공정에 의해서도 충분한 계면접착력은 얻기가 힘들기 때문에, 최근에는 모재와 DLC필름 층 사이에, 이들과의 화학적 친화력이 우수한 물질로 중간층을 형성하는 방법이 많이 이용되고 있다.However, even with such a preliminary step, sufficient interfacial adhesion is difficult to obtain. Recently, a method of forming an intermediate layer with a material having excellent chemical affinity between the base material and the DLC film layer has been widely used.

하지만, 중간층의 구성물질로서 주로 사용되는 실리콘은 취성이 강해 외부 충격에 의해 상기 중간층이 쉽게 파괴될 가능성이 있고, 티타늄은 높은 산화력으로 인하여 상기 중간층 내에 이산화티탄의 형태로 존재할 가능성이 있어 접착력이 저하될 우려가 있다.However, silicon, which is mainly used as a constituent of the intermediate layer, is brittle, so that the intermediate layer may be easily destroyed by external impact, and titanium may exist in the form of titanium dioxide in the intermediate layer due to high oxidizing power, thereby degrading adhesion. There is a concern.

더욱이, DLC 코팅에 사용되는 종래의 CVD 증착장치는 공정온도가 800℃∼1100℃에 달하기 때문에 모재가 금속소재인 경우에나 적용할 수 있고, 모재의 모양 변화와 치수변화가 심한 단점이 있다. 이에 반해, PVD 증착장치는 공정온도가 200℃∼500℃ 정도여서 CVD 증착장치에 비해 모양과 치수의 안정성이 높고 비금속도 작업이 가능한 이점은 있지만, DLC필름 층이 모재의 표면에 단순히 쌓여 있는 퇴적(堆積)구조여서 여전히 DLC필름 층의 박리에 대한 문제가 있고 공정 여건상 복잡한 3차원 형상의 물품에 적용하기 어려운 단점이 있다.Moreover, the conventional CVD deposition apparatus used for DLC coating can be applied only when the base material is a metal material because the process temperature reaches 800 ℃ to 1100 ℃, there is a disadvantage that the shape change and dimensional change of the base material is severe. In contrast, the PVD deposition apparatus has a process temperature of about 200 ° C to 500 ° C, which is more stable in shape and dimensions than the CVD deposition apparatus, and can work with non-metals, but the deposition of the DLC film layer simply stacked on the surface of the base material. (Iii) there is still a problem of peeling of the DLC film layer due to the structure and difficult to apply to a complicated three-dimensional article in the process conditions.

본 발명은 CVD 증착장치나 PVD 증착장치에 의해 수행되던 종래 DLC 코팅공정의 여러 문제점을 개선하기 위해 안출된 것으로서 ① 종래 PVD 증착장치보다도 낮은 공정온도에서 운전되어 모재의 모양변화/치수변화가 거의 없고 ② DLC 코팅 시 플라즈마 이온주입법과 플라즈마 화학기상 증착법을 함께 적용함으로써 DLC필름 층의 계면접착력이 종래보다 크게 향상되어 박리 문제가 없으며 ③ 코팅과정에서 모재 주변에 형성된 플라즈마 쉬쓰의 이온유도작용에 의해 복잡한 형상의 3차원 물체도 균일한 두께로 코팅이 가능하고 ④ DLC 코팅된 모재에 대해 사후적으로 표면처리를 하거나 열처리를 할 필요가 없는 DLC 코팅방법 및 코팅장치를 제공함에 목적이 있다.The present invention was devised to improve various problems of the conventional DLC coating process performed by the CVD deposition apparatus or the PVD deposition apparatus. ① It is operated at a lower process temperature than the conventional PVD deposition apparatus, so that there is almost no change in shape / dimension of the base metal. ② By applying plasma ion implantation method and plasma chemical vapor deposition method together for DLC coating, the interfacial adhesion of DLC film layer is greatly improved than before. There is no peeling problem. ③ Complex shape by ion induction action of plasma sheath formed around the base material during coating process. It is an object of the present invention to provide a DLC coating method and a coating apparatus that can be coated with a uniform thickness of 3D objects and do not need to surface-treat or heat-treat the ④ DLC-coated base material.

상기 과제를 해결하기 위한 본 발명의 DLC 코팅방법은, 예를 들면 특허청구범위 제1항에 기재된 바와 같이, 모재가 설치된 진공챔버 내에 가스물질을 주입 한 후 플라즈마에 의해 모재의 표면을 개질하는 방법에 있어서, 플라즈마 화학기상 증착법으로 모재의 표면에 코팅층을 형성하는 증착단계 와; 증착단계의 이후 단계로서 상기 코팅층이 형성된 모재에 플라즈마 이온을 주입하여 모재의 표면 하부로부터 상기 코팅층에 걸쳐 이온혼합층을 형성하는 이온주입단계 와; 이온주입단계의 이후 단계로서 상기 이온혼합층 상에 플라즈마 화학기상 증착법으로 DLC필름 층을 형성하는 DLC 코팅단계 ; 를 포함하여 이루어질 수 있다.DLC coating method of the present invention for solving the above problems, for example, as described in claim 1, a method of modifying the surface of the base material by plasma after injecting the gaseous material into the vacuum chamber in which the base material is installed A deposition step of forming a coating layer on the surface of the base material by plasma chemical vapor deposition; An ion implantation step of injecting plasma ions into the base material on which the coating layer is formed to form an ion mixture layer from the lower surface of the base material to the coating layer after the deposition step; A DLC coating step of forming a DLC film layer on the ion mixed layer by a plasma chemical vapor deposition method after the ion implantation step ; It may be made, including.

이때, 바람직하게는 특허청구범위 제2항에서 청구되는 바와 같이 증착단계의 실시 이전( 세정단계 )에, 아르곤(Argon)을 이용하여 발생시킨 플라즈마로 모재의 표면을 세정하는 것이다. 이러한 구성에 의하면, 증착단계에서 성막되는 코팅층과 모재 표면 간의 계면접착력을 높일 수 있으므로 박리문제가 크게 완화될 수 있다.At this time, it is preferable to clean the surface of the base material with a plasma generated using argon before the deposition step ( cleaning step ), as claimed in claim 2. According to this configuration, since the interfacial adhesion between the coating layer and the base material surface formed in the deposition step can be increased, the peeling problem can be greatly alleviated.

한편, 상술한 본 발명의 DLC 코팅방법이 효과적으로 실시 가능한 일 예의 DLC 코팅장치는 첨부된 도 2와 본원의 특허청구범위 제5항에 기재된 내용으로부터 알 수 있듯이, 모재를 얹어 놓을 스테이지가 구비된 진공챔버 와; 진공챔버에 접속되어 상기 챔버의 내부를 진공으로 유지시키는 진공유닛 과; 상기 진공챔버에 접속되어 챔버의 내부로 가스물질을 공급하는 질량흐름제어유닛 과; 진공챔버에 접속되어 상기 챔버 내에 플라즈마를 생성하는 플라즈마생성기 와; 스테이지에 (고전압) 펄스를 인가하는 (고전압) 펄스생성기 및 상술한 각 부(진공유닛, 질량흐름제어유닛, 플라즈마생성기, 펄스생성기)의 동작을 제어하는 PLC 로 구성될 수 있다.On the other hand, the DLC coating apparatus of one example that the above-described DLC coating method of the present invention can be effectively implemented, as can be seen from the contents of the attached FIG. 2 and the claims of the present application, the vacuum provided with a stage on which the base material is placed A chamber ; A vacuum unit connected to the vacuum chamber to maintain the interior of the chamber in a vacuum ; A mass flow control unit connected to the vacuum chamber and supplying a gaseous substance into the chamber; A plasma generator connected to the vacuum chamber to generate plasma in the chamber; It can be composed of a (high voltage) pulse generator for applying a (high voltage) pulse to the stage and a PLC for controlling the operations of the above-described units (vacuum unit, mass flow control unit, plasma generator, pulse generator).

여기서, 상기 스테이지는 수은슬립링요소를 개재하여 상기 진공챔버의 내부 바닥에 회전 가능한 구조로 설치될 수 있는데 이러한 구성에 의하면 복잡한 형상의 3차원 물체에 더욱 균일한 두께의 DLC필름 층을 형성할 수 있다. (청구항 6)Here, the stage may be installed in a rotatable structure on the inner bottom of the vacuum chamber via the mercury slipping element, according to this configuration can form a DLC film layer of a more uniform thickness on a three-dimensional object of a complex shape have. (Claim 6)

이하 첨부도면을 참조하여 본 발명의 바람직한 실시예에 따른 DLC 코팅장치로 3차원 물체의 표면에 DLC필름 층을 형성하는 방법에 대해 설명한다.Hereinafter, a method of forming a DLC film layer on the surface of a three-dimensional object with a DLC coating apparatus according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

바람직한 실시예Preferred Embodiment

첨부된 도 1은 본 발명의 일 실시예에 따른 DLC 코팅방법의 작업공정도이고, 도 2는 도 1의 DLC 코팅방법이 수행 가능한 일 예의 DLC 코팅장치를 개략적으로 나타낸 구성도이며, 도 3은 도 1에 표시된 각각의 (단위) 공정이 완료된 직후의 모재 표면 상태를 도식화한 모식도이다.Attached Figure 1 is a work flow diagram of the DLC coating method according to an embodiment of the present invention, Figure 2 is a schematic diagram showing an example of the DLC coating apparatus that can be performed by the DLC coating method of Figure 1, Figure 3 It is a schematic diagram which plotted the state of the base material surface immediately after each (unit) process shown in 1 is completed.

도 2에서 보듯이 본 실시예의 DLC 코팅장치는 모재(100)를 지지하는 스테이지(80)가 진공챔버(10)의 내측 바닥에 설치되어 있고 코팅작업 시 상기 스테이지를 통해 모재에 고전압 펄스를 인가하는 펄스생성기(50)가 진공챔버의 바깥쪽에서 스테이지(80)에 접속되어 있다.As shown in FIG. 2, in the DLC coating apparatus of the present embodiment, a stage 80 supporting the base material 100 is installed at the inner bottom of the vacuum chamber 10, and a high voltage pulse is applied to the base material through the stage during coating. The pulse generator 50 is connected to the stage 80 outside of the vacuum chamber.

또한, 상기 스테이지(80)와 마주보는 형태로 진공챔버(10)의 상면 내측에 플라즈마생성기(40)가 설치되어 있다. 진공챔버의 측면에는 게이지(12)와 벤트라인(70)이 설치되어 있고 상기 진공챔버(10)의 내부로 가스물질을 설정된 공급량에 따라 공급하는 질량흐름제어유닛(30)이 접속되어 있다.In addition, the plasma generator 40 is installed inside the upper surface of the vacuum chamber 10 in a form facing the stage 80. A gauge 12 and a vent line 70 are provided on the side of the vacuum chamber, and a mass flow control unit 30 is connected to the inside of the vacuum chamber 10 to supply a gaseous material according to a set supply amount.

또한, 상기 진공챔버에는 내부를 진공 상태로 유지하는 진공유닛이 접속되어 있는데 이 진공유닛은 도면에 나타낸 바와 같이 스로틀밸브(21), 메인밸브(22), 진공펌프(23), 포라인밸브(24), 러핑밸브(25), 릴리즈밸브(26), 로터리펌프(27), 배관(28) 등으로 구성될 수 있다.In addition, the vacuum chamber is connected to a vacuum unit for keeping the interior in a vacuum state, which is shown in the drawing, the throttle valve 21, the main valve 22, the vacuum pump 23, the foreline valve ( 24, the roughing valve 25, the release valve 26, the rotary pump 27, the pipe 28 and the like.

또한, 상술한 각 부의 동작을 제어할 수 있도록 컴퓨터와 유사한 구성으로 제작된 PLC(Programmable Logic Controller: 60)가 각 구성요소와 전기적으로 접속되어 있다. 여기서, 상기 PLC는 컴퓨터(PC)로 대체되거나 컴퓨터와 함께 조합되어 사용될 수 있다.In addition, a programmable logic controller (PLC) 60 manufactured in a configuration similar to a computer is electrically connected to each component so as to control the operations of the above-described parts. Here, the PLC can be replaced with a computer (PC) or used in combination with the computer.

더욱 구체적으로, 본 실시예의 진공챔버(10)는 지름 500㎜×길이 500㎜의 원통형 압력용기로 제작되었으며, 진공챔버의 내부압력을 30분 이내에 5×10-6 Torr에 도달되게 하는 진공유닛이 사용되었다.More specifically, the vacuum chamber 10 of the present embodiment is made of a cylindrical pressure vessel having a diameter of 500 mm × length 500 mm, and the vacuum unit for reaching the internal pressure of the vacuum chamber to reach 5 × 10 −6 Torr within 30 minutes. Was used.

또한, 본 실시예의 DLC 코팅장치에서는 바이어스 피크전압: 50㎸, 피크전류: 50A, 최대 폭: 10㎲, 최대 상승시간: 1.5㎲, 최대 주파수: 1000㎐의 범위 안에서 펄스가 인가되도록 펄스 파워 서플라이를 구성하였으며, 플라즈마소스로 핫 필라멘트를 사용하였다. 여기서, 핫 필라멘트 이외의 RF나 ECR 마이크로 웨이브도 플라즈마소스로 사용될 수 있다.In the DLC coating apparatus of this embodiment, the pulse power supply is applied so that a pulse is applied within a range of bias peak voltage: 50 Hz, peak current: 50 A, maximum width: 10 Hz, maximum rise time: 1.5 Hz, and maximum frequency: 1000 Hz. A hot filament was used as a plasma source. Here, RF or ERC microwaves other than hot filaments may also be used as the plasma source.

또한, 질량흐름제어유닛을 통해 진공챔버의 내부로 공급되는 가스물질로는 각각의 단위공정에서 사용되는 Ar, CH4, C2H2, C6H6, C7H8, Si(CH3)4 등이 이용되었다.In addition, as a gaseous material supplied into the vacuum chamber through the mass flow control unit, Ar, CH 4 , C 2 H 2 , C 6 H 6 , C 7 H 8 , Si (CH 3) used in each unit process 4 ) and the like.

또한, 전력으로는 3상 220V의 10㎾ 전력이 사용되었다. 아울러, 지름 약 300㎜의 원판 형태로 제작된 스테이지에는 과열을 방지하기 위해 분(分)당 10∼20ℓ의 냉각수가 흐르는 냉각장치를 연결시켜 놓았다.In addition, 10 kW of 3-phase 220V power was used. In addition, to the stage produced in the form of a disk having a diameter of about 300 mm, a cooling device in which 10 to 20 liters of cooling water flows per minute was connected to prevent overheating.

그 결과, 본 실시예에 따른 DLC 코팅장치는 전체 규격이 1500㎜×1400㎜×1700㎜ 정도가 되었다.As a result, the overall size of the DLC coating apparatus according to the present embodiment became about 1500 mm x 1400 mm x 1700 mm.

도 1에서 보듯이 본 실시예의 DLC 코팅장치에서는 모두 4번의 작업공정을 거쳐 DLC코팅이 이루어지는데 각 단위공정(작업)에서의 내부압력은 1×10-4 Torr∼2×10-2 Torr로 유지되고, 공정온도는 200℃ 미만으로 유지된다.As shown in FIG. 1, in the DLC coating apparatus of the present embodiment, the DLC coating is performed through four working processes, and the internal pressure in each unit process (work) is maintained at 1 × 10 -4 Torr to 2 × 10 -2 Torr. And the process temperature is kept below 200 ° C.

우선, 금속으로 만든 공구/부품/금형 등의 모재(100)를 진공챔버(10)의 스테이지(80)에 지지시킨 상태에서, 상기 진공챔버의 일측에 접속되어 있는 질량흐름제어유닛(30)을 통해 진공챔버의 내부로 아르곤(Ar)가스를 주입한 후 플라즈마를 발생시켜 바이어스 전압 7∼15㎸, 펄스 폭 5∼10㎲, 주파수 100∼1000㎐의 조건 하에서 중간에너지 수준으로 모재 표면을 세정한다. ( 세정단계 ) 이와 같이 하면 모재에 붙어 있던 유기물이 제거되고, 플라즈마에 의해 모재 표면이 활성화된다.First, the mass flow control unit 30 connected to one side of the vacuum chamber while the base material 100 made of metal such as a tool / part / mold is supported on the stage 80 of the vacuum chamber 10. After argon (Ar) gas is injected into the vacuum chamber, plasma is generated to clean the surface of the base material at an intermediate energy level under conditions of a bias voltage of 7 to 15 Hz, a pulse width of 5 to 10 Hz, and a frequency of 100 to 1000 Hz. . ( Washing step ) In this way, the organic substance adhering to the base material is removed and the surface of the base material is activated by plasma.

이어서 상기 질량흐름제어유닛(30)을 통해 진공챔버의 내부로 새로운 가스물 질을 도입하되 메탄/아세틸렌/벤젠/톨루엔/티타늄/규소/탄화규소 계열 중에서 선택된 가스물질을 도입한 다음 바이어스 전압 2∼8㎸, 펄스 폭 10∼100㎲, 주파수 100∼1000㎐의 조건 하에서 저에너지 수준으로 모재 표면에 플라즈마 화학증착법으로 코팅층(200)을 형성한다. ( 증착단계 ) 이와 같이 하면, 플라즈마에 의해 가스물질로부터 유리된 탄소나 티타늄 또는 규소 이온이 상기 세정단계에서 활성화된 모재 표면에 수 나노(nano) 수준의 초박막 형태로 균일하게 코팅되며, 이때의 계면접착력은 매우 높은 수준으로 유지된다.Subsequently, a new gaseous material is introduced into the vacuum chamber through the mass flow control unit 30, but a gaseous material selected from methane / acetylene / benzene / toluene / titanium / silicon / silicon carbide series is introduced, and then a bias voltage of 2 to The coating layer 200 is formed on the surface of the base material by plasma chemical vapor deposition at a low energy level under conditions of 8 Hz, pulse width 10-100 Hz and frequency 100-1000 Hz. (Deposition step) In this way, and by plasma uniformly coated with an ultra-thin form of the carbon or titanium or silicon ions can the base material surface activation in the rinse step nm (nano) level glass from gaseous material, wherein the interface between the The adhesion is maintained at a very high level.

이어서, 진공챔버의 내부에 메탄을 주입한 후 바이어스 전압 20∼50㎸, 펄스 폭 5∼10㎲, 주파수 100∼1000㎐의 조건 하에서 고에너지 수준으로 모재에 이온을 주입한다. ( 이온주입단계 ) 이와 같이 하면 모재를 감싸고 있는 듯한 모습의 플라즈마 쉬쓰 쪽으로 탄소 이온이 거의 수직으로 입사되어 에너지가 높은 탄소 이온의 경우에는 모재 속까지 파고들고 에너지가 낮은 탄소 이온의 경우에는 코팅층 위에 퇴적됨으로써 전체적으로 모재의 표면 하부에서 코팅층에 이르는 이온혼합층(300)이 형성된다.Subsequently, after injecting methane into the vacuum chamber, ions are implanted into the base metal at high energy levels under conditions of a bias voltage of 20 to 50 Hz, a pulse width of 5 to 10 Hz, and a frequency of 100 to 1000 Hz. ( Ion implantation step ) In this way, the carbon ions are incident almost vertically toward the plasma sheath, which looks like it is covering the base material, and the high energy carbon ions penetrate into the base material, and the low energy carbon ions are deposited on the coating layer. As a result, the ion mixture layer 300 extending from the lower surface of the base material to the coating layer is formed.

이후, 진공챔버의 내부에 메탄/아세틸렌/벤젠/톨루엔 계열의 물질 중에서 선택된 어느 한 종류의 가스물질을 주입한 후 바이어스 전압 2∼8㎸, 펄스 폭 10∼100㎲, 주파수 100∼1000㎐의 조건 하에서 저에너지 수준으로 이온혼합층(300)의 표면에 플라즈마 화학증착법으로 다이아몬드 유사 카본필름 층(400: DLC필름 층 )을 형성한다. ( DLC 코팅단계 ) 이와 같이 하면, 탄소 이온을 주성분으로 하는 이온혼합층 위에 다시 탄소 계열의 DLC필름 층이 적층된 형태가 되어 코팅층 사이의 밀착력이 매우 높게 나타난다.Thereafter, any one gaseous material selected from methane / acetylene / benzene / toluene-based materials is injected into the vacuum chamber, and a bias voltage of 2 to 8 Hz, a pulse width of 10 to 100 Hz, and a frequency of 100 to 1000 Hz is applied. The diamond-like carbon film layer 400 (DLC film layer) is formed on the surface of the ion mixed layer 300 at a low energy level by plasma chemical vapor deposition. ( DLC coating step ) In this way, the carbon-based DLC film layer is laminated on the ion-mixed layer containing carbon ions as a main component, and the adhesion between the coating layers is very high.

한편, 상술한 DLC코팅단계의 완료 시 벤트라인(70)을 열어 진공압력을 해제한 다음 상기 진공챔버의 일측에 마련해 놓은 도어(미도시)를 통해 모재를 꺼냄으로써 DLC코팅공정의 모든 작업이 완료된다.On the other hand, upon completion of the above-described DLC coating step, the vent line 70 is released to release the vacuum pressure, and then all operations of the DLC coating process are completed by taking out the base material through a door (not shown) provided on one side of the vacuum chamber. do.

아래 표 1은 상술한 본 발명의 일 실시예에 따른 DLC코팅공정과 종래 PVD법 간의 차이점을 대비한 비교표로 마찰계수와 내마모성 및 공정온도 면에서 본 발명이 매우 우수한 것임을 알 수 있다.Table 1 below is a comparison table for comparing the difference between the DLC coating process according to an embodiment of the present invention and the conventional PVD method can be seen that the present invention is very excellent in terms of friction coefficient, wear resistance and process temperature.

Figure 112005069890450-PAT00001
Figure 112005069890450-PAT00001

이상과 같이, 본 발명의 일 실시예에 따른 DLC코팅공정에 의하면 모재의 표면을 중에너지의 아르곤으로 세정한 후 저에너지의 플라즈마 화학증착법으로 코팅층을 증착하고 이어서 고에너지의 플라즈마 이온주입법으로 탄소 이온을 모재에 침투시켜 이온혼합층을 형성한 후 다시 저에너지의 플라즈마 화학증착법을 적용하여 DLC필름 층을 형성함으로써 계면접착력이 매우 높고 박리 문제가 전혀 없는 매우 우수한 DLC필름 층을 얻을 수 있다.As described above, according to the DLC coating process according to an embodiment of the present invention, the surface of the base material is cleaned with argon of heavy energy, and then the coating layer is deposited by low energy plasma chemical vapor deposition. Then, carbon ions are deposited by high energy plasma ion implantation. After penetrating the base material to form the ion mixture layer, and again applying a low energy plasma chemical vapor deposition method to form a DLC film layer can be obtained a very excellent DLC film layer having a very high interfacial adhesion and no peeling problem.

또한, 본 발명의 일 실시예에 따른 DLC코팅공정은 종래 PVD 증착장치보다도 낮은 공정온도에서 운전되므로 모재의 모양안정성과 치수안정성이 매우 높다.In addition, since the DLC coating process according to an embodiment of the present invention is operated at a lower process temperature than the conventional PVD deposition apparatus, the shape stability and dimensional stability of the base material are very high.

또한, 모재 주변에 형성되는 플라즈마 쉬쓰의 유도작용에 의해 복잡한 형상의 3차원 물체에도 DLC필름 층을 용이하게 형성할 수 있고 층 두께도 균일하게 할 수 있다.In addition, due to the induction action of the plasma sheath formed around the base material, the DLC film layer can be easily formed even on a complicated three-dimensional object, and the layer thickness can be made uniform.

또한, 코팅층 사이의 계면접착력을 향상시키기 위한 사후 표면처리나 열처리가 전혀 필요 없으므로 전체 작업공수가 줄어들어 비용이 절감되는 효과가 있다.In addition, there is no need for any post-surface treatment or heat treatment to improve the interfacial adhesion between the coating layers, thereby reducing the overall work man-hours and reducing costs.

Claims (6)

모재가 설치된 진공챔버 내에 가스물질을 주입한 후 플라즈마에 의해 상기 모재의 표면을 개질하는 방법에 있어서,In the method of modifying the surface of the base material by plasma after injecting a gaseous material into the vacuum chamber in which the base material is installed, 플라즈마 화학기상 증착법으로 모재의 표면에 코팅층을 형성하는 증착단계;Deposition step of forming a coating layer on the surface of the base material by plasma chemical vapor deposition; 증착단계의 이후 단계로서, 코팅층이 형성된 모재에 플라즈마 이온을 주입하여 모재의 표면 하부로부터 코팅층에 걸쳐 이온혼합층을 형성하는 이온주입단계;After the deposition step, the ion implantation step of forming an ion mixture layer from the lower surface of the base material to the coating layer by injecting plasma ions into the base material on which the coating layer is formed; 이온주입단계의 이후 단계로서, 상기 이온혼합층 상에 플라즈마 화학기상 증착법에 의해 DLC필름 층을 형성하는 DLC 코팅단계; 가 실시되는 것을 특징으로 하는 DLC 코팅방법.After the ion implantation step, DLC coating step of forming a DLC film layer on the ion mixture layer by plasma chemical vapor deposition; DLC coating method characterized in that is carried out. 제1항에 있어서,The method of claim 1, 상기 증착단계의 이전 단계로서,As a previous step of the deposition step, 아르곤(Argon)을 이용하여 발생시킨 플라즈마로 상기 모재의 표면을 세정하는 세정단계가 실시되는 것을 특징으로 하는 DLC 코팅방법.DLC coating method characterized in that the cleaning step of cleaning the surface of the base material with a plasma generated by using argon (Argon) is carried out. 제2항에 있어서,The method of claim 2, 상기 세정단계는The cleaning step 진공챔버의 내부에 아르곤 가스가 주입된 상태에서 바이어스 전압 7∼15㎸, 펄스 폭 5∼10㎲, 주파수 100∼1000㎐의 조건 하에 실시되는 것을 특징으로 하는 DLC 코팅방법.A DLC coating method characterized in that it is carried out under conditions of a bias voltage of 7 to 15 Hz, a pulse width of 5 to 10 Hz, and a frequency of 100 to 1000 Hz with an argon gas injected into the vacuum chamber. 제1항 또는 제2항 또는 제3항에 있어서,The method according to claim 1 or 2 or 3, A) 상기 증착단계 A) the deposition step is 진공챔버의 내부에 메탄/아세틸렌/벤젠/톨루엔/티타늄/규소/탄화규소 계열의 물질 중에서 선택된 어느 한 종류의 가스물질이 주입된 다음 바이어스 전압 2∼8㎸, 펄스 폭 10∼100㎲, 주파수 100∼1000㎐의 조건 하에 실시되고,Gas material of any one selected from methane / acetylene / benzene / toluene / titanium / silicon / silicon carbide series is injected into the vacuum chamber, and then the bias voltage is 2 to 8㎸, the pulse width is 10 to 100㎲, the frequency is 100. Under conditions of ˜1000 Hz, B) 상기 이온주입단계 B) the ion implantation step is 진공챔버의 내부에 메탄가스가 주입된 상태에서 바이어스 전압 20∼50㎸, 펄스 폭 5∼10㎲, 주파수 100∼1000㎐의 조건 하에 실시되며,Methane gas is injected into the vacuum chamber under a bias voltage of 20 to 50 Hz, a pulse width of 5 to 10 Hz, and a frequency of 100 to 1000 Hz. C) 상기 DLC 코팅단계 C) the DLC coating step is 진공챔버의 내부에 메탄/아세틸렌/벤젠/톨루엔계열의 물질 중에서 선택된 어느 한 종류의 가스물질이 주입된 상태에서 바이어스 전압 2∼8㎸, 펄스 폭 10∼100㎲, 주파수 100∼1000㎐의 조건 하에 실시되는 것을 특징으로 하는 DLC 코팅방법.Under the conditions of a bias voltage of 2 to 8 kHz, a pulse width of 10 to 100 kHz, and a frequency of 100 to 1000 kHz in the state in which a gaseous material selected from methane / acetylene / benzene / toluene series material is injected into the vacuum chamber DLC coating method, characterized in that carried out. 모재의 표면에 DLC필름 층을 형성하는 장치에 있어서,In the apparatus for forming a DLC film layer on the surface of the base material, 모재를 얹어 놓을 스테이지가 구비된 진공챔버;A vacuum chamber having a stage on which a base material is to be placed; 상기 진공챔버에 접속되어 내부를 진공으로 유지시키는 진공유닛;A vacuum unit connected to the vacuum chamber to maintain the interior in a vacuum; 상기 진공챔버에 접속되어 내부로 가스물질을 공급하는 질량흐름제어유닛;A mass flow control unit connected to the vacuum chamber and supplying a gas material therein; 상기 진공챔버에 접속되어 내부에 플라즈마를 생성하는 플라즈마생성기;A plasma generator connected to the vacuum chamber to generate a plasma therein; 상기 스테이지에 고전압 펄스를 인가하는 펄스생성기; 및A pulse generator for applying a high voltage pulse to the stage; And 상기 각 부의 동작을 제어하는 PLC; 로 구성된 DLC 코팅장치.A PLC for controlling the operation of each unit; DLC coating device composed of. 제5항에 있어서,The method of claim 5, 상기 스테이지는 수은슬립링요소를 개재하여 회전 가능하게 설치된 것을 특징으로 하는 DLC 코팅장치.And the stage is rotatably installed via a mercury slipping element.
KR1020050115469A 2005-11-30 2005-11-30 Facility for coating the 3-dimensional member with Diamond-Like Carbon Film by Plasma CVD combined with Plasma Ion Implantation KR100732198B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050115469A KR100732198B1 (en) 2005-11-30 2005-11-30 Facility for coating the 3-dimensional member with Diamond-Like Carbon Film by Plasma CVD combined with Plasma Ion Implantation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050115469A KR100732198B1 (en) 2005-11-30 2005-11-30 Facility for coating the 3-dimensional member with Diamond-Like Carbon Film by Plasma CVD combined with Plasma Ion Implantation

Publications (2)

Publication Number Publication Date
KR20070056580A true KR20070056580A (en) 2007-06-04
KR100732198B1 KR100732198B1 (en) 2007-06-25

Family

ID=38354324

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050115469A KR100732198B1 (en) 2005-11-30 2005-11-30 Facility for coating the 3-dimensional member with Diamond-Like Carbon Film by Plasma CVD combined with Plasma Ion Implantation

Country Status (1)

Country Link
KR (1) KR100732198B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045364B1 (en) * 2009-05-20 2011-06-30 권민수 PCB manufacturing method using high radiation metal plate
WO2013073734A1 (en) * 2011-11-14 2013-05-23 한국야금 주식회사 Method for diamond-coating both side surfaces of insert and diamond-coated insert manufactured by same method
KR102021846B1 (en) * 2019-05-29 2019-09-17 대경에스티 주식회사 Manufacturing method of a socket for inspecting an IC chip having an excellent anti-abrasive property and its release
CN113355644A (en) * 2020-03-05 2021-09-07 四川大学 Modification process method for immersed injection in-situ surface gradient reconstruction wear-resistant diamond-like coating
CN115627457A (en) * 2022-08-22 2023-01-20 哈尔滨工业大学 Preparation method of DLC film layer on copper surface

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230749B1 (en) * 2009-08-19 2013-02-07 한라공조주식회사 Surface coating structure of shoe of automobile refrigerant compressibility
KR101130049B1 (en) * 2009-09-08 2012-03-28 김일천 Piston coated diamond like carbon thin film and Method of manufacturing the same
KR101897070B1 (en) * 2012-12-28 2018-09-12 재단법인 포항산업과학연구원 Re-coating method of the injection mold

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4653964B2 (en) * 2003-04-08 2011-03-16 株式会社栗田製作所 DLC film forming method and DLC film-formed product

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045364B1 (en) * 2009-05-20 2011-06-30 권민수 PCB manufacturing method using high radiation metal plate
WO2013073734A1 (en) * 2011-11-14 2013-05-23 한국야금 주식회사 Method for diamond-coating both side surfaces of insert and diamond-coated insert manufactured by same method
KR101329097B1 (en) * 2011-11-14 2013-11-14 홍성필 Method of coating both side of cutting insert with diamond and diamond coated instert manufactured by the same
KR102021846B1 (en) * 2019-05-29 2019-09-17 대경에스티 주식회사 Manufacturing method of a socket for inspecting an IC chip having an excellent anti-abrasive property and its release
CN113355644A (en) * 2020-03-05 2021-09-07 四川大学 Modification process method for immersed injection in-situ surface gradient reconstruction wear-resistant diamond-like coating
CN113355644B (en) * 2020-03-05 2022-07-19 四川大学 Process method for modifying immersed injection in-situ surface gradient reconstruction wear-resistant diamond-like coating
CN115627457A (en) * 2022-08-22 2023-01-20 哈尔滨工业大学 Preparation method of DLC film layer on copper surface
CN115627457B (en) * 2022-08-22 2024-04-23 哈尔滨工业大学 Preparation method of DLC film layer on copper surface

Also Published As

Publication number Publication date
KR100732198B1 (en) 2007-06-25

Similar Documents

Publication Publication Date Title
KR100732198B1 (en) Facility for coating the 3-dimensional member with Diamond-Like Carbon Film by Plasma CVD combined with Plasma Ion Implantation
TWI585223B (en) A coated article of martensitic steel and a method of forming a coated article of steel
JP4431386B2 (en) Method for forming nanostructured functional layer and coating layer produced thereby
US9115755B2 (en) Current insulated bearing components and bearings
US6599400B2 (en) Method for the manufacture of coatings and an article
JP4653964B2 (en) DLC film forming method and DLC film-formed product
CN105385983B (en) A kind of hard coat preparation method of thermal diffusion using nano-carbon material as pretreatment
JP5933701B2 (en) Coating removal method for hard carbon layer
CN109267007A (en) Device and method for depositing hydrogen-free tetrahedral amorphous carbon-coating on workpiece
JP6084996B2 (en) Strengthening adhesion of low temperature ceramic coating
CN106521493A (en) Diamond-like carbon film of gradient structure and preparation method thereof
Polini et al. Recent Advances in the Deposition of Diamond Coatings on Co‐Cemented Tungsten Carbides
CN111500982A (en) Tetrahedral amorphous carbon composite coating and preparation method thereof
CN109082647B (en) Preparation method of DLC protective film on aluminum alloy surface
CN109182997B (en) Preparation method of Si-doped diamond-like coating
CN107858684B (en) Metal-diamond-like composite coating, preparation method and application thereof and coated tool
CN111378947B (en) Preparation method of diamond-like thin film
CN115044880A (en) Film coating jig and film coating method
US6602829B1 (en) Method for applying a lubricating layer on an object and object with an adhesive lubricating layer
JP5360603B2 (en) Method for producing amorphous carbon-coated member
KR100920725B1 (en) Thin film deposition apparatus, thin film deposition process and coated tool thereof
CN103160801B (en) In the method that metallic interior surface prepares diamond-like carbon film
KR101192321B1 (en) Dlc coating method and device thereof
JP2008266704A (en) Heat resistant and oxidation resistant carbon film and method for forming the same, and heat resistant and oxidation resistant carbon film-coated article and method for producing the same
CN108441834B (en) Method for diamond coating surface of transmission element of machine tool

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130411

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140429

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150608

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160516

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170510

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee