JP4743473B2 - Conductive diamond coated substrate - Google Patents

Conductive diamond coated substrate Download PDF

Info

Publication number
JP4743473B2
JP4743473B2 JP2004231118A JP2004231118A JP4743473B2 JP 4743473 B2 JP4743473 B2 JP 4743473B2 JP 2004231118 A JP2004231118 A JP 2004231118A JP 2004231118 A JP2004231118 A JP 2004231118A JP 4743473 B2 JP4743473 B2 JP 4743473B2
Authority
JP
Japan
Prior art keywords
conductive diamond
substrate
diamond
coated substrate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004231118A
Other languages
Japanese (ja)
Other versions
JP2006045026A (en
Inventor
裕一郎 関
健二 泉
貴浩 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004231118A priority Critical patent/JP4743473B2/en
Publication of JP2006045026A publication Critical patent/JP2006045026A/en
Application granted granted Critical
Publication of JP4743473B2 publication Critical patent/JP4743473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、母材上に導電性ダイヤモンド層を被覆した基板、及びそれ用いた電気化学電極、フィルターに関する。   The present invention relates to a substrate in which a conductive diamond layer is coated on a base material, and an electrochemical electrode and a filter using the substrate.

ダイヤモンドは種々の特徴的な性質を有しており、それらを活かした工具、ヒートシンク、窓材、等の応用製品が実用化されている。
人工的にダイヤモンドを製造する方法としては超高圧を用いる方法と気相から合成する方法の2つに大別される。気相合成法は大面積の膜が得られる手法であり、熱フィラメントCVD、マイクロ波プラズマCVD、DCアークプラズマジェットCVD、火炎法等の方法がある。
Diamond has various characteristic properties, and applied products such as tools, heat sinks, window materials, and the like that utilize them are put into practical use.
Artificial diamond production methods can be broadly divided into two methods: using ultra-high pressure and synthesizing from the gas phase. The vapor phase synthesis method is a method for obtaining a film with a large area, and there are methods such as hot filament CVD, microwave plasma CVD, DC arc plasma jet CVD, and flame method.

ダイヤモンドは通常絶縁体であるが、ホウ素、窒素、リン、硫黄等の不純物を添加することにより導電性を付与することができる。このように種々の不純物を添加してダイヤモンドに導電性を付与する試みは、ダイヤモンドの広いバンドギャップを生かした半導体素子、電子放出素子の研究・開発において盛んに行われている。
中でもホウ素は、大量に添加することにより、ダイヤモンドに金属的な導電性を付与することができる。このホウ素ドープダイヤモンドは水処理用、電気化学反応検出用の化学電極として分解性能が高く、検出感度が高く、電気化学の分野で盛んに研究が行われている。
Diamond is usually an insulator, but conductivity can be imparted by adding impurities such as boron, nitrogen, phosphorus, and sulfur. Attempts to impart conductivity to diamond by adding various impurities as described above have been actively conducted in research and development of semiconductor devices and electron-emitting devices that make use of the wide band gap of diamond.
Among them, boron can impart metallic conductivity to diamond by adding a large amount of boron. This boron-doped diamond has high decomposability and high detection sensitivity as a chemical electrode for water treatment and electrochemical reaction detection, and has been actively researched in the field of electrochemistry.

特許文献1では、陽極酸化処理されたダイヤモンド薄膜電極を用いて被測定液中の尿酸を安定して高感度で測定する方法に関する発明が記載されており、ダイヤモンド薄膜をマイクロ波プラズマCVD法で製造するに際し、アセトンとメタノールの混合物に酸化硼素(B)を溶解したものをHガスのキャリアガスとして装置内に導入して成膜する方法が記載されている。 Patent Document 1 describes an invention related to a method for stably measuring uric acid in a liquid to be measured with high sensitivity using an anodized diamond thin film electrode, and manufacturing a diamond thin film by a microwave plasma CVD method. In doing so, a method of forming a film by introducing boron oxide (B 2 O 3 ) dissolved in a mixture of acetone and methanol into the apparatus as a carrier gas of H 2 gas is described.

ダイヤモンド基板を電気化学用電極として用いる場合、ダイヤモンド膜の剥離、破損、膜ピンホールの発生、母材基板の腐食等が発生し、耐久性が不十分であるという問題があった。
ダイヤモンド膜が母材から剥がれる理由は、溶液による母材基板の化学的および電気化学的な浸食、母材基板−ダイヤモンド膜間の応力、物理的な衝撃など様々な要因が考えられる。
When a diamond substrate is used as an electrode for electrochemical use, there has been a problem that the diamond film is peeled and damaged, film pinholes are generated, the base material substrate is corroded, and the durability is insufficient.
The reason why the diamond film is peeled off from the base material is considered to be various factors such as chemical and electrochemical erosion of the base material substrate by the solution, stress between the base material substrate and the diamond film, and physical impact.

特許文献2にはダイヤモンド膜を緻密にし、無孔質のものとすることで腐食性溶液等に対して十分な電極の耐性が得られる、としている。確かに、このような手法により、ある程度は液の浸入、外からのダメージを防ぎ、基板の腐食、ダイヤモンド膜の剥離を減少させることはできる。しかし、実際には結晶粒界からの僅かな浸入、使用中の物理的な衝撃による僅かな破損や液の性質、使用条件等により実用上、確実に防ぐことはできない、という問題点がある。   Patent Document 2 states that a sufficient resistance of the electrode to a corrosive solution or the like can be obtained by making the diamond film dense and nonporous. Certainly, by such a method, it is possible to prevent liquid intrusion and damage from the outside to some extent, and reduce corrosion of the substrate and peeling of the diamond film. However, in practice, there is a problem that it cannot be surely prevented practically due to slight penetration from the crystal grain boundary, slight breakage due to physical impact during use, the properties of the liquid, use conditions, and the like.

非特許文献1には、シリコン基板及びニオブ基板上に成膜した導電性ダイヤモンドを用いて電解試験を行った際、溶液や電解条件によっては基板の腐食摩耗、ダイヤモンド膜の剥離などによりダイヤモンド電極の耐久性が不十分であることが記載されている。
以上のように、水処理用電極や高感度のセンサー用化学電極として導電性ダイヤモンド電極は研究されているが、実用上は未だ種々の問題点があり、広く実用化されるには至っていない。
特開2001−147211号公報 特開2000−313982号公報 第26回電解技術検討会−ソーダ工業技術討論会予稿集、P1−P4
In Non-Patent Document 1, when an electrolysis test is performed using conductive diamond deposited on a silicon substrate and a niobium substrate, depending on the solution and electrolysis conditions, the diamond electrode may be damaged due to corrosion wear of the substrate or peeling of the diamond film. It is described that the durability is insufficient.
As described above, conductive diamond electrodes have been studied as water treatment electrodes or high-sensitivity sensor chemical electrodes. However, there are still various problems in practical use, and they have not been put into practical use.
JP 2001-147 211 A JP 2000-313982 A Proceedings of the 26th Electrolysis Technology Review Meeting-Soda Industrial Technology Discussion Meeting, P1-P4

本発明の目的は、母材上に導電性ダイヤモンド層を被覆した導電性ダイヤモンド被覆基板において、母材基板からのダイヤモンド膜の剥離等を確実に防ぎ、耐久性に優れた導電性ダイヤモンド被覆基板を提供することを目的とする。   An object of the present invention is to provide a conductive diamond-coated substrate having a conductive diamond layer coated on a base material, which can reliably prevent peeling of the diamond film from the base material substrate and has excellent durability. The purpose is to provide.

本発明者等は、導電性ダイヤモンド層を母材となる基板上に被覆する際、母材からダイヤモンド層が剥離するなど、導電性ダイヤモンド基板としての耐久性が不足している問題に対して、母材基板を多孔質にすることによって耐久性に優れた導電性ダイヤモンド被覆基板が提供できることを見いだした。すなわち、本発明は以下の構成よりなる。   The inventors of the present invention, for coating the conductive diamond layer on the base material substrate, such as peeling the diamond layer from the base material, the problem of insufficient durability as a conductive diamond substrate, It has been found that a conductive diamond-coated substrate having excellent durability can be provided by making the base material substrate porous. That is, the present invention has the following configuration.

(1)母材上に導電性ダイヤモンドの層を被覆した基板であって、前記導電性ダイヤモンドの層のダイヤモンド粒子の平均粒径が0.05〜20μmであり、前記母材が多孔質絶縁セラミックであって、該母材の気孔径が0.1μm〜100μmであることを特徴とする電解電極材料用導電性ダイヤモンド被覆基板。
(2)前記導電性ダイヤモンドの層が、ホウ酸トリメチルまたはホウ酸トリエチルをホウ素源として用いたフィラメントCVD法によって形成されたものであることを特徴とする請求項1記載の電解電極材料用導電性ダイヤモンド被覆基板。
(3)前記絶縁セラミックが酸化アルミニウム、窒化珪素、窒化アルミニウム、酸化珪素の中から選択される少なくとも1つ以上を含むものであることを特徴とする前記(1)または(2)記載の電解電極材料用導電性ダイヤモンド被覆基板。
(1) A substrate in which a conductive diamond layer is coated on a base material, wherein the conductive diamond layer has an average particle diameter of 0.05 to 20 μm, and the base material is a porous insulating ceramic. der it, electrolyte electrode material for a conductive diamond-coated substrate pore diameter of the base material is characterized 0.1μm~100μm der Rukoto.
(2) the layer of conductive diamond, the electrolyte electrode material for a conductive claim 1, wherein the boric acid trimethyl or triethyl borate and is formed by the filament CVD method using as a boron source Diamond coated substrate.
(3) For the electrolytic electrode material according to (1) or (2), wherein the insulating ceramic contains at least one selected from aluminum oxide, silicon nitride, aluminum nitride, and silicon oxide Conductive diamond coated substrate.

(4)前記導電性ダイヤモンドが多結晶CVD膜であることを特徴とする前記(1)〜(3)のいずれか一項に記載の電解電極材料用導電性ダイヤモンド被覆基板。
(5)前記導電性ダイヤモンドの層の中にホウ素、窒素、リン、硫黄の中から選択される少なくとも1つ以上の不純物を含むことを特徴とする前記(1)〜(4)のいずれか一項に記載の電解電極材料用導電性ダイヤモンド被覆基板。
(4) The conductive diamond-coated substrate for electrolytic electrode materials according to any one of (1) to (3), wherein the conductive diamond is a polycrystalline CVD film.
(5) Any one of (1) to (4) above, wherein the conductive diamond layer contains at least one impurity selected from boron, nitrogen, phosphorus, and sulfur. The conductive diamond-coated substrate for an electrolytic electrode material according to Item.

(6)前記母材が開気孔であることを特徴とする前記(1)〜(5)のいずれか一項に記載の電解電極材料用導電性ダイヤモンド被覆基板。
(7)前記母材が閉気孔であることを特徴とする請求項前記(1)〜(5)のいずれか一項に記載の電解電極材料用導電性ダイヤモンド被覆基板。
(6) The conductive diamond-coated substrate for electrolytic electrode material according to any one of (1) to (5), wherein the base material is open pores.
(7) The conductive diamond-coated substrate for electrolytic electrode material according to any one of (1) to (5), wherein the base material is closed pores.

(8)前記導電性ダイヤモンド被覆基板が開気孔であることを特徴とする請求項前記(1)〜(6)のいずれか一項に記載の電解電極材料用導電性ダイヤモンド被覆基板。
)前記導電性ダイヤモンド被覆基板の導電性ダイヤモンド層の膜厚が0.1μm〜100μmであることを特徴とする前記(8)に記載の電解電極材料用導電性ダイヤモンド被覆基板。
(8) The conductive diamond-coated substrate for an electrolytic electrode material according to any one of (1) to (6), wherein the conductive diamond-coated substrate is an open pore.
( 9 ) The conductive diamond-coated substrate for electrolytic electrode material according to (8) above, wherein the conductive diamond layer of the conductive diamond-coated substrate has a film thickness of 0.1 μm to 100 μm.

10)前記(1)〜()のいずれか一項に記載の電解電極材料用導電性ダイヤモンド被覆基板を用いたことを特徴とする水の電気分解処理に用いる電気化学電極。
11)前記(8)又は(9)に記載の電解電極材料用導電性ダイヤモンド被覆基板を用いたことを特徴とする溶液の濾過に用いるフィルター。
( 10 ) An electrochemical electrode used for electrolysis of water, wherein the conductive diamond-coated substrate for electrolytic electrode material according to any one of (1) to ( 9 ) is used.
( 11 ) A filter used for filtration of a solution, characterized in that the conductive diamond-coated substrate for electrolytic electrode material according to (8) or (9) is used.

導電性ダイヤモンド層を母材となる基板上に被覆する際、母材基板を多孔質にすることによって耐久性に優れた導電性ダイヤモンド被覆基板とすることができる。
また、母材基板が開気孔であって、表面に導電性ダイヤモンド膜を被覆した状態で開気孔である導電性ダイヤモンド被覆基板とすることにより、溶液等が基板の表裏を通過することができるので、例えば電気化学電極として用いる場合、電解装置として溶液が電極を通過することにより効果的に化学反応をすすめることができる。
また、上記開気孔の導電性ダイヤモンド被覆基板は、フィルターとしても効果的に利用することができる。フィルターとして用いるとともに導電性ダイヤモンド電極としての効果を併用することにより、電解しながら濾過することができるほか、フィルターに異物が引っかかって目詰まりとなる問題に対して電解によって分解することができ目詰まりのしないフィルターとして機能させることができる。
When the conductive diamond layer is coated on the base material substrate, the conductive base material substrate can be made porous to provide a conductive diamond coated substrate with excellent durability.
Moreover, since the base material substrate is an open pore and the conductive diamond-coated substrate is an open pore with the surface coated with a conductive diamond film, a solution or the like can pass through the front and back of the substrate. For example, when used as an electrochemical electrode, a chemical reaction can be effectively promoted by passing a solution through the electrode as an electrolytic device.
Moreover, the conductive diamond-coated substrate having the open pores can be effectively used as a filter. In addition to being used as a filter and combined with the effect of a conductive diamond electrode, it can be filtered while being electrolyzed, and it can be broken down by electrolysis to prevent clogging due to foreign matter caught on the filter. It can be made to function as a filter that doesn't break.

導電性ダイヤモンド層を母材となる基板上に被覆する際、母材からダイヤモンド層が剥離するなど、導電性ダイヤモンド被覆基板としての耐久性が不足している問題に対して、母材基板を多孔質にすることによって耐久性に優れた導電性ダイヤモンド被覆基板が提供できる。すなわち、導電性ダイヤモンド被覆基板を水処理用電極として使用する際、電極に対する腐食溶液による化学反応、電気化学反応、物理的衝撃等により、電解溶液のダイヤモンド膜への浸入、基板の腐食やダイヤモンド膜の破損、剥離などが起こり、ダイヤモンド被覆電極としての使用が不能となる問題に対し、母材基板を多孔質にすることにより、母材とダイヤモンド膜との密着性を高め、電気化学反応による基板の腐食がある場合には、更に基板を絶縁性セラミックとすることにより基板およびその上に被覆したダイヤモンド膜の耐久性を高めることが可能となる。   When the conductive diamond layer is coated on the base material substrate, the base material substrate is made porous for problems such as the diamond layer peeling off from the base material and insufficient durability as a conductive diamond coated substrate. By making the quality, a conductive diamond-coated substrate having excellent durability can be provided. That is, when a conductive diamond-coated substrate is used as an electrode for water treatment, the electrolytic solution penetrates into the diamond film due to chemical reaction, electrochemical reaction, physical impact, etc. with respect to the electrode. In order to prevent the use of diamond coated electrodes as a result of breakage, peeling, etc. of the substrate, by making the base material substrate porous, the adhesion between the base material and the diamond film is improved, and the substrate by electrochemical reaction In the case where there is corrosion, it is possible to further enhance the durability of the substrate and the diamond film coated thereon by making the substrate an insulating ceramic.

母材基板の種類としては、絶縁性のセラミック多孔体であれば特に限定しない。ダイヤモンドを被覆することができる基板としては、Si、Al、AlN、SiO等のセラミック、またはこれらの混合物、またはムライト、コージライトなどこれらを含む結晶構造をもつセラミックの多孔体であれば良い。セラミックは導電性ダイヤモンド被覆基板を電解用電極として用いる際、電解腐食による基板の浸食が起こらないように絶縁体のセラミックとする。 The type of the base material substrate is not particularly limited as long as it is an insulating ceramic porous body. As a substrate that can be coated with diamond, ceramics such as Si 3 N 4 , Al 2 O 3 , AlN, and SiO 2 , or a mixture thereof, or a porous ceramic having a crystal structure including these, such as mullite and cordierite. If it is a body. When the conductive diamond-coated substrate is used as an electrode for electrolysis, the ceramic is an insulating ceramic so that the substrate is not eroded by electrolytic corrosion.

このような母材基板を用い、まず母材基板にダイヤモンドの成長を促すための前処理を行う。前処理としては、母材基板表面にダイヤモンドの粉末を供給し、これらによって基板表面をスクラッチすることによって母材基板表面にダイヤモンドの核付け処理を行うことができる。あるいは、液体中にダイヤモンド粉末と母材基板を入れ、超音波を印加することによっても同様の核付け処理を行うことができる。   Using such a base material substrate, first, pretreatment for promoting the growth of diamond is performed on the base material substrate. As the pretreatment, diamond nucleation treatment can be performed on the surface of the base material substrate by supplying diamond powder to the surface of the base material substrate and scratching the surface of the substrate by these. Alternatively, the same nucleation process can be performed by putting diamond powder and a base material substrate in a liquid and applying ultrasonic waves.

このような母材基板を用い、ダイヤモンド膜の成膜を行う。導電性ダイヤモンド層の形成方法としては、一般にCVD法が広く用いられている。本発明において、CVD法により得られた多結晶膜が好ましい。CVD法としては特に限定しないが、熱フィラメントCVD法、マイクロ波プラズマCVD法が好ましい。
フィラメントCVD法の場合は、母材基板をフィラメントCVD装置の試料台に置き、母材基板の近傍にW、Ta等のフィラメントを設置し、母材基板を密閉して真空排気した後、装置内に水素と炭素が原子比率で1〜3%となるようにガスを導入し、フィラメントに電流を流して加熱することによって母材基板表面にダイヤモンドの膜を堆積させることができる。
ガスの種類としては、例えば水素とメタンをCH/Hが1〜5%となるようにガスを入れ、ガス圧力を1.3〜13.3kPaとし、フィラメント温度を2000〜2200℃となるように電流を流し、基板の温度が650〜1000℃となるように試料台からの電熱によって冷却すると良い。
A diamond film is formed using such a base material substrate. In general, a CVD method is widely used as a method for forming the conductive diamond layer. In the present invention, a polycrystalline film obtained by a CVD method is preferred. Although it does not specifically limit as CVD method, Hot filament CVD method and microwave plasma CVD method are preferable.
In the case of the filament CVD method, the base material substrate is placed on the sample stage of the filament CVD device, a filament such as W or Ta is installed in the vicinity of the base material substrate, the base material substrate is sealed and evacuated, and then the inside of the apparatus A diamond film can be deposited on the surface of the base material substrate by introducing a gas such that hydrogen and carbon are in an atomic ratio of 1 to 3%, and applying current to the filament and heating.
As the type of gas, for example, hydrogen and methane are added so that CH 4 / H 2 is 1 to 5%, the gas pressure is 1.3 to 13.3 kPa, and the filament temperature is 2000 to 2200 ° C. In this way, it is preferable that the substrate is cooled by electric heat from the sample stage so that the temperature of the substrate becomes 650 to 1000 ° C.

マイクロ波プラズマCVDの場合、同様に試料台に試料をセットして真空排気、ガスを導入し、マイクロ波を導入して基板近傍にプラズマを発生させることで基板表面にダイヤモンドを堆積させることができる。マイクロ波としては例えば、周波数950MHzや2.45GHzのものを用い、0.5〜60kWの出力でマイクロ波を発生させ、例えば水素とメタンをCH/Hが1〜10%となるようにガス比率を調整し、母材基板温度650〜1100℃となるように試料を冷却すると良い。
いずれの場合も、ガスの源は限定しないが、メタンガスを用いれば扱いやすい。
Similarly, in the case of microwave plasma CVD, diamond can be deposited on the substrate surface by setting a sample on a sample stage, evacuating and introducing gas, and introducing microwaves to generate plasma near the substrate. . For example, microwaves having a frequency of 950 MHz or 2.45 GHz are used, and microwaves are generated with an output of 0.5 to 60 kW. For example, hydrogen and methane are made so that CH 4 / H 2 becomes 1 to 10%. The sample may be cooled by adjusting the gas ratio so that the base material substrate temperature becomes 650 to 1100 ° C.
In either case, the gas source is not limited, but it is easy to handle if methane gas is used.

ホウ素の添加方法としては、前記ガスの中に、B/C比率が0.01〜5%となるようにB源を装置内に導入すれば良い。B源の導入方法としては、ジボランガスを用いる方法、装置内にホウ酸を置く方法、メタノールにホウ酸を溶かし、これにアセトンを加えて、水素ガスによってバブリングする方法、ホウ酸トリメチルやホウ酸トリエチルをアルゴン等の不活性ガスによってバブリングする方法などがある。いずれの方法を用いても良い。   As a method for adding boron, a B source may be introduced into the apparatus so that the B / C ratio is 0.01 to 5% in the gas. As a method for introducing the B source, a method using diborane gas, a method in which boric acid is placed in the apparatus, a method in which boric acid is dissolved in methanol, acetone is added to this and bubbling with hydrogen gas, trimethyl borate or triethyl borate And bubbling with an inert gas such as argon. Any method may be used.

母材基板を多孔質とすることによって、耐久性に優れた導電性ダイヤモンド被覆基板を得ることができる。
多孔質母材基板は開気孔であっても閉気孔であっても良い。ここで、「母材基板が開気孔である」とは、母材基板上の片側から液体を供給した場合、母材基板の中を通過して反対側へと液体が通ることを示す。反対に、「母材基板が閉気孔である」とは、多孔質でない緻密体の基板と同様に片側から供給した液体が母材基板の中を通過せず、反対側へ通らないことを示す。
By making the base material substrate porous, a conductive diamond-coated substrate having excellent durability can be obtained.
The porous base material substrate may be open pores or closed pores. Here, “the base material substrate has open pores” indicates that when liquid is supplied from one side of the base material substrate, the liquid passes through the base material substrate to the opposite side. On the other hand, “the base material substrate has closed pores” means that the liquid supplied from one side does not pass through the base material substrate and does not pass to the opposite side as in the case of a dense porous substrate. .

母材基板が開気孔であって、表面に導電性ダイヤモンド膜を被覆した状態で開気孔であった場合、溶液等が基板の表裏を通過することができる。こうすることにより、例えば電気化学電極として用いる場合、電解装置として電極を溶液が通過することにより効果的に化学反応をすすめることができ好ましい。   In the case where the base material substrate has open pores, and the surface is covered with a conductive diamond film, the solution or the like can pass through the front and back of the substrate. By doing so, for example, when used as an electrochemical electrode, a chemical reaction can be effectively promoted by passing the solution through the electrode as an electrolytic device, which is preferable.

また、フィルターとしても効果的に利用することができる。多孔質セラミックをフィルターとして用いるとともに導電性ダイヤモンド電極としての効果を併用することにより、電解しながら濾過することができるほか、フィルターに異物が引っかかって目詰まりとなる問題に対して電解によって分解することができ目詰まりのしないフィルターとして機能させることができる。   It can also be used effectively as a filter. By using porous ceramics as a filter and combining the effect as a conductive diamond electrode, it can be filtered while electrolyzing, and it can be decomposed by electrolysis to prevent clogging due to foreign matter caught on the filter. Can function as a filter that does not clog.

また、母材基板が閉気孔であっても、ダイヤモンド膜の基板への密着性は高めることは可能であり、多くの場合、母材基板の機械的強度は閉気孔の方が開気孔の場合よりも強く、基板の破損や応力に対する耐久性が高く、好ましい。   In addition, even if the base material substrate is closed pores, the adhesion of the diamond film to the substrate can be increased. In many cases, the mechanical strength of the base material substrate is higher when closed pores are open pores. It is stronger and more durable against substrate breakage and stress, which is preferable.

ダイヤモンド被覆基板を開気孔とする場合、多孔質母材基板の気孔径、ダイヤモンド膜の膜厚、粒径の関係が重要となる。
多孔質母材基板の気孔径は小さすぎると凹凸が小さくなり、ダイヤモンド膜と基板の密着性が向上が得られない。また、ダイヤモンド膜を被覆した時に、開気孔の基板であっても膜の被覆によって閉気孔になり、基板を液体が通過しなくなるため、このような用途に用いる場合は好ましくない。
また多孔質母材基板の気孔径が大きすぎる場合も密着性の向上効果が少なくなる他、フィルターとして機能しなくなり、基板の強度も低下する。
このようなことから、母材基板の気孔径は0.1μm〜100μmの範囲内であることが好ましい。
ダイヤモンド膜の膜厚としては0.1μmから100μmの範囲内であることが好ましい。
ダイヤモンド膜のダイヤモンド粒子の平均粒径としては0.05μm〜20μmの範囲内であることが好ましい。
When the diamond-coated substrate has open pores, the relationship between the pore size of the porous base material substrate, the film thickness of the diamond film, and the particle size is important.
If the pore size of the porous base material substrate is too small, the unevenness becomes small, and the adhesion between the diamond film and the substrate cannot be improved. Further, when a diamond film is coated, even a substrate with open pores becomes closed pores by coating the film, and liquid does not pass through the substrate.
Further, when the pore size of the porous base material substrate is too large, the effect of improving the adhesion is reduced, and it does not function as a filter, and the strength of the substrate is also reduced.
Therefore, the pore diameter of the base material substrate is preferably in the range of 0.1 μm to 100 μm.
The film thickness of the diamond film is preferably in the range of 0.1 μm to 100 μm.
The average particle diameter of diamond particles in the diamond film is preferably in the range of 0.05 μm to 20 μm.

実施例1
母材基板として50mmφのサイズのものを用いた。基板の材質としては、Si、Nb、各種セラミック基板、各種多孔質セラミック基板、他数種類を用いた。
前処理としてダイヤモンドパウダーをイソプロピルアルコール内に入れ、母材基板を入れて超音波を印加することで種付け処理を行った。成膜方法としてはプラズマCVD法を用いた。ガスとしてH、CH、Bを用い、それぞれの流量を500sccm、10sccm、0.1sccm導入し、ガス圧力を2.7kPaとした。
2.45GHzのマイクロ波電源を用い、1kW導入した。母材基板温度は試料台の温度を水冷により調節し、900℃とした。母材基板温度は放射温度計を用いて母材基板表面の温度を測定した。この方法により3時間の成膜を行い、母材基板上に10μmのダイヤモンド膜を成膜した。このような方法で得られたダイヤモンド膜の抵抗率は4端子法による測定で5×10−3Ω・cmであった。
Example 1
A substrate with a size of 50 mmφ was used as a base material substrate. As the material of the substrate, Si, Nb, various ceramic substrates, various porous ceramic substrates, and several other types were used.
As a pretreatment, diamond powder was placed in isopropyl alcohol, a base material substrate was placed, and ultrasonic waves were applied to perform seeding treatment. A plasma CVD method was used as a film forming method. H 2 , CH 4 , and B 2 H 6 were used as gases, and the respective flow rates were introduced at 500 sccm, 10 sccm, and 0.1 sccm, and the gas pressure was set to 2.7 kPa.
Using a 2.45 GHz microwave power source, 1 kW was introduced. The base material substrate temperature was set to 900 ° C. by adjusting the temperature of the sample stage by water cooling. The base material substrate temperature was measured by using a radiation thermometer. A film was formed for 3 hours by this method, and a 10 μm diamond film was formed on the base material substrate. The resistivity of the diamond film obtained by such a method was 5 × 10 −3 Ω · cm as measured by the 4-terminal method.

得られたダイヤモンド電極2枚の導電性ダイヤモンド被覆面を対向させ、流動型電解装置に装着させた。電極間距離を10mmとする。溶液として1Mの硫酸ナトリウム溶液を用いた。導電性ダイヤモンド膜の一部に電線を接合し、片方を陽極、他方を陰極として電源に接続した。両電極間に電位を加えることにより、電気分解試験を行った。1000時間の電解試験の後、電極を外し、その外観を観察した。
得られた基板の種類、電解試験後の結果を表1に示す。
The two conductive diamond coated surfaces of the diamond electrodes were opposed to each other and mounted on a fluidized electrolyzer. The distance between the electrodes is 10 mm. A 1M sodium sulfate solution was used as the solution. An electric wire was joined to a part of the conductive diamond film, and one side was connected to a power source as an anode and the other as a cathode. An electrolysis test was performed by applying a potential between both electrodes. After 1000 hours of electrolysis test, the electrode was removed and the appearance was observed.
Table 1 shows the types of the obtained substrates and the results after the electrolytic test.

表1に示すように、サンプルNo.7、8の母材基板が多孔質でないシリコン、ニオブ基板のものは、試験の途中で、基板の剥離が発覚したため、中断した。また、サンプルNo.7の母材基板の表面が鏡面研磨された基板からはやや大きな剥離が観察された。他、セラミック基板では試験を中断することなく、すべて最後まで試験を行った。試験後、電解装置より基板を外して各電極を観察した結果、サンプルNo.5及び6の母材基板が多孔質でないセラミック基板の場合は、細かい剥離が数点、基板上に発見された。
これに対し、母材基板として多孔質セラミック基板を用いたものはすべてダイヤモンド膜の剥離が見られなかった。以上から、多孔質セラミック基板を用いたダイヤモンド被覆電極は良好な耐久性を示した。
As shown in Table 1, sample no. The silicon and niobium substrates whose base material substrates 7 and 8 were not porous were interrupted because the substrate was peeled off during the test. Sample No. Slightly large peeling was observed from the substrate in which the surface of the base material substrate 7 was mirror-polished. In addition, all the tests were performed on the ceramic substrate without interruption. After the test, the substrate was removed from the electrolytic device and each electrode was observed. In the case where the base substrates 5 and 6 were non-porous ceramic substrates, several fine delaminations were found on the substrate.
On the other hand, the diamond film was not peeled off in all of the substrates using the porous ceramic substrate as the base material substrate. From the above, the diamond-coated electrode using the porous ceramic substrate showed good durability.

実施例2
実施例1と同様の方法により、ダイヤモンド電極を作製した。母材基板として30mmφの開気孔の多孔質炭化珪素基板を用いた。母材基板は平均気孔径が0.06μm〜24μmのもの4種類、用いた。ダイヤモンドの膜厚は成膜時間を変えて成膜し0.32μm〜7.9μmとした。
作製したダイヤモンド電極を用い、図1に示すように2枚のダイヤモンド基板を、導電性ダイヤモンド被覆面が対向するように設置した。電極の片側方向(A領域)から溶液を供給し、B領域を経てC領域へ溶液が送られるようにポンプを用いて溶液を循環させた。
溶液には0.1Mの硫酸ナトリウム溶液中に有機性溶液を混合し、電極間に配線を施し、電源を接続し、電流を流し電解を行った。電解を4時間行った後、溶液中の有機成分の変化量を測定した。結果を表2に示す。
Example 2
A diamond electrode was produced in the same manner as in Example 1. As the base material substrate, a porous silicon carbide substrate with 30 mmφ open pores was used. Four types of base material substrates having an average pore diameter of 0.06 μm to 24 μm were used. The film thickness of diamond was set to 0.32 μm to 7.9 μm by changing the film formation time.
Using the produced diamond electrode, as shown in FIG. 1, two diamond substrates were placed so that the conductive diamond-coated surfaces face each other. The solution was supplied from one side of the electrode (A region), and the solution was circulated using a pump so that the solution was sent to the C region via the B region.
The solution was mixed with an organic solution in a 0.1 M sodium sulfate solution, wiring was provided between the electrodes, a power source was connected, and a current was passed to conduct electrolysis. After electrolysis was performed for 4 hours, the amount of change in the organic component in the solution was measured. The results are shown in Table 2.

結果から、気孔径が0.06μmのものはダイヤモンドの被覆によって目詰まりをおこし、閉気孔となってしまった。ダイヤモンド粒子の平均粒径が0.045μmのものは有機成分に変化がみられなかった。サンプルNo.2−2、2−4、2−5の気孔径が0.12μm〜24μmのものはいずれも有機成分の現象が観察された。
この結果から、溶液が電極を通過する間に電気分解により、有機物が分解されていることが確認できた。
From the results, those having a pore diameter of 0.06 μm were clogged by the diamond coating, and closed pores were formed. When the average particle diameter of the diamond particles was 0.045 μm, no change was observed in the organic component. Sample No. The phenomenon of organic components was observed in any of 2-2, 2-4, and 2-5 having a pore diameter of 0.12 μm to 24 μm.
From this result, it was confirmed that organic substances were decomposed by electrolysis while the solution passed through the electrode.

実施例3
実施例1と同様の方法により、導電性ダイヤモンド被覆基板を作製した。母材基板として30mmφの開気孔の多孔質窒化珪素セラミック基板で、気孔径が0.6μm〜110μmのものを5種類用意し、これに導電性ダイヤモンド膜を被覆したものを陽極に用いた。陰極としては、陽極に用いた母材基板と同じ基板外径で2mmφの穴が多数開いたメッシュ状の窒化珪素セラミック基板を母材基板として用いた。陽極基板のダイヤモンドの膜厚は成膜時間を変えて成膜し0.28μm〜93.1μmとした。陰極基板側のダイヤモンド膜の厚みは10μmとした。
Example 3
A conductive diamond-coated substrate was produced in the same manner as in Example 1. Five types of porous silicon nitride ceramic substrates with open pores of 30 mmφ having a pore diameter of 0.6 μm to 110 μm were prepared as a base material substrate, and a substrate coated with a conductive diamond film was used as an anode. As the cathode, a mesh-like silicon nitride ceramic substrate having the same substrate outer diameter as that used for the anode and having many holes of 2 mmφ was used as the substrate. The film thickness of diamond on the anode substrate was set to 0.28 μm to 93.1 μm by changing the film formation time. The thickness of the diamond film on the cathode substrate side was 10 μm.

作製したダイヤモンド被覆基板を用い、図2に示すように2枚のダイヤモンド基板を、導電性ダイヤモンド被覆面が対向するように設置した。電極の片側方向(A領域)からクラスター状の異物を含む溶液を供給し、B領域を経てC領域へ溶液が送られるようにポンプを用いて溶液を循環させた。溶液には0.1Mの硫酸ナトリウム溶液中にクラスター状の異物を混合し、電極に配線を施し、電源を接続し、必要に応じて電流を流した。溶液中のクラスター状異物の濃度変化量を測定した。結果を表3に示す。尚、サンプルNo.3−3の基板の導電性ダイヤモンド被覆面のSEM観察像を図3に示す。   Using the produced diamond-coated substrate, as shown in FIG. 2, two diamond substrates were placed so that the conductive diamond-coated surfaces face each other. A solution containing cluster-like foreign matters was supplied from one side of the electrode (A region), and the solution was circulated using a pump so that the solution was sent to the C region via the B region. In the solution, a cluster-like foreign substance was mixed in a 0.1 M sodium sulfate solution, wiring was applied to the electrodes, a power source was connected, and a current was passed as necessary. The amount of change in the concentration of cluster-like foreign matter in the solution was measured. The results are shown in Table 3. Sample No. An SEM observation image of the conductive diamond-coated surface of the substrate 3-3 is shown in FIG.

結果から、気孔径が110μmのものは目が粗すぎ、異物の減少が確認されなかった。気孔径が0.6μm〜95μmのものはいずれも異物の減少が確認されフィルターとして機能していることが確認された。
また、これらの導電性ダイヤモンド被覆基板を用いて異物を濾過した際、表面に異物が堆積されるのが確認された。この時、電極間に電流を流すことにより、電極表面の異物が分解され、取り除かれていく様子が観察された。電流は、電極表面に異物が溜まってから、定期的に流しても良いし、流しながら、濾過しても異物が減少しながら、電極表面を清浄に保つことが可能であることが確認された。
From the results, when the pore diameter was 110 μm, the eyes were too coarse, and the reduction of foreign matters was not confirmed. Any of the pores having a pore diameter of 0.6 μm to 95 μm was confirmed to be functioning as a filter because of a decrease in foreign matter.
Further, it was confirmed that foreign matters were deposited on the surface when foreign matters were filtered using these conductive diamond-coated substrates. At this time, it was observed that a foreign substance on the electrode surface was decomposed and removed by passing a current between the electrodes. It was confirmed that the current can flow periodically after foreign matter accumulates on the electrode surface, and it is possible to keep the electrode surface clean while reducing foreign matter even if it is filtered while flowing. .

また、溶液に異物と有機溶液を混合したものを用いた場合、電極に電流を連続、あるいは断続的に流すことにより、異物を減少させながら、電極表面を清浄に保ち、かつ実施例2の場合と同様に、有機成分が減少されていく様子が確認された。
この結果から、溶液が電極を通過する際、異物が濾過されており、電極がフィルターとして機能していることが確認され、また電極に電流を流すことで電気分解により、電極上に異物が溜まらないこと、有機成分が分解されていることが確認された。
In the case of using a mixture of a foreign substance and an organic solution as the solution, the electrode surface is kept clean while reducing the foreign substance by continuously or intermittently passing an electric current through the electrode. In the same way as above, it was confirmed that the organic components were decreasing.
From this result, it is confirmed that when the solution passes through the electrode, the foreign matter is filtered and the electrode functions as a filter. In addition, when an electric current is passed through the electrode, the foreign matter is accumulated on the electrode by electrolysis. It was confirmed that the organic components were decomposed.

実施例2で得られたダイヤモンド電極の評価に用いた装置の概略図である。3 is a schematic view of an apparatus used for evaluation of a diamond electrode obtained in Example 2. FIG. 実施例3で得られたダイヤモンド電極の評価に用いた装置の概略図である。FIG. 5 is a schematic view of an apparatus used for evaluation of the diamond electrode obtained in Example 3. 実施例3で得られたサンプルNo.3−3の基板の導電性ダイヤモンド被覆面のSEM観察像である。Sample No. obtained in Example 3 It is a SEM observation image of the conductive diamond coating surface of the board | substrate of 3-3.

Claims (11)

母材上に導電性ダイヤモンドの層を被覆した基板であって、前記導電性ダイヤモンドの層のダイヤモンド粒子の平均粒径が0.05〜20μmであり、前記母材が多孔質絶縁セラミックであって、該母材の気孔径が0.1μm〜100μmであることを特徴とする電解電極材料用導電性ダイヤモンド被覆基板。 A substrate coated with a layer of conductive diamond on the base material, the average particle size of the diamond particles in the layer of conductive diamond is 0.05 to 20 m, the base material is Tsu porous insulating ceramic der Te, electrolyte electrode material for a conductive diamond-coated substrate pore diameter of the base material is characterized 0.1μm~100μm der Rukoto. 前記導電性ダイヤモンドの層が、ホウ酸トリメチルまたはホウ酸トリエチルをホウ素源として用いたフィラメントCVD法によって形成されたものであることを特徴とする請求項1記載の電解電極材料用導電性ダイヤモンド被覆基板。 2. The conductive diamond-coated substrate for electrolytic electrode material according to claim 1, wherein the conductive diamond layer is formed by a filament CVD method using trimethyl borate or triethyl borate as a boron source. . 前記絶縁セラミックが酸化アルミニウム、窒化珪素、窒化アルミニウム、酸化珪素の中から選択される少なくとも1つ以上を含むものであることを特徴とする請求項1または2記載の電解電極材料用導電性ダイヤモンド被覆基板。 3. The conductive diamond-coated substrate for electrolytic electrode material according to claim 1, wherein the insulating ceramic contains at least one selected from aluminum oxide, silicon nitride, aluminum nitride, and silicon oxide. 前記導電性ダイヤモンドが多結晶CVD膜であることを特徴とする請求項1〜3のいずれか一項に記載の電解電極材料用導電性ダイヤモンド被覆基板。 The conductive diamond-coated substrate for an electrolytic electrode material according to any one of claims 1 to 3, wherein the conductive diamond is a polycrystalline CVD film. 前記導電性ダイヤモンドの層の中にホウ素、窒素、リン、硫黄の中から選択される少なくとも1つ以上の不純物を含むことを特徴とする請求項1〜4のいずれか一項に記載の電解電極材料用導電性ダイヤモンド被覆基板。 5. The electrolytic electrode according to claim 1, wherein the conductive diamond layer contains at least one impurity selected from boron, nitrogen, phosphorus, and sulfur. Conductive diamond coated substrate for materials. 前記母材が開気孔であることを特徴とする請求項1〜5のいずれか一項に記載の電解電極材料用導電性ダイヤモンド被覆基板。 6. The conductive diamond-coated substrate for electrolytic electrode material according to any one of claims 1 to 5, wherein the base material is open pores. 前記母材が閉気孔であることを特徴とする請求項1〜5のいずれか一項に記載の電解電極材料用導電性ダイヤモンド被覆基板。 6. The conductive diamond-coated substrate for electrolytic electrode material according to claim 1, wherein the base material is closed pores. 前記導電性ダイヤモンド被覆基板が開気孔であることを特徴とする請求項1〜6のいずれか一項に記載の電解電極材料用導電性ダイヤモンド被覆基板。 The conductive diamond-coated substrate for an electrolytic electrode material according to any one of claims 1 to 6, wherein the conductive diamond-coated substrate is an open pore. 前記導電性ダイヤモンド被覆基板の導電性ダイヤモンド層の膜厚が0.1μm〜100μmであることを特徴とする請求項8に記載の電解電極材料用導電性ダイヤモンド被覆基板。 The conductive diamond-coated substrate for an electrolytic electrode material according to claim 8, wherein a film thickness of the conductive diamond layer of the conductive diamond-coated substrate is 0.1 µm to 100 µm. 請求項1〜のいずれか一項に記載の電解電極材料用導電性ダイヤモンド被覆基板を用いたことを特徴とする水の電気分解処理に用いる電気化学電極。 Electrochemical electrode for use in claim 1 electrolysis process of water characterized by using an electrolytic electrode material for a conductive diamond-coated substrate of any one of 9. 請求項8又は9に記載の電解電極材料用導電性ダイヤモンド被覆基板を用いたことを特徴とする溶液の濾過に用いるフィルター。 A filter used for filtration of a solution, wherein the conductive diamond-coated substrate for electrolytic electrode material according to claim 8 or 9 is used.
JP2004231118A 2004-08-06 2004-08-06 Conductive diamond coated substrate Expired - Fee Related JP4743473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231118A JP4743473B2 (en) 2004-08-06 2004-08-06 Conductive diamond coated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004231118A JP4743473B2 (en) 2004-08-06 2004-08-06 Conductive diamond coated substrate

Publications (2)

Publication Number Publication Date
JP2006045026A JP2006045026A (en) 2006-02-16
JP4743473B2 true JP4743473B2 (en) 2011-08-10

Family

ID=36024030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231118A Expired - Fee Related JP4743473B2 (en) 2004-08-06 2004-08-06 Conductive diamond coated substrate

Country Status (1)

Country Link
JP (1) JP4743473B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5284716B2 (en) * 2008-07-31 2013-09-11 株式会社神戸製鋼所 Diamond electrode, method for producing the diamond electrode, and ozone generator
JP2010248586A (en) * 2009-04-17 2010-11-04 Japan Vilene Co Ltd Diamond coating structure and method for manufacturing the same
JP5891638B2 (en) * 2011-07-28 2016-03-23 住友電気工業株式会社 Polycrystalline diamond, method for producing the same, and electron emission source
JP5891637B2 (en) * 2011-07-28 2016-03-23 住友電気工業株式会社 Polycrystalline diamond and method for producing the same
CN103717530B (en) 2011-07-28 2017-11-14 住友电气工业株式会社 Polycrystalline diamond and its preparation method, scoring tool, stitch marker, trimmer, throw, water jet nozzle, wire-drawing die, cutting element and electron emission source
JP5891639B2 (en) * 2011-07-28 2016-03-23 住友電気工業株式会社 Polycrystalline diamond and manufacturing method thereof, scribe tool, scribe wheel, dresser, rotary tool, water jet orifice, wire drawing die, and cutting tool
US20170001153A1 (en) * 2013-11-29 2017-01-05 National Institute For Materials Science Nanofiltration or reverse osmosis membrane made of hard carbon film, filtering filter, two-layer-bonded-type filtering filter, and methods for manufacturing same
CN111485223B (en) * 2020-05-11 2022-05-24 南京岱蒙特科技有限公司 Boron-doped diamond electrode with ultrahigh specific surface area, and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192874A (en) * 1999-12-28 2001-07-17 Permelec Electrode Ltd Method for preparing persulfuric acid-dissolving water
JP2002189016A (en) * 2000-12-21 2002-07-05 Sentan Kagaku Gijutsu Incubation Center:Kk Thiol concentration measuring method and sensor used for the same
JP2003164875A (en) * 2001-12-04 2003-06-10 Omega:Kk Electrolytic apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223095A (en) * 1986-03-24 1987-10-01 Asahi Chem Ind Co Ltd Production of diamond semiconductor
JPH01162770A (en) * 1987-12-18 1989-06-27 Kyocera Corp Diamond-coated member
JPH03197387A (en) * 1989-11-28 1991-08-28 Nippon Alum Mfg Co Ltd Method for forming diamond thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192874A (en) * 1999-12-28 2001-07-17 Permelec Electrode Ltd Method for preparing persulfuric acid-dissolving water
JP2002189016A (en) * 2000-12-21 2002-07-05 Sentan Kagaku Gijutsu Incubation Center:Kk Thiol concentration measuring method and sensor used for the same
JP2003164875A (en) * 2001-12-04 2003-06-10 Omega:Kk Electrolytic apparatus

Also Published As

Publication number Publication date
JP2006045026A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4581998B2 (en) Diamond-coated electrode and manufacturing method thereof
KR20060055364A (en) Diamond coated porous substrate and liquid treatment apparatus and liquid treatment method using same
US7438790B2 (en) Electrode for electrolysis and process for producing the same
TW200847272A (en) Aluminum-plated components of semiconductor material processing apparatuses and methods of manufacturing the components
US8338323B2 (en) Electrode for electrochemical reaction and production process thereof
Lu et al. Comparative study on stability of boron doped diamond coated titanium and niobium electrodes
JP2007238989A (en) Method for manufacturing diamond electrode
JP4743473B2 (en) Conductive diamond coated substrate
TW201347282A (en) Carbon electrode devices for use with liquids and associated methods
JP2004231983A (en) Diamond coated electrode
CN108486546B (en) BDD membrane electrode material and preparation method thereof
CN1735716A (en) Diamond-coated electrode and method for producing same
Lim et al. Improved stability of titanium based boron-doped chemical vapor deposited diamond thin-film electrode by modifying titanium substrate surface
WO2021117498A1 (en) Tantalum carbonate-coated graphite member and method for producing same
JP2008063607A (en) Diamond-covered substrate, electrode and method for electrochemical treatment, and manufacturing method of diamond-covered substrate
JP4953356B2 (en) Porous diamond film and method for producing the same
WO2007034665A1 (en) Diamond covered substrate, filtration filter, and electrode
US20080268150A1 (en) Method of Coating for Diamond Electrode
JP2006169094A (en) Diamond-coated porous composite substrate and liquid treatment apparatus and liquid treatment method using same
Kim et al. Characteristics of Boron-Doped Diamond Electrodes Deposited on Titanium Substrate with TiN x Interlayer
Ray et al. Deposition and characterization of diamond-like carbon thin films by electro-deposition technique using organic liquid
JP2007154262A (en) Composite substrate and production method, and electrode and electrolyzer
JP5527821B2 (en) Corrosion resistant material
JP4205909B2 (en) Silicon substrate for diamond thin film production and diamond thin film electrode
JP2006206971A (en) Diamond coated electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees