JP4232198B2 - Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials - Google Patents

Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials Download PDF

Info

Publication number
JP4232198B2
JP4232198B2 JP2003426154A JP2003426154A JP4232198B2 JP 4232198 B2 JP4232198 B2 JP 4232198B2 JP 2003426154 A JP2003426154 A JP 2003426154A JP 2003426154 A JP2003426154 A JP 2003426154A JP 4232198 B2 JP4232198 B2 JP 4232198B2
Authority
JP
Japan
Prior art keywords
cemented carbide
cutting
carbide substrate
dlc film
coated carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003426154A
Other languages
Japanese (ja)
Other versions
JP2005177959A (en
Inventor
智行 益野
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003426154A priority Critical patent/JP4232198B2/en
Publication of JP2005177959A publication Critical patent/JP2005177959A/en
Application granted granted Critical
Publication of JP4232198B2 publication Critical patent/JP4232198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、プラズマCVD(化学蒸着)成膜のダイヤモンド状炭素被膜(以下、DLC被膜という)が、同じ水素含有量で、相対的に高い硬さを有し、したがって主に各種のAl合金やCu合金などの非鉄材料の高速切削加工に用いた場合に、すぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)の製造方法に関するものである。 In the present invention, a diamond-like carbon film (hereinafter referred to as a DLC film) formed by plasma CVD (chemical vapor deposition) has the same hydrogen content and a relatively high hardness. The present invention relates to a method of manufacturing a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated carbide tool) that exhibits excellent wear resistance when used for high-speed cutting of non-ferrous materials such as Cu alloys.

一般に、被覆超硬工具として、各種の非鉄材料などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどが知られており、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具なども知られている。   In general, as a coated carbide tool, a throw-away tip that is used to attach and detachably attach to the tip of a cutting tool for turning and planing of various non-ferrous materials, drills used for drilling, etc. Known as miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. Also, the throwaway tip is detachably attached, and cutting is performed in the same manner as the solid type end mill. The throwaway end mill tool to perform is also known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金からなる基体(以下、超硬基体と云う)の表面に、プラズマCVD法により水素含有量が10〜15原子%のDLC被膜を0.6〜1.5μmの平均層厚で蒸着してなる被覆超硬工具が知られており、かかる被覆超硬工具を構成するDLC被膜における水素含有量が、強度(耐チッピング性)と硬さ(耐摩耗性)を考慮して10〜15原子%に定められていることも知られている。   Further, as a coated carbide tool, a hydrogen content of 10 to 15 atomic% is formed on the surface of a substrate (hereinafter referred to as a cemented carbide substrate) made of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide by a plasma CVD method. Coated carbide tools formed by vapor-depositing a DLC film with an average layer thickness of 0.6 to 1.5 μm are known, and the hydrogen content in the DLC film constituting such a coated carbide tool is high in strength (chipping resistance). It is also known that it is determined to be 10 to 15 atomic% in consideration of properties) and hardness (wear resistance).

また、上記の被覆超硬工具が、図2(a)および(b)にそれぞれ概略平面図および概略正面図で示される通り、一方側側壁に原料ガス導入口1、他方側側壁に排気口4をそれぞれ設けたプラズマCVD装置を用い、前記装置内の中央部に設置された回転テーブル5上に、これの中心軸から半径方向に所定距離離れた位置に外周部に沿って配置された支持体8に超硬基体6を装着し、装置内を排気して、例えば8×10−5Pa以下の真空に保持しながら、装置内に前回転テーブルを挟んで設置されたヒーター3で装置内を例えば200℃に加熱し、かつ前記回転テーブルで自転しながら回転する超硬基体6には−500〜−1500Vのバイアス電圧(バイアス電源7)を印加し、さらに装置内に初期プラズマを発生させた状態で、原料ガスとして例えばアセチレン(C)などの炭化水素と水素をそれぞれ例えばC:165〜240cc/minおよびH:50〜125cc/minの流量で導入して(この場合、相対的に炭化水素の導入割合を少なくして、水素の導入割合を多くすれば、DLC被膜中の水素含有量は多くなって、硬さが相対的に低いものとなり、反対に炭化水素の導入割合を多くして、水素の導入割合を少なくすれば、DLC被膜中の水素含有量は少なくなって、相対的に硬さの低いものとなる)、これを分解・プラズマ化(+Cイオンおよび+Hイオン)することにより、10〜15原子%の水素を含有し、18〜22GPaの硬さを有するDLC被膜を前記超硬基体の表面に0.6〜1.5μmの平均層厚で蒸着することにより製造されることも知られている。
特開平3−158455号公報 特開2001−62605号公報
Further, the above-mentioned coated carbide tool has the raw material gas inlet 1 on one side wall and the exhaust port 4 on the other side wall as shown in the schematic plan view and schematic front view in FIGS. 2 (a) and 2 (b), respectively. And a support body disposed along the outer peripheral portion at a predetermined distance in the radial direction from the central axis of the rotary table 5 installed in the central portion of the apparatus. The carbide substrate 6 is attached to 8 and the inside of the apparatus is evacuated, and the inside of the apparatus is held by the heater 3 installed with the front rotary table sandwiched in the apparatus while maintaining a vacuum of, for example, 8 × 10 −5 Pa or less. For example, a bias voltage (bias power supply 7) of −500 to −1500 V is applied to the carbide substrate 6 that is heated to 200 ° C. and rotates while rotating on the rotary table, and initial plasma is generated in the apparatus. In the state, raw material For example, hydrocarbons such as acetylene (C 2 H 2 ) and hydrogen are introduced at a flow rate of, for example, C 2 H 2 : 165 to 240 cc / min and H 2 : 50 to 125 cc / min (in this case, relative If the introduction ratio of hydrocarbons is decreased and the introduction ratio of hydrogen is increased, the hydrogen content in the DLC film increases and the hardness becomes relatively low. Increasing the hydrogen introduction ratio and reducing the hydrogen content in the DLC film results in a relatively low hardness), which is decomposed and converted into plasma (+ C ions and + H ions) To produce a DLC film containing 10-15 atomic% hydrogen and having a hardness of 18-22 GPa on the surface of the cemented carbide substrate with an average layer thickness of 0.6-1.5 μm. It is also known to be.
Japanese Patent Laid-Open No. 3-158455 JP 2001-62605 A

近年の切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを構成するDLC被膜が耐チッピング性重視の面から水素含有量を10〜15原子%と相対的に高くして、高強度を具備するようにし、反面硬さを犠牲にしたものであるため、特に高速切削加工では摩耗進行が速く、この結果比較的短時間で使用寿命に至るのが現状である。   In recent years, there has been a strong demand for labor saving, energy saving, and cost reduction with respect to cutting, and with this, cutting tends to increase in speed. However, in the above-mentioned conventional coated carbide tools, the DLC constituting this The coating has a relatively high hydrogen content of 10 to 15 atomic% from the aspect of emphasizing chipping resistance so that it has high strength, while sacrificing its hardness. In the present situation, the wear progresses rapidly, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の従来被覆超硬工具のDLC被膜に着目し、これの一段の耐摩耗性向上(硬さ向上)を図るべく、研究を行った結果、
(a) 図1(a)および(b)にそれぞれ概略平面図および概略正面図で示される通り、側壁外周に沿って所定間隔毎に複数の電磁コイル2を設け、一方側壁内周に沿っては同じくヒーター3を設け、かつ前記電磁コイルの横方向中央部には装置内に貫通して原料ガス導入口1をそれぞれ設けたプラズマCVD装置を用い、前記電磁コイルにより磁場9を形成して、超硬基体6の装着部における磁束密度を50〜300G(ガウス)とし(この場合前記磁束密度によって水素含有量が変化する)、かつ前記原料ガス導入口1よりの原料ガスをアセチレンだけとすると共に、その流量を150〜250cc/mの範囲内の一定量とする以外は、上記の従来プラズマCVD装置でのDLC被膜蒸着条件と同じ条件で、同じく水素含有量が10〜15原子%のDLC被膜を形成すると、この結果のDLC被膜は、水素含有量が同じ10〜15原子%であるにもかかわらず、25〜35GPaの相対的に高い硬さを有するようになること。
(b) 上記(a)のDLC被膜を0.6〜1.5μmの平均層厚で蒸着形成してなる被覆超硬工具においては、前記DLC被膜が、水素を従来DLC被膜と同じ10〜15原子%を含有するので、十分な強度を有し、かつ表面粗さで30nm以下のすぐれた表面平滑性を保持することから、すぐれた耐チッピング性を発揮し、しかも18〜22GPaの硬さを有する前記従来DLC被膜に比して相対的に高い25〜35GPaの硬さを有するので、一段とすぐれた耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
In view of the above, the present inventors have focused on the DLC film of the above-mentioned conventional coated carbide tool and conducted research to further improve the wear resistance (hardness improvement). result,
(A) As shown in the schematic plan view and the schematic front view in FIGS. 1 (a) and 1 (b), respectively, a plurality of electromagnetic coils 2 are provided at predetermined intervals along the outer periphery of the side wall, and along the inner periphery of the side wall. Is also provided with a heater 3, and a plasma CVD apparatus provided with a source gas inlet 1 penetrating into the apparatus in the lateral center of the electromagnetic coil, and forming a magnetic field 9 with the electromagnetic coil, The magnetic flux density in the mounting portion of the cemented carbide substrate 6 is 50 to 300 G (Gauss) (in this case, the hydrogen content varies depending on the magnetic flux density), and the source gas from the source gas inlet 1 is only acetylene. , Except that the flow rate is a certain amount within the range of 150 to 250 cc / m, under the same conditions as the DLC film deposition conditions in the conventional plasma CVD apparatus, the hydrogen content is also 10 to 1. When a 5 atomic% DLC film is formed, the resulting DLC film will have a relatively high hardness of 25-35 GPa despite the same 10-15 atomic% hydrogen content. .
(B) In the coated carbide tool formed by vapor-depositing the DLC film of the above (a) with an average layer thickness of 0.6 to 1.5 μm, the DLC film has a hydrogen content of 10 to 15 as in the conventional DLC film. Since it contains atomic%, it has sufficient strength and retains excellent surface smoothness with a surface roughness of 30 nm or less, so it exhibits excellent chipping resistance and has a hardness of 18-22 GPa. Since it has a relatively high hardness of 25 to 35 GPa as compared with the conventional DLC coating, it has excellent wear resistance.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、装置側壁外周に沿って所定間隔毎に複数の電磁コイルを設け、一方装置側壁内周に沿っては前記電磁コイルと対をなしてヒーターを設け、かつ前記電磁コイルの横方向中央部には装置内に貫通して原料ガス導入口をそれぞれ設けると共に、装置内中央部に超硬基体の装着用回転テーブルを設けたプラズマCVD装置を用い、
前記回転テーブル上の中心軸から半径方向に所定距離離れた位置にリング状に配置された複数の支持体のそれぞれに前記超硬基体を装着し、前記ヒーターで装置内を加熱し、前記回転テーブル上で自転しながら回転する前記超硬基体にバイアス電圧を印加し、さらに装置内に初期プラズマを発生させた状態で、原料ガスとしてアセチレンだけを150〜250cc/mの範囲内の一定の流量で導入して、これを分解・プラズマ化し、一方前記電磁コイルには電流を印加して、前記超硬基体の設置部に磁束密度が50〜300G(ガウス)の磁場を形成することにより
水素含有量:10〜15原子%、
硬さ:25〜35GPa、
表面粗さ:30nm以下、
平均層厚:0.6〜1.5μm、
の特性を有するDLC被膜を前記超硬基体表面に形成してなる、非鉄材料の高速切削加工ですぐれた耐摩耗性を発揮する被覆超硬工具の製造方法に特徴を有するものである。
The present invention has been made on the basis of the above research results, and a plurality of electromagnetic coils are provided at predetermined intervals along the outer periphery of the apparatus side wall, while the electromagnetic coil is paired along the inner periphery of the apparatus side wall. Plasma CVD with a heater, and a raw material gas introduction port penetrating into the apparatus at the lateral center of the electromagnetic coil and a rotating table for mounting a carbide substrate at the center of the apparatus. Using the equipment,
The cemented carbide substrate is mounted on each of a plurality of support bodies arranged in a ring shape at a predetermined distance in the radial direction from the central axis on the rotary table, the inside of the apparatus is heated by the heater, and the rotary table A bias voltage is applied to the carbide substrate that rotates while rotating above, and an initial plasma is generated in the apparatus, and only acetylene is used as a raw material gas at a constant flow rate in the range of 150 to 250 cc / m. Introducing and decomposing this into plasma, while applying a current to the electromagnetic coil to form a magnetic field having a magnetic flux density of 50 to 300 G (Gauss) in the installation part of the cemented carbide substrate ,
Hydrogen content: 10-15 atomic%,
Hardness: 25-35 GPa,
Surface roughness: 30 nm or less,
Average layer thickness: 0.6 to 1.5 μm,
The present invention is characterized by a method for producing a coated carbide tool that exhibits excellent wear resistance in high-speed cutting of a non-ferrous material, in which a DLC film having the following characteristics is formed on the surface of the carbide substrate.

つぎに、この発明の方法において、被覆超硬工具を構成するDLC被膜を上記の通りに数値限定した理由を説明する。
すなわち、一般にDLC被膜の具備する強度と硬さは水素含有量によって変化し、水素含有量が10原子%未満になると、磁場成膜によって35GPaを越えた高硬度をもつようになるが、強度および表面粗さが低下し、Ra:30nm以下の表面粗さを確保することができず、切削加工時にチッピング(微少欠け)が発生し易くなり、一方水素含有量が15原子%を越えると、硬さが急激に低下し、磁場成膜によっても25GPa以上の高硬度を確保することができず、摩耗が急激に進行するようになることから、水素含有量を10〜15原子%と定め、磁場成膜によって同じ水素含有量でも硬さの一段と高いDLC被膜を形成するものである。
また、DLC被膜の平均層厚が0.6μm未満では、所望の耐摩耗性を長期に亘って確保することができず、一方その平均層厚が1.6μmを越えると、切刃部にチッピングが発生し易くなることから、その平均層厚を1〜10μmと定めた。
Next, the reason why the DLC film constituting the coated carbide tool is numerically limited as described above in the method of the present invention will be described.
That is, generally, the strength and hardness of the DLC film varies depending on the hydrogen content, and when the hydrogen content is less than 10 atomic%, the magnetic field film formation has a high hardness exceeding 35 GPa. The surface roughness decreases, Ra: a surface roughness of 30 nm or less cannot be ensured, and chipping (small chipping) is likely to occur during cutting. On the other hand, if the hydrogen content exceeds 15 atomic%, As a result, the high hardness of 25 GPa or more cannot be ensured even by magnetic field film formation, and the wear proceeds rapidly. By forming a film, a DLC film having a higher hardness even with the same hydrogen content is formed.
Also, if the average layer thickness of the DLC film is less than 0.6 μm, the desired wear resistance cannot be ensured over a long period of time, while if the average layer thickness exceeds 1.6 μm, chipping is performed on the cutting edge. Therefore, the average layer thickness was determined to be 1 to 10 μm.

この発明は、DLC被膜の水素含有量が従来被覆超硬工具のそれと同じ10〜15原子%であるにもかかわらず、25〜35GPaの相対的に高い硬さを示し、したがって、各種のAl合金やCu合金などの高速切削で、チッピング(微少欠け)の発生なく、すぐれた耐摩耗性を長期に亘って発揮する被覆超硬工具の製造方法を提供するものである。 The present invention exhibits a relatively high hardness of 25-35 GPa despite the fact that the hydrogen content of the DLC coating is 10-15 atomic%, which is the same as that of the conventional coated carbide tool, and thus various Al alloys The present invention provides a method for manufacturing a coated carbide tool that exhibits excellent wear resistance over a long period of time without causing chipping (small chipping) in high-speed cutting of copper alloy or Cu alloy.

つぎに、この発明の被覆超硬工具の製造方法を実施例により具体的に説明する。 Next, the method for producing the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで96時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、研磨加工を施し、切刃すくい面を鏡面仕上げすることにより、いずれもWC基超硬合金からなり、かつISO規格・SPGN120308のチップ形状をもった超硬基体A−1〜A−10を製造した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. The mixture is blended for 96 hours with a ball mill, dried and dried, and then pressed into a green compact at a pressure of 100 MPa, and the green compact is vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under holding conditions, polished, and mirror-finished cutting edge rake surface, both of which are made of WC-based cemented carbide and have a chip shape conforming to ISO standard / SPGN120308 A- 1 to A-10 were produced.

ついで、図1に示される側壁外周に沿って所定間隔毎に8個の電磁コイル2を設け、一方側壁内周に沿って前記電磁コイル2と対をなしてヒーター3を設け、かつ前記電磁コイルの横方向中央部には装置内に貫通して原料ガス導入口1をそれぞれ設けたプラズマCVD装置を用い、上記の超硬基体A−1〜A−10からなる超硬基体6を、アセトン中で超音波洗浄し、乾燥した状態で、前記装置内の回転テーブル5上に、これの中心軸から半径方向に所定距離離れた位置にリング状に配置された支持体8にそれぞれ装着し、装置内を排気して、6.5×10−5Paの真空に保持しながら、前記ヒーター3で装置内を200℃に加熱し、かつ20r.p.m.の回転速度で回転する前記回転テーブル上で同じく20r.p.m.の回転速度で自転しながら回転する超硬基体6には−700Vのバイアス電圧を印加し、さらに装置内に初期プラズマを発生させた状態で、原料ガスとしてアセチレン(C)を200cc/minの一定の流量で導入して、分解・プラズマ化し、一方前記電磁コイル2には3〜20Aの範囲内の所定の電流を印加し、磁場9を形成して、前記超硬基体6の設置部における磁束密度を50〜300G(ガウス)の範囲内の所定の磁束密度とする条件(前記磁束密度が高くなるほどDLC被膜中の水素含有量は高くなる)で表2に示される目標層厚のDLC被膜を形成することにより本発明法を実施し、本発明被覆超硬工具としての本発明被覆超硬チップ1〜10を製造した。 Next, eight electromagnetic coils 2 are provided at predetermined intervals along the outer periphery of the side wall shown in FIG. 1, while a heater 3 is provided in a pair with the electromagnetic coil 2 along the inner periphery of the side wall. In the central portion in the horizontal direction, a plasma CVD apparatus provided with a raw material gas inlet 1 penetrating into the apparatus is used, and the carbide substrate 6 composed of the above-described carbide substrates A-1 to A-10 is placed in acetone. In a state where the ultrasonic cleaning is performed and the substrate is dried, the rotary table 5 in the apparatus is mounted on the support body 8 arranged in a ring shape at a predetermined distance in the radial direction from the central axis thereof. The inside of the apparatus was heated to 200 ° C. with the heater 3 while evacuating the interior and maintaining a vacuum of 6.5 × 10 −5 Pa, and 20 r. p. m. On the rotary table rotating at a rotational speed of 20r. p. m. A bias voltage of −700 V is applied to the carbide substrate 6 rotating while rotating at a rotational speed of 200 cc / acetylene (C 2 H 2 ) as a source gas in a state where initial plasma is generated in the apparatus. Introduced at a constant flow rate of min, decomposed and converted to plasma, while applying a predetermined current in the range of 3 to 20 A to the electromagnetic coil 2 to form a magnetic field 9 to install the cemented carbide substrate 6 Of the target layer thickness shown in Table 2 under the condition that the magnetic flux density in the part is a predetermined magnetic flux density in the range of 50 to 300 G (Gauss) (the higher the magnetic flux density, the higher the hydrogen content in the DLC film). This invention method was implemented by forming a DLC film, and this invention coated carbide tip 1-10 as this invention coated carbide tool was manufactured.

また、比較の目的で、図1に示される一方側側壁に原料ガス導入口1、他方側側壁に排気口4をそれぞれ設け、装置内中央部に設置された回転テーブル5を挟んでヒーター3を設けたプラズマCVD装置を用い、前記原料ガス導入口1から導入されるCガスおよびHガスの流量を、それぞれCガス:165〜240cc/minおよびH:50〜125cc/minの範囲内で変化させて、DLC被膜の水素含有量を調整し(この場合Cガス流量を相対的に多くして、Hガス流量を少なくすれば水素含有量は低くなる)、かつ電磁コイル2による磁場形成を行わない以外は同一の条件で表2に示される目標層厚のDLC被膜を形成することにより従来法を実施し、従来被覆超硬工具としての従来被覆超硬チップ1〜10をそれぞれ製造した。 For comparison purposes, the raw material gas inlet 1 is provided on one side wall and the exhaust port 4 is provided on the other side wall shown in FIG. 1, and the heater 3 is sandwiched between the rotary table 5 installed in the center of the apparatus. Using the provided plasma CVD apparatus, the flow rates of C 2 H 2 gas and H 2 gas introduced from the raw material gas inlet 1 were C 2 H 2 gas: 165 to 240 cc / min and H 2 : 50 to 125 cc, respectively. The hydrogen content of the DLC film is adjusted by changing within the range of / min (in this case, if the C 2 H 2 gas flow rate is relatively increased and the H 2 gas flow rate is reduced, the hydrogen content is lowered). The conventional method is carried out by forming the DLC film having the target layer thickness shown in Table 2 under the same conditions except that the magnetic field is not formed by the electromagnetic coil 2, and the conventional coated carbide tool as a conventional coated carbide tool. Hard 1 to 10 were produced.

ついで、この結果得られた本発明被覆超硬チップ1〜10および従来被覆超硬チップ1〜10について、これを構成するDLC被膜の水素含有量および硬さを反跳散乱分析法[Elastic Recoil Detection Analysis](水素含有量)およびナノインデンテーション法(硬さ)にてそれぞれ測定し、さらに表面粗さを原子間力顕微鏡[Atomic Force Micrscope]を用いて測定した。これらの測定結果を表1に示した。
さらに、上記DLC被膜の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
Subsequently, the hydrogen content and hardness of the DLC coating constituting the coated carbide chips 1 to 10 of the present invention and the conventional coated carbide chips 1 to 10 obtained as a result were measured by the recoil scattering analysis method [Elastic Recoil Detection]. [Analysis] (hydrogen content) and nanoindentation method (hardness), respectively, and the surface roughness was measured using an atomic force microscope [Atomic Force Microscope]. These measurement results are shown in Table 1.
Further, when the thickness of the DLC film was measured using a scanning electron microscope (longitudinal section measurement), all showed an average layer thickness (average value of five-point measurement) substantially the same as the target layer thickness. .

つぎに、上記の本発明被覆超硬チップ1〜10および従来被覆超硬チップ1〜10を工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・A5052(組成は、質量%で、Si:0.25%、Fe:0.4%、Cu:0.1%、Mg:2.8%、Cr:0.35%、Alおよび不純物:残り)の丸棒、
切削速度:1000m/min.、
切り込み:8mm、
送り:0.4mm/rev.、
切削時間:90分、
の条件でのAl合金の乾式連続高速切削加工試験(通常の切削速度は600m/min.)、
被削材:JIS・ADC12(組成は、質量%で、Cu:2.5%、Si:10.2%、Alおよび不純物:残り)の丸棒、
切削速度:1000m/min.、
切り込み:8mm、
送り:0.4mm/rev.、
切削時間:30分、
の条件でのAl合金の乾式連続高速切削加工試験(通常の切削速度は600m/min.)、さらに、
被削材:JIS・C2100(組成は、質量%で、Zn:5.3%、Cuおよび不純物:残り)の丸棒、
切削速度:800m/min.、
切り込み:4mm、
送り:0.4mm/rev.、
切削時間:90分、
の条件でのCu合金の乾式連続高速切削加工試験(通常の切削速度は300m/min.)を行なった。いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表2に示した。
Next, in the state where the present invention coated carbide tips 1 to 10 and the conventional coated carbide tips 1 to 10 are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS A5052 (composition is mass%, Si: 0.25%, Fe: 0.4%, Cu: 0.1%, Mg: 2.8%, Cr: 0.35%, Al and impurities: remaining) round bar,
Cutting speed: 1000 m / min. ,
Cutting depth: 8mm,
Feed: 0.4 mm / rev. ,
Cutting time: 90 minutes
Dry continuous high speed cutting test of Al alloy under the conditions of (normal cutting speed is 600 m / min.),
Work material: JIS / ADC12 (composition is, by mass%, Cu: 2.5%, Si: 10.2%, Al and impurities: remaining),
Cutting speed: 1000 m / min. ,
Cutting depth: 8mm,
Feed: 0.4 mm / rev. ,
Cutting time: 30 minutes,
The dry continuous high-speed cutting test of the Al alloy under the conditions (normal cutting speed is 600 m / min.),
Work material: JIS C2100 round bar (composition is mass%, Zn: 5.3%, Cu and impurities: remaining),
Cutting speed: 800 m / min. ,
Incision: 4mm,
Feed: 0.4 mm / rev. ,
Cutting time: 90 minutes
The dry continuous high-speed cutting test of the Cu alloy under the conditions (normal cutting speed was 300 m / min.). In any cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 2.

Figure 0004232198
Figure 0004232198

Figure 0004232198
Figure 0004232198

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C(質量比で、TiC/WC=50/50)粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表3に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表4に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエアの形状をもった超硬基体(エンドミル)B−1〜B−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C (mass ratio, TiC / WC = 50/50) powder, and 1 .8 μm Co powder was prepared, and each of these raw material powders was blended in the blending composition shown in Table 3, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then in a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions 3 types of sintered carbide substrate-forming round bar sintered bodies having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three kinds of round bar sintered bodies were ground and shown in Table 4. In combination, a carbide substrate (end mill) having a diameter of 4 mm × 13 mm, a length of 6 mm × 13 mm, a size of 10 mm × 22 mm, and a size of 20 mm × 45 mm, and a four-blade square with a twist angle of 30 degrees. ) B-1 to B-8 were produced.

ついで、これらの超硬基体(エンドミル)B−1〜B−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるプラズマCVD装置に装入し、上記実施例1と同一の条件で、表4に示される目標層厚のDLC被膜を形成することにより本発明法を実施し、本発明被覆超硬工具としての本発明被覆超硬エンドミル1〜8をそれぞれ製造した。 Subsequently, these super-hard substrates (end mills) B-1 to B-8 were ultrasonically cleaned in acetone and dried, and then charged into the plasma CVD apparatus shown in FIG. The present invention method was carried out by forming a DLC film having the target layer thickness shown in Table 4 under the same conditions as above, and the present coated carbide end mills 1 to 8 as the present coated carbide tool were produced, respectively. .

また、比較の目的で、上記の超硬基体(エンドミル)B−1〜B−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるプラズマCVD装置に装入し、上記実施例1と同一の条件、すなわち原料ガス導入口1から導入されるCガスおよびHガスの流量を、それぞれCガス:165〜240cc/minおよびH:50〜125cc/minの範囲内で変化させて、DLC被膜の水素含有量を調整し、かつ電磁コイル2による磁場形成を行わない以外は同一の条件で表4に示される目標層厚のDLC被膜を形成することにより従来法を実施し、従来被覆超硬工具としての従来被覆超硬エンドミル1〜8をそれぞれ製造した。 Further, for the purpose of comparison, the above-mentioned carbide substrates (end mills) B-1 to B-8 are ultrasonically cleaned in acetone and dried, and then loaded into the plasma CVD apparatus shown in FIG. The same conditions as in Example 1 above, that is, the flow rates of C 2 H 2 gas and H 2 gas introduced from the raw material gas inlet 1 were C 2 H 2 gas: 165 to 240 cc / min and H 2 : 50, respectively. The DLC film having the target layer thickness shown in Table 4 under the same conditions except that the hydrogen content of the DLC film is adjusted within the range of ˜125 cc / min and the magnetic field is not formed by the electromagnetic coil 2. The conventional method was implemented by forming, and conventionally coated carbide end mills 1 to 8 as conventional coated carbide tools were manufactured, respectively.

つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・A2024(組成は、質量%で、Cu:4.2%、Mn:0.6%、Mg:1.5%、Alおよび不純物:残り)の板材、
切削速度:300m/min.、
切り込み(溝深さ):12mm、
テーブル送り:1000mm/分、
の条件でのAl合金の乾式高速溝加工試験(通常の切削速度は150m/min.)、本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・AC4B(組成は、質量%で、Cu:2.9%、Si:8.5%、Alおよび不純物:残り)の板材、
切削速度:300m/min.、
切り込み(溝深さ):10mm、
テーブル送り:2000mm/分、
の条件でのAl合金の乾式高速溝加工試験(通常の切削速度は150m/min.)、本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・C1020(純度:99.98質量%の純銅)の板材、
切削速度:160m/min.、
切り込み(溝深さ):30mm、
テーブル送り:1000mm/分、
の条件での純銅の乾式高速溝加工試験(通常の切削速度は80m/min.)、をそれぞれ行い、いずれの溝加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表4に示した。
また、表4には、DLC被膜の上記実施例1におけると同一の条件で測定した水素含有量、硬さ、および表面粗さを示しが、この測定結果は上記超硬基体(エンドミル)B−1〜B−8の試験片を用い、これの表面に同一の条件で形成したDLC被膜の示す値である。
さらに、上記DLC被膜の厚さに関しても、走査型電子顕微鏡による測定(縦断面測定)で、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示すことが確認された。
Next, of the present invention coated carbide end mills 1-8 and conventional coated carbide end mills 1-8, the present invention coated carbide end mills 1-3 and conventional coated carbide end mills 1-3 are as follows:
Work material: Plane dimensions: 100 mm × 250 mm, JIS A2024 with a thickness of 50 mm (composition is mass%, Cu: 4.2%, Mn: 0.6%, Mg: 1.5%, Al and Impurity: the remaining plate material,
Cutting speed: 300 m / min. ,
Incision (groove depth): 12 mm,
Table feed: 1000 mm / min,
With respect to the dry high-speed grooving test of an Al alloy under the conditions (normal cutting speed is 150 m / min.), The coated carbide end mills 4 to 6 and the conventional coated carbide end mills 4 to 6 of the present invention,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS AC4B (composition is mass%, Cu: 2.9%, Si: 8.5%, Al and impurities: remaining),
Cutting speed: 300 m / min. ,
Incision (groove depth): 10 mm,
Table feed: 2000mm / min,
With respect to the dry high-speed grooving test of an Al alloy under the following conditions (normal cutting speed is 150 m / min.)
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS C1020 (purity: 99.98 mass% pure copper) plate material,
Cutting speed: 160 m / min. ,
Cut (groove depth): 30 mm,
Table feed: 1000 mm / min,
The dry high-speed grooving test of pure copper under the above conditions (normal cutting speed is 80 m / min.), And in each grooving test, the flank wear width of the peripheral edge of the cutting edge is The cutting groove length up to 0.1 mm was measured. The measurement results are shown in Table 4.
Table 4 shows the hydrogen content, hardness, and surface roughness measured under the same conditions as in Example 1 of the DLC film. The measurement results are the results of the above-mentioned carbide substrate (end mill) B- It is the value which the DLC film formed on the surface of this using the test piece of 1-B-8 on the same conditions shows.
Furthermore, regarding the thickness of the DLC film, it was confirmed that the average layer thickness (average value of 5-point measurement) was substantially the same as the target layer thickness, as measured with a scanning electron microscope (longitudinal section measurement). It was done.

Figure 0004232198
Figure 0004232198

Figure 0004232198
Figure 0004232198

上記の実施例2で製造した直径が8mm(超硬基体B−1〜B−3形成用)、13mm(超硬基体B−4〜B−6形成用)、および26mm(超硬基体B−7、B−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体C−1〜C−3)、8mm×22mm(超硬基体C−4〜C−6)、および16mm×45mm(超硬基体C−7、C−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもった超硬基体(ドリル)C−1〜C−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates B-1 to B-3), 13 mm (for forming carbide substrates B-4 to B-6), and 26 mm (for carbide substrates B-). 7 and B-8)), and the diameter x length of the groove forming part is 4 mm x 13 mm (by grinding) from these three kinds of round bar sintered bodies. Carbide substrates C-1 to C-3), 8 mm × 22 mm (Carbide substrates C-4 to C-6), and 16 mm × 45 mm (Carbide substrates C-7 and C-8), and all Carbide substrates (drills) C-1 to C-8 having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)C−1〜C−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるプラズマCVD装置に装入し、上記実施例1と同一の条件で、表5に示される目標層厚のDLC被膜を形成することにより本発明法を実施し、本発明被覆超硬工具としての本発明被覆超硬ドリル1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) C-1 to C-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then installed in the plasma CVD apparatus shown in FIG. The coated carbide drill of the present invention as the coated carbide tool of the present invention was carried out by forming a DLC film having the target layer thickness shown in Table 5 under the same conditions as in Example 1 above. 1 to 8 were produced.

また、比較の目的で、上記の超硬基体(ドリル)C−1〜C−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるプラズマCVD装置に装入し、上記実施例1と同一の条件で、表5に示される目標層厚のDLC被膜を形成することにより従来法を実施し、従来被覆超硬工具としての従来被覆超硬ドリル1〜8をそれぞれ製造した。 For comparison purposes, the cutting edges of the above-mentioned carbide substrates (drills) C-1 to C-8 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. The conventional method was carried out by charging the plasma CVD apparatus and forming the DLC film having the target layer thickness shown in Table 5 under the same conditions as in Example 1 above. Hard drills 1 to 8 were produced, respectively.

つぎに、上記本発明被覆超硬ドリル1〜8および比較被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および比較被覆超硬ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・AC4B(組成は、質量%で、Cu:2.9%、Si:8.5%、Alおよび不純物:残り)の板材、
切削速度:200m/min.、
送り:0.6mm/rev、
穴深さ:10mm、
の条件でのAl合金の湿式高速穴あけ切削加工試験(通常の切削速度は80m/min.)、本発明被覆超硬ドリル4〜6および比較被覆超硬ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・C2100((組成は、質量%で、Zn:4.9%、Cuおよび不純物:残り)の板材、
切削速度:300m/min.、
送り:0.6mm/rev、
穴深さ:16mm、
の条件でのCu合金の湿式高速穴あけ切削加工試験(通常の切削速度は90m/min.)、本発明被覆超硬ドリル7,8および比較被覆超硬ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・A5052(組成は、質量%で、Si:0.25%、Fe:0.4%、Cu:0.1%、Mg:2.8%、Cr:0.35%、Alおよび不純物:残り)の板材、
切削速度:220m/min.、
送り:0.7mm/rev、
穴深さ:40mm、
の条件でのAl合金の湿式高速穴あけ切削加工試験(通常の切削速度は100m/min.)、をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.2mmに至るまでの穴あけ加工数を測定した。この測定結果を表5に示した。
また、表5には、DLC被膜の上記実施例1におけると同一の条件で測定した水素含有量、硬さ、および表面粗さを示しが、この測定結果は上記超硬基体(ドリル)C−1〜C−8の試験片を用い、これの表面に同一の条件で形成したDLC被膜の示す値である。
さらに、上記DLC被膜の厚さに関しても、走査型電子顕微鏡による測定(縦断面測定)で、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示すことが確認された。
Next, of the present invention coated carbide drills 1-8 and comparative coated carbide drills 1-8, for the present invention coated carbide drills 1-3 and comparative coated carbide drills 1-3,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS AC4B (composition is mass%, Cu: 2.9%, Si: 8.5%, Al and impurities: remaining),
Cutting speed: 200 m / min. ,
Feed: 0.6mm / rev,
Hole depth: 10mm,
With respect to the Al alloy wet high-speed drilling test (normal cutting speed is 80 m / min.), The coated carbide drills 4 to 6 and the comparative coated carbide drills 4 to 6 of the present invention,
Work material: Plane size: 100 mm × 250 mm, thickness: 50 mm JIS C2100 (composition is mass%, Zn: 4.9%, Cu and impurities: remaining),
Cutting speed: 300 m / min. ,
Feed: 0.6mm / rev,
Hole depth: 16mm,
With respect to the Cu alloy wet high-speed drilling cutting test under the conditions (normal cutting speed is 90 m / min.), The present invention coated carbide drills 7 and 8 and the comparative coated carbide drills 7 and 8,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS A5052 (composition is mass%, Si: 0.25%, Fe: 0.4%, Cu: 0.1%, Mg: 2.8%, Cr: 0.35%, Al and impurities: remaining) plate material,
Cutting speed: 220 m / min. ,
Feed: 0.7mm / rev,
Hole depth: 40mm,
We performed high-speed wet drilling test (normal cutting speed of 100 m / min.) Of Al alloy under the above conditions, and the clearance of the tip cutting edge surface in any wet drilling test (using water-soluble cutting oil) The number of drilling processes until the surface wear width reached 0.2 mm was measured. The measurement results are shown in Table 5.
Table 5 shows the hydrogen content, hardness, and surface roughness measured under the same conditions as in Example 1 of the DLC film. The measurement results show the above-mentioned carbide substrate (drill) C- It is the value which the DLC film formed on the surface of this using the test piece of 1-C-8 on the same conditions shows.
Furthermore, regarding the thickness of the DLC film, it was confirmed that the average layer thickness (average value of 5-point measurement) was substantially the same as the target layer thickness, as measured with a scanning electron microscope (longitudinal section measurement). It was done.

Figure 0004232198
Figure 0004232198

表1〜5に示される結果から、DLC被膜の硬さに関して、本発明被覆超硬工具と従来被覆超硬工具との間には水素含有量に実質的相違がない、すなわちいずれも10〜15原子%の水素含有量であるにもかかわらず、後者は18〜22GPaの硬さしか示さないのに対して、前者は25〜35GPaの相対的に高い硬さを示し、この結果本発明被覆超硬工具は、各種のAl合金や純銅およびCu合金の高速切削で、従来被覆超硬工具に比して、チッピング(微少欠け)の発生なく、すぐれた耐摩耗性を発揮することが明らかである。
上述のように、この発明の方法によれば、通常の条件での切削加工は勿論のこと、特に各種の被削材の切削加工を、高速切削条件で行なった場合にも、すぐれた耐摩耗性を発揮する被覆超硬工具を製造することができるものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
From the results shown in Tables 1 to 5, there is no substantial difference in the hydrogen content between the coated carbide tool of the present invention and the conventional coated carbide tool with respect to the hardness of the DLC coating, i.e., 10 to 15 for both. Despite the atomic% hydrogen content, the latter only exhibits a hardness of 18-22 GPa, whereas the former exhibits a relatively high hardness of 25-35 GPa, which results in the coatings exceeding the present invention It is clear that hard tools exhibit excellent wear resistance without high chipping (small chipping) compared to conventional coated carbide tools at high speed cutting of various Al alloys, pure copper and Cu alloys. .
As described above , according to the method of the present invention, excellent wear resistance is achieved not only when cutting under normal conditions, but also when cutting various workpieces under high-speed cutting conditions. Therefore, it is possible to produce a coated cemented carbide tool that exhibits high performance, and can satisfactorily cope with labor saving and energy saving of cutting, and further cost reduction.

この発明の被覆超硬工具のDLC被膜を形成するのに用いたプラズマCVD装置を示し、(a)は概略平面図、(b)は概略正面図である。The plasma CVD apparatus used for forming the DLC film of the coated carbide tool of this invention is shown, (a) is a schematic plan view, and (b) is a schematic front view. 従来被覆超硬工具のDLC被膜を形成するのに用いたプラズマCVD装置を示し、(a)は概略平面図、(b)は概略正面図である。The plasma CVD apparatus used for forming the DLC film of the conventional coated carbide tool is shown, (a) is a schematic plan view, and (b) is a schematic front view.

符号の説明Explanation of symbols

1 原料ガス導入口
2 電磁コイル
3 ヒ―ター
4 排気口
5 回転テーブル
6 超硬基体
7 バイアス電源
8 支持体
9 磁場
DESCRIPTION OF SYMBOLS 1 Raw material gas inlet 2 Electromagnetic coil 3 Heater 4 Exhaust port 5 Turntable 6 Carbide substrate 7 Bias power supply 8 Support body 9 Magnetic field

Claims (1)

装置側壁外周に沿って所定間隔毎に複数の電磁コイルを設け、一方装置側壁内周に沿っては前記電磁コイルと対をなしてヒーターを設け、かつ前記電磁コイルの横方向中央部には装置内に貫通して原料ガス導入口をそれぞれ設けると共に、装置内中央部に炭化タングステン基超硬合金で構成された超硬基体の装着用回転テーブルを設けたプラズマCVD装置を用い、
前記回転テーブル上の中心軸から半径方向に所定距離離れた位置にリング状に配置された複数の支持体のそれぞれに前記超硬基体を装着し、前記ヒーターで装置内を加熱し、前記回転テーブル上で自転しながら回転する前記超硬基体にバイアス電圧を印加し、さらに装置内に初期プラズマを発生させた状態で、原料ガスとしてアセチレンだけを150〜250cc/mの範囲内の一定の流量で導入して、これを分解・プラズマ化し、一方前記電磁コイルには電流を印加して、前記超硬基体の設置部に磁束密度が50〜300G(ガウス)の磁場を形成することにより
水素含有量:10〜15原子%、
硬さ:25〜35GPa、
表面粗さ:30nm以下、
平均層厚:0.6〜1.5μm、
の特性を有するダイヤモンド状炭素被膜を前記超硬基体表面に形成してなる、非鉄材料の高速切削加工ですぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具の製造方法
A plurality of electromagnetic coils are provided at predetermined intervals along the outer periphery of the apparatus side wall, while a heater is provided in a pair with the electromagnetic coil along the inner periphery of the apparatus side wall, and the apparatus is provided at the lateral central portion of the electromagnetic coil. Using a plasma CVD apparatus provided with a turntable for mounting a cemented carbide substrate made of tungsten carbide based cemented carbide at the center of the apparatus while providing a source gas introduction port penetrating inside,
The cemented carbide substrate is mounted on each of a plurality of support bodies arranged in a ring shape at a predetermined distance in the radial direction from the central axis on the rotary table, the inside of the apparatus is heated by the heater, and the rotary table A bias voltage is applied to the carbide substrate that rotates while rotating above, and an initial plasma is generated in the apparatus, and only acetylene is used as a raw material gas at a constant flow rate in the range of 150 to 250 cc / m. Introducing and decomposing this into plasma, while applying a current to the electromagnetic coil to form a magnetic field having a magnetic flux density of 50 to 300 G (Gauss) in the installation part of the cemented carbide substrate ,
Hydrogen content: 10-15 atomic%,
Hardness: 25-35 GPa,
Surface roughness: 30 nm or less,
Average layer thickness: 0.6 to 1.5 μm,
A method of manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of a non-ferrous material , wherein a diamond-like carbon coating having the following characteristics is formed on the surface of the cemented carbide substrate.
JP2003426154A 2003-12-24 2003-12-24 Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials Expired - Fee Related JP4232198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003426154A JP4232198B2 (en) 2003-12-24 2003-12-24 Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003426154A JP4232198B2 (en) 2003-12-24 2003-12-24 Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials

Publications (2)

Publication Number Publication Date
JP2005177959A JP2005177959A (en) 2005-07-07
JP4232198B2 true JP4232198B2 (en) 2009-03-04

Family

ID=34785772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003426154A Expired - Fee Related JP4232198B2 (en) 2003-12-24 2003-12-24 Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials

Country Status (1)

Country Link
JP (1) JP4232198B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073734A1 (en) * 2011-11-14 2013-05-23 한국야금 주식회사 Method for diamond-coating both side surfaces of insert and diamond-coated insert manufactured by same method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426898B2 (en) * 2008-06-25 2014-02-26 パナソニック株式会社 Sliding member and manufacturing method thereof
US9371576B2 (en) * 2013-07-15 2016-06-21 GM Global Technology Operations LLC Coated tool and methods of making and using the coated tool
CN113732366B (en) * 2021-08-26 2022-11-29 中国工程物理研究院激光聚变研究中心 Ultrasonic vibration machining tool for inner wall of deep small hole and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073734A1 (en) * 2011-11-14 2013-05-23 한국야금 주식회사 Method for diamond-coating both side surfaces of insert and diamond-coated insert manufactured by same method

Also Published As

Publication number Publication date
JP2005177959A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP5344204B2 (en) Surface coated cutting tool
JP5099586B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5207109B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5182501B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP4711177B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricity coating layer
JP5041222B2 (en) Surface coated cutting tool
JP4232198B2 (en) Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials
JP5560513B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP4518253B2 (en) Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in diamond-like carbon-based coatings in high-speed cutting of non-ferrous materials
JP5239292B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP4543373B2 (en) Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials
JP5309733B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009220239A (en) Surface coated cutting tool having hard coating layer exerting superior chipping resistance
JP4438546B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance in high speed heavy cutting with excellent surface coating layer
JP4530139B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricated amorphous carbon coating
JP5239392B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239296B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP4775757B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to lubricated amorphous carbon coating
JP5327534B2 (en) Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
JP2007160465A (en) Surface coated cemented carbide cutting tool having hard lubricating layer exhibiting excellent wear resistance in high speed cutting
JP4530138B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricated amorphous carbon coating
JP4530142B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance in high speed heavy cutting with excellent surface coating layer
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5240498B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5234515B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4232198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees