JP4711177B2 - Surface-coated cemented carbide cutting tools which exhibits abrasion resistance lubricious coating layer excellent - Google Patents

Surface-coated cemented carbide cutting tools which exhibits abrasion resistance lubricious coating layer excellent Download PDF

Info

Publication number
JP4711177B2
JP4711177B2 JP2005173466A JP2005173466A JP4711177B2 JP 4711177 B2 JP4711177 B2 JP 4711177B2 JP 2005173466 A JP2005173466 A JP 2005173466A JP 2005173466 A JP2005173466 A JP 2005173466A JP 4711177 B2 JP4711177 B2 JP 4711177B2
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
surface
nitrogen
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005173466A
Other languages
Japanese (ja)
Other versions
JP2006346777A (en
Inventor
智行 益野
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to JP2005173466A priority Critical patent/JP4711177B2/en
Publication of JP2006346777A publication Critical patent/JP2006346777A/en
Application granted granted Critical
Publication of JP4711177B2 publication Critical patent/JP4711177B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、各種の鋼や鋳鉄などの鉄鋼材料、さらにAl合金やCu合金などの非鉄材料の切削加工を、特に高速で行なった場合にも、潤滑性被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。 The present invention, steel materials such as various steels and cast iron, further cutting of non-ferrous material such as Al alloy or Cu alloy, even when performed particularly fast, exhibit wear resistance of the lubricating coating layer is excellent surface-coated cemented carbide cutting tool for (hereinafter, referred to as coated cemented carbide tool) it relates.

一般に、被覆超硬工具として、各種の鋼や鋳鉄などの鉄鋼材料、さらにAl合金やCu合金などの非鉄材料の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 Suroauei generally, as a coating cemented carbide, steel materials such as various steel or cast iron, is used in removably attached further to the distal end of the turning and planing byte of non-ferrous material such as Al alloy or Cu alloy chip, drill or miniature drill for use in such drilling cutting, further scalping processing or grooving, include end mills solid type used in such shoulder machining, also the solid type mounted detachably said indexable and the like are known in the slow-away end mill tool that performs cutting as with the end mill.

また、上記の被覆超硬工具として、 Further, as the coating cemented carbide,
炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)系サーメットからなる超硬基体の表面に、潤滑性被覆層として、 Tungsten carbide (hereinafter, WC in shown) based cemented carbide or titanium carbonitride (hereinafter, shown by TiCN) on the surface of the cemented carbide substrate made of cermet, as a lubricant coating layer,
(a)スパッタリング装置にて、カソード電極(蒸発源)としてTiターゲットを用い、窒素とArの混合ガス、または炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で形成された、窒化チタン(以下、TiNで示す)層および炭窒化チタン(以下、TiCNで示す)層のいずれか、または両方からなり、かつ0.1〜3μmの平均層厚を有する密着接合層を介して、 At (a) sputtering apparatus, using a Ti target as a cathode electrode (vapor source), formed in the reaction atmosphere of a mixed gas of nitrogen and Ar or a mixed gas of decomposition gas and nitrogen and Ar hydrocarbon, nitride titanium (hereinafter indicated by TiN) layer and titanium carbonitride (hereinafter, shown by TiCN) made from either or both of the layers, and through the close contact layer having an average layer thickness of 0.1 to 3 m,
(b)スパッタリング装置にて、カソード電極(蒸発源)として、WCターゲットを用い、炭化水素の分解ガスとArの混合ガスからなる反応雰囲気で形成され、オージェ分光分析装置で測定して、 (B) by a sputtering apparatus, as the cathode electrode (vapor source), using a WC target, formed in the reaction atmosphere of a mixed gas of decomposition gas and Ar hydrocarbons, as determined by Auger spectroscopy apparatus,
W:5〜20原子%、 W: 5~20 atomic percent,
を含有し、残りが炭素と不可避不純物からなる組成を有し、かつ1〜13μmの平均層厚を有する非晶質炭素系潤滑層からなる表面潤滑層を蒸着形成してなる、被覆超硬工具が知られている。 Containing, having the composition balance being carbon and inevitable impurities, and a surface lubricating layer formed of amorphous carbon-based lubricating layer is deposited formed comprising having an average layer thickness of 1~13Myuemu, coated carbide tools It has been known.

さらに、上記の従来被覆超硬工具が、例えば図3(a)に概略平面図で、同(b)に概略正面図で示される通り、カソード電極(蒸発源)がTiターゲットのスパッタリング装置と、カソード電極(蒸発源)がWCターゲットのスパッタリング装置を備えた蒸着装置の中央部に設置された回転テーブル上に上記の超硬基体を自転自在に装入し、例えば表1に示される条件で、グロー放電を発生させて、前記超硬基体の表面に、TiN層およびTiCN層のいずれか、または両方からなる密着接合層を蒸着形成し、ついで同じく表1に示される条件で、前記密着接合層の上に、上記の非晶質炭素系潤滑層からなる表面潤滑層を蒸着形成することにより製造されることも知られている。 Furthermore, the above conventional coated cemented carbide tools, for example in schematic plan view in FIG. 3 (a), and as the cathode electrode (vapor source) sputtering apparatus Ti target represented by schematic front view of the (b), cathode (evaporation source) was charged to freely rotate the central portion above cemented carbide substrate on the installed rotary table to the deposition apparatus having a sputtering apparatus WC target, under the conditions shown for example in table 1, by generating a glow discharge, wherein a surface of the carbide substrate, either TiN layer and TiCN layer, or the adhesion bonding layer consisting of both deposited form, then again under the conditions shown in Table 1, the adhesion bonding layer over, it is also known to be produced by depositing a surface lubricating layer formed of amorphous carbon-based lubricant layer described above.

特開平07−164211号公報 JP 07-164211 discloses 特表2002−513087号公報 JP-T 2002-513087 JP

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求も強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを通常の切削加工条件で用いた場合には問題はないが、特に切削加工を高速で行うのに用いた場合には、潤滑性被覆層の表面潤滑層を構成する非晶質炭素系潤滑層の摩耗進行がきわめて速く、この結果比較的短時間で使用寿命に至るのが現状である。 Performance of recent cutting device is remarkable, while the labor saving and energy saving for cutting, strongly further demand for cost reduction, along with this, but cutting tends to speed, the above conventional in coating cemented carbide tool, there is no problem when it was used in the normal cutting conditions, especially when using a cutting in at high speed, the configuration of the surface lubricating layer of the lubricant coating layer wear progress of the amorphous carbon-based lubricating layer is very fast to, the reach this result relatively short time service life at present.

そこで、本発明者等は、上述のような観点から、特に高速切削加工で潤滑性被覆層の表面潤滑層を構成する非晶質炭素系潤滑層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、研究を行った結果、 The present inventors have, from the viewpoint as described above, in particular high-speed cutting with a coating exhibiting abrasion resistance amorphous carbon type lubricating layer is excellent constituting the surface lubricating layer of the lubricant coating layer superhard In order to develop a tool, we conducted a study result,
(a)例えば図2(a)および(b)にそれぞれ概略平面図および概略正面図で示される蒸着装置、すなわち上記の図3に示される従来被覆超硬工具の潤滑性被覆層形成用蒸着装置におけるスパッタリング装置のそれぞれに、電磁コイルを設けてマグネトロンスパッタリング装置とした蒸着装置を用い、前記電磁コイルにより磁場を形成して、例えば表2に示される条件で表面潤滑層(非晶質炭素系潤滑層)の形成を行うと、この結果形成された表面潤滑層は、これの透過型電子顕微鏡による組織観察結果が図1に模式図で例示される通り炭素系非晶質体の素地に、結晶質炭窒化チタン系化合物の微粒[以下、「結晶質Ti(C,N)系化合物微粒」で示す]が分散分布した組織をもつようになること。 (A) For example, FIG. 2 (a) and (b) respectively schematic plan view and a vapor deposition apparatus shown in a schematic front view, i.e. lubricious coating layer depositing apparatus for forming a conventional coating cemented carbide shown in Figure 3 of the each of the sputtering apparatus in, using the vapor deposition apparatus with a magnetron sputtering apparatus provided with an electromagnetic coil, and a magnetic field by the electromagnetic coil, for example, a surface lubricating layer under the conditions shown in Table 2 (amorphous carbon type lubricating Doing formation of layers), the result forming surface lubricating layer structure observation result using a transmission electron microscope which is the foundation of the street carbonaceous amorphous substance exemplified schematically in Figure 1, the crystal Shitsusumi fine titanium-based compound nitride [hereinafter "crystalline Ti (C, N) -based compound fine" shown in] that will have a dispersed distribution organization.

(b)上記(a)の表面潤滑層を形成するに際して、蒸着装置内に反応ガスとして導入される炭化水素と窒素とArのそれぞれの流量と、マグネトロンスパッタリング装置のWCターゲットとTiターゲットに印加されるスパッタ電力を調整して、前記表面潤滑層が、オージェ分光分析装置で測定して、 (B) In forming a surface lubricating layer of the above (a), each of the flow rate of the hydrocarbon and nitrogen and Ar is introduced as a reaction gas into the deposition apparatus, is applied to the WC target and Ti target magnetron sputtering apparatus the sputtering power was adjusted that the surface lubricating layer, as determined by Auger spectroscopy apparatus,
W:5〜15原子%、 W: 5~15 atomic percent,
Ti:21〜35原子%、 Ti: 21~35 atomic%,
窒素:21〜35原子%、 Nitrogen: 21 to 35 atomic percent,
を含有し、残りが炭素と不可避不純物からなる組成を有するものとすると、この結果形成された表面潤滑層は、結晶質Ti(C,N)系微粒の分散分布効果、および前記電磁コイルによる磁場成膜に際しての細粒化効果で、硬さが著しく向上したものになること。 Containing and shall have the composition balance being carbon and inevitable impurities, the result forming surface lubricant layer, crystalline Ti (C, N) -based fine of dispersion distribution effects, and magnetic field generated by said electromagnetic coil in grain refining effect of the time of film formation, to become what hardness significantly improved.

(c)従来被覆超硬工具の潤滑性被覆層の密着接合層を構成するTiN層およびTiCN層は、超硬基体表面に対する密着性にはすぐれるものの、表面潤滑層(非晶質炭素系潤滑層)に対する密着性は十分なものとは言えず、特に高い密着性が要求される高速切削加工では前記表面潤滑層の密着性不足が原因で切刃部にチッピングが発生し易いこと。 (C) the TiN layer and TiCN layer constituting the adhesive bonding layer of the lubricating coating layer of the conventional coated cemented carbide tools, although excellent in adhesion to cemented carbide substrate surface, the surface lubricating layer (amorphous carbon type lubricating adhesion can not be said to be sufficient for the layers), lack adhesiveness of the surface lubricating layer can easily chipping occurs in the cutting edge because the high-speed cutting machining, especially high adhesion is required.

(d)上記(a)のカソード電極(蒸発源)として、WCターゲットとTiターゲットを備えたマグネトロンスパッタリング装置を用い、まず、表2示される条件で、密着接合層として、TiN層およびTiCN層のいずれか、または両方を形成し、この密着接合層は、電磁コイルによる磁場中成膜で結晶微細化効果がもたらされるので、強度が向上したものになり、ついで、同じく表2に示される条件で炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜、すなわち、上記密着接合層形成条件のうち、N ガス流量:200〜300sccmおよびTiターゲット出力:8〜15kWを、上記表面潤滑層の形成条件であるN ガス流量:100〜150sccmおよびTiターゲット出力:3〜8kWに連続的 As (d) a cathode electrode (vapor source) of the (a), using a magnetron sputtering apparatus having a WC target and the Ti target, first, in the conditions shown in Table 2, as an adhesion bonding layer, the TiN layer and TiCN layer either, or to form both, the adhesion bonding layer, the crystal refining effect is brought about by a magnetic field in the film formation by the electromagnetic coil, becomes what strength is improved, then again under the conditions shown in Table 2 magnetic field deposition in a reaction atmosphere of cracked gas and a mixed gas of nitrogen and Ar of hydrocarbons, i.e., out of the close contact layer forming conditions, N 2 gas flow rate: 200~300Sccm and Ti targets output: the 8~15kW , the formation conditions of the surface lubricating layer N 2 gas flow rate: 100~150Sccm and Ti targets output: continuously 3~8kW たは多段階的に減少させ、同時に炭化水素ガス流量、例えばC ガス流量は50〜120sccmに、WCターゲット出力は3〜6kWに連続的または多段階的に増加させた条件で非晶質炭素系潤滑層(以下、下地潤滑層という)を形成すると、この下地潤滑層は、Ti、窒素、炭素、およびW成分の含有割合が、層厚に沿って、上記密着接合層の界面部における含有割合から上記表面潤滑層の界面部における含有割合に連続的または多段階的に変化する成分濃度変化構造を有するものとなることから、前記密着接合層および前記表面潤滑層のいずれに対してもすぐれた密着性を示し、したがって、前記の密着接合層、下地潤滑層、および表面潤滑層からなる潤滑性被覆層を蒸着形成してなる被覆超硬工具は、前記表面潤滑層のW成分 Other multi-stepwise reduced, at the same time hydrocarbon gas flow rate, for example C 2 H 2 gas flow rate to 50~120Sccm, WC target output amorphous under conditions continuously or multi-stepwise increased 3~6kW quality carbon lubricant layer (hereinafter, referred to as base lubricating layer) to form a, the base lubricant layer, Ti, nitrogen, content of carbon, and W components, along the layer thickness, the interface portion of the close contact layer from becoming to have a continuous or multi-step varying component concentration change structure content ratio in the interface portion of the surface lubricating layer from content in, for any of the close contact layer and the surface lubricating layer indicates also excellent adhesion, therefore, closely bonded layer of said, underlayer lubricating layer, and coated carbide tool comprising a lubricating coating layer made of the surface lubricating layer is deposited formed, W component of the surface lubricating layer による強度向上効果と相俟って、高速切削加工でも切刃部にチッピング(微少欠け)の発生なく、一段とすぐれた耐摩耗性を長期に亘って発揮するようになること。 By What strength improvement effect coupled with, without chipping (minute chipping) in the cutting edge in a high speed cutting, more excellent abrasion resistance to become to exert a long term.
以上(a)〜(d)に示される研究結果を得たのである。 Or (a) it is to give the research results shown in ~ (d).

この発明は、上記の研究結果に基づいてなされたものであって、 The present invention was made based on the above findings,
WC基超硬合金またはTiCN系サーメットからなる超硬基体の表面に蒸着形成された潤滑性被覆層が、密着接合層、下地潤滑層、および表面潤滑層からなり、 WC based cemented carbide or TiCN-based lubricious coating layer deposited on the surface of the cemented carbide substrate made of cermet, it closely bonded layer, the base lubricating layer, and a surface lubricating layer,
(a)上記密着接合層を、0.1〜3μmの平均層厚を有し、かつ、マグネトロンスパッタリング装置にて、カソード電極(蒸発源)としてTiターゲットを用い、窒素とArの混合ガス、または炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜された、TiN層およびTiCN層のいずれか、または両方、 The (a) the adhesion bonding layer has an average layer thickness of 0.1 to 3 m, and at a magnetron sputtering device, using a Ti target as a cathode electrode (vapor source), a mixed gas of nitrogen and Ar, or, has been formed in a magnetic field in the reaction atmosphere of a mixed gas of decomposition gas and nitrogen and Ar hydrocarbon, either TiN layer and TiCN layer or both,
(b)上記表面潤滑層を、1〜10μmの平均層厚を有し、かつ、マグネトロンスパッタリング装置にて、カソード電極(蒸発源)として、WCターゲットとTiターゲットを用い、炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜され、オージェ分光分析装置で測定して、 The (b) the surface lubricating layer having an average layer thickness of 1 to 10 [mu] m, and at a magnetron sputtering apparatus, as the cathode electrode (vapor source), using a WC target and the Ti target, and cracked gas of hydrocarbon is deposited in a magnetic field in the reaction atmosphere of a mixed gas of nitrogen and Ar, as determined by Auger spectroscopy apparatus,
W:5〜15原子%、 W: 5~15 atomic percent,
Ti:21〜35原子%、 Ti: 21~35 atomic%,
窒素:21〜35原子%、 Nitrogen: 21 to 35 atomic percent,
を含有し、残りが炭素と不可避不純物からなる組成を有すると共に、透過型電子顕微鏡による観察で、炭素系非晶質体の素地に、結晶質Ti(C,N)系化合物微粒が分散分布した組織を有する非晶質炭素系潤滑層、 Contain, together with the composition balance being carbon and inevitable impurities, by observation under a transmission electron microscope, the matrix of the carbon-based amorphous material, crystalline Ti (C, N) -based compound fine dispersed distribution amorphous carbon type lubricating layer having a tissue,
で構成し、さらに、 In the configuration, further,
(c)上記下地潤滑層を、0.1〜3μmの平均層厚を有し、かつ、マグネトロンスパッタリング装置にて、カソード電極(蒸発源)として、WCターゲットとTiターゲットを用い、炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜されると共に、Ti、窒素、炭素、およびW成分の含有割合が、層厚に沿って、上記密着接合層の界面部における含有割合から上記表面潤滑層の界面部における含有割合に連続的または多段階的に変化する成分濃度変化構造を有する非晶質炭素系潤滑層、 (C) a said underlying lubricating layer has a mean layer thickness of 0.1 to 3 m, and at a magnetron sputtering apparatus, as the cathode electrode (vapor source), using a WC target and the Ti target, decomposing a hydrocarbon together are deposited in a magnetic field in the reaction atmosphere of a mixed gas of gas and nitrogen and Ar, Ti, nitrogen, content of carbon, and W components, along the layer thickness, containing at the interface portion of the close contact layer amorphous carbon type lubricating layer having a continuously or multi-graded component concentration change structure content ratio in the interface portion of the surface lubricating layer from the ratio,
で構成してなる、潤滑性被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。 In construction and comprising, those characterized by a coating cemented carbide that exhibits wear resistance of the lubricating coating layer is excellent.

つぎに、この発明の被覆超硬工具において、これの潤滑性被覆層を構成する密着接合層、下地潤滑層、および表面潤滑層について、上記の通りに数値限定した理由を説明する。 Next, the coated cemented carbide tool of the present invention, adhesion bonding layer constituting this lubricious coating layer, the underlying lubricating layer, and the surface lubricating layer, explains why the numerical limitation as described above.
(a)密着接合層の平均層厚 TiN層およびTiCN層のいずれか、または両方からなる密着接合層は、磁場中成膜による結晶粒の微細化効果で強度が向上し、かつ超硬基体表面に対してすぐれた密着性を示し、さらに下地潤滑層の前記密着接合層との界面部におけるTiおよび窒素の含有割合が最も高い状態となっているので、前記密着接合層と下地潤滑層との間にもすぐれた密着性が確保され、さらに前記超硬基体表面および下地潤滑層に対する密着接合性は磁場中成膜によって一層向上したものになるが、その平均層厚が0.1μm未満では、所望のすぐれた密着接合性を確保することができず、一方その平均層厚が3μmを越えると、特に高速切削で熱塑性変形を起こし易くなり、これが潤滑性被覆層におけるチッピング発生の原因 (A) one of the average layer thickness TiN layer and TiCN layers of adhesion bonding layer, or composed of both adhesion bonding layer improves strength at grain refining effect by the magnetic field during deposition, and cemented carbide substrate surface shows excellent adhesion to further since the content of Ti and nitrogen in the interface portion between the close contact layer underlying the lubricating layer is in the highest state, and the close contact layer and the underlying lubricating layer also excellent adhesion ensured between further the cemented carbide substrate surface and adhesion bonding properties with respect to the underlying lubricating layer is made to those further improved by the magnetic field during deposition, the average layer thickness is less than 0.1 [mu] m, can not be ensured the desired good adhesion bonding properties, whereas when the average layer thickness is more than 3 [mu] m, in particular is likely to occur thermal plastic deformation in high-speed cutting, this is the cause of chipping in the lubricating coating layer なることから、その平均層厚が0.1〜3μmと定めた。 From becoming an average layer thickness is defined as 0.1 to 3 m.

(b)表面潤滑層のW含有量 W成分は、表面潤滑層の素地を形成して、これの強度を向上させる作用があるが、その含有量が5原子%未満では所望の強度向上効果が得られず、一方その含有量が15原子%を越えると潤滑性が急激に低下するようになることから、その含有量を5〜15原子%と定めた。 (B) W content W component of the surface lubricating layer is to form a green body of the surface lubricating layer, there is a function of improving this strength, its content is desired strength improvement is less than 5 atomic% not obtained, whereas the content is the fact that so lubricity decreases sharply exceeds 15 atomic%, determined the content of 5 to 15 atomic%.

(c)表面潤滑層のTiおよびN含有量 Ti成分とN成分、さらにC(炭素)成分は磁場成膜下で結合して、炭素系非晶質体の素地に結晶質のTi(C,N)系化合物微粒として存在し、表面潤滑層の硬さを著しく向上させる作用があるが、TiおよびN成分のいずれかでも、その含有量が21原子%未満になると、層中にTi(C,N)系微粒として存在する割合が少なくなり過ぎて、所望の高硬度を確保することができず、一方TiおよびN成分のいずれかでも、その含有量が35原子%を越えると、強度および潤滑性が急激に低下するようになることから、その含有量をそれぞれTi:21〜35原子%、N:21〜35原子%と定めた。 Ti and N content Ti component and N components (c) a surface lubricating layer further C (carbon) component attached under field deposition, the green body crystalline carbon-based amorphous form Ti (C, N) compounds exist as a fine, although an effect to remarkably improve the hardness of the surface lubricating layer, in either Ti and N components, when the content is less than 21 atomic%, in the layer Ti (C , too small proportion present as N) based fine can not ensure the desired high hardness, whereas in any one of Ti and N components, when the content exceeds 35 atomic%, strength and since the lubricating property will be lowered rapidly, the content of each of Ti: 21 to 35 atomic%, N: 21 to 35 was defined as atomic%.

(d)表面潤滑層の平均層厚 その平均層厚が1μm未満では、所望の潤滑性および耐摩耗性向上効果を確保することができず、一方その平均層厚が10μmを越えると、切刃部にチッピングが発生し易くなることから、その平均層厚を1〜10μmと定めた。 The average layer thickness average layer thickness thereof (d) a surface lubricating layer is less than 1μm are not able to ensure the desired lubricity and wear resistance improving effect, whereas when the average layer thickness exceeds 10 [mu] m, the cutting edge since the chipping is likely to occur in part, it determined the average layer thickness and 1 to 10 [mu] m.

(e)下地潤滑層の平均層厚 下地潤滑層は、密着接合層との界面部ではTiおよび窒素の含有割合が最も高く、表面潤滑層の界面部ではW成分の含有割合が最も高い、すなわち実質的に前記表面潤滑層のもつ成分組成と実質的に同じ成分組成となる成分濃度変化構造を有し、これによって、炭素系非晶質体の素地に分散分布する結晶質Ti(C,N)系化合物微粒が密着接合層との界面部から表面潤滑層の界面部に向って連続的または多段階的に減少する組織となり、この結果前記密着接合層および表面潤滑層のいずれにも強固に密着接合し、前記潤滑性被覆層の超硬基体表面に対する密着接合性の一段の向上に寄与する作用があるが、その平均層厚が0.1μm未満では、前記作用に所望の向上効果が得られず、一方その平均層厚が3μm The average layer thickness underlying lubricating layer of (e) base lubricant layer, highest content of Ti and nitrogen in the interface portion between the close contact layer, the highest content of W component at the interface of the surface lubricating layer, i.e. have substantially the surface lubricating layer and a chemical composition having a substantially component concentration change structure having the same chemical composition, whereby, the crystalline Ti to disperse distribution in the matrix of the carbon-based amorphous material (C, N ) compound fine continuous or become multi-phased decrease tissue towards the interface portion of the surface lubricating layer from the interface portion between the close contact layer, either firmly even for this result the adhesion bonding layer and a surface lubricating layer closely joined, there is a contributing effect to stage increase in close contact against cemented carbide substrate surface of the lubricious coating layer, in an average layer thickness is less than 0.1 [mu] m, the desired improving effect on the action to give is not, whereas the average layer thickness of 3μm 越えると、切刃部にチッピングが発生し易くなることから、その平均層厚を0.1〜3μmと定めた。 Exceeds the, since the easily chipping occurs in the cutting edge, defining the average layer thickness and 0.1 to 3 m.

この発明の被覆超硬工具は、これの潤滑性被覆層を構成する表面潤滑層が密着接合層および下地潤滑層を介して超硬基体に強固に密着接合し、かつ、その硬さが、炭素系非晶質体の素地に、磁場成膜により超微細となった状態で分散分布する結晶質Ti(C,N)系化合物微粒によって著しく向上したものになることから、前記炭素系非晶質体の素地がW成分の作用で高強度を具備するようになることと相俟って、各種の鋼や鋳鉄などの鉄鋼材料、さらにAl合金やCu合金などの高速切削で、チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。 Coated cemented carbide tool of the present invention, firmly adhered bonded to cemented carbide substrate through the surface lubricating layer adhesion bonding layer and the underlying lubricating layer constituting this lubricious coating layer and its hardness, carbon the matrix of system amorphous body from becoming those significantly improved by crystalline Ti (C, N) -based compound fine dispersed distribution in a state in which a hyperfine by a magnetic field deposition, the carbon-based amorphous What it coupled with the body of the matrix is ​​to include a high strength by the action of W component, steel materials such as various steels and cast iron, further high-speed cutting, such as Al alloy or Cu alloy, without chipping it is intended to exert over the superior wear resistance to long term.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。 Next, specifically described by the coated cemented carbide tool embodiment of the present invention.

原料粉末として、いずれも0.8〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr 32粉末、およびCo粉末を用意し、これら原料粉末を、表3示される配合組成に配合し、ボールミルで84時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結して、いずれもWC基超硬合金からなる炭素鋼切削用超硬基体素材とAl合金およびCu合金切削用超硬基体素材を製造し、前記炭素鋼切削用超硬基体素材には切刃部分にR:0.03のホーニング加工を施してISO規格・TNMG160408のチップ形状をもった超硬基体A−1〜A−10とし、また前記Al合金およびCu合金切削用超硬 As raw material powders, both WC powder having an average particle size of 0.8~3Myuemu, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder was prepared, these raw material powders, Table 3 were blended in blending compositions shown, 84 hours wet mixed in a ball mill, dried, and pressed into a green compact under a pressure of 100 MPa, the green compact in a vacuum of of 6 Pa, temperature: to 1400 ° C. 1 by sintering under the conditions of time holding both manufactured carbide substrate materials and Al alloy and carbide substrate material for Cu alloy cutting carbon steel cutting consisting of WC-based cemented carbide, cemented carbide for the carbon steel cutting R the cutting edge portion on the base material: the carbide substrate a-1 to a-10 having a tip shape of ISO standard · TNMG160408 subjected to honing of 0.03, also the use Al alloy and a Cu alloy cutting carbide 体素材には研磨加工を施してISO規格・TEGX160304Rのチップ形状をもった超硬基体A−1′〜A−10′とした。 The body material was cemented carbide substrate A-1'~A-10 'having a tip shape of ISO standard · TEGX160304R subjected to abrasive machining.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo 2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表4に示される配合組成に配合し、ボールミルで84時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結して、いずれもTiCN系サーメットからなる炭素鋼切削用超硬基体素材とAl合金およびCu合金切削用超硬基体素材を製造し、前記炭素鋼切削用超硬基体素材には切刃部分にR:0.03のホーニング加工を施してISO規格・TNMG160408のチップ形状をも Further, as the raw material powder, both (in mass ratio, TiC / TiN = 50/50 ) TiCN having an average particle diameter of 0.5~2μm powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, prepared Co powder and Ni powder, and these raw material powders were blended in the formulation composition shown in Table 4, 84 hours in a ball mill wet-mixed, dried, pressed into a green compact at a pressure of 100MPa and, in a nitrogen atmosphere at 2kPa the green compact, temperature: 1500 ° C. and sintering under the conditions of 1 hour hold, the carbide substrate materials and Al alloy and a Cu alloy carbon steel cutting both made of TiCN-based cermet to produce a carbide substrate material for a cutting, R the cutting edge in the carbide substrate material for carbon steel cutting: even 0.03 chip shape of ISO standard · TNMG160408 subjected to honing た超硬基体B−1〜B−6とし、また前記Al合金およびCu合金切削用超硬基体素材には研磨加工を施してISO規格・TEGX160304Rのチップ形状をもった超硬基体B−1′〜B−6′とした。 Ultrahard substrate B-1 to B-6 and then, also the Al alloy and Cu alloy cutting carbide substrate material subjected to abrasive machining ISO carbide substrate B-1 having a chip-shaped standards · TEGX160304R ' It was ~B-6 '.

ついで、上記の超硬基体A−1,1′〜A−10,10′およびB−1,1′〜B−6,6′のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示される蒸着装置内の回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の超硬基体をリング状に装着し、一方側のマグネトロンスパッタリング装置のカソード電極(蒸発源)として、純度:99.9質量%のTiターゲット、他方側のマグネトロンスパッタリング装置のカソード電極(蒸発源)として、純度:99.6質量%のWCターゲットを前記回転テーブルを挟んで対向配置し、 Then, each of the above carbide substrate A-1,1'~A-10,10 'and B-1,1'~B-6,6', in a state where ultrasonic cleaning in acetone, and dried , on a rotating table in the deposition apparatus shown in FIG. 2, a plurality of carbide substrate at a predetermined distance radially from this central axis is mounted in a ring shape, one side cathode electrodes of the magnetron sputtering apparatus as (evaporation source), purity: a 99.9 mass% of Ti target, the cathode electrode of the other side of the magnetron sputtering apparatus (evaporation source), purity: opposing a 99.6 wt% WC target across the turntable arrangement and,
(a)まず、装置内を真空排気して0.01Paの真空に保持しながら、ヒーターで装置内を200℃に加熱した後、Arガスを装置内に導入して0.5Paの圧力のAr雰囲気とし、この状態で前記回転テーブル上で自転しながら回転する前記超硬基体に−800Vのバイアス電圧を印加して前記超硬基体表面を20分間Arガスボンバード洗浄し、 (A) First, while holding the inside of the apparatus to a vacuum of 0.01Pa is evacuated after heating the inside of the apparatus to 200 ° C. by the heater, the pressure of 0.5Pa and Ar gas was introduced into the apparatus Ar and atmosphere, the carbide substrate surface by applying a bias voltage of -800V to the cemented carbide substrate rotates while rotating on the turntable in this state was washed 20 min Ar gas bombardment,
(b)ついで、前記蒸着装置の対向配置の両マグネトロンスパッタリング装置の電磁コイルに、いずれも電圧:50V、電流:10Aの条件で印加して、前記超硬基体の装着部における磁束密度を140G(ガウス)とした磁場を形成すると共に、前記蒸着装置内の加熱温度を400℃とした状態で、反応ガスとして窒素とArを、窒素流量:250sccm、Ar流量:230sccmの割合で導入して、1Paの窒素とArの混合ガスからなる反応雰囲気、または反応ガスとしてC と窒素とArを、C 流量:40sccm、窒素流量:250sccm、Ar流量:230sccmの割合で導入して、1PaのC の分解ガスと窒素とArの混合ガスからなる反応雰囲気とし、Tiターゲットのカソード電極(蒸発 (B) Next, the electromagnetic coil of the two magnetron sputtering apparatus of the opposing arrangement of the evaporation apparatus, both voltage: 50 V, current: is applied at 10A conditions, 140G the magnetic flux density at the mounting portion of the cemented carbide substrate ( thereby forming a magnetic field where the Gaussian), while the heating temperature in the evaporation apparatus and 400 ° C., the nitrogen and Ar as the reaction gas, nitrogen flow rate: 250 sccm, Ar flow rate: introduced at a rate of 230Sccm, 1 Pa reaction atmosphere consisting of nitrogen and a mixed gas of Ar or C 2 H 2 and nitrogen and Ar as the reaction gas,, C 2 H 2 flow rate: 40 sccm, flow rate of nitrogen: 250 sccm, Ar flow rate: introduced at a rate of 230Sccm, a reaction atmosphere of a mixed gas of 1Pa of C 2 decomposed gas of H 2 and nitrogen and Ar, the cathode electrode of the Ti target (evaporation )には出力:12kW(周波数:40kHz)のスパッタ電力を印加し、一方上記超硬基体には、−100Vのバイアス電圧を印加した条件でグロー放電を発生させることにより、前記超硬基体の表面に表5,6に示される目標層厚のTiN層およびTiCN層のいずれか、または両方からなる密着接合層を形成し、 ) The output: 12 kW (Frequency: 40 kHz The sputtering power was applied), whereas the said carbide substrate, by generating a glow discharge under the conditions of applying a bias voltage of -100 V, the surface of the carbide substrate the close contact layer made of either or both, of the target layer thickness TiN layer and TiCN layers as indicated in tables 5 and 6 are formed in,
(c)ついで、蒸着装置内の真空度を0.01Pa、超硬基体の装着部における磁束密度を140G、蒸着装置内の加熱温度を400℃、および超硬基体に印加のバイアス電圧を−100Vに保持したままで、反応ガスとしてC と窒素とArを、C 流量:40sccm、窒素流量:250sccm、Ar流量:230sccmの割合で導入して、1PaのC の分解ガスと窒素とArの混合ガスからなる反応雰囲気とし、このうちC 流量および窒素流量を表3,4に示される目標層厚に対応して、それぞれC 流量は100sccmまで連続的に増加させ、一方窒素流量は130sccmまで連続的に減少させ、同時にTiターゲットの出力(周波数は同じ40kHzを保持)を12kWから6kWに (C) Next, 0.01 Pa degree of vacuum in the vapor deposition apparatus, 140G flux density in the mounting portion of the cemented carbide substrate, 400 ° C. The heating temperature in the deposition apparatus, and the bias voltage applied to the carbide substrate -100V while maintaining the, the C 2 H 2 and nitrogen and Ar as the reaction gas, C 2 H 2 flow rate: 40 sccm, flow rate of nitrogen: 250 sccm, Ar flow rate: introduced at a rate of 230Sccm, 1 Pa of C 2 H 2 of a reaction atmosphere of a mixed gas of decomposition gas and nitrogen and Ar, the one C 2 H 2 flow rate and the nitrogen flow rate corresponding to the target layer thickness shown in tables 3 and 4, until the C 2 H 2 flow rate respectively 100sccm continuously increased, whereas the nitrogen flow rate is continuously decreased to 130 sccm, at the same time the Ti target output (frequency holding the same 40 kHz) to 6kW from 12kW じく表5,6に示される目標層厚に対応して連続的に減少させると共に、WCターゲットへの印加を開始して、5kWの出力(周波数は40kHz)まで同じく目標層厚に対応して連続的に増加させることにより、Ti、窒素、炭素、およびW成分の含有割合が、層厚に沿って、上記密着接合層の界面部における含有割合から表面潤滑層の界面部における含有割合に連続的に変化する成分濃度変化構造を有する非晶質炭素系潤滑層からなる下地潤滑層を表5,6に示される目標層厚で形成し、 Causes continuously reduced to correspond to the target layer thickness shown in the axis table 5 and 6, the start of the application to the WC target, the output of 5 kW (frequency 40 kHz) and also corresponding to the target layer thickness up to continuous by continuously increasing, Ti, nitrogen, carbon, and the content ratio of W component, along the layer thickness, the content ratio in the interface portion of the surface lubricating layer from the content at the interface portion of the close contact layer the base lubricating layer made of amorphous carbon-based lubricant layer is formed at the target layer thickness shown in tables 5 and 6 having a varying component concentration change structure,
(d)さらに、蒸着装置内の真空度、超硬基体の装着部における磁束密度、蒸着装置内の加熱温度、および超硬基体に印加のバイアス電圧を同じくしたままで、表2に示される通り、前記蒸着装置内に反応ガスとして、C (炭化水素)と窒素とArを、C 流量:50〜120sccm、窒素流量:100〜150sccm、Ar流量:200〜250sccmの範囲内の所定の流量で導入して、反応雰囲気を、1PaのC の分解ガスと窒素とArの混合ガスとすると共に、前記両マグネトロンスパッタリング装置のWCターゲットのカソード電極(蒸発源)には、出力:3〜6kW(周波数:40kHz)の範囲内の所定のスパッタ電力、同Tiターゲットには、出力:3〜8kW(周波数:40kHz)の範囲内 (D) Furthermore, the degree of vacuum in the deposition apparatus, the magnetic flux density at the mounting portion of the cemented carbide substrate, while still also the heating temperature, and bias voltage applied to the carbide substrate in a vapor deposition apparatus, as shown in Table 2 , as a reaction gas into the deposition apparatus, C 2 H 2 (the hydrocarbon) and nitrogen and Ar, C 2 H 2 flow rate: 50~120Sccm, nitrogen flow rate: 100~150Sccm, Ar flow rate: in the range from 200~250sccm It is introduced at a predetermined flow rate of the reaction atmosphere, with a gas mixture of cracked gas and nitrogen and Ar of 1Pa of C 2 H 2, the cathode electrode of the WC target of both the magnetron sputtering apparatus (evaporation source) , output: 3~6kW (frequency: 40 kHz) prescribed sputtering power in the range of, in the Ti target, output: 3~8kW (frequency: 40 kHz) in the range of の所定のスパッタ電力を同時に印加した条件で、同じく表5,6に示される目標組成および目標層厚の非晶質炭素系潤滑層からなる表面潤滑層を表3,4に示される目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1,1′〜16,16′をそれぞれ製造した。 At a given condition which the sputtering power is applied at the same time, the target layer thickness also indicated a surface lubricating layer formed of amorphous carbon-based lubricating layer of the target composition and target layer thicknesses shown in Tables 5 and 6 in Tables 3 and 4 by depositing formed in manufacturing the present invention coated carbide tool as the present invention the surface coating cemented carbide throw-away chip (hereinafter, the present invention refers to the coating carbide inserts) 1,1'~16,16 'respectively did.

また、比較の目的で、上記超硬基体A−1,1′〜A−10,10′およびB−1,1′〜B−6,6′のそれぞれの表面を、アセトン中で超音波洗浄し、乾燥した状態で、図3に示されるカソード電極(蒸発源)がTiターゲットのスパッタリング装置と、カソード電極(蒸発源)がWCターゲットのスパッタリング装置を対向配置した蒸着装置の回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の超硬基体をリング状に装着し、 For the purpose of comparison, the respective surfaces of the carbide substrate A-1,1'~A-10,10 'and B-1,1'~B-6,6', ultrasonic cleaning in acetone and, in a dry state, and the sputtering device the cathode (evaporation source) of Ti targets shown in Figure 3, a cathode electrode (evaporation source) on the rotating table of the deposition device disposed facing the sputtering apparatus of the WC target, a plurality of carbide substrates mounted in a ring shape at a predetermined distance radially from this central axis,
(a)まず、装置内を真空排気して0.01Paの真空に保持しながら、ヒーターで装置内を200℃に加熱した後、Arガスを装置内に導入して0.5Paの圧力のAr雰囲気とし、この状態で前記回転テーブル上で自転しながら回転する前記超硬基体に−800Vのバイアス電圧を印加して前記超硬基体表面を20分間Arガスボンバード洗浄し、 (A) First, while holding the inside of the apparatus to a vacuum of 0.01Pa is evacuated after heating the inside of the apparatus to 200 ° C. by the heater, the pressure of 0.5Pa and Ar gas was introduced into the apparatus Ar and atmosphere, the carbide substrate surface by applying a bias voltage of -800V to the cemented carbide substrate rotates while rotating on the turntable in this state was washed 20 min Ar gas bombardment,
(b)ついで、前記蒸着装置内の加熱温度を400℃とした状態で、装置内に反応ガスとして窒素とArを、窒素流量:250sccm、Ar流量:230sccmの割合で導入して、1Paの窒素とArの混合ガスからなる反応雰囲気、または反応ガスとしてC と窒素とArを、C 流量:40sccm、窒素流量:250sccm、Ar流量:230sccmの割合で導入して、1PaのC の分解ガスと窒素とArの混合ガスからなる反応雰囲気とし、Tiターゲットのカソード電極(蒸発源)には出力:12kW(周波数:40kHz)のスパッタ電力を印加し、一方上記超硬基体には、−100Vのバイアス電圧を印加した条件でグロー放電を発生させることにより、前記超硬基体の表面に表7,8に示され (B) Then, in a state where the heating temperature was 400 ° C. in the deposition apparatus, a nitrogen and Ar as a reaction gas into the apparatus, the nitrogen flow rate: 250 sccm, Ar flow rate: introduced at a rate of 230Sccm, 1 Pa of nitrogen a reaction atmosphere of a mixed gas of Ar or C 2 H 2 and nitrogen and Ar as the reaction gas,, C 2 H 2 flow rate: 40 sccm, flow rate of nitrogen: 250 sccm, Ar flow rate: introduced at a rate of 230sccm, 1Pa of a reaction atmosphere of cracked gas and a mixed gas of nitrogen and Ar of C 2 H 2, the output to the cathode electrode of a Ti target (evaporation source): 12 kW (frequency: 40 kHz) was applied to the sputter power, whereas the carbide the substrate, by generating a glow discharge under the conditions of applying a bias voltage of -100 V, is shown in tables 7 and 8 on the surface of the carbide substrate 目標層厚のTiN層およびTiCN層のいずれか、または両方からなる密着接合層を蒸着形成し、 One of the target layer thickness TiN layer and TiCN layer, or the adhesion bonding layer consisting of both deposited form,
(c)ついで、上記蒸着装置内の加熱温度は同じ400℃、超硬基体に印加するバイアス電圧も同じ−100Vとした状態で、C とArを、C 流量:50〜120sccm、Ar流量:200〜250sccmの範囲内の所定の流量で導入して、1PaのC の分解ガスとArの混合ガスからなる反応雰囲気とすると共に、WCターゲットのカソード電極(蒸発源)には出力:3〜6kW(周波数:40kHz)の範囲内の所定のスパッタ電力を印加した条件で、上記密着接合層の上に、同じく表7,8に示される目標組成および目標層厚の非晶質炭素系潤滑層からなる表面潤滑層を蒸着形成することにより、従来被覆超硬工具に相当する比較表面被覆超硬合金製スローアウエイチップ(以下、比較被覆超硬チップと (C) Then, the heating temperature in the vapor deposition apparatus is as 400 ° C., the bias voltage applied to the carbide substrate even in a state where the same -100 V, the C 2 H 2 and Ar, C 2 H 2 flow rate: 50 120 sccm, Ar flow rate: introduced at a predetermined flow rate in the range of 200~250Sccm, with a reactive atmosphere consisting of a gas mixture of cracked gas and Ar of 1 Pa C 2 H 2, the cathode electrode (vapor source of WC target ) the output: 3~6kW (frequency: 40 kHz under the condition of applying a predetermined sputtering power in the range), on the close contact layer, also of the target composition and target layer thicknesses shown in tables 7 and 8 by depositing a surface lubricating layer comprising an amorphous carbon-based lubricant layer, a conventional coating superhard comparative surface-coated cemented carbide indexable corresponding to the tool (hereinafter, the comparative coated carbide inserts う)1,1′〜16,16′をそれぞれ製造した。 The U) 1,1'~16,16 'was produced, respectively.

つぎに、上記本発明被覆超硬チップ1,1′〜16,16′および比較被覆超硬チップ1,1′〜16,16′を工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、 Next, screw in the present invention coated carbide inserts 1,1'~16,16 'and comparative coated hard tip 1,1'~16,16' fixture to the tip of the tool steel byte in the state,
被削材:JIS・A4032の丸棒、 Workpiece: JIS · A4032 of the round bar,
切削速度:600m/min. Cutting speed: 600m / min. ,
切り込み:1.2mm、 Cut: 1.2mm,
送り:0.6mm/rev. Feed: 0.6mm / rev. ,
切削時間: 分、 Cutting time: minutes,
の条件(切削条件Aという)でのAl合金の乾式高速切削加工試験(通常の切削速度は350m/min.)、 Dry High-Speed ​​Cutting Test of Al alloy at conditions (called cutting conditions A) (normal cutting speed is 350m / min.),
被削材:JIS・C6301の丸棒、 Workpiece: JIS · C6301 of the round bar,
切削速度:150m/min. Cutting speed: 150m / min. ,
切り込み:2.5mm、 Cut: 2.5mm,
送り:0.3mm/rev. Feed: 0.3mm / rev. ,
切削時間:10分、 Cutting Time: 10 minutes,
の条件(切削条件Bという)でのCu合金の乾式高速切削加工試験(通常の切削速度は80m/min.)、さらに、 Dry High-Speed ​​Cutting Test of Cu alloy at conditions (called cutting conditions B) (normal cutting speed 80 m / min.), Further,
被削材:JIS・S35Cの丸棒、 Workpiece: JIS · S35C round bar,
切削速度:350m/min. Cutting speed: 350m / min. ,
切り込み:2mm、 Cut: 2mm,
送り:0.3mm/rev. Feed: 0.3mm / rev. ,
切削時間:15分、 Cutting Time: 15 minutes,
の条件(切削条件Cという)での炭素鋼の湿式高速切削加工試験(通常の切削速度は220m/min.)を行なった。 (Normal cutting speed 220 m / min.) Conditions wet fast cutting test carbon steel with (as cutting condition C) was performed. いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。 In both cutting test was measured flank wear width of the cutting edge. この測定結果を表5〜8に示した。 The measurement results are shown in Table 5-8.

原料粉末として、平均粒径:4.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同1.8μmのCr 32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C(質量比で、TiC/WC=50/50)粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表9に示される配合組成に配合し、さらにワックスを加えてアセトン中で72時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結し As the raw material powder having an average particle diameter coarse WC powder in with 4.5 [mu] m, the 0.8μm of fine WC powder, TaC powder of the 1.3 .mu.m, the 1.2 [mu] m of NbC powder, the same 1.2 [mu] m ZrC powder, Cr 3 C 2 powder in the same 1.8 .mu.m, VC powder of the same 1.5 [mu] m, (in weight ratio, TiC / WC = 50/50 ) (Ti, W) C in the 1.0μm powder, and the 1 prepared Co powder .8Myuemu, formulated into formulation compositions shown these raw material powders in tables 9, in addition to wax and mixed 72 hours ball milling in acetone, dried under reduced pressure, a predetermined shape at a pressure of 100MPa the press-molded into various green compact, these green compacts in a vacuum atmosphere of of 6 Pa, the temperature was raised to a predetermined temperature in the range of 1,370-1,470 ° C. at a heating rate of 7 ° C. / min, the after a 1 hour hold time at temperature, and sintered under the conditions of furnace cooling 、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表9に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエアの形状をもった超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 , 8 mm in diameter, 13 mm, and 26mm to form a three carbide substrate for forming a round rod sintered body, the further three round bar sintered body of said at grinding, are shown in Table 9 in combination, the cutting edge diameter × length respectively 6 mm × 13 mm, 10 mm × 22 mm and dimensions of 20 mm × 45 mm, and carbide substrate (end mills both having 4 flute square shape of the twist angle of 30 degrees, ) was C-1 through C-8 were prepared, respectively.

ついで、これらの超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、表12に示される目標層厚のTiN層およびTiCN層のいずれか、または両方からなる密着接合層および非晶質炭素系潤滑層からなる下地潤滑層、さらに同じく表10に示される目標組成および目標層厚の非晶質炭素系潤滑層からなる表面潤滑層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。 Then, these carbide substrates (end mills) C-1 through C-8, was subjected to ultrasonic cleaning in acetone, in a dry state, also charged into the vapor deposition apparatus shown in FIG. 2, as in Example 1 under the same conditions, the target layer thickness either TiN layer and TiCN layer, or consist of both close contact layer and the underlying lubricating layer made of an amorphous carbon-based lubricating layer shown in Table 12, further also shown in Table 10 is by a surface lubricating layer formed by evaporation consisting target composition and the amorphous carbon type lubricating layer of the target layer thickness, the present invention present invention surface coating cemented carbide end mill of the coated cemented carbide (hereinafter, the present invention cover and end mills referred) 1-8 were prepared, respectively.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図3に示される蒸着装置に装入し、上記実施例1と同一の条件で、表11に示される目標層厚のTiN層およびTiCN層のいずれか、または両方からなる密着接合層、並びに同じく表11に示される目標組成および目標層厚の非晶質炭素系潤滑層からなる表面潤滑層を蒸着形成することにより、従来被覆超硬工具に相当する比較表面被覆超硬合金製エンドミル(以下、比較被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。 For the purpose of comparison, the carbide substrates (end mills) C-1 through C-8, was subjected to ultrasonic cleaning in acetone, in a dry state, also charged into the vapor deposition apparatus shown in FIG. 3, under the same conditions as in example 1, a target layer thickness shown in Table 11 either TiN layer and TiCN layer, or adhesion bonding layer consisting of both, as well as also the target composition and target layer thicknesses shown in Table 11 by depositing a surface lubricating layer comprising an amorphous carbon-based lubricant layer, compared surface-coated cemented carbide end mill corresponding to the conventional coating cemented carbide (hereinafter, referred to as comparative coated end mills) 1-8 and It was produced, respectively.

つぎに、上記本発明被覆超硬エンドミル1〜8および比較被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および比較被覆超硬エンドミル1〜3については、 Next, the present invention coated cemented carbide end mills 1-8 and of comparative coated cemented carbide end mills 1-8, the present invention coated cemented carbide end mills 1 to 3 and Comparative coating cemented carbide end mills 1-3,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・A5052の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: 50mm plate material JIS · A5052,
切削速度:300m/min. Cutting speed: 300m / min. ,
軸方向切り込み:3.5mm、 Axial cut: 3.5mm,
径方向切り込み:0.7mm、 Radial depth of cut: 0.7mm,
テーブル送り:2400mm/分、 Table feed: 2400mm / min,
の条件でのAl合金の乾式高速側面切削加工試験(通常の切削速度は180m/min.)、本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、 Dry High-Speed ​​side cutting test Al alloy conditions (normal cutting speed is 180 m / min.), The present invention coated cemented carbide end mills 4-6 and the conventional coated cemented carbide end mills 4-6,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・C6301の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: 50mm plate material JIS · C6301,
切削速度:110m/min. Cutting speed: 110m / min. ,
軸方向切り込み:6mm、 Axial cut: 6mm,
径方向切り込み:1.5mm、 Radial depth of cut: 1.5mm,
テーブル送り:2100mm/分、 Table feed: 2100mm / min,
の条件でのCu合金の乾式高速側面切削加工試験(通常の切削速度は60m/min.)、本発明被覆超硬エンドミル7,8および比較被覆超硬エンドミル7,8については、 Dry High-Speed ​​side cutting test Cu alloy conditions (normal cutting speed is 60 m / min.), The present invention coated cemented carbide end mills 7 and 8 and Comparative coating cemented carbide end mills 7 and 8,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S45Cの板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: sheet of 50mm in JIS · S45C,
切削速度:350m/min. Cutting speed: 350m / min. ,
軸方向切り込み:8mm、 Axial cut: 8mm,
径方向切り込み:1.5mm、 Radial depth of cut: 1.5mm,
テーブル送り:2200mm/分、 Table feed: 2200mm / min,
の条件での炭素鋼の乾式高速側面切削加工試験(通常の切削速度は200m/min.)をそれぞれ行い、いずれの側面切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削長を測定した。 (Normal cutting speed 200m / min.) At conditions dry fast side cutting test of carbon steel subjected respectively, flank wear width of the peripheral cutting edge of the cutting edge portion at either side cutting test of service life cutting length up to 0.1mm, which is a measure to measure. この測定結果を表10,11にそれぞれ示した。 The measurement results are shown in Tables 10 and 11.

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもった超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。 Diameter produced in the above Example 2 is 8 mm (for cemented carbide substrates C-1 through C-3 form), 13 mm (for cemented carbide substrates C-4~C-6 form), and 26 mm (carbide substrates C- 7, using a C-8 three round bar sintered body forming), from the three round bar sintered at grinding, respectively in diameter × length of the groove forming portion 4 mm × 13 mm ( carbide substrate D-1~D-3), 8mm × 22mm (carbide substrates D-4~D-6), and dimensions of 16 mm × 45 mm (carbide substrates D-7, D-8), as well as any the carbide substrate (drills) D-1~D-8 having two edge geometry of the twist angle of 30 degrees was produced, respectively.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、表12に示される目標層厚のTiN層およびTiCN層のいずれか、または両方からなる密着接合層および非晶質炭素系潤滑層からなる下地潤滑層、さらに同じく表12に示される目標組成および目標層厚の非晶質炭素系潤滑層からなる表面潤滑層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。 Then, charged into the cutting edge of these carbide substrates (drills) D-1~D-8, subjected to honing, ultrasonic cleaning in acetone, in a dry state, also the vapor deposition apparatus shown in FIG. 2 and, under the same conditions as in example 1, the target layer or thick TiN layer and TiCN layer, or consist of both close contact layer and the underlying lubricating layer made of an amorphous carbon-based lubricating layer shown in Table 12 further also by a surface lubricating layer formed of amorphous carbon-based lubricating layer of the target composition and target layer thicknesses shown in Table 12 formed by evaporation, the present invention surface coating cemented carbide as the present invention coated cemented carbide drill (hereinafter, the present invention refers to the coating carbide drills) 1-8 were prepared, respectively.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図3に示される蒸着装置に装入し、上記実施例1と同一の条件で、表13に示される目標層厚のTiN層およびTiCN層のいずれか、または両方からなる密着接合層、並びに同じく表13に示される目標組成および目標層厚の非晶質炭素系潤滑層からなる表面潤滑層を蒸着形成することにより、従来被覆超硬工具に相当する比較表面被覆超硬合金製ドリル(以下、比較被覆超硬ドリルと云う)1〜8をそれぞれ製造した。 For the purpose of comparison, the cutting edge of the carbide substrate (drills) D-1~D-8, subjected to honing, as shown with the ultrasonic cleaning in acetone, and dried, similarly to FIG. 3 was charged to the evaporation apparatus, under the same conditions as in example 1, shown TiN layer of the target layer thicknesses shown in Table 13 and either, or adhesion bonding layer consisting of both TiCN layers, and also in Table 13 by the target composition and the surface lubricating layer comprising a target layer amorphous carbon type lubricating layer thickness formed by evaporation, compared surface coated cemented carbide drill corresponding to the conventional coating cemented carbide (hereinafter, comparative coated carbide drills and refers) 1-8 were prepared, respectively.

つぎに、上記本発明被覆超硬ドリル1〜8および比較被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および比較被覆超硬ドリル1〜3については、 Then, among the present invention coated cemented carbide drills 1 to 8 and Comparative coating carbide drill 1-8, the present invention coated cemented carbide drills 1 to 3 and Comparative coating carbide drills 1-3,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・ADC12の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: 50mm plate material JIS · ADC 12,
切削速度:120m/min. Cutting speed: 120m / min. ,
送り:0.3mm/rev、 Feed: 0.3mm / rev,
穴深さ:10mm、 Hole depth: 10mm,
の条件でのAl合金の湿式高速穴あけ切削加工試験(通常の切削速度は80m/min.)、本発明被覆超硬ドリル4〜6および比較被覆超硬ドリル4〜6については、 Wet fast drilling cutting test under conditions Al alloy (normal cutting speed is 80 m / min.), The present invention coated cemented carbide drills 4-6 and Comparative coating carbide drills 4-6,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・C2801の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: 50mm plate material JIS · C2801,
切削速度:130m/min. Cutting speed: 130m / min. ,
送り:0.5mm/rev、 Feed: 0.5mm / rev,
穴深さ:15mm、 Hole depth: 15mm,
の条件でのCu合金の湿式高速穴あけ切削加工試験(通常の切削速度は100m/min.)、本発明被覆超硬ドリル7,8および比較被覆超硬ドリル7,8については、 (Normal cutting speed 100 m / min.) Wet fast drilling cutting test under conditions Cu alloy, the present invention coated cemented carbide drills 7 and 8 and Comparative coating carbide drills 7 and 8,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S17Cの板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: sheet of 50mm in JIS · S17C,
切削速度:210m/min. Cutting speed: 210m / min. ,
送り:0.8mm/rev、 Feed: 0.8mm / rev,
穴深さ:22mm、 Hole depth: 22mm,
の条件での炭素鋼の湿式高速穴あけ切削加工試験(通常の切削速度は90m/min.)、をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。 (Normal cutting speed 90m / min.) In conditions wet fast drilling cutting test carbon steel, it was carried out respectively, relief of the tip cutting surfaces either wet drilling cutting test (water-soluble cutting oil used) surface wear width was measured drilling number of up to 0.3 mm. この測定結果を表12,13にそれぞれ示した。 The measurement results are shown in Tables 12 and 13.

この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1,1′〜16,16′、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8、並びに従来被覆超硬工具に相当する比較被覆超硬チップ1,1′〜16,16′、比較被覆超硬エンドミル1〜8、および比較被覆超硬ドリル1〜8の表面潤滑層を構成する非晶質炭素系潤滑層について、その組成をオージェ分光分析装置、その層厚を走査型電子顕微鏡を用いて測定したところ、いずれも目標組成および目標層厚と実質的に同じ組成および平均層厚(断面5箇所の平均値)を示し、また、その組織を透過型電子顕微鏡を用いて観察したところ、前記本発明被覆超硬工具は、炭素系非晶質体の素地に、結晶質のTi(C,N)系化合物微粒が分散分布した組 The resulting invention The present invention coated carbide inserts as coated cemented carbide tools 1,1'~16,16 ', the present invention coated cemented carbide end mills 1-8, and the present invention coated cemented carbide drills 1-8, and non constituting comparing coated hard tip 1,1'~16,16 corresponding to the conventional coating cemented carbide tools', compared coated cemented carbide end mills 1-8, and the comparative coating surface lubricating layer of carbide drill 1-8 for amorphous carbon-based lubricant layer, the composition Auger spectroscopy apparatus, the layer thickness was measured with a scanning electron microscope, both the target composition and the target layer thickness substantially the same composition and average layer thickness ( shows a cross-sectional average of 5 points), also was observed with a transmission electron microscope that organization, the present invention coated cemented carbide tools, the matrix of the carbon-based amorphous material, the crystalline Ti ( C, N) based set of compound fine dispersed distribution を示し、一方前記従来被覆超硬工具のそれは、炭素系非晶質体の単一相からなる組織を示した。 It is shown, whereas the it conventional coating carbide tools showed tissue of a single phase of the carbon-based amorphous substance.

表5〜13に示される結果から、表面潤滑層が、炭素系非晶質体の素地に、結晶質のTi(C,N)系化合物微粒が分散分布した組織を有する非晶質炭素系潤滑層からなる本発明被覆超硬工具は、いずれもAl合金やCu合金、さらに鋼の切削加工を、高速条件で行なった場合にも、すぐれた耐摩耗性を発揮するのに対して、表面潤滑層が、炭素系非晶質体の単一相からなる組織を有する従来被覆超硬工具(比較被覆超硬工具)においては、高速切削条件では、前記表面潤滑層の摩耗進行がきわめて速く、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Table 5-13, a surface lubricating layer, the base material of the carbon-based amorphous material, the amorphous carbon-based lubricant with a crystalline Ti (C, N) -based compound fine dispersed distribution organizations the present invention coated cemented carbide tool comprising a layer, both Al alloy or Cu alloy, further cutting the steel, even when performed at high speed conditions, whereas exhibits excellent wear resistance, surface lubricity layers, in the conventional coated cemented carbide tool having a structure comprising a single phase of the carbon-based amorphous body (Comparative coating cemented carbide tool) in the high-speed cutting conditions, wear progresses of the surface lubricating layer is very fast, compared it is clear that lead to specific short time service life.
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に各種の被削材の切削加工を、高速切削条件で行なった場合にも、すぐれた耐摩耗性を発揮するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 Resistance as described above, coated cemented carbide tool of the present invention, it of course is cutting under normal conditions, especially various cutting of the workpiece, even when performed at high speed cutting conditions, the superior since it is intended to exhibit wear resistance, labor saving and energy saving of the cutting, but can respond to satisfactory further cost reduction.

この発明の被覆超硬工具の表面潤滑層を構成する非晶質炭素系潤滑層を透過型電子顕微鏡を用いて組織観察した結果を示す模式図である。 It is a schematic diagram showing a result of structure observation using a transmission electron microscope amorphous carbon type lubricating layer constituting the surface lubricating layer of the coated cemented carbide tool of the present invention. この発明の被覆超硬工具の潤滑性被覆層(密着接合層、下地潤滑層、および表面潤滑層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。 Lubricious coating layer (adhesion bonding layer of the coated cemented carbide tool of the present invention, the base lubricating layer, and shows a deposition apparatus used for forming the surface lubricating layer, (a) represents a schematic plan view, (b) schematic it is a front view. 従来被覆超硬工具(比較被覆超硬工具)の潤滑性被覆層(密着接合層および表面潤滑層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。 Shows a deposition apparatus used for forming the lubricating coating layer (adhesion bonding layer and a surface lubricating layer of the conventional coated cemented carbide tools (Comparative coating cemented carbide tool), (a) is a schematic plan view, (b) schematic it is a front view.

Claims (1)

  1. 炭化タングステン基超硬合金または炭窒化チタン系サーメットからなる超硬基体の表面に蒸着形成された潤滑性被覆層が、密着接合層、下地潤滑層、および表面潤滑層からなり、 Lubricious coating layer deposited on the surface of the tungsten carbide based cemented carbide or cemented carbide substrate made of titanium carbonitride-based cermet, it becomes closely bonded layer, the base lubricating layer, and a surface lubricating layer,
    (a)上記密着接合層を、0.1〜3μmの平均層厚を有し、かつ、マグネトロンスパッタリング装置にて、カソード電極(蒸発源)としてTiターゲットを用い、窒素とArの混合ガス、または炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜された、窒化チタン層および炭窒化チタン層のいずれか、または両方、 The (a) the adhesion bonding layer has an average layer thickness of 0.1 to 3 m, and at a magnetron sputtering device, using a Ti target as a cathode electrode (vapor source), a mixed gas of nitrogen and Ar, or, has been formed in a magnetic field in the reaction atmosphere of a mixed gas of decomposition gas and nitrogen and Ar hydrocarbon, either titanium nitride layer and titanium carbonitride layer, or both,
    (b)上記表面潤滑層を、1〜10μmの平均層厚を有し、かつ、マグネトロンスパッタリング装置にて、カソード電極(蒸発源)として、炭化タングステンターゲットとTiターゲットを用い、炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜され、オージェ分光分析装置で測定して、 (B) the surface lubricating layer having an average layer thickness of 1 to 10 [mu] m, and at a magnetron sputtering apparatus, as the cathode electrode (vapor source), using a tungsten carbide target and a Ti target, cracked gas hydrocarbons in the reaction atmosphere of a mixed gas of nitrogen and Ar is deposited in a magnetic field, as determined by Auger spectroscopy apparatus and,
    W:5〜15原子%、 W: 5~15 atomic percent,
    Ti:21〜35原子%、 Ti: 21~35 atomic%,
    窒素:21〜35原子%、 Nitrogen: 21 to 35 atomic percent,
    を含有し、残りが炭素と不可避不純物からなる組成を有すると共に、透過型電子顕微鏡による観察で、炭素系非晶質体の素地に、結晶質炭窒化チタン系化合物の微粒が分散分布した組織を有する非晶質炭素系潤滑層、 Contain, together with the composition balance being carbon and inevitable impurities, by observation under a transmission electron microscope, the matrix of the carbon-based amorphous material, the fine crystalline titanium carbonitride-based compound is dispersed distribution organizations amorphous carbon type lubricating layer having,
    で構成し、さらに、 In the configuration, further,
    (c)上記下地潤滑層を、0.1〜3μmの平均層厚を有し、かつ、マグネトロンスパッタリング装置にて、カソード電極(蒸発源)として、炭化タングステンターゲットとTiターゲットを用い、炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜されると共に、Ti、窒素、炭素、およびW成分の含有割合が、層厚に沿って、上記密着接合層の界面部における含有割合から上記表面潤滑層の界面部における含有割合に連続的または多段階的に変化する成分濃度変化構造を有する非晶質炭素系潤滑層、 (C) a said underlying lubricating layer has a mean layer thickness of 0.1 to 3 m, and at a magnetron sputtering apparatus, as the cathode electrode (vapor source), using a tungsten carbide target and a Ti target, hydrocarbons together are deposited in a magnetic field in the reaction atmosphere of a mixed gas of decomposition gas and nitrogen and Ar, Ti, nitrogen, carbon, and W content of component, along the layer thickness, at the interface portion of the close contact layer amorphous carbon type lubricating layer from content with a continuous or multi-graded component concentration change structure content ratio in the interface portion of the surface lubricating layer,
    で構成してなる、潤滑性被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。 In configuration and comprising a surface-coated cemented carbide cutting tools which exhibits abrasion resistance lubricious coating layer excellent.
JP2005173466A 2005-06-14 2005-06-14 Surface-coated cemented carbide cutting tools which exhibits abrasion resistance lubricious coating layer excellent Active JP4711177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005173466A JP4711177B2 (en) 2005-06-14 2005-06-14 Surface-coated cemented carbide cutting tools which exhibits abrasion resistance lubricious coating layer excellent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173466A JP4711177B2 (en) 2005-06-14 2005-06-14 Surface-coated cemented carbide cutting tools which exhibits abrasion resistance lubricious coating layer excellent

Publications (2)

Publication Number Publication Date
JP2006346777A JP2006346777A (en) 2006-12-28
JP4711177B2 true JP4711177B2 (en) 2011-06-29

Family

ID=37643149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173466A Active JP4711177B2 (en) 2005-06-14 2005-06-14 Surface-coated cemented carbide cutting tools which exhibits abrasion resistance lubricious coating layer excellent

Country Status (1)

Country Link
JP (1) JP4711177B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141654B2 (en) * 2009-08-31 2013-02-13 日立ツール株式会社 Sliding parts
GB201100966D0 (en) * 2011-01-20 2011-03-02 Element Six Holding Gmbh Cemented carbide article
CN102847962B (en) * 2011-06-29 2016-05-04 三菱综合材料株式会社 Hard coating layer exhibits excellent surface-coated cutting tool chipping resistance
CN103459071B (en) * 2012-04-03 2015-09-30 住友电工硬质合金株式会社 Cubic boron nitride sintered body tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762541A (en) * 1993-08-26 1995-03-07 Kyocera Corp Wear resistant member
JPH11291104A (en) * 1998-04-08 1999-10-26 Sumitomo Electric Ind Ltd Coated tool
JP2000144378A (en) * 1998-11-05 2000-05-26 Yamaguchi Prefecture Formation of composite hard film with low coefficient of friction
JP2001225412A (en) * 2000-02-16 2001-08-21 Token Thermotec:Kk Protective film coated member
JP2002206177A (en) * 2000-12-28 2002-07-26 Komatsu Ltd Sliding member having excellent sliding characteristic
JP2002235748A (en) * 2001-02-13 2002-08-23 Koyo Seiko Co Ltd Rolling sliding component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762541A (en) * 1993-08-26 1995-03-07 Kyocera Corp Wear resistant member
JPH11291104A (en) * 1998-04-08 1999-10-26 Sumitomo Electric Ind Ltd Coated tool
JP2000144378A (en) * 1998-11-05 2000-05-26 Yamaguchi Prefecture Formation of composite hard film with low coefficient of friction
JP2001225412A (en) * 2000-02-16 2001-08-21 Token Thermotec:Kk Protective film coated member
JP2002206177A (en) * 2000-12-28 2002-07-26 Komatsu Ltd Sliding member having excellent sliding characteristic
JP2002235748A (en) * 2001-02-13 2002-08-23 Koyo Seiko Co Ltd Rolling sliding component

Also Published As

Publication number Publication date
JP2006346777A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4702520B2 (en) Surface-coated cemented carbide cutting tools which exhibits abrasion resistance hard coating layer has excellent high-speed cutting of hardened steels
JP2009039838A (en) Surface-coated cutting tool
JP3969230B2 (en) Surface-coated cemented carbide cutting tool exhibits chipping resistance of the hard coating layer has excellent heavy cutting conditions
JP4747268B2 (en) Surface-coated cemented carbide cutting tool having high temperature strength hard layer has excellent
JP5594575B2 (en) Surface-coated cutting tool which exhibits abrasion resistance hard coating layer has excellent
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
EP1710032A1 (en) Cutting tool made of surface-coated super hard alloy, and method for manufacture thereof
JP4618411B2 (en) Surface-coated cemented carbide cutting tools which exhibits abrasion resistance lubricant coating layer excellent
JP5036338B2 (en) Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent
JP5344129B2 (en) Surface-coated cutting tool which exhibits abrasion resistance hard coating layer has excellent
JP3928480B2 (en) Surface-coated cemented carbide cutting tools which exhibits abrasion resistance hard coating layer has excellent high-speed cutting
JP2009061520A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting
JP3693001B2 (en) Surface-coated cemented carbide cutting tools which exhibits abrasion resistance hard coating layer has excellent high-speed cutting
JP3931326B2 (en) Surface-coated cemented carbide cutting tools which exhibits abrasion resistance hard coating layer has excellent high-speed cutting
JP5838769B2 (en) Surface-coated cutting tool
JP5182501B2 (en) Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent
JP3928481B2 (en) Surface-coated cemented carbide cutting tools which exhibits abrasion resistance hard coating layer has excellent high-speed heavy cutting conditions
JP2006198731A (en) Cutting tool made of surface coated cermet with hard coating layer displaying excellent chipping resistance in high speed cutting
JP4645821B2 (en) Surface-coated cemented carbide cutting tools which exhibits abrasion resistance hard coating layer has excellent high-speed machining of heat resistant alloys
JP4725773B2 (en) Surface-coated cermet cutting tool hard coating layer exhibits chipping resistance with excellent intermittent heavy cutting
JP3659217B2 (en) Surface-coated cemented carbide cutting tools which exhibits abrasion resistance hard coating layer has excellent high-speed cutting
JP5207105B2 (en) Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent
JP2007152456A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting high-hardness steel
CN1905974A (en) Cutting tool made of surface-coated super hard alloy, and method for manufacture thereof
JP5041222B2 (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310