JP4711177B2 - Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricity coating layer - Google Patents

Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricity coating layer Download PDF

Info

Publication number
JP4711177B2
JP4711177B2 JP2005173466A JP2005173466A JP4711177B2 JP 4711177 B2 JP4711177 B2 JP 4711177B2 JP 2005173466 A JP2005173466 A JP 2005173466A JP 2005173466 A JP2005173466 A JP 2005173466A JP 4711177 B2 JP4711177 B2 JP 4711177B2
Authority
JP
Japan
Prior art keywords
layer
nitrogen
target
carbide
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005173466A
Other languages
Japanese (ja)
Other versions
JP2006346777A (en
Inventor
智行 益野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005173466A priority Critical patent/JP4711177B2/en
Publication of JP2006346777A publication Critical patent/JP2006346777A/en
Application granted granted Critical
Publication of JP4711177B2 publication Critical patent/JP4711177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、各種の鋼や鋳鉄などの鉄鋼材料、さらにAl合金やCu合金などの非鉄材料の切削加工を、特に高速で行なった場合にも、潤滑性被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   This invention demonstrates excellent wear resistance even when cutting various types of steel and cast iron and other non-ferrous materials such as Al alloys and Cu alloys, especially at high speeds. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool).

一般に、被覆超硬工具として、各種の鋼や鋳鉄などの鉄鋼材料、さらにAl合金やCu合金などの非鉄材料の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, as a coated carbide tool, a throw-away tool that is detachably attached to the tip of a cutting tool for turning and planing of various steel and cast iron and other non-ferrous materials such as Al alloy and Cu alloy. There are drills and miniature drills used for inserts, drilling and cutting, and solid type end mills used for chamfering, grooving, shoulder processing, etc. A slow-away end mill tool that performs a cutting process in the same manner as an end mill is known.

また、上記の被覆超硬工具として、
炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)系サーメットからなる超硬基体の表面に、潤滑性被覆層として、
(a)スパッタリング装置にて、カソード電極(蒸発源)としてTiターゲットを用い、窒素とArの混合ガス、または炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で形成された、窒化チタン(以下、TiNで示す)層および炭窒化チタン(以下、TiCNで示す)層のいずれか、または両方からなり、かつ0.1〜3μmの平均層厚を有する密着接合層を介して、
(b)スパッタリング装置にて、カソード電極(蒸発源)として、WCターゲットを用い、炭化水素の分解ガスとArの混合ガスからなる反応雰囲気で形成され、オージェ分光分析装置で測定して、
W:5〜20原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有し、かつ1〜13μmの平均層厚を有する非晶質炭素系潤滑層からなる表面潤滑層を蒸着形成してなる、被覆超硬工具が知られている。
In addition, as the above coated carbide tool,
As a lubricating coating layer on the surface of a cemented carbide substrate made of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) cermet,
(A) Nitriding formed in a sputtering apparatus using a Ti target as a cathode electrode (evaporation source) in a reaction atmosphere consisting of a mixed gas of nitrogen and Ar, or a mixed gas of hydrocarbon decomposition gas and nitrogen and Ar Through a tight junction layer consisting of either or both of a titanium (hereinafter referred to as TiN) layer and a titanium carbonitride (hereinafter referred to as TiCN) layer, and having an average layer thickness of 0.1 to 3 μm,
(B) Using a WC target as a cathode electrode (evaporation source) in a sputtering apparatus, formed in a reaction atmosphere composed of a hydrocarbon decomposition gas and an Ar mixed gas, and measured with an Auger spectrometer
W: 5 to 20 atomic%,
Coated carbide tool comprising a surface lubrication layer comprising an amorphous carbon-based lubrication layer having a composition comprising carbon and the inevitable impurities and having an average layer thickness of 1 to 13 μm. It has been known.

さらに、上記の従来被覆超硬工具が、例えば図3(a)に概略平面図で、同(b)に概略正面図で示される通り、カソード電極(蒸発源)がTiターゲットのスパッタリング装置と、カソード電極(蒸発源)がWCターゲットのスパッタリング装置を備えた蒸着装置の中央部に設置された回転テーブル上に上記の超硬基体を自転自在に装入し、例えば表1に示される条件で、グロー放電を発生させて、前記超硬基体の表面に、TiN層およびTiCN層のいずれか、または両方からなる密着接合層を蒸着形成し、ついで同じく表1に示される条件で、前記密着接合層の上に、上記の非晶質炭素系潤滑層からなる表面潤滑層を蒸着形成することにより製造されることも知られている。   Further, the conventional coated carbide tool is, for example, a schematic plan view in FIG. 3A and a schematic front view in FIG. 3B, and a sputtering apparatus in which the cathode electrode (evaporation source) is a Ti target, A cathode electrode (evaporation source) is loaded on the rotating table installed at the center of a vapor deposition apparatus equipped with a sputtering apparatus for a WC target so as to rotate freely. For example, under the conditions shown in Table 1, A glow discharge is generated to form a tight bonding layer consisting of one or both of a TiN layer and a TiCN layer on the surface of the cemented carbide substrate, and then under the same conditions as shown in Table 1, It is also known that it is produced by vapor-depositing a surface lubricating layer comprising the above amorphous carbon-based lubricating layer.

Figure 0004711177
Figure 0004711177
特開平07−164211号公報Japanese Patent Laid-Open No. 07-164211 特表2002−513087号公報Japanese translation of PCT publication No. 2002-513087

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求も強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを通常の切削加工条件で用いた場合には問題はないが、特に切削加工を高速で行うのに用いた場合には、潤滑性被覆層の表面潤滑層を構成する非晶質炭素系潤滑層の摩耗進行がきわめて速く、この結果比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting. With this trend, cutting tends to be faster. In coated carbide tools, there is no problem when used under normal cutting conditions, but especially when used for high-speed cutting, the surface lubricating layer of the lubricating coating layer is configured. The progress of wear of the amorphous carbon-based lubricating layer is extremely fast, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に高速切削加工で潤滑性被覆層の表面潤滑層を構成する非晶質炭素系潤滑層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、研究を行った結果、
(a)例えば図2(a)および(b)にそれぞれ概略平面図および概略正面図で示される蒸着装置、すなわち上記の図3に示される従来被覆超硬工具の潤滑性被覆層形成用蒸着装置におけるスパッタリング装置のそれぞれに、電磁コイルを設けてマグネトロンスパッタリング装置とした蒸着装置を用い、前記電磁コイルにより磁場を形成して、例えば表2に示される条件で表面潤滑層(非晶質炭素系潤滑層)の形成を行うと、この結果形成された表面潤滑層は、これの透過型電子顕微鏡による組織観察結果が図1に模式図で例示される通り炭素系非晶質体の素地に、結晶質炭窒化チタン系化合物の微粒[以下、「結晶質Ti(C,N)系化合物微粒」で示す]が分散分布した組織をもつようになること。
In view of the above, the inventors of the present invention, therefore, are coated carbides that exhibit excellent wear resistance in the amorphous carbon-based lubricating layer that constitutes the surface lubricating layer of the lubricating coating layer, particularly in high-speed cutting. As a result of research to develop tools,
(A) For example, the vapor deposition apparatus shown in the schematic plan view and schematic front view in FIGS. 2 (a) and 2 (b), that is, the vapor deposition apparatus for forming the lubricating coating layer of the conventional coated carbide tool shown in FIG. In each of the sputtering apparatus, a magnetic field is formed by the electromagnetic coil provided with an electromagnetic coil as a magnetron sputtering apparatus, and a surface lubricating layer (amorphous carbon-based lubrication is performed under the conditions shown in Table 2, for example. Layer) is formed, the surface lubrication layer formed as a result of this is observed on the substrate of the carbon-based amorphous body, as shown in the schematic diagram of FIG. The fine particles of the titanium carbonitride compound (hereinafter referred to as “crystalline Ti (C, N) compound fine particles”) have a distributed structure.

Figure 0004711177
Figure 0004711177

(b)上記(a)の表面潤滑層を形成するに際して、蒸着装置内に反応ガスとして導入される炭化水素と窒素とArのそれぞれの流量と、マグネトロンスパッタリング装置のWCターゲットとTiターゲットに印加されるスパッタ電力を調整して、前記表面潤滑層が、オージェ分光分析装置で測定して、
W:5〜15原子%、
Ti:21〜35原子%、
窒素:21〜35原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有するものとすると、この結果形成された表面潤滑層は、結晶質Ti(C,N)系微粒の分散分布効果、および前記電磁コイルによる磁場成膜に際しての細粒化効果で、硬さが著しく向上したものになること。
(B) When the surface lubricating layer of (a) is formed, the flow rates of hydrocarbon, nitrogen, and Ar introduced as reaction gases into the vapor deposition apparatus, and the WC target and Ti target of the magnetron sputtering apparatus are applied. The surface lubricating layer is measured with an Auger spectroscopic analyzer,
W: 5-15 atomic%,
Ti: 21-35 atomic%,
Nitrogen: 21-35 atomic%,
As a result, the surface lubrication layer formed as a result has a dispersion distribution effect of crystalline Ti (C, N) -based fine particles and a magnetic field generated by the electromagnetic coil. Hardness is remarkably improved due to the fine graining effect during film formation.

(c)従来被覆超硬工具の潤滑性被覆層の密着接合層を構成するTiN層およびTiCN層は、超硬基体表面に対する密着性にはすぐれるものの、表面潤滑層(非晶質炭素系潤滑層)に対する密着性は十分なものとは言えず、特に高い密着性が要求される高速切削加工では前記表面潤滑層の密着性不足が原因で切刃部にチッピングが発生し易いこと。 (C) Although the TiN layer and the TiCN layer constituting the adhesion bonding layer of the lubricity coating layer of the conventional coated carbide tool have excellent adhesion to the surface of the carbide substrate, the surface lubrication layer (amorphous carbon-based lubrication) The adhesiveness to the layer) cannot be said to be sufficient, and chipping is likely to occur at the cutting edge due to insufficient adhesion of the surface lubrication layer in high-speed cutting that requires particularly high adhesion.

(d)上記(a)のカソード電極(蒸発源)として、WCターゲットとTiターゲットを備えたマグネトロンスパッタリング装置を用い、まず、表2示される条件で、密着接合層として、TiN層およびTiCN層のいずれか、または両方を形成し、この密着接合層は、電磁コイルによる磁場中成膜で結晶微細化効果がもたらされるので、強度が向上したものになり、ついで、同じく表2に示される条件で炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜、すなわち、上記密着接合層形成条件のうち、Nガス流量:200〜300sccmおよびTiターゲット出力:8〜15kWを、上記表面潤滑層の形成条件であるNガス流量:100〜150sccmおよびTiターゲット出力:3〜8kWに連続的または多段階的に減少させ、同時に炭化水素ガス流量、例えばCガス流量は50〜120sccmに、WCターゲット出力は3〜6kWに連続的または多段階的に増加させた条件で非晶質炭素系潤滑層(以下、下地潤滑層という)を形成すると、この下地潤滑層は、Ti、窒素、炭素、およびW成分の含有割合が、層厚に沿って、上記密着接合層の界面部における含有割合から上記表面潤滑層の界面部における含有割合に連続的または多段階的に変化する成分濃度変化構造を有するものとなることから、前記密着接合層および前記表面潤滑層のいずれに対してもすぐれた密着性を示し、したがって、前記の密着接合層、下地潤滑層、および表面潤滑層からなる潤滑性被覆層を蒸着形成してなる被覆超硬工具は、前記表面潤滑層のW成分による強度向上効果と相俟って、高速切削加工でも切刃部にチッピング(微少欠け)の発生なく、一段とすぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) As a cathode electrode (evaporation source) of the above (a), a magnetron sputtering apparatus provided with a WC target and a Ti target is used. First, under the conditions shown in Table 2, as an adhesion bonding layer, a TiN layer and a TiCN layer are formed. Either or both of them are formed, and this close-bonding layer has an effect of crystal refining by film formation in a magnetic field by an electromagnetic coil, so that the strength is improved. Next, under the conditions shown in Table 2 Film formation in a magnetic field in a reaction atmosphere composed of a hydrocarbon decomposition gas and a mixed gas of nitrogen and Ar, that is, among the above conditions for forming a tight junction layer, N 2 gas flow rate: 200 to 300 sccm and Ti target output: 8 to 15 kW , the formation conditions of the surface lubricating layer N 2 gas flow rate: 100~150Sccm and Ti targets output: continuously 3~8kW Other multi-stepwise reduced, at the same time hydrocarbon gas flow rate, for example C 2 H 2 gas flow rate to 50~120Sccm, WC target output amorphous under conditions continuously or multi-stepwise increased 3~6kW When a carbonaceous lubricating layer (hereinafter referred to as a base lubricating layer) is formed, the base lubricating layer has a Ti, nitrogen, carbon, and W component content ratio along the thickness of the interface portion of the adhesive bonding layer. Since it has a component concentration change structure that changes continuously or in multiple steps from the content ratio in the interface portion of the surface lubrication layer to the adhesion layer and the surface lubrication layer Therefore, a coated carbide tool formed by vapor-depositing a lubricating coating layer comprising the above-mentioned adhesion bonding layer, base lubricating layer, and surface lubricating layer is a W component of the surface lubricating layer. Combined with the effect of improving the strength, the chip has no chipping (small chipping) even in high-speed cutting, and it exhibits excellent wear resistance over a long period of time.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
WC基超硬合金またはTiCN系サーメットからなる超硬基体の表面に蒸着形成された潤滑性被覆層が、密着接合層、下地潤滑層、および表面潤滑層からなり、
(a)上記密着接合層を、0.1〜3μmの平均層厚を有し、かつ、マグネトロンスパッタリング装置にて、カソード電極(蒸発源)としてTiターゲットを用い、窒素とArの混合ガス、または炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜された、TiN層およびTiCN層のいずれか、または両方、
(b)上記表面潤滑層を、1〜10μmの平均層厚を有し、かつ、マグネトロンスパッタリング装置にて、カソード電極(蒸発源)として、WCターゲットとTiターゲットを用い、炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜され、オージェ分光分析装置で測定して、
W:5〜15原子%、
Ti:21〜35原子%、
窒素:21〜35原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有すると共に、透過型電子顕微鏡による観察で、炭素系非晶質体の素地に、結晶質Ti(C,N)系化合物微粒が分散分布した組織を有する非晶質炭素系潤滑層、
で構成し、さらに、
(c)上記下地潤滑層を、0.1〜3μmの平均層厚を有し、かつ、マグネトロンスパッタリング装置にて、カソード電極(蒸発源)として、WCターゲットとTiターゲットを用い、炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜されると共に、Ti、窒素、炭素、およびW成分の含有割合が、層厚に沿って、上記密着接合層の界面部における含有割合から上記表面潤滑層の界面部における含有割合に連続的または多段階的に変化する成分濃度変化構造を有する非晶質炭素系潤滑層、
で構成してなる、潤滑性被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results,
A lubricating coating layer formed by vapor deposition on the surface of a cemented carbide substrate made of a WC-based cemented carbide alloy or TiCN-based cermet is composed of an adhesion bonding layer, a base lubrication layer, and a surface lubrication layer,
(A) The adhesion bonding layer has an average layer thickness of 0.1 to 3 μm, and in a magnetron sputtering apparatus, using a Ti target as a cathode electrode (evaporation source), a mixed gas of nitrogen and Ar, or Either or both of a TiN layer and a TiCN layer formed in a magnetic field in a reaction atmosphere composed of a hydrocarbon decomposition gas and a mixed gas of nitrogen and Ar,
(B) The surface lubricating layer has an average layer thickness of 1 to 10 μm, and in a magnetron sputtering apparatus, using a WC target and a Ti target as a cathode electrode (evaporation source), Films are formed in a magnetic field in a reaction atmosphere consisting of a mixed gas of nitrogen and Ar, and measured with an Auger spectrometer.
W: 5-15 atomic%,
Ti: 21-35 atomic%,
Nitrogen: 21-35 atomic%,
And the remainder of the composition is composed of carbon and inevitable impurities, and the crystalline Ti (C, N) compound fine particles are dispersed and distributed on the base of the carbon-based amorphous body by observation with a transmission electron microscope. An amorphous carbon-based lubricating layer having a structure,
And in addition,
(C) Decomposing hydrocarbons using the WC target and Ti target as the cathode electrode (evaporation source) in the base lubricating layer having an average layer thickness of 0.1 to 3 μm and using a magnetron sputtering apparatus. Films are formed in a magnetic field in a reaction atmosphere composed of a mixed gas of gas, nitrogen, and Ar, and the content ratios of Ti, nitrogen, carbon, and W components are included in the interface portion of the adhesive bonding layer along the layer thickness. An amorphous carbon-based lubricating layer having a component concentration changing structure that continuously or multistagely changes from the proportion to the content proportion at the interface portion of the surface lubricating layer,
The lubricated coating layer is characterized by a coated carbide tool that exhibits excellent wear resistance.

つぎに、この発明の被覆超硬工具において、これの潤滑性被覆層を構成する密着接合層、下地潤滑層、および表面潤滑層について、上記の通りに数値限定した理由を説明する。
(a)密着接合層の平均層厚
TiN層およびTiCN層のいずれか、または両方からなる密着接合層は、磁場中成膜による結晶粒の微細化効果で強度が向上し、かつ超硬基体表面に対してすぐれた密着性を示し、さらに下地潤滑層の前記密着接合層との界面部におけるTiおよび窒素の含有割合が最も高い状態となっているので、前記密着接合層と下地潤滑層との間にもすぐれた密着性が確保され、さらに前記超硬基体表面および下地潤滑層に対する密着接合性は磁場中成膜によって一層向上したものになるが、その平均層厚が0.1μm未満では、所望のすぐれた密着接合性を確保することができず、一方その平均層厚が3μmを越えると、特に高速切削で熱塑性変形を起こし易くなり、これが潤滑性被覆層におけるチッピング発生の原因となることから、その平均層厚が0.1〜3μmと定めた。
Next, in the coated carbide tool of the present invention, the reason why the adhesion bonding layer, the base lubricating layer, and the surface lubricating layer constituting the lubricating coating layer are numerically limited as described above will be described.
(A) Average layer thickness of tight junction layer The tight junction layer consisting of either or both of the TiN layer and TiCN layer has improved strength due to the effect of crystal grain refinement by film formation in a magnetic field, and the surface of the carbide substrate. In addition, since the content ratio of Ti and nitrogen at the interface between the base lubricating layer and the adhesive bonding layer is the highest, the adhesive layer and the base lubricating layer Excellent adhesion is ensured in the middle, and adhesion to the cemented carbide substrate surface and the base lubricating layer is further improved by film formation in a magnetic field, but when the average layer thickness is less than 0.1 μm, The desired excellent adhesive bondability cannot be ensured. On the other hand, when the average layer thickness exceeds 3 μm, it becomes easy to cause thermoplastic deformation particularly at high speed cutting, which is a cause of occurrence of chipping in the lubricating coating layer. From becoming an average layer thickness is defined as 0.1 to 3 m.

(b)表面潤滑層のW含有量
W成分は、表面潤滑層の素地を形成して、これの強度を向上させる作用があるが、その含有量が5原子%未満では所望の強度向上効果が得られず、一方その含有量が15原子%を越えると潤滑性が急激に低下するようになることから、その含有量を5〜15原子%と定めた。
(B) W content of surface lubrication layer W component has the effect | action which forms the base material of a surface lubrication layer, and improves the intensity | strength of this, However, If the content is less than 5 atomic%, desired intensity | strength improvement effect is carried out. On the other hand, when the content exceeds 15 atomic%, the lubricity is drastically lowered. Therefore, the content is determined to be 5 to 15 atomic%.

(c)表面潤滑層のTiおよびN含有量
Ti成分とN成分、さらにC(炭素)成分は磁場成膜下で結合して、炭素系非晶質体の素地に結晶質のTi(C,N)系化合物微粒として存在し、表面潤滑層の硬さを著しく向上させる作用があるが、TiおよびN成分のいずれかでも、その含有量が21原子%未満になると、層中にTi(C,N)系微粒として存在する割合が少なくなり過ぎて、所望の高硬度を確保することができず、一方TiおよびN成分のいずれかでも、その含有量が35原子%を越えると、強度および潤滑性が急激に低下するようになることから、その含有量をそれぞれTi:21〜35原子%、N:21〜35原子%と定めた。
(C) Ti and N contents of surface lubrication layer Ti component, N component, and C (carbon) component are combined under film formation of magnetic field, and crystalline Ti (C, N) is present as a compound compound fine particle, and has the effect of remarkably improving the hardness of the surface lubricating layer. However, when the content of any of Ti and N components is less than 21 atomic%, Ti (C , N) the proportion present as system-based fine particles becomes too small to ensure the desired high hardness, while if the content of any of the Ti and N components exceeds 35 atomic%, the strength and Since the lubricity is abruptly lowered, the contents are determined to be Ti: 21 to 35 atomic% and N: 21 to 35 atomic%, respectively.

(d)表面潤滑層の平均層厚
その平均層厚が1μm未満では、所望の潤滑性および耐摩耗性向上効果を確保することができず、一方その平均層厚が10μmを越えると、切刃部にチッピングが発生し易くなることから、その平均層厚を1〜10μmと定めた。
(D) Average layer thickness of surface lubricating layer If the average layer thickness is less than 1 μm, the desired lubricity and wear resistance improvement effect cannot be ensured, while if the average layer thickness exceeds 10 μm, the cutting edge Since the chipping is likely to occur in the part, the average layer thickness is set to 1 to 10 μm.

(e)下地潤滑層の平均層厚
下地潤滑層は、密着接合層との界面部ではTiおよび窒素の含有割合が最も高く、表面潤滑層の界面部ではW成分の含有割合が最も高い、すなわち実質的に前記表面潤滑層のもつ成分組成と実質的に同じ成分組成となる成分濃度変化構造を有し、これによって、炭素系非晶質体の素地に分散分布する結晶質Ti(C,N)系化合物微粒が密着接合層との界面部から表面潤滑層の界面部に向って連続的または多段階的に減少する組織となり、この結果前記密着接合層および表面潤滑層のいずれにも強固に密着接合し、前記潤滑性被覆層の超硬基体表面に対する密着接合性の一段の向上に寄与する作用があるが、その平均層厚が0.1μm未満では、前記作用に所望の向上効果が得られず、一方その平均層厚が3μmを越えると、切刃部にチッピングが発生し易くなることから、その平均層厚を0.1〜3μmと定めた。
(E) Average layer thickness of the base lubricating layer The base lubricating layer has the highest Ti and nitrogen content at the interface with the adhesive bonding layer, and the highest W component content at the interface of the surface lubricating layer. Crystalline Ti (C, N) having a component concentration changing structure having substantially the same component composition as that of the surface lubricant layer, and dispersed and distributed in the base of the carbon-based amorphous body. ) System compound fine particles are continuously or multistagely reduced from the interface with the adhesive layer to the interface of the surface lubricant layer, and as a result, both the adhesive layer and the surface lubricant layer are firmly There is an effect of tightly bonding and contributing to a further improvement in the adhesion of the lubricating coating layer to the surface of the carbide substrate, but if the average layer thickness is less than 0.1 μm, a desired improvement effect can be obtained in the above function. While the average layer thickness is 3 μm Exceeds the, since the easily chipping occurs in the cutting edge, defining the average layer thickness and 0.1 to 3 m.

この発明の被覆超硬工具は、これの潤滑性被覆層を構成する表面潤滑層が密着接合層および下地潤滑層を介して超硬基体に強固に密着接合し、かつ、その硬さが、炭素系非晶質体の素地に、磁場成膜により超微細となった状態で分散分布する結晶質Ti(C,N)系化合物微粒によって著しく向上したものになることから、前記炭素系非晶質体の素地がW成分の作用で高強度を具備するようになることと相俟って、各種の鋼や鋳鉄などの鉄鋼材料、さらにAl合金やCu合金などの高速切削で、チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。   In the coated carbide tool of the present invention, the surface lubrication layer constituting the lubricity coating layer is firmly adhered and bonded to the carbide substrate via the adhesion bonding layer and the base lubrication layer, and the hardness is carbon. Since the crystalline Ti (C, N) compound fine particles dispersed and distributed in the ultrafine state by magnetic field film formation are remarkably improved on the base of the amorphous amorphous body, the carbon-based amorphous Combined with the fact that the body of the body has high strength due to the action of the W component, steel materials such as various steels and cast iron, as well as high-speed cutting of Al alloys and Cu alloys, no chipping occurs It exhibits excellent wear resistance over a long period of time.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.8〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表3示される配合組成に配合し、ボールミルで84時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結して、いずれもWC基超硬合金からなる炭素鋼切削用超硬基体素材とAl合金およびCu合金切削用超硬基体素材を製造し、前記炭素鋼切削用超硬基体素材には切刃部分にR:0.03のホーニング加工を施してISO規格・TNMG160408のチップ形状をもった超硬基体A−1〜A−10とし、また前記Al合金およびCu合金切削用超硬基体素材には研磨加工を施してISO規格・TEGX160304Rのチップ形状をもった超硬基体A−1′〜A−10′とした。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 0.8 to 3 μm are prepared. Compounded in the composition shown in Table 3 and wet mixed in a ball mill for 84 hours, dried, and then press-molded into a green compact at a pressure of 100 MPa. The green compact was heated at 1400 ° C. in a vacuum of 6 Pa. Sintered under the condition of holding time, and manufactured a carbide substrate material for cutting carbon steel and a carbide substrate material for cutting Al alloy and Cu alloy, both of which are made of WC-based cemented carbide. The base material is subjected to honing of R: 0.03 on the cutting edge portion to form carbide bases A-1 to A-10 having a chip shape of ISO standard TNMG160408, and also for cutting the Al alloy and Cu alloy. Carbide The body material was cemented carbide substrate A-1'~A-10 'having a tip shape of ISO standard · TEGX160304R subjected to abrasive machining.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表4に示される配合組成に配合し、ボールミルで84時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結して、いずれもTiCN系サーメットからなる炭素鋼切削用超硬基体素材とAl合金およびCu合金切削用超硬基体素材を製造し、前記炭素鋼切削用超硬基体素材には切刃部分にR:0.03のホーニング加工を施してISO規格・TNMG160408のチップ形状をもった超硬基体B−1〜B−6とし、また前記Al合金およびCu合金切削用超硬基体素材には研磨加工を施してISO規格・TEGX160304Rのチップ形状をもった超硬基体B−1′〜B−6′とした。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 4, wet mix with ball mill for 84 hours, dry, and press mold into green compact with 100 MPa pressure Then, this green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, both of which were made of a carbide substrate carbide substrate made of TiCN cermet, an Al alloy and a Cu alloy. A carbide substrate material for cutting is manufactured, and the cutting edge portion is subjected to a honing process of R: 0.03 to form a chip shape of ISO standard / TNMG160408. Carbide substrates B-1 to B-6, and the carbide substrates B-1 ′ having a chip shape of ISO standard TEGX160304R by polishing the Al and Cu alloy carbide substrate materials. To B-6 ′.

ついで、上記の超硬基体A−1,1′〜A−10,10′およびB−1,1′〜B−6,6′のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示される蒸着装置内の回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の超硬基体をリング状に装着し、一方側のマグネトロンスパッタリング装置のカソード電極(蒸発源)として、純度:99.9質量%のTiターゲット、他方側のマグネトロンスパッタリング装置のカソード電極(蒸発源)として、純度:99.6質量%のWCターゲットを前記回転テーブルを挟んで対向配置し、
(a)まず、装置内を真空排気して0.01Paの真空に保持しながら、ヒーターで装置内を200℃に加熱した後、Arガスを装置内に導入して0.5Paの圧力のAr雰囲気とし、この状態で前記回転テーブル上で自転しながら回転する前記超硬基体に−800Vのバイアス電圧を印加して前記超硬基体表面を20分間Arガスボンバード洗浄し、
(b)ついで、前記蒸着装置の対向配置の両マグネトロンスパッタリング装置の電磁コイルに、いずれも電圧:50V、電流:10Aの条件で印加して、前記超硬基体の装着部における磁束密度を140G(ガウス)とした磁場を形成すると共に、前記蒸着装置内の加熱温度を400℃とした状態で、反応ガスとして窒素とArを、窒素流量:250sccm、Ar流量:230sccmの割合で導入して、1Paの窒素とArの混合ガスからなる反応雰囲気、または反応ガスとしてCと窒素とArを、C流量:40sccm、窒素流量:250sccm、Ar流量:230sccmの割合で導入して、1PaのCの分解ガスと窒素とArの混合ガスからなる反応雰囲気とし、Tiターゲットのカソード電極(蒸発源)には出力:12kW(周波数:40kHz)のスパッタ電力を印加し、一方上記超硬基体には、−100Vのバイアス電圧を印加した条件でグロー放電を発生させることにより、前記超硬基体の表面に表5,6に示される目標層厚のTiN層およびTiCN層のいずれか、または両方からなる密着接合層を形成し、
(c)ついで、蒸着装置内の真空度を0.01Pa、超硬基体の装着部における磁束密度を140G、蒸着装置内の加熱温度を400℃、および超硬基体に印加のバイアス電圧を−100Vに保持したままで、反応ガスとしてCと窒素とArを、C流量:40sccm、窒素流量:250sccm、Ar流量:230sccmの割合で導入して、1PaのCの分解ガスと窒素とArの混合ガスからなる反応雰囲気とし、このうちC流量および窒素流量を表3,4に示される目標層厚に対応して、それぞれC流量は100sccmまで連続的に増加させ、一方窒素流量は130sccmまで連続的に減少させ、同時にTiターゲットの出力(周波数は同じ40kHzを保持)を12kWから6kWに同じく表5,6に示される目標層厚に対応して連続的に減少させると共に、WCターゲットへの印加を開始して、5kWの出力(周波数は40kHz)まで同じく目標層厚に対応して連続的に増加させることにより、Ti、窒素、炭素、およびW成分の含有割合が、層厚に沿って、上記密着接合層の界面部における含有割合から表面潤滑層の界面部における含有割合に連続的に変化する成分濃度変化構造を有する非晶質炭素系潤滑層からなる下地潤滑層を表5,6に示される目標層厚で形成し、
(d)さらに、蒸着装置内の真空度、超硬基体の装着部における磁束密度、蒸着装置内の加熱温度、および超硬基体に印加のバイアス電圧を同じくしたままで、表2に示される通り、前記蒸着装置内に反応ガスとして、C(炭化水素)と窒素とArを、C流量:50〜120sccm、窒素流量:100〜150sccm、Ar流量:200〜250sccmの範囲内の所定の流量で導入して、反応雰囲気を、1PaのCの分解ガスと窒素とArの混合ガスとすると共に、前記両マグネトロンスパッタリング装置のWCターゲットのカソード電極(蒸発源)には、出力:3〜6kW(周波数:40kHz)の範囲内の所定のスパッタ電力、同Tiターゲットには、出力:3〜8kW(周波数:40kHz)の範囲内の所定のスパッタ電力を同時に印加した条件で、同じく表5,6に示される目標組成および目標層厚の非晶質炭素系潤滑層からなる表面潤滑層を表3,4に示される目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1,1′〜16,16′をそれぞれ製造した。
Then, each of the above-mentioned superhard substrates A-1, 1 'to A-10, 10' and B-1, 1 'to B-6, 6' was ultrasonically cleaned in acetone and dried. 2, a plurality of cemented carbide substrates are mounted in a ring shape at a predetermined distance in the radial direction from the central axis of the rotary table in the vapor deposition apparatus shown in FIG. 2, and the cathode electrode of the magnetron sputtering apparatus on one side (Evaporation source), purity: 99.9 mass% Ti target, and cathode electrode (evaporation source) of the other side magnetron sputtering apparatus, purity: 99.6 mass% WC target across the rotary table Place and
(A) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.01 Pa, and the inside of the apparatus is heated to 200 ° C. with a heater, and then Ar gas is introduced into the apparatus and Ar at a pressure of 0.5 Pa is introduced. In this state, a bias voltage of −800 V was applied to the carbide substrate rotating while rotating on the turntable in this state, and the surface of the carbide substrate was cleaned with Ar gas bombardment for 20 minutes.
(B) Next, both are applied to the electromagnetic coils of both magnetron sputtering devices arranged opposite to the vapor deposition device under the conditions of voltage: 50 V and current: 10 A, and the magnetic flux density in the mounting portion of the cemented carbide substrate is 140 G ( In addition, a Gaussian magnetic field is formed and nitrogen and Ar are introduced as reaction gases at a rate of nitrogen flow rate: 250 sccm and Ar flow rate: 230 sccm while the heating temperature in the vapor deposition apparatus is 400 ° C. Introducing C 2 H 2 , nitrogen, and Ar as a reaction gas composed of a mixed gas of nitrogen and Ar at a rate of C 2 H 2 flow rate: 40 sccm, nitrogen flow rate: 250 sccm, Ar flow rate: 230 sccm, a reaction atmosphere of a mixed gas of 1Pa of C 2 decomposed gas of H 2 and nitrogen and Ar, the cathode electrode of the Ti target (evaporation ) Is applied with a sputtering power of 12 kW (frequency: 40 kHz), while glow discharge is generated on the cemented carbide substrate under the condition that a bias voltage of −100 V is applied. Forming a tight junction layer consisting of either or both of the TiN layer and TiCN layer of the target layer thickness shown in Tables 5 and 6;
(C) Next, the degree of vacuum in the vapor deposition apparatus is 0.01 Pa, the magnetic flux density in the mounting portion of the carbide substrate is 140 G, the heating temperature in the vapor deposition apparatus is 400 ° C., and the bias voltage applied to the carbide substrate is −100 V. while maintaining the, the C 2 H 2 and nitrogen and Ar as the reaction gas, C 2 H 2 flow rate: 40 sccm, flow rate of nitrogen: 250 sccm, Ar flow rate: introduced at a rate of 230Sccm, 1 Pa of C 2 H 2 of The reaction atmosphere is composed of a cracked gas, a mixed gas of nitrogen and Ar. Among these, the C 2 H 2 flow rate and the nitrogen flow rate correspond to the target layer thicknesses shown in Tables 3 and 4, and the C 2 H 2 flow rate is up to 100 sccm, respectively. While continuously increasing, while the nitrogen flow rate is continuously decreased to 130 sccm, at the same time the output of the Ti target (frequency remains the same 40 kHz) from 12 kW to 6 kW In accordance with the target layer thicknesses shown in Tables 5 and 6, continuously, the application to the WC target is started, and the output corresponding to the target layer thickness is up to 5 kW (frequency is 40 kHz). By continuously increasing the content ratio of Ti, nitrogen, carbon, and W component, the content ratio at the interface portion of the adhesion layer is continuously from the content ratio at the interface portion of the surface adhesion layer along the layer thickness. Forming a base lubricating layer composed of an amorphous carbon-based lubricating layer having a component concentration changing structure that varies with the target layer thicknesses shown in Tables 5 and 6;
(D) Further, as shown in Table 2, the degree of vacuum in the vapor deposition apparatus, the magnetic flux density at the mounting portion of the carbide substrate, the heating temperature in the vapor deposition apparatus, and the bias voltage applied to the carbide substrate are kept the same. In the vapor deposition apparatus, C 2 H 2 (hydrocarbon), nitrogen, and Ar are used as reaction gases. C 2 H 2 flow rate: 50 to 120 sccm, nitrogen flow rate: 100 to 150 sccm, Ar flow rate: 200 to 250 sccm The reaction atmosphere is a mixed gas of 1 Pa of C 2 H 2 decomposition gas and nitrogen and Ar, and the cathode electrode (evaporation source) of the WC target of both the magnetron sputtering devices. Output: 3 to 6 kW (Frequency: 40 kHz) Predetermined sputtering power, within the same Ti target, Output: 3 to 8 kW (Frequency: 40 kHz) The surface lubricating layer comprising the amorphous carbon-based lubricating layer having the target composition and the target layer thickness similarly shown in Tables 5 and 6 under the condition that the predetermined sputtering power is applied simultaneously is the target layer thickness shown in Tables 3 and 4 The surface coated cemented carbide throwaway tip (hereinafter referred to as the present coated carbide tip) 1,1'-16,16 'as the coated carbide tool of the present invention is produced by vapor deposition. did.

また、比較の目的で、上記超硬基体A−1,1′〜A−10,10′およびB−1,1′〜B−6,6′のそれぞれの表面を、アセトン中で超音波洗浄し、乾燥した状態で、図3に示されるカソード電極(蒸発源)がTiターゲットのスパッタリング装置と、カソード電極(蒸発源)がWCターゲットのスパッタリング装置を対向配置した蒸着装置の回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の超硬基体をリング状に装着し、
(a)まず、装置内を真空排気して0.01Paの真空に保持しながら、ヒーターで装置内を200℃に加熱した後、Arガスを装置内に導入して0.5Paの圧力のAr雰囲気とし、この状態で前記回転テーブル上で自転しながら回転する前記超硬基体に−800Vのバイアス電圧を印加して前記超硬基体表面を20分間Arガスボンバード洗浄し、
(b)ついで、前記蒸着装置内の加熱温度を400℃とした状態で、装置内に反応ガスとして窒素とArを、窒素流量:250sccm、Ar流量:230sccmの割合で導入して、1Paの窒素とArの混合ガスからなる反応雰囲気、または反応ガスとしてCと窒素とArを、C流量:40sccm、窒素流量:250sccm、Ar流量:230sccmの割合で導入して、1PaのCの分解ガスと窒素とArの混合ガスからなる反応雰囲気とし、Tiターゲットのカソード電極(蒸発源)には出力:12kW(周波数:40kHz)のスパッタ電力を印加し、一方上記超硬基体には、−100Vのバイアス電圧を印加した条件でグロー放電を発生させることにより、前記超硬基体の表面に表7,8に示される目標層厚のTiN層およびTiCN層のいずれか、または両方からなる密着接合層を蒸着形成し、
(c)ついで、上記蒸着装置内の加熱温度は同じ400℃、超硬基体に印加するバイアス電圧も同じ−100Vとした状態で、CとArを、C流量:50〜120sccm、Ar流量:200〜250sccmの範囲内の所定の流量で導入して、1PaのCの分解ガスとArの混合ガスからなる反応雰囲気とすると共に、WCターゲットのカソード電極(蒸発源)には出力:3〜6kW(周波数:40kHz)の範囲内の所定のスパッタ電力を印加した条件で、上記密着接合層の上に、同じく表7,8に示される目標組成および目標層厚の非晶質炭素系潤滑層からなる表面潤滑層を蒸着形成することにより、従来被覆超硬工具に相当する比較表面被覆超硬合金製スローアウエイチップ(以下、比較被覆超硬チップと云う)1,1′〜16,16′をそれぞれ製造した。
For comparison purposes, the surfaces of the superhard substrates A-1, 1 'to A-10, 10' and B-1, 1 'to B-6, 6' are ultrasonically cleaned in acetone. Then, in a dry state, the cathode electrode (evaporation source) shown in FIG. 3 is a Ti target sputtering device and the cathode electrode (evaporation source) is a WC target sputtering device facing each other on the rotary table of the evaporation device, A plurality of cemented carbide substrates are attached in a ring shape at a predetermined distance from the central axis in the radial direction
(A) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.01 Pa, and the inside of the apparatus is heated to 200 ° C. with a heater, and then Ar gas is introduced into the apparatus and Ar at a pressure of 0.5 Pa is introduced. In this state, a bias voltage of −800 V was applied to the carbide substrate rotating while rotating on the turntable in this state, and the surface of the carbide substrate was cleaned with Ar gas bombardment for 20 minutes.
(B) Next, in a state where the heating temperature in the vapor deposition apparatus is 400 ° C., nitrogen and Ar are introduced into the apparatus at a rate of nitrogen flow rate: 250 sccm, Ar flow rate: 230 sccm, and 1 Pa of nitrogen A reaction atmosphere consisting of a mixed gas of Ar and Ar, or C 2 H 2 , nitrogen and Ar as reaction gases are introduced at a rate of C 2 H 2 flow rate: 40 sccm, nitrogen flow rate: 250 sccm, Ar flow rate: 230 sccm, and 1 Pa The reaction atmosphere is composed of a C 2 H 2 decomposition gas and a mixed gas of nitrogen and Ar, and a sputtering power of 12 kW (frequency: 40 kHz) is applied to the cathode electrode (evaporation source) of the Ti target, while the above carbide Tables 7 and 8 show the surface of the cemented carbide substrate by generating glow discharge under the condition that a bias voltage of −100 V is applied to the substrate. One of the target layer thickness TiN layer and TiCN layer, or the adhesion bonding layer consisting of both deposited form,
(C) Next, in the state where the heating temperature in the vapor deposition apparatus is the same 400 ° C. and the bias voltage applied to the cemented carbide substrate is the same −100 V, C 2 H 2 and Ar are replaced with a C 2 H 2 flow rate: 50˜. 120 sccm, Ar flow rate: Introduced at a predetermined flow rate in the range of 200 to 250 sccm to form a reaction atmosphere consisting of a mixed gas of 1 Pa of C 2 H 2 decomposition gas and Ar, and a cathode electrode (evaporation source) of the WC target ) Under the condition that a predetermined sputtering power within a range of output: 3 to 6 kW (frequency: 40 kHz) is applied, the target composition and target layer thickness shown in Tables 7 and 8 are also formed on the adhesive bonding layer. By forming a surface lubrication layer consisting of an amorphous carbon-based lubrication layer by vapor deposition, a comparative surface-coated cemented carbide throwaway tip (hereinafter referred to as a comparative coated carbide tip) equivalent to a conventional coated carbide tool. The U) 1,1'~16,16 'was produced, respectively.

つぎに、上記本発明被覆超硬チップ1,1′〜16,16′および比較被覆超硬チップ1,1′〜16,16′を工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・A4032の丸棒、
切削速度:600m/min.、
切り込み:1.2mm、
送り:0.6mm/rev.、
切削時間: 分、
の条件(切削条件Aという)でのAl合金の乾式高速切削加工試験(通常の切削速度は350m/min.)、
被削材:JIS・C6301の丸棒、
切削速度:150m/min.、
切り込み:2.5mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件(切削条件Bという)でのCu合金の乾式高速切削加工試験(通常の切削速度は80m/min.)、さらに、
被削材:JIS・S35Cの丸棒、
切削速度:350m/min.、
切り込み:2mm、
送り:0.3mm/rev.、
切削時間:15分、
の条件(切削条件Cという)での炭素鋼の湿式高速切削加工試験(通常の切削速度は220m/min.)を行なった。いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5〜8に示した。
Next, the coated carbide tips 1, 1 'to 16, 16' of the present invention and the comparative coated carbide tips 1, 1 'to 16, 16' are screwed to the tip of the tool steel tool with a fixing jig. In the state
Work material: JIS A4032 round bar,
Cutting speed: 600 m / min. ,
Cutting depth: 1.2mm,
Feed: 0.6 mm / rev. ,
Cutting time: minutes,
A dry high-speed cutting test of an Al alloy under the conditions (referred to as cutting condition A) (normal cutting speed is 350 m / min.),
Work material: JIS C6301 round bar,
Cutting speed: 150 m / min. ,
Incision: 2.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
A dry high-speed cutting test of a Cu alloy under the conditions (cutting condition B) (normal cutting speed is 80 m / min.),
Work material: JIS / S35C round bar,
Cutting speed: 350 m / min. ,
Cutting depth: 2mm,
Feed: 0.3 mm / rev. ,
Cutting time: 15 minutes,
The carbon steel was subjected to a wet high-speed cutting test (normal cutting speed is 220 m / min.) Under the above conditions (referred to as cutting conditions C). In any cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Tables 5-8.

Figure 0004711177
Figure 0004711177

Figure 0004711177
Figure 0004711177

Figure 0004711177
Figure 0004711177

Figure 0004711177
Figure 0004711177

Figure 0004711177
Figure 0004711177

Figure 0004711177
Figure 0004711177

原料粉末として、平均粒径:4.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同1.8μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C(質量比で、TiC/WC=50/50)粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表9に示される配合組成に配合し、さらにワックスを加えてアセトン中で72時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表9に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエアの形状をもった超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle size of 4.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 1.8 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C (mass ratio, TiC / WC = 50/50) powder, and 1 .8 μm Co powder was prepared, each of these raw material powders was blended into the blending composition shown in Table 9, further added with wax, ball milled in acetone for 72 hours, dried under reduced pressure, and then pressed into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three kinds of sintered rods for round bar were ground and shown in Table 9. In combination, a carbide substrate (end mill) having a diameter of 4 mm × 13 mm, a length of 6 mm × 13 mm, a size of 10 mm × 22 mm, and a size of 20 mm × 45 mm, and a four-blade square with a twist angle of 30 degrees. ) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、表12に示される目標層厚のTiN層およびTiCN層のいずれか、または両方からなる密着接合層および非晶質炭素系潤滑層からなる下地潤滑層、さらに同じく表10に示される目標組成および目標層厚の非晶質炭素系潤滑層からなる表面潤滑層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。   Then, these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and charged in the vapor deposition apparatus shown in FIG. Under the same conditions, the adhesion layer composed of either or both of the TiN layer and TiCN layer having the target layer thickness shown in Table 12, and the base lubricating layer composed of the amorphous carbon-based lubricating layer, and also shown in Table 10 The surface-coated cemented carbide end mill of the present invention as a coated carbide tool of the present invention (hereinafter, coated with the present invention) is formed by vapor-depositing a surface lubricating layer comprising an amorphous carbon-based lubricating layer having a target composition and a target layer thickness. (Referred to as carbide end mills) 1 to 8 were produced.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図3に示される蒸着装置に装入し、上記実施例1と同一の条件で、表11に示される目標層厚のTiN層およびTiCN層のいずれか、または両方からなる密着接合層、並びに同じく表11に示される目標組成および目標層厚の非晶質炭素系潤滑層からなる表面潤滑層を蒸着形成することにより、従来被覆超硬工具に相当する比較表面被覆超硬合金製エンドミル(以下、比較被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。   Further, for the purpose of comparison, the above-mentioned carbide substrates (end mills) C-1 to C-8 were ultrasonically washed in acetone and dried, and charged in the vapor deposition apparatus shown in FIG. Under the same conditions as in Example 1 above, the adhesive bonding layer composed of either or both of the TiN layer and TiCN layer having the target layer thickness shown in Table 11, and the target composition and target layer thickness also shown in Table 11 are used. By forming a surface lubrication layer comprising an amorphous carbon-based lubrication layer by vapor deposition, comparative surface-coated cemented carbide end mills (hereinafter referred to as comparative coated carbide end mills) 1 to 8 corresponding to conventional coated carbide tools are produced. Each was manufactured.

つぎに、上記本発明被覆超硬エンドミル1〜8および比較被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および比較被覆超硬エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・A5052の板材、
切削速度:300m/min.、
軸方向切り込み:3.5mm、
径方向切り込み:0.7mm、
テーブル送り:2400mm/分、
の条件でのAl合金の乾式高速側面切削加工試験(通常の切削速度は180m/min.)、本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・C6301の板材、
切削速度:110m/min.、
軸方向切り込み:6mm、
径方向切り込み:1.5mm、
テーブル送り:2100mm/分、
の条件でのCu合金の乾式高速側面切削加工試験(通常の切削速度は60m/min.)、本発明被覆超硬エンドミル7,8および比較被覆超硬エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S45Cの板材、
切削速度:350m/min.、
軸方向切り込み:8mm、
径方向切り込み:1.5mm、
テーブル送り:2200mm/分、
の条件での炭素鋼の乾式高速側面切削加工試験(通常の切削速度は200m/min.)をそれぞれ行い、いずれの側面切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削長を測定した。この測定結果を表10,11にそれぞれ示した。
Next, of the present invention coated carbide end mills 1-8 and comparative coated carbide end mills 1-8, the present invention coated carbide end mills 1-3 and comparative coated carbide end mills 1-3 are as follows:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / A5052 plate material,
Cutting speed: 300 m / min. ,
Axial cut: 3.5mm,
Radial notch: 0.7mm,
Table feed: 2400 mm / min,
With respect to the dry high-speed side cutting test of Al alloy under the following conditions (normal cutting speed is 180 m / min.), The coated carbide end mills 4 to 6 of the present invention and the conventional coated carbide end mills 4 to 6 are as follows:
Work material: Plane dimension: 100 mm x 250 mm, thickness: 50 mm JIS C6301 plate material,
Cutting speed: 110 m / min. ,
Axial cut: 6mm,
Radial notch: 1.5mm,
Table feed: 2100 mm / min,
With respect to the Cu alloy dry high-speed side cutting test under the conditions (normal cutting speed is 60 m / min.), The present invention coated carbide end mills 7 and 8 and the comparative coated carbide end mills 7 and 8
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / S45C plate,
Cutting speed: 350 m / min. ,
Axial cut: 8mm,
Radial notch: 1.5mm,
Table feed: 2200 mm / min,
Carbon steel dry high-speed side cutting test under normal conditions (normal cutting speed is 200 m / min.) Is performed, and the flank wear width of the outer peripheral edge of the cutting edge is the service life of each side cutting test The cutting length up to 0.1 mm, which is a standard, was measured. The measurement results are shown in Tables 10 and 11, respectively.

Figure 0004711177
Figure 0004711177

Figure 0004711177
Figure 0004711177

Figure 0004711177
Figure 0004711177

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもった超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。     The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 having a two-blade shape with a twist angle of 30 degrees were manufactured.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、表12に示される目標層厚のTiN層およびTiCN層のいずれか、または両方からなる密着接合層および非晶質炭素系潤滑層からなる下地潤滑層、さらに同じく表12に示される目標組成および目標層厚の非晶質炭素系潤滑層からなる表面潤滑層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。   Then, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then loaded into the vapor deposition apparatus shown in FIG. Then, under the same conditions as in the first embodiment, the adhesive layer composed of either or both of the TiN layer and the TiCN layer having the target layer thickness shown in Table 12, and the base lubricating layer composed of the amorphous carbon-based lubricating layer Further, the surface-coated cemented carbide alloy of the present invention as the coated carbide tool of the present invention is formed by vapor-depositing a surface lubricating layer comprising an amorphous carbon-based lubricating layer having the target composition and target layer thickness shown in Table 12 Drills (hereinafter referred to as the present invention coated carbide drills) 1 to 8 were produced.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図3に示される蒸着装置に装入し、上記実施例1と同一の条件で、表13に示される目標層厚のTiN層およびTiCN層のいずれか、または両方からなる密着接合層、並びに同じく表13に示される目標組成および目標層厚の非晶質炭素系潤滑層からなる表面潤滑層を蒸着形成することにより、従来被覆超硬工具に相当する比較表面被覆超硬合金製ドリル(以下、比較被覆超硬ドリルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the cutting edges of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. In the vapor deposition apparatus, under the same conditions as in Example 1 above, a tight junction layer consisting of either or both of the TiN layer and TiCN layer having the target layer thickness shown in Table 13, and also shown in Table 13 A comparative surface-coated cemented carbide drill equivalent to a conventional coated carbide tool (hereinafter referred to as a comparative coated carbide drill) is formed by vapor-depositing a surface lubricating layer consisting of an amorphous carbon-based lubricating layer having a target composition and target layer thickness. 1) to 8 were produced.

つぎに、上記本発明被覆超硬ドリル1〜8および比較被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および比較被覆超硬ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・ADC12の板材、
切削速度:120m/min.、
送り:0.3mm/rev、
穴深さ:10mm、
の条件でのAl合金の湿式高速穴あけ切削加工試験(通常の切削速度は80m/min.)、本発明被覆超硬ドリル4〜6および比較被覆超硬ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・C2801の板材、
切削速度:130m/min.、
送り:0.5mm/rev、
穴深さ:15mm、
の条件でのCu合金の湿式高速穴あけ切削加工試験(通常の切削速度は100m/min.)、本発明被覆超硬ドリル7,8および比較被覆超硬ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S17Cの板材、
切削速度:210m/min.、
送り:0.8mm/rev、
穴深さ:22mm、
の条件での炭素鋼の湿式高速穴あけ切削加工試験(通常の切削速度は90m/min.)、をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表12,13にそれぞれ示した。
Next, of the present invention coated carbide drills 1-8 and comparative coated carbide drills 1-8, for the present invention coated carbide drills 1-3 and comparative coated carbide drills 1-3,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / ADC12 plate material,
Cutting speed: 120 m / min. ,
Feed: 0.3mm / rev,
Hole depth: 10mm,
With respect to the Al alloy wet high-speed drilling test (normal cutting speed is 80 m / min.), The coated carbide drills 4 to 6 and the comparative coated carbide drills 4 to 6 of the present invention,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / C2801 plate material,
Cutting speed: 130 m / min. ,
Feed: 0.5mm / rev,
Hole depth: 15mm,
With respect to the Cu alloy wet high-speed drilling cutting test under the conditions (normal cutting speed is 100 m / min.), The coated carbide drills 7 and 8 of the present invention and the comparative coated carbide drills 7 and 8 are as follows:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S17C plate,
Cutting speed: 210 m / min. ,
Feed: 0.8mm / rev,
Hole depth: 22mm,
Wet high-speed drilling test of carbon steel under normal conditions (normal cutting speed is 90 m / min.), And any wet drilling test (using water-soluble cutting oil) is used to relieve the cutting edge surface. The number of drilling processes until the surface wear width reached 0.3 mm was measured. The measurement results are shown in Tables 12 and 13, respectively.

Figure 0004711177
Figure 0004711177

Figure 0004711177
Figure 0004711177

この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1,1′〜16,16′、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8、並びに従来被覆超硬工具に相当する比較被覆超硬チップ1,1′〜16,16′、比較被覆超硬エンドミル1〜8、および比較被覆超硬ドリル1〜8の表面潤滑層を構成する非晶質炭素系潤滑層について、その組成をオージェ分光分析装置、その層厚を走査型電子顕微鏡を用いて測定したところ、いずれも目標組成および目標層厚と実質的に同じ組成および平均層厚(断面5箇所の平均値)を示し、また、その組織を透過型電子顕微鏡を用いて観察したところ、前記本発明被覆超硬工具は、炭素系非晶質体の素地に、結晶質のTi(C,N)系化合物微粒が分散分布した組織を示し、一方前記従来被覆超硬工具のそれは、炭素系非晶質体の単一相からなる組織を示した。   As a result, the coated carbide tips 1, 1 'to 16, 16' of the present invention as the coated carbide tool of the present invention, the coated carbide end mills 1 to 8 of the present invention, and the coated carbide drills 1 to 8 of the present invention, In addition, the comparative coated carbide tips 1, 1 'to 16, 16' corresponding to the conventional coated carbide tool, the comparative coated carbide end mills 1 to 8, and the non-coated lubricant layers constituting the comparative coated carbide drills 1 to 8 The composition of the crystalline carbon-based lubricating layer was measured using an Auger spectroscopic analyzer, and the layer thickness was measured using a scanning electron microscope. Both of the target composition and the target layer thickness were substantially the same as the target composition and the target layer thickness ( When the structure was observed using a transmission electron microscope, the coated carbide tool of the present invention had a crystalline Ti ( A set in which C, N) compound fine particles are dispersed and distributed. It is shown, whereas the it conventional coating carbide tools showed tissue of a single phase of the carbon-based amorphous substance.

表5〜13に示される結果から、表面潤滑層が、炭素系非晶質体の素地に、結晶質のTi(C,N)系化合物微粒が分散分布した組織を有する非晶質炭素系潤滑層からなる本発明被覆超硬工具は、いずれもAl合金やCu合金、さらに鋼の切削加工を、高速条件で行なった場合にも、すぐれた耐摩耗性を発揮するのに対して、表面潤滑層が、炭素系非晶質体の単一相からなる組織を有する従来被覆超硬工具(比較被覆超硬工具)においては、高速切削条件では、前記表面潤滑層の摩耗進行がきわめて速く、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に各種の被削材の切削加工を、高速切削条件で行なった場合にも、すぐれた耐摩耗性を発揮するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
From the results shown in Tables 5 to 13, the surface lubrication layer has an amorphous carbon-based lubrication having a structure in which crystalline Ti (C, N) compound fine particles are dispersed and distributed on a carbon-based amorphous body. The coated carbide tool of the present invention consisting of a layer exhibits excellent wear resistance even when cutting Al alloy, Cu alloy, and steel under high speed conditions, while surface lubrication In the conventional coated carbide tool (comparative coated carbide tool) whose layer has a structure composed of a single phase of a carbon-based amorphous body, the progress of wear of the surface lubricating layer is extremely fast under high-speed cutting conditions. It is clear that the service life is reached in a short time.
As described above, the coated carbide tool of the present invention has excellent resistance not only to cutting under normal conditions, but also when cutting various kinds of work materials under high-speed cutting conditions. Since it exhibits wearability, it can be satisfactorily deal with labor saving and energy saving in cutting, and further cost reduction.

この発明の被覆超硬工具の表面潤滑層を構成する非晶質炭素系潤滑層を透過型電子顕微鏡を用いて組織観察した結果を示す模式図である。It is a schematic diagram which shows the result of having observed the structure | tissue of the amorphous carbon type lubricating layer which comprises the surface lubricating layer of the coated carbide tool of this invention using the transmission electron microscope. この発明の被覆超硬工具の潤滑性被覆層(密着接合層、下地潤滑層、および表面潤滑層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。Lubricating coating layer of the coated carbide tool of the present invention (deposition device used to form an adhesion bonding layer, a base lubricating layer, and a surface lubricating layer is shown, (a) is a schematic plan view, (b) is a schematic plan view. It is a front view. 従来被覆超硬工具(比較被覆超硬工具)の潤滑性被覆層(密着接合層および表面潤滑層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used for forming the lubricity coating layer (adhesion joining layer and surface lubrication layer) of the conventional coated carbide tool (comparative coated carbide tool) is shown, (a) is a schematic plan view, and (b) is a schematic diagram. It is a front view.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン系サーメットからなる超硬基体の表面に蒸着形成された潤滑性被覆層が、密着接合層、下地潤滑層、および表面潤滑層からなり、
(a)上記密着接合層を、0.1〜3μmの平均層厚を有し、かつ、マグネトロンスパッタリング装置にて、カソード電極(蒸発源)としてTiターゲットを用い、窒素とArの混合ガス、または炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜された、窒化チタン層および炭窒化チタン層のいずれか、または両方、
(b)上記表面潤滑層を、1〜10μmの平均層厚を有し、かつ、マグネトロンスパッタリング装置にて、カソード電極(蒸発源)として、炭化タングステンターゲットとTiターゲットを用い、炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜され、オージェ分光分析装置で測定して、
W:5〜15原子%、
Ti:21〜35原子%、
窒素:21〜35原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有すると共に、透過型電子顕微鏡による観察で、炭素系非晶質体の素地に、結晶質炭窒化チタン系化合物の微粒が分散分布した組織を有する非晶質炭素系潤滑層、
で構成し、さらに、
(c)上記下地潤滑層を、0.1〜3μmの平均層厚を有し、かつ、マグネトロンスパッタリング装置にて、カソード電極(蒸発源)として、炭化タングステンターゲットとTiターゲットを用い、炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜されると共に、Ti、窒素、炭素、およびW成分の含有割合が、層厚に沿って、上記密着接合層の界面部における含有割合から上記表面潤滑層の界面部における含有割合に連続的または多段階的に変化する成分濃度変化構造を有する非晶質炭素系潤滑層、
で構成してなる、潤滑性被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。
A lubricating coating layer formed by vapor deposition on the surface of a cemented carbide substrate made of tungsten carbide based cemented carbide or titanium carbonitride cermet consists of an adhesive bonding layer, a base lubrication layer, and a surface lubrication layer,
(A) The adhesion bonding layer has an average layer thickness of 0.1 to 3 μm, and in a magnetron sputtering apparatus, using a Ti target as a cathode electrode (evaporation source), a mixed gas of nitrogen and Ar, or Either or both of a titanium nitride layer and a titanium carbonitride layer formed in a magnetic field in a reaction atmosphere consisting of a hydrocarbon decomposition gas and a mixed gas of nitrogen and Ar,
(B) The surface lubricating layer has an average layer thickness of 1 to 10 μm, and a tungsten carbide target and a Ti target are used as a cathode electrode (evaporation source) in a magnetron sputtering apparatus, and a hydrocarbon decomposition gas Is formed in a magnetic field in a reaction atmosphere consisting of a mixed gas of nitrogen, nitrogen, and Ar, and measured with an Auger spectrometer.
W: 5-15 atomic%,
Ti: 21-35 atomic%,
Nitrogen: 21-35 atomic%,
And the balance is composed of carbon and inevitable impurities, and a structure in which fine particles of crystalline titanium carbonitride compound are dispersed and distributed on the base of the carbon-based amorphous body by observation with a transmission electron microscope. Having an amorphous carbon-based lubricating layer,
And in addition,
(C) The base lubricating layer has an average layer thickness of 0.1 to 3 μm, and a magnetron sputtering apparatus is used as a cathode electrode (evaporation source) with a tungsten carbide target and a Ti target. A film is formed in a magnetic field in a reaction atmosphere composed of a decomposition gas, a mixed gas of nitrogen and Ar, and the content ratios of Ti, nitrogen, carbon, and W components in the interface portion of the adhesive bonding layer are along the layer thickness. An amorphous carbon-based lubricating layer having a component concentration changing structure that continuously or multistagely changes from the content ratio to the content ratio at the interface portion of the surface lubricant layer;
A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance with a lubricious coating layer.
JP2005173466A 2005-06-14 2005-06-14 Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricity coating layer Active JP4711177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005173466A JP4711177B2 (en) 2005-06-14 2005-06-14 Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricity coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173466A JP4711177B2 (en) 2005-06-14 2005-06-14 Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricity coating layer

Publications (2)

Publication Number Publication Date
JP2006346777A JP2006346777A (en) 2006-12-28
JP4711177B2 true JP4711177B2 (en) 2011-06-29

Family

ID=37643149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173466A Active JP4711177B2 (en) 2005-06-14 2005-06-14 Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricity coating layer

Country Status (1)

Country Link
JP (1) JP4711177B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141654B2 (en) * 2009-08-31 2013-02-13 日立ツール株式会社 Sliding parts
GB201100966D0 (en) * 2011-01-20 2011-03-02 Element Six Holding Gmbh Cemented carbide article
CN102847962B (en) * 2011-06-29 2016-05-04 三菱综合材料株式会社 The excellent resistance to surface-coated cutting tool that collapses cutter of hard coating layer performance
KR101456395B1 (en) 2012-04-03 2014-10-31 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cubic boron nitride sintered body tool
CN112610608B (en) * 2020-11-26 2022-07-15 东南大学 Wide-temperature-range self-lubricating bearing and preparation method thereof
CN115466933A (en) * 2022-08-30 2022-12-13 厦门金鹭特种合金有限公司 Tool base, tool and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762541A (en) * 1993-08-26 1995-03-07 Kyocera Corp Wear resistant member
JPH11291104A (en) * 1998-04-08 1999-10-26 Sumitomo Electric Ind Ltd Coated tool
JP2000144378A (en) * 1998-11-05 2000-05-26 Yamaguchi Prefecture Formation of composite hard film with low coefficient of friction
JP2001225412A (en) * 2000-02-16 2001-08-21 Token Thermotec:Kk Protective film coated member
JP2002206177A (en) * 2000-12-28 2002-07-26 Komatsu Ltd Sliding member having excellent sliding characteristic
JP2002235748A (en) * 2001-02-13 2002-08-23 Koyo Seiko Co Ltd Rolling sliding component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762541A (en) * 1993-08-26 1995-03-07 Kyocera Corp Wear resistant member
JPH11291104A (en) * 1998-04-08 1999-10-26 Sumitomo Electric Ind Ltd Coated tool
JP2000144378A (en) * 1998-11-05 2000-05-26 Yamaguchi Prefecture Formation of composite hard film with low coefficient of friction
JP2001225412A (en) * 2000-02-16 2001-08-21 Token Thermotec:Kk Protective film coated member
JP2002206177A (en) * 2000-12-28 2002-07-26 Komatsu Ltd Sliding member having excellent sliding characteristic
JP2002235748A (en) * 2001-02-13 2002-08-23 Koyo Seiko Co Ltd Rolling sliding component

Also Published As

Publication number Publication date
JP2006346777A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP4711177B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricity coating layer
JP5041222B2 (en) Surface coated cutting tool
JP2009101474A (en) Surface-coated cutting tool having hard coating layer capable of exhibiting excellent lubricating performance and wear resistance during high-speed cutting
JP4518253B2 (en) Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in diamond-like carbon-based coatings in high-speed cutting of non-ferrous materials
JP4530139B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricated amorphous carbon coating
JP2007021650A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP4775757B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to lubricated amorphous carbon coating
JP4535255B2 (en) Method for producing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance and chipping resistance in high-speed cutting of hardened steel
JP4438546B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance in high speed heavy cutting with excellent surface coating layer
JP2007160465A (en) Surface coated cemented carbide cutting tool having hard lubricating layer exhibiting excellent wear resistance in high speed cutting
JP4530138B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricated amorphous carbon coating
JP4711059B2 (en) Cutting tool made of surface coated cemented carbide with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5234515B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP4530142B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance in high speed heavy cutting with excellent surface coating layer
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP5077743B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP2007021649A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting of hard-to-cut material
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JP4244378B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP5234516B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5499862B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310