JP4543373B2 - Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials - Google Patents

Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials Download PDF

Info

Publication number
JP4543373B2
JP4543373B2 JP2004165228A JP2004165228A JP4543373B2 JP 4543373 B2 JP4543373 B2 JP 4543373B2 JP 2004165228 A JP2004165228 A JP 2004165228A JP 2004165228 A JP2004165228 A JP 2004165228A JP 4543373 B2 JP4543373 B2 JP 4543373B2
Authority
JP
Japan
Prior art keywords
purity
cemented carbide
carbide substrate
cutting
dlc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004165228A
Other languages
Japanese (ja)
Other versions
JP2005342834A (en
Inventor
智行 益野
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004165228A priority Critical patent/JP4543373B2/en
Publication of JP2005342834A publication Critical patent/JP2005342834A/en
Application granted granted Critical
Publication of JP4543373B2 publication Critical patent/JP4543373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、プラズマCVD(化学蒸着)成膜のダイヤモンド状炭素被膜(以下、DLC被膜という)が、同じ水素含有量で、相対的に高い硬さを有し、したがって主に各種のAl合金やCu合金などの非鉄材料の高速切削加工に用いた場合に、すぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)の製造方法に関するものである。 In the present invention, a diamond-like carbon film (hereinafter referred to as a DLC film) formed by plasma CVD (chemical vapor deposition) has the same hydrogen content and a relatively high hardness. The present invention relates to a method of manufacturing a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated carbide tool) that exhibits excellent wear resistance when used for high-speed cutting of non-ferrous materials such as Cu alloys.

一般に、被覆超硬工具として、各種の非鉄材料などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどが知られており、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具なども知られている。 In general, as a coated carbide tool, a throw-away tip that is used to attach and detachably attach to the tip of a cutting tool for turning and planing of various non-ferrous materials, drills used for drilling, etc. Known as miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. Also, the throwaway tip is detachably attached, and cutting is performed in the same way as the solid type end mill. The throwaway end mill tool to perform is also known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、
(a)スパッタ成膜され、かつ0.005〜0.2μmの平均膜厚および99.9質量%以上の純度を有する高純度ダイヤモンド状炭素薄膜(以下、高純度DLC薄膜という)を介して、
(b)プラズマCVD法により水素含有量が10〜15原子%のDLC被膜を0.6〜1.5μmの平均膜厚で蒸着してなる、
被覆超硬工具が知られており、かかる被覆超硬工具を構成するDLC被膜における水素含有量が、強度(耐チッピング性)と硬さ(耐摩耗性)を考慮して10〜15原子%に定められていることも知られている。
Further, as a coated carbide tool, a substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a cemented carbide substrate). On the surface)
(A) Through a high-purity diamond-like carbon thin film (hereinafter referred to as a high-purity DLC thin film) which is formed by sputtering and has an average film thickness of 0.005 to 0.2 μm and a purity of 99.9% by mass or more,
(B) A DLC film having a hydrogen content of 10 to 15 atomic% is deposited with an average film thickness of 0.6 to 1.5 μm by plasma CVD.
Coated carbide tools are known, and the hydrogen content in the DLC coating constituting such a coated carbide tool is 10 to 15 atomic% in consideration of strength (chipping resistance) and hardness (abrasion resistance). It is also known that it is defined.

また、上記の被覆超硬工具が、図2(a)および(b)にそれぞれ概略平面図および概略正面図で示される通り、回転テーブル5を挟んだ対向位置側壁に、スパッタ電源11に取り付けられた99.9質量%以上の純度を有する高純度炭素カソード電極(蒸発源)10が配置され、さらに一方側側壁に原料ガス導入口1、他方側側壁に排気口4をそれぞれ設けたプラズマCVD装置を用い、前記装置内の中央部に設置された回転テーブル5上に、これの中心軸から半径方向に所定距離離れた位置に外周部に沿って配置された支持体8に超硬基体6を装着し、
(a)まず、装置内を排気して、例えば8×10−5Pa以下の真空に保持しながら、装置内に前回転テーブルを挟んで設置されたヒーター3で装置内を例えば200℃に加熱し、かつ前記回転テーブルで自転しながら回転する超硬基体6には−50〜−500Vのバイアス電圧(バイアス電源7)を印加し、ついで装置内にArガスを導入して装置内反応雰囲気を0.01〜0.3Paとした状態で、上記高純度炭素カソード電極(蒸発源)10に、0.4〜1kWのパルス電力(スパッタ電源11)を印加して、スパッタリングを開始し、もって、前記超硬基体6の表面に0.002〜0.2μmの平均膜厚で99.9質量%以上の純度を有する高純度DLC薄膜を蒸着形成し、
(b)ついで、ヒーター3で装置内を例えば200℃に加熱した状態で、再び装置内を排気して、例えば8×10−5Pa以下の真空に保持しながら、上記超硬基体6に印加するバイアス電圧(バイアス電源7)を−500〜−1500Vとし、さらに同じく装置内にArガスを導入して装置内反応雰囲気を0.01〜0.3Paとして、装置内に初期プラズマを発生させた状態で、原料ガスとして例えばアセチレン(C)などの炭化水素と水素をそれぞれ例えばC:165〜240cc/minおよびH:50〜125cc/minの流量で導入して(この場合、相対的に炭化水素の導入割合を少なくして、水素の導入割合を多くすれば、DLC被膜中の水素含有量は多くなって、硬さが相対的に低いものとなり、反対に炭化水素の導入割合を多くして、水素の導入割合を少なくすれば、DLC被膜中の水素含有量は少なくなって、相対的に硬さの低いものとなる)、これを分解・プラズマ化(+Cイオンおよび+Hイオン)することにより、10〜15原子%の水素を含有し、18〜22GPaの硬さを有するDLC被膜を前記超硬基体の表面に0.6〜1.5μmの平均膜厚で蒸着することにより製造されることも知られている。
特開2003−26414号公報
Further, the above-mentioned coated carbide tool is attached to the sputter power source 11 on the opposite side wall sandwiching the turntable 5 as shown in the schematic plan view and the schematic front view in FIGS. 2 (a) and 2 (b), respectively. Further, a plasma CVD apparatus in which a high purity carbon cathode electrode (evaporation source) 10 having a purity of 99.9% by mass or more is disposed, and a source gas inlet 1 is provided on one side wall and an exhaust port 4 is provided on the other side wall. The carbide substrate 6 is placed on the support 8 disposed along the outer peripheral portion on the rotary table 5 installed in the central portion of the apparatus at a position spaced apart from the central axis in the radial direction by a predetermined distance. Wearing,
(A) First, the inside of the apparatus is evacuated, and the inside of the apparatus is heated to, for example, 200 ° C. by the heater 3 installed with the front rotary table sandwiched in the apparatus while maintaining a vacuum of, for example, 8 × 10 −5 Pa or less. In addition, a bias voltage (bias power supply 7) of −50 to −500 V is applied to the carbide substrate 6 that rotates while rotating on the rotary table, and then Ar gas is introduced into the apparatus to create a reaction atmosphere in the apparatus. In a state of 0.01 to 0.3 Pa, a pulse power (sputtering power source 11) of 0.4 to 1 kW is applied to the high purity carbon cathode electrode (evaporation source) 10 to start sputtering. High-purity DLC thin film having a purity of 99.9% by mass or more with an average film thickness of 0.002 to 0.2 μm is formed on the surface of the carbide substrate 6 by vapor deposition,
(B) Next, while the inside of the apparatus is heated to, for example, 200 ° C. with the heater 3, the inside of the apparatus is evacuated again, and applied to the above-mentioned carbide substrate 6 while maintaining a vacuum of, for example, 8 × 10 −5 Pa or less. The bias voltage (bias power supply 7) to be -500 to -1500 V, and Ar gas was introduced into the apparatus, and the reaction atmosphere in the apparatus was set to 0.01 to 0.3 Pa to generate initial plasma in the apparatus. In this state, hydrocarbons such as acetylene (C 2 H 2 ) and hydrogen are introduced as source gases at a flow rate of, for example, C 2 H 2 : 165 to 240 cc / min and H 2 : 50 to 125 cc / min (this In this case, if the introduction ratio of hydrocarbon is relatively reduced and the introduction ratio of hydrogen is increased, the hydrogen content in the DLC film is increased and the hardness is relatively low. If the hydrocarbon introduction ratio is increased and the hydrogen introduction ratio is decreased, the hydrogen content in the DLC film decreases and the hardness becomes relatively low.) (+ C ions and + H ions), a DLC film containing 10 to 15 atomic% of hydrogen and having a hardness of 18 to 22 GPa is applied to the surface of the cemented carbide substrate at an average of 0.6 to 1.5 μm. It is also known to be manufactured by vapor deposition with a film thickness.
JP 2003-26414 A

近年の切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを構成するDLC被膜が耐チッピング性重視の面から水素含有量を10〜15原子%と相対的に高くして、高強度を具備するようにし、反面硬さを犠牲にしたものであるため、特に高速切削加工では摩耗進行が速く、この結果比較的短時間で使用寿命に至るのが現状である。   In recent years, there has been a strong demand for labor saving, energy saving, and cost reduction with respect to cutting, and with this, cutting tends to increase in speed. However, in the above-mentioned conventional coated carbide tools, the DLC constituting this The coating has a relatively high hydrogen content of 10 to 15 atomic% from the aspect of emphasizing chipping resistance so that it has high strength, while sacrificing its hardness. In the present situation, the wear progresses rapidly, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の従来被覆超硬工具のDLC被膜に着目し、これの一段の耐摩耗性向上(硬さ向上)を図るべく、研究を行った結果、
(a)図1(a)および(b)にそれぞれ概略平面図および概略正面図で示される通り、回転テーブル5を挟んだ対向位置側壁に、同じく高純度DLC薄膜形成の目的で、スパッタ電源11に取り付けられた99.9質量%以上の純度を有する高純度炭素カソード電極(蒸発源)10が配置され、側壁外周に沿って所定間隔毎に複数の電磁コイル2を設け、一方側壁内周に沿っては同じくヒーター3を設け、かつ前記電磁コイルの横方向中央部には装置内に貫通して原料ガス導入口1をそれぞれ設けたプラズマCVD装置を用い、前記電磁コイルにより磁場9を形成して、超硬基体6の装着部における磁束密度を50〜300G(ガウス)とした状態で(この場合前記磁束密度によって水素含有量が変化する)、まず、高純度DLC薄膜のスパッタ成膜を磁場中で行い、さらにDLC被膜の成膜を、前記原料ガス導入口1よりの原料ガスを炭化水素だけとすると共に、その流量を150〜250cc/minの範囲内の一定量とした条件で行う以外は、上記の従来プラズマCVD装置での高純度DLC薄膜およびDLC被膜の蒸着条件と同じ条件で、同じく99.9質量%以上の純度を有する高純度DLC薄膜および水素含有量が10.2〜14.8原子%のDLC被膜を形成すると、この結果の高純度DLC薄膜は超硬基体6とDLC被膜の間に介在して、これら両者の密着性を一段と向上させ、DLC被膜は、水素含有量が同じ10.2〜14.8原子%であるにもかかわらず、25.3〜33.1GPaの相対的に高い硬さを有するようになること。
(b)上記(a)のDLC被膜を、磁場中成膜の高純度DLC薄膜を介して、0.6〜1.5μmの平均膜厚で蒸着形成してなる被覆超硬工具においては、前記DLC被膜が、水素を従来DLC被膜と同じ10.2〜14.8原子%を含有するので、十分な強度を有し、かつ表面粗さで24.1〜30.0nmのすぐれた表面平滑性を保持することから、前記高純度DLC薄膜による密着性向上効果と相俟って、すぐれた耐チッピング性を発揮し、しかも18〜22GPaの硬さを有する前記従来DLC被膜に比して相対的に高い25.3〜33.1GPaの硬さを有するので、一段とすぐれた耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
In view of the above, the present inventors have focused on the DLC film of the above-mentioned conventional coated carbide tool and conducted research to further improve the wear resistance (hardness improvement). result,
(A) As shown in FIGS. 1 (a) and 1 (b) by a schematic plan view and a schematic front view, respectively, a sputtering power source 11 is also formed for the purpose of forming a high-purity DLC thin film on opposite side walls sandwiching the turntable 5. A high-purity carbon cathode electrode (evaporation source) 10 having a purity of 99.9% by mass or more attached to is disposed, and a plurality of electromagnetic coils 2 are provided at predetermined intervals along the outer periphery of the side wall. A plasma CVD apparatus in which a heater 3 is also provided and a source gas introduction port 1 is provided in the central portion in the lateral direction of the electromagnetic coil so as to penetrate the apparatus, and a magnetic field 9 is formed by the electromagnetic coil. In the state where the magnetic flux density in the mounting portion of the cemented carbide substrate 6 is 50 to 300 G (Gauss) (in this case, the hydrogen content varies depending on the magnetic flux density), first, the high purity DLC thin film is scanned. Film formation in a magnetic field, and further a DLC film is formed by using only hydrocarbons as the raw material gas from the raw material gas inlet 1, and a flow rate within a range of 150 to 250 cc / min. The high-purity DLC thin film having a purity of 99.9% by mass or more and the hydrogen content under the same conditions as the deposition conditions for the high-purity DLC thin film and the DLC film in the conventional plasma CVD apparatus, except for the above conditions When forming a DLC film of 10.2 to 14.8 atomic%, the resulting high-purity DLC thin film is interposed between the cemented carbide substrate 6 and the DLC film, further improving the adhesion between these two, The coating should have a relatively high hardness of 25.3 to 33.1 GPa despite the same hydrogen content of 10.2 to 14.8 atomic%.
(B) In the coated carbide tool formed by vapor-depositing the DLC film of the above (a) with an average film thickness of 0.6 to 1.5 μm through a high-purity DLC thin film formed in a magnetic field, The DLC film contains 10.2 to 14.8 atomic% of hydrogen, which is the same as the conventional DLC film, so that it has sufficient strength and excellent surface smoothness of 24.1 to 30.0 nm in surface roughness. In combination with the effect of improving adhesion by the high-purity DLC thin film, it exhibits excellent chipping resistance and has a relative hardness as compared with the conventional DLC film having a hardness of 18 to 22 GPa. Since it has a high hardness of 25.3 to 33.1 GPa, it should exhibit even better wear resistance.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、装置内の中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んだ対向位置の側壁内面に、スパッタ電源に取り付けられた99.9質量%以上の純度を有する高密着性高純度DLC薄膜形成用高純度炭素カソード電極(蒸発源)を配置し、側壁外周に沿って所定間隔毎に複数の電磁コイルを設け、一方側壁内周に沿っては同じくヒーターを設け、かつ前記電磁コイルの横方向中央部には装置内に貫通して原料ガス導入口をそれぞれ設け、さらに回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って配置され、自転する支持体に複数の超硬基体を装着したプラズマCVD装置を用い、
(a)上記装置内をヒーターで加熱し、かつ上記電磁コイルにより磁場を形成して、上記超硬基体の装着部における磁束密度を50〜300G(ガウス)とし、前記超硬基体にはバイアス電圧(バイアス電源)を印加し、一方前記高純度炭素カソード電極(蒸発源)にはパルス電力(スパッタ電源)を印加して、スパッタリングを開始し、もって、前記超硬基体の表面に0.002〜0.2μmの平均膜厚および99.9質量%以上の純度を有する高密着性高純度DLC薄膜を蒸着形成し、
(b)ついで、同じく装置内を上記ヒーターで加熱し、かつ上記超硬基体の装着部における磁束密度を50〜300G(ガウス)に保持すると共に、前記超硬基体にバイアス電圧(バイアス電源)を印加し、さらに装置内に初期プラズマを発生させた状態で、原料ガス導入口から炭化水素だけからなる原料ガスを導入し、これを分解・プラズマ化することにより、上記(a)の高密着性高純度DLC薄膜を介して、
水素含有量:10.2〜14.8原子%、
硬さ:25.3〜33.1GPa、
表面粗さ:24.1〜30.0nm、
平均膜厚:0.6〜1.5μm、
を有するDLC被膜を形成してなる、非鉄材料の高速切削加工ですぐれた耐摩耗性を発揮する被覆超硬削工具の製造方法に特徴を有するものである。
The present invention has been made on the basis of the above research results. A carbide substrate mounting rotary table is provided in the center of the apparatus, and a sputter power source is provided on the inner surface of the opposite side wall across the rotary table. An attached high-purity carbon cathode electrode (evaporation source) for forming a high-adhesion high-purity DLC thin film having a purity of 99.9% by mass or more is disposed, and a plurality of electromagnetic coils are provided at predetermined intervals along the outer periphery of the side wall. On the other hand, a heater is also provided along the inner circumference of the side wall, and a raw material gas introduction port is provided in the central portion in the lateral direction of the electromagnetic coil so as to penetrate the device, and further radially from the central axis on the rotary table. Using a plasma CVD apparatus in which a plurality of cemented carbide substrates are mounted on a supporting body that rotates and is arranged along the outer peripheral portion at a predetermined distance away,
(A) The inside of the apparatus is heated by a heater and a magnetic field is formed by the electromagnetic coil so that the magnetic flux density at the mounting portion of the cemented carbide substrate is 50 to 300 G (Gauss), and a bias voltage is applied to the cemented carbide substrate. (Bias power supply) is applied, while pulse power (sputtering power supply) is applied to the high purity carbon cathode electrode (evaporation source) to start sputtering, so that 0.002- High-adhesion high-purity DLC thin film having an average film thickness of 0.2 μm and a purity of 99.9% by mass or more is formed by vapor deposition;
(B) Next, the inside of the apparatus is similarly heated by the heater, and the magnetic flux density in the mounting portion of the cemented carbide substrate is maintained at 50 to 300 G (Gauss), and a bias voltage (bias power supply) is applied to the cemented carbide substrate. In the state where initial plasma is generated in the apparatus, a raw material gas consisting of only hydrocarbons is introduced from the raw material gas introduction port, and this is decomposed and converted into plasma, whereby the high adhesion of (a) above is achieved. Through high purity DLC thin film,
Hydrogen content: 10.2-14.8 atomic%,
Hardness: 25.3-33.1 GPa,
Surface roughness: 24.1-30.0 nm,
Average film thickness: 0.6 to 1.5 μm,
It is characterized by a method of manufacturing a coated carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials, which is formed by forming a DLC film having the following.

つぎに、この発明の方法において、被覆超硬工具を構成する高純度DLC薄膜およびDLC被膜について、上記の通りに数値限定した理由を説明する。
(a)高純度DLC薄膜
高純度DLC薄膜には、上記の通り超硬基体およびDLC被膜のいずれにも強固に密着して、DLC被膜の超硬基体に対する密着性を一段と向上させる作用があり、この密着性効果は純度を99.9質量%以上に保持することによって確保され、したがって、その純度が99.9質量%未満になると密着性が急激に低下するようになるものであり、さらにこれが磁場中成膜されると、密着性の一段の向上が図られるようになるが、その平均膜厚が0.005μm未満では所望のすぐれた密着性を確保することができず、一方、その平均膜厚が0.2μmを越えて厚くなり過ぎると、これの具備するきわめて高い硬さを有するが、強度の著しく低い特性が現れるようになり、これがチッピング(微少欠け)発生の原因となることから、その平均膜厚を0.005〜0.2μmと定めた。
Next, the reason why the high purity DLC thin film and the DLC film constituting the coated carbide tool are numerically limited as described above in the method of the present invention will be described.
(A) High-purity DLC thin film The high-purity DLC thin film has an effect of further improving the adhesion of the DLC film to the carbide substrate by firmly adhering to both the carbide substrate and the DLC film as described above. This adhesion effect is ensured by maintaining the purity at 99.9% by mass or more. Therefore, when the purity is less than 99.9% by mass, the adhesion is drastically lowered. When the film is formed in a magnetic field, the adhesion can be further improved. However, if the average film thickness is less than 0.005 μm, the desired excellent adhesion cannot be ensured. When the film thickness exceeds 0.2 μm and becomes too thick, it has the extremely high hardness, but the characteristic of extremely low strength appears, which is the cause of chipping (small chipping). From Rukoto, defining the average film thickness and 0.005~0.2Myuemu.

(b)DLC被膜
一般にDLC被膜の具備する強度と硬さは水素含有量によって変化し、水素含有量が10.2原子%未満になると、磁場成膜によって33.1GPaを越えた高硬度をもつようになるが、強度および表面粗さが低下し、Ra:24.1〜30.0nmの表面粗さを確保することができない場合が生じ、切削加工時にチッピング(微少欠け)が発生し易くなり、一方水素含有量が14.8原子%を越えると、硬さが急激に低下し、磁場成膜によっても25.3GPa以上の高硬度を確保することができず、摩耗が急激に進行する場合が生じるようになることから、この発明の被覆超硬工具では、水素含有量を10.2〜14.8原子%と定め、磁場成膜によって同じ水素含有量でも硬さの一段と高いDLC被膜を形成するものである。
また、DLC被膜の平均膜厚が0.6μm未満では、所望の耐摩耗性を長期に亘って確保することができず、一方その平均膜厚が1.5μmを越えると、切刃部にチッピングが発生し易くなることから、その平均膜厚を0.6〜1.5μmと定めた。
(B) DLC coating Generally, the strength and hardness of a DLC coating vary depending on the hydrogen content. When the hydrogen content is less than 10.2 atomic%, high hardness exceeding 33.1 GPa is obtained by magnetic field film formation. However, the strength and surface roughness are reduced, and the surface roughness Ra: 24.1 to 30.0 nm can not be ensured, and chipping (slight chipping) occurs during cutting. On the other hand, when the hydrogen content exceeds 14.8 atomic%, the hardness is drastically reduced, and high hardness of 25.3 GPa or more cannot be ensured even by magnetic field film formation, resulting in rapid wear. since so may progress occurs, the coated cemented carbide tool of the present invention, the hydrogen content of the set and from 10.2 to 14.8 atomic%, more in hardness even with the same hydrogen content by the magnetic field deposition Form a high DLC film Than is.
Moreover, if the average film thickness of the DLC film is less than 0.6 μm, the desired wear resistance cannot be ensured over a long period of time, while if the average film thickness exceeds 1.5 μm, the cutting edge portion Therefore, the average film thickness was determined to be 0.6 to 1.5 μm.

この発明の方法によって製造された被覆超硬工具は、これを構成する高純度DLC薄膜が磁場中成膜によって一段と密着性が向上し、さらにDLC被膜の水素含有量が従来被覆超硬工具のそれと同じ10.2〜14.8原子%であるにもかかわらず、25.3〜33.1GPaの相対的に高い硬さを示し、したがって、各種のAl合金やCu合金などの高速切削で、チッピング(微少欠け)の発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。 The coated carbide tool manufactured by the method of the present invention is further improved in the adhesion of the high-purity DLC thin film constituting the coated carbide tool formed in a magnetic field, and the hydrogen content of the DLC film is that of the conventional coated carbide tool. Despite the same 10.2 to 14.8 atomic%, it exhibits a relatively high hardness of 25.3 to 33.1 GPa, and thus, at high speed cutting of various Al alloys and Cu alloys, It exhibits excellent wear resistance over a long period of time without occurrence of chipping (slight chipping).

つぎに、この発明の被覆超硬工具の製造方法を実施例により具体的に説明する。 Next, the method for producing the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで96時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、研磨加工を施し、切刃すくい面を鏡面仕上げすることにより、いずれもWC基超硬合金からなり、かつISO規格・SPGN120308のチップ形状をもった超硬基体A−1,A−2,A−4,A−5,A−7,A−9,およびA−10をそれぞれ製造した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. The mixture is blended for 96 hours with a ball mill, dried and dried, and then pressed into a green compact at a pressure of 100 MPa, and the green compact is vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under holding conditions, polished, and mirror-finished cutting edge rake surface, both of which are made of WC-based cemented carbide and have a chip shape conforming to ISO standard / SPGN120308 A- 1, A-2, A-4, A-5, A-7, A-9, and A-10 were produced.

(a)ついで、図1に示されるプラズマCVD装置、すなわち回転テーブル5を挟んだ対向位置側壁に、高純度DLC薄膜形成の目的で、スパッタ電源11に取り付けられた99.97質量%の純度を有する高純度炭素カソード電極(蒸発源)10が配置され、側壁外周に沿って所定間隔毎に6個の電磁コイル2を設け、一方側壁内周に沿って前記電磁コイル2と対をなしてヒーター3を設け、かつ前記電磁コイルの横方向中央部には装置内に貫通して原料ガス導入口1をそれぞれ設けたプラズマCVD装置を用い、上記の超硬基体A−1〜A−10からなる超硬基体6を、アセトン中で超音波洗浄し、乾燥した状態で、前記装置内の回転テーブル5上に、これの中心軸から半径方向に所定距離離れた位置にリング状に配置された支持体8にそれぞれ装着し、
(b)装置内を排気して、6.5×10−5Paの真空に保持しながら、前記ヒーター3で装置内を200℃に加熱し、かつ20r.p.m.の回転速度で回転する前記回転テーブル上で同じく20r.p.m.の回転速度で自転しながら回転する超硬基体6には−120Vのバイアス電圧を印加し、一方前記電磁コイル2には10Aの電流を印加し、磁場9を形成して、前記超硬基体6の設置部における磁束密度を200G(ガウス)の磁束密度とし、
(c)この状態で、装置内にArガスを導入して装置内反応雰囲気を0.08Paとした状態で、上記高純度炭素カソード電極(蒸発源)10に、0.8kWのパルス電力(スパッタ電源11)を印加して、スパッタリングを開始し、もって、前記超硬基体6の表面に表1に示される目標膜厚の高純度DLC薄膜を蒸着形成し、
(d)引続いて、装置内温度を200℃に保持し、かつ超硬基体6の回転条件も同じ条件とした状態で、再び装置内を排気して、6.5×10 −5 Paの真空として、前記超硬基体6に印加するバイアス電圧を−700Vとし、さらに装置内にArガスを導入して装置内反応雰囲気を0.08Paとして、装置内に初期プラズマを発生させた状態で、原料ガスとしてアセチレン(C)を200cc/minの一定の流量で導入して、分解・プラズマ化し、一方前記電磁コイル2には3〜20Aの範囲内の所定の電流を印加し、磁場9を形成して、前記超硬基体6の設置部における磁束密度を50〜300G(ガウス)の範囲内の所定の磁束密度とする条件(前記磁束密度が高くなるほどDLC被膜中の水素含有量は高くなる)で表2に示される目標膜厚のDLC被膜を形成することにより、本発明被覆超硬工具としての本発明被覆超硬チップ1〜7を製造した。
(A) Next, the purity of 99.97 mass% attached to the sputtering power source 11 is formed on the opposite side wall sandwiching the rotary table 5 with the plasma CVD apparatus shown in FIG. 1 for the purpose of forming a high purity DLC thin film. A high-purity carbon cathode electrode (evaporation source) 10 is disposed, and six electromagnetic coils 2 are provided at predetermined intervals along the outer periphery of the side wall, and a heater is paired with the electromagnetic coil 2 along the inner periphery of the side wall. 3 and a plasma CVD apparatus provided with a source gas introduction port 1 penetrating into the apparatus at the lateral center of the electromagnetic coil, and comprising the above-mentioned carbide substrates A-1 to A-10. The carbide substrate 6 is ultrasonically cleaned in acetone and dried, and is supported on the rotary table 5 in the apparatus in a ring shape at a predetermined distance in the radial direction from the central axis thereof. Body 8 Respectively mounted,
(B) The inside of the apparatus was evacuated and heated to 200 ° C. with the heater 3 while maintaining a vacuum of 6.5 × 10 −5 Pa, and 20 r. p. m. On the rotary table rotating at a rotational speed of 20r. p. m. A bias voltage of −120 V is applied to the carbide substrate 6 that rotates while rotating at a rotational speed of 10 μm, while a current of 10 A is applied to the electromagnetic coil 2 to form a magnetic field 9, thereby forming the carbide substrate 6. The magnetic flux density at the installation part of the magnetic flux is 200 G (Gauss),
(C) In this state, Ar gas was introduced into the apparatus to set the reaction atmosphere in the apparatus to 0.08 Pa, and a 0.8 kW pulse power (sputtering) was applied to the high purity carbon cathode electrode (evaporation source) 10. A power source 11) is applied to start sputtering, and a high purity DLC thin film having a target film thickness shown in Table 1 is formed on the surface of the cemented carbide substrate 6 by vapor deposition;
(D) Subsequently, the apparatus was evacuated again with the temperature inside the apparatus maintained at 200 ° C. and the rotation conditions of the cemented carbide substrate 6 being the same , and 6.5 × 10 −5 Pa. In a state in which a bias voltage applied to the cemented carbide substrate 6 is set to −700 V as vacuum , Ar gas is introduced into the apparatus, a reaction atmosphere in the apparatus is set to 0.08 Pa , and initial plasma is generated in the apparatus. Acetylene (C 2 H 2 ) is introduced as a source gas at a constant flow rate of 200 cc / min to be decomposed and plasma, while a predetermined current in the range of 3 to 20 A is applied to the electromagnetic coil 2 to generate a magnetic field. 9 and the condition that the magnetic flux density in the installation portion of the cemented carbide substrate 6 is a predetermined magnetic flux density within a range of 50 to 300 G (Gauss) (the higher the magnetic flux density is, the more the hydrogen content in the DLC coating is Table) By forming a target film thickness of the DLC film shown in, to produce a present invention coating hard tip 1-7 as the present invention coated carbide tools.

また、比較の目的で、図2に示されるプラズマCVD装置、すなわち回転テーブル5を挟んだ対向位置側壁に、スパッタ電源11に取り付けられた99.97質量%の純度を有する高純度炭素カソード電極(蒸発源)10およびヒーター3がそれぞれ配置され、さらに一方側側壁に原料ガス導入口1、他方側側壁に排気口4をそれぞれ設けたプラズマCVD装置を用い、電磁コイル2による磁場形成を行わない以外は同一の条件で表2に示される目標膜厚の高純度DLC薄膜を蒸着形成し、さらにDLC被膜の形成に際しては、前記原料ガス導入口1から導入されるCガスおよびHガスの流量を、それぞれCガス:165〜240cc/minおよびH:50〜125cc/minの範囲内で変化させて、水素含有量を調整し(この場合Cガス流量を相対的に多くして、Hガス流量を少なくすれば水素含有量は低くなる)、かつ電磁コイル2による磁場形成を行わない以外は同一の条件で表2に示される目標膜厚のDLC被膜を形成することにより、従来被覆超硬工具としての従来被覆超硬チップ1〜7をそれぞれ製造した。 For comparison purposes, a high-purity carbon cathode electrode having a purity of 99.97% by mass attached to the sputter power source 11 on the side wall facing the plasma CVD apparatus shown in FIG. Evaporation source) 10 and heater 3 are arranged, respectively, and a plasma CVD apparatus provided with a source gas inlet 1 on one side wall and an exhaust port 4 on the other side wall is used, except that no magnetic field is formed by the electromagnetic coil 2. Vapor-deposits a high-purity DLC thin film having the target film thickness shown in Table 2 under the same conditions, and when forming a DLC film, C 2 H 2 gas and H 2 gas introduced from the source gas inlet 1 flow rates, respectively C 2 H 2 gas: 165~240cc / min and H 2: 50~125cc / min vary within the range of hydrogen content Adjusted (in this case by a relatively large amount of C 2 H 2 gas flow rate, hydrogen content is kept low by reducing the H 2 gas flow rate), and the same conditions but for the magnetic field formation by the magnetic coil 2 The conventional coated carbide tips 1 to 7 as the conventional coated carbide tool were manufactured by forming the DLC film having the target film thickness shown in Table 2.

ついで、この結果得られた本発明被覆超硬チップ1〜7および従来被覆超硬チップ1〜7について、これを構成するDLC被膜の水素含有量および硬さを反跳散乱分析法[Elastic Recoil Detection Analysis](水素含有量)およびナノインデンテーション法(硬さ)にてそれぞれ測定し、さらに表面粗さを原子間力顕微鏡[Atomic Force Micrscope]を用いて測定した。これらの測定結果を表に示した。
さらに、上記高純度DLC薄膜およびDLC被膜の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標膜厚と実質的に同じ平均膜厚(5点測定の平均値)を示した。
Then, the hydrogen content and hardness of the DLC coating constituting the coated carbide chips 1 to 7 of the present invention and the conventional coated carbide chips 1 to 7 obtained as a result were measured by the recoil scattering analysis method [Elastic Recoil Detection]. [Analysis] (hydrogen content) and nanoindentation method (hardness), respectively, and the surface roughness was measured using an atomic force microscope [Atomic Force Microscope]. The measurement results are shown in Table 2 .
Furthermore, when the thicknesses of the high-purity DLC thin film and the DLC film were measured using a scanning electron microscope (longitudinal section measurement), the average film thickness was substantially the same as the target film thickness (average of five-point measurements). Value).

つぎに、上記の本発明被覆超硬チップ1〜7および従来被覆超硬チップ1〜7を工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・A6061(組成は、質量%で、Si:0.6%、Fe:0.7%、Cu:0.3%、Mn:0.15%、Mg:1.0%、Cr:0.1%、Zn:0.2%、Alおよび不純物:残り)の丸棒、
切削速度:1100m/min.、
切り込み:10mm、
送り:0.5mm/rev.、
切削時間:90分、
の条件(切削条件Aという)でのAl合金の乾式連続高速切削加工試験(通常の切削速度は600m/min.)、
被削材:JIS・ADC1(組成は、質量%で、Cu:1.0%、Si:12.2%、Mg:0.3%、Zn:0.45%、Fe:1.0%、Mn:0.2%、Ni:0.4、%Sn:0.1%、Alおよび不純物:残り)の丸棒、
切削速度:1100m/min.、
切り込み:9mm、
送り:0.4mm/rev.、
切削時間:90分、
の条件(切削条件Bという)でのAl合金の乾式連続高速切削加工試験(通常の切削速度は600m/min.)、さらに、
被削材:JIS・C6161(組成は、質量%で、Fe:2.5%、Al:8.0%、Mn:1.0%、Ni:1.0%、Cuおよび不純物:残り)の丸棒、
切削速度:850m/min.、
切り込み:5mm、
送り:0.6mm/rev.、
切削時間:90分、
の条件(切削条件Cという)でのCu合金の乾式連続高速切削加工試験(通常の切削速度は300m/min.)を行なった。いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表2に示した。
Next, in a state where the above-described coated carbide chips 1 to 7 and the conventional coated carbide chips 1 to 7 and the conventional coated carbide chips 1 to 7 are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS A6061 (composition is mass%, Si: 0.6%, Fe: 0.7%, Cu: 0.3%, Mn: 0.15%, Mg: 1.0%, Round bars of Cr: 0.1%, Zn: 0.2%, Al and impurities: remaining)
Cutting speed: 1100 m / min. ,
Cutting depth: 10mm,
Feed: 0.5 mm / rev. ,
Cutting time: 90 minutes
Dry continuous high-speed cutting test (normal cutting speed is 600 m / min.) Of Al alloy under the following conditions (referred to as cutting condition A),
Work material: JIS-ADC1 (composition is mass%, Cu: 1.0%, Si: 12.2%, Mg: 0.3%, Zn: 0.45%, Fe: 1.0%, Mn: 0.2%, Ni: 0.4,% Sn: 0.1%, Al and impurities: remaining) round bar,
Cutting speed: 1100 m / min. ,
Incision: 9mm,
Feed: 0.4 mm / rev. ,
Cutting time: 90 minutes
Dry continuous high-speed cutting test (normal cutting speed is 600 m / min.) Of an Al alloy under the conditions (referred to as cutting conditions B),
Work material: JIS C6161 (composition is mass%, Fe: 2.5%, Al: 8.0%, Mn: 1.0%, Ni: 1.0%, Cu and impurities: remaining) Round bar,
Cutting speed: 850 m / min. ,
Cutting depth: 5mm,
Feed: 0.6 mm / rev. ,
Cutting time: 90 minutes
The dry continuous high-speed cutting test (normal cutting speed is 300 m / min.) Of the Cu alloy under the above conditions (referred to as cutting conditions C). In any cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 2.

Figure 0004543373
Figure 0004543373

Figure 0004543373
Figure 0004543373

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C(質量比で、TiC/WC=50/50)粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表3に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエアの形状をもった超硬基体(エンドミル)B−1〜B−7をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C (mass ratio, TiC / WC = 50/50) powder, and 1 .8 μm Co powder was prepared, and each of these raw material powders was blended in the blending composition shown in Table 3, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then in a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions , 8 mm in diameter, 13 mm, and 26mm to form a three carbide substrate for forming a round rod sintered body, the further three round bar sintered body of said at grinding, are shown in Table 3 In combination, a carbide substrate (end mill) having a diameter of 4 mm × 13 mm, a length of 6 mm × 13 mm, a size of 10 mm × 22 mm, and a size of 20 mm × 45 mm, and a four-blade square with a twist angle of 30 degrees. ) B-1 to B-7 were produced.

ついで、これらの超硬基体(エンドミル)B−1〜B−7を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるプラズマCVD装置に装入し、上記実施例1と同一の条件で、表4に示される目標膜厚の高純度DLC薄膜およびDLC被膜を形成することにより、本発明被覆超硬工具としての本発明被覆超硬エンドミル1〜7をそれぞれ製造した。 Then, these super-hard substrates (end mills) B-1 to B-7 were ultrasonically cleaned in acetone and dried, and charged into the plasma CVD apparatus shown in FIG. The coated carbide end mills 1 to 7 of the present invention as the coated carbide tool of the present invention were produced by forming a high-purity DLC thin film and a DLC film having the target film thicknesses shown in Table 4 under the same conditions as above.

また、比較の目的で、上記の超硬基体(エンドミル)B−1〜B−7を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるプラズマCVD装置に装入し、上記実施例1と同一の条件、すなわち高純度DLC薄膜については、磁場中成膜を行わず、またDLC被膜の成膜に際しては、原料ガス導入口1から導入されるCガスおよびHガスの流量を、それぞれCガス:165〜240cc/minおよびH:50〜125cc/minの範囲内で変化させて、水素含有量を調整し、かつ電磁コイル2による磁場形成を行わない以外は同一の条件で表4に示される目標膜厚の高純度DLC薄膜およびDLC被膜を形成することにより、従来被覆超硬工具としての従来被覆超硬エンドミル1〜7をそれぞれ製造した。 Further, for the purpose of comparison, the above-mentioned carbide substrates (end mills) B-1 to B-7 were ultrasonically cleaned in acetone and dried, and then loaded into the plasma CVD apparatus shown in FIG. The same conditions as in Example 1 above, that is, the high-purity DLC thin film was not formed in a magnetic field, and when the DLC film was formed, the C 2 H 2 gas introduced from the source gas inlet 1 and the flow rate of H 2 gas, respectively C 2 H 2 gas: 165~240cc / min and H 2: 50~125cc / min vary within a range of, by adjusting the hydrogen content, and a magnetic field formed by the electromagnetic coil 2 The conventional coated carbide end mills 1 to 7 as the conventional coated carbide tools are formed by forming the high-purity DLC thin film and the DLC film having the target film thickness shown in Table 4 under the same conditions except that Manufactured.

つぎに、上記本発明被覆超硬エンドミル1〜7および従来被覆超硬エンドミル1〜7のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・A7075(組成は、質量%で、Si:0.18%、Fe:0.25%、Cu:1.6%、Mn:0.3%、Mg:2.5%、Cr:0.23%、Alおよび不純物:残り)の板材、
切削速度:320m/min.、
切り込み(溝深さ):12mm、
テーブル送り:1050mm/分、
の条件でのAl合金の乾式高速溝加工試験(通常の切削速度は150m/min.)、本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・ACD12(組成は、質量%で、Cu:3.0%、Si:12.0%、Mg:0.3%、Alおよび不純物:残り)の板材、
切削速度:310m/min.、
切り込み(溝深さ):10mm、
テーブル送り:2050mm/分、
の条件でのAl合金の乾式高速溝加工試験(通常の切削速度は150m/min.)、本発明被覆超硬エンドミルおよび従来被覆超硬エンドミルについては、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・C2801(組成は、質量%で、Cu:61.0%、Pb:0.03%、Fe:0.02%、Znおよび不純物:残り)の板材の板材、
切削速度:180m/min.、
切り込み(溝深さ):30mm、
テーブル送り:1100mm/分、
の条件でのCu合金の乾式高速溝加工試験(通常の切削速度は80m/min.)、をそれぞれ行い、いずれの溝加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表4に示した。
また、表4には、DLC被膜の上記実施例1におけると同一の条件で測定した水素含有量、硬さ、および表面粗さを示しが、この測定結果は上記超硬基体(エンドミル)B−1〜B−7の試験片を用い、これの表面に同一の条件で形成したDLC被膜の示す値である。
さらに、上記高純度DLC薄膜およびDLC被膜の厚さに関しても、走査型電子顕微鏡による測定(縦断面測定)で、いずれも目標膜厚と実質的に同じ平均膜厚(5点測定の平均値)を示すことが確認された。
Next, of the present invention coated carbide end mills 1-7 and conventional coated carbide end mills 1-7 , the present invention coated carbide end mills 1-3 and conventional coated carbide end mills 1-3 are as follows:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS A7075 (composition is mass%, Si: 0.18%, Fe: 0.25%, Cu: 1.6%, Mn: 0.3%, Mg: 2.5%, Cr: 0.23%, Al and impurities: remaining)
Cutting speed: 320 m / min. ,
Incision (groove depth): 12 mm,
Table feed: 1050 mm / min,
With respect to the dry high-speed grooving test of an Al alloy under the conditions (normal cutting speed is 150 m / min.), The coated carbide end mills 4 to 6 and the conventional coated carbide end mills 4 to 6 of the present invention,
Work material: JIS ACD12 (planar dimension: 100 mm × 250 mm, thickness: 50 mm) (composition is mass%, Cu: 3.0%, Si: 12.0%, Mg: 0.3%, Al and Impurity: the remaining plate material,
Cutting speed: 310 m / min. ,
Incision (groove depth): 10 mm,
Table feed: 2050 mm / min,
The dry high-speed grooving test of an Al alloy under the conditions (normal cutting speed is 150 m / min.), The coated carbide end mill 7 of the present invention and the conventional coated carbide end mill 7 are as follows:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS C2801 (composition is mass%, Cu: 61.0%, Pb: 0.03%, Fe: 0.02%, Zn and Impurity: remaining plate material,
Cutting speed: 180 m / min. ,
Cut (groove depth): 30 mm,
Table feed: 1100 mm / min,
A dry high-speed grooving test (normal cutting speed is 80 m / min.) Of Cu alloy under the above conditions, and the flank wear width of the outer peripheral edge of the cutting edge in each grooving test is a guide for the service life The cutting groove length up to 0.1 mm was measured. The measurement results are shown in Table 4.
Table 4 shows the hydrogen content, hardness, and surface roughness measured under the same conditions as in Example 1 of the DLC film. The measurement results are the results of the above-mentioned carbide substrate (end mill) B- It is the value which the DLC film formed on the surface of this using the test piece of 1- B-7 on the same conditions shows.
Further, regarding the thicknesses of the high-purity DLC thin film and the DLC film, the average film thickness (average value of five-point measurement) is substantially the same as the target film thickness as measured by a scanning electron microscope (longitudinal section measurement). It was confirmed that

Figure 0004543373
Figure 0004543373

Figure 0004543373
Figure 0004543373

上記の実施例2で製造した直径が8mm(超硬基体B−1〜B−3形成用)、13mm(超硬基体B−4〜B−6形成用)、および26mm(超硬基体B−7形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体C−1〜C−3)、8mm×22mm(超硬基体C−4〜C−6)、および16mm×45mm(超硬基体C−7)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもった超硬基体(ドリル)C−1〜C−7をそれぞれ製造した。 The diameters produced in Example 2 above were 8 mm (for forming carbide substrates B-1 to B-3), 13 mm (for forming carbide substrates B-4 to B-6), and 26 mm (for carbide substrates B-). 7 ) (for forming 7 ), and from these three types of round bar sintered bodies, the diameter x length of the groove forming part is 4 mm x 13 mm (carbide substrate C) by grinding. -1 to C-3), 8 mm × 22 mm (carbide substrate C-4 to C-6), and 16 mm × 45 mm (carbide substrate C-7 ), and two blades each having a twist angle of 30 degrees Carbide substrates (drills) C-1 to C-7 having shapes were produced, respectively.

ついで、これらの超硬基体(ドリル)C−1〜C−7の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるプラズマCVD装置に装入し、上記実施例1と同一の条件で、表5に示される目標膜厚の高純度DLC薄膜およびDLC被膜を形成することにより、本発明被覆超硬工具としての本発明被覆超硬ドリル1〜をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) C-1 to C-7 are honed, ultrasonically cleaned in acetone, and dried, and then installed in the plasma CVD apparatus shown in FIG. The coated carbide drill 1 of the present invention as the coated carbide tool of the present invention is formed by forming a high-purity DLC thin film and DLC film having the target film thickness shown in Table 5 under the same conditions as in Example 1 above. ~ 7 were produced respectively.

また、比較の目的で、上記の超硬基体(ドリル)C−1〜C−7の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるプラズマCVD装置に装入し、上記実施例1と同一の条件で、表5に示される目標膜厚の高純度DLC薄膜およびDLC被膜を形成することにより、従来被覆超硬工具としての従来被覆超硬ドリル1〜をそれぞれ製造した。 For comparison purposes, the cutting edges of the above-mentioned carbide substrates (drills) C-1 to C-7 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. A conventional coated carbide tool as a conventional coated carbide tool is inserted into a plasma CVD apparatus and a high-purity DLC thin film and a DLC film having a target film thickness shown in Table 5 are formed under the same conditions as in the first embodiment. Hard drills 1 to 7 were produced, respectively.

つぎに、上記本発明被覆超硬ドリル1〜および比較被覆超硬ドリル1〜のうち、本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・ADC1(組成は、質量%で、Cu:1.0%、Si:12.2%、Mg:0.3%、Zn:0.45%、Fe:1.0%、Mn:0.2%、Ni:0.4、%Sn:0.1%、Alおよび不純物:残り)の板材、
切削速度:200m/min.、
送り:0.6mm/rev、
穴深さ:10mm、
の条件でのAl合金の湿式高速穴あけ切削加工試験(通常の切削速度は80m/min.)、本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・C3560((組成は、質量%で、Cu:63.0%、Pb:2.5%、Fe:0.02%、Znおよび不純物:残り)の板材、
切削速度:300m/min.、
送り:0.6mm/rev、
穴深さ:16mm、
の条件でのCu合金の湿式高速穴あけ切削加工試験(通常の切削速度は90m/min.)、本発明被覆超硬ドリルおよび従来被覆超硬ドリルについては、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・A7075(組成は、質量%で、Si:0.18%、Fe:0.25%、Cu:1.6%、Mn:0.3%、Mg:2.5%、Cr:0.23%、Alおよび不純物:残り)の板材、
切削速度:220m/min.、
送り:0.7mm/rev、
穴深さ:40mm、
の条件でのAl合金の湿式高速穴あけ切削加工試験(通常の切削速度は100m/min.)、をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.2mmに至るまでの穴あけ加工数を測定した。この測定結果を表5に示した。
また、表5には、DLC被膜の上記実施例1におけると同一の条件で測定した水素含有量、硬さ、および表面粗さを示しが、この測定結果は上記超硬基体(ドリル)C−1〜C−7の試験片を用い、これの表面に同一の条件で形成したDLC被膜の示す値である。
さらに、上記高純度DLC薄膜およびDLC被膜の厚さに関しても、走査型電子顕微鏡による測定(縦断面測定)で、いずれも目標膜厚と実質的に同じ平均膜厚(5点測定の平均値)を示すことが確認された。
Next, among the present invention coated carbide drills 1 to 7 and comparative coated carbide drills 1 to 7 , the present invention coated carbide drills 1 to 3 and the conventional coated carbide drills 1 to 3,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS · ADC1 (composition is mass%, Cu: 1.0%, Si: 12.2%, Mg: 0.3%, Zn: 0.45%, Fe: 1.0%, Mn: 0.2%, Ni: 0.4,% Sn: 0.1%, Al and impurities: remaining)
Cutting speed: 200 m / min. ,
Feed: 0.6mm / rev,
Hole depth: 10mm,
With respect to the Al alloy wet high-speed drilling test (normal cutting speed is 80 m / min.), The present invention coated carbide drills 4-6 and the conventional coated carbide drills 4-6,
Work Material: Plane Dimensions: 100 mm × 250 mm, Thickness: 50 mm JIS C3560 ((Composition is% by mass, Cu: 63.0%, Pb: 2.5%, Fe: 0.02%, Zn And impurities: the rest of the plate material,
Cutting speed: 300 m / min. ,
Feed: 0.6mm / rev,
Hole depth: 16mm,
With regard to the Cu alloy wet high-speed drilling cutting test (normal cutting speed is 90 m / min.), The coated carbide drill 7 of the present invention and the conventional coated carbide drill 7
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS A7075 (composition is mass%, Si: 0.18%, Fe: 0.25%, Cu: 1.6%, Mn: 0.3%, Mg: 2.5%, Cr: 0.23%, Al and impurities: remaining)
Cutting speed: 220 m / min. ,
Feed: 0.7mm / rev,
Hole depth: 40mm,
We performed high-speed wet drilling test (normal cutting speed of 100 m / min.) Of Al alloy under the above conditions, and the clearance of the tip cutting edge surface in any wet drilling test (using water-soluble cutting oil) The number of drilling processes until the surface wear width reached 0.2 mm was measured. The measurement results are shown in Table 5.
Table 5 shows the hydrogen content, hardness, and surface roughness measured under the same conditions as in Example 1 of the DLC film. The measurement results show the above-mentioned carbide substrate (drill) C- It is the value which the DLC film formed on the surface of this using the test piece of 1- C-7 on the same conditions shows.
Further, regarding the thicknesses of the high-purity DLC thin film and the DLC film, the average film thickness (average value of five-point measurement) is substantially the same as the target film thickness as measured by a scanning electron microscope (longitudinal section measurement). It was confirmed that

Figure 0004543373
Figure 0004543373

表1〜5に示される結果から、DLC被膜の硬さに関して、本発明被覆超硬工具と従来被覆超硬工具との間には水素含有量に実質的相違がない、すなわちいずれも10〜15原子%の水素含有量であるにもかかわらず、後者は18.2〜21.9GPaの硬さしか示さないのに対して、前者は25.3〜33.1GPaの相対的に高い硬さを示し、この結果本発明方法で製造された本発明被覆超硬工具は、各種のAl合金やCu合金の高速切削で、従来被覆超硬工具に比して、磁場成膜の高純度DLC薄膜による密着性向上効果と相俟って、チッピングの発生なく、すぐれた耐摩耗性を発揮することが明らかである。
上述のように、この発明の方法によれば、通常の条件での切削加工は勿論のこと、特に各種の被削材の切削加工を、高速切削条件で行なった場合にも、すぐれた耐摩耗性を発揮する被覆超硬工具を製造することができ、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
From the results shown in Table 1-5, with respect to the hardness of the DLC film, between the present invention coated cemented carbide tools and conventional coated cemented carbide tool is not substantially different from the hydrogen content, i.e. both about 10 The latter only shows a hardness of 18.2 to 21.9 GPa despite the hydrogen content of 15 atomic%, while the former has a relatively high 25.3 to 33.1 GPa. The coated carbide tool of the present invention produced by the method of the present invention, which shows hardness, has a high purity of magnetic film formation compared to conventional coated carbide tools by high-speed cutting of various Al alloys and Cu alloys. In combination with the adhesion improvement effect of the DLC thin film, it is clear that excellent wear resistance is exhibited without occurrence of chipping.
As described above, according to the method of the present invention, excellent wear resistance is achieved not only when cutting under normal conditions, but also when cutting various workpieces under high-speed cutting conditions. Coated carbide tools that exhibit high performance can be manufactured, and can be satisfactorily accommodated in labor saving, energy saving, and cost reduction in cutting.

この発明の方法で被覆超硬工具の高純度DLC薄膜およびDLC被膜を形成するのに用いたプラズマCVD装置を示し、(a)は概略平面図、(b)は概略正面図である。The plasma CVD apparatus used in order to form the high purity DLC thin film and DLC film of a coated carbide tool by the method of this invention is shown, (a) is a schematic plan view, and (b) is a schematic front view. 従来方法で被覆超硬工具の高純度DLC薄膜およびDLC被膜を形成するのに用いたプラズマCVD装置を示し、(a)は概略平面図、(b)は概略正面図である。The plasma CVD apparatus used in order to form the high purity DLC thin film and DLC film of a coated carbide tool by a conventional method is shown, (a) is a schematic plan view, and (b) is a schematic front view.

1 原料ガス導入口
2 電磁コイル
3 ヒ―ター
4 排気口
5 回転テーブル
6 超硬基体
7 バイアス電源
8 支持体
9 磁場
10 高純度炭素カソード電極
11 スパッタ電源
DESCRIPTION OF SYMBOLS 1 Source gas introduction port 2 Electromagnetic coil 3 Heater 4 Exhaust port 5 Turntable 6 Carbide substrate 7 Bias power supply 8 Support body 9 Magnetic field 10 High purity carbon cathode electrode 11 Sputtering power supply

Claims (1)

装置内の中央部に炭化タングステン基超硬合金で構成された超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んだ対向位置の側壁内面に、スパッタ電源に取り付けられた99.9質量%以上の純度を有する高密着性高純度ダイヤモンド状炭素薄膜形成用高純度炭素カソード電極(蒸発源)を配置し、側壁外周に沿って所定間隔毎に複数の電磁コイルを設け、一方側壁内周に沿っては同じくヒーターを設け、かつ前記電磁コイルの横方向中央部には装置内に貫通して原料ガス導入口をそれぞれ設け、さらに回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って配置され、自転する支持体に複数の超硬基体を装着したプラズマCVD装置を用い、
(a)上記装置内を上記ヒーターで加熱し、かつ上記電磁コイルにより磁場を形成して、上記超硬基体の装着部における磁束密度を50〜300G(ガウス)とし、前記超硬基体にはバイアス電圧(バイアス電源)を印加し、一方前記高純度炭素カソード電極(蒸発源)にはパルス電力(スパッタ電源)を印加して、スパッタリングを開始し、もって、前記超硬基体の表面に0.002〜0.2μmの平均膜厚および99.9質量%以上の純度を有する高密着性高純度ダイヤモンド状炭素薄膜を蒸着形成し、
(b)ついで、同じく装置内を上記ヒーターで加熱し、かつ上記超硬基体の装着部における磁束密度を50〜300G(ガウス)に保持すると共に、前記超硬基体にバイアス電圧(バイアス電源)を印加し、さらに装置内に初期プラズマを発生させた状態で、原料ガス導入口から炭化水素だけからなる原料ガスを導入し、これを分解・プラズマ化することにより、上記(a)の高密着性高純度ダイヤモンド状炭素薄膜を介して、
水素含有量:10.2〜14.8原子%、
硬さ:25.3〜33.1GPa、
表面粗さ:24.1〜30.0nm、
平均膜厚:0.6〜1.5μm、
を有するダイヤモンド状炭素被膜を形成することを特徴とする、非鉄材料の高速切削加工ですぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具の製造方法。
A rotating table for mounting a cemented carbide substrate made of a tungsten carbide base cemented carbide is provided in the center of the apparatus, and 99.9% by mass attached to the sputter power supply on the inner surface of the opposite side wall across the rotating table. A high-purity carbon cathode electrode (evaporation source) for forming a high-adhesion high-purity diamond-like carbon thin film having the above purity is disposed, and a plurality of electromagnetic coils are provided at predetermined intervals along the outer periphery of the side wall. A heater is also provided along the same, and a source gas inlet is provided in the central portion in the lateral direction of the electromagnetic coil so as to pass through the apparatus, and further, at a position spaced apart from the central axis on the rotary table by a predetermined distance in the radial direction. Using a plasma CVD apparatus that is arranged along the outer periphery and is equipped with a plurality of cemented carbide substrates on a rotating support,
(A) The inside of the apparatus is heated by the heater and a magnetic field is formed by the electromagnetic coil so that the magnetic flux density in the mounting portion of the cemented carbide substrate is 50 to 300 G (Gauss), and the cemented carbide substrate is biased A voltage (bias power source) is applied, while a pulse power (sputter power source) is applied to the high purity carbon cathode electrode (evaporation source) to start sputtering, whereby 0.002 is applied to the surface of the carbide substrate. Depositing a high-adhesion high-purity diamond-like carbon thin film having an average film thickness of ˜0.2 μm and a purity of 99.9% by mass or more;
(B) Next, the inside of the apparatus is similarly heated by the heater, and the magnetic flux density in the mounting portion of the cemented carbide substrate is maintained at 50 to 300 G (Gauss), and a bias voltage (bias power supply) is applied to the cemented carbide substrate. In the state where initial plasma is generated in the apparatus, a raw material gas consisting of only hydrocarbons is introduced from the raw material gas introduction port, and this is decomposed and converted into plasma, whereby the high adhesion of (a) above is achieved. Through high purity diamond-like carbon thin film,
Hydrogen content: 10.2-14.8 atomic%,
Hardness: 25.3-33.1 GPa,
Surface roughness: 24.1-30.0 nm,
Average film thickness: 0.6 to 1.5 μm,
A method for producing a surface-coated cemented carbide cutting tool exhibiting excellent wear resistance in high-speed cutting of a non-ferrous material, characterized by forming a diamond-like carbon coating having
JP2004165228A 2004-06-03 2004-06-03 Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials Expired - Lifetime JP4543373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165228A JP4543373B2 (en) 2004-06-03 2004-06-03 Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165228A JP4543373B2 (en) 2004-06-03 2004-06-03 Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials

Publications (2)

Publication Number Publication Date
JP2005342834A JP2005342834A (en) 2005-12-15
JP4543373B2 true JP4543373B2 (en) 2010-09-15

Family

ID=35495667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165228A Expired - Lifetime JP4543373B2 (en) 2004-06-03 2004-06-03 Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials

Country Status (1)

Country Link
JP (1) JP4543373B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084408A1 (en) * 2007-12-28 2009-07-09 Ulvac, Inc. Film formation device and film formation method
KR102240344B1 (en) * 2013-02-21 2021-04-15 외를리콘 서피스 솔루션즈 아게, 페피콘 Dlc coating with an abradable layer
EP2876649B1 (en) * 2013-11-21 2017-10-11 Airbus DS GmbH Method for manufacturing a charge dissipative surface layer
JP6303887B2 (en) * 2014-07-18 2018-04-04 株式会社デンソー Film forming apparatus and manufacturing method of hard film coated blade
JP7162799B2 (en) * 2018-03-08 2022-10-31 日本アイ・ティ・エフ株式会社 Composite coating and method of forming composite coating

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251851A (en) * 1997-03-14 1998-09-22 Sony Corp Film deposition method and film deposition device
JP2000096250A (en) * 1998-09-24 2000-04-04 Shinko Seiki Co Ltd Plasma cvd device
JP2001062605A (en) * 1999-08-30 2001-03-13 Sumitomo Electric Ind Ltd Amorphous carbon coated tool
JP2003027214A (en) * 2001-07-17 2003-01-29 Sumitomo Electric Ind Ltd Amorphous carbon film, method for producing amorphous carbon film and member coated with amorphous carbon film
JP2003026414A (en) * 2001-07-17 2003-01-29 Sumitomo Electric Ind Ltd Amorphous carbon coating film, method of producing the same, and member coated with the amorphous carbon coating film
JP2003147508A (en) * 2001-11-07 2003-05-21 Sumitomo Electric Ind Ltd Carbon film, method of depositing carbon film, and carbon film-coated member
JP2004501793A (en) * 2000-04-12 2004-01-22 ユナキス・バルツェルス・アクチェンゲゼルシャフト DLC layer system with improved sliding properties and process for producing such a layer system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251851A (en) * 1997-03-14 1998-09-22 Sony Corp Film deposition method and film deposition device
JP2000096250A (en) * 1998-09-24 2000-04-04 Shinko Seiki Co Ltd Plasma cvd device
JP2001062605A (en) * 1999-08-30 2001-03-13 Sumitomo Electric Ind Ltd Amorphous carbon coated tool
JP2004501793A (en) * 2000-04-12 2004-01-22 ユナキス・バルツェルス・アクチェンゲゼルシャフト DLC layer system with improved sliding properties and process for producing such a layer system
JP2003027214A (en) * 2001-07-17 2003-01-29 Sumitomo Electric Ind Ltd Amorphous carbon film, method for producing amorphous carbon film and member coated with amorphous carbon film
JP2003026414A (en) * 2001-07-17 2003-01-29 Sumitomo Electric Ind Ltd Amorphous carbon coating film, method of producing the same, and member coated with the amorphous carbon coating film
JP2003147508A (en) * 2001-11-07 2003-05-21 Sumitomo Electric Ind Ltd Carbon film, method of depositing carbon film, and carbon film-coated member

Also Published As

Publication number Publication date
JP2005342834A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP5344204B2 (en) Surface coated cutting tool
JP2010094744A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent wear resistance
JP5594576B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2006198731A (en) Cutting tool made of surface coated cermet with hard coating layer displaying excellent chipping resistance in high speed cutting
JP4711177B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricity coating layer
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP5560513B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP4543373B2 (en) Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials
JP4518253B2 (en) Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in diamond-like carbon-based coatings in high-speed cutting of non-ferrous materials
JP4232198B2 (en) Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of non-ferrous materials
JP4007102B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4375527B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4438546B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance in high speed heavy cutting with excellent surface coating layer
JP5239392B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2007160465A (en) Surface coated cemented carbide cutting tool having hard lubricating layer exhibiting excellent wear resistance in high speed cutting
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4530142B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance in high speed heavy cutting with excellent surface coating layer
JP4029328B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP3991272B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4530138B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricated amorphous carbon coating
JP5239950B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work
JP2011194536A (en) Surface-coat cutting tool with hard coating layer exhibiting excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4543373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term