WO2013073593A1 - 連続鋳造機の二次冷却装置及び二次冷却方法 - Google Patents

連続鋳造機の二次冷却装置及び二次冷却方法 Download PDF

Info

Publication number
WO2013073593A1
WO2013073593A1 PCT/JP2012/079556 JP2012079556W WO2013073593A1 WO 2013073593 A1 WO2013073593 A1 WO 2013073593A1 JP 2012079556 W JP2012079556 W JP 2012079556W WO 2013073593 A1 WO2013073593 A1 WO 2013073593A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
nozzle
slab
water
support roll
Prior art date
Application number
PCT/JP2012/079556
Other languages
English (en)
French (fr)
Inventor
伯公 山崎
省三 嶋
敬二 恒成
恭司 奥村
土岐 正弘
康彦 大谷
林 聡
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020157033492A priority Critical patent/KR101882067B1/ko
Priority to BR112014011190-1A priority patent/BR112014011190B1/pt
Priority to CN201280048684.1A priority patent/CN103842113B/zh
Priority to KR1020147007774A priority patent/KR101801441B1/ko
Priority to JP2013544307A priority patent/JP5598614B2/ja
Publication of WO2013073593A1 publication Critical patent/WO2013073593A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing

Definitions

  • the present invention relates to a secondary cooling device and a secondary cooling method for a continuous casting machine.
  • the slab drawn from the lower end of the mold is supported and conveyed by a plurality of pairs of support rolls, while cooling water is supplied from a spray nozzle disposed between two adjacent support rolls. (Or a mixture of cooling water and air) is sprayed to cool the slab.
  • split rolls have been adopted as the support roll in order to suppress the deformation of the small-diameter roll and reduce the bearing load.
  • Split rolls are divided into a plurality of roll parts in contact with the slab in the width direction of the slab, and bearing parts are provided between the adjacent split roll parts, and support rolls are supported at the intermediate part in addition to both ends. It is.
  • Several types have been proposed as the number of divisions of the division roll and the position (division position) of the bearing portion.
  • Patent Document 1 uses a split roll in which a roll portion is divided into two, and the split positions (bearing portions) of two split rolls adjacent to each other in the conveyance direction of the slab are shifted from each other in the width direction of the slab. It has been proposed to arrange (so-called staggered arrangement). Further, Patent Document 2 uses a divided roll obtained by dividing the roll part into three parts, and further provides a groove part on the peripheral surface of each divided roll part to disperse cooling water flowing downward, thereby providing a bearing part. It has been proposed to prevent overcooling of the cast slab.
  • the bearing part which does not contact a slab is arrange
  • a space having a wedge-shaped cross section surrounded by the roll peripheral surface and the slab surface is present immediately above the contact portion between the roll and the slab.
  • the cooling water sprayed from the nozzle onto the surface of the slab flows down along the surface of the slab, stays in the space for a while, and then flows down from the bearing portion and both ends of the roll.
  • the cooling water staying in the space on the roll is referred to as accumulated water.
  • the present invention has been made in view of the above problems, and improves the cooling uniformity in the width direction of a slab supported and transported by a support roll in a secondary cooling zone below a mold of a continuous casting machine.
  • An object of the present invention is to provide a secondary cooling device and a secondary cooling method for a continuous casting machine capable of performing the above.
  • a secondary cooling device for a continuous casting machine includes a plurality of pairs of supports that support the slab from both sides in the thickness direction of the slab in a secondary cooling zone below the mold of the continuous casting machine.
  • a plurality of nozzles arranged between the support rolls adjacent to each other along the conveying direction of the slab and spaced apart from each other in the width direction of the slab and injecting cooling water onto the slab
  • Each of the support rolls is provided between the roll shaft, the plurality of roll portions divided in the width direction, and the cooling water.
  • a groove part that can flow down; and the groove part provided in each of the upstream side support roll and the downstream side support roll adjacent to each other in the transport direction are arranged so as to be shifted from each other in the width direction;
  • the row provided on the upstream support roll And the first nozzle position set between the groove provided on the downstream side of the support roll part, a first nozzle of said plurality of nozzles are arranged.
  • a position other than the first nozzle position and the second nozzle position is provided between the upstream support roll and the downstream support roll.
  • a third nozzle of the plurality of nozzles is disposed at the third nozzle position set at the position; the amount of cooling water ejected from the third nozzle is ejected from the first nozzle It may be smaller than the amount of cooling water and larger than the amount of cooling water ejected from the second nozzle.
  • the roll shaft is supported between the plurality of roll portions of the support rolls.
  • a bearing portion is provided; the groove portion may include the bearing portion.
  • the groove includes a water passage slit formed on a peripheral surface of the support roll. You can leave.
  • the slab is supported from both sides in the thickness direction of the slab in the secondary cooling zone below the mold of the continuous casting machine, and the width direction of the slab
  • a plurality of pairs of support rolls having a plurality of roll parts divided into a plurality of roll parts and a groove part through which cooling water can flow down are provided, and along the conveying direction of the slab
  • the casting that is conveyed by the support roll in a state where the groove portions provided in the upstream support roll and the downstream support roll that are adjacent to each other are shifted in the width direction.
  • the method may further include a second cooling step of injecting the cooling water with a water amount smaller than the amount of cooling water injected from the first nozzle position with respect to the slab.
  • a third nozzle position other than the first nozzle position and the second nozzle position is provided between the upstream support roll and the downstream support roll. From the third, the cooling water is injected into the slab with a water amount smaller than the amount of cooling water injected from the first nozzle and larger than the amount of cooling water injected from the second nozzle. You may further have a cooling process.
  • the cooling water sprayed on the upper slab of each support roll flows down through the groove portion of each support roll to become dripping water, and the upper part of each support roll and the slab Cooling water stays in the space between the two and collects water.
  • the first nozzle at the first nozzle position set between the roll portion provided in the upstream support roll and the groove portion provided in the downstream support roll, the first nozzle The injected cooling water does not directly hit any of the drooping water and the accumulated water, and can be prevented from interfering with each other. Therefore, since the heat transfer coefficient between the slab and the cooling water does not increase at the slab portion corresponding to the first nozzle position, overcooling can be prevented.
  • the second nozzle when the second nozzle is disposed at the second nozzle position set between the groove provided on the upstream support roll and the roll provided on the downstream support roll, the second nozzle is ejected.
  • the cooled water directly hits and interferes with the dripping water flowing down the groove portion of the upstream support roll and the dripping water accumulated on the downstream support roll.
  • the second nozzle if the second nozzle is not disposed at the second nozzle position, it is possible to avoid interference with drooping water and accumulated water at the slab portion corresponding to the second nozzle position.
  • the part of the slab corresponding to the 2nd nozzle position by injecting cooling water from the 2nd nozzle arranged in the 2nd nozzle position with the amount of water smaller than the 1st nozzle arranged in the 1st nozzle position. Interference with dripping water and accumulated water can be suppressed. Therefore, since the increase in the heat transfer coefficient between the slab and the cooling water at the slab site corresponding to the second nozzle position can be prevented or reduced, supercooling can be suppressed.
  • the nozzle arrangement and the amount of cooling water are appropriately adjusted according to the location where dripping water or accumulated water is generated. By doing, the cooling uniformity of the width direction of the slab supported and conveyed by the support roll can be improved.
  • FIG. 1 is a side sectional view showing a continuous casting machine according to the present embodiment.
  • the continuous casting machine is an apparatus for continuously casting a molten metal 2 (for example, molten steel) using a casting mold 1 to produce a slab 3 such as a slab.
  • This continuous casting machine includes a mold 1, a ladle 4, a tundish 5, an immersion nozzle 6, a secondary cooling device 7, and a slab cutting machine 8.
  • the ladle 4 is a movable container for conveying the molten metal 2 from the outside to the tundish 5.
  • the ladle 4 is disposed above the tundish 5, and the molten metal 2 in the ladle 4 is supplied to the tundish 5.
  • the tundish 5 is disposed above the mold 1, stores the molten metal 2, and removes inclusions in the molten metal 2.
  • the immersion nozzle 6 extends downward from the lower end of the tundish 5 toward the mold 1, and the tip thereof is immersed in the molten metal 2 in the mold 1. The immersion nozzle 6 continuously supplies the molten metal 2 from which inclusions have been removed in the tundish 5 into the mold 1.
  • the mold 1 has a rectangular tube shape corresponding to the width and thickness of the slab 3, and is assembled, for example, such that a pair of long side mold plates sandwich a pair of short side mold plates from both sides in the width direction. These mold plates are composed of, for example, a copper plate having a water cooling mechanism.
  • the mold 1 cools the molten metal 2 coming into contact with these mold plates, and manufactures a slab 3 including an unsolidified portion 3b inside the solidified shell 3a of the outer shell. As the solidified shell 3a moves toward the lower side of the mold 1, solidification of the internal unsolidified portion 3b proceeds, and the thickness of the solidified shell 3a of the outer shell gradually increases.
  • the slab 3 including the solidified shell 3 a and the unsolidified portion 3 b is pulled out from the lower end of the mold 1.
  • the secondary cooling device 7 is provided in the secondary cooling zone 9 below the mold 1, and cools the slab 3 drawn out from the lower end of the mold 1 while supporting and transporting it.
  • the secondary cooling device 7 has a plurality of pairs of support rolls 10 (for example, a non-drive support roll 11, a pinch roll 12, and a segment roll 13) disposed on both sides in the thickness direction of the slab 3, and the slab 3. And a plurality of spray nozzles (not shown) for injecting cooling water.
  • the support rolls 10 included in the secondary cooling device 7 are arranged in pairs on both sides in the thickness direction of the slab 3 and function as a support and transport unit that transports the slab 3 while supporting it. By supporting the slab 3 from both sides in the thickness direction by the support rolls 10, breakout and bulging of the slab 3 during solidification in the secondary cooling zone 9 can be prevented.
  • Each support roll 10 includes, for example, a non-drive support roll 11, a pinch roll 12, and a segment roll 13 shown in FIG. 1.
  • the non-driving support roll 11, the pinch roll 12, and the segment roll 13 form a conveyance path (pass line) for the cast piece 3 in the secondary cooling zone 9.
  • this pass line is vertical immediately below the mold 1, then curves in a curved shape, and finally becomes horizontal.
  • a portion where the pass line is vertical is called a vertical portion 9A
  • a curved portion is called a curved portion 9B
  • a horizontal portion is called a horizontal portion 9C.
  • a continuous casting machine having such a pass line is called a vertical bending type continuous casting machine.
  • the secondary cooling device of the present invention is not limited to the vertical bending type continuous casting machine as described above, but can be applied to various continuous casting machines such as a curved type or a vertical type. *
  • the non-driving support roll 11 is a non-driving roll provided in the vertical portion 9 ⁇ / b> A immediately below the mold 1 and supports the slab 3 immediately after being pulled out from the mold 1.
  • the slab 3 immediately after being drawn out from the mold 1 has a thin solidified shell 3a, and therefore needs to be supported at a relatively short interval (roll pitch) in order to prevent breakout and bulging. Therefore, it is desirable to use a small-diameter roll capable of shortening the roll pitch as the non-drive support roll 11.
  • three pairs of non-driving support rolls 11 made of small-diameter rolls are provided at a relatively narrow roll pitch on both sides of the slab 3 in the vertical portion 9A.
  • the pinch roll 12 is a drive roll that is rotated by a driving means such as a motor, and has a function of pulling the slab 3 out of the mold 1.
  • the pinch roll 12 is disposed at appropriate positions of the vertical portion 9A, the curved portion 9B, and the horizontal portion 9C.
  • the slab 3 is pulled out of the mold 1 by the force transmitted from the pinch roll 12 and is conveyed along the pass line.
  • positioning of the pinch roll 12 is not restricted to the example shown in FIG. 1, You may set arbitrarily.
  • the segment roll 13 (sometimes referred to as a guide roll) is a non-driven roll provided on the curved portion 9B and the horizontal portion 9C, and supports and guides the cast piece 3 along the pass line.
  • the segment rolls 13 may be arranged with different roll diameters and roll pitches depending on the position on the pass line, or the F surface (Fixed surface, the lower left surface in FIG. 1) and the L surface of the slab 3 (Loose surface, upper right surface in FIG. 1) may be arranged with different roll diameters and roll pitches.
  • the slab cutting machine 8 is disposed at the end of the horizontal portion 9C of the pass line, and cuts the slab 3 conveyed along the pass line to a predetermined length.
  • the cut thick plate-shaped slab 14 is transported to the next process equipment by the table roll 15.
  • the molten metal 2 conveyed in the ladle 4 is supplied to the tundish 5 and inclusions of the molten metal 2 are removed.
  • the molten metal 2 in the tundish 5 is injected into the mold 1 through the immersion nozzle 6.
  • the outer peripheral portion of the molten metal 2 in contact with the inner surface of the mold 1 is solidified to form a solidified shell 3 a, and solidification gradually proceeds toward the lower side of the mold 1, so that the solidified shell 3 a Thickness increases. Then, the slab 3 is pulled out below the mold 1 with the unsolidified portion 3b still present in the solidified shell 3a.
  • the slab 3 drawn out from the mold 1 is transferred to the vertical bending mold by a plurality of pairs of support rolls 10 (11, 12, 13) of the secondary cooling device 7. It is cooled gradually while being supported and conveyed along the pass line. Thereby, solidification of the unsolidified portion 3b inside the slab 3 further proceeds, and solidification is completed at the crater end 3c. Thereafter, the solidified slab 3 is cut into a slab 14 having a predetermined length by a slab cutting machine 8 and carried out to the outside.
  • the kind and size of the slab 3 manufactured with a continuous casting machine are not specifically limited.
  • the slab 3 may be a slab having a thickness of about 250 to 300 mm, a bloom or billet having a thickness of more than 500 mm, or a thin slab having a thickness of about 100 mm, a continuous strip slab having a thickness of 50 mm or less, and the like. There may be.
  • the raw material of the slab 3 should just be various metals which can be continuously cast, such as aluminum, aluminum alloy, titanium other than steel and special steel, for example.
  • FIG. 2 is a perspective view showing the support roll 10 and the nozzle 20 of the secondary cooling device 7 of the continuous casting machine according to the present embodiment.
  • the secondary cooling device 7 includes a plurality of pairs of supporting the slab 3 from both sides in the thickness direction of the slab 3 in the secondary cooling zone 9 below the mold 1.
  • a support roll 10 and a plurality of nozzles 20 for injecting cooling water onto the slab 3 are provided.
  • the support roll 10 is a general term for the non-drive support roll 11, the pinch roll 12, the segment roll 13, and the like illustrated in FIG. 1.
  • the support rolls 10 are arranged in pairs on both sides in the thickness direction of the slab 3 and have a function of supporting the slab 3 from both sides. Further, the support roll 10 also has a function of rotating as the slab 3 moves and guiding and transporting the slab 3 along the predetermined pass line. By providing a plurality of pairs of these support rolls 10 on both sides of the pass line, it is possible to prevent bulging in which the center portion in the width direction of the slab 3 swells and breakout due to breakage of the solidified shell 3a.
  • These support rolls 10 are arranged on both sides of the slab 3 at a predetermined interval along the conveyance direction of the slab 3 (downward in FIG. 2). At this time, since the slab 3 can be favorably supported when the distance between the adjacent support rolls 10 arranged side by side in the transport direction is smaller, the support roll 10 is made as small as possible to reduce the distance. It is preferable. However, when the support roll 10 is a small-diameter roll, the roll rigidity is reduced and the bearings (not shown) at both ends of the roll are also reduced in size, so that the roll center part is easily bent outward.
  • the roll portion (body portion) in contact with the slab 3 is in the width direction of the slab 3 (hereinafter referred to as the slab width direction).
  • a split roll divided into a plurality of parts is adopted.
  • segmentation number of a roll part may be arbitrary numbers 2 or more, in FIG. 2, the example of the division
  • bearings can be set not only at both ends of the roll but also at the middle part of the roll and the middle part of the support roll 10 can be supported, so that the bending of the support roll 10 can be suitably suppressed.
  • each support roll 10 composed of the above-described divided roll includes one roll shaft 101, a plurality of divided roll portions 102 (corresponding to a roll portion) divided in the slab width direction, 1 or 2 or more bearing parts 103 (equivalent to a groove part) provided between the two division
  • segmentation roll parts 102 adjacent to a single width direction are provided.
  • the three-divided roll in the illustrated example is provided with three divided roll portions 102 and two bearing portions 103 around one roll shaft 101.
  • the roll shaft 101 is one or a plurality of rotating shafts extending in the slab width direction, and a plurality of divided roll portions 102 are fixed to the roll shaft 101.
  • the roll shaft 101 is one.
  • the support roll 10 is a non-drive roll
  • the roll shaft 101 may be divided into a plurality of rolls.
  • Each of the shafts may be supported by the bearing portion 103.
  • the split roll portion 102 rotates while contacting the slab 3 and supports the slab 3.
  • the bearing portion 103 is an example of a groove portion that is provided between the adjacent divided roll portions 102 and can flow cooling water.
  • the front end of the bearing portion 103 is rotatably attached to the roll shaft 101, and the rear end of the bearing portion 103 is fixed to a support member (not shown) (for example, a back frame).
  • a support member for example, a back frame.
  • the bearing part 103 supports the intermediate part of the support roll 10, and prevents the intermediate part of the support roll 10 from bending in the direction away from the slab 3.
  • the tip of the bearing portion 103 is not in contact with the slab 3, and a gap 105 exists between the tip of the bearing portion 103 and the slab 3.
  • Cooling water sprayed from a nozzle 20 described later cannot pass through the position of the split roll portion 102 that comes into contact with the slab 3 after colliding with the surface 3d of the slab 3, so it concentrates through the gap 105 of the bearing portion 103. It flows down and becomes dripping water.
  • the horizontal position of the bearing portion 103 in each support roll 10 (that is, the split position of the split roll) is arbitrary, but the upstream support roll 10 and the downstream support roll 10 that are adjacent to each other in the conveying direction of the slab 3.
  • the bearing portions 103 (that is, the groove portions) provided in each of the support rolls 10 are arranged so as to be shifted from each other in the slab width direction.
  • such an arrangement may be referred to as a staggered arrangement. That is, the horizontal position (position A) of the bearing portion 103 of the uppermost support roll 10 shown in FIG. 2 is shifted from the horizontal position (position B) of the bearing portion 103 of the center support roll 10.
  • the horizontal position (position B) of the bearing portion 103 of the central support roll 10 is also shifted from the horizontal position (position A) of the bearing portion 103 of the support roll 10 on the most downstream side.
  • the groove portion (bearing portion 103) provided in the upstream support roll 10 and the groove portion (bearing portion 103) provided in the downstream support roll 10 are completely separated from each other when viewed from the conveyance direction. Staggered so as not to overlap.
  • the upstream groove section and the downstream groove section may be arranged in a staggered manner so as to partially overlap each other when viewed from the conveyance direction. That is, the staggered arrangement in this embodiment (that is, the upstream groove portion and the downstream groove portion are shifted in the slab width direction) is that the both groove portions partially overlap each other when viewed from the conveyance direction. It is an acceptable concept.
  • the bearing part 103 (namely, groove part which a cooling water can pass) provided in each of the upstream support roll 10 and downstream support roll 10 which adjoin a conveyance direction is, They are arranged shifted from each other in the slab width direction (arranged in a staggered manner).
  • part of the slab 3 by the some support roll 10 adjacent to a conveyance direction can be disperse
  • the position of dripping water flowing down through the bearing portion 103 of each support roll 10 can be shifted in the slab width direction. Therefore, it is possible to prevent only the same portion in the width direction of the slab 3 from being locally supercooled by drooping water and improve the cooling uniformity in the slab width direction.
  • the positions of the bearing portions 103 are positions A, B, A, and B (hereinafter referred to as “position”).
  • position in the plurality of support rolls 10 arranged along the conveyance direction of the slab 3, the positions of the bearing portions 103 are positions A, B, A, and B (hereinafter referred to as “position”).
  • Position is a staggered arrangement that is repeatedly shifted every two support rolls.
  • the staggered arrangement of the present invention is not limited to this example.
  • the position A, the position B, the position C, the position A, the position B, and the position C hereinafter, repetition of the positions A, B, and C are performed.
  • the shift may be repeated for every three support rolls, and similarly, the shift may be repeated for every four or more support rolls. Also, a staggered arrangement with no periodicity, such as position A, position B, position C, position D, position E (hereinafter, repeated arbitrary positions) may be used.
  • the support roll 10 having the above-described configuration is installed in a state where both end portions of the roll shaft 101 are supported by a bearing portion (not shown) and an intermediate portion of the roll shaft 101 is supported by the bearing portion 103. Thereby, the peripheral surface of the some division
  • the nozzle 20 of the secondary cooling device 7 will be described.
  • the nozzle 20 is configured by a spray nozzle that sprays a mixture of cooling water and air toward the slab 3 in a spray form.
  • the nozzle 20 is connected to a cooling water supply means (not shown). Cooling water and air are supplied from the cooling water supply means to the nozzle 20 at a predetermined supply pressure, and are injected from the nozzle 20 onto the slab 3. .
  • the amount q of cooling water injected from the nozzle 20 can be controlled.
  • the nozzle 20 which concerns on this embodiment injects the mixture of cooling water and air as a refrigerant
  • the refrigerant (fluid) ejected from the nozzle 20 may be, for example, a combination of cooling water and nitrogen, cooling water and a surfactant, or cooling water alone. Good.
  • the nozzle 20 is mutually in the slab width direction in a region between the upstream support roll 10 and the downstream support roll 10 adjacent to each other in the conveying direction of the slab 3 (hereinafter referred to as an inter-roll region).
  • a plurality are arranged at intervals.
  • the six nozzles 20 are arranged at equal intervals in the slab width direction.
  • the present invention is not limited to this example, and the number of nozzles 20 may be any number as long as it is plural. Further, the arrangement interval of the nozzles 20 is also arbitrary.
  • the nozzle 20 is arrange
  • the cooling water sprayed from the nozzle 20 collides with the slab 3 and further flows down along the surface 3 d of the slab 3. Thereby, heat exchange arises between cooling water and the slab 3, and the slab 3 is cooled.
  • FIG. 3 is a longitudinal sectional view showing an interference state between the accumulated water 30 and the spray water 21.
  • the support roll 10 on the upstream side in the transport direction is referred to as the upper roll 10 and the support roll 10 on the downstream side is referred to as the lower roll 10.
  • the cooling water sprayed from the nozzle 20 is referred to as spray water 21.
  • the spray water 21 sprayed from the nozzle 20 disposed in the inter-roll area between the upper roll 10 and the lower roll 10 collides with the surface 3 d of the slab 3, and then the surface thereof. It flows down along 3d.
  • the split roll portion 102 of the lower roll 10 is in contact with the slab 3 and prevents passage of cooling water flowing down along the surface 3d of the slab 3. For this reason, the cooling water flowing down along the surface 3 d of the slab 3 is surrounded by the peripheral surface 102 a on the slab 3 side above the split roll portion 102 of the lower roll 10 and the surface 3 d of the slab 3.
  • the cross section accumulates in a wedge-shaped space, and the accumulated water 30 is generated.
  • the heat transfer coefficient increases due to the interference between the accumulated water 30 and the spray water 21 is that the water density in the interference area 31 increases by the amount of the accumulated water 30 and the accumulated water in the interference area 31 due to the spray water 21. It is thought that this is because convective heat transfer is promoted by perturbing 30.
  • the heat transfer coefficient between water and the object to be cooled is expressed as a function of the water density, and as the water density increases, the heat transfer coefficient increases and the temperature change of the object to be cooled increases.
  • FIG. 4 is a longitudinal sectional view showing an interference state between the dripping water 32 and the accumulated water 30 and the spray water 21.
  • FIG. 5 is a front view showing an interference state between the dripping water 32 and the accumulated water 30 and the spray water 21.
  • the bearing portion 103 that does not come into contact with the cast piece 3 becomes a groove portion (water passage portion) through which cooling water can flow.
  • the accumulated water 30 collected on the upper part of the split roll portion 102 of the upper roll 10 moves in the slab width direction toward the bearing portion 103, and as shown in FIGS. 4 and 5, the tip of the bearing portion 103.
  • Cooling water flows down intensively through a gap 105 between 103a and the surface 3d of the slab 3.
  • the cooling water flowing down from the position of the bearing portion 103 is the dripping water 32.
  • the dripping water 32 flows down to the vicinity of the lower roll 10, the dripping water 32 becomes the accumulated water 30 on the split roll portion 102 of the lower roll 10.
  • the slab 3 at a position corresponding to the interference region 33 of the spray water 21 and the dripping water 32 is locally strongly cooled, so that cooling uniformity in the slab width direction is hindered.
  • the reason why the heat transfer coefficient increases due to the interference between the dripping water 32 and the spray water 21 in this way is considered to be because the water amount density in the interference area 33 increases by the amount of the dripping water 32.
  • FIG. 6A is a front view schematically showing measurement conditions for an injection test.
  • FIG. 6B is a side view schematically showing measurement conditions of the injection test.
  • FIG. 7 is a graph showing the increase rate of the heat transfer coefficient obtained by the injection test.
  • FIGS. 6A and 6B two rolls (upper roll 10 and lower roll 10) are arranged side by side along the plate-shaped slab 3, and one nozzle is provided between the rolls 10 and 10. 20 were placed.
  • the water amount (spray amount) of the spray water 21 sprayed from the nozzle 20 was 20 L / min.
  • the spray range of the spray water 21 was a horizontally long ellipse as shown in FIGS. 6A and 6B.
  • four measurement points P A in the interference zone 31 with spray water 21 and the accumulated water 30, P B, P C, a P D is provided.
  • the measurement point P A is immediately below the center of the nozzle 20, and the horizontal distances of the measurement points P B , P C , and P D from the measurement point P A are 70 mm, 140 mm, and 210 mm, respectively.
  • the spray water 21 is sprayed from the nozzle 20 to interfere with the accumulated water 30 on the lower roll 10, and the slab 3 and the cooling at each measurement point P A , P B , P C , P D
  • the test for measuring the heat transfer coefficient h between water was performed three times (Tests 1 to 3). Further, for comparison, the spray water 21 is injected from the nozzle 20 in a state there is no accumulated water 30 on the lower roll 10, each measurement point P A, P B, P C , the slab 3 and the spray water in P D
  • the heat transfer coefficient h 0 between 21 was measured (spray alone).
  • FIG. 7 The measurement result of the heat transfer coefficient by the above injection test is shown in FIG.
  • the vertical axis of FIG. 7, the heat transfer coefficient h measured in tests 1 to 3 shows the values k1, divided by the heat transfer coefficient h 0 measured when the spray alone (k1 h / h 0) .
  • the heat transfer coefficient h when the spray water 21 and the accumulated water 30 interfere is 1.2 to 1.5, which is the heat transfer coefficient h 0 for the spray alone. It has doubled and has increased significantly. Increasing rate of the heat transfer coefficient h, the distance is different each measurement point P A between the center of the nozzle 20, P B, P C, regardless of P D, is substantially constant. According to such test results, the heat transfer coefficient between the cooling water and the slab 3 is greatly increased due to the interference between the spray water 21 and the accumulated water 30, and the slab 3 in the interference area 31 is strongly cooled. It can be said that has been demonstrated.
  • FIG. 8A is a front view schematically showing measurement conditions for an injection test.
  • FIG. 8B is a side view schematically showing measurement conditions of the injection test.
  • FIG. 9 is a graph showing the increase rate of the heat transfer coefficient obtained by the injection test.
  • two rolls (upper roll 10 and lower roll 10) are arranged vertically along the flat plate-shaped slab 3, and the upper roll 10 is a two-divided roll.
  • the gap 105 between the slab 103 and the slab 3 is structured to allow cooling water to flow down.
  • one nozzle 20 a is disposed directly above the bearing portion 103 above the upper roll 10
  • another nozzle 20 b is disposed directly below the bearing portion 103 between the upper roll 10 and the lower roll 10.
  • the water amount (spray amount) of the spray water 21 sprayed from each nozzle 20a, 20b is 20 L / min, and the spray range of the spray water 21 is a horizontally long elliptical shape as shown in FIGS. 8A and 8B. did.
  • spray water 21 is sprayed from the nozzle 20a to generate dripping water 32 on the bearing portion 103 of the upper roll 10, and further spray water 21 is sprayed from the nozzle 20b to interfere with the dripping water 32.
  • the test which measures the average value of the heat transfer coefficient h between the slab 3 and cooling water was done in the injection range of the spray water 21 from the nozzle 20b. Further, the same test was performed a plurality of times by changing the water amount q of the spray water 21 from the nozzle 20b.
  • the spray water 21 from the upper nozzle 20a is stopped from being sprayed, and the spray water 21 is sprayed from the lower nozzle 20b in the state where there is no dripping water 32.
  • the measurement result of the heat transfer coefficient by the above injection test is shown in FIG.
  • the vertical axis of FIG. 9, the average value of the measured heat transfer coefficient h in the above test, shows a value k2 multiplied by the heat transfer coefficient h 0 measured when the spray alone (k2 h / h 0 ).
  • the groove portion is a portion of the support roll 10 that does not come into contact with the slab 3 and allows cooling water to flow down, and is, for example, the bearing portion 103 or a slit.
  • the pooled water 30 is generated on the downstream portion of the support roll 10 where there is no groove (that is, the split roll portion 102), and the drooping water 32 is the portion of the upstream support roll 10 where the groove portion (that is, the bearing portion 103). ).
  • the arrangement of the nozzle 20 according to the position of the groove (bearing 103 or slit) provided in the support roll 10, The amount of spray water 21 from each nozzle 20 is adjusted. Thereby, it can suppress that the spray water 21 accumulates and interferes with the water 30 and the dripping water 32 as much as possible, and can reduce the cooling nonuniformity of the width direction of the slab 3 by the said strong cooling.
  • positioning of the nozzle 20 which concerns on this embodiment, and the amount of cooling water from each nozzle 20 are explained in full detail.
  • FIG. 10 is a front view showing the arrangement of the support roll 10 and the nozzle 20 of the secondary cooling device 7 according to this embodiment.
  • each support roll 10 is configured by three divided rolls, and includes three divided roll portions 102 and two bearing portions 103 provided between the three divided roll portions 102.
  • the bearing portions 103 are arranged in a staggered manner.
  • the some nozzle 20 is arrange
  • the nozzles 20 are classified into a nozzle 20A (first nozzle), a nozzle 20B (second nozzle), and an intermediate nozzle 20C (third nozzle) according to the arrangement position.
  • the directly upper nozzle 20A is positioned immediately above the bearing portion 103 of the downstream support roll 10 (that is, the split roll portion 102 provided on the upstream support roll 10 and the downstream support roll 10). This is a nozzle arranged at a first nozzle position set between the bearing portion 103 (groove portion) provided.
  • the directly upper nozzle 20 ⁇ / b> A according to the present embodiment is disposed immediately above the groove portion such as the bearing portion 103, the position is not limited to this example, and is a position that is unlikely to interfere with the drooping water 32 or the accumulated water 30 above the groove portion. May be arranged.
  • the directly above nozzle 20A is disposed only directly above one of the two bearing portions 103 of each support roll 10, but the directly above nozzle 20A is disposed above all the bearing portions 103. May be.
  • the nozzle 20B directly below the position between the bearing portion 103 of the upstream support roll 10 (that is, the bearing portion 103 (groove portion) provided on the upstream support roll 10 and the downstream support roll in the region between the rolls).
  • 10 is a nozzle arranged at a second nozzle position set between the divided roll unit 102 provided in the nozzle 10.
  • the direct nozzle 20B according to the present embodiment is disposed immediately below the groove such as the bearing 103, but is not limited to this example, and is located at a position where it interferes with the drooping water 32 or the pool water 30 below the groove.
  • the nozzle 20 to be arranged is also included in the nozzle 20B immediately below.
  • the nozzle 20B is disposed just below one of the two bearing portions 103 of each support roll 10. However, the nozzle 20B is disposed below each of the bearing portions 103. Alternatively, the direct nozzle 20B may not be disposed below all the bearing portions 103.
  • the intermediate nozzle 20C is positioned between the split roll portion 102 of the upstream support roll 10 and the split roll portion 102 of the downstream support roll 10 in the inter-roll region (that is, in the inter-roll region,
  • the third nozzle position is set at a position other than the one nozzle position and the second nozzle position).
  • Above and below the intermediate nozzle 20 ⁇ / b> C there are no groove portions such as the bearing portion 103, and there is a split roll portion 102. Accordingly, the nozzles 20 other than the immediately upper nozzle 20A and the immediately lower nozzle 20B are intermediate nozzles 20C.
  • the nozzle 20A directly above the bearing portion 103, and then between the upper and lower divided roll portions 102. It is preferable to arrange the intermediate nozzle 20C. Furthermore, from the point of view, most often spray water q A immediately above the nozzle 20A, then it is preferable to adjust the spray water q C intermediate nozzle 20C to less water than q A. On the other hand, it is preferable not to dispose the directly below nozzle 20 ⁇ / b> B directly below the bearing portion 103.
  • the merit of arranging the nozzle 20A directly above will be described. Since there is a split roll portion 102 of the upstream support roll 10 (hereinafter referred to as the upper roll 10) above the upper nozzle 20 ⁇ / b> A, no dripping water 32 is generated in the injection range of the upper nozzle 20 ⁇ / b> A. Therefore, the spray water 21 of the nozzle 20A directly above does not interfere with the dripping water 32. Further, there is a bearing portion 103 of the downstream support roll 10 (hereinafter referred to as the lower roll 10) below the directly upper nozzle 20A, and the cooling water flows down from the bearing portion 103. The accumulated water 30 is not generated in the injection range. Therefore, the spray water 21 of the nozzle 20A directly above does not interfere with the accumulated water 30.
  • the intermediate nozzle 20C so that the entire slab width direction can be cooled.
  • water 30 in the intermediate nozzle 20C is preferably in a small amount than the spray water q A immediately above the nozzle 20A to spray water q C of the intermediate nozzle 20C.
  • the nozzle 20B it is preferable not to arrange the nozzle 20B directly below as much as possible. Thereby, it can avoid that the spray water 21 of the direct nozzle 20B interferes with the accumulated water 30 and the dripping water 32, and generation
  • the immediately lower nozzle 20B is arranged, and the slab You may enable it to cool the whole width direction.
  • the spray water q B immediately below the nozzle 20B than spray water q C spray water q A and the intermediate nozzle 20C just above the nozzle 20A, it is preferable to further small amount (q A> q C> q B).
  • the spray water 21 of the direct nozzle 20B is within the spray range of the spray water 21, and the spray water 21 of the direct nozzle 20B is prevented from interfering with the accumulated water 30 and the dripping water 32, so that the local strength of the slab 3 is increased. Cooling can be suppressed.
  • the spray water q C spray water q B and intermediate nozzle 20C of the right under nozzle 20B, than spray water q A immediately above the nozzle 20A, with respect to how much less to the actual continuous casting machine or a simulated tester And the like, and the spray water amounts q A , q B , and q C may be appropriately set based on the experimental results.
  • the spray water amounts q B and q C of the nozzle 20B and the intermediate nozzle 20C that interfere with the accumulated water 30 are set so that local strong cooling due to interference with the accumulated water 30 does not occur.
  • the appropriate amount of water less than the spray water q a immediately above the nozzle 20A may be set, respectively.
  • the amount of spray water q B of the nozzle 20B is reduced in consideration of the interference between the spray water 21 and the dripping water 32, the rate of increase in the heat transfer coefficient due to the interference between the spray water 21 and the dripping water 32 and the spray.
  • the relationship with the amount of water is previously measured in a preliminary experiment (see FIG. 9). Based on the measurement result, the spray water amount q B of the immediately lower nozzle 20B that interferes with the drooping water 32 is changed to the spray water amount q of the immediately above nozzle 20A so that local strong cooling due to interference with the dripping water 32 does not occur. What is necessary is just to set to the appropriate amount of water smaller than A.
  • the slab 3 drawn from the lower end of the mold 1 is supported and transported along a pass line by a support roll 10 (non-driving support roll 11, pinch roll 12, segment roll 13 and the like), and adjacent supports in the transport direction. Cooling water is jetted from the nozzles 20 disposed between the rolls 10 to cool the slab 3. At this time, it is preferable to inject the cooling water from the intermediate nozzle 20C at the spray water amount q C (q A > q C ) while injecting the cooling water from the nozzle 20A directly above with the spray water amount q A.
  • the secondary cooling device 7 of the continuous casting machine As described above, in the secondary cooling device 7 of the continuous casting machine according to the present embodiment, between the support rolls 10 adjacent to each other in the vertical direction (conveying direction), at the position of the bearing portion 103 of the upper and lower support rolls 10. Accordingly, the arrangement of the nozzle 20 and the spray water amount q are adjusted. Thereby, it can suppress that the spray water 21 accumulates and interferes with the water 30 and the dripping water 32, and can prevent the slab 3 being strongly cooled locally. Therefore, since the slab 3 can be uniformly cooled in the width direction and the solidification uniformity of the unsolidified portion 3b in the slab 3 can be improved, the slab 3 is free from cracks and center segregation and is of good quality. Can be manufactured.
  • the range in which the nozzle arrangement and the flow rate control described above are applied may be any range as long as the accumulated water 30 and the dripping water 32 are generated.
  • the present invention can be suitably applied to the vertical portion 9A of the nine pass lines and the first half portion of the curved portion 9B.
  • the support rolls 10 and 10 adjacent to each other in the transport direction are arranged in the vertical direction or the oblique direction, so that the accumulated water 30 and the dripping water 32 are likely to be generated. Therefore, by applying the nozzle arrangement and the flow rate control to the first half portion of the vertical portion 9A and the curved portion 9B, the cooling uniformity in the slab width direction can be greatly improved.
  • the second embodiment uses a two-part roll, and the groove part in which the cooling water in the support roll 10 can flow down is between the divided roll parts 102 adjacent in the slab width direction. It differs in that it includes not only the bearing portion 103 but also a slit for water passage formed on the peripheral surface of each divided roll portion 102, and other functional configurations are the same as those in the first embodiment.
  • FIG. 11 is a front view showing the arrangement of the support roll 10 and the nozzle 20 of the secondary cooling device 7A according to the second embodiment.
  • each support roll 10 is composed of two split rolls, and two split roll sections 102A and 102B and one bearing section 103 provided between the two split roll sections 102A and 102B.
  • the bearing portions 103 provided on each of the upstream support roll 10 and the downstream support roll 10 adjacent to each other in the transport direction are mutually in the slab width direction. Arranged so as to be shifted (staggered).
  • the roll part of the two split rolls is divided into a relatively long split roll part 102A (hereinafter referred to as a long roll part 102A) and a relatively short split roll part 102B (hereinafter referred to as a long roll part 102A). Short roll portion 102B).
  • the slit 104 is formed on the peripheral surface of the long roll portion 102A of each support roll 10 in order to reduce the accumulated water 30 on the long roll portion 102A.
  • only one slit 104 is formed on the peripheral surface of the long roll portion 102A.
  • the depth and width of each slit 104 are approximately the same as the depth and width of the bearing portion 103, respectively.
  • the number of slits 104 may be two or more, and the depth, width, arrangement, and the like of the slits 104 may be arbitrarily set.
  • the slit 104 provided in the long roll portion 102A functions as a groove portion (water passage portion) that causes the cooling water to flow downstream.
  • the cooling water accumulated on the long roll portion 102A flows downstream through the slit 104 in the intermediate portion of the long roll portion 102A, so that a large amount of accumulated water 30 is generated on the long roll portion 102A. Can be prevented.
  • each support roll is similar to the three-divided rolls according to the first embodiment.
  • the cooling water flows down at two locations 10.
  • the slits 104 and the bearings 103 provided in the upstream support roll 10 and the downstream support roll 10 adjacent to each other in the transport direction are shifted from each other in the slab width direction.
  • the portions 103) are arranged in a staggered manner.
  • the plurality of nozzles 20 are arranged at equal intervals in the slab width direction, and are classified into an upper nozzle 20A, an immediately lower nozzle 20B, and an intermediate nozzle 20C according to the position.
  • the immediately upper nozzle 20A is a nozzle disposed at a position (first nozzle position) immediately above the bearing portion 103 or the slit 104 of the lower roll 10 (downstream support roll 10).
  • the nozzle 20 ⁇ / b> A is set between a long roll portion 102 ⁇ / b> A provided on the most upstream support roll 10 and a bearing portion 103 (groove portion) provided on the central support roll 10.
  • the directly below nozzle 20B is a nozzle disposed at a position (second nozzle position) immediately below the bearing portion 103 or the slit 104 of the upper roll 10 (upstream support roll 10).
  • the direct nozzle 20 ⁇ / b> B is set between a bearing portion 103 (groove portion) provided on the uppermost support roll 10 and a long roll portion 102 ⁇ / b> A provided on the central support roll 10.
  • the second nozzle position set between the slit 104 provided in the central support roll 10 and the long roll portion 102A provided in the most downstream support roll 10. ing.
  • the intermediate nozzle 20C is positioned between the split roll portions 102A and 102B of the upper roll 10 and the split roll portions 102A and 102B of the lower roll 10 (in the inter-roll region, other than the first nozzle position and the second nozzle position). This is a nozzle arranged at the third nozzle position). Since the functions and spray water amount of the nozzles 20A, the nozzles 20B, and the intermediate nozzles 20C are the same as those in the first embodiment, detailed description thereof is omitted.
  • the slit 104 is provided in the long roll portion 102A of the two-divided roll, and the nozzles are arranged according to the positions of the bearing portion 103 and the slit 104 of the upper roll 10 and the lower roll 10.
  • the arrangement of 20 and the amount of spray water q are adjusted.
  • the accumulated water 30 generated on the long roll portion 102 ⁇ / b> A of the two-divided roll is reduced by the slit 104, and interference between the spray water 21 from the nozzle 20 and the accumulated water 30 is suppressed. You can also.
  • the roll shape and nozzle arrangement of the secondary cooling device 7B of the continuous casting machine according to the third embodiment of the present invention will be described.
  • the third embodiment is different in that a two-divided roll is used and a large number of fine slits for water passage are formed on the peripheral surface of the divided roll portion 102 of the support roll 10.
  • Other functional configurations are the same as those in the first embodiment.
  • FIG. 12 is a front view showing the arrangement of the support rolls 10 and the nozzles 20 of the secondary cooling device 7B according to the third embodiment.
  • each support roll 10 is composed of two split rolls, and two split roll sections 102A and 102B and one bearing section 103 provided between the two split roll sections 102A and 102B.
  • the bearing portions 103 provided on each of the upstream side support roll 10 (upper side roll) and the downstream side support roll 10 (lower side roll) adjacent to each other in the conveying direction are arranged so as to be shifted from each other in the slab width direction. Yes (staggered).
  • the roll part of the two-part roll is composed of a long roll part 102A and a short roll part 102B.
  • each slit 106 are sufficiently smaller than the depth and width of the bearing portion 103.
  • the present invention is not limited to such an example, and the number, depth, width, arrangement, and the like of the slits 106 may be arbitrarily set.
  • a large number of fine slits 106 provided in the long roll portion 102A and the short roll portion 102B function as a groove portion (water flow portion) that causes the cooling water to flow downstream.
  • the cooling water that has flowed down on the long roll portion 102A and the short roll portion 102B immediately flows downward (downstream) through the slit 106, so that the accumulated water 30 is generated on the long roll portion 102A and the short roll portion 102B. do not do.
  • the cooling water appropriately flows from each slit 106, the cooling water does not collect and flow down to the bearing portion 103. Therefore, dripping water through the bearing portion 103 is also greatly reduced, and minute dripping water 34 uniformly distributed in the slab width direction can be generated in each support roll 10.
  • a plurality of nozzles 20 are provided in the width direction of the slab in the inter-roll area between the upper roll 10 and the lower roll 10. Are arranged at equal intervals. These nozzles 20 are all classified into the same type of nozzles as the nozzles 20B directly below because the jetted cooling water interferes with the minute dripping water 34 flowing down through the slit 106 or the bearing 103. However, since the flow rate of the dripping water 34 is very small, even if the spray water 21 of the nozzle 20B directly below and the dripping water 34 interfere with each other, the heat transfer coefficient between the cooling water and the slab 3 at the interference position is as follows.
  • the uniformity in the slab width direction is not adversely affected.
  • the amount of water sprayed from the nozzle 20B directly below can be made smaller than the normal amount of water.
  • a large number of fine slits 106 are provided in the long roll portion 102A and the short roll portion 102B of the two-divided roll.
  • the cooling uniformity in the slab width direction can be improved as in the first embodiment.
  • the dripping water 34 flowing down through the slit 106 and the bearing portion 103 is very small, there is an advantage that the nozzle 20 can be freely arranged at an arbitrary horizontal position without considering the position of the dripping water 34.
  • the support roll 10 and the nozzle 20 are disposed as shown in FIG. 10 described above, and the amount of spray water q of all the nozzles 20 is the same.
  • the temperature difference ⁇ T ′ between the center portion and the edge portion in the slab width direction was 100 ° C. or more, and the cooling uniformity in the slab width direction was poor.
  • the reason for this is that since the spray water is likely to accumulate in the split roll portion 102 in the vicinity of the center portion in the slab width direction, interference between the accumulated water 30 and the spray water 21 occurs, and the bearing portion.
  • the dripping water 32 from 103 is concentrated in the vicinity of the central portion, and a large amount of dripping water 32 is presumed to be caused by the interference of the spray water from the nozzle 20 directly below the dripping water 32.
  • the support roll 10 is provided with the slit 104 so that the accumulated water 30 does not accumulate, and the dripping water 32 from the bearing portion 103
  • the amount of water sprayed from the nozzle 20 ⁇ / b> B at the position where the interference occurs is reduced as compared with the other nozzles 20.
  • the temperature difference ⁇ T between the center portion and the edge portion in the slab width direction is reduced to about 50 ° C., and the cooling uniformity in the slab width direction is greatly increased. Improved. Therefore, the temperature distribution in the slab width direction is uniform, and the solidification uniformity and the center segregation level of the slab 3 are improved.
  • FIG. 14A is a distribution diagram showing the slab surface temperature in the comparative example obtained by this simulation.
  • FIG. 14B is a distribution diagram showing the slab surface temperature in the example of the present invention obtained by this simulation.
  • FIG. 15A is a distribution diagram showing the solid phase ratio at the center of the slab thickness direction in the comparative example, obtained by this simulation.
  • 15B is a distribution diagram showing the solid phase ratio at the center of the slab thickness direction in the example of the present invention obtained by this simulation.
  • the solid phase ratio when the slab 3 is completely unsolidified is 0.0
  • the solid phase ratio when the slab 3 is completely solidified is 1.0.
  • the slab surface temperature locally decreases due to the interference between the spray water 21, the accumulated water 30, and the dripping water 32. It can be seen that the temperature in the slab width direction is non-uniform.
  • the local decrease in the slab surface temperature in the region A does not occur, and the cooling uniformity in the slab width direction is improved. I understand that. The reason for this is considered that in the embodiment, since there is almost no interference between the spray water 21 and the accumulated water 30 and the dripping water 32 in the region A, local overcooling of the slab surface can be prevented.
  • the solidification in the slab width direction is non-uniform due to the non-uniform cooling in the region A.
  • the central part in the width direction has been solidified first. Therefore, the concentrated molten steel was left behind in the solidification delay part, and central segregation occurred.
  • the solid phase rate was uniform in the slab width direction in the region B, the solidification uniformity was improved, and the center segregation was reduced. The reason for this is considered that, in the example, the slab 3 is uniformly cooled in the width direction before reaching the region B.
  • the cooling uniformity in the slab width direction can be improved, so that the solidification uniformity and the center segregation level in the slab width direction can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

 本発明の連続鋳造機の二次冷却装置は、複数対の支持ロールと複数のノズルを備え、各支持ロールは、鋳片の幅方向に分割された複数のロール部と、ロール部間に設けられた溝部とを有する。搬送方向に隣り合う上流側の支持ロールと下流側の支持ロールとのそれぞれに設けられた溝部は、互いに幅方向にずれて配置される。上流側の支持ロールに設けられたロール部と下流側の支持ロールに設けられた溝部との間に設定された第1ノズル位置には、複数のノズルのうちの第1ノズルが配置されている。

Description

連続鋳造機の二次冷却装置及び二次冷却方法
 本発明は、連続鋳造機の二次冷却装置及び二次冷却方法に関する。
 本願は、2011年11月15日に、日本に出願された特願2011-249762号に基づき優先権を主張し、その内容をここに援用する。
連続鋳造機の鋳型下方の二次冷却帯では、鋳型下端から引き抜かれた鋳片を複数対の支持ロールで支持及び搬送しながら、隣り合う2つの支持ロール間に配置されたスプレーノズルから冷却水(若しくは冷却水と空気の混合体)を噴射して鋳片を冷却する。
 従来では、上記の連続鋳造機において、鋳片の引き抜き速度を高速化しつつ、鋳片のバルジングを抑制するため、上記支持ロールとして小径ロールを用いてロールピッチを短縮することで、より多くの支持ロールで鋳片を支持する方法が採用されている。しかし、支持ロールのロール径が小さくなると、支持ロールの剛性が低下するだけでなく、その支持ロールの両端を支持する軸受けも小型化するため、鋳片を十分に支持しきれなくなり、バルジングを引き起こす可能性も高くなってしまう。
 そこで、近年では、上記小径ロールの変形を抑制し、軸受け荷重を低減するために、上記支持ロールとして分割ロールが採用されている。分割ロールは、鋳片と接触するロール部を鋳片幅方向に複数に分割し、隣り合う分割ロール部の間に軸受け部を設け、支持ロールをその両端部に加えて中間部でも支持するものである。この分割ロールの分割数や、軸受け部の位置(分割位置)としては、いくつかのタイプが提案されている。
 例えば、特許文献1には、ロール部を2分割した分割ロールを用い、鋳片の搬送方向に隣り合う2つの分割ロールの分割位置(軸受け部)を、互いに鋳片の幅方向にずらして配置する(いわゆる千鳥状に配置する)ことが提案されている。また、特許文献2には、ロール部を3分割した分割ロールを用い、さらに、分割された各ロール部の周面に溝部を設けて、下方に流下する冷却水を分散させることで、軸受け部での鋳片の過冷却を防止することが提案されている。
日本国特開2005-14029号公報 日本国特開平8-47757号公報

 ところで、上記の分割ロールでは、ロール中間部に、鋳片と接触しない軸受け部が配置されている。このため、ノズルから鋳片に吹き付けられた冷却水は、鋳片表面に沿って流下した後に、ロール両端部だけでなく、ロール中間部にある軸受け部を通って下流側に流下する。以下では、この軸受け部から下流側に流下する冷却水を垂れ水と称する。 

 また、ロールと鋳片の接触箇所の直上には、ロール周面と鋳片表面とにより囲まれた、断面が楔形状のスペースが存在する。ノズルから鋳片表面に吹き付けられた冷却水は、鋳片表面に沿って流下した後に、しばらくの間、上記のスペースに滞留し、その後に、上記軸受け部やロール両端部から流下する。以下では、ロール上のスペースに滞留する冷却水を溜まり水と称する。 

本願発明者が鋭意研究したところ、ノズルから噴射された冷却水(以下、スプレー水と称す)が上記垂れ水に直接当たって干渉すると、鋳片とスプレー水の間の熱伝達係数が増加し、鋳片が過冷却されることが分かった。さらに、スプレー水がロール上部の溜まり水に直接当たって干渉すると、その干渉部位において鋳片とスプレー水の間の熱伝達係数が増加し、鋳片が過冷却されることも分かった。このようにスプレー水が垂れ水や溜まり水と干渉して熱伝達係数が増加すると、鋳片の干渉部位のみが過冷却されてしまい、鋳片幅方向の冷却均一性が大幅に低下することとなる。以上のように、分割ロールの軸受け部の位置と冷却水の噴射位置(ノズルの配置)との関係で、鋳片幅方向の冷却が不均一になることが新たに判明した。このように冷却が不均一となると、鋳片が凝固不均一となり、鋳片に割れが発生したり、中心偏析が悪化したりするという弊害がある。 

 なお、上記特許文献2では、上記垂れ水による過冷却の問題が記載されている。しかし、特許文献2では、軸受け部に対向する部位の鋳片が、その軸受け部を流下する垂れ水と接触することより、その接触部位の鋳片だけが過冷却されることを問題としており、上記のようにスプレー水が垂れ水と干渉して、干渉部位の熱伝達係数が増加することによる過冷却の問題や、その解決策については、何ら開示も示唆もされていない。
 本発明は、上記問題に鑑みてなされたものであり、連続鋳造機の鋳型の下方の二次冷却帯において、支持ロールによって支持及び搬送される鋳片の幅方向の冷却均一性を向上させることが可能な連続鋳造機の二次冷却装置及び二次冷却方法を提供することを目的とする。
 本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用する。
 すなわち、

(1)本発明の一態様に係る連続鋳造機の二次冷却装置は、連続鋳造機の鋳型の下方の二次冷却帯において鋳片の厚み方向両側から前記鋳片を支持する複数対の支持ロールと;前記鋳片の搬送方向に沿って並んで隣り合う前記支持ロールの間において前記鋳片の幅方向に相互に間隔を空けて配置され、前記鋳片に冷却水を噴射する複数のノズルと;を備え、前記各支持ロールは、ロール軸と、前記ロール軸に設けられ、前記幅方向に分割された複数のロール部と、前記複数のロール部の間に設けられ、前記冷却水が流下可能な溝部と、を有し;前記搬送方向に隣り合う上流側の支持ロールと下流側の支持ロールとのそれぞれに設けられた前記溝部は、互いに前記幅方向にずれて配置されており;前記上流側の支持ロールに設けられた前記ロール部と前記下流側の支持ロールに設けられた前記溝部との間に設定された第1ノズル位置には、前記複数のノズルのうちの第1ノズルが配置されている。 
(2)上記(1)に記載の連続鋳造機の二次冷却装置において、前記上流側の支持ロールに設けられた前記溝部と前記下流側の支持ロールに設けられた前記ロール部との間に設定された第2ノズル位置には、前記複数のノズルのうちの第2ノズルが配置されており;前記第2ノズルから噴射される冷却水の水量は、前記第1ノズルから噴射される冷却水の水量よりも小さくても良い。

(3)上記(2)に記載の連続鋳造機の二次冷却装置において、前記上流側の支持ロールと前記下流側の支持ロールとの間において、前記第1ノズル位置及び第2ノズル位置以外の位置に設定された第3ノズル位置には、前記複数のノズルの内の第3ノズルが配置されており;前記第3ノズルから噴射される冷却水の水量は、前記第1ノズルから噴射される冷却水の水量よりも小さく、且つ前記第2ノズルから噴射される冷却水の水量よりも大きくても良い。 

(4)上記(1)~(3)のいずれか一つに記載の連続鋳造機の二次冷却装置において、前記各支持ロールの前記複数のロール部の間には、前記ロール軸を支持する軸受け部が設けられており;前記溝部は、前記軸受け部を含んでいても良い。 

(5)上記(1)~(3)のいずれか一つに記載の連続鋳造機の二次冷却装置において、前記溝部は、前記支持ロールの周面に形成された通水用のスリットを含んでいても良い。
また、
(6)本発明の一態様に係る二次冷却方法は、連続鋳造機の鋳型の下方の二次冷却帯において鋳片の厚み方向両側から前記鋳片を支持すると共に、前記鋳片の幅方向に分割された複数のロール部と、前記複数のロール部の間に設けられ、冷却水が流下可能な溝部とを有する複数対の支持ロールが設けられており、前記鋳片の搬送方向に沿って並んで隣り合う上流側の支持ロールと下流側の支持ロールとのそれぞれに設けられた前記溝部が、互いに前記幅方向にずれて配置された状況下で、前記支持ロールによって搬送される前記鋳片を冷却する二次冷却方法であって、前記上流側の支持ロールに設けられた前記ロール部と前記下流側の支持ロールに設けられた前記溝部との間の第1ノズル位置から、前記鋳片に対して冷却水を噴射する第1冷却工程を有する。 
(7)上記(6)に記載の二次冷却方法は、前記上流側の支持ロールに設けられた前記溝部と前記下流側の支持ロールに設けられた前記ロール部との間の第2ノズル位置から、前記鋳片に対して、前記第1ノズル位置から噴射される冷却水の水量よりも小さい水量で冷却水を噴射する第2冷却工程をさらに有していても良い。
(8)上記(7)に記載の二次冷却方法は、前記上流側の支持ロールと前記下流側の支持ロールとの間において、前記第1ノズル位置及び第2ノズル位置以外の第3ノズル位置から、前記鋳片に対して、前記第1ノズルから噴射される冷却水の水量よりも小さく、且つ前記第2ノズルから噴射される冷却水の水量よりも大きい水量で冷却水を噴射する第3冷却工程をさらに有していても良い。
 本発明の上記態様によれば、各支持ロールの上側の鋳片に噴射された冷却水は、各支持ロールの溝部を通って流下して垂れ水となり、また、各支持ロールの上部と鋳片との間のスペースに冷却水が滞留して溜まり水が発生する。しかしながら、上流側の支持ロールに設けられたロール部と下流側の支持ロールに設けられた溝部との間に設定された第1ノズル位置に第1ノズルを配置することで、その第1ノズルから噴射された冷却水は、上記垂れ水及び溜まり水のいずれにも直接的に当たらず、相互に干渉することを抑制できる。従って、第1ノズル位置に対応する鋳片の部位において、鋳片と冷却水の間の熱伝達係数が増加しないので、過冷却を防止できる。
 また、上流側の支持ロールに設けられた溝部と下流側の支持ロールに設けられたロール部との間に設定された第2ノズル位置に第2ノズルを配置した場合、その第2ノズルから噴射された冷却水は、上流側の支持ロールの溝部を流下する垂れ水、及び下流側の支持ロール上に溜まった垂れ水に対して直接的に当たって、相互に干渉する。しかし、第2ノズル位置に第2ノズルを配置しなければ、その第2ノズル位置に対応する鋳片の部位における垂れ水及び溜まり水との干渉を回避できる。或いは、第2ノズル位置に配置された第2ノズルから、第1ノズル位置に配置された第1ノズルよりも少ない水量で冷却水を噴射することで、第2ノズル位置に対応する鋳片の部位における垂れ水及び溜まり水との干渉を抑制できる。従って、第2ノズル位置に対応する鋳片の部位における鋳片と冷却水の間の熱伝達係数の増加を防止又は低減できるので、過冷却を抑制できる。
以上説明したように、本発明によれば、連続鋳造機の鋳型の下方の二次冷却帯において、垂れ水や溜まり水の発生箇所に応じて、ノズルの配置や冷却水の水量を適切に調整することにより、支持ロールによって支持及び搬送される鋳片の幅方向の冷却均一性を向上させることができる。

本発明の第1の実施形態に係る連続鋳造機を示す側断面図である。 第1の実施形態に係る連続鋳造機の二次冷却装置の支持ロール及びノズルを示す斜視図である。 溜まり水とスプレー水との干渉状態を示す縦断面図である。 垂れ水とスプレー水との干渉状態を示す縦断面図である。 垂れ水及び溜まり水とスプレー水との干渉状態を示す正面図である。 噴射試験の測定条件を模式的に示す正面図である。 噴射試験の測定条件を模式的に示す側面図である。 噴射試験により得られた熱伝達係数の増加比率を示すグラフである。 噴射試験の測定条件を模式的に示す正面図である。 噴射試験の測定条件を模式的に示す側面図である。 噴射試験により得られた熱伝達係数の増加比率を示すグラフである。 第1の実施形態に係る二次冷却装置の支持ロール及びノズルの配置を示す正面図である。 本発明の第2の実施形態に係る二次冷却装置の支持ロール及びノズルの配置を示す正面図である。 本発明の第3の実施形態に係る二次冷却装置の支持ロール及びノズルの配置を示す正面図である。 本発明の実施例に係る鋳片表面温度の測定結果を示すグラフである。 比較例における鋳片表面温度のシミュレーション結果を示す分布図である。 本発明の実施例における鋳片表面温度のシミュレーション結果を示す分布図である。 比較例における鋳片の中心固相率のシミュレーション結果を示す分布図である。 本発明の実施例における鋳片の中心固相率のシミュレーション結果を示す分布図である。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。

[1.第1の実施形態] 
[1.1.連続鋳造機の全体構成]
 まず、図1を参照して、本発明の第1の実施形態に係る連続鋳造機の全体構成について説明する。図1は、本実施形態に係る連続鋳造機を示す側断面図である。

 図1に示すように、連続鋳造機は、連続鋳造用の鋳型1を用いて溶融金属2(例えば溶鋼)を連続鋳造し、スラブ等の鋳片3を製造するための装置である。この連続鋳造機は、鋳型1と、取鍋4と、タンディッシュ5と、浸漬ノズル6と、二次冷却装置7と、鋳片切断機8とを備える。 
取鍋4は、溶融金属2を外部からタンディッシュ5まで搬送するための可動式の容器である。取鍋4は、タンディッシュ5の上方に配置され、取鍋4内の溶融金属2がタンディッシュ5に供給される。タンディッシュ5は、鋳型1の上方に配置され、溶融金属2を貯留して、その溶融金属2中の介在物を除去する。浸漬ノズル6は、タンディッシュ5の下端から鋳型1に向けて下方に延び、その先端は鋳型1内の溶融金属2に浸漬されている。この浸漬ノズル6は、タンディッシュ5にて介在物が除去された溶融金属2を鋳型1内に連続供給する。
鋳型1は、鋳片3の幅及び厚みに応じた四角筒状であり、例えば、一対の長辺鋳型板で一対の短辺鋳型板を幅方向両側から挟むように組み立てられる。これら鋳型板は、例えば水冷機構を有する銅板で構成されている。鋳型1は、これらの鋳型板と接触する溶融金属2を冷却して、外殻の凝固シェル3aの内部に未凝固部3bを含む鋳片3を製造する。凝固シェル3aが鋳型1下方に向かって移動するにつれて、内部の未凝固部3bの凝固が進行し、外殻の凝固シェル3aの厚みは、徐々に厚くなる。これら凝固シェル3aと未凝固部3bとを含む鋳片3は、鋳型1の下端から引き抜かれる。

 二次冷却装置7は、鋳型1の下方の二次冷却帯9に設けられ、鋳型1の下端から引き抜かれた鋳片3を支持及び搬送しながら冷却する。この二次冷却装置7は、鋳片3の厚み方向両側に配置される複数対の支持ロール10(例えば、無駆動支持ロール11、ピンチロール12、及びセグメントロール13)と、鋳片3に対して冷却水を噴射する複数のスプレーノズル(図示省略)とを有する。 

 二次冷却装置7が具備する支持ロール10は、鋳片3の厚み方向両側に対となって配置され、鋳片3を支持しながら搬送する支持搬送手段として機能する。各支持ロール10により鋳片3を厚み方向両側から支持することで、二次冷却帯9において凝固途中の鋳片3のブレークアウトやバルジングを防止できる。
 各支持ロール10は、例えば、図1に示す無駆動支持ロール11、ピンチロール12、及びセグメントロール13を含む。これら無駆動支持ロール11、ピンチロール12、及びセグメントロール13は、二次冷却帯9における鋳片3の搬送経路(パスライン)を形成する。このパスラインは、図1に示すように、鋳型1の直下では垂直であり、次いで曲線状に湾曲して、最終的には水平になる。二次冷却帯9において、上記のパスラインが垂直である部分を垂直部9A、湾曲している部分を湾曲部9B、水平である部分を水平部9Cと称する。このようなパスラインを有する連続鋳造機は、垂直曲げ型の連続鋳造機と呼称される。なお、本発明の二次冷却装置は、上記のような垂直曲げ型の連続鋳造機に限らず、湾曲型又は垂直型など各種の連続鋳造機に適用可能である。 

 ここで、上記無駆動支持ロール11、ピンチロール12、及びセグメントロール13について説明する。無駆動支持ロール11は、鋳型1の直下の垂直部9Aに設けられる無駆動式ロールであり、鋳型1から引き抜かれた直後の鋳片3を支持する。鋳型1から引き抜かれた直後の鋳片3は、凝固シェル3aが薄い状態であるため、ブレークアウトやバルジングを防止するために比較的短い間隔(ロールピッチ)で支持する必要がある。それ故、無駆動支持ロール11としては、ロールピッチを短縮することが可能な小径のロールを用いることが望ましい。図1の例では、垂直部9Aにおける鋳片3の両側に、小径ロールからなる3対の無駆動支持ロール11が、比較的狭いロールピッチで設けられている。 

 ピンチロール12は、モータ等の駆動手段により回転する駆動式ロールであり、鋳片3を鋳型1から引き抜く機能を有する。このピンチロール12は、垂直部9A、湾曲部9B及び水平部9Cの適宜の位置に配置される。鋳片3は、ピンチロール12から伝達される力によって鋳型1から引き抜かれ、上記パスラインに沿って搬送される。なお、ピンチロール12の配置は、図1に示す例には限らず、任意に設定されてもよい。 

 セグメントロール13(ガイドロールと呼称される場合もある)は、湾曲部9B及び水平部9Cに設けられ無駆動式ロールであり、上記パスラインに沿って鋳片3を支持及び案内する。セグメントロール13は、パスライン上の位置によって、それぞれ異なるロール径やロールピッチで配置されてもよいし、或いは、鋳片3のF面(Fixed面、図1では左下側の面)とL面(Loose面、図1では右上側の面)とで、それぞれ異なるロール径やロールピッチで配置されてもよい。 
鋳片切断機8は、上記パスラインの水平部9Cの終端に配置され、そのパスラインに沿って搬送された鋳片3を所定の長さに切断する。切断された厚板状の鋳片14は、テーブルロール15により次工程の設備に搬送される。

 次に、上記構成の連続鋳造機の動作について説明する。取鍋4で搬送されてきた溶融金属2はタンディッシュ5に供給され、その溶融金属2の介在物が除去される。次いで、タンディッシュ5内の溶融金属2は、浸漬ノズル6を通じて鋳型1内に注入される。 

 鋳型1内では、その鋳型1の内面に接触した溶融金属2の外周部分が凝固して、凝固シェル3aが形成され、鋳型1下方に向かうにつれて、凝固が徐々に進行して、凝固シェル3aの厚みが増す。そして、この凝固シェル3a内に未凝固部3bが存在したままの状態で、鋳片3が鋳型1の下方に引き抜かれる。 
次いで、鋳型1下方の二次冷却帯9において、鋳型1から引き抜かれた鋳片3は、二次冷却装置7の複数対の支持ロール10(11、12、13)により、上記垂直曲げ型のパスラインに沿って支持及び搬送されながら、徐々に冷却される。これにより、鋳片3内部の未凝固部3bの凝固がさらに進行し、クレータエンド3cにて凝固が完了する。その後、凝固完了した鋳片3は、鋳片切断機8により、所定長の鋳片14に切断されて、外部に搬出される。

 なお、連続鋳造機による製造される鋳片3の種類及びサイズは、特に限定されない。例えば、鋳片3は、厚みが250~300mm程度のスラブ、500mmを超えるブルーム若しくはビレットであってもよいし、或いは、厚みが100mm程度の薄スラブ、50mm以下の薄帯連続鋳造鋳片などであってもよい。また、鋳片3の素材は、例えば、鉄鋼、特殊鋼の他、アルミニウム、アルミニウム合金、チタンなど、連続鋳造が可能な各種の金属であればよい。 
[1.2.二次冷却装置の構成]
次に、図2を参照して、本実施形態に係る連続鋳造機の二次冷却装置7の構成について詳述する。図2は、本実施形態に係る連続鋳造機の二次冷却装置7の支持ロール10及びノズル20を示す斜視図である。

 図2に示すように、本実施形態に係る二次冷却装置7は、鋳型1の下方の二次冷却帯9において、鋳片3の厚み方向両側から、その鋳片3を支持する複数対の支持ロール10と、鋳片3に冷却水を噴射する複数のノズル20とを備える。 

 支持ロール10は、図1に示した無駆動支持ロール11、ピンチロール12、及びセグメントロール13などの総称である。この支持ロール10は、鋳片3の厚み方向両側に対となって配置され、その両側から鋳片3を支持する機能を有する。また、支持ロール10は、鋳片3の移動に伴って回転し、上記所定のパスラインに沿って鋳片3を案内及び搬送する機能も有する。これらの支持ロール10をパスラインの両側に複数対設けることで、鋳片3の幅方向中央部が膨らむバルジングや、凝固シェル3aの破断によるブレークアウトを防止できる。 

 これらの支持ロール10は、鋳片3の両側において、鋳片3の搬送方向(図2の下方)に沿って相互に所定間隔を空けて配置される。この際、搬送方向に沿って並んで隣り合う支持ロール10の間隔が狭い方が、鋳片3を好適に支持できるので、支持ロール10としてはできるだけ小径のロールを用いて、上記間隔を狭くすることが好ましい。ところが、支持ロール10が小径ロールであると、ロール剛性が低下し、ロール両端の軸受け部(図示省略)も小型化するため、ロール中央部が外側に撓みやすくなる。 

 そこで、図2に示すように、本実施形態に係る支持ロール10としては、鋳片3と接触するロール部(胴部)が鋳片3の幅方向(以下、鋳片幅方向と称す)に複数に分割された分割ロールを採用している。ロール部の分割数は2以上の任意の数であってよいが、図2では、ロール部が3分割された分割ロールの例を示している。この分割ロールを用いることで、ロール両端のみならず、ロール中間部にも軸受けを設定して、支持ロール10の中間部をも支持できるので、支持ロール10の撓みを好適に抑制できる。 

 図2に示すように、上記分割ロールからなる各支持ロール10は、1本のロール軸101と、鋳片幅方向に分割された複数の分割ロール部102(ロール部に相当する)と、鋳片幅方向に隣り合う2つの分割ロール部102の間に設けられた1又は2以上の軸受け部103(溝部に相当する)とを備える。図示の例の3分割ロールは、1本のロール軸101の周りに、3つの分割ロール部102と、2つの軸受け部103が設けられている。 
ロール軸101は、鋳片幅方向に延びる1本若しくは複数本の回転軸であり、このロール軸101に複数の分割ロール部102が固定される。支持ロール10が駆動ロールである場合、ロール軸101は1本であるが、支持ロール10が無駆動ロールである場合、ロール軸101は、複数本に分割されても良く、また、その分割ロール軸がそれぞれ軸受け部103により支持されても良い。分割ロール部102は、鋳片3と接触しながら回転し、鋳片3を支持する。

軸受け部103は、隣り合う分割ロール部102の間に設けられ、冷却水を流下可能な溝部の一例である。この軸受け部103の先端は、ロール軸101に対して回転自在に取り付けられ、軸受け部103の後端は、不図示の支持部材(例えばバックフレーム)に固定されている。これにより、軸受け部103は、支持ロール10の中間部を支持し、支持ロール10の中間部が鋳片3から離れる方向に撓むことを防止する。また、軸受け部103の先端は、鋳片3と接触しておらず、その軸受け部103の先端と鋳片3との間には隙間105が存在している。後述するノズル20から噴射された冷却水は、鋳片3の表面3dに衝突した後に、鋳片3と接触する分割ロール部102の位置を通過できないため、上記の軸受け部103の隙間105を通じて集中的に流下して、垂れ水となる。 

 また、個々の支持ロール10における軸受け部103の水平方向の位置(即ち、分割ロールの分割位置)は任意であるが、鋳片3の搬送方向に隣り合う上流側の支持ロール10と下流側の支持ロール10とのそれぞれに設けられた軸受け部103(つまり溝部)は、互いに鋳片幅方向にずれて配置されている。以下では、このような配置を千鳥配置と呼称する場合がある。
即ち、図2に示す最上流側の支持ロール10の軸受け部103の水平位置(位置A)は、中央の支持ロール10の軸受け部103の水平位置(位置B)とずれている。さらに、中央の支持ロール10の軸受け部103の水平位置(位置B)は、最下流側の支持ロール10の軸受け部103の水平位置(位置A)ともずれている。
なお、図10では、上流側の支持ロール10に設けられた溝部(軸受け部103)と下流側の支持ロール10に設けられた溝部(軸受け部103)とが、搬送方向から視て、互いに完全に重ならないように千鳥配置されている。
このような千鳥配置に限らず、後述の図11に示すように、上流側の溝部と下流側の溝部が、搬送方向から視て、互いに一部重なるように千鳥配置されていても良い。つまり、本実施形態における千鳥配置(つまり上流側の溝部と下流側の溝部とが鋳片幅方向にずれて配置されること)は、搬送方向から視て、両溝部が互いに一部重なることを許容する概念である。 

 このように、本実施形態では、搬送方向に隣り合う上流側の支持ロール10と下流側の支持ロール10とのそれぞれに設けられた軸受け部103(即ち、冷却水が通過可能な溝部)が、互いに鋳片幅方向にずれて配置されている(千鳥配置されている)。これにより、搬送方向に相隣接する複数の支持ロール10による鋳片3の支持部位を鋳片幅方向に分散させて、それら複数の支持ロール10による鋳片3の支持を均一化できる。さらに、上記の千鳥配置を採用することにより、各支持ロール10の軸受け部103を通じて流下する垂れ水の位置を、鋳片幅方向にずらすことができる。従って、垂れ水により鋳片3の幅方向の同一部位のみが局所的に過冷却されることを防止して、鋳片幅方向の冷却均一性を向上できる。 

 なお、図2に示す最上流側の支持ロール10の軸受け部103の水平位置(位置A)は、最下流側の支持ロール10の軸受け部103、103の水平位置(位置A)と同一である。従って、図2に示す例では、鋳片3の搬送方向に沿って配列される複数の支持ロール10において、軸受け部103の位置は、位置A、位置B、位置A、位置B(以下、位置A、Bの繰り返し)といったように、2つの支持ロールごとに繰り返しずれる千鳥配置となっている。しかし、本発明の千鳥配置は、この例に限定されず、例えば、位置A、位置B、位置C、位置A、位置B、位置C(以下、位置A、B、Cの繰り返し)といったように、3つの支持ロールごとに繰り返しずれてもよいし、同様に、4以上の支持ロールごとに繰り返しずれてもよい。また、位置A、位置B、位置C、位置D、位置E(以下、任意の位置の繰り返し)といったように、周期性が無く不規則にずれる千鳥配置であってもよい。 

 以上の構成の支持ロール10は、ロール軸101の両端部が不図示の軸受け部で支持され、かつ、ロール軸101の中間部が軸受け部103で支持された状態で設置されている。これにより、複数の分割ロール部102の周面が鋳片3に接触して、鋳片3が支持される。このとき、鋳片3は搬送方向に移動しているので、鋳片3の移動に伴って分割ロール部102はロール軸101とともに回転する。 

次に、本実施形態に係る二次冷却装置7のノズル20について説明する。図2に示すように、ノズル20は、冷却水と空気の混合体を鋳片3に向けてスプレー状に噴射するスプレーノズルで構成される。ノズル20は、不図示の冷却水供給手段に接続されており、その冷却水供給手段から冷却水及び空気が所定の供給圧でノズル20に供給されて、ノズル20から鋳片3に噴射される。ノズル20に対する冷却水の供給量や、ノズル20の噴射口の大きさ等を調整することで、ノズル20から噴射される冷却水の水量qを制御可能である。 

 なお、本実施形態に係るノズル20は、冷媒として冷却水と空気の混合体を噴射するものであるが、以下では説明の便宜上、冷却水を噴射すると記載する。また、ノズル20から噴射される冷媒(流体)は、冷却水及び空気の組み合わせの他にも、例えば、冷却水と窒素、冷却水と表面活性剤などの組み合わせや、冷却水単独であってもよい。 
上記ノズル20は、鋳片3の搬送方向に隣り合う上流側の支持ロール10と下流側の支持ロール10との間の領域(以下、ロール間領域と称す)において、鋳片幅方向に相互に間隔を空けて複数配置される。図2の例では、6つのノズル20が、鋳片幅方向に等間隔で配置されているが、この例に限定されず、ノズル20の設置数は複数であれば任意の数であってよく、また、ノズル20の配置間隔も任意である。

 このように、ノズル20は、搬送方向に隣り合う上流側の支持ロール10と下流側の支持ロール10との間のロール間領域に配置され、その配置位置から鋳片3に対して冷却水を噴射する。このノズル20から噴射された冷却水は、鋳片3に衝突し、さらに鋳片3の表面3dに沿って流下する。これにより、冷却水と鋳片3の間で熱交換が生じて、鋳片3が冷却される。 

[1.3.垂れ水及び溜まり水の弊害]
 次に、本願発明者が、垂れ水及び溜まり水とスプレー水との干渉による強冷却の弊害について検討した結果について詳細に説明する。 

 本願発明者が鋭意研究したところ、ノズル20から噴射された冷却水(スプレー水)が垂れ水及び溜まり水と干渉すると、その干渉位置において冷却水と鋳片3との間の熱伝達係数が上昇し、鋳片3に局所的な強冷却が生じることが判明した。以下に、この強冷却現象について詳述する。 

[1.3.1.溜まり水とスプレー水との干渉状態]
 まず、図3を参照して、溜まり水とスプレー水の干渉状態について説明する。図3は、溜まり水30とスプレー水21との干渉状態を示す縦断面図である。なお、以下では、搬送方向(上下方向)に隣り合う2つの支持ロール10のうち、搬送方向の上流側の支持ロール10を上側ロール10、下流側の支持ロール10を下側ロール10と称する。また、ノズル20から噴射された冷却水を、スプレー水21と称する。 
図3に示すように、上側ロール10と下側ロール10との間のロール間領域に配置されたノズル20から噴射されたスプレー水21は、鋳片3の表面3dに衝突した後に、その表面3dに沿って流下する。下側ロール10の分割ロール部102は鋳片3と接触しており、鋳片3の表面3dに沿って流下してきた冷却水の通過を妨げる。このため、鋳片3の表面3dに沿って流下してきた冷却水は、下側ロール10の分割ロール部102上部の鋳片3側の周面102aと、鋳片3の表面3dとで囲まれた、断面が楔状のスペースに溜まり、溜まり水30が発生する。

 このように分割ロール部102の周面102aと鋳片3の表面3dとの間に溜まった溜まり水30に対して、ノズル20からのスプレー水21が直接当たると、そのスプレー水21と溜まり水30とが干渉して、その干渉域31における冷却水と鋳片3との間の熱伝達係数が増加する。図3の例では、スプレー水21の下部側と、下側ロール10上の溜まり水30とが干渉域31で干渉している。 

 この結果、上記の干渉域31に対応する位置の鋳片3が局所的に強冷却されるため、鋳片幅方向の冷却均一性が阻害される。このように溜まり水30とスプレー水21の干渉により熱伝達係数が増加する理由は、溜まり水30の分だけ干渉域31の水量密度が増加するためと、スプレー水21により干渉域31の溜まり水30をかき乱すことで対流熱伝達が促進されるためであると考えられる。一般的に、水と冷却対象物との間の熱伝達係数は、水量密度の関数で表され、水量密度が大きいほど、熱伝達係数も大きくなり、冷却対象物の温度変化が激しくなる。 

[1.3.2.垂れ水とスプレー水との干渉状態]
 次に、図4、図5を参照して、垂れ水とスプレー水の干渉について説明する。図4は、垂れ水32及び溜まり水30とスプレー水21との干渉状態を示す縦断面図である。図5は、垂れ水32及び溜まり水30とスプレー水21との干渉状態を示す正面図である。 
上記のように、図2に示した分割ロールで支持ロール10を構成した場合、鋳片3と接触しない軸受け部103は、冷却水が流下可能な溝部(通水部)となる。このため、上側ロール10の分割ロール部102の上部に溜まった溜まり水30は、軸受け部103に向かって鋳片幅方向に移動し、図4及び図5に示すように、軸受け部103の先端103aと鋳片3の表面3dとの間の隙間105を通じて、冷却水が集中的に流下する。このように、軸受け部103の位置から流下する冷却水が垂れ水32である。この垂れ水32は、下側ロール10付近まで流下すると、その下側ロール10の分割ロール部102上で溜まり水30となる。

 このような垂れ水32に対して、上側ロール10と下側ロール10の間に配置されたノズル20からのスプレー水21が直接当たると、そのスプレー水21と垂れ水32とが干渉して、その干渉域33における冷却水と鋳片3との間の熱伝達係数が増加する。図4、図5の例では、スプレー水21の上部側と垂れ水32とが干渉域33で干渉し、また、当該スプレー水21の下部側も、下側ロール10上の溜まり水30と干渉域31で干渉している。 

 この結果、スプレー水21と垂れ水32の干渉域33に対応する位置の鋳片3が局所的に強冷却されるため、鋳片幅方向の冷却均一性が阻害される。このように垂れ水32とスプレー水21との干渉により熱伝達係数が増加する理由は、垂れ水32の分だけ干渉域33の水量密度が増加するためであると考えられる。 

[1.3.3.溜まり水との干渉による熱伝達係数の増加]
 次に、図6A、図6B及び図7を参照して、スプレー水21と溜まり水30との干渉による熱伝達係数の増加量を測定するために、スプレー水21の噴射試験を行った結果について説明する。図6Aは、噴射試験の測定条件を模式的に示す正面図である。図6Bは、噴射試験の測定条件を模式的に示す側面図である。図7は、噴射試験により得られた熱伝達係数の増加比率を示すグラフである。 
図6A及び図6Bに示すように、平板状の鋳片3に沿って2つのロール(上側ロール10と下側ロール10)を上下に並べて配置し、両ロール10、10の中間に1つのノズル20を配置した。ノズル20から噴射されるスプレー水21の水量(噴射量)は、20L/minとした。また、スプレー水21の噴射範囲は、図6A及び図6Bに示すように横長の楕円状とした。さらに、スプレー水21と溜まり水30との干渉域31内に4つの測定点P、P、P、Pを設けた。測定点Pは、ノズル20の中心の直下であり、測定点P、P、Pの測定点Pからの水平距離はそれぞれ、70mm、140mm、210mmである。

 上記の条件下で、ノズル20からスプレー水21を噴射して、下側ロール10上の溜まり水30と干渉させ、各測定点P、P、P、Pにおける鋳片3と冷却水の間の熱伝達係数hを測定する試験を3回行った(試験1~3)。また、比較対象として、下側ロール10上に溜まり水30が無い状態でノズル20からスプレー水21を噴射し、各測定点P、P、P、Pにおける鋳片3とスプレー水21との間の熱伝達係数hを測定した(スプレー単体)。 

 上記の噴射試験による熱伝達係数の測定結果を図7に示す。図7の縦軸は、試験1~3で測定された熱伝達係数hを、上記スプレー単体の場合に測定された熱伝達係数hで除算した値k1を示す(k1=h/h)。 

 図7に示すように、スプレー水21と溜まり水30を干渉させた場合(試験1~3)の熱伝達係数hは、スプレー単体の場合の熱伝達係数hの1.2~1.5倍となっており、大幅に増加している。この熱伝達係数hの増加割合は、ノズル20の中心からの距離が異なる各測定点P、P、P、Pに関わらず、ほぼ一定である。このような試験結果により、スプレー水21と溜まり水30の干渉により、冷却水と鋳片3との間の熱伝達係数が大幅に増加し、干渉域31の鋳片3が強冷却されることが実証されたといえる。 
[1.3.4.垂れ水との干渉による熱伝達係数の増加]
次に、図8A、図8B及び図9を参照して、スプレー水21と垂れ水32との干渉による熱伝達係数の増加量を測定するために、スプレー水21の噴射試験を行った結果について説明する。図8Aは、噴射試験の測定条件を模式的に示す正面図である。図8Bは、噴射試験の測定条件を模式的に示す側面図である。図9は、噴射試験により得られた熱伝達係数の増加比率を示すグラフである。

 図8A及び図8Bに示すように、平板状の鋳片3に沿って2つのロール(上側ロール10と下側ロール10)を上下に並べて配置し、上側ロール10は2分割ロールとし、軸受け部103と鋳片3の隙間105を冷却水が流下可能な構造とした。また、上側ロール10の上方において、軸受け部103の直上に1つのノズル20aを配置し、上側ロール10と下側ロール10の中間において、軸受け部103の直下にもう1つのノズル20bを配置した。また、各々のノズル20a、20bから噴射されるスプレー水21の水量(噴射量)は、20L/minとし、スプレー水21の噴射範囲は、図8A及び図8Bに示すように横長の楕円状とした。 

 上記の条件下で、ノズル20aからスプレー水21を噴射して、上側ロール10の軸受け部103に垂れ水32を発生させ、さらに、ノズル20bからスプレー水21を噴射して、垂れ水32と干渉させた。そして、ノズル20bからのスプレー水21の噴射範囲内において、鋳片3と冷却水の間の熱伝達係数hの平均値を測定する試験を行った。さらに、ノズル20bからのスプレー水21の水量qを変えて、同様の試験を複数回行った。また、比較対象として、上側のノズル20aからのスプレー水21の噴射を停止し、垂れ水32が無い状態で、下側のノズル20bからスプレー水21を噴射して、鋳片3とスプレー水21との間の熱伝達係数hを測定した(スプレー単体)。 
上記の噴射試験による熱伝達係数の測定結果を図9に示す。図9の縦軸は、上記試験で測定された熱伝達係数hの平均値を、上記スプレー単体の場合に測定された熱伝達係数hで乗算した値k2を示す(k2=h/h)。また、図9の横軸は、上記試験で測定された垂れ水32の水量Qを、ノズル20bからのスプレー水21の水量qで除算した値k3を示す(k3=Q/q)。
図9に示すように、スプレー水21と垂れ水32を干渉させた場合(k3=0.2~1.0)の熱伝達係数hは、スプレー単体の場合(k3=0)の熱伝達係数hの1.14~1.52倍となっており、大幅に増加している。特に、スプレー水21の水量qに対する垂れ水32の水量Qの割合k3が大きくなるほど、熱伝達係数hの増加割合も大きくなる。例えば、垂れ水32の水量Qとスプレー水21の水量qが同量である場合(k3=1.0)には、熱伝達係数hは、熱伝達係数hの約1.5倍となっている。このような試験結果により、スプレー水21と垂れ水32の干渉により、冷却水と鋳片3との間の熱伝達係数が大幅に増加し、干渉域33の鋳片3が強冷却されることが実証されたといえる。

[1.4.垂れ水及び溜まり水の位置に応じたノズル配置と水量制御]
 次に、本実施形態に係る二次冷却装置7の特徴であるノズル20の配置と水量制御について詳細に説明する。 

 上述した通り、ノズル20からのスプレー水21が溜まり水30や垂れ水32と干渉すると、その干渉域31、32の熱伝達係数が増加して、鋳片3が強冷却されるので、鋳片3の幅方向の冷却均一性が低下してしまう。このような弊害をもたらす溜まり水30や垂れ水32の発生位置は、支持ロール10に設けられる溝部の位置と関係がある。溝部は、支持ロール10のうち鋳片3と接触せず、冷却水が流下可能な部分であり、例えば、上記軸受け部103又はスリット等である。溜まり水30は、下流側の支持ロール10の溝部の無い部分(即ち、分割ロール部102)上で発生し、垂れ水32は、上流側の支持ロール10の溝部の部分(即ち、軸受け部103)で発生する。 
そこで、上記の問題を解決すべく、本実施形態に係る二次冷却装置7では、支持ロール10に設けられた溝部(軸受け部103又はスリット等)の位置に応じて、ノズル20の配置や、各ノズル20からのスプレー水21の水量を調整することを特徴としている。これにより、スプレー水21が溜まり水30や垂れ水32と干渉することを極力抑制して、上記強冷却による鋳片3の幅方向の冷却ムラを低減することができる。以下に、本実施形態に係るノズル20の配置や、各ノズル20からの冷却水の水量について詳述する。

 図10は、本実施形態に係る二次冷却装置7の支持ロール10及びノズル20の配置を示す正面図である。図10に示すように、各支持ロール10は3分割ロールで構成されており、3つの分割ロール部102と、これら3つの分割ロール部102の間に設けられる2つの軸受け部103とを備える。上下に隣り合う支持ロール10において、軸受け部103は相互に千鳥状に配置されている。 

 そして、搬送方向に隣り合う上流側の支持ロール10と下流側の支持ロール10との間のロール間領域に、複数のノズル20が配置され、鋳片幅方向に等間隔で配列されている。ノズル20は、その配置位置によって、直上ノズル20A(第1ノズル)と、直下ノズル20B(第2ノズル)と、中間ノズル20C(第3ノズル)に分類される。 

 直上ノズル20Aは、上記ロール間領域において、下流側の支持ロール10の軸受け部103の直上の位置(つまり、上流側の支持ロール10に設けられた分割ロール部102と下流側の支持ロール10に設けられた軸受け部103(溝部)との間に設定された第1ノズル位置)に配置されるノズルである。なお、本実施形態に係る直上ノズル20Aは、軸受け部103等の溝部の直上に配置されているが、この例に限定されず、溝部の上方において垂れ水32や溜まり水30と干渉しにくい位置に配置されてもよい。また、図示の例では、各支持ロール10の2つの軸受け部103のうち一方の直上にのみ、直上ノズル20Aが配置されているが、全ての軸受け部103の上方にそれぞれ直上ノズル20Aが配置されてもよい。 

 直下ノズル20Bは、上記ロール間領域において、上流側の支持ロール10の軸受け部103の直下の位置(つまり、上流側の支持ロール10に設けられた軸受け部103(溝部)と下流側の支持ロール10に設けられた分割ロール部102との間に設定された第2ノズル位置)に配置されるノズルである。なお、本実施形態に係る直下ノズル20Bは、軸受け部103等の溝部の直下に配置されているが、この例に限定されず、溝部の下方において垂れ水32や溜まり水30と干渉する位置に配置されるノズル20も、直下ノズル20Bに含まれる。また、図示の例では、各支持ロール10の2つの軸受け部103のうち一方の直下にのみ、直下ノズル20Bが配置されているが、全ての軸受け部103の下方にそれぞれ直下ノズル20Bが配置されてもよいし、或いは、全ての軸受け部103の下方に直下ノズル20Bが配置されてなくてもよい。 

 中間ノズル20Cは、上記ロール間領域において、上流側の支持ロール10の分割ロール部102と、下流側の支持ロール10の分割ロール部102との間の位置(つまり、上記ロール間領域において、第1ノズル位置及び第2ノズル位置以外の位置に設定された第3ノズル位置)に配置されるノズルである。この中間ノズル20Cの上方及び下方には、軸受け部103等の溝部は存在せず、分割ロール部102が存在する。従って、上記直上ノズル20A及び直下ノズル20B以外のノズル20は、中間ノズル20Cとなる。 

 上記スプレー水21と溜まり水30及び垂れ水32との干渉を防止する観点からは、軸受け部103の直上に直上ノズル20Aを配置することが最も好ましく、次いで、上下の分割ロール部102の間に中間ノズル20Cを配置することが好ましい。さらに、上記観点からは、直上ノズル20Aのスプレー水量qを最も多くし、次いで、中間ノズル20Cのスプレー水量qをqよりも少ない水量に調整することが好ましい。一方、軸受け部103の直下に直下ノズル20Bを配置しないことが好ましい。仮に、直下ノズル20Bを配置する場合であっても、その直下ノズル20Bのスプレー水量qを、ゼロ若しくは極力少なくし、q及びqよりも少ない水量に調整することが好ましい。以下にこのようなノズル配置及びスプレー水量qにする理由について説明する。 

 まず、直上ノズル20Aを配置することのメリットについて説明する。直上ノズル20Aの上方には、上流側の支持ロール10(以下、上側ロール10と称す)の分割ロール部102が存在するため、直上ノズル20Aの噴射範囲には垂れ水32が発生しない。従って、直上ノズル20Aのスプレー水21は、垂れ水32と干渉しない。また、直上ノズル20Aの下方には、下流側の支持ロール10(以下、下側ロール10と称す)の軸受け部103が存在し、冷却水がその軸受け部103から流下するため、直上ノズル20Aの噴射範囲には溜まり水30が発生しない。従って、直上ノズル20Aのスプレー水21は、溜まり水30ともほとんど干渉しない。 

 それ故、直上ノズル20Aを設置し、そのスプレー水量qを多くしたとしても、直上ノズル20Aのスプレー水21は垂れ水32や溜まり水30と干渉しない。従って、直上ノズル20Aのスプレー水21の噴射範囲内で、上記熱伝達係数の増加による鋳片3の局所的な強冷却が発生しない。このため、直上ノズル20Aのスプレー水21により、噴射範囲内の鋳片3を冷却ムラ無く、均一に冷却することができる。よって、上記直下ノズル20Bや中間ノズル20Cを配置することよりも、直上ノズル20Aを配置することが好ましく、そのスプレー水量qを他のノズルよりも多い水量(例えば通常水量)に調整することが好ましい。 

 次に、中間ノズル20Cを配置することのメリットとデメリットについて説明する。中間ノズル20Cの上方には、上側ロール10の分割ロール部102が存在するため、中間ノズル20Cの噴射範囲には垂れ水32が発生しない。従って、中間ノズル20Cのスプレー水21も、垂れ水32と干渉しない。一方、中間ノズル20Cの下方には、下側ロール10の分割ロール部102が存在するため、中間ノズル20Cの噴射範囲に溜まり水30が発生する。従って、中間ノズル20Cのスプレー水21の少なくとも一部は、溜まり水30と干渉する場合がある。 
従って、上記直上ノズル20Aのみを配置しても、鋳片幅方向全体を冷却できない場合には、中間ノズル20Cを配置して、鋳片幅方向全体を冷却できるようにすることが好ましい。しかし、中間ノズル20Cのスプレー水21が溜まり水30と干渉する場合には、中間ノズル20Cのスプレー水量qを直上ノズル20Aのスプレー水量qよりも少量にすることが好ましい。これにより、中間ノズル20Cのスプレー水21の噴射範囲内において、中間ノズル20Cのスプレー水21が溜まり水30と干渉することを抑制して、鋳片3の局所的な強冷却を抑制することができる。

 次に、直下ノズル20Bを配置することのメリットとデメリットについて説明する。直下ノズル20Bの上方には、上側ロール10の軸受け部103が存在するため、中間ノズル20Cの噴射範囲には垂れ水32が発生する。従って、中間ノズル20Cのスプレー水21の少なくとも一部は、垂れ水32と干渉する。一方、直下ノズル20Bの下方には、下側ロール10の分割ロール部102が存在するため、中間ノズル20Cの噴射範囲には溜まり水30も発生する。従って、中間ノズル20Cのスプレー水21の少なくとも一部は、溜まり水30とも干渉する。 

 従って、できるだけ直下ノズル20Bを配置しないことが好ましい。これにより、直下ノズル20Bのスプレー水21が溜まり水30及び垂れ水32と干渉することを回避でき、熱伝達係数の増加による鋳片3の強冷却の発生を防止できる。 

 しかし、上記直上ノズル20A及び中間ノズル20Cを配置しても、鋳片幅方向全体を冷却できない場合や、既存設備のノズル配置を利用する場合などには、直下ノズル20Bを配置して、鋳片幅方向全体を冷却できるようにしてもよい。ただし、直下ノズル20Bのスプレー水量qを、直上ノズル20Aのスプレー水量q及び中間ノズル20Cのスプレー水量qよりも、更に少量にすることが好ましい(q>q>q)。これにより、直下ノズル20Bのスプレー水21の噴射範囲内にいて、直下ノズル20Bのスプレー水21が、溜まり水30や垂れ水32と干渉することを抑制して、鋳片3の局所的な強冷却を抑制することができる。 

 なお、上記直下ノズル20Bのスプレー水量q及び中間ノズル20Cのスプレー水量qを、直上ノズル20Aのスプレー水量qよりも、どの程度少なくするかに関しては、実際の連続鋳造機若しくは模擬試験機等を用いた予備実験を行い、その実験結果に基づいて、スプレー水量q、q、qを適宜設定すればよい。 
例えば、スプレー水21と溜まり水30との干渉を考慮して、中間ノズル20Cのスプレー水量qと直下ノズル20Bのスプレー水量qを少なくする場合、スプレー水21と溜まり水30との干渉による熱伝達係数の増加比率とスプレー水量との関係を、予め予備実験で測定しておく(図7参照)。そして、その測定結果に基づいて、溜まり水30との干渉による局所的な強冷却が生じないように、溜まり水30と干渉する直下ノズル20B及び中間ノズル20Cのスプレー水量q、qを、直上ノズル20Aのスプレー水量qよりも少ない適切な水量にそれぞれ設定すればよい。

 また、スプレー水21と垂れ水32との干渉を考慮して、直下ノズル20Bのスプレー水量qを少なくする場合、スプレー水21と垂れ水32との干渉による熱伝達係数の増加度比率とスプレー水量との関係を予め予備実験で測定しておく(図9参照)。そして、その測定結果に基づいて、垂れ水32との干渉による局所的な強冷却が生じないように、垂れ水32と干渉する直下ノズル20Bのスプレー水量qを、直上ノズル20Aのスプレー水量qよりも少ない適切な水量に設定すればよい。 

 次に、上記ノズル配置の二次冷却装置7により鋳片3を冷却する方法について説明する。鋳型1下端から引き抜かれた鋳片3を、支持ロール10(無駆動支持ロール11、ピンチロール12、及びセグメントロール13等)によりパスラインに沿って支持及び搬送しながら、搬送方向に隣り合う支持ロール10間に配置されたノズル20から冷却水を噴射して、鋳片3を冷却する。このとき、直上ノズル20Aから冷却水をスプレー水量qで噴射しつつ、中間ノズル20Cからも冷却水をスプレー水量q(q>q)で噴射することが好ましい。一方、直下ノズル20Bについては、冷却水を噴射しないか、或いは、噴射するとしても、上記q、qよりも少ないスプレー水量qで冷却水を噴射する(q>q>q)。なお、各々のスプレー水量q、q、qは、鋳片3の幅、温度及び通板速度や、ノズル20の設置数、支持ロール10のサイズ、形状及び配置等に応じて、適宜の水量に設定すればよい。 
以上説明したように、本実施形態に係る連続鋳造機の二次冷却装置7では、上下(搬送方向)に隣り合う支持ロール10の間において、その上下の支持ロール10の軸受け部103の位置に応じて、ノズル20の配置及びスプレー水量qを調整している。これにより、スプレー水21が溜まり水30及び垂れ水32と干渉することを抑制して、鋳片3が局所的に強冷却されることを防止できる。従って、鋳片3を幅方向に均一に冷却して、鋳片3内部の未凝固部3bの凝固均一性を向上できるので、鋳片3の割れ及び中心偏析の無い、品質のよい鋳片3を製造できる。

 なお、二次冷却帯9において、上述したノズル配置及び流量制御が適用される範囲は、上記溜まり水30や垂れ水32が発生する箇所であれば任意の範囲でよいが、上記二次冷却帯9のパスラインの垂直部9A及び湾曲部9Bの前半部分に好適に適用できる。この垂直部9A及び湾曲部9Bの前半部分では、搬送方向に隣り合う支持ロール10、10が上下又は斜め方向に配置されているので、溜まり水30や垂れ水32が発生しやすい。従って、これら垂直部9A及び湾曲部9Bの前半部分に上記ノズル配置及び流量制御を適用することで、鋳片幅方向の冷却均一性を大幅に向上できる。 

[2.第2の実施形態]
次に、本発明の第2の実施形態に係る連続鋳造機の二次冷却装置7Aのロール形状とノズル配置について説明する。第2の実施形態は、第1の実施形態と比べて、2分割ロールを用いる点と、支持ロール10における冷却水が流下可能な溝部が、鋳片幅方向に隣り合う分割ロール部102間の軸受け部103のみならず、各分割ロール部102の周面に形成された通水用のスリットを含む点で相違し、その他の機能構成は上記第1の実施形態と同様である。 

 図11は、第2の実施形態に係る二次冷却装置7Aの支持ロール10及びノズル20の配置を示す正面図である。図11に示すように、各支持ロール10は2分割ロールで構成されており、2つの分割ロール部102A、102Bと、当該2つの分割ロール部102A、102Bの間に設けられる1つの軸受け部103とを備える。第2実施形態では、上記第1実施形態と同様に、搬送方向に隣り合う上流側の支持ロール10と下流側の支持ロール10のそれぞれに設けられた軸受け部103は、互いに鋳片幅方向にずれて配置されている(千鳥配置されている)。このような千鳥配置を実現するために、2分割ロールのロール部は、相対的に長い分割ロール部102A(以下、長ロール部102Aと称す)と、相対的に短い分割ロール部102B(以下、短ロール部102Bと称す)とから構成される。 

 このように2分割ロールにおいて、長ロール部102Aと短ロール部102Bが存在する場合、長ロール部102Aの上側に大量の溜まり水30が発生してしまう。そこで、第2の実施形態では、上記の長ロール部102A上の溜まり水30を低減するため、各支持ロール10の長ロール部102Aの周面にスリット104を形成している。図示の例では、長ロール部102Aの周面にスリット104を1つだけ形成している。各スリット104の深さ、幅は、軸受け部103の深さ、幅とそれぞれ同程度である。しかし、このような例に限定されず、スリット104の設置数は2以上であってもよいし、スリット104の深さや幅、配置等は、任意に設定してもよい。 

 このように長ロール部102Aに設けられたスリット104が、冷却水を下流側に流下させる溝部(通水部)として機能する。これにより、長ロール部102A上に溜まった冷却水は、その長ロール部102Aの中間部のスリット104を通じて下流側に流下するので、長ロール部102A上に大量の溜まり水30が発生することを防止できる。 
これらのスリット104及び軸受け部103が設けられた支持ロール10(2分割ロール)を上下(搬送方向)に配列することで、上記第1の実施形態に係る3分割ロールと同様に、各支持ロール10の2箇所で冷却水が流下することになる。なお、搬送方向に隣り合う上流側の支持ロール10と下流側の支持ロール10とに設けられたスリット104及び軸受け部103が、互いに鋳片幅方向にずれるように、両溝部(スリット104及び軸受け部103)を千鳥配置することが好ましい。これにより、2分割ロールにスリット104を設けた場合でも、鋳片幅方向に均一に冷却することが可能となる。

 そして、図11に示すように、第2の実施形態でも第1の実施形態と同様に、搬送方向に隣り合う上流側の支持ロール10と下流側の支持ロール10との間のロール間領域に、複数のノズル20が鋳片幅方向に等間隔で配列され、その位置によって直上ノズル20Aと、直下ノズル20Bと、中間ノズル20Cに分類される。 

 直上ノズル20Aは、下側ロール10(下流側の支持ロール10)の軸受け部103又はスリット104の直上の位置(第1ノズル位置)に配置されるノズルである。具体的には、図11において、直上ノズル20Aは、最上流側の支持ロール10に設けられた長ロール部102Aと中央の支持ロール10に設けられた軸受け部103(溝部)との間に設定された第1ノズル位置と、中央の支持ロール10に設けられた長ロール部102Aと最下流側の支持ロール10に設けられたスリット104(溝部)との間に設定された第1ノズル位置とに配置されている。
直下ノズル20Bは、上側ロール10(上流側の支持ロール10)の軸受け部103又はスリット104の直下の位置(第2ノズル位置)に配置されるノズルである。
具体的には、図11において、直下ノズル20Bは、最上流側の支持ロール10に設けられた軸受け部103(溝部)と中央の支持ロール10に設けられた長ロール部102Aとの間に設定された第2ノズル位置と、中央の支持ロール10に設けられたスリット104と最下流側の支持ロール10に設けられた長ロール部102Aとの間に設定された第2ノズル位置とに配置されている。
中間ノズル20Cは、上側ロール10の分割ロール部102A、102Bと、下側ロール10の分割ロール部102A、102Bとの間の位置(ロール間領域において、第1ノズル位置及び第2ノズル位置以外の第3ノズル位置)に配置されるノズルである。これら直上ノズル20Aと、直下ノズル20Bと、中間ノズル20Cの機能やスプレー水量については、第1の実施形態と同様であるので、詳細説明は省略する。 

 以上のように、第2の実施形態によれば、2分割ロールの長ロール部102Aにスリット104を設け、上側ロール10及び下側ロール10の軸受け部103及びスリット104の位置に応じて、ノズル20の配置及びスプレー水量qを調整している。これにより、第1の実施形態と同様の効果が得られ、鋳片幅方向の冷却均一性を向上できる。さらに、第2の実施形態によれば、2分割ロールの長ロール部102A上に発生する溜まり水30をスリット104により低減し、ノズル20からのスプレー水21と溜まり水30との干渉を抑制することもできる。
[3.第3の実施形態]
 次に、本発明の第3の実施形態に係る連続鋳造機の二次冷却装置7Bのロール形状とノズル配置について説明する。第3の実施形態は、第1の実施形態と比べて、2分割ロールを用いる点と、支持ロール10の分割ロール部102の周面に通水用の細かいスリットを多数形成する点で相違し、その他の機能構成は上記第1の実施形態と同様である。 

 図12は、第3の実施形態に係る二次冷却装置7Bの支持ロール10及びノズル20の配置を示す正面図である。図12に示すように、各支持ロール10は2分割ロールで構成されており、2つの分割ロール部102A、102Bと、それら2つの分割ロール部102A、102Bの間に設けられる1つの軸受け部103とを備える。搬送方向に隣り合う上流側の支持ロール10(上側ロール)と下流側の支持ロール10(下側ロール)のそれぞれに設けられた軸受け部103は、互いに前記鋳片幅方向にずれて配置されている(千鳥配置されている)。このような千鳥配置を実現するため、2分割ロールのロール部は、長ロール部102Aと短ロール部102Bとから構成される。 
2分割ロールでは、分割数が少ないので、各分割ロール部102の上側に溜まり水30が発生しやすい。特に、上述したように、長ロール部102Aの上側に大量の溜まり水30が発生してしまう。そこで、第3の実施形態では、これら長ロール部102A及び短ロール部102B上の溜まり水30を低減するため、各支持ロール10の長ロール部102A及び短ロール部102Bの周面に、細かいスリット106を複数形成している。図示の例では、長ロール部102A及び短ロール部102Bの周面に同様に細かいスリット106を等間隔で複数形成している。各スリット106の深さ、幅は、軸受け部103の深さ、幅よりも十分に小さい。しかし、このような例に限定されず、スリット106の設置数や深さ、幅、配置等は、任意に設定してもよい。

 このように長ロール部102A及び短ロール部102Bに設けられた多数の細かいスリット106が、冷却水を下流側へ流下させる溝部(通水部)として機能する。これにより、長ロール部102A及び短ロール部102B上に流下した冷却水は、スリット106を通じて直ちに下方(下流側)に流下するので、長ロール部102A及び短ロール部102B上に溜まり水30が発生しない。さらに、各スリット106から冷却水が適宜流下するので、軸受け部103に冷却水が集まって流下することもない。よって、軸受け部103を通じた垂れ水も大幅に減少し、各支持ロール10において、鋳片幅方向に均一に分散した微少な垂れ水34を生じさせることができる。 

 そして、図12に示すように、第3の実施形態でも第1の実施形態と同様に、上側ロール10と下側ロール10との間のロール間領域に、複数のノズル20が鋳片幅方向に等間隔で配列される。これらのノズル20は、全て、噴射される冷却水が上記スリット106又は軸受け部103を通じて流下する微少な垂れ水34と干渉するので、上記直下ノズル20Bと同様のタイプのノズルに分類される。しかし、垂れ水34の流量は微少であるので、直下ノズル20Bのスプレー水21と上記の垂れ水34が干渉しても、その干渉位置での冷却水と鋳片3の間の熱伝達係数は、大きく増加しないので、第1の実施形態のような局所的な強冷却も生じない。従って、これら直下ノズル20Bのスプレー水量を調整せずに、通常流量としても、鋳片幅方向の均一性にさほど悪影響を与えない。もちろん、直下ノズル20Bのスプレー水量を通常水量よりも少量にすることも可能である。 

 以上のように、第3の実施形態によれば、2分割ロールの長ロール部102A及び短ロール部102Bに多数の細かいスリット106を設けている。これにより、第1の実施形態と同様に、鋳片幅方向の冷却均一性を向上できる。さらに、第3の実施形態によれば、各スリット106により、2分割ロールの分割ロール部102上に溜まり水30が発生することを防止でき、ノズル20からのスプレー水21と溜まり水30との干渉を抑制することもできる。加えて、スリット106及び軸受け部103を通じて流下する垂れ水34は微少であるので、垂れ水34の位置を考慮することなく、ノズル20を任意の水平位置に自由に配置できるという利点もある。

 次に、本発明の実施例について説明する。なお、以下の実施例は本発明の効果を実証するために行った試験結果を示すものであり、本発明が以下の実施例に限定される訳ではない。 

(1)実際の連続鋳造試験による鋳片表面温度の測定結果
 まず、図1に示した連続鋳造機を用いて連続鋳造試験を行い、鋳型1下方の二次冷却帯9で鋳片3の表面温度を測定した結果について説明する。この試験では、厚み300mm×幅2200mmの鋳片3を、鋳造速度1.0m/minで鋳造したときに、メニスカスから18m程度の位置における鋳片3の表面温度を、放射温度計を用いて測定した。この鋳片表面温度の測定結果を図13に示す。図13は、本発明の実施例と比較例の測定結果を示す。 

 比較例では、上記の図10に示したように支持ロール10とノズル20を配置し、全てのノズル20のスプレー水量qを同一とした。この結果、比較例では、図13に示すように、鋳片幅方向の中心部とエッジ部との間の温度差ΔT’が100℃以上もあり、鋳片幅方向の冷却均一性が悪かった。この理由としては、鋳片幅方向の中心部近傍の分割ロール部102にスプレー水が溜まりやすい軸受け配置となっていたため、溜まり水30とスプレー水21の干渉が生じたことと、及び、軸受け部103からの垂れ水32が、中心部近傍に集中して多量に発生したため、その直下のノズル20のスプレー水が垂れ水32と干渉したことが原因であると推定される。 

 そこで、本発明の実施例では、上記の図11に示したように、支持ロール10にスリット104を設置して、溜まり水30が溜まらないようにし、かつ、軸受け部103からの垂れ水32と干渉する位置にある直下ノズル20Bのスプレー水量を、他のノズル20よりも低減した。この結果、実施例では、図13に示すように、鋳片幅方向の中心部とエッジ部との間の温度差ΔTが50℃程度にまで低減され、鋳片幅方向の冷却均一性が大幅に改善された。従って、鋳片幅方向の温度分布が均一となり、鋳片3の凝固均一性と中心偏析レベルが改善された。 

(2)計算による鋳片表面温度・固相率の推定結果
 次に、図7に示した試験で測定した熱伝達係数を用いて、鋳片3の凝固状態をシミュレーションし、鋳片表面温度と固相率を推定する試験を行った結果について説明する。この試験では、鋳造条件や、ロール及びノズルの配置構成の条件は、前述の(1)と同様に設定して、シミュレーションを行った。
図14Aは、本シミュレーションにより得られた、比較例における鋳片表面温度を示す分布図である。図14Bは、本シミュレーションにより得られた、本発明の実施例における鋳片表面温度を示す分布図である。図15Aは、本シミュレーションにより得られた、比較例における鋳片厚み方向中心の固相率を示す分布図である。図15Bは、本シミュレーションにより得られた、本発明の実施例における鋳片厚み方向中心の固相率を示す分布図である。なお、鋳片3が完全に未凝固であるときの固相率は0.0、鋳片3が完全に凝固したときの固相率は1.0である。 

図14Aに示すように、比較例では、メニスカスから主に5~10mの領域Aにおいて、スプレー水21と溜まり水30及び垂れ水32との干渉により、鋳片表面温度が局所的に低下しており、鋳片幅方向の温度が不均一になっていることが分かる。これに対し、図14Bに示すように、本発明の実施例では、上記領域Aにおける鋳片表面温度の局所的な低下が発生しておらず、鋳片幅方向の冷却均一性が改善されていることが分かる。この理由は、実施例では、領域Aにおいてスプレー水21と溜まり水30及び垂れ水32との干渉がほとんど無いため、鋳片表面の局所的な過冷却を防止できたからと考えられる。 

 また、図15Aに示すように、比較例では、メニスカスから25~30mの領域Bにおいて、上記領域Aの冷却不均一の影響で、鋳片幅方向に凝固が不均一となっており、鋳片幅方向の中心部が先に凝固完了している。そのため、凝固遅れ部に濃化溶鋼が取り残されて中心偏析が生じた。これに対し、図15Bに示すように、本発明の実施例では、上記領域Bにおいて固相率が鋳片幅方向に均一で、凝固均一性が改善し、中心偏析が低減した。この理由は、実施例では、領域Bに至るまでに、鋳片3が幅方向に均一に冷却されているからと考えられる。 

 以上説明した試験結果から、本発明により、鋳片幅方向の冷却均一性を向上できるので、鋳片幅方向の凝固均一性と中心偏析レベルを改善できることが実証されたと言える。 

 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。

1  鋳型
 2  溶融金属
 3  鋳片
 3a  凝固シェル
 3b  未凝固部
 4  取鍋
 5  タンディッシュ
 6  浸漬ノズル
 7、7A、7B  二次冷却装置
 8  鋳片切断機
 9  二次冷却帯
 9A  垂直部
 9B  湾曲部
 9C  水平部
 10  支持ロール
 11  無駆動支持ロール
 12  ピンチロール
 13  セグメントロール
 14  鋳片
 15  テーブルロール
 20  ノズル
 20A  直上ノズル
 20B  直下ノズル
 20C  中間ノズル
 21  スプレー水
 30  溜まり水
 31  干渉域
 32、34  垂れ水
 33  干渉域
 101  ロール軸
 102  分割ロール部
 103  軸受け部
 104、106  スリット
 105  隙間

Claims (8)


  1.  連続鋳造機の鋳型の下方の二次冷却帯において鋳片の厚み方向両側から前記鋳片を支持する複数対の支持ロールと;
     前記鋳片の搬送方向に沿って並んで隣り合う前記支持ロールの間において前記鋳片の幅方向に相互に間隔を空けて配置され、前記鋳片に冷却水を噴射する複数のノズルと;
    を備え、
     前記各支持ロールは、
     ロール軸と、
     前記ロール軸に設けられ、前記幅方向に分割された複数のロール部と、
     前記複数のロール部の間に設けられ、前記冷却水が流下可能な溝部と、
    を有し;
     前記搬送方向に隣り合う上流側の支持ロールと下流側の支持ロールとのそれぞれに設けられた前記溝部は、互いに前記幅方向にずれて配置されており;
     前記上流側の支持ロールに設けられた前記ロール部と前記下流側の支持ロールに設けられた前記溝部との間に設定された第1ノズル位置には、前記複数のノズルのうちの第1ノズルが配置されている;
    ことを特徴とする連続鋳造機の二次冷却装置。  
  2. 前記上流側の支持ロールに設けられた前記溝部と前記下流側の支持ロールに設けられた前記ロール部との間に設定された第2ノズル位置には、前記複数のノズルのうちの第2ノズルが配置されており;
     前記第2ノズルから噴射される冷却水の水量は、前記第1ノズルから噴射される冷却水の水量よりも小さい;
    ことを特徴とする請求項1に記載の連続鋳造機の二次冷却装置。
  3. 前記上流側の支持ロールと前記下流側の支持ロールとの間において、前記第1ノズル位置及び第2ノズル位置以外の位置に設定された第3ノズル位置には、前記複数のノズルのうちの第3ノズルが配置されており;

    前記第3ノズルから噴射される冷却水の水量は、前記第1ノズルから噴射される冷却水の水量よりも小さく、且つ前記第2ノズルから噴射される冷却水の水量よりも大きい;
    ことを特徴とする請求項2に記載の連続鋳造機の二次冷却装置。  

  4.  前記各支持ロールの前記複数のロール部の間には、前記ロール軸を支持する軸受け部が設けられており;
     前記溝部は、前記軸受け部を含む;
    ことを特徴とする請求項1~3のいずれか一項に記載の連続鋳造機の二次冷却装置。  

  5.  前記溝部は、前記支持ロールの周面に形成された通水用のスリットを含むことを特徴とする請求項1~3のいずれか一項に記載の連続鋳造機の二次冷却装置。  

  6. 連続鋳造機の鋳型の下方の二次冷却帯において鋳片の厚み方向両側から前記鋳片を支持すると共に、前記鋳片の幅方向に分割された複数のロール部と、前記複数のロール部の間に設けられ、冷却水が流下可能な溝部とを有する複数対の支持ロールが設けられており、前記鋳片の搬送方向に沿って並んで隣り合う上流側の支持ロールと下流側の支持ロールとのそれぞれに設けられた前記溝部が、互いに前記幅方向にずれて配置された状況下で、前記支持ロールによって搬送される前記鋳片を冷却する二次冷却方法であって、
     前記上流側の支持ロールに設けられた前記ロール部と前記下流側の支持ロールに設けられた前記溝部との間の第1ノズル位置から、前記鋳片に対して冷却水を噴射する第1冷却工程を有する、
    ことを特徴とする二次冷却方法。  
  7. 前記上流側の支持ロールに設けられた前記溝部と前記下流側の支持ロールに設けられた前記ロール部との間の第2ノズル位置から、前記鋳片に対して、前記第1ノズル位置から噴射される冷却水の水量よりも小さい水量で冷却水を噴射する第2冷却工程をさらに有することを特徴とする請求項6に記載の二次冷却方法。

  8. 前記上流側の支持ロールと前記下流側の支持ロールとの間において、前記第1ノズル位置及び第2ノズル位置以外の第3ノズル位置から、前記鋳片に対して、前記第1ノズルから噴射される冷却水の水量よりも小さく、且つ前記第2ノズルから噴射される冷却水の水量よりも大きい水量で冷却水を噴射する第3冷却工程をさらに有することを特徴とする請求項7に記載の二次冷却方法。
PCT/JP2012/079556 2011-11-15 2012-11-14 連続鋳造機の二次冷却装置及び二次冷却方法 WO2013073593A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157033492A KR101882067B1 (ko) 2011-11-15 2012-11-14 연속 주조기의 2차 냉각 장치 및 2차 냉각 방법
BR112014011190-1A BR112014011190B1 (pt) 2011-11-15 2012-11-14 Aparelho de refrigeração secundário de máquina de lingotamento contínuo e método de refrigeração secundário
CN201280048684.1A CN103842113B (zh) 2011-11-15 2012-11-14 连续铸造机的二次冷却装置以及二次冷却方法
KR1020147007774A KR101801441B1 (ko) 2011-11-15 2012-11-14 연속 주조기의 2차 냉각 장치 및 2차 냉각 방법
JP2013544307A JP5598614B2 (ja) 2011-11-15 2012-11-14 連続鋳造機の二次冷却装置及び二次冷却方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-249762 2011-11-15
JP2011249762 2011-11-15

Publications (1)

Publication Number Publication Date
WO2013073593A1 true WO2013073593A1 (ja) 2013-05-23

Family

ID=48429648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079556 WO2013073593A1 (ja) 2011-11-15 2012-11-14 連続鋳造機の二次冷却装置及び二次冷却方法

Country Status (5)

Country Link
JP (1) JP5598614B2 (ja)
KR (2) KR101882067B1 (ja)
CN (1) CN103842113B (ja)
BR (1) BR112014011190B1 (ja)
WO (1) WO2013073593A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213947A (ja) * 2014-05-09 2015-12-03 新日鐵住金株式会社 連続鋳造機の二次冷却装置及び二次冷却方法
JP2018516175A (ja) * 2015-06-04 2018-06-21 ポスコPosco 凝固装置
AT517252B1 (de) * 2015-05-27 2019-03-15 Primetals Technologies Austria GmbH Vermeidung von Wassergassen bei einer Strangführung
CN114173958A (zh) * 2019-08-02 2022-03-11 杰富意钢铁株式会社 连续铸造铸片的二次冷却装置和二次冷却方法
WO2023087633A1 (zh) * 2021-11-19 2023-05-25 中天钢铁集团有限公司 一种验证二次冷却凝固模型准确性方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647207B1 (ko) * 2014-11-27 2016-08-10 주식회사 포스코 연속 주조 방법 및 연속 주조 장치
CA3006369A1 (en) 2016-01-29 2017-08-03 Nippon Steel & Sumitomo Metal Corporation Secondary cooling method and secondary cooling device for casting product in continuous casting
CN106393931B (zh) * 2016-11-03 2018-02-06 浙江博泰塑胶有限公司 一种贴合设备中支承辊筒的冷却结构
KR102046949B1 (ko) * 2016-12-15 2019-11-20 주식회사 포스코 2차 냉각대의 비수분포가 균일한 오스테나이트계 스테인리스강 연속주조방법
CN106955983B (zh) * 2017-05-15 2023-06-02 安徽富凯特材有限公司 一种减少板坯翘头的装置
JP6560838B1 (ja) * 2019-02-12 2019-08-14 株式会社神戸製鋼所 連続鋳造用鋳型および連続鋳造装置並びに連続鋳造方法
CN113677455B (zh) * 2019-04-02 2023-09-05 杰富意钢铁株式会社 钢的连续铸造方法
WO2021085474A1 (ja) * 2019-10-29 2021-05-06 Jfeスチール株式会社 連続鋳造鋳片の二次冷却方法
KR102400467B1 (ko) * 2020-12-21 2022-05-20 주식회사 포스코 연속주조기용 세그먼트 및 이를 포함하는 연속주조기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200514A (ja) * 1991-11-29 1993-08-10 Sumitomo Metal Ind Ltd 連続鋳造方法
JPH09122861A (ja) * 1995-10-26 1997-05-13 Kawasaki Steel Corp 連続鋳造スラブの二次冷却方法
JP2010253529A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 連続鋳造における二次冷却方法
JP2010253528A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 連続鋳造における二次冷却方法
JP2013027893A (ja) * 2011-07-27 2013-02-07 Kobe Steel Ltd スラブ幅方向の中心偏析のバラツキを抑制する連続鋳造機の冷却装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847757A (ja) 1994-08-03 1996-02-20 Nippon Steel Corp 溝付き分割ロール並びに鋳片案内設備及び鋳片案内方法
JP2005014029A (ja) 2003-06-25 2005-01-20 Jfe Steel Kk 連続鋳造機
JP4987545B2 (ja) * 2007-04-09 2012-07-25 新日本製鐵株式会社 連続鋳造機の二次冷却装置およびその二次冷却方法
JP5505056B2 (ja) * 2010-04-19 2014-05-28 新日鐵住金株式会社 金属の連続鋳造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200514A (ja) * 1991-11-29 1993-08-10 Sumitomo Metal Ind Ltd 連続鋳造方法
JPH09122861A (ja) * 1995-10-26 1997-05-13 Kawasaki Steel Corp 連続鋳造スラブの二次冷却方法
JP2010253529A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 連続鋳造における二次冷却方法
JP2010253528A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 連続鋳造における二次冷却方法
JP2013027893A (ja) * 2011-07-27 2013-02-07 Kobe Steel Ltd スラブ幅方向の中心偏析のバラツキを抑制する連続鋳造機の冷却装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213947A (ja) * 2014-05-09 2015-12-03 新日鐵住金株式会社 連続鋳造機の二次冷却装置及び二次冷却方法
AT517252B1 (de) * 2015-05-27 2019-03-15 Primetals Technologies Austria GmbH Vermeidung von Wassergassen bei einer Strangführung
JP2018516175A (ja) * 2015-06-04 2018-06-21 ポスコPosco 凝固装置
CN114173958A (zh) * 2019-08-02 2022-03-11 杰富意钢铁株式会社 连续铸造铸片的二次冷却装置和二次冷却方法
WO2023087633A1 (zh) * 2021-11-19 2023-05-25 中天钢铁集团有限公司 一种验证二次冷却凝固模型准确性方法

Also Published As

Publication number Publication date
CN103842113A (zh) 2014-06-04
JP5598614B2 (ja) 2014-10-01
JPWO2013073593A1 (ja) 2015-04-02
BR112014011190B1 (pt) 2020-09-15
KR101801441B1 (ko) 2017-11-24
KR101882067B1 (ko) 2018-07-25
KR20140053371A (ko) 2014-05-07
KR20150136550A (ko) 2015-12-07
BR112014011190A2 (pt) 2017-05-09
CN103842113B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5598614B2 (ja) 連続鋳造機の二次冷却装置及び二次冷却方法
EP2839901A1 (en) Continuous casting mold and method for continuous casting of steel
US10974316B2 (en) Secondary cooling method and secondary cooling device for casting product in continuous casting
JP4786473B2 (ja) 表内質に優れた鋳片の製造方法
JP2018192530A (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
JP2015062918A (ja) 鋼の連続鋳造方法
JP6135616B2 (ja) 連続鋳造鋳片の幅方向均一冷却鋳造方法及び連続鋳造設備
JP6747142B2 (ja) 連続鋳造の二次冷却方法及び二次冷却装置
JP6365604B2 (ja) 鋼の連続鋳造方法
JPWO2018056322A1 (ja) 鋼の連続鋳造方法
JP4880089B2 (ja) 連続鋳造設備
CN109689247B (zh) 钢的连续铸造方法
JP2019171435A (ja) 鋼の連続鋳造方法
JP6402750B2 (ja) 鋼の連続鋳造方法
JP6295813B2 (ja) 連続鋳造機の二次冷却装置及び二次冷却方法
JP2011224607A (ja) 金属の連続鋳造方法
JP7004085B2 (ja) 鋼の連続鋳造用鋳型及び鋼の連続鋳造方法
JP2013094828A (ja) 連続鋳造における二次冷却方法
JP5915453B2 (ja) 鋼の連続鋳造方法
JP5040845B2 (ja) 鋼の連続鋳造方法
JP5768478B2 (ja) 垂直曲げ型連続鋳造機、連続鋳造方法、及び連続鋳造機の冷却部延長方法
KR101344899B1 (ko) 연속주조 시 냉각수 분사 노즐 배치 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544307

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147007774

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014011190

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12850716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014011190

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140509