WO2013073478A1 - 電極用ペースト組成物、太陽電池素子及び太陽電池 - Google Patents

電極用ペースト組成物、太陽電池素子及び太陽電池 Download PDF

Info

Publication number
WO2013073478A1
WO2013073478A1 PCT/JP2012/079157 JP2012079157W WO2013073478A1 WO 2013073478 A1 WO2013073478 A1 WO 2013073478A1 JP 2012079157 W JP2012079157 W JP 2012079157W WO 2013073478 A1 WO2013073478 A1 WO 2013073478A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
mass
electrode
paste composition
tin
Prior art date
Application number
PCT/JP2012/079157
Other languages
English (en)
French (fr)
Inventor
修一郎 足立
吉田 誠人
野尻 剛
祥晃 栗原
隆彦 加藤
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020157025242A priority Critical patent/KR20150125956A/ko
Priority to CN201280055775.8A priority patent/CN103930950A/zh
Priority to KR1020147013653A priority patent/KR20140082835A/ko
Priority to JP2013544250A priority patent/JP5811186B2/ja
Priority to EP12849394.7A priority patent/EP2782102A4/en
Publication of WO2013073478A1 publication Critical patent/WO2013073478A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to an electrode paste composition, a solar cell element, and a solar cell.
  • electrodes are formed on the light receiving surface and the back surface of a silicon-based solar cell.
  • the volume resistivity of the electrode is sufficiently low and that a good ohmic contact with the silicon substrate is formed. It is.
  • the electrode on the light receiving surface tends to have a narrow electrode width and a high aspect ratio of the electrode in order to minimize the loss of incident sunlight.
  • the electrode used for the light receiving surface of the solar cell is usually formed as follows. That is, a texture (unevenness) is formed on the light-receiving surface side of a p-type silicon substrate, and then a conductive composition is screen-printed on an n-type silicon layer formed by thermally diffusing phosphorus or the like at a high temperature. And is fired at 800 ° C. to 900 ° C. in the atmosphere to form a light-receiving surface electrode.
  • the conductive composition forming the light-receiving surface electrode includes conductive metal powder, glass particles, various additives, and the like.
  • silver powder As the conductive metal powder, silver powder is generally used. This is because the volume resistivity of the silver particles is as low as 1.6 ⁇ 10 ⁇ 6 ⁇ ⁇ cm, the silver particles are self-reduced and sintered under the above firing conditions, and a good ohmic contact is formed with the silicon substrate.
  • a wiring material such as a tab wire for electrically connecting the solar cell elements is used. The reason is that it can be suitably bonded.
  • the conductive composition containing silver particles exhibits excellent characteristics as an electrode of a solar cell.
  • silver is a noble metal and the bullion itself is expensive, and from the problem of resources, a proposal of a conductive composition to replace the silver-containing conductive composition is desired.
  • a promising material that can replace silver is copper that is applied to semiconductor wiring materials. Copper is abundant in terms of resources, and the cost of bullion is as low as about 1/100 of silver. However, copper is a material that is easily oxidized at a high temperature of 200 ° C. or higher in the atmosphere, and it is difficult to form an electrode in the above process.
  • Another problem for applying copper to solar cell electrodes is ohmic contact with a silicon substrate. That is, even if an electrode made of copper can be formed without being oxidized during high-temperature firing, the copper and silicon are interdiffused by the direct contact of the metal copper with the silicon substrate, and the copper is formed at the interface between the electrode and the silicon substrate. In some cases, a reactant phase (Cu 3 Si) composed of silicon and silicon is formed.
  • the formation of Cu 3 Si may extend to several ⁇ m from the interface of the silicon substrate, and may crack on the silicon substrate side.
  • the semiconductor performance (pn junction characteristics) of the solar cell is deteriorated by penetrating an n-type silicon layer formed in advance on the silicon substrate.
  • the formed Cu 3 Si lifts the electrode made of copper, etc., thereby hindering the adhesion between the electrode and the silicon substrate, and possibly causing a decrease in the mechanical strength of the electrode.
  • the present invention has been made in view of the above problems, and can be used to form an electrode having a low resistivity, and further to form a copper-containing electrode having a good ohmic contact with a silicon substrate, It aims at providing the solar cell element and solar cell which have an electrode formed using the paste composition for electrodes.
  • this invention includes the following aspects.
  • An electrode paste composition containing phosphorus-containing copper alloy particles, tin-containing particles, nickel-containing particles, glass particles, a solvent, and a resin containing phosphorus-containing copper alloy particles, tin-containing particles, nickel-containing particles, glass particles, a solvent, and a resin.
  • ⁇ 2> The electrode paste composition according to ⁇ 1>, wherein the phosphorus content of the phosphorus-containing copper alloy particles is 6% by mass or more and 8% by mass or less.
  • tin-containing particles are at least one selected from the group consisting of tin particles and tin alloy particles having a tin content of 1% by mass or more. It is a thing.
  • the electrode paste composition is not limited to any one of ⁇ 1> to ⁇ 3>, wherein the nickel-containing particles are at least one selected from the group consisting of nickel particles and nickel alloy particles having a nickel content of 1% by mass or more.
  • ⁇ 5> The electrode paste composition according to any one of ⁇ 1> to ⁇ 4>, wherein the glass particles have a glass softening point of 650 ° C. or lower and a crystallization start temperature exceeding 650 ° C. .
  • the content of the tin-containing particles is 5% by mass to 70% by mass when the total content of the phosphorus-containing copper alloy particles, the tin-containing particles, and the nickel-containing particles is 100% by mass.
  • the content of the nickel-containing particles is 10% by mass to 60% by mass when the total content of the phosphorus-containing copper alloy particles, the tin-containing particles, and the nickel-containing particles is 100% by mass.
  • the total content of the phosphorus-containing copper alloy particles, the tin-containing particles, and the nickel-containing particles is 70% by mass to 94% by mass, and the glass particle content is 0.1% by mass to 10% by mass.
  • the silver particle content is 0.1% by mass or more and 10% by mass or less.
  • the total content of the phosphorus-containing copper alloy particles, the tin-containing particles, the nickel-containing particles, and the silver particles is 70% by mass to 94% by mass, and the content of the glass particles is 0.1% by mass.
  • a solar cell having the solar cell element according to any one of ⁇ 12> to ⁇ 14> and a wiring material disposed on an electrode of the solar cell element.
  • an electrode paste composition capable of forming a low resistivity electrode and further forming a copper-containing electrode having good ohmic contact with a silicon substrate, and the electrode paste composition are formed. It is possible to provide a solar cell element and a solar cell having the formed electrode.
  • the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. means.
  • the electrode paste composition of the present invention comprises at least one phosphorous-containing copper alloy particle, at least one tin-containing particle, at least one nickel-containing particle, at least one glass particle, and at least one of solvents. 1 type and at least 1 type of resin are included. With such a configuration, oxidation of copper during firing in the atmosphere is suppressed, and an electrode with low resistivity can be formed. Furthermore, the formation of a reactant phase between copper and the silicon substrate is suppressed, and a good ohmic contact can be formed between the formed electrode and the silicon substrate. This can be considered as follows, for example.
  • a Cu—Sn alloy phase and a Sn—PO glass phase are formed by a reaction between the phosphorus-containing copper alloy particles and the tin-containing particles.
  • an electrode having a low volume resistivity can be formed.
  • the Cu—Sn alloy phase is generated at a relatively low temperature of about 500 ° C., the electrode can be fired at a low temperature, and the effect of reducing the process cost can be expected.
  • the electrode paste composition further includes nickel-containing particles. As a result, it is considered that the Cu—Sn alloy phase and the nickel-containing particles further react to form a Cu—Sn—Ni alloy phase.
  • this Cu—Sn—Ni alloy phase is formed even at a relatively high temperature such as 800 ° C., it is considered that an electrode having a low volume resistivity can be formed while maintaining oxidation resistance even in a firing process at a higher temperature. . That is, by using the electrode paste composition, it is possible to cope with various conditions from low temperature firing to high temperature firing of the electrode. Therefore, the electrode paste composition can be widely used as an electrode material for solar cells having various structures to be described later.
  • the Cu—Sn—Ni alloy phase forms a dense bulk body in the electrode between the Cu—Sn—Ni alloy phases or together with the Cu—Sn alloy phase that is further formed according to the firing conditions. As a result, an electrode having a low resistivity is formed. Note that even if the Cu—Sn alloy phase and the Cu—Sn—Ni alloy phase coexist in the electrode, it is considered that the function (for example, low volume resistivity) is not lowered.
  • the term “dense bulk body” as used herein means that a massive Cu—Sn alloy phase and a Cu—Sn—Ni alloy phase are in close contact with each other to form a three-dimensionally continuous structure. To do.
  • an electrode is formed on a silicon-containing substrate (hereinafter also simply referred to as “silicon substrate”) using the electrode paste composition
  • an electrode having high adhesion to the silicon substrate can be formed. Good ohmic contact between the silicon substrate and the silicon substrate can be achieved.
  • Phosphorus-containing copper alloy particles, tin-containing particles, and nickel-containing particles react with each other in the firing step to form a Cu—Sn—Ni alloy phase, a Sn—PO glass phase, and a firing condition.
  • An electrode including a Cu—Sn alloy phase is formed. Since the Cu—Sn—Ni alloy phase and the Cu—Sn alloy phase formed according to the firing conditions are dense bulk bodies, this Sn—PO glass phase is composed of the Cu—Sn—Ni alloy phase and the Cu—Sn—Ni alloy phase. It is formed between the silicon substrate or between the Cu—Sn—Ni alloy phase and the Cu—Sn alloy phase and the silicon substrate.
  • the Sn—PO glass phase functions as a barrier layer for preventing mutual diffusion between copper and silicon, a good ohmic contact between the electrode formed by firing and the silicon substrate can be achieved.
  • a reactant phase Cu 3 Si
  • the formation of a reactant phase (Cu 3 Si) formed when an electrode containing copper and silicon are directly contacted and heated is suppressed, and the silicon substrate is not deteriorated without deteriorating semiconductor performance (for example, pn junction characteristics). It is considered that a good ohmic contact can be expressed while maintaining the adhesiveness with.
  • the paste composition for an electrode by combining the tin-containing particles and the nickel-containing particles with the phosphorus-containing copper alloy particles, first, utilizing the reducibility of the phosphorus atoms in the phosphorus-containing copper alloy particles to the copper oxide, An electrode having excellent oxidation resistance and low volume resistivity is formed. Next, a reaction of phosphorus-containing copper alloy particles with tin-containing particles and nickel-containing particles comprises a Cu—Sn—Ni alloy phase and a Cu—Sn alloy phase formed according to firing conditions while keeping the volume resistivity low. A conductive layer and a Sn—PO glass phase are formed.
  • the Sn—PO glass phase functions as a barrier layer for preventing mutual diffusion of copper and silicon, thereby suppressing the formation of a reactant phase between the electrode and the silicon substrate. It can be considered that two characteristic mechanisms that a good ohmic contact with the electrode is formed can be realized in a series of firing steps.
  • Such an effect is generally manifested when an electrode is formed on a substrate containing silicon using the electrode paste composition of the present invention, and the type of substrate containing silicon is particularly limited. Is not to be done.
  • substrate containing silicon the silicon substrate used for manufacture of the silicon substrate for solar cell formation, semiconductor devices other than a solar cell, etc. can be mentioned.
  • the electrode paste composition includes at least one phosphorous-containing copper alloy particle.
  • a brazing material called phosphorus copper brazing (phosphorus concentration: about 7% by mass or less) is known.
  • Phosphorus copper brazing is also used as a bonding agent between copper and copper, but by using phosphorus-containing copper alloy particles in the electrode paste composition of the present invention, the reductivity of phosphorus to copper oxide is utilized.
  • an electrode having excellent oxidation resistance and low volume resistivity can be formed. Further, the electrode can be fired at a low temperature, and the effect that the process cost can be reduced can be obtained.
  • the phosphorus content contained in the phosphorus-containing copper alloy particles in the present invention is preferably 6 mass% or more and 8 mass% or less from the viewpoint of oxidation resistance and low volume resistivity, and is 6.3. It is more preferable that the content is not less than mass% and not more than 7.8 mass%, and it is more preferable that the content is not less than 6.5 mass% and not more than 7.5 mass%.
  • the phosphorus content contained in the phosphorus-containing copper alloy particles is 8% by mass or less, a lower resistivity can be achieved, and the productivity of the phosphorus-containing copper alloy particles is excellent. Moreover, the more outstanding oxidation resistance can be achieved because it is 6 mass% or more.
  • the phosphorus content in the phosphorus-containing copper alloy particles can be measured using a high-frequency inductively coupled plasma atomic emission spectrometry (ICP-AES) apparatus.
  • ICP-AES inductively coupled plasma atomic emission spectrometry
  • the phosphorus-containing copper alloy particles are an alloy containing copper and phosphorus, but may further contain other atoms.
  • Other atoms include Ag, Mn, Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Sn, Al, Zr, W, Mo, Ti, Co, Ni, Au, etc. can be mentioned.
  • the content rate of the other atom contained in the said phosphorus containing copper alloy particle can be 3 mass% or less in the said phosphorus containing copper alloy particle, for example, from a viewpoint of oxidation resistance and a low volume resistivity, It is preferable that it is 1 mass% or less.
  • the phosphorus-containing copper alloy particles may be used singly or in combination of two or more.
  • the average particle diameter of the phosphorus-containing copper alloy particles is not particularly limited, but the average particle diameter when the accumulated weight is 50% (hereinafter sometimes abbreviated as “D50%”) is 0.4 ⁇ m to
  • the thickness is preferably 10 ⁇ m, more preferably 1 ⁇ m to 7 ⁇ m. When the thickness is 0.4 ⁇ m or more, the oxidation resistance is more effectively improved. Moreover, the contact area with phosphorus containing copper alloy particle
  • the average particle size of the phosphorus-containing copper alloy particles is measured with a microtrack particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., MT3300 type).
  • the shape of the phosphorus-containing copper alloy particles is not particularly limited, and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, etc., from the viewpoint of oxidation resistance and low volume resistivity. It is preferably substantially spherical, flat or plate-like.
  • the content of the phosphorus-containing copper alloy particles in the electrode paste composition is not particularly limited. From the viewpoint of low volume resistivity, it is preferably 15% by mass to 75% by mass, more preferably 18% by mass to 70% by mass, and more preferably 20% by mass to 65% by mass in the electrode paste composition. More preferably, it is% or less.
  • the content of the phosphorus-containing copper alloy particles in the electrode paste composition can be measured using a high frequency inductively coupled plasma optical emission spectrometry (ICP-AES) apparatus or a high frequency inductively coupled plasma mass spectrometer (ICP-MS) apparatus.
  • ICP-AES high frequency inductively coupled plasma optical emission spectrometry
  • ICP-MS high frequency inductively coupled plasma mass spectrometer
  • the phosphorus-containing copper alloy can be manufactured by a commonly used method.
  • the phosphorus-containing copper alloy particles can be prepared using a normal method of preparing metal powder using a phosphorus-containing copper alloy prepared so as to have a desired phosphorus content, for example, a water atomization method Can be produced by a conventional method.
  • a water atomization method can be produced by a conventional method.
  • the description of Metal Handbook (Maruzen Co., Ltd. Publishing Division) can be referred to.
  • the desired phosphorus-containing copper alloy particles can be produced by dissolving the phosphorus-containing copper alloy, pulverizing this by nozzle spraying, and drying and classifying the obtained powder.
  • grains which have a desired average particle diameter can be manufactured by selecting classification conditions suitably.
  • the electrode paste composition includes at least one kind of tin-containing particles. By including the tin-containing particles, an electrode having a low volume resistivity can be formed in the firing step described later.
  • the tin-containing particles are not particularly limited as long as they contain tin. Among these, at least one selected from the group consisting of tin particles and tin alloy particles is preferable, and at least one selected from the group consisting of tin particles and tin alloy particles having a tin content of 1% by mass or more. It is more preferable.
  • the purity of tin in the tin particles is not particularly limited.
  • the purity of the tin particles can be 95% by mass or more, preferably 97% by mass or more, and more preferably 99% by mass or more.
  • the type of alloy is not particularly limited as long as the tin alloy particles are alloy particles containing tin.
  • the tin alloy particles are preferably tin alloy particles having a content of 1% by mass or more. Is more preferably 3% by mass or more of tin alloy particles, further preferably tin alloy particles having a tin content of 5% by mass or more, and tin content of 10% by mass or more. Particularly preferred are alloy particles.
  • the tin content in the tin-containing particles can be measured using a fluorescent X-ray analysis (XRF) apparatus (for example, MESA-500W type manufactured by Horiba, Ltd.).
  • XRF fluorescent X-ray analysis
  • Tin alloy particles include Sn—Ag alloy, Sn—Cu alloy, Sn—Ag—Cu alloy, Sn—Ag—Sb alloy, Sn—Ag—Sb—Zn alloy, Sn—Ag—Cu—. Zn alloy, Sn—Ag—Cu—Sb alloy, Sn—Ag—Bi alloy, Sn—Bi alloy, Sn—Ag—Cu—Bi alloy, Sn—Ag—In—Bi alloy, Sn— Sb alloy, Sn—Bi—Cu alloy, Sn—Bi—Cu—Zn alloy, Sn—Bi—Zn alloy, Sn—Bi—Sb—Zn alloy, Sn—Zn alloy, Sn—In alloy Alloy, Sn—Zn—In alloy, Sn—Pb alloy and the like.
  • tin alloy particles in particular, Sn-3.5Ag, Sn-0.7Cu, Sn-3.2Ag-0.5Cu, Sn-4Ag-0.5Cu, Sn-2.5Ag-0.8Cu-0 .5Sb, Sn-2Ag-7.5Bi, Sn-3Ag-5Bi, Sn-58Bi, Sn-3.5Ag-3In-0.5Bi, Sn-3Bi-8Zn, Sn-9Zn, Sn-52In, Sn-40Pb
  • Such tin alloy particles have the same or lower melting point as Sn (232 ° C.).
  • these tin alloy particles can be suitably used in that they can melt at the initial stage of firing to cover the surface of the phosphorus-containing copper alloy particles and react uniformly with the phosphorus-containing copper alloy particles.
  • the tin alloy particles for example, Sn-AX-BY-CZ, the tin alloy particles contain A mass% of element X, B mass% of element Y, and C mass% of element Z.
  • these tin-containing particles may be used alone or in combination of two or more.
  • the tin-containing particles may further contain other atoms inevitably mixed.
  • Other atoms inevitably mixed include Ag, Mn, Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Al, Zr, W , Mo, Ti, Co, Ni, Au and the like.
  • the content of other atoms contained in the tin-containing particles can be, for example, 3% by mass or less in the tin-containing particles, and 1% by mass from the viewpoint of the melting point and the reactivity with the phosphorus-containing copper alloy particles. The following is preferable.
  • the average particle diameter of the tin-containing particles is not particularly limited, but D50% is preferably 0.5 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 15 ⁇ m, and even more preferably 5 ⁇ m to 15 ⁇ m. .
  • D50% is preferably 0.5 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 15 ⁇ m, and even more preferably 5 ⁇ m to 15 ⁇ m. .
  • the thickness is 0.5 ⁇ m or more, the oxidation resistance of the tin-containing particles themselves is improved.
  • the shape of the tin-containing particles is not particularly limited, and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, etc., but from the viewpoint of oxidation resistance and low volume resistivity, It is preferably substantially spherical, flat or plate-like.
  • the content ratio of the tin-containing particles in the electrode paste composition is not particularly limited. Among them, the content of the tin-containing particles when the total content of the phosphorus-containing copper alloy particles, the tin-containing particles, and the nickel-containing particles is 100% by mass is 5% by mass to 70% by mass. It is preferably 7% by mass or more and 65% by mass or less, more preferably 9% by mass or more and 60% by mass or less, and particularly preferably 9% by mass or more and 45% by mass or less.
  • the reaction with the phosphorus-containing copper alloy particles and the nickel-containing particles can be caused more uniformly. Further, when the content of tin-containing particles is 70% by mass or less, a sufficient volume of Cu—Sn alloy phase and Cu—Sn—Ni alloy phase can be formed, and the volume resistivity of the electrode is further reduced.
  • the content of tin-containing particles in the electrode paste composition can be measured using a high-frequency inductively coupled plasma emission spectroscopy (ICP-AES) apparatus or a high-frequency inductively coupled plasma mass spectrometer (ICP-MS) apparatus.
  • ICP-AES high-frequency inductively coupled plasma emission spectroscopy
  • ICP-MS high-frequency inductively coupled plasma mass spectrometer
  • the electrode paste composition of the present invention contains at least one kind of nickel-containing particles.
  • nickel-containing particles in addition to phosphorus-containing copper alloy particles and tin-containing particles, oxidation resistance at higher temperatures can be expressed in the firing step.
  • the nickel-containing particles are not particularly limited as long as the particles contain nickel. Among these, at least one selected from the group consisting of nickel particles and nickel alloy particles is preferable, and at least one selected from the group consisting of nickel particles and nickel alloy particles having a nickel content of 1% by mass or more. Is preferred.
  • the nickel purity in the nickel particles is not particularly limited.
  • the purity of the nickel particles can be 95% by mass or more, preferably 97% by mass or more, and more preferably 99% by mass or more.
  • the type of alloy is not limited as long as the nickel alloy particles are alloy particles containing nickel.
  • the nickel alloy particles preferably have a nickel content of 1% by mass or more. More preferably, the nickel alloy particles have a nickel content of 3% by mass or more, more preferably nickel alloy particles having a nickel content of 5% by mass or more, and a nickel content of 10% by mass. It is particularly preferable that the nickel alloy particles be at least%.
  • the nickel content in the nickel-containing particles can be measured using a fluorescent X-ray analysis (XRF) apparatus (for example, MESA-500W type manufactured by Horiba, Ltd.).
  • XRF fluorescent X-ray analysis
  • nickel alloy particles examples include Ni—Fe alloys, Ni—Cu alloys, Ni—Cu—Zn alloys, Ni—Cr alloys, Ni—Cr—Ag alloys, and the like.
  • nickel alloy particles such as Ni-58Fe, Ni-75Cu, Ni-6Cu-20Zn can be suitably used in that they can uniformly react with phosphorus-containing copper alloy particles and tin-containing particles.
  • the nickel alloy particles include the elements X containing A mass%, the element Y containing B mass%, and the element Z containing C mass%.
  • these nickel-containing particles may be used alone or in combination of two or more.
  • the nickel-containing particles may further contain other atoms inevitably mixed.
  • Other atoms inevitably mixed include Ag, Mn, Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Al, Zr, W , Mo, Ti, Co, Sn, Au and the like.
  • the content of other atoms contained in the nickel-containing particles can be, for example, 3% by mass or less in the nickel-containing particles, from the viewpoint of the melting point and the reactivity with the phosphorus-containing copper alloy particles and the tin-containing particles. It is preferable that it is 1 mass% or less.
  • the average particle diameter of the nickel-containing particles is not particularly limited, but as D50%, it is preferably 0.5 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 15 ⁇ m, and even more preferably 5 ⁇ m to 15 ⁇ m. .
  • the thickness is 0.5 ⁇ m or more, the oxidation resistance of the nickel-containing particles themselves is improved.
  • grains in an electrode becomes large because it is 20 micrometers or less, and reaction with phosphorus containing copper alloy particle
  • the shape of the nickel-containing particles is not particularly limited, and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like, from the viewpoint of oxidation resistance and low volume resistivity.
  • a spherical shape, a flat shape, or a plate shape is preferable.
  • the content ratio of the nickel-containing particles in the electrode paste composition is not particularly limited.
  • the content of the nickel-containing particles is preferably 10% by mass or more and 60% by mass or less when the total content of the phosphorus-containing copper alloy particles, the tin-containing particles, and the nickel-containing particles is 100% by mass.
  • the content is more preferably 12% by mass or more and 55% by mass or less, further preferably 15% by mass or more and 50% by mass or less, and particularly preferably 15% by mass or more and 35% by mass or less.
  • the content of the nickel-containing particles By setting the content of the nickel-containing particles to 10% by mass or more, the Cu—Sn—Ni alloy phase can be formed more uniformly. Further, when the content of nickel-containing particles is 70% by mass or less, a sufficient volume of Cu—Sn—Ni alloy phase can be formed, and the volume resistivity of the electrode is further reduced.
  • the content of nickel-containing particles in the electrode paste composition can be measured using a high-frequency inductively coupled plasma optical emission spectrometry (ICP-AES) apparatus or a high-frequency inductively coupled plasma mass spectrometer (ICP-MS) apparatus.
  • ICP-AES high-frequency inductively coupled plasma optical emission spectrometry
  • ICP-MS high-frequency inductively coupled plasma mass spectrometer
  • the content ratio of tin-containing particles and nickel-containing particles in the electrode paste composition is not particularly limited. From the viewpoint of adhesion to the silicon substrate, the mass ratio of nickel-containing particles to tin-containing particles (nickel-containing particles / tin-containing particles) is preferably 0.3 to 4.0, preferably 0.4 to 3.0. It is more preferable that
  • the content ratio of the phosphorus-containing copper alloy particles, the tin-containing particles and the nickel-containing particles in the electrode paste composition is not particularly limited.
  • the mass ratio of the total amount of tin-containing particles and nickel-containing particles to the phosphorus-containing copper alloy particles is preferably 0.4 to 1.8, more preferably 0.6 to 1.4.
  • the ratio of the average particle diameter of tin-containing particles (D50%) and the average particle diameter of nickel-containing particles (D50%) in the electrode paste composition is not particularly limited. From the viewpoint of the uniformity of the Sn—PO glass phase formed and the adhesion to the silicon substrate, the ratio of the average particle diameter (D50%) of the nickel-containing particles to the average particle diameter (D50%) of the tin-containing particles ( (Nickel-containing particles / tin-containing particles) is preferably from 0.05 to 20, more preferably from 0.5 to 10.
  • the ratio of the average particle size (D50%) of the phosphorus-containing copper alloy and the average particle size (D50%) of the tin-containing particles in the electrode paste composition is not particularly limited. From the viewpoint of the low volume resistivity of the electrode formed under high-temperature firing conditions and the adhesion to the silicon substrate, the average particle size (D50%) of the tin-containing particles relative to the average particle size (D50%) of the phosphorus-containing copper alloy particles The ratio (tin-containing particles / phosphorus-containing copper alloy particles) is preferably 0.03 to 30, and more preferably 0.1 to 10.
  • the ratio of the average particle size (D50%) of the phosphorus-containing copper alloy and the average particle size (D50%) of the nickel-containing particles in the electrode paste composition is not particularly limited. From the viewpoint of the low volume resistivity of the electrode formed under high-temperature firing conditions, the ratio of the average particle diameter (D50%) of the nickel-containing particles to the average particle diameter (D50%) of the phosphorus-containing copper alloy particles (nickel-containing particles / phosphorus) Containing copper alloy particles) is preferably 0.02 to 20, more preferably 0.1 to 10.
  • the electrode paste composition includes at least one glass particle.
  • the electrode paste composition contains glass particles, the adhesion between the electrode portion and the substrate is improved during firing. Also.
  • the silicon nitride film as the antireflection film is removed by so-called fire-through during firing, and an ohmic contact between the electrode and the silicon substrate is formed.
  • the glass particles are glass particles containing glass having a glass softening point of 650 ° C. or lower and a crystallization start temperature exceeding 650 ° C. from the viewpoint of reducing the adhesion to the silicon substrate and the volume resistivity of the electrode. It is preferable.
  • the glass softening point is measured by a usual method using a thermomechanical analyzer (TMA) (for example, TMA-60 manufactured by Shimadzu Corporation).
  • TMA-60 thermomechanical analyzer
  • the crystallization start temperature is measured by a usual method using a differential thermal-thermogravimetric analyzer (TG-DTA) (for example, DTG-60H type manufactured by Shimadzu Corporation).
  • a temperature corresponding to the intersection can be set as a glass softening point.
  • confirm the exothermic peak from the analysis curve by TG-DTA find the intersection of tangents at the two points of contact between the start of exotherm and after the start of exotherm to the exothermic peak, and calculate the temperature corresponding to the intersection
  • the crystallization start temperature can be set.
  • the glass particles are softened or melted at the electrode forming temperature, oxidize the contacted silicon nitride film, and incorporate the oxidized silicon dioxide.
  • glass particles usually used in the technical field can be used without particular limitation.
  • glass particles contained in an electrode paste composition are composed of glass containing lead because silicon dioxide can be efficiently taken up.
  • glass containing lead examples include those described in Japanese Patent No. 03050064, and these can also be suitably used in the present invention.
  • lead-free glass that does not substantially contain lead in consideration of the influence on the environment.
  • Examples of the lead-free glass include the lead-free glass described in paragraphs 0024 to 0025 of JP-A-2006-313744 and the lead-free glass described in JP-A-2009-188281. It is also preferable to select the glass appropriately and apply it to the present invention.
  • the electrode paste composition is used as an electrode other than the electrode on the solar cell light-receiving surface side, such as a back surface extraction electrode, a through-hole electrode and a back electrode in a back contact type solar cell element, it is necessary for a fire-through such as lead. Glass particles which do not contain any components can be used.
  • glass particles containing at least one glass component selected from the group consisting of SiO 2 , P 2 O 5 , Al 2 O 3 , B 2 O 3 , V 2 O 5 , Bi 2 O 3 , ZnO and PbO are more preferably used.
  • glass particles containing at least one glass component selected from the group consisting of SiO 2 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 and PbO are more preferably used.
  • the softening point is more effectively lowered.
  • the wettability with phosphorus-containing copper alloy particles, tin-containing particles, nickel-containing particles and silver particles contained as required is improved, sintering between the particles proceeds in the firing process, and the volume resistivity is lower.
  • An electrode can be formed.
  • glass particles containing phosphorous pentoxide (phosphate glass, P 2 O 5 glass particles) are preferable.
  • diphosphorus pentoxide divanadium pentoxide is used.
  • glass particles P 2 O 5 —V 2 O 5 glass particles.
  • diphosphorus pentoxide-divanadium pentoxide glass particles P 2 O 5 —V 2 O 5 glass particles
  • the content of divanadium pentoxide is 1% by mass or more based on the total mass of the glass. It is preferably 1% by mass to 70% by mass.
  • the average particle diameter of the glass particles in the present invention is not particularly limited, but the average particle diameter (D50%) when the integrated weight is 50% is preferably 0.5 ⁇ m or more and 10 ⁇ m or less. More preferably, it is 8 ⁇ m or more and 8 ⁇ m or less.
  • the thickness is 0.5 ⁇ m or more, workability at the time of preparing the electrode paste composition is improved.
  • it is 10 ⁇ m or less, it can be uniformly dispersed in the electrode paste composition, fire-through can be efficiently generated in the firing step, and adhesion to the silicon substrate is also improved.
  • the shape of the glass particles is not particularly limited, and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like, from the viewpoint of oxidation resistance and low volume resistivity. It is preferably substantially spherical, flat, or plate-shaped.
  • the content of the glass particles is preferably 0.1% by mass to 10% by mass, more preferably 0.5% by mass to 8% by mass, based on the total mass of the electrode paste composition. More preferably, the content is 8% by mass to 8% by mass.
  • the content of the glass particles in the electrode paste composition can be measured using a high frequency inductively coupled plasma optical emission spectrometer (ICP-AES) apparatus or a high frequency inductively coupled plasma mass spectrometer (ICP-MS) apparatus.
  • ICP-AES high frequency inductively coupled plasma optical emission spectrometer
  • ICP-MS high frequency inductively coupled plasma mass spectrometer
  • the ratio of the glass particle content to the total content of phosphorus-containing copper alloy particles, tin-containing particles, nickel-containing particles, and silver particles contained as necessary is 0.01 to 0.15. It is preferable that it is 0.03 to 0.12.
  • glass particles with a content in such a range oxidation resistance, low volume resistivity of the electrode, and low contact resistivity are achieved more effectively, and the phosphorus-containing copper alloy particles, the tin-containing particles, and The reaction between the nickel-containing particles can be promoted.
  • the ratio of the average particle diameter (D50%) of the glass particles to the average particle diameter (D50%) of the phosphorus-containing copper alloy particles is preferably 0.05 to 100, preferably 0.1 to More preferably, it is 20.
  • glass particles in such a range oxidation resistance, low volume resistivity of the electrode, and low contact resistivity can be achieved more effectively, and the phosphorus-containing copper alloy particles, the tin-containing particles, and the nickel-containing particles. The reaction between can be promoted.
  • the electrode paste composition of the present invention contains at least one solvent and at least one resin. Thereby, the liquid physical properties (viscosity, surface tension, etc.) of the electrode paste composition can be adjusted to the required liquid physical properties depending on the application method when applying to a silicon substrate or the like.
  • Solvents include hydrocarbon solvents such as hexane, cyclohexane and toluene; halogenated hydrocarbon solvents such as dichloroethylene, dichloroethane and dichlorobenzene; tetrahydrofuran, furan, tetrahydropyran, pyran, dioxane, 1,3-dioxolane, trioxane, etc.
  • Cyclic ether solvents such as: amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide; sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide; ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone and cyclohexanone; Alcohol compounds such as ethanol, 2-propanol, 1-butanol, diacetone alcohol; 2,2,4-trimethyl-1,3-pentanediol monoacetate, 2,2,4-tri Til-1,3-pentanediol monopropiolate, 2,2,4-trimethyl-1,3-pentanediol monobutyrate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, Ester solvents of polyhydric alcohols such as 2,2,4-triethyl-1,3-pentanediol
  • a polyhydric alcohol ester solvent, a terpene solvent, and a polyhydric alcohol ether solvent are used. It is preferably at least one selected, and more preferably at least one selected from the group consisting of ester solvents of polyhydric alcohols and terpene solvents.
  • the said solvent may be used individually by 1 type or in combination of 2 or more types.
  • any resin that is usually used in the technical field can be used without particular limitation as long as it is a resin that can be thermally decomposed by baking treatment, and it may be a natural polymer compound or a synthetic polymer compound.
  • the resin include cellulose resins such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and nitrocellulose; polyvinyl alcohols; polyvinyl pyrrolidones; acrylic resins; vinyl acetate-acrylate copolymers; butyral resins such as polyvinyl butyral; Examples thereof include alkyd resins such as phenol-modified alkyd resins and castor oil fatty acid-modified alkyd resins; epoxy resins; phenol resins; rosin ester resins.
  • the resin in the present invention is preferably at least one selected from the group consisting of a cellulose resin and an acrylic resin from the viewpoint of disappearance at the time of firing.
  • the said resin may be used individually by 1 type or in combination of 2 or more types.
  • the weight average molecular weight of the resin in the present invention is not particularly limited. Among them, the weight average molecular weight is preferably from 5,000 to 500,000, and more preferably from 10,000 to 300,000. It can suppress that the viscosity of the paste composition for electrodes increases that the weight average molecular weight of the said resin is 5000 or more. This can be considered because, for example, the three-dimensional repulsion when adsorbed on phosphorus-containing copper alloy particles, tin-containing particles, and nickel-containing particles is insufficient, and the particles aggregate. On the other hand, when the weight average molecular weight of the resin is 500000 or less, aggregation of the resins in the solvent is suppressed, and increase in the viscosity of the electrode paste composition can be suppressed.
  • the weight average molecular weight of the resin is 500,000 or less, it is suppressed that the resin combustion temperature becomes high, and the resin is not completely burned when the electrode paste composition is fired, and remains as a foreign substance. And the electrode can be formed with a lower volume resistivity.
  • the contents of the solvent and the resin can be appropriately selected according to the desired liquid properties and the type of solvent and resin used.
  • the total content of the solvent and the resin is preferably 3% by mass or more and 29.9% by mass or less, and more preferably 5% by mass or more and 25% by mass or less, based on the total mass of the electrode paste composition.
  • it is 7 mass% or more and 20 mass% or less.
  • the application suitability when applying the electrode paste composition to the silicon substrate is improved, and an electrode having a desired width and height is more easily formed. can do.
  • the total content of phosphorus-containing copper alloy particles, tin-containing particles and nickel-containing particles is 70% by mass or more and 94% by mass from the viewpoint of oxidation resistance and low volume resistivity of the electrode. It is preferable that the glass particle content is 0.1% by mass or more and 10% by mass or less, and the total content of the solvent and the resin is 3% by mass or more and 29.9% by mass or less.
  • the total content of phosphorus-containing copper alloy particles, tin-containing particles and nickel particles is 74% by mass to 88% by mass, the glass particle content is 0.5% by mass to 8% by mass,
  • the total content of the resin and the resin is more preferably 7% by mass or more and 20% by mass or less, and the total content of the phosphorus-containing copper alloy particles, the tin-containing particles, and the nickel-containing particles is 74% by mass or more and 88% by mass or less.
  • Glass particles Content is not more than 8 mass% to 1 mass%, it is more preferable that the total content of the solvent and the resin is 20 mass% or less 7 mass% or more.
  • the electrode paste composition preferably further contains silver particles.
  • silver particles By containing silver particles, the oxidation resistance is further improved, and the volume resistivity of the formed electrode is further reduced.
  • the Ag particles are precipitated in the Sn—PO system glass phase formed by the reaction between the phosphorus-containing copper alloy particles and the tin-containing particles, so that the Cu—Sn—Ni alloy phase in the electrode layer is obtained.
  • the ohmic contact property between the Cu—Sn alloy phase and the silicon substrate is further improved. Furthermore, the effect that the solder connection property at the time of setting it as a solar cell module improves is also acquired.
  • the silver constituting the silver particles may contain other atoms inevitably mixed.
  • Other atoms inevitably mixed include Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Sn, Al, Zr, W, and Mo.
  • Ti, Co, Ni, Au, etc. can be mentioned.
  • the content of other atoms contained in the silver particles can be, for example, 3% by mass or less in the silver particles, and 1% by mass or less from the viewpoint of melting point and low volume resistivity of the electrode. preferable.
  • the average particle diameter of the silver particles in the present invention is not particularly limited, but the average particle diameter (D50%) when the integrated weight is 50% is preferably 0.4 ⁇ m or more and 10 ⁇ m or less, and 1 ⁇ m or more. More preferably, it is 7 ⁇ m or less.
  • the thickness is 0.4 ⁇ m or more, the oxidation resistance is more effectively improved.
  • grains, and nickel particle in an electrode becomes large because it is 10 micrometers or less, and resistivity falls more effectively.
  • the shape of the silver particles is not particularly limited and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like. From the viewpoint of oxidation resistance and low resistivity, the silver particles are substantially spherical. It is preferably flat, plate-like.
  • the electrode paste composition contains silver particles
  • the total content of the phosphorus-containing copper alloy particles, the tin-containing particles, the nickel particles, and the silver particles is 100% by mass.
  • the content of silver particles is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 0.5% by mass or more and 8% by mass or less.
  • the silver particle content in the electrode paste composition can be measured using a fluorescent X-ray analysis (XRF) apparatus (for example, MESA-500W type manufactured by Horiba, Ltd.).
  • XRF fluorescent X-ray analysis
  • the electrode paste composition of the present invention is composed of phosphorus-containing copper alloy particles and tin-containing particles from the viewpoints of oxidation resistance, low volume resistivity of the electrode, and applicability to a silicon substrate.
  • the total content of nickel-containing particles and silver particles is preferably 70% by mass or more and 94% by mass or less, and more preferably 74% by mass or more and 88% by mass or less.
  • the total content of phosphorus-containing copper alloy particles, tin-containing particles, nickel-containing particles and silver particles is 70% by mass or more, it is possible to easily achieve a suitable viscosity when applying the electrode paste composition. it can.
  • the paste composition for an electrode of the present invention further contains silver particles, from the viewpoint of oxidation resistance and low volume resistivity of the electrode, phosphorus-containing copper alloy particles, tin-containing particles, nickel-containing particles and silver particles
  • the total content is 70% by mass to 94% by mass
  • the glass particle content is 0.1% by mass to 10% by mass
  • the total content of the solvent and the resin is 3% by mass to 29%.
  • the total content of phosphorus-containing copper alloy particles, tin-containing particles, nickel-containing particles, and silver particles is preferably 74% by mass or more and 88% by mass or less, and the glass particle content is 0%.
  • the total content of the solvent and the resin is 7% by mass or more and 20% by mass or less, and phosphorus-containing copper alloy particles, tin-containing particles, nickel-containing particles, and
  • the total content of silver particles is 4 mass% or more and 88 mass% or less, the glass particle content is 1 mass% or more and 8 mass% or less, and the total content of the solvent and the resin is 7 mass% or more and 20 mass% or less. Further preferred.
  • the electrode paste composition may further include at least one flux.
  • the flux By including the flux, the oxide film formed on the surface of the phosphorus-containing copper alloy particles can be removed, and the reduction reaction of the phosphorus-containing copper alloy particles during firing can be promoted. Further, since the melting of the tin-containing particles during firing proceeds, the reaction with the phosphorus-containing copper alloy particles proceeds, and as a result, the oxidation resistance is further improved and the resistivity of the formed electrode is further decreased. Furthermore, the effect that the adhesiveness of an electrode material and a silicon substrate improves is also acquired.
  • the flux is not particularly limited as long as it can remove the oxide film formed on the surface of the phosphorus-containing copper alloy particles and promote the melting of the tin-containing particles.
  • Specific examples of the flux include fatty acids, boric acid compounds, fluorinated compounds, borofluorinated compounds, and the like.
  • the flux includes lauric acid, myristic acid, palmitic acid, stearic acid, sorbic acid, stearic acid, propionic acid, boron oxide, potassium borate, sodium borate, lithium borate, potassium borofluoride, borofluoride.
  • Sodium fluoride, lithium borofluoride, acidic potassium fluoride, acidic sodium fluoride, acidic lithium fluoride, potassium fluoride, sodium fluoride, lithium fluoride and the like can be mentioned.
  • potassium borate and potassium borofluoride are particularly preferable fluxes from the viewpoints of heat resistance at the time of firing the electrode material (a property that the flux does not volatilize at low temperatures during firing) and supplementing the oxidation resistance of the phosphorus-containing copper alloy particles.
  • these fluxes may be used alone or in combination of two or more.
  • the content of the flux in the electrode paste composition is a viewpoint that effectively exhibits the oxidation resistance of the phosphorus-containing copper alloy particles and promotes the melting of the tin-containing particles. From the viewpoint of reducing the porosity of the portion where the flux is removed at the completion of firing of the electrode material, it is preferably 0.1% by mass to 5% by mass in the total mass of the electrode paste composition, It is more preferably from 4% by mass to 4% by mass, further preferably from 0.5% by mass to 3.5% by mass, particularly preferably from 0.7% by mass to 3% by mass, and 1% by mass. It is highly preferred that the content be ⁇ 2.5% by mass.
  • the electrode paste composition of the present invention can further contain other components that are usually used in the technical field, if necessary.
  • other components include plasticizers, dispersants, surfactants, inorganic binders, metal oxides, ceramics, and organometallic compounds.
  • the method for producing the electrode paste composition of the present invention By dispersing or mixing phosphorus-containing copper alloy particles, tin-containing particles, nickel-containing particles, glass particles, solvents, resins, silver particles contained as necessary, etc., using a commonly used dispersion method or mixing method. Can be manufactured.
  • the dispersion method and the mixing method are not particularly limited, and can be appropriately selected and applied from commonly used dispersion methods and mixing methods.
  • the electrode paste composition is applied to a region where the electrode is to be formed, dried, and then fired to form an electrode in a desired region. Can do.
  • the paste composition for an electrode an electrode having a low volume resistivity can be formed even when a baking treatment is performed in the presence of oxygen (for example, in the air).
  • the electrode paste composition when a solar cell electrode is formed using the electrode paste composition, the electrode paste composition is applied on a silicon substrate so as to have a desired shape, and dried and fired. Thereby, a solar cell electrode with low resistivity can be formed in a desired shape.
  • an electrode having a low volume resistivity can be formed even when a baking treatment is performed in the presence of oxygen (for example, in the air).
  • the electrode formed on the silicon substrate has excellent adhesion to the silicon substrate, and can achieve a good ohmic contact.
  • Examples of the method for applying the electrode paste composition include screen printing, an inkjet method, a dispenser method, and the like. From the viewpoint of productivity, application by screen printing is preferable.
  • the electrode paste composition When the electrode paste composition is applied by screen printing, the electrode paste composition preferably has a viscosity in the range of 20 Pa ⁇ s to 1000 Pa ⁇ s. The viscosity of the electrode paste composition is measured at 25 ° C. using a Brookfield HBT viscometer.
  • the application amount of the electrode paste composition can be appropriately selected according to the size of the electrode to be formed.
  • the application amount of the electrode paste composition can be 2 g / m 2 to 10 g / m 2, and preferably 4 g / m 2 to 8 g / m 2 .
  • the heat treatment conditions (firing conditions) when forming the electrode using the electrode paste composition of the present invention heat treatment conditions usually used in the technical field can be applied.
  • the heat treatment temperature (firing temperature) is 800 ° C. to 900 ° C., but when using the electrode paste composition of the present invention, a wide range from a heat treatment condition at a lower temperature to a general heat treatment condition. Can be applied to.
  • an electrode having good characteristics can be formed at a wide range of heat treatment temperatures of 450 ° C. to 900 ° C.
  • the heat treatment time can be appropriately selected according to the heat treatment temperature and the like, and can be, for example, 1 second to 20 seconds.
  • any apparatus that can be heated to the above temperature can be used as appropriate, and examples thereof include an infrared heating furnace and a tunnel furnace.
  • An infrared heating furnace is highly efficient because electric energy is directly input to a heating material in the form of electromagnetic waves and is converted into heat energy, and rapid heating is possible in a short time. Further, since there is no product due to combustion and non-contact heating, it is possible to suppress contamination of the generated electrode.
  • the tunnel furnace automatically and continuously conveys the sample from the entrance to the exit and fires it, it can be fired uniformly by dividing the furnace body and controlling the transport speed. From the viewpoint of the power generation performance of the solar cell element, it is preferable to perform heat treatment with a tunnel furnace.
  • the solar cell element of the present invention has at least a silicon substrate having a pn junction and an electrode that is a fired product of the electrode paste composition applied on the silicon substrate. Thereby, the solar cell element which has a favorable characteristic is obtained, and it is excellent in productivity of this solar cell element.
  • a solar cell element means what has the silicon substrate in which the pn junction was formed, and the electrode formed on the silicon substrate.
  • the solar cell is a state in which a wiring material is provided on the electrode of the solar cell element, and a plurality of solar cell elements are connected through the wiring material as necessary, and is sealed with a sealing resin or the like Means things.
  • FIGS. 1-10 A sectional view showing an example of a typical solar cell element, and outlines of a light receiving surface and a back surface are shown in FIGS.
  • an n + -type diffusion layer 2 is formed near the surface of one surface of the semiconductor substrate 1, and an output extraction electrode 4 and an antireflection film 3 are formed on the n + -type diffusion layer 2. Is formed.
  • a p + type diffusion layer 7 is formed in the vicinity of the surface of the other surface, and a back surface output extraction electrode 6 and a back surface collecting electrode 5 are formed on the p + type diffusion layer 7.
  • a single crystal or polycrystalline silicon is used for the semiconductor substrate 1 of the solar cell element.
  • the semiconductor substrate 1 contains boron and constitutes a p-type semiconductor.
  • irregularities are formed by an etching solution made of NaOH and IPA (isopropyl alcohol). Phosphorus or the like is doped on the light receiving surface side, the n + diffusion layer 2 is provided with a thickness of the order of submicron, and a pn junction is formed at the boundary with the p-type bulk portion. Further, on the light receiving surface side, an antireflection film 3 such as silicon nitride is provided on the n + diffusion layer 2 with a film thickness of about 90 nm by PECVD or the like.
  • the light-receiving surface electrode 4 and the back surface output extraction electrode 6 are formed from the electrode paste composition.
  • the back current collecting electrode 5 is formed of an aluminum electrode paste composition containing glass powder.
  • the paste composition is applied to a desired pattern by screen printing or the like, dried, and then in the atmosphere. It may be formed by firing at about 450 ° C. to 900 ° C. at the same time.
  • an electrode having excellent resistivity and contact resistivity can be formed even when fired at a relatively low temperature.
  • the glass particles contained in the electrode paste composition forming the light receiving surface electrode 4 react with the antireflection layer 3 (fire-through), and the light receiving surface electrode 4 and the n +
  • the diffusion layer 2 is electrically connected (ohmic contact).
  • the light-receiving surface electrode 4 is formed using the electrode paste composition, so that copper is suppressed as a conductive metal, and copper oxidation is suppressed. , Formed with good productivity.
  • the formed electrode includes a Cu—Sn—Ni alloy phase and, if necessary, a Cu—Sn alloy phase and a Sn—P—O glass phase, Sn—P— More preferably, the O glass phase is disposed between the Cu—Sn alloy phase or the Cu—Sn—Ni alloy phase and the silicon substrate (not shown). Thereby, reaction with copper and a silicon substrate is suppressed, and the electrode which has low volume resistivity and is excellent in adhesiveness can be formed.
  • aluminum in the aluminum electrode paste composition that forms the back current collecting electrode 5 during firing diffuses to the back surface of the semiconductor substrate 1 to form the p + diffusion layer 7.
  • An ohmic contact can be obtained between the substrate 1, the back surface collecting electrode 5, and the back surface output extraction electrode 6.
  • the aluminum electrode paste composition for forming the back surface collecting electrode 5 is first printed, and after drying, the atmosphere After baking at about 750 ° C. to 900 ° C. to form the back surface collecting electrode 5, the electrode paste composition of the present invention is printed on the light receiving surface side and back surface side, and after drying, 450 ° C. to 650 ° C. in the atmosphere.
  • a method of forming the light-receiving surface electrode 4 and the back surface output extraction electrode 6 by firing at a degree is mentioned.
  • This method is effective in the following cases, for example. That is, when the aluminum electrode paste for forming the back current collecting electrode 5 is fired, at a firing temperature of 650 ° C. or less, depending on the composition of the aluminum paste, the sintering of aluminum particles and the amount of aluminum diffusion into the semiconductor substrate 1 may be In some cases, the p + diffusion layer cannot be sufficiently formed. In this state, the ohmic contact cannot be sufficiently formed between the semiconductor substrate 1 on the back surface, the back surface collecting electrode 5 and the back surface output extraction electrode 6, and the power generation performance as a solar cell element may be lowered. Therefore, after forming the back current collecting electrode 5 at an optimum firing temperature (for example, 750 ° C.
  • the electrode paste composition is printed and dried at a relatively low temperature (450 ° C. It is preferable to form the light receiving surface electrode 4 and the back surface output extraction electrode 6 by baking at ⁇ 650 ° C.).
  • FIG. 4 is a schematic plan view of a back-side electrode structure common to a so-called back contact solar cell element according to another embodiment of the present invention, and FIG. 4 shows an outline of a solar cell element which is a back contact solar cell element according to another embodiment.
  • the perspective view which shows a structure is shown in FIG.5, FIG6 and FIG.7, respectively. 5, 6, and 7 are perspective views taken along a section AA in FIG. 4.
  • through holes are formed in the semiconductor substrate 1 so as to penetrate both the light receiving surface side and the back surface side by laser drilling or etching. Further, a texture (not shown) for improving the light incident efficiency is formed on the light receiving surface side. Further, an n + diffusion layer 2 by n-type diffusion treatment is formed on the light receiving surface side, and an antireflection film (not shown) is formed on the n + diffusion layer 2. These are manufactured by the same process as a conventional crystalline silicon type solar cell element.
  • the electrode paste composition of the present invention is filled into the previously formed through-holes by a printing method or an ink jet method, and the electrode paste composition of the present invention is also formed in a grid on the light receiving surface side.
  • the composition layer which is printed and forms the through-hole electrode 9 and the light receiving surface collecting electrode 8 is formed.
  • the paste used for filling and printing it is desirable to use a paste having an optimum composition for each process including viscosity, but filling and printing may be performed collectively with the paste having the same composition. .
  • an n + diffusion layer 2 and a p + diffusion layer 7 for preventing carrier recombination are formed on the back surface side.
  • boron (B) or aluminum (Al) is used as an impurity element for forming the p + diffusion layer 7.
  • the p + diffusion layer 7 may be formed by performing a thermal diffusion process using, for example, boron as a diffusion source in a solar cell element manufacturing process before forming the antireflection film, or using aluminum.
  • an aluminum paste may be printed and fired on the opposite surface side.
  • the back electrode On the back side, as shown in the plan view of FIG. 4, by printing the electrode paste composition of the present invention on the n + diffusion layer 2 and the p + diffusion layer 7 in a stripe shape, respectively, 11 is formed.
  • the p + diffusion layer 7 is formed using an aluminum paste
  • the back electrode may be formed using the electrode paste composition only on the n + diffusion layer 2 side.
  • the aluminum paste is first printed and fired from the viewpoint of aluminum sinterability and ohmic contact between the back electrode and the p + diffusion layer 7.
  • One of the back electrodes is formed by the following, and then the electrode paste composition for electrode, the through-hole electrode 9 and the other of the back electrodes are formed by printing, filling and baking the electrode paste composition. Good.
  • the solar cell element having the structure shown in the perspective view of FIG. 6 can be manufactured in the same manner as the solar cell element having the structure shown in the perspective view of FIG. 5 except that the light receiving surface collecting electrode is not formed. it can. That is, in the solar cell element having the structure shown in the perspective view of FIG. 6, the electrode paste composition of the present invention can be used for the through-hole electrode 9 and the back electrodes 10 and 11.
  • the solar cell element having the structure shown in the perspective view of FIG. 7 has the structure shown in the perspective view of FIG. 5 except that an n-type silicon substrate is used as the base semiconductor substrate and no through hole is formed. It can be manufactured in the same manner as a solar cell element having That is, in the solar cell element having the structure shown in the perspective view of FIG. 7, the electrode paste composition of the present invention can be used for the back electrodes 10 and 11.
  • the electrode paste composition is not limited to the use of solar cell electrodes as described above, but is used for electrode wiring and shield wiring of plasma displays, ceramic capacitors, antenna circuits, various sensor circuits, and heat dissipation of semiconductor devices. It can be suitably used for applications such as materials. Among these, it can be suitably used particularly when an electrode is formed on a substrate containing silicon.
  • the solar cell of the present invention includes at least one of the solar cell elements, and is configured by arranging a wiring material on the electrode of the solar cell element. If necessary, the solar cell may be constituted by connecting a plurality of solar cell elements via a wiring material and further sealing with a sealing material.
  • the wiring material and the sealing material are not particularly limited, and can be appropriately selected from those usually used in the industry.
  • Example 1 Preparation of electrode paste composition
  • a phosphorus-containing copper alloy containing 7% by mass of phosphorus was prepared by a conventional method, dissolved and powdered by a water atomizing method, and then dried and classified. The classified powders were blended, deoxygenated and dehydrated to produce phosphorus-containing copper alloy particles containing 7% by mass of phosphorus.
  • the average particle diameter (D50%) of the phosphorus-containing copper alloy particles was 5.0 ⁇ m, and the shape thereof was substantially spherical.
  • the shape of the phosphorus-containing copper alloy particles was determined by observation using a TM-1000 scanning electron microscope manufactured by Hitachi High-Technologies Corporation.
  • the average particle size of the phosphorus-containing copper alloy particles was calculated using a LS 13 320 type laser scattering diffraction particle size distribution measuring device (measurement wavelength: 632 nm) manufactured by Beckman Coulter, Inc.
  • a glass composed of 9 parts of zinc oxide (ZnO) (hereinafter sometimes abbreviated as “G01”) was prepared.
  • the obtained glass G01 had a softening point of 420 ° C. and a crystallization temperature of over 650 ° C.
  • Glass G01 particles having an average particle diameter (D50%) of 2.5 ⁇ m were obtained using the obtained glass G01.
  • the shape was substantially spherical.
  • the glass particle shape was determined by observing with a TM-1000 scanning electron microscope manufactured by Hitachi High-Technologies Corporation.
  • the average particle diameter of the glass particles was calculated using a LS 13 320 type laser scattering diffraction particle size distribution analyzer (measurement wavelength: 632 nm) manufactured by Beckman Coulter, Inc.
  • the softening point of the glass particles was obtained from a differential heat (DTA) curve using a DTG-60H type differential heat-thermogravimetric simultaneous measuring device manufactured by Shimadzu Corporation.
  • FIG. 1 A p-type semiconductor substrate having a film thickness of 190 ⁇ m having an n + diffusion layer, a texture and an antireflection film (silicon nitride film) formed on the light receiving surface is prepared and cut into a size of 125 mm ⁇ 125 mm It was.
  • the electrode paste composition 1 obtained above was printed on the light receiving surface so as to have an electrode pattern as shown in FIG.
  • the electrode pattern was composed of a finger line with a width of 150 ⁇ m and a bus bar with a width of 1.5 mm, and the printing conditions (screen plate mesh, printing speed, printing pressure) were appropriately adjusted so that the film thickness after firing was 20 ⁇ m. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.
  • the electrode paste composition 1 and the aluminum electrode paste are formed on the surface opposite to the light receiving surface (hereinafter also referred to as “back surface”) by screen printing in the same manner as described above, and the electrodes as shown in FIG. It printed so that it might become a pattern.
  • the pattern of the back surface output extraction electrode made of the electrode paste composition 1 was composed of 123 mm ⁇ 5 mm, and was printed in two places in total.
  • the printing conditions (screen plate mesh, printing speed, printing pressure) were appropriately adjusted so that the back surface output extraction electrode had a film thickness after firing of 20 ⁇ m.
  • an aluminum electrode paste was printed on the entire surface other than the back surface output extraction electrode to form a back surface current collecting electrode pattern.
  • the printing conditions of the aluminum electrode paste were appropriately adjusted so that the film thickness of the back surface collecting electrode after firing was 30 ⁇ m. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.
  • a heat treatment (firing) is performed at a firing maximum temperature of 800 ° C. and a holding time of 10 seconds in an air atmosphere to form a desired electrode
  • the produced solar cell element 1 was produced.
  • Example 2 a solar cell element 2 was produced in the same manner as in Example 1 except that the firing condition at the time of electrode formation was changed from a maximum temperature of 800 ° C. for 10 seconds to a maximum temperature of 850 ° C. for 8 seconds.
  • Example 3 In Example 1, except that the phosphorus content of the phosphorus-containing copper alloy particles was changed from 7% by mass to 6% by mass, an electrode paste composition 3 was prepared in the same manner as in Example 1, and the solar cell element 3 was produced.
  • Example 4 In Example 1, except that the phosphorus content of the phosphorus-containing copper alloy particles was changed from 7% by mass to 8% by mass, an electrode paste composition 4 was prepared in the same manner as in Example 1, and the solar cell element 4 was produced.
  • Example 5 the electrode paste composition 5 was prepared in the same manner as in Example 1 except that the firing conditions at the time of electrode formation were changed from the maximum temperature of 800 ° C. for 10 seconds to the maximum temperature of 850 ° C. for 8 seconds.
  • the solar cell element 5 was prepared.
  • Example 6> In Example 1, except that the average particle diameter (D50%) of the phosphorus-containing copper alloy particles was changed from 5.0 ⁇ m to 1.5 ⁇ m, the electrode paste composition 6 was prepared in the same manner as in Example 1. A solar cell element 6 was produced.
  • Example 7 In Example 1, the contents of phosphorus-containing copper alloy particles, tin-containing particles, and nickel-containing particles were changed, so that the content of phosphorus-containing copper alloy particles was 36.5 parts and the content of tin-containing particles was 25.4.
  • the paste composition 7 for electrodes was prepared and the solar cell element 7 was produced like Example 1 except having made the nickel content particle
  • Example 8> In Example 1, the contents of phosphorus-containing copper alloy particles, tin-containing particles, and nickel-containing particles were changed, the content of phosphorus-containing copper alloy particles was 46.5 parts, and the content of tin-containing particles was 9.4.
  • the paste composition 8 for electrodes was prepared and the solar cell element 8 was produced like Example 1 except having made 22.4 parts of nickel content particle
  • Example 9 tin alloy particles made of Sn-4Ag-0.5Cu (an alloy containing 4 mass% of Ag and 0.5 mass% of Cu in Sn) instead of tin particles (Sn) were used as tin-containing particles.
  • An electrode paste composition 9 was prepared in the same manner as in Example 1 except that the average particle size (D50%) was 8.0 ⁇ m, and a solar cell element 9 was produced.
  • Example 10 In Example 1, nickel alloy particles made of Ni-60Cu (an alloy containing 60% by mass of Cu in Ni) are used as nickel-containing particles instead of nickel particles (Ni), and the average particle diameter (D50%) is 7 Except having been set to 0.0 ⁇ m, an electrode paste composition 10 was prepared in the same manner as in Example 1 to produce a solar cell element 10.
  • Ni-60Cu an alloy containing 60% by mass of Cu in Ni
  • D50%) the average particle diameter
  • Example 11 A paste composition 11 for an electrode was prepared in the same manner as in Example 1, except that the average particle diameter (D50%) of the nickel-containing particles (Ni) was changed from 5.0 ⁇ m to 10.0 ⁇ m. And the solar cell element 11 was produced.
  • Example 12 In Example 1, silver particles (Ag; average particle diameter (D50%) 3.0 ⁇ m; purity 99.5%) were added to the electrode paste composition. Specifically, the content of each component is 32.3 parts phosphorus-containing copper alloy particles, 21.8 parts tin particles, 20.2 parts nickel particles, 4.0 parts silver particles, and glass G01 particles. Except that 7.8 parts, diethylene glycol monobutyl ether (BC) was changed to 11.7 parts, and polyethyl acrylate (EPA) was changed to 2.2 parts, the same as in Example 1, the electrode paste composition 12 And a solar cell element 12 was produced.
  • BC diethylene glycol monobutyl ether
  • EPA polyethyl acrylate
  • Example 13 In Example 1, the content of the glass G01 particles was changed. Specifically, the content of each component is 34.3 parts of phosphorus-containing copper alloy particles, 23.7 parts of tin particles, 23.2 parts of nickel particles, 4.9 parts of glass G01 particles, diethylene glycol monobutyl ether.
  • a paste composition 13 for an electrode was prepared in the same manner as in Example 1 except that (BC) was changed to 11.7 parts and polyethyl acrylate (EPA) was changed to 2.2 parts. Was made.
  • Example 14 In Example 1, except that the composition of the glass particles was changed from the glass G01 to the glass G02 shown below, an electrode paste composition 14 was prepared in the same manner as in Example 1, and a solar cell element 14 was produced. did.
  • Glass G02 is composed of 45 parts of vanadium oxide (V 2 O 5 ), 24.2 parts of phosphorus oxide (P 2 O 5 ), 20.8 parts of barium oxide (BaO), 5 parts of antimony oxide (Sb 2 O 3 ), oxidation It was prepared to consist of 5 parts of tungsten (WO 3 ). Further, the softening point of the glass G02 was 492 ° C., and the crystallization start temperature exceeded 650 ° C.
  • Glass G02 particles having a particle diameter (D50%) of 2.5 ⁇ m were obtained using the obtained glass G02.
  • the shape was substantially spherical.
  • Example 15 In Example 1, the solvent was changed from diethylene glycol monobutyl ether to terpineol (Ter), and the resin was changed from ethyl polyacrylate to ethyl cellulose (EC). Specifically, the content of each component is 33.3 parts of phosphorus-containing copper alloy particles, 22.8 parts of tin particles, 22.2 parts of nickel particles, 7.8 parts of glass G01 particles, terpineol (Ter ) And 13.5 parts of ethyl cellulose (EC) were changed to 0.4 part, and in the same manner as in Example 1, an electrode paste composition 15 was prepared and a solar cell element 15 was produced.
  • Example 16 phosphorus content of phosphorus-containing copper alloy particles, average particle size (D50%) and its content, composition of tin-containing particles, average particle size (D50%) and its content, composition of nickel-containing particles Table 1 shows the average particle diameter (D50%) and the content thereof, the silver particle content, the type and content of the glass particles, the type and content of the solvent, the type of resin and the content thereof.
  • Electrode paste compositions 16 to 20 were prepared in the same manner as in Example 1 except for changing to
  • a desired electrode was formed in the same manner as in Example 1 except that each of the obtained electrode paste compositions 16 to 20 was used and the heat treatment temperature and treatment time were changed as shown in Table 2.
  • the solar cell elements 16 to 20 thus manufactured were respectively produced.
  • Example 21 A p-type semiconductor substrate having a thickness of 190 ⁇ m having an n + diffusion layer, a texture, and an antireflection film (silicon nitride film) formed on the light receiving surface was prepared and cut into a size of 125 mm ⁇ 125 mm. Thereafter, an aluminum electrode paste was printed on the back surface to form a back surface collecting electrode pattern. The back surface collecting electrode pattern was printed on the entire surface other than the back surface output extraction electrode as shown in FIG. Moreover, the printing conditions of the aluminum electrode paste were appropriately adjusted so that the film thickness of the back surface collecting electrode after firing was 30 ⁇ m. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.
  • the electrode paste composition 1 obtained above was printed so as to have an electrode pattern as shown in FIGS.
  • the electrode pattern on the light-receiving surface is composed of 150 ⁇ m wide finger lines and 1.5 mm wide bus bars, and the printing conditions (screen plate mesh, printing speed, printing pressure) are appropriately set so that the film thickness after baking is 20 ⁇ m. It was adjusted.
  • the back electrode pattern was 123 mm ⁇ 5 mm, and was printed in two places in total so that the film thickness after firing was 20 ⁇ m. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.
  • a desired electrode is formed by performing a heat treatment (firing) for 10 seconds at a maximum firing temperature of 650 ° C. in an air atmosphere using a tunnel furnace (manufactured by Noritake Co., Ltd., single-row transport W / B tunnel furnace).
  • a solar cell element 21 was produced.
  • Example 22 a solar cell element 22 was produced in the same manner as in Example 21, except that the electrode paste composition 3 obtained above was used to produce the light receiving surface electrode and the back surface output extraction electrode.
  • Example 23 In Example 21, the electrode paste composition 9 obtained above was used for the production of the light receiving surface electrode and the back surface output extraction electrode, and the firing conditions during electrode formation were 10 seconds at the maximum temperature of 650 ° C. A solar cell element 23 was produced in the same manner as in Example 21 except that the maximum temperature was changed to 620 ° C. for 10 seconds.
  • a solar cell element 24 having a structure as shown in FIG. 5 was produced.
  • a specific manufacturing method is described below.
  • the previously formed paste composition 1 for through-hole internal electrodes was filled by an inkjet method, and further printed on the light receiving surface side in a grid.
  • the electrode paste composition 1 was used and printed in a stripe pattern with a pattern as shown in FIG. 4 so that the electrode paste composition layer was printed under the through hole. .
  • an aluminum electrode paste layer was formed by printing the aluminum electrode paste in a region other than the electrode paste composition layer. This was subjected to heat treatment using a tunnel furnace (manufactured by Noritake Co., Ltd., single-row transport W / B tunnel furnace) in an air atmosphere at a firing maximum temperature of 800 ° C. for a holding time of 10 seconds, and the sun on which the desired electrode was formed A battery element 24 was produced.
  • a tunnel furnace manufactured by Noritake Co., Ltd., single-row transport W / B tunnel furnace
  • Example 25 In Example 24, except that the electrode paste composition 1 was changed to the electrode paste composition 16 obtained above to form a light-receiving surface collecting electrode, a through-hole electrode, and a back electrode, the Example In the same manner as in Example 24, a solar cell element 25 was produced.
  • Example 26 a solar cell element 26 was produced in the same manner as in Example 24, except that the firing condition at the time of electrode formation was changed from a maximum temperature of 800 ° C. for 10 seconds to a maximum temperature of 850 ° C. for 8 seconds.
  • Example 27 In Example 24, except that the electrode paste composition 1 was changed to the electrode paste composition 9 obtained above to form a light-receiving surface collecting electrode, a through-hole electrode, and a back electrode, the Example In the same manner as in Example 24, a solar cell element 27 was produced.
  • Example 28 In Example 1, an electrode paste composition 28 was prepared in the same manner as in Example 1 except that the glass particles were changed from glass G01 particles to glass G03 particles.
  • Glass G03 is composed of 13 parts of silicon dioxide (SiO 2 ), 58 parts of boron oxide (B 2 O 3 ), 38 parts of zinc oxide (ZnO), 12 parts of aluminum oxide (Al 2 O 3 ), and barium oxide (BaO). Prepared to consist of 12 parts.
  • the obtained glass G03 had a softening point of 583 ° C. and a crystallization temperature of over 650 ° C.
  • Glass G03 particles having an average particle size (D50%) of 2.5 ⁇ m were obtained using the obtained glass G03.
  • the shape was substantially spherical.
  • a solar cell element 28 having a structure as shown in FIG. 6 was produced using the electrode paste composition 28 obtained above.
  • the manufacturing method is the same as in Examples 24 to 27 except that the light receiving surface electrode is not formed.
  • the firing conditions were a maximum temperature of 800 ° C. and a holding time of 10 seconds.
  • Example 29 a solar cell element 29 was produced in the same manner as in Example 28, except that the firing condition at the time of electrode formation was changed from a maximum temperature of 800 ° C. for 10 seconds to a maximum temperature of 850 ° C. for 8 seconds.
  • Example 30 Using the electrode paste composition 28 obtained above, a solar cell element 30 having a structure as shown in FIG. 7 was produced.
  • the manufacturing method is the same as that in Example 24 except that an n-type silicon substrate was used as the base substrate and that the light-receiving surface electrode, the through hole, and the through hole electrode were not formed.
  • the firing conditions were a maximum temperature of 800 ° C. and a holding time of 10 seconds.
  • Example 31 In Example 9, electrode paste composition 31 was prepared in the same manner as in Example 5 except that the glass particles were changed from glass G01 particles to glass G03 particles. Using this, a solar cell element 31 having a structure as shown in FIG.
  • Example 32 an electrode paste composition 32 was prepared in the same manner as in Example 12 except that the glass particles were changed from glass G01 particles to glass G03 particles. Using this, a solar cell element 32 having a structure as shown in FIG.
  • a solar cell element C1 was produced in the same manner as in Example 1 except that the electrode paste composition C1 containing no phosphorus-containing copper alloy particles, tin-containing particles and nickel particles was used.
  • Solar cell elements C2 to C4 were produced in the same manner as in Comparative Example 1 except that the electrode paste compositions C2 to C4 were used.
  • Example 5 In the preparation of the electrode paste composition in Example 1, copper particles (purity 99.5%, average particle diameter (D50%) 5.0 ⁇ m, content 33.3 parts) were used instead of phosphorus-containing copper alloy particles. Then, an electrode paste composition C5 was prepared in the same manner as in Example 1 except that each component was changed to have the composition shown in Table 1.
  • a solar cell element C5 was produced in the same manner as in Comparative Example 1 except that the electrode paste composition C5 was used.
  • Example 24 In place of the electrode paste composition 1, the electrode paste composition C1 obtained above was changed to a light receiving surface collecting electrode, a through-hole electrode, and a back electrode. In the same manner as in Example 24, a solar cell element C6 was produced.
  • a solar cell element C7 was produced in the same manner as in Example 28 except that the electrode paste composition C1 obtained above was used instead of the electrode paste composition 28 in Example 28.
  • Example 30 a solar cell element C8 was produced in the same manner as in Example 30, except that the electrode paste composition C1 obtained above was used instead of the electrode paste composition 28.
  • the obtained measured values are converted into relative values with the measured value of Comparative Example 1 (solar cell element C1) as 100.0, and are shown in Table 3.
  • Comparative Example 2 the resistivity of the electrode formed by the oxidation of copper particles was increased, and evaluation was impossible.
  • the cross section of the light-receiving surface electrode formed by firing the prepared electrode paste composition was observed with a scanning electron microscope Miniscope TM-1000 (manufactured by Hitachi, Ltd.) at an acceleration voltage of 15 kV.
  • the presence or absence of a Cu—Sn alloy phase, a Cu—Sn—Ni alloy phase, a Sn—PO glass phase, and the formation site of the Sn—PO glass phase were investigated. The results are also shown in Table 3.
  • Comparative Examples 3 to 5 the power generation performance deteriorated as compared with Comparative Example 1. This is considered as follows, for example.
  • Comparative Example 4 since tin-containing particles are not included, it is considered that interdiffusion between the silicon substrate and copper occurred during firing, and the pn junction characteristics in the substrate deteriorated.
  • Comparative Example 5 since copper particles (phosphorus content is 0 mass%) were used without using phosphorus-containing copper alloy particles, the copper particles were oxidized before reacting with tin-containing particles during firing, and Cu It is considered that the resistance of the electrode was increased without the formation of the -Sn alloy phase.
  • the power generation performance of the solar cell elements produced in Examples 1 to 23 was almost the same as the measured value of the solar cell element of Comparative Example 1.
  • the solar cell elements 21 to 23 exhibited high power generation performance even though the electrode paste composition was fired at a relatively low temperature (620 to 650 ° C.).
  • the Cu—Sn—Ni alloy phase or both of the Cu—Sn—Ni alloy phase and Cu—Sn and the Sn—PO glass phase are present in the light receiving surface electrode.
  • a glass phase was formed between the Cu—Sn alloy phase and the Cu—Sn—Ni alloy phase and the silicon substrate.
  • the solar cell elements produced in Examples 30 to 32 exhibited almost the same power generation performance as the solar cell element of Comparative Example 8.
  • the Cu—Sn—Ni alloy phase and the Sn—P—O glass phase exist in the electrode formed by firing the prepared electrode paste composition among the back electrodes, and Sn—P The —O glass phase was formed between the Cu—Sn—Ni alloy phase and the silicon substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Powder Metallurgy (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 本発明は、リン含有銅合金粒子と、錫含有粒子と、ニッケル含有粒子と、ガラス粒子と、溶剤と、樹脂と、を含む電極用ペースト組成物を提供する。

Description

電極用ペースト組成物、太陽電池素子及び太陽電池
 本発明は、電極用ペースト組成物、太陽電池素子及び太陽電池に関する。
 一般にシリコン系太陽電池の受光面及び裏面には電極が形成されている。光の入射により太陽電池内で変換された電気エネルギーを効率よく外部に取出すためには、前記電極の体積抵抗率が充分に低いことと、シリコン基板と良好なオーミックコンタクトが形成されることが必要である。特に受光面の電極は、太陽光の入射量損失を最低限に抑えるために、電極幅を狭くし、また電極のアスペクト比を高くする傾向にある。
 太陽電池の受光面に用いられる電極は、通常以下のようにして形成される。すなわち、p型シリコン基板の受光面側にテクスチャ(凹凸)形成を施し、次いでリン等を高温で熱的に拡散させることにより形成されたn型シリコン層上に、導電性組成物をスクリーン印刷等により付与し、これを大気中800℃~900℃で焼成することで受光面電極が形成される。この受光面電極を形成する導電性組成物には、導電性金属粉末、ガラス粒子及び種々の添加剤等が含まれる。
 前記導電性金属粉末としては、銀粉末が一般的に用いられている。これは、銀粒子の体積抵抗率が1.6×10-6Ω・cmと低いことと、上記焼成条件において銀粒子が自己還元して焼結すること、シリコン基板と良好なオーミックコンタクトを形成できること、銀粒子からなる電極に対するはんだ材料の濡れ性に優れ、太陽電池素子をガラス基板などで封止する、所謂モジュール化において、太陽電池素子間を電気的に接続するタブ線等の配線材料を好適に接着することができることが理由として挙げられる。
 上記に示すように、銀粒子を含む導電性組成物は、太陽電池の電極として優れた特性を発現する。一方、銀は貴金属で地金自体が高価であるため、また資源の問題からも、銀含有導電性組成物に代わる導電性組成物の提案が望まれている。銀に代わる有望な材料としては、半導体配線材料に適用されている銅が挙げられる。銅は資源的にも豊富で、地金コストも銀の約100分の1と安価である。しかしながら、銅は大気中200℃以上の高温で容易に酸化される材料であり、上記工程で電極を形成することは困難である。
 銅が有する上記課題を解決するために、銅に種々の手法を用いて耐酸化性を付与し、高温焼成でも酸化され難い銅粒子が報告されている(例えば、特開2005-314755号公報及び特開2004-217952号公報参照)。
 しかしながら、上記文献に記載の銅粒子でも、耐酸化性を有するのは高々300℃までで、800℃~900℃の高温ではほとんど酸化されてしまうため、太陽電池用電極として実用に至っていない。さらに耐酸化性を付与するために適用した添加剤等が焼成中の銅粒子の焼結を阻害し、結果として銀のような低い体積抵抗率の電極が得られないという課題がある。
 また銅の酸化を抑える別の手法として、導電性金属粉末に銅を用いた導電性組成物を、窒素等の雰囲気下で焼成するという特殊な工程が挙げられる。
 しかしながら、上記手法を用いる場合、銅粒子の酸化を完全に抑えるためには上記雰囲気ガスで完全密封した環境が必要となり、工程コストの面で太陽電池素子の量産には不向きである。
 銅を太陽電池電極に適用するためのもう一つの課題として、シリコン基板とのオーミックコンタクト性が挙げられる。すなわち、銅からなる電極を高温焼成中に酸化させずに形成できたとしても、金属銅がシリコン基板と直接接触することで、銅とシリコンの相互拡散が生じ、電極とシリコン基板の界面に銅とシリコンからなる反応物相(CuSi)が形成されることがある。
 このCuSiの形成はシリコン基板の界面から数μmにまで及ぶことがあり、シリコン基板側に亀裂を生じる場合がある。またシリコン基板上に予め形成されたn型シリコン層を貫通し、太陽電池が持つ半導体性能(pn接合特性)を劣化させる場合がある。更に形成されたCuSiが銅からなる電極を持ち上げるなどして、電極とシリコン基板との密着性を阻害し、電極の機械的強度低下をもたらす恐れがある。
 本発明は、上記課題に鑑みてなされたものであり、抵抗率の低い電極を形成でき、さらにシリコン基板との良好なオーミックコンタクトを有する銅含有電極を形成できる電極用ペースト組成物、並びに、該電極用ペースト組成物を用いて形成された電極を有する太陽電池素子及び太陽電池を提供することを目的とする。
 本発明者等は上記課題を解決するために鋭意研究した結果、本発明を完成した。すなわち本発明は以下の態様を包含する。
<1> リン含有銅合金粒子と、錫含有粒子と、ニッケル含有粒子と、ガラス粒子と、溶剤と、樹脂と、を含む電極用ペースト組成物である。
<2> 前記リン含有銅合金粒子のリン含有率が6質量%以上8質量%以下である<1>に記載の電極用ペースト組成物である。
<3> 前記錫含有粒子は、錫粒子及び錫含有率が1質量%以上である錫合金粒子からなる群より選ばれる少なくとも1種である<1>又は<2>に記載の電極用ペースト組成物である。
<4> 前記ニッケル含有粒子は、ニッケル粒子及びニッケル含有率が1質量%以上であるニッケル合金粒子からなる群より選ばれる少なくとも1種である<1>~<3>のいずれか1つに記載の電極用ペースト組成物である。
<5> 前記ガラス粒子は、ガラス軟化点が650℃以下であって、結晶化開始温度が650℃を超える<1>~<4>のいずれか1つに記載の電極用ペースト組成物である。
<6> 前記リン含有銅合金粒子、前記錫含有粒子及び前記ニッケル含有粒子の総含有率を100質量%とした場合の前記錫含有粒子の含有率が、5質量%以上70質量%以下である<1>~<5>のいずれか1つに記載の電極用ペースト組成物である。
<7> 前記リン含有銅合金粒子、前記錫含有粒子及び前記ニッケル含有粒子の総含有率を100質量%とした場合の前記ニッケル含有粒子の含有率が、10質量%以上60質量%以下である<1>~<6>のいずれか1つに記載の電極用ペースト組成物である。
<8> 前記リン含有銅合金粒子、錫含有粒子及びニッケル含有粒子の総含有率が70質量%以上94質量%以下であって、前記ガラス粒子の含有率が0.1質量%以上10質量%以下であって、前記溶剤及び前記樹脂の総含有率が3質量%以上29.9質量%以下である<1>~<7>のいずれか1つに記載の電極用ペースト組成物である。
<9> 銀粒子を更に含む<1>~<8>のいずれか1つに記載の電極用ペースト組成物である。
 前記リン含有銅合金粒子、前記錫含有粒子、前記ニッケル含有粒子及び前記銀粒子の総含有率を100質量%とした場合の前記銀粒子の含有率が0.1質量%以上10質量%以下である<9>に記載の電極用ペースト組成物である。
<11> 前記リン含有銅合金粒子、錫含有粒子、前記ニッケル含有粒子及び銀粒子の総含有率が70質量%以上94質量%以下であって、前記ガラス粒子の含有率が0.1質量%以上10質量%以下であって、前記溶剤及び前記樹脂の総含有率が3質量%以上29.9質量%以下である<9>又は<10>に記載の電極用ペースト組成物である。
<12> pn接合を有するシリコン基板と、前記シリコン基板上に付与された<1>~<11>のいずれか1つに記載の電極用ペースト組成物の焼成物である電極と、を有する太陽電池素子である。
<13> 前記電極は、Cu-Sn-Ni合金相及びSn-P-Oガラス相を含む<12>に記載の太陽電池素子である。
<14> 前記Sn-P-Oガラス相は、前記Cu-Sn-Ni合金相と前記シリコン基板との間に配置されている<13>に記載の太陽電池素子である。
<15> <12>~<14>のいずれか1項に記載の太陽電池素子と、前記太陽電池素子の電極上に配置された配線材料と、を有する太陽電池である。
 本発明によれば、抵抗率の低い電極を形成でき、さらにシリコン基板との良好なオーミックコンタクトを有する銅含有電極を形成できる電極用ペースト組成物、並びに、該電極用ペースト組成物を用いて形成された電極を有する太陽電池素子及び太陽電池を提供することができる。
本発明にかかるシリコン系太陽電池素子の一例を示す概略断面図である。 本発明にかかるシリコン系太陽電池素子の受光面の一例を示す概略平面図である。 本発明にかかるシリコン系太陽電池素子の裏面の一例を示す概略平面図である。 本発明にかかるバックコンタクト型太陽電池素子の裏面側電極構造の一例を示す概略平面図である。 本発明にかかるバックコンタクト型太陽電池素子のAA断面構成の一例を示す概略斜視図である。 本発明にかかるバックコンタクト型太陽電池素子のAA断面構成の一例を示す概略斜視図である。 本発明にかかるバックコンタクト型太陽電池素子のAA断面構成の一例を示す概略斜視図である。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
<電極用ペースト組成物>
 本発明の電極用ペースト組成物は、リン含有銅合金粒子の少なくとも1種と、錫含有粒子の少なくとも1種と、ニッケル含有粒子の少なくとも1種と、ガラス粒子の少なくとも1種と、溶剤の少なくとも1種と、樹脂の少なくとも1種とを含む。かかる構成であることにより、大気中焼成時における銅の酸化が抑制され、抵抗率の低い電極を形成できる。さらに銅とシリコン基板との反応物相の形成が抑制され、形成される電極とシリコン基板とが良好なオーミックコンタクトを形成できる。これは例えば以下のように考えることができる。
 まず前記電極用ペースト組成物を焼成処理すると、前記リン含有銅合金粒子と錫含有粒子との反応により、Cu-Sn合金相及びSn-P-Oガラス相が形成される。Cu-Sn合金相の形成により、低い体積抵抗率の電極を形成することができる。ここでCu-Sn合金相は、500℃程度といった比較的低温から生成されるため、電極の低温焼成が可能となり、プロセスコストを削減できるという効果が期待できる。また前記電極用ペースト組成物はさらにニッケル含有粒子を含む。これによりCu-Sn合金相とニッケル含有粒子とがさらに反応し、Cu-Sn-Ni合金相を形成すると考えられる。このCu-Sn-Ni合金相は、800℃といった比較的高い温度でも形成されることから、より高温での焼成工程でも耐酸化性を保ったまま低い体積抵抗率の電極を形成できると考えられる。すなわち、前記電極用ペースト組成物を用いることで、電極の低温焼成から高温焼成までの種々の条件に対応することが可能となる。従って前記電極用ペースト組成物は、後述する様々な構造の太陽電池の電極材料として広範に使用することができる。
 上記Cu-Sn-Ni合金相は、Cu-Sn-Ni合金相どうしで、又は焼成条件に応じて更に形成されるCu-Sn合金相と共に、電極内で緻密なバルク体を形成し、導電層として機能することで抵抗率の低い電極が形成される。なお、Cu-Sn合金相とCu-Sn-Ni合金相は電極内に混在していても、機能(例えば低い体積抵抗率)を低下させることはないと考えられる。またここでいう緻密なバルク体とは、塊状のCu-Sn合金相及びCu-Sn-Ni合金相が互いに密に接触し、三次元的に連続している構造を形成していることを意味する。
 また前記電極用ペースト組成物を用いてシリコンを含む基板(以下、単に「シリコン基板」ともいう)上に電極を形成する場合、シリコン基板に対する密着性が高い電極を形成することができ、さらに電極とシリコン基板との良好なオーミックコンタクトを達成することができる。
 これは例えば以下のように考えることができる。リン含有銅合金粒子と錫含有粒子とニッケル含有粒子とが、焼成工程で互いに反応して、Cu-Sn-Ni合金相と、Sn-P-Oガラス相と、焼成条件に応じて形成されるCu-Sn合金相とを含む電極を形成する。上記Cu-Sn-Ni合金相及び焼成条件に応じて形成されるCu-Sn合金相が緻密なバルク体であるために、このSn-P-Oガラス相は、Cu-Sn-Ni合金相とシリコン基板との間、又はCu-Sn-Ni合金相及びCu-Sn合金相とシリコン基板との間に形成される。これによりCu-Sn合金相及びCu-Sn-Ni合金相のシリコン基板に対する密着性が向上すると考えることができる。またSn-P-Oガラス相が、銅とシリコンとの相互拡散を防止するためのバリア層として機能することで、焼成して形成される電極とシリコン基板との良好なオーミックコンタクトが達成できると考えることができる。すなわち銅を含む電極とシリコンを直に接触して加熱したときに形成される反応物相(CuSi)の形成を抑制し、半導体性能(例えば、pn接合特性)を劣化することなくシリコン基板との密着性を保ちながら、良好なオーミックコンタクトを発現することができると考えられる。
 すなわち前記電極用ペースト組成物においては、リン含有銅合金粒子に錫含有粒子とニッケル含有粒子とを組み合わせることで、まずリン含有銅合金粒子中のリン原子の銅酸化物に対する還元性を利用し、耐酸化性に優れ、体積抵抗率の低い電極が形成される。次いでリン含有銅合金粒子と錫含有粒子及びニッケル含有粒子との反応により、体積抵抗率を低く保ったままCu-Sn-Ni合金相及び焼成条件に応じて形成されるCu-Sn合金相からなる導電層とSn-P-Oガラス相とが形成される。そして例えば、Sn-P-Oガラス相が銅とシリコンの相互拡散を防止するためのバリア層として機能することで電極とシリコン基板との間に反応物相が形成されることを抑制し、銅電極との良好なオーミックコンタクトが形成されるという2つの特徴的な機構を、一連の焼成工程において実現できると考えることができる。
 このような効果は、シリコンを含む基板上に本発明の電極用ペースト組成物を用いて電極を形成する場合であれば、一般的に発現するものであり、シリコンを含む基板の種類は特に制限されるものではない。シリコンを含む基板としては、太陽電池形成用のシリコン基板、太陽電池以外の半導体デバイスの製造に用いるシリコン基板等を挙げることができる。
(リン含有銅合金粒子)
 前記電極ペースト組成物は、リン含有銅合金粒子の少なくとも1種を含む。リン含有銅合金としては、リン銅ろう(リン濃度:7質量%程度以下)と呼ばれるろう付け材料が知られている。リン銅ろうは、銅と銅との接合剤としても用いられるものであるが、本発明の電極用ペースト組成物にリン含有銅合金粒子を用いることで、リンの銅酸化物に対する還元性を利用し、耐酸化性に優れ、体積抵抗率の低い電極を形成することができる。さらに電極の低温焼成が可能となり、プロセスコストを削減できるという効果を得ることができる。
 本発明におけるリン含有銅合金粒子に含まれるリン含有率としては、耐酸化性と低い体積抵抗率の観点から、リン含有率が6質量%以上8質量%以下であることが好ましく、6.3質量%以上7.8質量%以下であることがより好ましく、6.5質量%以上7.5質量%以下であることがより好ましい。リン含有銅合金粒子に含まれるリン含有率が8質量%以下であることで、より低い抵抗率を達成可能であり、また、リン含有銅合金粒子の生産性に優れる。また6質量%以上であることで、より優れた耐酸化性を達成できる。
 前記リン含有銅合金粒子におけるリンの含有率は、高周波誘導結合プラズマ発光分光分析(ICP-AES)装置を用いて測定することができる。
 前記リン含有銅合金粒子は、銅とリンを含む合金であるが、他の原子をさらに含んでいてもよい。他の原子としては、Ag、Mn、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Sn、Al、Zr、W、Mo、Ti、Co、Ni、Au等を挙げることができる。
 また前記リン含有銅合金粒子に含まれる他の原子の含有率は、例えば、前記リン含有銅合金粒子中に3質量%以下とすることができ、耐酸化性と低い体積抵抗率の観点から、1質量%以下であることが好ましい。
 また本発明において、前記リン含有銅合金粒子は、1種単独でも又は2種以上を組み合わせて用いてもよい。
 前記リン含有銅合金粒子の平均粒子径には特に制限はないが、積算した重量が50%の場合における平均粒子径(以下、「D50%」と略記することがある)として、0.4μm~10μmであることが好ましく、1μm~7μmであることがより好ましい。0.4μm以上とすることで耐酸化性がより効果的に向上する。また10μm以下であることでリン含有銅合金粒子同士、または後述する錫含有粒子及びニッケル含有粒子との接触面積が大きくなり、形成される電極の体積抵抗率がより効果的に低下する。なお、リン含有銅合金粒子の平均粒子径は、マイクロトラック粒度分布測定装置(日機装社製、MT3300型)によって測定される。
 前記リン含有銅合金粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等のいずれであってもよいが、耐酸化性と低い体積抵抗率の観点から、略球状、扁平状又は板状であることが好ましい。
 電極用ペースト組成物におけるリン含有銅合金粒子の含有率は特に制限されない。低い体積抵抗率の観点から、電極用ペースト組成物中に15質量%以上75質量%以下であることが好ましく、18質量%以上70質量%以下であることがより好ましく、20質量%以上65質量%以下であることがさらに好ましい。
 電極用ペースト組成物におけるリン含有銅合金粒子の含有率は、高周波誘導結合プラズマ発光分光分析(ICP-AES)装置又は高周波誘導結合プラズマ質量分析(ICP-MS)装置を用いて測定することができる。なお、これら装置を用いてリン含有銅合金粒子の含有率を測定する際は、電極用ペースト組成物から溶剤を除去した状態で測定する。
 リン含有銅合金は、通常用いられる方法で製造することができる。また、リン含有銅合金粒子は、所望のリン含有率となるように調製したリン含有銅合金を用いて、金属粉末を調製する通常の方法を用いて調製することができ、例えば、水アトマイズ法を用いて常法により製造することができる。なお、水アトマイズ法の詳細については金属便覧(丸善(株)出版事業部)等の記載を参照することができる。
 具体的には、リン含有銅合金を溶解し、これをノズル噴霧によって粉末化した後、得られた粉末を乾燥、分級することで、所望のリン含有銅合金粒子を製造することができる。また、分級条件を適宜選択することで所望の平均粒子径を有するリン含有銅合金粒子を製造することができる。
(錫含有粒子)
 前記電極用ペースト組成物は、錫含有粒子の少なくとも1種を含む。錫含有粒子を含むことにより、後述する焼成工程において、体積抵抗率の低い電極を形成できる。
 前記錫含有粒子としては、錫を含む粒子であれば特に制限はない。中でも、錫粒子及び錫合金粒子からなる群より選ばれる少なくとも1種であることが好ましく、錫粒子及び錫含有率が1質量%以上である錫合金粒子からなる群より選ばれる少なくとも1種であることがより好ましい。
 錫粒子における錫の純度は特に制限されない。例えば錫粒子の純度は、95質量%以上とすることができ、97質量%以上であることが好ましく、99質量%以上であることがより好ましい。
 また錫合金粒子は、錫を含む合金粒子であれば合金の種類は特に制限されない。中でも、錫合金粒子の融点、並びにリン含有銅合金粒子及びニッケル含有粒子との反応性の観点から、錫の含有率が1質量%以上である錫合金粒子であることが好ましく、錫の含有率が3質量%以上である錫合金粒子であることがより好ましく、錫の含有率が5質量%以上である錫合金粒子であることがさらに好ましく、錫の含有率が10質量%以上である錫合金粒子であることが特に好ましい。
 錫含有粒子における錫の含有率は、蛍光X線分析(XRF)装置(例えば(株)堀場製作所製MESA-500W型)を用いて測定することができる。
 錫合金粒子としては、Sn-Ag系合金、Sn-Cu系合金、Sn-Ag-Cu系合金、Sn-Ag-Sb系合金、Sn-Ag-Sb-Zn系合金、Sn-Ag-Cu-Zn系合金、Sn-Ag-Cu-Sb系合金、Sn-Ag-Bi系合金、Sn-Bi系合金、Sn-Ag-Cu-Bi系合金、Sn-Ag-In-Bi系合金、Sn-Sb系合金、Sn-Bi-Cu系合金、Sn-Bi-Cu-Zn系合金、Sn-Bi-Zn系合金、Sn-Bi-Sb-Zn系合金、Sn-Zn系合金、Sn-In系合金、SnーZn-In系合金、Sn-Pb系合金等が挙げられる。
 前記錫合金粒子のうち、特に、Sn-3.5Ag、Sn-0.7Cu、Sn-3.2Ag-0.5Cu、Sn-4Ag-0.5Cu、Sn-2.5Ag-0.8Cu-0.5Sb、Sn-2Ag-7.5Bi、Sn-3Ag-5Bi、Sn-58Bi、Sn-3.5Ag-3In-0.5Bi、Sn-3Bi-8Zn、Sn-9Zn、Sn-52In、Sn-40Pb等の錫合金粒子は、Snのもつ融点(232℃)と同じ、もしくはより低い融点をもつ。そのため、これら錫合金粒子は焼成の初期段階で溶融することで、リン含有銅合金粒子の表面を覆い、リン含有銅合金粒子と均一に反応することができるという点で、好適に用いることができる。なお、錫合金粒子における表記は、例えばSn-AX-BY-CZの場合は、錫合金粒子の中に、元素XがA質量%、元素YがB質量%、元素ZがC質量%含まれていることを示す。
 本発明において、これらの錫含有粒子は1種単独で使用してもよく、又2種類以上を組み合わせて使用することもできる。
 前記錫含有粒子は、不可避的に混入する他の原子をさらに含んでいてもよい。不可避的に混入する他の原子としては、Ag、Mn、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Al、Zr、W、Mo、Ti、Co、Ni、Au等を挙げることができる。
 前記錫含有粒子に含まれる他の原子の含有率は、例えば前記錫含有粒子中に3質量%以下とすることができ、融点及びリン含有銅合金粒子との反応性の観点から、1質量%以下であることが好ましい。
 前記錫含有粒子の平均粒子径としては特に制限はないが、D50%として、0.5μm~20μmであることが好ましく、1μm~15μmであることがより好ましく、5μm~15μmであることがさらに好ましい。0.5μm以上とすることで錫含有粒子自身の耐酸化性が向上する。また20μm以下であることで電極中におけるリン含有銅合金粒子及びニッケル含有粒子との接触面積が大きくなり、焼成中の反応がより効果的に進む。
 また前記錫含有粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等のいずれであってもよいが、耐酸化性と低い体積抵抗率の観点から、略球状、扁平状又は板状であることが好ましい。
 また前記電極用ペースト組成物における錫含有粒子の含有率は特に制限されない。中でも、前記リン含有銅合金粒子と前記錫含有粒子及び前記ニッケル含有粒子の総含有率を100質量%としたときの錫含有粒子の含有率が、5質量%以上70質量%以下であることが好ましく、7質量%以上65質量%以下であることがより好ましく、9質量%以上60質量%以下であることがさらに好ましく、9質量%以上45質量%以下であることが特に好ましい。
 錫含有粒子の含有率を5質量%以上とすることで、リン含有銅合金粒子及びニッケル含有粒子との反応をより均一に生じさせることができる。また錫含有粒子を70質量%以下とすることで、充分な体積のCu-Sn合金相及びCu-Sn-Ni合金相を形成することができ、電極の体積抵抗率がより低下する。
 電極用ペースト組成物における錫含有粒子の含有率は、高周波誘導結合プラズマ発光分光分析(ICP-AES)装置又は高周波誘導結合プラズマ質量分析(ICP-MS)装置を用いて測定することができる。なお、これら装置を用いて錫含有粒子の含有率を測定する際は、電極用ペースト組成物から溶剤を除去した状態で測定する。
(ニッケル含有粒子)
 本発明の電極用ペースト組成物は、ニッケル含有粒子の少なくとも1種を含む。リン含有銅合金粒子及び錫含有粒子に加えて、ニッケル含有粒子を含むことにより、焼成工程において、より高温での耐酸化性を発現させることができる。
 前記ニッケル含有粒子としては、ニッケルを含む粒子であれば特に制限はない。中でもニッケル粒子及びニッケル合金粒子からなる群より選ばれる少なくとも1種であることが好ましく、ニッケル粒子及びニッケル含有率が1質量%以上であるニッケル合金粒子からなる群より選ばれる少なくとも1種であることが好ましい。
 ニッケル粒子におけるニッケルの純度は特に制限されない。例えばニッケル粒子の純度は、95質量%以上とすることができ、97質量%以上であることが好ましく、99質量%以上であることがより好ましい。
 またニッケル合金粒子は、ニッケルを含む合金粒子であれば合金の種類は制限されない。中でもニッケル合金粒子の融点、並びにリン含有銅合金粒子、錫含有粒子及びCu-Sn合金相との反応性の観点から、ニッケルの含有率が1質量%以上であるニッケル合金粒子であることが好ましく、ニッケルの含有率が3質量%以上であるニッケル合金粒子であることがより好ましく、ニッケルの含有率が5質量%以上であるニッケル合金粒子であることがさらに好ましく、ニッケルの含有率が10質量%以上であるニッケル合金粒子であることが特に好ましい。
 ニッケル含有粒子におけるニッケルの含有率は、蛍光X線分析(XRF)装置(例えば、(株)堀場製作所製MESA-500W型)を用いて測定することができる。
 ニッケル合金粒子としては、Ni-Fe系合金、Ni-Cu系合金、Ni-Cu-Zn系合金、Ni-Cr系合金、Ni-Cr-Ag系合金等が挙げられる。特にNi-58Fe、Ni-75Cu、Ni-6Cu-20Zn等のニッケル合金粒子は、リン含有銅合金粒子及び錫含有粒子と均一に反応することができるという点で、好適に用いることができる。なお、ニッケル合金粒子における表記は、例えばNi-AX-BY-CZの場合は、ニッケル合金粒子の中に、元素XがA質量%、元素YがB質量%、元素ZがC質量%含まれていることを示す。
 本発明において、これらのニッケル含有粒子は1種単独で使用してもよく、又2種類以上を組み合わせて使用することもできる。
 前記ニッケル含有粒子は、不可避的に混入する他の原子をさらに含んでいてもよい。不可避的に混入する他の原子としては、Ag、Mn、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Al、Zr、W、Mo、Ti、Co、Sn、Au等を挙げることができる。
 前記ニッケル含有粒子に含まれる他の原子の含有率は、例えば前記ニッケル含有粒子中に3質量%以下とすることができ、融点並びにリン含有銅合金粒子及び錫含有粒子との反応性の観点から、1質量%以下であることが好ましい。
 前記ニッケル含有粒子の平均粒子径としては特に制限はないが、D50%として、0.5μm~20μmであることが好ましく、1μm~15μmであることがより好ましく、5μm~15μmであることがさらに好ましい。0.5μm以上とすることでニッケル含有粒子自身の耐酸化性が向上する。また20μm以下であることで電極中におけるリン含有銅合金粒子及び錫含有粒子との接触面積が大きくなり、リン含有銅合金粒子及び錫含有粒子との反応がより効果的に進む。
 前記ニッケル含有粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等のいずれであってもよいが、耐酸化性と低い体積抵抗率の観点から、略球状、扁平状又は板状であることが好ましい。
 また前記電極用ペースト組成物におけるニッケル含有粒子の含有率は特に制限されない。中でも、前記リン含有銅合金粒子と前記錫含有粒子及びニッケル含有粒子の総含有率を100質量%としたときのニッケル含有粒子の含有率が、10質量%以上60質量%以下であることが好ましく、12質量%以上55質量%以下であることがより好ましく、15質量%以上50質量%以下であることがさらに好ましく、15質量%以上35質量%以下であることが特に好ましい。
 ニッケル含有粒子の含有率を10質量%以上とすることで、Cu-Sn-Ni合金相の形成をより均一に生じさせることができる。またニッケル含有粒子を70質量%以下とすることで、充分な体積のCu-Sn-Ni合金相を形成することができ、電極の体積抵抗率がより低下する。
 電極用ペースト組成物におけるニッケル含有粒子の含有率は、高周波誘導結合プラズマ発光分光分析(ICP-AES)装置又は高周波誘導結合プラズマ質量分析(ICP-MS)装置を用いて測定することができる。なお、これら装置を用いてニッケル含有粒子の含有率を測定する際は、電極用ペースト組成物から溶剤を除去した状態で測定する。
 前記電極用ペースト組成物における、錫含有粒子とニッケル含有粒子の含有比は特に制限されない。シリコン基板との密着性の観点から、錫含有粒子に対するニッケル含有粒子の質量比(ニッケル含有粒子/錫含有粒子)が0.3~4.0であることが好ましく、0.4~3.0であることがより好ましい。
 また前記電極用ペースト組成物における、リン含有銅合金粒子と錫含有粒子及びニッケル含有粒子との含有比は特に制限されない。高温焼成条件下で形成される電極の低い体積抵抗率とシリコン基板との密着性の観点から、リン含有銅合金粒子に対する錫含有粒子とニッケル含有粒子の総量の質量比((ニッケル含有粒子+錫含有粒子)/リン含有銅合金粒子)が0.4~1.8であることが好ましく、0.6~1.4であることがより好ましい。
 さらに前記電極用ペースト組成物における、錫含有粒子の平均粒子径(D50%)とニッケル含有粒子の平均粒子径(D50%)の比は特に制限されない。形成されるSn-P-Oガラス相の均一性とシリコン基板との密着性の観点から、錫含有粒子の平均粒子径(D50%)に対するニッケル含有粒子の平均粒子径(D50%)の比(ニッケル含有粒子/錫含有粒子)が0.05~20であることが好ましく、0.5~10であることがより好ましい。
 また前記電極用ペースト組成物における、リン含有銅合金の平均粒子径(D50%)と錫含有粒子の平均粒子径(D50%)との比は特に制限されない。高温焼成条件下で形成される電極の低い体積抵抗率とシリコン基板との密着性の観点から、リン含有銅合金粒子の平均粒子径(D50%)に対する錫含有粒子の平均粒子径(D50%)比(錫含有粒子/リン含有銅合金粒子)が0.03~30であることが好ましく、0.1~10であることがより好ましい。
 また前記電極用ペースト組成物における、リン含有銅合金の平均粒子径(D50%)とニッケル含有粒子の平均粒子径(D50%)の比は特に制限されない。高温焼成条件下で形成される電極の低い体積抵抗率の観点から、リン含有銅合金粒子の平均粒子径(D50%)に対するニッケル含有粒子の平均粒子径(D50%)比(ニッケル含有粒子/リン含有銅合金粒子)が0.02~20であることが好ましく、0.1~10であることがより好ましい。
(ガラス粒子)
 前記電極用ペースト組成物は、ガラス粒子の少なくとも1種を含む。電極用ペースト組成物がガラス粒子を含むことにより、焼成時に電極部と基板との密着性が向上する。また。特に太陽電池受光面側の電極形成において、焼成時にいわゆるファイアースルーによって反射防止膜である窒化ケイ素膜が取り除かれ、電極とシリコン基板とのオーミックコンタクトが形成される。
 前記ガラス粒子は、シリコン基板との密着性と電極の体積抵抗率を低下させる観点から、ガラス軟化点が650℃以下であって、結晶化開始温度が650℃を超えるガラスを含むガラス粒子であることが好ましい。なお、前記ガラス軟化点は、熱機械分析装置(TMA)(例えば、(株)島津製作所製TMA-60型)を用いて通常の方法によって測定される。また前記結晶化開始温度は、示差熱-熱重量分析装置(TG-DTA)(例えば、(株)島津製作所製DTG-60H型)を用いて通常の方法によって測定される。
 具体的には、例えば、TMAで測定された熱膨脹曲線において、異なる2つの接点における接線の交点を求め、その交点に対応する温度をガラス軟化点とすることができる。またTG-DTAによる分析曲線から発熱ピークを確認し、発熱を開始する前と、発熱開始後から発熱ピークまでの間との2点の接点における接線の交点を求め、その交点に対応する温度を結晶化開始温度とすることができる。
 前記電極用ペースト組成物を太陽電池受光面側の電極として使用する場合は、前記ガラス粒子は、電極形成温度で軟化又は溶融し、接触した窒化ケイ素膜を酸化し、酸化された二酸化ケイ素を取り込むことで、反射防止膜を除去可能なものであれば、当該技術分野において通常用いられるガラス粒子を特に制限なく用いることができる。
 一般に電極用ペースト組成物に含まれるガラス粒子は、二酸化ケイ素を効率よく取り込み可能であることから鉛を含むガラスから構成される。このような鉛を含むガラスとしては、特許第03050064号公報等に記載のものを挙げることができ、本発明においてもこれらを好適に使用することができる。
 また本発明においては、環境に対する影響を考慮すると、鉛を実質的に含まない鉛フリーガラスを用いることが好ましい。鉛フリーガラスとしては、特開2006-313744号公報の段落番号0024~0025に記載の鉛フリーガラス及び特開2009-188281号公報等に記載の鉛フリーガラスを挙げることができ、これらの鉛フリーガラスから適宜選択して本発明に適用することもまた好ましい。
 また前記電極用ペースト組成物を太陽電池受光面側の電極以外、例えば裏面取出し電極、バックコンタクト型太陽電池素子におけるスルーホール電極及び裏面電極として用いる場合には、上記鉛のようなファイアースルーに必要な成分を含まないガラス粒子を用いることができる。
 前記電極用ペースト組成物に用いられるガラス粒子を構成するガラス成分としては、二酸化ケイ素(SiO)、酸化リン(P)、酸化アルミニウム(Al)、酸化ホウ素(B)、酸化バナジウム(V)、酸化カリウム(KO)、酸化ビスマス(Bi)、酸化ナトリウム(NaO)、酸化リチウム(LiO)、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、酸化ベリリウム(BeO)、酸化亜鉛(ZnO)、酸化鉛(PbO)、酸化カドミウム(CdO)、酸化スズ(SnO)、酸化ジルコニウム(ZrO)、酸化タングステン(WO)、酸化モリブデン(MoO)、酸化ランタン(La)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化イットリウム(Y)、酸化チタン(TiO)、酸化ゲルマニウム(GeO)、酸化テルル(TeO)、酸化ルテチウム(Lu)、酸化アンチモン(Sb)、酸化銅(CuO)、酸化鉄(FeO)、酸化銀(AgO)及び酸化マンガン(MnO)が挙げられる。
 中でも、SiO、P、Al、B、V、Bi、ZnO及びPbOからなる群より選択される少なくとも1種のガラス成分を含むガラス粒子を用いることが好ましく、SiO、Al、B、Bi及びPbOからなる群より選択される少なくとも1種のガラス成分を含むガラス粒子を用いることがより好ましい。このようなガラス粒子では、軟化点がより効果的に低下する。さらにリン含有銅合金粒子、錫含有粒子、ニッケル含有粒子及び必要に応じて含まれる銀粒子との濡れ性が向上するため、焼成過程で各粒子間の焼結が進み、より体積抵抗率の低い電極を形成することができる。
 他方、低接触抵抗率の観点からは、五酸化二リンを含むガラス粒子(リン酸ガラス、P系ガラス粒子)であることが好ましく、五酸化二リンに加えて五酸化二バナジウムを更に含むガラス粒子(P-V系ガラス粒子)であることがより好ましい。五酸化二バナジウムを更に含むことで、耐酸化性がより向上し、電極の抵抗率がより低下する。これは、例えば、五酸化二バナジウムを更に含むことでガラスの軟化点が低下することに起因すると考えることができる。五酸化二リン-五酸化二バナジウム系ガラス粒子(P-V系ガラス粒子)を用いる場合、五酸化二バナジウムの含有率としては、ガラスの全質量中に1質量%以上であることが好ましく、1質量%~70質量%であることがより好ましい。
 本発明におけるガラス粒子の平均粒子径としては特に制限はないが、積算した重量が50%である場合における平均粒子径(D50%)が、0.5μm以上10μm以下であることが好ましく、0.8μm以上8μm以下であることがより好ましい。0.5μm以上とすることで電極用ペースト組成物作製時の作業性が向上する。また10μm以下であることで、電極用ペースト組成物中に均一に分散し、焼成工程で効率よくファイアースルーを生じることができ、さらにシリコン基板との密着性も向上する。
 また前記ガラス粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、及び鱗片状等のいずれであってもよいが、耐酸化性と低い体積抵抗率の観点から、略球状、扁平状、または板状であることが好ましい。
 前記ガラス粒子の含有率としては電極用ペースト組成物の全質量中に0.1質量%~10質量%であることが好ましく、0.5質量%~8質量%であることがより好ましく、1質量%~8質量%であることがさらに好ましい。かかる範囲の含有率でガラス粒子を含むことで、より効果的に耐酸化性、電極の低い体積抵抗率、及び低い接触抵抗率が達成され、また前記リン含有銅合金粒子、前記錫含有粒子及びニッケル含有粒子間の反応を促進させることができる。
 電極用ペースト組成物におけるガラス粒子の含有率は、高周波誘導結合プラズマ発光分光分析(ICP-AES)装置又は高周波誘導結合プラズマ質量分析(ICP-MS)装置を用いて測定することができる。なお、これら装置を用いてガラス粒子の含有率を測定する際は、電極用ペースト組成物から溶剤を除去した状態で測定する。
 また電極用ペースト組成物は、リン含有銅合金粒子、錫含有粒子、ニッケル含有粒子及び必要に応じて含まれる銀粒子の総含有量に対するガラス粒子の含有量の比が0.01~0.15であることが好ましく、0.03~0.12であることがより好ましい。かかる範囲の含有率でガラス粒子を含むことで、より効果的に耐酸化性、電極の低い体積抵抗率、及び低い接触抵抗率が達成され、また前記リン含有銅合金粒子、前記錫含有粒子及びニッケル含有粒子間の反応を促進させることができる。
 さらに電極用ペースト組成物は、リン含有銅合金粒子の平均粒子径(D50%)に対するガラス粒子の平均粒子径(D50%)の比が0.05~100であることが好ましく、0.1~20であることがより好ましい。かかる範囲のガラス粒子を含むことで、より効果的に耐酸化性、電極の低い体積抵抗率、及び低い接触抵抗率が達成され、また前記リン含有銅合金粒子、前記錫含有粒子及びニッケル含有粒子間の反応を促進させることができる。
(溶剤及び樹脂)
 本発明の電極用ペースト組成物は、溶剤の少なくとも1種と樹脂の少なくとも1種とを含む。これにより前記電極用ペースト組成物の液物性(粘度、表面張力等)を、シリコン基板等に付与する際の付与方法に応じて必要とされる液物性に調整することができる。
 前記溶剤としては特に制限はない。溶剤としては、ヘキサン、シクロヘキサン、トルエン等の炭化水素系溶剤;ジクロロエチレン、ジクロロエタン、ジクロロベンゼン等のハロゲン化炭化水素系溶剤;テトラヒドロフラン、フラン、テトラヒドロピラン、ピラン、ジオキサン、1,3-ジオキソラン、トリオキサン等の環状エーテル系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶剤;ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶剤;アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン等のケトン系溶剤;エタノール、2-プロパノール、1-ブタノール、ジアセトンアルコール等のアルコール系化合物;2,2,4-トリメチル-1,3-ペンタンジオールモノアセテート、2,2,4-トリメチル-1,3-ペンタンジオールモノプロピオレート、2,2,4-トリメチル-1,3-ペンタンジオールモノブチレート、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート、2,2,4-トリエチル-1,3-ペンタンジオールモノアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等の多価アルコールのエステル系溶剤;ブチルセロソルブ、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールのエーテル系溶剤;α-テルピネオール等のテルピネオール、α-テルピネン等のテルピネン、α-ピネン、β-ピネン等のピネン、ミルセン、アロオシメン、リモネン、ジペンテン、カルボン、オシメン、フェランドレンなどのテルペン系溶剤、及びこれらの混合物が挙げられる。
 前記溶剤としては、電極用ペースト組成物をシリコン基板に形成する際の塗布性、印刷性の観点から、多価アルコールのエステル系溶剤、テルペン系溶剤及び多価アルコールのエーテル系溶剤からなる群より選ばれる少なくとも1種であることが好ましく、多価アルコールのエステル系溶剤及びテルペン系溶剤からなる群より選ばれる少なくとも1種であることがより好ましい。本発明において前記溶剤は1種単独でも、2種以上を組み合わせて用いてもよい。
 また前記樹脂としては焼成処理によって熱分解されうる樹脂であれば、当該技術分野において通常用いられる樹脂を特に制限なく用いることができ、天然高分子化合物であっても合成高分子化合物であってもよい。樹脂として具体的には、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ニトロセルロース等のセルロース系樹脂;ポリビニルアルコール類;ポリビニルピロリドン類;アクリル樹脂;酢酸ビニル-アクリル酸エステル共重合体;ポリビニルブチラール等のブチラール樹脂;フェノール変性アルキド樹脂、ひまし油脂肪酸変性アルキド樹脂等のアルキド樹脂;エポキシ樹脂;フェノール樹脂;ロジンエステル樹脂などを挙げることができる。
 本発明における前記樹脂としては、焼成時における消失性の観点から、セルロース系樹脂、及びアクリル樹脂からなる群より選ばれる少なくとも1種であることが好ましい。本発明において前記樹脂は1種単独でも、2種以上を組み合わせて用いてもよい。
 また本発明における前記樹脂の重量平均分子量は特に制限されない。中でも重量平均分子量は5000以上500000以下が好ましく、10000以上300000以下であることがより好ましい。前記樹脂の重量平均分子量が5000以上であると、電極用ペースト組成物の粘度が増加することを抑制できる。これは例えばリン含有銅合金粒子、錫含有粒子及びニッケル含有粒子に吸着させたときの立体的な反発作用が不足し、粒子同士が凝集してしまうためと考えることができる。一方、樹脂の重量平均分子量が500000以下であると、樹脂同士が溶剤中で凝集することが抑制され、電極用ペースト組成物の粘度が増加することを抑制できる。
 またこれに加え樹脂の重量平均分子量が500000以下であると、樹脂の燃焼温度が高くなることが抑制され、電極用ペースト組成物を焼成する際に樹脂が完全に燃焼されず異物として残存することが抑制され、電極をより低い体積抵抗率で形成することができる。
 本発明の電極用ペースト組成物において、前記溶剤と前記樹脂の含有率は、所望の液物性と使用する溶剤及び樹脂の種類に応じて適宜選択することができる。例えば、溶剤と樹脂の総含有率が、電極用ペースト組成物の全質量中に3質量%以上29.9質量%以下であることが好ましく、5質量%以上25質量%以下であることがより好ましく、7質量%以上20質量%以下であることがさらに好ましい。
 溶剤と樹脂の総含有率が前記範囲内であることにより、電極用ペースト組成物をシリコン基板に付与する際の付与適性が良好になり、所望の幅及び高さを有する電極をより容易に形成することができる。
 さらに本発明の電極用ペースト組成物においては、耐酸化性と電極の低い体積抵抗率の観点から、リン含有銅合金粒子、錫含有粒子及びニッケル含有粒子の総含有率が70質量%以上94質量%以下であって、ガラス粒子の含有率が0.1質量%以上10質量%以下であって、溶剤及び樹脂の総含有率が3質量%以上29.9質量%以下であることが好ましく、リン含有銅合金粒子、錫含有粒子及びニッケル粒子の総含有率が74質量%以上88質量%以下であって、ガラス粒子の含有率が0.5質量%以上8質量%以下であって、溶剤及び樹脂の総含有率が7質量%以上20質量%以下であることがより好ましく、リン含有銅合金粒子、錫含有粒子及びニッケル含有粒子の総含有率が74質量%以上88質量%以下であって、ガラス粒子の含有率が1質量%以上8質量%以下であって、溶剤及び樹脂の総含有率が7質量%以上20質量%以下であることがさらに好ましい。
(銀粒子)
 前記電極用ペースト組成物は、銀粒子を更に含むことが好ましい。銀粒子を含むことで耐酸化性がより向上し、形成される電極の体積抵抗率がより低下する。また、前記リン含有銅合金粒子と前記錫含有粒子との反応によって生成したSn-P-O系ガラス相の中にAg粒子が析出することで、電極層の中のCu-Sn-Ni合金相及びCu-Sn合金相とシリコン基板間のオーミックコンタクト性がより向上する。さらに太陽電池モジュールとした場合のはんだ接続性が向上するという効果も得られる。
 前記銀粒子を構成する銀は、不可避的に混入する他の原子を含んでいてもよい。不可避的に混入する他の原子としては、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Sn、Al、Zr、W、Mo、Ti、Co、Ni、Au等を挙げることができる。
 前記銀粒子に含まれる他の原子の含有率は、例えば銀粒子中に3質量%以下とすることができ、融点及び電極の低体積抵抗率化の観点から、1質量%以下であることが好ましい。
 本発明における銀粒子の平均粒子径としては特に制限はないが、積算した重量が50%である場合における平均粒子径(D50%)が、0.4μm以上10μm以下であることが好ましく、1μm以上7μm以下であることがより好ましい。0.4μm以上とすることでより効果的に耐酸化性が向上する。また10μm以下であることで電極中における銀粒子とリン含有銅合金粒子、錫含有粒子及びニッケル粒子との接触面積が大きくなり、抵抗率がより効果的に低下する。
 前記銀粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、及び鱗片状等のいずれであってもよいが、耐酸化性と低抵抗率の観点から、略球状、扁平状、または板状であることが好ましい。
 前記電極用ペースト組成物が銀粒子を含む場合、銀粒子の含有率としては、前記リン含有銅合金粒子、前記錫含有粒子、前記ニッケル粒子及び前記銀粒子の総含有率を100質量%としたときの銀粒子の含有率が0.1質量%以上10質量%以下であることが好ましく、0.5質量%以上8質量%以下であることがより好ましい。
 電極用ペースト組成物における銀粒子の含有率は、蛍光X線分析(XRF)装置(例えば、(株)堀場製作所製MESA-500W型)を用いて測定することができる。
 また本発明の電極用ペースト組成物においては、耐酸化性、電極の低体積抵抗率化、シリコン基板への塗布性の観点から、電極用ペースト組成物は、リン含有銅合金粒子、錫含有粒子、ニッケル含有粒子及び銀粒子の総含有率が70質量%以上94質量%以下であることが好ましく、74質量%以上88質量%以下であることがより好ましい。リン含有銅合金粒子、錫含有粒子、ニッケル含有粒子及び銀粒子の総含有率が70質量%以上であることで、電極用ペースト組成物を付与する際に好適な粘度を容易に達成することができる。またリン含有銅合金粒子、錫含有粒子、ニッケル含有粒子及び銀粒子の総含有率が94質量%以下であることで、電極用ペースト組成物を付与する際のかすれの発生をより効果的に抑制することができる。
 さらに本発明の電極用ペースト組成物が銀粒子を更に含む場合においては、耐酸化性と電極の低体積抵抗率の観点から、リン含有銅合金粒子、錫含有粒子、ニッケル含有粒子及び銀粒子の総含有率が70質量%以上94質量%以下であって、ガラス粒子の含有率が0.1質量%以上10質量%以下であって、溶剤及び樹脂の総含有率が3質量%以上29.9質量%以下であることが好ましく、リン含有銅合金粒子、錫含有粒子、ニッケル含有粒子及び銀粒子の総含有率が74質量%以上88質量%以下であって、ガラス粒子の含有率が0.5質量%以上8質量%以下であって、溶剤及び樹脂の総含有率が7質量%以上20質量%以下であることがより好ましく、リン含有銅合金粒子、錫含有粒子、ニッケル含有粒子及び銀粒子の総含有率が74質量%以上88質量%以下であって、ガラス粒子の含有率が1質量%以上8質量%以下であって、溶剤及び樹脂の総含有率が7質量%以上20質量%以下であることがさらに好ましい。
(フラックス)
 前記電極用ペースト組成物は、フラックスの少なくとも1種をさらに含むことができる。フラックスを含むことでリン含有銅合金粒子の表面に形成された酸化膜を除去し、焼成中のリン含有銅合金粒子の還元反応を促進させることができる。また焼成中の錫含有粒子の溶融も進むためリン含有銅合金粒子との反応が進み、結果として耐酸化性がより向上し、形成される電極の抵抗率がより低下する。さらに電極材とシリコン基板の密着性が向上するという効果も得られる。
 フラックスとしては、リン含有銅合金粒子の表面に形成された酸化膜を除去可能で、錫含有粒子の溶融を促進するものであれば特に制限はない。フラックスとして具体的には、脂肪酸、ホウ酸化合物、フッ化化合物、ホウフッ化化合物等を好ましいフラックスとして挙げることができる。
 フラックスとしてより具体的には、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ソルビン酸、ステアロール酸、プロピオン酸、酸化ホウ素、ホウ酸カリウム、ホウ酸ナトリウム、ホウ酸リチウム、ホウフッ化カリウム、ホウフッ化ナトリウム、ホウフッ化リチウム、酸性フッ化カリウム、酸性フッ化ナトリウム、酸性フッ化リチウム、フッ化カリウム、フッ化ナトリウム、フッ化リチウム等が挙げられる。
 中でも、電極材焼成時の耐熱性(フラックスが焼成の低温時に揮発しない特性)及びリン含有銅合金粒子の耐酸化性補完の観点から、ホウ酸カリウム及びホウフッ化カリウムが特に好ましいフラックスとして挙げられる。
 本発明においてこれらのフラックスは、それぞれ1種単独で使用してもよく、2種類以上を組み合わせて使用することもできる。
 前記電極用ペースト組成物がフラックスを含む場合、電極用ペースト組成物におけるフラックスの含有率としては、リン含有銅合金粒子の耐酸化性を効果的に発現させ、錫含有粒子の溶融を促進させる観点及び電極材の焼成完了時にフラックスが除去された部分の空隙率低減の観点から、電極用ペースト組成物の全質量中に、0.1質量%~5質量%であることが好ましく、0.3質量%~4質量%であることがより好ましく、0.5質量%~3.5質量%であることがさらに好ましく、0.7質量%~3質量%であることが特に好ましく、1質量%~2.5質量%であることが極めて好ましい。
(その他の成分)
 本発明の電極用ペースト組成物は、上述した成分に加え、必要に応じて、当該技術分野で通常用いられるその他の成分をさらに含むことができる。その他の成分としては、可塑剤、分散剤、界面活性剤、無機結合剤、金属酸化物、セラミック、有機金属化合物等を挙げることができる。
 本発明の電極用ペースト組成物の製造方法としては特に制限はない。リン含有銅合金粒子、錫含有粒子、ニッケル含有粒子、ガラス粒子、溶剤、樹脂、必要に応じて含まれる銀粒子等を、通常用いられる分散方法又は混合方法を用いて、分散又は混合することで製造することができる。分散方法及び混合方法は特に制限されず、通常用いられる分散方法及び混合方法から適宜選択して適用することができる。
(電極用ペースト組成物を用いた電極の製造方法)
 前記電極用ペースト組成物を用いて電極を製造する方法としては、前記電極用ペースト組成物を、電極を形成する領域に付与し、乾燥後に、焼成することで所望の領域に電極を形成することができる。前記電極用ペースト組成物を用いることで、酸素の存在下(例えば、大気中)で焼成処理を行っても、体積抵抗率の低い電極を形成することができる。
 具体的には例えば、前記電極用ペースト組成物を用いて太陽電池用電極を形成する場合、電極用ペースト組成物はシリコン基板上に所望の形状となるように付与され、乾燥後に、焼成されることで、抵抗率の低い太陽電池電極を所望の形状に形成することができる。また前記電極用ペースト組成物を用いることで、酸素の存在下(例えば、大気中)で焼成処理を行っても、体積抵抗率の低い電極を形成することができる。さらにシリコン基板上に形成された電極は、シリコン基板との密着性に優れ、良好なオーミックコンタクトを達成することができる。
 電極用ペースト組成物を付与する方法としては、スクリーン印刷、インクジェット法、ディスペンサー法等を挙げることができるが、生産性の観点から、スクリーン印刷による塗布であることが好ましい。
 電極用ペースト組成物をスクリーン印刷によって塗布する場合、電極用ペースト組成物は、20Pa・s~1000Pa・sの範囲の粘度を有することが好ましい。なお、電極用ペースト組成物の粘度は、ブルックフィールドHBT粘度計を用いて25℃で測定される。
 電極用ペースト組成物の付与量は、形成する電極の大きさ等に応じて適宜選択することができる。例えば、電極用ペースト組成物付与量として2g/m~10g/mとすることができ、4g/m~8g/mであることが好ましい。
 また本発明の電極用ペースト組成物を用いて電極を形成する際の熱処理条件(焼成条件)としては、当該技術分野で通常用いられる熱処理条件を適用することができる。一般に、熱処理温度(焼成温度)としては800℃~900℃であるが、本発明の電極用ペースト組成物を用いる場合には、より低温での熱処理条件から一般的な熱処理条件までの広範な範囲に適用することができる。例えば、450℃~900℃の広範な熱処理温度で良好な特性を有する電極を形成することができる。
 また熱処理時間は、熱処理温度等に応じて適宜選択することができ、例えば、1秒~20秒とすることができる。
 熱処理装置としては、上記温度に加熱できるものであれば適宜採用することができ、赤外線加熱炉、トンネル炉などを挙げることができる。赤外線加熱炉は、電気エネルギーを電磁波の形で加熱材料に直接投入し、熱エネルギーに変換されるため高効率であり、また短時間での急速加熱が可能である。更に、燃焼による生成物がなく、また非接触加熱であるため、生成する電極の汚染を抑えることが可能である。トンネル炉は、試料を自動で連続的に入り口から出口へ搬送し、焼成するため、炉体の区分けと搬送スピードの制御により、均一に焼成することが可能である。太陽電池素子の発電性能の観点からは、トンネル炉により熱処理することが好適である。
<太陽電池素子及びその製造方法>
 本発明の太陽電池素子は、pn接合を有するシリコン基板と、前記シリコン基板上に付与された前記電極用ペースト組成物の焼成物である電極とを少なくとも有する。これにより、良好な特性を有する太陽電池素子が得られ、該太陽電池素子の生産性に優れる。
 なお、本明細書において太陽電池素子とは、pn接合が形成されたシリコン基板と、シリコン基板上に形成された電極とを有するものを意味する。また太陽電池とは、太陽電池素子の電極上に配線材料が設けられ、必要に応じて複数の太陽電池素子が配線材料を介して接続されて構成され、封止樹脂等で封止された状態のものを意味する。
 以下、本発明の太陽電池素子の具体例を、図面を参照しながら説明するが、本発明はこれに限定されるものではない。代表的な太陽電池素子の一例を示す断面図、受光面及び裏面の概要を図1、図2及び図3に示す。
 図1に概略断面図を示すように、半導体基板1の一方の面の表面付近にはn型拡散層2が形成され、n型拡散層2上に出力取り出し電極4及び反射防止膜3が形成されている。また他方の面の表面付近にはp型拡散層7が形成され、p型拡散層7上に裏面出力取り出し電極6及び裏面集電用電極5が形成されている。通常、太陽電池素子の半導体基板1には、単結晶または多結晶シリコンなどが使用される。この半導体基板1には、ホウ素などが含有され、p型半導体を構成している。受光面側は太陽光の反射を抑制するために、NaOHとIPA(イソプロピルアルコール)からなるエッチング溶液により凹凸(テクスチャともいう、図示せず)が形成されている。その受光面側にはリンなどがドーピングされ、n拡散層2がサブミクロンオーダーの厚さで設けられているとともに、p型バルク部分との境界にpn接合部が形成されている。さらに受光面側には、n拡散層2上に窒化ケイ素などの反射防止膜3が、PECVDなどによって膜厚90nm前後で設けられている。
 次に、図2に概略を示す受光面側に設けられた受光面電極4と、図3に概略を示す裏面に形成される集電用電極5及び出力取出し電極6の形成方法について説明する。
 受光面電極4と裏面出力取出し電極6は、前記電極用ペースト組成物から形成される。また裏面集電用電極5はガラス粉末を含むアルミニウム電極ペースト組成物から形成されている。受光面電極4と、裏面集電用電極5及び裏面出力取出し電極6を形成する第一の方法として、前記ペースト組成物をスクリーン印刷等にて所望のパターンに塗布した後、乾燥後に、大気中450℃~900℃程度で同時に焼成して形成することが挙げられる。本発明においては前記電極用ペースト組成物を用いることで、比較的低温で焼成しても、抵抗率及び接触抵抗率に優れる電極を形成することができる。
 その際に、受光面側では、受光面電極4を形成する前記電極用ペースト組成物に含まれるガラス粒子と、反射防止層3とが反応(ファイアースルー)して、受光面電極4とn拡散層2が電気的に接続(オーミックコンタクト)される。
 本発明においては、前記電極用ペースト組成物を用いて受光面電極4が形成されることで、導電性金属として銅を含みながら、銅の酸化が抑制され、低抵抗率の受光面電極4が、良好な生産性で形成される。
 さらに本発明においては形成される電極がCu-Sn-Ni合金相及び必要に応じてCu-Sn合金相とSn-P-Oガラス相とを含んで構成されることが好ましく、Sn-P-Oガラス相がCu-Sn合金相もしくはCu-Sn-Ni合金相とシリコン基板との間に配置される(不図示)ことがより好ましい。これにより銅とシリコン基板との反応が抑制され、低い体積抵抗率を有し密着性に優れる電極を形成することができる。
 また、裏面側では、焼成の際に裏面集電用電極5を形成するアルミニウム電極ペースト組成物中のアルミニウムが半導体基板1の裏面に拡散して、p拡散層7を形成することによって、半導体基板1と裏面集電用電極5、裏面出力取出し電極6との間にオーミックコンタクトを得ることができる。
 受光面電極4と、裏面集電用電極5及び裏面出力取出し電極6を形成する第二の方法として、裏面集電用電極5を形成するアルミニウム電極ペースト組成物を先に印刷し、乾燥後に大気中750℃~900℃程度で焼成して裏面集電用電極5を形成した後に、本発明の電極用ペースト組成物を受光面側及び裏面側に印刷し、乾燥後に大気中450℃~650℃程度で焼成して、受光面電極4と裏面出力取出し電極6を形成する方法が挙げられる。
 この方法は、例えば以下の場合に有効である。すなわち、裏面集電用電極5を形成するアルミニウム電極ペーストを焼成する際に、650℃以下の焼成温度では、アルミニウムペーストの組成によっては、アルミニウム粒子の焼結及び半導体基板1へのアルミニウム拡散量が不足して、p拡散層を充分に形成できない場合がある。この状態では裏面における半導体基板1と裏面集電用電極5、裏面出力取出し電極6との間にオーミックコンタクトが十分に形成できなくなり、太陽電池素子としての発電性能が低下する場合がある。そこで、アルミニウム電極ペースト組成物に最適な焼成温度(例えば750℃~900℃)で裏面集電用電極5を形成した後、前記電極用ペースト組成物を印刷し、乾燥後に比較的低温(450℃~650℃)で焼成して、受光面電極4と裏面出力取出し電極6を形成することが好ましい。
 また本発明の別の態様であるいわゆるバックコンタクト型太陽電池素子に共通する裏面側電極構造の概略平面図を図4に、それぞれ別の態様のバックコンタクト型太陽電池素子である太陽電池素子の概略構造を示す斜視図を図5、図6及び図7にそれぞれ示す。なお、図5、図6及び図7は、それぞれ図4におけるAA断面における斜視図である。
 図5の斜視図に示す構造を有する太陽電池素子は、半導体基板1には、レーザードリルまたはエッチング等によって、受光面側及び裏面側の両面を貫通したスルーホールが形成されている。また受光面側には光入射効率を向上させるテクスチャー(図示せず)が形成されている。さらに受光面側にはn型化拡散処理によるn拡散層2と、n拡散層2上に反射防止膜(図示せず)が形成されている。これらは従来の結晶シリコン型太陽電池素子と同一の工程により製造される。
 次に、先に形成されたスルーホール内部に、本発明の電極用ペースト組成物が印刷法又はインクジェット法により充填され、さらに受光面側には同じく本発明の電極用ペースト組成物がグリッド状に印刷され、スルーホール電極9及び受光面集電用電極8を形成する組成物層が形成される。
 ここで、充填用と印刷用に用いるペーストでは、粘度を始めとして、それぞれのプロセスに最適な組成のペーストを使用するのが望ましいが、同じ組成のペーストで充填、印刷を一括で行ってもよい。
 一方、裏面側には、キャリア再結合を防止するためのn拡散層2及びp拡散層7が形成される。ここでp拡散層7を形成する不純物元素として、ボロン(B)又はアルミニウム(Al)が用いられる。このp拡散層7は、例えばボロンを拡散源とした熱拡散処理が、前記反射防止膜形成前の太陽電池素子製造工程において実施されることで形成されていてもよく、あるいは、アルミニウムを用いる場合には、前記印刷工程において、反対面側にアルミニウムペーストを印刷、焼成することで形成されていてもよい。
 裏面側には図4の平面図で示すように、本発明の電極用ペースト組成物をそれぞれn拡散層2上及びp拡散層7上にストライプ状に印刷することによって、裏面電極10及び11が形成される。ここで、p拡散層7を、アルミニウムペーストを用いて形成する場合は、n拡散層2側についてのみ前記電極用ペースト組成物を用い、裏面電極を形成すればよい。
 その後乾燥して大気中450℃~900℃程度で焼成して、受光面集電用電極8とスルーホール電極9、及び裏面電極10、11が形成される。また先述したように、裏面電極の一方にアルミニウム電極を用いる場合は、アルミニウムの焼結性と裏面電極とp拡散層7とのオーミックコンタクト性の観点から、先にアルミニウムペーストを印刷、焼成するによって裏面電極の一方を形成し、その後、前記電極用ペースト組成物を印刷、充填し、焼成することで受光面集電用電極8とスルーホール電極9、及び裏面電極の他方を形成してもよい。
 また図6の斜視図に示す構造を有する太陽電池素子は、受光面集電用電極を形成しないこと以外は、図5の斜視図に示す構造を有する太陽電池素子と同様にして製造することができる。すなわち図6の斜視図に示す構造を有する太陽電池素子において、本発明の電極用ペースト組成物は、スルーホール電極9と裏面電極10、11に用いることができる。
 また、図7の斜視図に示す構造を有する太陽電池素子は、ベースとなる半導体基板にn型シリコン基板を用いたことと、スルーホールを形成しないこと以外は、図5の斜視図に示す構造を有する太陽電池素子と同様にして製造することができる。すなわち図7の斜視図に示す構造を有する太陽電池素子において、本発明の電極用ペースト組成物は、裏面電極10、11に用いることができる。
 なお、前記電極用ペースト組成物は、上記したような太陽電池電極の用途に限定されるものではなく、プラズマディスプレイの電極配線及びシールド配線、セラミックスコンデンサ、アンテナ回路、各種センサー回路、半導体デバイスの放熱材料等の用途にも好適に使用することができる。これらの中でも特にシリコンを含む基板上に電極を形成する場合に好適に用いることができる。
<太陽電池>
 本発明の太陽電池は、前記太陽電池素子の少なくとも1つを含み、太陽電池素子の電極上に配線材料が配置されて構成される。太陽電池はさらに必要に応じて、配線材料を介して複数の太陽電池素子が連結され、さらに封止材で封止されて構成されていてもよい。前記配線材料及び封止材としては特に制限されず、当業界で通常用いられているものから適宜選択することができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。
<実施例1>
(a)電極用ペースト組成物の調製
 7質量%のリンを含むリン含有銅合金を常法により調製し、これを溶解して水アトマイズ法により粉末化した後、乾燥、分級した。分級した粉末をブレンドして、脱酸素及び脱水処理し、7質量%のリンを含むリン含有銅合金粒子を作製した。なお、リン含有銅合金粒子の平均粒子径(D50%)は5.0μmであり、その形状は略球状であった。
 リン含有銅合金粒子の形状は、(株)日立ハイテクノロジーズ製TM-1000型走査型電子顕微鏡を用いて観察して判定した。リン含有銅合金粒子の平均粒子径はベックマン・コールター(株)製LS 13 320型レーザー散乱回折法粒度分布測定装置(測定波長:632nm)を用いて算出した。
 二酸化ケイ素(SiO)3部、酸化鉛(PbO)60部、酸化ホウ素(B)18部、酸化ビスマス(Bi)5部、酸化アルミニウム(Al)5部、酸化亜鉛(ZnO)9部からなるガラス(以下、「G01」と略記することがある)を調製した。得られたガラスG01の軟化点は420℃、結晶化温度は650℃を超えていた。
 得られたガラスG01を用いて、平均粒子径(D50%)が2.5μmであるガラスG01粒子を得た。またその形状は略球状であった。
 なお、ガラス粒子形状は、(株)日立ハイテクノロジーズ製TM-1000型走査型電子顕微鏡を用いて観察して判定した。ガラス粒子の平均粒子径はベックマン・コールター(株)製LS 13 320型レーザー散乱回折法粒度分布測定装置(測定波長:632nm)を用いて算出した。ガラス粒子の軟化点は(株)島津製作所製DTG-60H型示差熱-熱重量同時測定装置を用いて、示差熱(DTA)曲線により求めた。
 上記で得られたリン含有銅合金粒子を33.3部、錫粒子(Sn;平均粒子径(D50%)は5.0μm;純度99.9%)を22.8部、ニッケル粒子(Ni;平均粒子径(D50%)は5.0μm;純度99.9%)を22.2部、ガラスG01粒子を7.8部、ジエチレングリコールモノブチルエーテル(BC)を11.7部、ポリアクリル酸エチル(EPA)を2.2部混ぜ合わせ、自動乳鉢混練装置を用いて混合してペースト化し、電極用ペースト組成物1を調製した。
(b)太陽電池素子の作製
 受光面にn拡散層、テクスチャ及び反射防止膜(窒化ケイ素膜)が形成された膜厚190μmのp型半導体基板を用意し、125mm×125mmの大きさに切り出した。その受光面上にスクリーン印刷法を用い、上記で得られた電極用ペースト組成物1を図2に示すような電極パターンとなるように印刷した。電極のパターンは150μm幅のフィンガーラインと1.5mm幅のバスバーで構成され、焼成後の膜厚が20μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧)を適宜調整した。これを150℃に加熱したオーブンの中に15分間いれ、溶剤を蒸散により取り除いた。
 続いて、受光面とは反対側の面(以下、「裏面」ともいう)上に、電極用ペースト組成物1とアルミニウム電極ペーストを、上記と同様にスクリーン印刷で、図3に示すような電極パターンとなるように印刷した。
 電極用ペースト組成物1からなる裏面出力取出し電極のパターンは、123mm×5mmで構成され、計2ヶ所印刷した。なお、裏面出力取出し電極は焼成後の膜厚が20μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧)を適宜調整した。またアルミニウム電極ペーストを、裏面出力取出し電極以外の全面に印刷して裏面集電用電極パターンを形成した。また焼成後の裏面集電用電極の膜厚が30μmとなるように、アルミニウム電極ペーストの印刷条件を適宜調整した。これを150℃に加熱したオーブンの中に15分間いれ、溶剤を蒸散により取り除いた。
 続いてトンネル炉(ノリタケ社製、1列搬送W/Bトンネル炉)を用いて大気雰囲気下、焼成最高温度800℃で保持時間10秒の加熱処理(焼成)を行って、所望の電極が形成された太陽電池素子1を作製した。
<実施例2>
 実施例1において、電極形成時の焼成条件を最高温度800℃で10秒間から、最高温度850℃で8秒間に変更したこと以外は、実施例1と同様にして太陽電池素子2を作製した。
<実施例3>
 実施例1において、リン含有銅合金粒子のリン含有量を7質量%から6質量%に変更したこと以外は、実施例1と同様にして、電極用ペースト組成物3を調製し、太陽電池素子3を作製した。
<実施例4>
 実施例1において、リン含有銅合金粒子のリン含有量を7質量%から8質量%に変更したこと以外は、実施例1と同様にして、電極用ペースト組成物4を調製し、太陽電池素子4を作製した。
<実施例5>
 実施例4において、電極形成時の焼成条件を最高温度800℃で10秒間から、最高温度850℃で8秒間に変更したこと以外は、実施例1と同様にして、電極用ペースト組成物5を調製し、太陽電池素子5を作製した。
<実施例6>
 実施例1において、リン含有銅合金粒子の平均粒子径(D50%)を5.0μmから1.5μmに変更したこと以外は、実施例1と同様にして、電極用ペースト組成物6を調製し、太陽電池素子6を作製した。
<実施例7>
 実施例1において、リン含有銅合金粒子、錫含有粒子及びニッケル含有粒子の含有量を変更して、リン含有銅合金粒子の含有量を36.5部、錫含有粒子の含有量を25.4部、ニッケル含有粒子を16.4部としたこと以外は、実施例1と同様にして、電極用ペースト組成物7を調製し、太陽電池素子7を作製した。
<実施例8>
 実施例1において、リン含有銅合金粒子、錫含有粒子及びニッケル含有粒子の含有量を変更して、リン含有銅合金粒子の含有量を46.5部、錫含有粒子の含有量を9.4部、ニッケル含有粒子を22.4部としたこと以外は、実施例1と同様にして、電極用ペースト組成物8を調製し、太陽電池素子8を作製した。
<実施例9>
 実施例1において、錫含有粒子として錫粒子(Sn)の代わりにSn-4Ag-0.5Cu(Snに4質量%のAgと0.5質量%のCuを含む合金)からなる錫合金粒子を用い、その平均粒子径(D50%)を8.0μmとしたこと以外は、実施例1と同様にして、電極用ペースト組成物9を調製し、太陽電池素子9を作製した。
<実施例10>
 実施例1において、ニッケル含有粒子としてニッケル粒子(Ni)の代わりにNi-60Cu(Niに60質量%のCuを含む合金)からなるニッケル合金粒子を用い、その平均粒子径(D50%)を7.0μmとしたこと以外は、実施例1と同様にして、電極用ペースト組成物10を調製し、太陽電池素子10を作製した。
<実施例11>
 実施例1において、ニッケル含有粒子(Ni)の平均粒子径(D50%)を5.0μmから10.0μmに変更したこと以外は、実施例1と同様にして、電極用ペースト組成物11を調製し、太陽電池素子11を作製した。
<実施例12>
 実施例1において、電極用ペースト組成物に銀粒子(Ag;平均粒子径(D50%)3.0μm;純度99.5%)を加えた。具体的には各成分の含有量を、リン含有銅合金粒子を32.3部、錫粒子を21.8部、ニッケル粒子を20.2部、銀粒子を4.0部、ガラスG01粒子を7.8部、ジエチレングリコールモノブチルエーテル(BC)を11.7部、ポリアクリル酸エチル(EPA)を2.2部と変更したこと以外は、実施例1と同様にして、電極用ペースト組成物12を調製し、太陽電池素子12を作製した。
<実施例13>
 実施例1において、ガラスG01粒子の含有量を変更した。具体的には各成分の含有量を、リン含有銅合金粒子を34.3部、錫粒子を23.7部、ニッケル粒子を23.2部、ガラスG01粒子を4.9部、ジエチレングリコールモノブチルエーテル(BC)を11.7部、ポリアクリル酸エチル(EPA)を2.2部と変更したこと以外は、実施例1と同様にして、電極用ペースト組成物13を調製し、太陽電池素子13を作製した。
<実施例14>
 実施例1において、ガラス粒子の組成をガラスG01から、以下に示すガラスG02に変更したこと以外は、実施例1と同様にして、電極用ペースト組成物14を調製し、太陽電池素子14を作製した。
 ガラスG02は、酸化バナジウム(V)45部、酸化リン(P)24.2部、酸化バリウム(BaO)20.8部、酸化アンチモン(Sb)5部、酸化タングステン(WO)5部からなるように調製した。またこのガラスG02の軟化点は492℃で、結晶化開始温度は650℃を超えていた。
 得られたガラスG02を用いて、粒子径(D50%)が2.5μmであるガラスG02粒子を得た。またその形状は略球状であった。
<実施例15>
 実施例1において、溶剤をジエチレングリコールモノブチルエーテルからテルピネオール(Ter)に、また樹脂をポリアクリル酸エチルからエチルセルロース(EC)にそれぞれ変更した。具体的には各成分の含有量を、リン含有銅合金粒子を33.3部、錫粒子を22.8部、ニッケル粒子を22.2部、ガラスG01粒子を7.8部、テルピネオール(Ter)を13.5部、エチルセルロース(EC)を0.4部と変更したこと以外は、実施例1と同様にして、電極用ペースト組成物15を調製し、太陽電池素子15を作製した。
<実施例16~20>
 実施例1において、リン含有銅合金粒子のリン含有量、平均粒子径(D50%)及びその含有量、錫含有粒子の組成、平均粒子径(D50%)及びその含有量、ニッケル含有粒子の組成、平均粒子径(D50%)及びその含有量、銀粒子の含有量、ガラス粒子の種類及びその含有量、溶剤の種類及びその含有量、樹脂の種類及びその含有量を表1に示したように変更したこと以外は、実施例1と同様にして電極用ペースト組成物16~20をそれぞれ調製した。
 次いで、得られた電極用ペースト組成物16~20をそれぞれ用い、加熱処理の温度及び処理時間を表2に示したように変更したこと以外は、実施例1と同様にして所望の電極が形成された太陽電池素子16~20をそれぞれ作製した。
<実施例21>
 受光面にn拡散層、テクスチャ及び反射防止膜(窒化ケイ素膜)が形成された膜厚190μmのp型半導体基板を用意し、125mm×125mmの大きさに切り出した。その後、裏面にアルミニウム電極ペーストを印刷して裏面集電用電極パターンを形成した。裏面集電用電極パターンは、図3に示すように裏面出力取出し電極以外の全面に印刷した。また焼成後の裏面集電用電極の膜厚が30μmとなるように、アルミニウム電極ペーストの印刷条件を適宜調整した。これを150℃に加熱したオーブンの中に15分間いれ、溶剤を蒸散により取り除いた。
 続いてトンネル炉(ノリタケ社製、1列搬送W/Bトンネル炉)を用いて大気雰囲気下、焼成最高温度800℃で保持時間10秒の加熱処理(焼成)を行って、裏面の集電用電極及びp拡散層を形成した。
 その後、上記で得られた電極用ペースト組成物1を図2及び図3に示すような電極パターンとなるように印刷した。受光面の電極のパターンは150μm幅のフィンガーラインと1.5mm幅のバスバーで構成され、焼成後の膜厚が20μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧)を適宜調整した。また裏面の電極のパターンは123mm×5mmで構成され、焼成後の膜厚が20μmとなるように、計2ヶ所印刷した。これを150℃に加熱したオーブンの中に15分間いれ、溶剤を蒸散により取り除いた。
 次いでトンネル炉(ノリタケ社製、1列搬送W/Bトンネル炉)を用いて大気雰囲気下、焼成最高温度650℃で保持時間10秒の加熱処理(焼成)を行って、所望の電極が形成された太陽電池素子21を作製した。
<実施例22>
 実施例21において、受光面の電極及び裏面出力取出し電極の作製に上記で得られた電極用ペースト組成物3を用いたこと以外は、実施例21と同様にして太陽電池素子22を作製した。
<実施例23>
 実施例21において、受光面の電極及び裏面出力取出し電極の作製に上記で得られた電極用ペースト組成物9を用いたことと、電極形成時の焼成条件を最高温度650℃で10秒間から、最高温度620℃で10秒間に変更したこと以外は、実施例21と同様にして太陽電池素子23を作製した。
<実施例24>
 上記で得られた電極用ペースト組成物1を用いて、図5に示したような構造を有する太陽電池素子24を作製した。具体的な作製方法を以下に示す。まずp型シリコン基板について、レーザードリルによって、受光面側及び裏面側の両面を貫通した直径100μmのスルーホールを形成した。また受光面側にはテクスチャ、n拡散層、反射防止膜を順次形成した。なお、n拡散層は、スルーホール内部、及び裏面の一部にもそれぞれ形成した。次に、先に形成されたスルーホール内部電極用ペースト組成物1をインクジェット法により充填し、さらに受光面側にもグリッド状に印刷した。
 一方、裏面側には、電極用ペースト組成物1を用いて、図4に示すようなパターンでストライプ状に印刷し、スルーホールの下に電極用ペースト組成物層が印刷されるように形成した。またアルミニウム電極ペーストを電極用ペースト組成物層以外の領域に印刷してアルミニウム電極ペースト層を形成した。これをトンネル炉(ノリタケ社製、1列搬送W/Bトンネル炉)を用いて大気雰囲気下、焼成最高温度800℃で保持時間10秒の加熱処理を行って、所望の電極が形成された太陽電池素子24を作製した。
 このときアルミニウム電極ペースト層を形成した部分については、焼成によりp型シリコン基板内にアルミニウムが拡散することで、p拡散層が形成されていた。
<実施例25>
 実施例24において、電極用ペースト組成物1から上記で得られた電極用ペースト組成物16に変更して、受光面集電用電極、スルーホール電極、裏面電極を形成したこと以外は、実施例24と同様にして、太陽電池素子25を作製した。
<実施例26>
 実施例24において、電極形成時の焼成条件を最高温度800℃で10秒間から、最高温度850℃で8秒間に変更したこと以外は、実施例24と同様にして太陽電池素子26を作製した。
<実施例27>
 実施例24において、電極用ペースト組成物1から上記で得られた電極用ペースト組成物9に変更して、受光面集電用電極、スルーホール電極、裏面電極を形成したこと以外は、実施例24と同様にして、太陽電池素子27を作製した。
<実施例28>
 実施例1において、ガラス粒子をガラスG01粒子からガラスG03粒子に変更したこと以外は、実施例1と同様にして、電極用ペースト組成物28を調製した。
 なお、ガラスG03は、二酸化ケイ素(SiO)13部、酸化ホウ素(B)58部、酸化亜鉛(ZnO)38部、酸化アルミニウム(Al)12部、酸化バリウム(BaO)12部からなるように調製した。得られたガラスG03の軟化点は、583℃、結晶化温度は650℃を超えていた。
 得られたガラスG03を用いて、平均粒子径(D50%)が2.5μmであるガラスG03粒子を得た。またその形状は略球状であった。
 次いで、上記で得られた電極用ペースト組成物28を用いて、図6に示したような構造を有する太陽電池素子28を作製した。作製方法は、受光面電極を形成しないこと以外は、実施例24~27と同様である。なお、焼成条件は最高温度800℃で保持時間10秒とした。
<実施例29>
 実施例28において、電極形成時の焼成条件を最高温度800℃で10秒間から、最高温度850℃で8秒間に変更したこと以外は、実施例28と同様にして太陽電池素子29を作製した。
<実施例30>
 上記で得られた電極用ペースト組成物28を用いて、図7に示したような構造を有する太陽電池素子30を作製した。作製方法は、ベースとなる基板にn型シリコン基板を用いたことと、受光面電極、スルーホール及びスルーホール電極を形成しないこと以外は、実施例24と同様である。なお、焼成条件は最高温度800℃で保持時間10秒とした。
<実施例31>
 実施例9において、ガラス粒子をガラスG01粒子からガラスG03粒子に変更したこと以外は、実施例5と同様にして、電極用ペースト組成物31を調製した。これを用いて実施例30と同様にして、図7に示したような構造を有する太陽電池素子31を作製した。
<実施例32>
 実施例16において、ガラス粒子をガラスG01粒子からガラスG03粒子に変更したこと以外は、実施例12と同様にして、電極用ペースト組成物32を調製した。これを用いて実施例30と同様にして、図7に示したような構造を有する太陽電池素子32を作製した。
<比較例1>
 実施例1における電極用ペースト組成物の調製において、リン含有銅合金粒子、錫含有粒子及びニッケル含有粒子を用いずに、表1に示した組成となるように各成分を変更したこと以外は、実施例1と同様にして電極用ペースト組成物C1を調製した。
 リン含有銅合金粒子、錫含有粒子及びニッケル粒子を含まない電極用ペースト組成物C1を用いたこと以外は、実施例1と同様にして太陽電池素子C1を作製した。
<比較例2~4>
 実施例1における電極用ペースト組成物の調製において、リンの含有量の異なるリン含有銅合金粒子を用い、錫含有粒子及びニッケル粒子を用いずに、表1に示す組成の電極用ペースト組成物C2~C4をそれぞれ調製した。
 電極用ペースト組成物C2~C4をそれぞれ用いたこと以外は、比較例1と同様にして太陽電池素子C2~C4をそれぞれ作製した。
<比較例5>
 実施例1における電極用ペースト組成物の調製において、リン含有銅合金粒子の代わりに銅粒子(純度99.5%、平均粒子径(D50%)5.0μm、含有量33.3部)を用いて、表1に示した組成となるように各成分を変更したこと以外は、実施例1と同様にして、電極用ペースト組成物C5を調製した。
 電極用ペースト組成物C5を用いたこと以外は、比較例1と同様にして太陽電池素子C5を作製した。
<比較例6>
 実施例24において、電極用ペースト組成物1の代わりに上記で得られた電極用ペースト組成物C1に変更して、受光面集電用電極、スルーホール電極、裏面電極を形成したこと以外は、実施例24と同様にして、太陽電池素子C6を作製した。
<比較例7>
 実施例28において、電極用ペースト組成物28の代わりに上記で得られた電極用ペースト組成物C1に変更したこと以外は、実施例28と同様にして太陽電池素子C7を作製した。
<比較例8>
 実施例30において、電極用ペースト組成物28の代わりに上記で得られた電極用ペースト組成物C1に変更したこと以外は、実施例30と同様にして太陽電池素子C8を作製した。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
<評価>
 作製した太陽電池素子の評価は、擬似太陽光として(株)ワコム電創製WXS-155S-10、電流―電圧(I-V)評価測定器としてI-V CURVE TRACER MP-160(EKO INSTRUMENT社製)の測定装置を組み合わせて行った。太陽電池としての発電性能を示すJsc(短絡電流)、Voc(開放電圧)、FF(フィルファクター)、Eff(変換効率)は、それぞれJIS-C-8912、JIS-C-8913及びJIS-C-8914に準拠して測定を行うことで得られたものである。両面電極構造の太陽電池素子において、得られた各測定値を、比較例1(太陽電池素子C1)の測定値を100.0とした相対値に換算して表3に示した。なお、比較例2においては、銅粒子の酸化によって形成された電極の抵抗率が大きくなり、評価不能であった。
 さらに調製した電極用ペースト組成物を焼成して形成した受光面電極の断面を走査型電子顕微鏡Miniscope TM-1000((株)日立製作所製)を用いて、加速電圧15kVで観察し、電極内のCu-Sn合金相、Cu-Sn-Ni合金相、Sn-P-Oガラス相の有無及びSn-P-Oガラス相の形成部位を調査した。その結果も併せて表3に示した。
Figure JPOXMLDOC01-appb-T000003
 
 表3から、比較例3~5においては、比較例1よりも発電性能が劣化したことが分かる。これは例えば以下のように考えられる。比較例4においては、錫含有粒子が含まれていないために、焼成中にシリコン基板と銅の相互拡散が起こり、基板内のpn接合特性が劣化したことが考えられる。また比較例5においては、リン含有銅合金粒子を用いずに銅粒子(リン含有量が0質量%)を用いたために、焼成中に錫含有粒子と反応する前に銅粒子が酸化し、Cu-Sn合金相が形成されずに電極の抵抗が増加したことが考えられる。
 一方、実施例1~23で作製した太陽電池素子の発電性能は、比較例1の太陽電池素子の測定値と比べて、ほぼ同等であった。特に太陽電池素子21~23は、電極用ペースト組成物を比較的低温(620~650℃)で焼成したにもかかわらず、高い発電性能を示した。また組織観察の結果、受光面電極内にはCu-Sn-Ni合金相もしくはCu-Sn-Ni合金相とCu-Snの両方とSn-P-Oガラス相が存在し、Sn-P-Oガラス相がCu-Sn合金相及びCu-Sn-Ni合金相とシリコン基板との間に形成されていた。
 続いて、バックコンタクト型の太陽電池素子のうち、図5の構造を有するものについて、得られた各測定値を、比較例6の測定値を100.0とした相対値に換算して表4に示した。さらに受光面電極の断面を観察した結果も併せて表4に示した。
Figure JPOXMLDOC01-appb-T000004
 
 表4から、実施例24~27で作製した太陽電池素子は、比較例6の太陽電池素子とほぼ同等の発電性能を示したことが分かる。また組織観察の結果、受光面電極内にはCu-Sn-Ni合金相とSn-P-Oガラス相が存在し、Sn-P-Oガラス相がCu-Sn-Ni合金相とシリコン基板との間に形成されていた。
 続いて、バックコンタクト型の太陽電池素子のうち、図6の構造を有するものについて、得られた各測定値を、比較例7の測定値を100.0とした相対値に換算して表5に示した。さらに裏面電極のうち、調製した電極用ペースト組成物を焼成して形成した電極の断面を観察した結果も併せて表5に示した。
Figure JPOXMLDOC01-appb-T000005
 
 表5から、実施例28~29で作製した太陽電池素子は、比較例7の太陽電池素子とほぼ同等の発電性能を示したことが分かる。また組織観察の結果、裏電極のうち、作製した電極用ペースト組成物を焼成して形成した電極内にはCu-Sn-Ni合金相とSn-P-Oガラス相が存在し、Sn-P-Oガラス相がCu-Sn-Ni合金相とシリコン基板との間に形成されていた。
 続いて、バックコンタクト型の太陽電池素子のうち、図7の構造を有するものについて、得られた各測定値を、比較例8の測定値を100.0とした相対値に換算して表6に示した。さらに裏面電極のうち、調製した電極用ペースト組成物を焼成して形成した電極の断面を観察した結果も併せて表6に示した。
Figure JPOXMLDOC01-appb-T000006
 
 実施例30~32で作製した太陽電池素子は、比較例8の太陽電池素子とほぼ同等の発電性能を示したことが分かる。また組織観察の結果、裏電極のうち、作製した電極用ペースト組成物を焼成して形成した電極内にはCu-Sn-Ni合金相とSn-P-Oガラス相が存在し、Sn-P-Oガラス相がCu-Sn-Ni合金相とシリコン基板との間に形成されていた。
 日本特許出願2011-249120号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (15)

  1.  リン含有銅合金粒子と、錫含有粒子と、ニッケル含有粒子と、ガラス粒子と、溶剤と、樹脂と、を含む電極用ペースト組成物。
  2.  前記リン含有銅合金粒子のリン含有率が6質量%以上8質量%以下である請求項1に記載の電極用ペースト組成物。
  3.  前記錫含有粒子は、錫粒子及び錫含有率が1質量%以上である錫合金粒子からなる群より選ばれる少なくとも1種である請求項1又は請求項2に記載の電極用ペースト組成物。
  4.  前記ニッケル含有粒子は、ニッケル粒子及びニッケル含有率が1質量%以上であるニッケル合金粒子からなる群より選ばれる少なくとも1種である請求項1~請求項3のいずれか1項に記載の電極用ペースト組成物。
  5.  前記ガラス粒子は、ガラス軟化点が650℃以下であって、結晶化開始温度が650℃を超える請求項1~請求項4のいずれか1項に記載の電極用ペースト組成物。
  6.  前記リン含有銅合金粒子、前記錫含有粒子及び前記ニッケル含有粒子の総含有率を100質量%とした場合の前記錫含有粒子の含有率が、5質量%以上70質量%以下である請求項1~請求項5のいずれか1項に記載の電極用ペースト組成物。
  7.  前記リン含有銅合金粒子、前記錫含有粒子及び前記ニッケル含有粒子の総含有率を100質量%とした場合の前記ニッケル含有粒子の含有率が、10質量%以上60質量%以下である請求項1~請求項6のいずれか1項に記載の電極用ペースト組成物。
  8.  前記リン含有銅合金粒子、錫含有粒子及びニッケル含有粒子の総含有率が70質量%以上94質量%以下であって、前記ガラス粒子の含有率が0.1質量%以上10質量%以下であって、前記溶剤及び前記樹脂の総含有率が3質量%以上29.9質量%以下である請求項1~請求項7のいずれか1項に記載の電極用ペースト組成物。
  9.  銀粒子を更に含む請求項1~請求項8のいずれか1項に記載の電極用ペースト組成物。
  10.  前記リン含有銅合金粒子、前記錫含有粒子、前記ニッケル含有粒子及び前記銀粒子の総含有率を100質量%とした場合の前記銀粒子の含有率が0.1質量%以上10質量%以下である請求項9に記載の電極用ペースト組成物。
  11.  前記リン含有銅合金粒子、錫含有粒子、前記ニッケル含有粒子及び銀粒子の総含有率が70質量%以上94質量%以下であって、前記ガラス粒子の含有率が0.1質量%以上10質量%以下であって、前記溶剤及び前記樹脂の総含有率が3質量%以上29.9質量%以下である請求項9又は請求項10に記載の電極用ペースト組成物。
  12.  pn接合を有するシリコン基板と、前記シリコン基板上に付与された請求項1~請求項11のいずれか1項に記載の電極用ペースト組成物の焼成物である電極と、を有する太陽電池素子。
  13.  前記電極は、Cu-Sn-Ni合金相及びSn-P-Oガラス相を含む請求項12に記載の太陽電池素子。
  14.  前記Sn-P-Oガラス相は、前記Cu-Sn-Ni合金相と前記シリコン基板との間に配置されている請求項13に記載の太陽電池素子。
  15.  請求項12~請求項14のいずれか1項に記載の太陽電池素子と、前記太陽電池素子の電極上に配置された配線材料と、を有する太陽電池。
PCT/JP2012/079157 2011-11-14 2012-11-09 電極用ペースト組成物、太陽電池素子及び太陽電池 WO2013073478A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157025242A KR20150125956A (ko) 2011-11-14 2012-11-09 전극용 페이스트 조성물, 태양 전지 소자 및 태양 전지
CN201280055775.8A CN103930950A (zh) 2011-11-14 2012-11-09 电极用糊剂组合物、太阳能电池元件以及太阳能电池
KR1020147013653A KR20140082835A (ko) 2011-11-14 2012-11-09 전극용 페이스트 조성물, 태양 전지 소자 및 태양 전지
JP2013544250A JP5811186B2 (ja) 2011-11-14 2012-11-09 電極用ペースト組成物、太陽電池素子及び太陽電池
EP12849394.7A EP2782102A4 (en) 2011-11-14 2012-11-09 PULP COMPOSITION FOR ELECTRODE, SOLAR CELL ELEMENT, SOLAR CELL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011249120 2011-11-14
JP2011-249120 2011-11-14

Publications (1)

Publication Number Publication Date
WO2013073478A1 true WO2013073478A1 (ja) 2013-05-23

Family

ID=48429538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079157 WO2013073478A1 (ja) 2011-11-14 2012-11-09 電極用ペースト組成物、太陽電池素子及び太陽電池

Country Status (6)

Country Link
EP (1) EP2782102A4 (ja)
JP (2) JP5811186B2 (ja)
KR (2) KR20140082835A (ja)
CN (1) CN103930950A (ja)
TW (1) TW201324539A (ja)
WO (1) WO2013073478A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092900A1 (ja) * 2013-12-19 2015-06-25 日立化成株式会社 太陽電池及び太陽電池モジュール
WO2015092901A1 (ja) * 2013-12-19 2015-06-25 日立化成株式会社 電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール
WO2015115567A1 (ja) * 2014-01-31 2015-08-06 日立化成株式会社 太陽電池、太陽電池モジュール、電極付部品、半導体装置及び電子部品
WO2015115565A1 (ja) * 2014-01-31 2015-08-06 日立化成株式会社 電極形成用組成物、電極、太陽電池素子及びその製造方法並びに太陽電池
JP2015167122A (ja) * 2014-02-12 2015-09-24 日立化成株式会社 電極形成用組成物、電極、太陽電池素子並びに太陽電池及びその製造方法
JP2016189309A (ja) * 2015-03-30 2016-11-04 日立化成株式会社 電極形成用組成物、電極、太陽電池素子及びその製造方法並びに太陽電池
US9780236B2 (en) 2013-12-17 2017-10-03 Industrial Technology Research Institute Conductive paste composition and method for manufacturing electrode
TWI634668B (zh) * 2013-12-19 2018-09-01 日商日立化成股份有限公司 太陽電池以及太陽電池模組

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163498A1 (ja) * 2016-03-23 2017-09-28 三菱電機株式会社 太陽電池、および、太陽電池の製造方法
CN108981217A (zh) * 2018-06-04 2018-12-11 中船重工鹏力(南京)超低温技术有限公司 蓄冷材料及采用该蓄冷材料的蓄冷式低温制冷机
EP3614399A1 (en) 2018-08-23 2020-02-26 Centrum Badan i Rozwoju Technologii dla Przemyslu S.A. A method for manufacturing modified electrically-conductive copper particles and modified electrically-conductive copper particles manufactured thereof
CN109970347A (zh) * 2019-04-29 2019-07-05 齐鲁工业大学 一种提高锂离子电池性能的TeO2-V2O5-CuO微晶玻璃负极材料
CN118136305A (zh) * 2024-02-29 2024-06-04 佛山市中科兴新材料有限公司 一种导电浆料及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350064B2 (ja) 1986-11-04 1991-07-31 Junichi Go
JP2004217952A (ja) 2003-01-09 2004-08-05 Mitsui Mining & Smelting Co Ltd 表面処理銅粉並びにその表面処理銅粉の製造方法及びその表面処理銅粉を用いた導電性ペースト
JP2005314755A (ja) 2004-04-28 2005-11-10 Mitsui Mining & Smelting Co Ltd フレーク銅粉及びその製造方法並びに導電性ペースト
JP2006313744A (ja) 2005-04-14 2006-11-16 E I Du Pont De Nemours & Co 導電性厚膜組成物、電極、およびそれから形成される半導体デバイス
JP2009188281A (ja) 2008-02-08 2009-08-20 Hitachi Ltd Cu系配線用材料およびそれを用いた電子部品
WO2011090215A1 (ja) * 2010-01-25 2011-07-28 日立化成工業株式会社 電極用ペースト組成物及び太陽電池
WO2011090211A1 (ja) * 2010-01-25 2011-07-28 日立化成工業株式会社 電極用ペースト組成物および太陽電池
WO2011090214A1 (ja) * 2010-01-25 2011-07-28 日立化成工業株式会社 電極用ペースト組成物および太陽電池
JP2011249120A (ja) 2010-05-26 2011-12-08 Rohm Co Ltd 照明装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244466B2 (ja) * 1999-10-13 2009-03-25 株式会社村田製作所 導電性ペーストおよびそれを用いた半導体セラミック電子部品
US8575474B2 (en) * 2006-03-20 2013-11-05 Heracus Precious Metals North America Conshohocken LLC Solar cell contacts containing aluminum and at least one of boron, titanium, nickel, tin, silver, gallium, zinc, indium and copper
US20100096014A1 (en) * 2006-12-25 2010-04-22 Hideyo Iida Conductive paste for solar cell
JP5156328B2 (ja) * 2007-10-18 2013-03-06 福田金属箔粉工業株式会社 導電材ペースト用銅合金粉
US20090266409A1 (en) * 2008-04-28 2009-10-29 E.I.Du Pont De Nemours And Company Conductive compositions and processes for use in the manufacture of semiconductor devices
US20110180139A1 (en) * 2010-01-25 2011-07-28 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350064B2 (ja) 1986-11-04 1991-07-31 Junichi Go
JP2004217952A (ja) 2003-01-09 2004-08-05 Mitsui Mining & Smelting Co Ltd 表面処理銅粉並びにその表面処理銅粉の製造方法及びその表面処理銅粉を用いた導電性ペースト
JP2005314755A (ja) 2004-04-28 2005-11-10 Mitsui Mining & Smelting Co Ltd フレーク銅粉及びその製造方法並びに導電性ペースト
JP2006313744A (ja) 2005-04-14 2006-11-16 E I Du Pont De Nemours & Co 導電性厚膜組成物、電極、およびそれから形成される半導体デバイス
JP2009188281A (ja) 2008-02-08 2009-08-20 Hitachi Ltd Cu系配線用材料およびそれを用いた電子部品
WO2011090215A1 (ja) * 2010-01-25 2011-07-28 日立化成工業株式会社 電極用ペースト組成物及び太陽電池
WO2011090211A1 (ja) * 2010-01-25 2011-07-28 日立化成工業株式会社 電極用ペースト組成物および太陽電池
WO2011090214A1 (ja) * 2010-01-25 2011-07-28 日立化成工業株式会社 電極用ペースト組成物および太陽電池
JP2011249120A (ja) 2010-05-26 2011-12-08 Rohm Co Ltd 照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2782102A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780236B2 (en) 2013-12-17 2017-10-03 Industrial Technology Research Institute Conductive paste composition and method for manufacturing electrode
WO2015092900A1 (ja) * 2013-12-19 2015-06-25 日立化成株式会社 太陽電池及び太陽電池モジュール
WO2015092901A1 (ja) * 2013-12-19 2015-06-25 日立化成株式会社 電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール
TWI634668B (zh) * 2013-12-19 2018-09-01 日商日立化成股份有限公司 太陽電池以及太陽電池模組
WO2015115567A1 (ja) * 2014-01-31 2015-08-06 日立化成株式会社 太陽電池、太陽電池モジュール、電極付部品、半導体装置及び電子部品
WO2015115565A1 (ja) * 2014-01-31 2015-08-06 日立化成株式会社 電極形成用組成物、電極、太陽電池素子及びその製造方法並びに太陽電池
JP2015167122A (ja) * 2014-02-12 2015-09-24 日立化成株式会社 電極形成用組成物、電極、太陽電池素子並びに太陽電池及びその製造方法
JP2016189309A (ja) * 2015-03-30 2016-11-04 日立化成株式会社 電極形成用組成物、電極、太陽電池素子及びその製造方法並びに太陽電池

Also Published As

Publication number Publication date
KR20150125956A (ko) 2015-11-10
TW201324539A (zh) 2013-06-16
KR20140082835A (ko) 2014-07-02
JP5811186B2 (ja) 2015-11-11
JPWO2013073478A1 (ja) 2015-04-02
CN103930950A (zh) 2014-07-16
EP2782102A4 (en) 2015-07-15
JP2016001612A (ja) 2016-01-07
EP2782102A1 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5768455B2 (ja) 電極用ペースト組成物及び太陽電池素子
JP5811186B2 (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
WO2012140787A1 (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
JP5120477B2 (ja) 電極用ペースト組成物及び太陽電池
JP6206491B2 (ja) 電極形成用組成物、太陽電池素子及び太陽電池
JP5891599B2 (ja) シリコン系太陽電池の電極用ペースト組成物
JP5879793B2 (ja) 素子の製造方法及び太陽電池の製造方法
JP5720393B2 (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
JP5772174B2 (ja) 素子及び太陽電池並びに電極用ペースト組成物
WO2015115565A1 (ja) 電極形成用組成物、電極、太陽電池素子及びその製造方法並びに太陽電池
JP2016189443A (ja) 電極形成用組成物、電極、太陽電池素子及びその製造方法、並びに太陽電池
JP2015195223A (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
WO2017033343A1 (ja) 電極形成用組成物、電極、太陽電池素子、太陽電池及び太陽電池素子の製造方法
JP2015144126A (ja) 電極用ペースト組成物及び太陽電池素子
JP5408322B2 (ja) 電極用ペースト組成物及び太陽電池
JP2015188089A (ja) 素子及び太陽電池
JP2016122840A (ja) 素子及び太陽電池並びに電極用ペースト組成物
JP2016054312A (ja) 素子及び太陽電池
JP2015079975A (ja) 素子及び太陽電池並びに電極用ペースト組成物
JP5958526B2 (ja) 素子及び太陽電池並びに電極用ペースト組成物
JP5899689B2 (ja) 素子及び太陽電池
JP6464669B2 (ja) 電極形成用組成物、電極、太陽電池素子並びに太陽電池及びその製造方法
JP2016189307A (ja) 電極形成用組成物、電極、太陽電池素子及びその製造方法並びに太陽電池
JP2016189447A (ja) 太陽電池素子及びその製造方法並びに太陽電池
JP2014093491A (ja) 太陽電池素子及びその製造方法、並びに太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544250

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147013653

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012849394

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012849394

Country of ref document: EP